601 research outputs found

    An effective way to push shipping E-commerce - maritime consolidation

    Get PDF

    Simple and practical optimization approach based to solve a truck load and delivery problem at long haul distances with heterogenous products

    Get PDF
    This paper proposes an optimization based approach for solving the logistic processes of deliveries scheduling and product accommodation during loading with a heterogeneous fleet of vehicles. The approach focuses on the case of products with “low density values” and high heterogeneous volume and weight, and with traveling large distances to different zones, in which transportation costs constitute a important proportion of total logistic costs. The proposed approach consists of a two-phase strategy: The first uses a “Cutting Stock Problem” formulation to define utilization areas inside trucks assigned to each product family. This task is achieved by minimizing the long-haul transportation costs as a function of the vehicle size, considering a set of predefined solutions for feasible and efficient loading obtained as a result of the accumulated experience. The second phase consists of Bin Packing Problem version with a known number of bins, which were previously determined in the first phase of the approach. In this phase, different orders from a set of customers are assigned to each truck by obeying the predefined utilization areas per product category obtained in the first phase while minimizing the number of visits of each truck. The results show that the model addresses the analyzed problem in an efficient manner, which is reflected in reasonable resolution times and costs from a practical implementation perspective. Additionally, it is observed that long-haul delivery costs and vehicle utilization tend to improve with the increase of the utilized number of patterns even when the execution time is incremented.MaestríaMagister en Ingeniería Civi

    Greedy Algorithms for the Freight Consolidation Problem

    Get PDF

    Shipment consolidation and distribution models in the international supply chain

    Get PDF
    With the increasing competition in global trade, buying and transporting items effectively in the international network are critical and challenging problems for many companies. The objective of this study is to design a cost-effective consolidation and distribution method to transport shipments in a global network. In the dissertation, we investigate an integrated consolidation problem in the international supply chain, where a US manufacturing company buys multiple items from China. A proactive order consolidation strategy is proposed. Different from current practices, our approach consolidates items in China considering inland transportation in US. This strategy is modeled to minimize the total costs by effectively loading items into an ocean container considering subsequent inland transportation cost and handling cost given container capacity and packing constraints. Two difficult combinatorial optimization problems, such as a mode selection problem and a three-dimensional bin packing problem, are combined into the model. Due to the problem complexity, approximation algorithms are proposed to solve the model. The basic model is extended to consider the inland multi-stop delivery and multi-period planning horizon. Several solution methodologies are developed and evaluated to solve large-scale problems. Based on the numerical results, it is observed that our proposed methods could achieve up to 30% cost savings compared with the current shipping practices. The algorithms we developed could obtain the good implementable solution in a reasonable time for real-world problems

    Simulation and optimization of a multi-agent system on physical internet enabled interconnected urban logistics.

    Get PDF
    An urban logistics system is composed of multiple agents, e.g., shippers, carriers, and distribution centers, etc., and multi-modal networks. The structure of Physical Internet (PI) transportation network is different from current logistics practices, and simulation can effectively model a series of PI-approach scenarios. In addition to the baseline model, three more scenarios are enacted based on different characteristics: shared trucks, shared hubs, and shared flows with other less-than-truckload shipments passing through the urban area. Five performance measures, i.e., truck distance per container, mean truck time per container, lead time, CO2 emissions, and transport mean fill rate, are included in the proposed procedures using real data in an urban logistics case. The results show that PI enables a significant improvement of urban transportation efficiency and sustainability. Specifically, truck time per container reduces 26 percent from that of the Private Direct scenario. A 42 percent reduction of CO2 emissions is made from the current logistics practice. The fill rate of truckload is increased by almost 33 percent, whereas the relevant longer distance per container and the lead time has been increased by an acceptable range. Next, the dissertation applies an auction mechanism in the PI network. Within the auction-based transportation planning approach, a model is developed to match the requests and the transport services in transport marketplaces and maximize the carriers’ revenue. In such transportation planning under the protocol of PI, it is a critical system design problem for decision makers to understand how various parameters through interactions affect this multi-agent system. This study provides a comprehensive three-layer structure model, i.e. agent-based simulation, auction mechanism, and optimization via simulation. In term of simulation, a multi-agent model simulates a complex PI transportation network in the context of sharing economy. Then, an auction mechanism structure is developed to demonstrate a transport selection scheme. With regard of an optimization via simulation approach and sensitivity analysis, it has been provided with insights on effects of combination of decision variables (i.e. truck number and truck capacity) and parameters settings, where results can be drawn by using a case study in an urban freight transportation network. In the end, conclusions and discussions of the studies have been summarized. Additionally, some relevant areas are required for further elaborate research, e.g., operational research on airport gate assignment problems and the simulation modelling of air cargo transportation networks. Due to the complexity of integration with models, I relegate those for future independent research

    Hybrid metaheuristics for solving multi-depot pickup and delivery problems

    Get PDF
    In today's logistics businesses, increasing petrol prices, fierce competition, dynamic business environments and volume volatility put pressure on logistics service providers (LSPs) or third party logistics providers (3PLs) to be efficient, differentiated, adaptive, and horizontally collaborative in order to survive and remain competitive. In this climate, efficient computerised-decision support tools play an essential role. Especially, for freight transportation, e efficiently solving a Pickup and Delivery Problem (PDP) and its variants by an optimisation engine is the core capability required in making operational planning and decisions. For PDPs, it is required to determine minimum-cost routes to serve a number of requests, each associated with paired pickup and delivery points. A robust solution method for solving PDPs is crucial to the success of implementing decision support tools, which are integrated with Geographic Information System (GIS) and Fleet Telematics so that the flexibility, agility, visibility and transparency are fulfilled. If these tools are effectively implemented, competitive advantage can be gained in the area of cost leadership and service differentiation. In this research, variants of PDPs, which multiple depots or providers are considered, are investigated. These are so called Multi-depot Pickup and Delivery Problems (MDPDPs). To increase geographical coverage, continue growth and encourage horizontal collaboration, efficiently solving the MDPDPs is vital to operational planning and its total costs. This research deals with designing optimisation algorithms for solving a variety of real-world applications. Mixed Integer Linear Programming (MILP) formulations of the MDPDPs are presented. Due to being NP-hard, the computational time for solving by exact methods becomes prohibitive. Several metaheuristics and hybrid metaheuristics are investigated in this thesis. The extensive computational experiments are carried out to demonstrate their speed, preciseness and robustness.Open Acces

    Development of transportation and supply chain problems with the combination of agent-based simulation and network optimization

    Get PDF
    Demand drives a different range of supply chain and logistics location decisions, and agent-based modeling (ABM) introduces innovative solutions to address supply chain and logistics problems. This dissertation focuses on an agent-based and network optimization approach to resolve those problems and features three research projects that cover prevalent supply chain management and logistics problems. The first case study evaluates demographic densities in Norway, Finland, and Sweden, and covers how distribution center (DC) locations can be established using a minimizing trip distance approach. Furthermore, traveling time maps are developed for each scenario. In addition, the Nordic area consisting of those three countries is analyzed and five DC location optimization results are presented. The second case study introduces transportation cost modelling in the process of collecting tree logs from several districts and transporting them to the nearest collection point. This research project presents agent-based modelling (ABM) that incorporates comprehensively the key elements of the pick-up and delivery supply chain model and designs the components as autonomous agents communicating with each other. The modelling merges various components such as GIS routing, potential facility locations, random tree log pickup locations, fleet sizing, trip distance, and truck and train transportation. The entire pick-up and delivery operation are modeled by ABM and modeling outcomes are provided by time series charts such as the number of trucks in use, facilities inventory and travel distance. In addition, various scenarios of simulation based on potential facility locations and truck numbers are evaluated and the optimal facility location and fleet size are identified. In the third case study, an agent-based modeling strategy is used to address the problem of vehicle scheduling and fleet optimization. The solution method is employed to data from a real-world organization, and a set of key performance indicators are created to assess the resolution's effectiveness. The ABM method, contrary to other modeling approaches, is a fully customized method that can incorporate extensively various processes and elements. ABM applying the autonomous agent concept can integrate various components that exist in the complex supply chain and create a similar system to assess the supply chain efficiency.Tuotteiden kysyntä ohjaa erilaisia toimitusketju- ja logistiikkasijaintipäätöksiä, ja agenttipohjainen mallinnusmenetelmä (ABM) tuo innovatiivisia ratkaisuja toimitusketjun ja logistiikan ongelmien ratkaisemiseen. Tämä väitöskirja keskittyy agenttipohjaiseen mallinnusmenetelmään ja verkon optimointiin tällaisten ongelmien ratkaisemiseksi, ja sisältää kolme tapaustutkimusta, jotka voidaan luokitella kuuluvan yleisiin toimitusketjun hallinta- ja logistiikkaongelmiin. Ensimmäinen tapaustutkimus esittelee kuinka käyttämällä väestötiheyksiä Norjassa, Suomessa ja Ruotsissa voidaan määrittää strategioita jakelukeskusten (DC) sijaintiin käyttämällä matkan etäisyyden minimoimista. Kullekin skenaariolle kehitetään matka-aikakartat. Lisäksi analysoidaan näistä kolmesta maasta koostuvaa pohjoismaista aluetta ja esitetään viisi mahdollista sijaintia optimointituloksena. Toinen tapaustutkimus esittelee kuljetuskustannusmallintamisen prosessissa, jossa puutavaraa kerätään useilta alueilta ja kuljetetaan lähimpään keräyspisteeseen. Tämä tutkimusprojekti esittelee agenttipohjaista mallinnusta (ABM), joka yhdistää kattavasti noudon ja toimituksen toimitusketjumallin keskeiset elementit ja suunnittelee komponentit keskenään kommunikoiviksi autonomisiksi agenteiksi. Mallinnuksessa yhdistetään erilaisia komponentteja, kuten GIS-reititys, mahdolliset tilojen sijainnit, satunnaiset puunhakupaikat, kaluston mitoitus, matkan pituus sekä monimuotokuljetukset. ABM:n avulla mallinnetaan noutojen ja toimituksien koko ketju ja tuloksena saadaan aikasarjoja kuvaamaan käytössä olevat kuorma-autot, sekä varastomäärät ja ajetut matkat. Lisäksi arvioidaan erilaisia simuloinnin skenaarioita mahdollisten laitosten sijainnista ja kuorma-autojen lukumäärästä sekä tunnistetaan optimaalinen toimipisteen sijainti ja tarvittava autojen määrä. Kolmannessa tapaustutkimuksessa agenttipohjaista mallinnusstrategiaa käytetään ratkaisemaan ajoneuvojen aikataulujen ja kaluston optimoinnin ongelma. Ratkaisumenetelmää käytetään dataan, joka on peräisin todellisesta organisaatiosta, ja ratkaisun tehokkuuden arvioimiseksi luodaan lukuisia keskeisiä suorituskykyindikaattoreita. ABM-menetelmä, toisin kuin monet muut mallintamismenetelmät, on täysin räätälöitävissä oleva menetelmä, joka voi sisältää laajasti erilaisia prosesseja ja elementtejä. Autonomisia agentteja soveltava ABM voi integroida erilaisia komponentteja, jotka ovat olemassa monimutkaisessa toimitusketjussa ja luoda vastaavan järjestelmän toimitusketjun tehokkuuden arvioimiseksi yksityiskohtaisesti.fi=vertaisarvioitu|en=peerReviewed

    Sea Container Terminals

    Get PDF
    Due to a rapid growth in world trade and a huge increase in containerized goods, sea container terminals play a vital role in globe-spanning supply chains. Container terminals should be able to handle large ships, with large call sizes within the shortest time possible, and at competitive rates. In response, terminal operators, shipping liners, and port authorities are investing in new technologies to improve container handling infrastructure and operational efficiency. Container terminals face challenging research problems which have received much attention from the academic community. The focus of this paper is to highlight the recent developments in the container terminals, which can be categorized into three areas: (1) innovative container terminal technologies, (2) new OR directions and models for existing research areas, and (3) emerging areas in container terminal research. By choosing this focus, we complement existing reviews on container terminal operations

    Optimal Global Supply Chain and Warehouse Planning under Uncertainty

    Get PDF
    A manufacturing company\u27s inbound supply chain consists of various processes such as procurement, consolidation, and warehousing. Each of these processes is the focus of a different chapter in this dissertation. The manufacturer depends on its suppliers to provide the raw materials and parts required to manufacture a finished product. These suppliers can be located locally or overseas with respect to the manufacturer\u27s geographic location. The ordering and transportation lead times are shorter if the supplier is located locally. Just In Time (JIT) or Just In Sequence (JIS) inventory management methods could be practiced by the manufacturer to procure the raw materials and parts from the local supplier and control the inventory levels in the warehouse. In contrast, the lead time for the orders placed with an overseas supplier is usually long because sea-freight is often used as a primary mode of transportation. Therefore, the orders for the raw materials and parts (henceforth, we collectively refer to raw material and part by part) procured from overseas suppliers are usually placed using forecasted order quantities. In Chapter 2, we study the procurement process to reduce the overall expected cost and determine the optimal order quantities as well as the mode of transportation for procurement under forecast and inventory uncertainty. We formulate a two-stage stochastic integer programming model and solve it using the progressive hedging algorithm, a scenario-based decomposition method. Generally, the orders are placed with overseas suppliers using weekly or monthly forecasted demands, and the ordered part is delivered using sea-containers since sea-freight is the primary mode of transportation. However, the end manufacturing warehouse is usually designed to hold around one to two days of parts. To replenish the inventory levels, the manufacturer considered in this research unloads the sea-container that contains the part that needs to be restocked entirely. This may cause over-utilization of the manufacturer\u27s warehouse if an entire week\u27s supply of part is consolidated into a single sea-container. This problem is further aggravated if the manufacturer procures hundreds of different parts from overseas suppliers and stores them in its warehouse. In Chapter 3, we study the time-series forecasting models that help predict the manufacturing company\u27s daily demand quantities for parts with different characteristics. The manufacturer can use these forecasted daily demand quantities to consolidate the sea-containers instead of the weekly forecasted demand. In most cases, there is some discrepancy between the predicted and actual demands for parts, due to which the manufacturer can either have excess inventory or shortages. While excess inventory leads to higher inventory holding costs and warehouse utilization, shortages can result in substantially undesirable consequences, such as the total shutdown of production lines. Therefore, to avoid shortages, the manufacturer maintains predetermined safety stock levels of parts with the suppliers to fulfill the demands arising from shortages. We formulate a chance-constraint optimization model and solve it using the sample approximation approach to determine the daily safety stock levels at the supplier warehouse under forecast error uncertainty. Once the orders are placed with the local and overseas suppliers, they are consolidated into trailers (for local suppliers) and sea-containers (for overseas suppliers). The consolidated trailers and sea-containers are then delivered to the manufacturing plant, where they are stored in the yard until they are called upon for unloading. A detention penalty is incurred on a daily basis for holding a trailer or sea-container. Consolidating orders from different suppliers helps maximize trailer and sea-container space utilization and reduce transportation costs. Therefore, every sea-container and trailer potentially holds a mixture of parts. When a manufacturer needs to replenish the stocks of a given part, the entire sea-container or trailer that contains the required part is unloaded. Thus, some parts that are not imminently needed for production are also unloaded and stored inside the manufacturing warehouse along with the required parts. In Chapter 4, we study a multi-objective optimization model to determine the sea-containers and trailers to be unloaded on a given day to replenish stock levels such that the detention penalties and the manufacturing warehouse utilization are minimized. Once a sea-container or trailer is selected to replenish the warehouse inventory levels, its contents (i.e., pallets of parts) must be unloaded by the forklift operator and then processed by workers to update the stock levels and break down the pallets if needed. Finally, the unloaded and processed part is stored in the warehouse bins or shelves. In Chapter 5, we study the problem of determining the optimal team formation such that the total expected time required to unload, process, and store all the parts contained in the sea-containers and trailers selected for unloading on a given day is minimized
    corecore