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Abstract. Robotic tasks like welding or drilling with three translational
and only two rotational degrees of freedom (“3T2R”) are of high indus-
trial relevance but are rather scarcely addressed in scientific publica-
tions. Existing solutions for the resolution of the functional redundancy
of robotic manipulators with more than five axes performing these tasks
either expand the full kinematic formulation or reduce it in interme-
diate steps. This paper presents an approach to reduce the kinematic
formulation from the start to solve the problem in a simpler way. This is
done by using a set of reciprocal Euler angles to describe the end-effector
orientation and the orientation error in inverse kinematics.
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1 Introduction

Since the first papers in the 1980s, the fields of inverse kinematics [1] and the
resolution of intrinsic redundancy [2] in robotics have been extensively elabo-
rated upon. Inverse kinematics for robot manipulators can be solved analytically
for some structures and can be approached in general with gradient-based nu-
meric methods at joint position or joint velocity level. Due to the nonlinearity
of rotation at position level [1], the latter is usually preferred.

Intrinsic redundancy is defined as a robot joint space dimension higher than
the operational space dimension and functional redundancy is defined as an
operational space dimension higher than the task space dimension, implying
that there are more independent joint coordinates than task coordinates.

The kinematics of functionally redundant robots performing tasks with five
instead of six degrees of freedom (DoF) has drawn much less attention, even
if many industrial relevant tasks only require 5-DoF such as the class of 3T2R-
tasks where the tool for the task is axis-symmetric. These tasks comprise amongst
others arc welding [3], drilling [4, 5], spray-painting [6], milling [7], laser-cutting
and glueing and are transfered to a greater extend to robotic manipulators in
the automotive or aviation industry.
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Since standard industrial robots have six DoF, one degree of functional re-
dundancy exists which allows to improve performance characteristics of the
robots as a secondary task while reaching a valid pose to perform one of the
aforementioned primary tasks. To be able to incorporate performance optimiza-
tion into inverse kinematics via the well-established gradient projection method
[2], either the joint space can be augmented or the task space can be reduced.
Augmenting the joint space is possible by virtually inserting an additional joint
for the rotation around the task’s axis of symmetry (“tool axis”) [8]. Reducing
the task space can be performed by orthogonal decomposition of the end-effector
twist [3], removing the row of the “task frame Jacobian” corresponding to the
tool axis [9], the construction of the Jacobian Nullspace based upon geometric
properties of the task [10] or constructing a cone or pyramid resulting from the
tool axis with an additional range of tolerance for tilt angles [6].

Another possibility for the resolution of the functional redundancy is a cas-
caded optimization where the inner loop calculates the inverse kinematics with
standard methods and the outer loop optimizes the performance index. The
optimization can be performed by evaluating the index on a range of rotation
angles around the tool axis [4] or by using the incremental change of the rotation
around the tool axis directly to adapt the joint angles [5].

The choice of performance indices aims to improve the task execution with
measures such as the joint positions quadratic [3] or hyperbolic [4] distances
from their limits, singularity avoidance via Frobenius-norm condition number [4],
squared condition number [10] or a combination of manipulability and condition
number of the Jacobian [11], stiffness [5] or milling chatter stability margins [7].

The characteristic length required to normalize the Jacobian for the perfor-
mance indices can be either chosen constant regarding the robot geometry [4] or
as an additional optimization parameter [10].

The existing methods each have drawbacks that are avoided by using the
new method presented in this paper:

– Augmenting the joint space [8] increases the computational cost and can
lead to an ill-conditioned Jacobian [11].

– Using a nested optimization [4, 5] does not allow using the well-proven gra-
dient projection method.

– In [9] the tool-axis rotation of the end-effector has to be calculated and
canceled out in the nullspace.

– Describing the tool axis with two points requires to define a distance between
these points, which has to be chosen e. g. as the normalized Jacobian’s char-
acteristic length to gain a good conditioning of the optimization [10].

– All methods have a high mathematical level of abstraction e. g. using orthog-
onal decomposition [11], linear matrix inequalities and convex optimization
[6], rotation and component-selection of the vector part of the quaternion
orientation error [9] or sequential quadratic programming [10].

This paper transfers the velocity level approach from [9] to the position level
and the orientation error is expressed in Euler angles instead of quaternions:
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The absolute orientation of the end-effector and the corresponding orien-
tation error between desired and actual end-effector orientation are expressed
with two sets of Euler angles which are mutually reciprocal. Reciprocity for sets
of Euler angles is defined in this paper as successive rotations around intrinsic
elementary axes of switched order. By this definition, the rotation component
belonging to the tool axis in 3T2R tasks is always the same for the absolute
orientation and for the orientation error, respectively. The effect of the tool axis
can then be eliminated from the kinematic equations. This allows to express the
kinematics equations in minimal form which makes it easy to use the gradient
projection method to incorporate performance indices in inverse kinematics.

The contributions of this paper are
– a new formulation for the kinematics problem for robot manipulators per-

forming 3T2R-tasks,
– an application of the formulation leading to an efficient solution for inverse

kinematics with functional redundancy,
– remarks on the implementation of gradients of and w.r.t. rotation matrices

and its performance.
The remainder of the paper is structured as follows: The idea of a kinematic

description using sets of reciprocal Euler angles is elaborated upon in Sec. 2.
Their application in inverse kinematics of 3T2R tasks and in resolving the func-
tional redundancy is shown in Sec. 3 and 4. Sec. 5 concludes the paper.

2 Using Reciprocal Euler Angles for Robot Kinematics

The core of solving the inverse kinematics problem of robot manipulators for
tasks with only two rotational degrees of freedom is the nonlinearity of rotation.
Rotation can be described using rotation matrices, Euler angles, rotation an-
gle/axis and its derivations like quaternions or the Rodrigues vector. In contrast
to all other notations, consecutive elementary rotations like Euler angles can be
reduced to adapt for tasks only requiring two rotatory DoF.

2.1 Kinematics Description

A serial kinematic chain is described with the joint positions q and the forward
kinematics

x(q) = f(q) (1)

giving the configuration-dependent position and orientation x(q) of the actual
end-effector (“E”) frame FE . In the following, the general, joint-independent,
pose x of the robot end-effector is defined as the desired (“D”) end-effector pose
in the inverse kinematics problem and will be termed with “x” without further
supplements for the sake of compactness of the equations. This general pose

x =
[
xT
t x

T
r

]T ∈ R6 (2)

describes the desired robot end-effector frames FD position

xt = (0)rD ∈ R3 (3)
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and orientation
0RD(xr) =

[
nD oD aD

]
∈ SO(3) (4)

with respect to the base frame F0, which is marked with left subscript “(0)”
for vectors and left superscript “0” for rotation matrices. The rotation (4) is
expressed without loss of generality with a set β of X-Y -Z-Euler angles

xr =
[
β1 β2 β3

]T ∈ R3, (5)

R(β) = Rx(β1)Ry(β2)Rz(β3) ∈ SO(3). (6)

The deviation Φ between the desired end-effector frame FD expressed with x
of (2) and the actual robots end-effector frame FE expressed with f(q) of (1)
is defined as

Φ =
[
ΦT

t Φ
T
r

]T ∈ R6, (7)

which is the residual vector of the inverse kinematics problem. The vector

Φt(q,x) = −(0)rD + (0)rE(q) = −xt + (0)rE(q) ∈ R3 (8)

from the origins of FD to FE is the translational part and the rotational part

Φr(q,x) =
[
α1 α2 α3

]T
= α

(
DRE(xr, q)

)
= α

(
0R

T
D(xr)

0RE(q)
)
∈ R3 (9)

is also chosen as a set of Euler angles α [1], that is calculated from the rotation
matrix in (9). In the following, “α” will always refer to the rotation error/residual
and “β” to an orientation relative to the base frame. The Euler angle convention
of α can be chosen independently of the choice for the orientation representation
in β. The intuitive approach of choosing

R(α∗) := Rx(α∗1)Ry(α∗2)Rz(α
∗
3) ∈ SO(3) (10)

the same way as β leads to a set of transformations depicted in Fig. 1 (a) where
the intermediate steps of the single elementary rotations are omitted since they
have no technical meaning. The upperscript in α∗ in (10) demarcates this specific
example and following elaborations on the calculation of α.

2.2 Effect of the Reciprocal Euler Angles

Using Φr=α
∗ as defined in (10), all three components of xr=β affect the rotation

matrix DRE , which makes it impossible to remove one rotational coordinate from
the kinematic description, even if it is not required in the task. To encounter this
issue, the Euler angle convention α for the orientation error Φr is now chosen to
be

R(α) := Rz(α1)Ry(α2)Rx(α3) ∈ SO(3) (11)

instead of the definition from (10). This set of Z-Y -X-Euler angles α is defined
in this paper as being reciprocal to the set of X-Y -Z-Euler angles of β for the
absolute orientation.
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F0 FD

Rx(β1)Ry(β2)

FE
0RE(q)

Ry(α2)Rx(α3)

FA1

FA2

Rz(α1)

Rz(β3 + α1)

Rz(β3)

F0 FD

0RD(xr) = Rx(β1)Ry(β2)Rz(β3)

FE0RE(q)

Rx(α∗
1)Ry(α∗

2)Rz(α
∗
3)(a) (b)

Fig. 1. Overview of the different frames (a) for 6-dof tasks with standard Euler angle
notation and (b) for 5-dof tasks with reciprocal Euler angle notation.

The reciprocity refers to the switched order of the elementary axes X, Y and
Z in the combination of the sets α and β. One set of Euler angles alone can
not be declared as reciprocal without reference to another set of angles. Similar
to the six end-effector operational space coordinates x, the task space of 3T2R
tasks is defined to have five coordinates

η =
[
ηT
t η

T
r

]T ∈ R5. (12)

The translational part
ηt = xt = (0)rD ∈ R3 (13)

remains unchanged and the rotational part

ηr =
[
β1 β2

]T
=

[
1 0 0
0 1 0

]
︸ ︷︷ ︸
=P η

xr ∈ R2 (14)

is modified compared to x. The last rotation β3 around the z-axis aD of 0RD

is excluded from the task space by the selection matrix P η, since it corresponds
to a rotation around the tool axis in 3T2R tasks and is a DoF of the operational
space which can be set arbitrarily (from the kinematic point of view).

The frames FA1 and FA2 result from intermediate elementary rotations, as
sketched in Fig. 1 (b). These intermediate frames are the partial frame rotation
to the former 3T3R desired frame FD

0RA1 = Rx(β1)Ry(β2) =
[
nA1 oA1 aA1

]
(15)

and the partial frame rotation

0RA2 = 0RE(q) (Ry(α2)Rx(α3))
T

=
[
nA2 oA2 aA2

]
(16)

from the actual frame and the x- and y-axis error components. The frames FA1,
FA2 and FD all share the same z-axis

aD = aA1 = aA2 (17)

which is also the tool axis, since transformations between these frames are only
rotations Rz around the z-axes from (17).
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Since the tool axis rotation β3 and the orientation error component α1 are
defined around the same axis, β3 only influences α1 and not α2 and α3, which
can be expressed byα1

α2

α3

 =

α1(q, β1, β2, β3)
α2(q, β1, β2)
α3(q, β1, β2)

 =

α1(q,x)
α2(q,η)
α3(q,η)

 . (18)

This property of the reciprocal sets of Euler angles allows a kinematic description
of robots in 3T2R tasks, as elaborated in the next sections. It can be derived
by symbolically comparing α of (30) for two different desired rotations β which
only differ regarding a rotation β3 around the tool axis.

3 Application on the Inverse Kinematics of 3T2R Tasks

The standard methods, introduced in Sec. 1 for solving the inverse kinematics
for 3T2R tasks and exploiting the functional redundancy, struggle with the def-
inition of a Jacobian matrix with appropriate dimensions.

3.1 Jacobian for Gradient-based Inverse Kinematics

To obtain a Jacobian with minimal row dimension, the kinematic condition for
the 3T2R problem in the coordinates η is now defined as

Ψ =
[
ΨT

t Ψ
T
r

]T ∈ R5 (19)

following the definition for Φ from (7). The translational part

Ψ t(q,η) = Φt(q,x) = −ηt + (0)rE(q) ∈ R3 (20)

remains unchanged to (8). The first component of the rotational part from (9)
is omitted by the selection matrix P Ψ , since it corresponds to the orientation
error α1 around the tool axis, leaving

Ψ r(q,η) =
[
α2 α3

]T
=

=PΨ︷ ︸︸ ︷[
0 1 0
0 0 1

]
Φr(q,x) ∈ R2. (21)

The dependence on η and not on x can be explained by using (18) and (14)
together with A1RA2 = Rz(β3 + α1) from Fig. 1 (b) which results to

Ψ r(q,η) = P Ψα
(
A2RE(q,ηr, α1, β3)

)
= P Ψα

(
0R

T
A1(ηr)

0RE(q)
)
. (22)

The condition Φ = 0 or Ψ = 0 leads to a valid configuration of the end-
effector position and the complete orientation of the end-effector (using Φ) or
the orientation only of the tool-axis (using Ψ).
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Following [1], the inverse kinematics problem for serial link robots in 6-DoF
tasks at the iterative step k+ 1 can be derived with the linear approximation of
the Taylor series expansion of Φ(q,x) to

Φ(qk+1,x) = Φ(qk,x) +
∂

∂q
Φ(q,x)

∣∣∣∣
qk

(qk+1 − qk) (23)

where Φ∂q = (∂Φ/∂q) is called the “Jacobian matrix corresponding to the resid-
ual vector” (Φ) in [1] and q0 is assumed as given. For 3T2R tasks

Ψ(qk+1,η) = Ψ(qk,η) +
∂

∂q
Ψ(q,η)

∣∣∣∣
qk

(qk+1 − qk) (24)

can be defined in the same way with the condition

Ψ(qk+1,η) = 0 (25)

for solution of the inverse kinematics in the next step k + 1. The increment

∆qk = (qk+1 − qk) =

(
∂Ψ(q,η)

∂q

∣∣∣∣
qk

)†
(0− Ψ(qk,η)) (26)

of the joint angles towards this solution can be used in iterative algorithms
like Newton-Raphson together with methods to adapt the step sizes to ensure
convergence. Depending on the dimension of the matrix, (·)† denotes the matrix
inverse or the pseudo-inverse.

3.2 Discussion of Singularities

In [9], quaternions were used in favor of Euler angles for the orientation error
with the reasons that a singularity-free representation of Φ = 0 is needed. This
is the case for Tait-Bryan angles1 like e. g. the Z-Y -X notation used here for α.
For control purposes it can be assumed that the components of the orientation
error α always stay below ±90◦, which avoids the “gimbal lock” representation
singularity of Euler angles. This assumption can be justified by the consideration
that active and effective position and orientation tracking will only produce small
errors. A singularity-free representation of the absolute orientation β has to be
ensured at the phase of motion planning, as well as avoiding discontinuities of
the trajectory.

3.3 Remarks on Differentiation and Rotation Matrices

The Jacobians Φ∂q of (23) or Ψ∂q of (24) consist of nested non-linear functions
and do not use the geometric Jacobian of the serial link manipulator for the
rotational part, which is easy to calculate.

1 Tait-Bryan angles are referred to as A-B-C-Euler angles with axes A 6= C as opposed
to “proper Euler angles” with A = C. The elementary axes are A,B,C ∈ {X,Y, Z}.
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However, Φ∂q can be implemented efficiently by exploiting the chain rule and
sparsity of the matrices with partial derivatives as shown in the following.

The column operator R for rotation matrices R to stack the coordinate
systems unit vectors n,o,a ∈ R3 vertically instead of horizontally is defined as

R(R) =

no
a

 ∈ R9 with R =
[
n o a

]
=

nx ox axny oy ay
nz oz az

 ∈ SO(3) (27)

to avoid differentiating matrices or w.r.t. matrices. Matrix multiplication is then
expressed with the matrix product operator Π such that

1R3 =
∏(

1R2,
2R3

)
= R(1R3) with 1R3 = 1R2

2R3. (28)

The transposition operator PT is a 9× 9 permutation matrix such that

2R1 = PT
1R2 ∈ R9 with 2R1 = 1R

T
2 ∈ SO(3) and 1R2 = R(1R2). (29)

The Euler angles can be calculated from the general rotation matrix R of (27)
in the same way as before2 using these operators with the notation

α(R) = α(R) =

 arctan2 (ny, nx)
arctan2

(
−nz,

√
az2 + oz2

)
arctan2 (oz, az)

 (30)

at the Z-Y -X example. Finally, applying this to the rotational part of the resid-
ual vector Jacobian and using the chain rule for differentiation yields

∂

∂q
Φr =

∂

∂q
α
(
0R

T
D(x)0RE(q)

)
(31)

=
∂

∂q
α

(∏(
0R

T

D(x), 0RE(q)
))

=

(
∂α

∂R

)
︸ ︷︷ ︸
I∈R3×9

∂∏
(
0R

T

D,
0RE

)
∂0RE


︸ ︷︷ ︸

II∈R9×9

(
∂0RE(q)

∂q

)
︸ ︷︷ ︸
III∈R9×dim(q)

.

The first two partial derivatives “I” and “II” from (31) are sparse matrices of low
complexity where the elements of DRE and 0RD have to be inserted. The last
partial derivative “III” can be derived efficiently with computer algebra systems.

The translational part Φt,∂q = ∂Φt/∂q = Ψ t,∂q is enclosed in the geometric
Jacobian of the manipulator and is not considered at this point to focus on the
rotational aspects. The gradient Ψ r,∂q = ∂Ψ r/∂q = P ΨΦr,∂q is obtained from
the results of (31) with the selection matrix P Ψ from (21).

2 Utilizing the sign-aware operator arctan2(y, x) instead of arctan(y/x) allows angles
to be in (−π,+π], removes ambiguities and provides global differentiability.
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To account for exchangeable end-effectors or tools, a distinguished frame
rotation 0RN (q) to the last robot link frame and a constant frame rotation NRE

to the end-effector frame can be used. The properties of the column-operator
allow then to substitute the last term “III” in (31) with

∂0RE(q)

∂q
=

∂

∂q

∏(
0RN (q),NRE

)
(32)

=

(
∂

∂0RN

∏(
0RN ,

NRE

))( ∂

∂q
0RN (q)

)
.

4 Resolving Functional Redundancy for 3T2R Tasks

The inverse kinematics formalism (26), described in the previous section 3, does
not take into account the functional redundancy yet.

The typical scenario for 3T2R tasks in industry is a serial link robot with
dim(q) > 5. Most commonly a classical industrial robot with dim(q) = 6 will be
used. Since dim(Ψ) = 5, at least one DoF is free for optimization of additional
criteria.

For the sake of simplicity, as an additional criterion the summed W -weighted
quadratic distances

h(q) =
1

2
(q − q̄)TW (q − q̄) (33)

of the joint positions q from their respective reference position q̄ will be used.
Minimizing h(q) avoids the risk of joints reaching their technical limits. The
gradient

h∂q =
∂h

∂q
= W (q − q̄) (34)

can be used to include this additional minimization into the solution of the
inverse kinematics. The gradient h∂q is projected into the nullspace of Ψ∂q with

∆q = ∆qT +∆qN

= Ψ †∂q(−Ψ) + (1− Ψ †∂qΨ∂q)h∂q (35)

where the nullspace incremental motion ∆qN does not affect the task achieve-
ment ensured via ∆qT [2].

It is reported in [5] that their optimization does not work for industrial
robots where the tool axis is aligned parallel to the last robot joint axis. This
“pointing configuration” can also not be addressed by the nullspace projection
from (35), since the nullspace corresponds to the last robot axis and (in the case
of a six-DoF robot)

1− Ψ †∂qΨ∂q =

[
05×5 05×1
01×5 11×1

]
(36)

only projects the gradient h∂q of additional criteria onto the last joint. Therefore,
the method does only work if the tool is mounted in a different configuration
(“side” or “hanging” in [5]), which might be unfavorable for some end-effectors
or tasks.
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5 Conclusions

This paper presented a novel concept to formulate the inverse kinematics prob-
lem of serial kinematic chains using reciprocal sets of Euler angles. This exploits
the properties of Euler angles to reduce the number of coordinates required for
3T2R tasks which are of high industrial relevance. Applications to the inverse
kinematics of serial robots are given. Future works will include comparative sim-
ulative evaluation against state of the art methods, inquiries on singularities and
the relation to the geometric Jacobian and the application to parallel robots.
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