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Abstract

A manufacturing company’s inbound supply chain consists of various processes such as procure-

ment, consolidation, and warehousing. Each of these processes is the focus of a different chapter in this

dissertation.

The manufacturer depends on its suppliers to provide the raw materials and parts required to man-

ufacture a finished product. These suppliers can be located locally or overseas with respect to the manufac-

turer’s geographic location. The ordering and transportation lead times are shorter if the supplier is located

locally. Just In Time (JIT) or Just In Sequence (JIS) inventory management methods could be practiced by

the manufacturer to procure the raw materials and parts from the local supplier and control the inventory

levels in the warehouse. In contrast, the lead time for the orders placed with an overseas supplier is usually

long because sea-freight is often used as a primary mode of transportation. Therefore, the orders for the

raw materials and parts (henceforth, we collectively refer to raw material and part by part) procured from

overseas suppliers are usually placed using forecasted order quantities. In Chapter 2, we study the procure-

ment process to reduce the overall expected cost and determine the optimal order quantities as well as the

mode of transportation for procurement under forecast and inventory uncertainty. We formulate a two-stage

stochastic integer programming model and solve it using the progressive hedging algorithm, a scenario-based

decomposition method.

Generally, the orders are placed with overseas suppliers using weekly or monthly forecasted de-

mands, and the ordered part is delivered using sea-containers since sea-freight is the primary mode of trans-

portation. However, the end manufacturing warehouse is usually designed to hold around one to two days

of parts. To replenish the inventory levels, the manufacturer considered in this research unloads the sea-

container that contains the part that needs to be restocked entirely. This may cause over-utilization of the

manufacturer’s warehouse if an entire week’s supply of part is consolidated into a single sea-container. This

problem is further aggravated if the manufacturer procures hundreds of different parts from overseas suppliers
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and stores them in its warehouse. In Chapter 3, we study the time-series forecasting models that help predict

the manufacturing company’s daily demand quantities for parts with different characteristics. The manufac-

turer can use these forecasted daily demand quantities to consolidate the sea-containers instead of the weekly

forecasted demand. In most cases, there is some discrepancy between the predicted and actual demands for

parts, due to which the manufacturer can either have excess inventory or shortages. While excess inventory

leads to higher inventory holding costs and warehouse utilization, shortages can result in substantially un-

desirable consequences, such as the total shutdown of production lines. Therefore, to avoid shortages, the

manufacturer maintains predetermined safety stock levels of parts with the suppliers to fulfill the demands

arising from shortages. We formulate a chance-constraint optimization model and solve it using the sample

approximation approach to determine the daily safety stock levels at the supplier warehouse under forecast

error uncertainty.

Once the orders are placed with the local and overseas suppliers, they are consolidated into trailers

(for local suppliers) and sea-containers (for overseas suppliers). The consolidated trailers and sea-containers

are then delivered to the manufacturing plant, where they are stored in the yard until they are called upon for

unloading. A detention penalty is incurred on a daily basis for holding a trailer or sea-container. Consoli-

dating orders from different suppliers helps maximize trailer and sea-container space utilization and reduce

transportation costs. Therefore, every sea-container and trailer potentially holds a mixture of parts. When

a manufacturer needs to replenish the stocks of a given part, the entire sea-container or trailer that contains

the required part is unloaded. Thus, some parts that are not imminently needed for production are also un-

loaded and stored inside the manufacturing warehouse along with the required parts. In Chapter 4, we study

a multi-objective optimization model to determine the sea-containers and trailers to be unloaded on a given

day to replenish stock levels such that the detention penalties and the manufacturing warehouse utilization

are minimized.

Once a sea-container or trailer is selected to replenish the warehouse inventory levels, its contents

(i.e., pallets of parts) must be unloaded by the forklift operator and then processed by workers to update the

stock levels and break down the pallets if needed. Finally, the unloaded and processed part is stored in the

warehouse bins or shelves. In Chapter 5, we study the problem of determining the optimal team formation

such that the total expected time required to unload, process, and store all the parts contained in the sea-

containers and trailers selected for unloading on a given day is minimized.
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Chapter 1

Introduction

The supply chain (SC) of a manufacturing company comprises several different parties including

suppliers, transporters, warehouses, and consolidation centers. These parties perform different activities

such as ordering, production, and transportation that help fulfill customer demand. Based on the demand

or its forecast, the manufacturer places orders with its suppliers for the raw materials and parts required to

manufacture a finished product. The transportation service provider then performs activities such as milk

runs and consolidation to transport these raw materials and parts from the suppliers to the manufacturer. The

warehousing and storage activities are performed at the manufacturer once these raw materials and parts are

delivered to the manufacturer. The manufacturer then uses these raw materials and parts to produce the end

product. The finished products are stored in the warehouses, from where they would be provided to customers

either directly or through the network of distributors and retailers. The transportation service partners support

the outbound distribution activities using various modes of transportation such as rail, road, air, and maritime.

The supply chain from suppliers to the manufacturing plant is called the inbound supply chain. In contrast,

the supply chain from the manufacturing plant to the customers is referred to as the outbound supply chain.

An example of a manufacturing supply chain is provided in Figure 1.1. In this dissertation, we focus on

optimizing the inbound supply chain operations of a manufacturing company. Therefore, we refer to the

inbound supply chain as simply supply chain in the remainder of this dissertation.
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Figure 1.1: Overall supply chain representation along with flow of goods

The supply chain of a manufacturing company can span the globe with various suppliers located

across different corners of the world. The manufacturers often order raw materials and parts using forecasted

demand. The manufacturer can also practice the Just In Time (JIT) or Just In Sequence (JIS) procurement

policies for some raw materials and parts. When using JIT and JIS procurement policies, the manufacturer

places orders with the suppliers using deterministic demand. This dissertation only focuses on the raw ma-

terials and parts that the manufacturer procures using forecasted demand quantities. Further, we consider a

global supply chain, wherein the suppliers are located both locally (i.e., located in the same country where

the manufacturer is located) and across different parts of the globe.

In global supply chains, the ordering and transportation of raw materials and parts (henceforth, we

refer to raw materials and parts by materials) are carried out under uncertainty due to errors in the forecast,

changes in transportation mode availability and lead times, inventory levels, and supplier availability. These

sources of uncertainty can cause disturbances in the daily functioning of the manufacturing company due to

problems such as excessive inventory in the warehouse, stock-outs of parts, higher logistics and inventory-

holding costs.

We consider a manufacturing company with the following supply chain configuration. The company

has a single consolidation center located in Europe and multiple suppliers situated primarily across North

America and Europe. The orders are placed with these suppliers using forecasted demand. Depending on the

factors such as type of materials, location of the supplier, and transportation lead times, the orders are placed

using daily or weekly forecasts. The supplier then prepares the order, and material is delivered either by

using in-house transportation or 3PL (Third Party Logistics) service. These transportation service providers

perform the milk-runs to collect the materials from various suppliers and then delivers them to either the

European Consolidation center (EC) (if the supplier is located in the European region) or directly to the

manufacturing plant (if the supplier is located in North America). If a given material is required urgently due

to reasons such as low inventory levels or an unexpected surge in demand, then the material is procured using

air-freight. Although air-freight is a costly option, it prevents the complete shutdown of the production lines
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caused by material unavailability. The pictorial representation of the supply chain configuration considered

in this study is provided in Figure 1.2.

Figure 1.2: Inbound supply chain representation along with transportation activities and flow of goods

The materials procured from the European suppliers are delivered at EC via trailers at predetermined

times. Upon arrival, all materials are unloaded from the trailer and consolidated into the sea-containers (sea-

cans/cans) based on predefined loading rules. The EC does not have any inventory holding capacity as it is a

cross-docking facility. Therefore, all unloaded materials from inbound trailers must be loaded into outbound

sea-containers. However, EC does have a repackaging facility. It can repackage the materials and then load

them into the sea-containers if required. Materials are repackaged depending on factors such as the type

of packaging provided by the supplier and the total order quantity for a given week. These packed sea-

containers are delivered to the port of origin (in Europe), which are then transported to the port of unloading

(in the USA) using sea-freight. The sea-freight arrives once a week. The sea-containers are then delivered

from the port of unloading to the manufacturing plant using a combination of rail and road transportation.

Almost all sea-containers contain multiple materials.

Upon delivery to the plant, all sea-containers and trailers are stored at an inland port or yard until

they are called for unloading into the warehouse. Detention penalties are incurred on a daily basis due

to holding sea-containers and trailers for a longer duration than permitted by the sea-container and trailer
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contracting company. For each material with an inventory level below a specified threshold value, the sea-

containers or trailers containing the material are unloaded into the warehouse. If multiple sea-containers or

trailers containing the required material are available, the tie is broken by selecting the one that minimizes

the detention penalties incurred.

Inside the warehouse, workers work in teams to complete the replenishment process. When the sea-

container or trailer needs to be unloaded, it is assigned to one of the teams. A team comprises of the unload-

forklift operator, receivers, and breakdowners. The unload-forklift unloads all the material; the receiver scans

all the material and updates the warehouse stock in ERP (Enterprise Resource Planning) system. Some of

the unloaded material is stored in pallets, while the rest needs to be broken down from pallets and stored in

individual boxes. Therefore, breakdowners are required to break down the pallets of these materials. There

is a limited staging area where the process of scanning and breaking down can be done. After all these

processes are completed, the transporter-forklifts clear the staging area by storing all the material in the

warehouse aisles.

In this dissertation, we study the problem of optimizing a global supply chain under uncertainty

such that: (i.) the overall cost of procurement, inventory holding, and back-orders is minimized, (ii.) the

number of remnant materials in the warehouse is minimized on a daily basis, (iii.) the detention penalties

of sea-containers and trailers are minimized, and (iv.) the unloading times of sea-containers and trailers are

minimized. All numerical studies in this dissertation have been performed using the data obtained from our

industrial partner. Although, this dissertation considers a manufacturing plant that is located in the USA with

its suppliers located across North America and Europe, all problems we study we study can be generalized

to any company with a global supply chain with various parties at different geographical locations and lead

times.

The remainder of this dissertation is organized as follows. In chapter 2, we study the optimal order

quantities for globally sourced materials using each available transportation mode with different lead times,

under forecast and inventory error uncertainty. Our goal is to minimize the expected long-term cost of order

procurement, inventory holding, and back-order costs. We formulate this problem as a two-stage stochastic

integer program and solve it using Sample Average Approximation (SAA) method and Progressive Hedging

Algorithm (PHA).

In chapter 3, we study the problem of determining the sea-container consolidation quantities using

daily demand and emergency order stock levels at the supplier warehouse under forecast errors. We assume

that currently, the orders are placed with the suppliers using weekly forecasted demand by the manufacturer.
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However, the final production warehouse is designed to hold less than a week’s materials supply. Therefore,

the weekly order quantities must be disintegrated into daily quantities, and the sea-containers must be packed

to minimize daily warehouse utilization. We build and study different time-series models to forecast the daily

demands of various parts. Further, we use the chance constraint optimization model to determine the supplier

inventory levels for fulfilling emergency orders arising from shortages under forecast error uncertainty.

In chapter 4, we consider a warehouse with multi-product inventory, where the materials are contin-

uously consumed based on the line-side demand. The inventory level is replenished using materials available

in trailers and sea-containers stored in the inland port or yard of the manufacturing company. These sea-

containers and trailers arrive over time and a daily detention penalty is incurred for holding them in the

inland port or the yard. We study the problem of optimally selecting the sea-container and trailers to reduce

the number of remnant materials in the warehouse and minimize the detention penalties. We formulate this

problem as a multi-objective integer program. The multi-objective optimization problem is solved using goal

programming and the ε-constraint method. A detailed discussion on the experimental setup and the numerical

results is also presented.

In chapter 5, we study the problem of optimizing the container unloading and warehouse replenish-

ment process. To solve this problem, we determine the optimal team formation, buffer allocation, and job

assignment to teams of servers. The teams work at two tandem stations, each with several finite-buffered

parallel queues. The objective of the problem is to minimize the total time required to process all jobs. There

are operational constraints such as the number of teams that can be formed, the number of servers in each

team, and the number of buffer spaces allotted to each team. Additionally, precedence constraints on the or-

der of processing each job also need to be considered. We solve this problem using a simulation optimization

method.
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Chapter 2

Optimal Transportation Mode Selection

and Capacity Allocation under

Uncertainty

2.1 Introduction

A manufacturer requires several different raw materials and parts to manufacture a finished prod-

uct. These raw materials can be procured from the suppliers located locally (i.e., in the same geographical

region as the manufacturer) or overseas. In this chapter, we will focus on the procurement of parts from

suppliers located overseas. For the raw materials and parts procured from an overseas supplier, the manufac-

turer places orders based on the forecasted quantities. Sea-freight is the primary mode of transportation for

procuring materials from overseas suppliers because of its cost-effectiveness. Although the sea-freight option

is cost-effective, the transportation lead time for the maritime transportation is high. Situations in which the

manufacturer requires the material as soon as possible can arise. In case of emergencies, air-freight can also

be used to help with the faster movement of materials as it has lower transportation lead times.

In this chapter, we consider a manufacturing plant located in the USA. We focus only on the overseas

supply chain of the manufacturer, as shown in Figure 2.1. The manufacturer procures the raw materials and

parts from several suppliers located in Europe. The orders are placed with these suppliers using weekly

forecasted demand. The supplier prepares the order, the ground transportation service provider collects these
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orders from various suppliers and delivers them to the European consolidation center. At the consolidation

center, the materials delivered by the ground transportation services are consolidated into the sea-containers.

These sea-containers are then sent to the European port and transported to the port in the USA. The sea-freight

orders arrive once a week. Once these sea-containers are delivered to the port in the USA, a combination of

rail and road transport is used to deliver them to the manufacturing plant. The manufacturer prefers the

maritime as a primary mode of transportation because of cost-effective reasons.

All materials procured from the overseas region are stored in the warehouse. Occasionally the

warehouse inventory levels shown in the warehouse management system (WMS) are not accurate due to

reasons such as misplacement of material within the warehouse, quality issues, and over-usage. If a given

material is required urgently due to reasons such as low inventory levels or an unexpected surge in demand,

then the parts are procured using air-freight. Although air-freight is a costly option, it prevents the complete

shutdown of the production lines.

Figure 2.1: Overseas supply chain

In this chapter, we study the problem of optimal transportation mode selection and capacity allo-

cation for procuring materials from overseas suppliers, considering forecast error and inventory level uncer-

tainty. Although the manufacturer procures multiple products from overseas suppliers, we study a single-
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product problem because there are no capacity constraints on the transportation modes considered in this

problem. Additionally, solving a single-product problem provides a natural decomposition for the multi-

product problem and reduces the overall time required to generate solutions. We formulate the problem as a

two-stage stochastic integer program. We use Sample Average Approximation (SAA) method to approximate

the stochastic program and solve it using the Progressive Hedging Algorithm (PHA). Using this formulation,

we study the impact of the following factors on the quality of solution and computational time required to

solve the problem:

(i) Sampling methods such as simple random sampling and stratified sampling.

(ii) Solution methodology such as using exact methods versus decomposition based algorithms to solve an

extensive form of the stochastic programming problem.

(iii) Different levels of the forecast error and inventory error uncertainty.

The remainder of this chapter is organized as follows. The next section provides a brief literature

review on order placement and transportation mode selection under uncertainty. In Section 2.3, the problem is

described and formulated. In Section 2.4, the solution methodology for our problem is discussed. In Section

2.5, the details for the experimental setup and results of the numerical study are presented using the synthetic

data sets modeled utilizing the industrial data. Concluding remarks are provided in Section 2.6. Finally, in

Section 2.7, we discuss a potential future research direction.

2.2 Literature review

In this problem, we focus on minimizing the long-run expected procurement, inventory holding, and

backorder costs for a manufacturing company that uses multiple transportation modes for inventory replenish-

ment. The orders can be split across multiple available transportation modes, i.e., modal splitting is allowed.

Specifically, we study an integrated inventory and transportation model while allowing modal splitting. Fur-

ther, the strategic-level supply chain decisions such as supplier selection and cross-dock/consolidation facility

selection are already made and cannot be changed at the stage we aim to model. Therefore, the problem we

formulate optimizes tactical and operational level decisions under uncertainty.

Engebrethsen and Dauzère-Pérès (2019) provides an extensive review of the inventory replenishment

models using multiple transportation modes. According to Engebrethsen and Dauzère-Pérès (2019), the
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research in the area of modal splitting is underdeveloped. The literature related to integrated transportation-

inventory models was studied exhaustively by Mosca et al. (2019). From both Engebrethsen and Dauzère-

Pérès (2019) and Mosca et al. (2019), we observe that the studies considering stochastic demand are cited, but

studies that model inventory errors as part of the uncertainty are not noticed. A multi-product multi-period

global supply chain planning problem for production, distribution, and inventory decisions under demand

and freight rate uncertainty was studied by You et al. (2009). You et al. (2009) formulated this problem using

a two-stage stochastic linear programming approach. To solve the two-stage stochastic linear programming

model You et al. (2009) used the multi-cut L-shaped method. Bidhandi and Yusuff (2011) studied a supply

chain planning problem with uncertainty in operational costs, customer demand, and the capacities of the

facilities. In the first-stage, strategic decisions corresponding to the supply chain configuration are made, and

in the second-stage, tactical decisions such as processing and transportation of products from suppliers to

the customers are made to solve the problem in Bidhandi and Yusuff (2011) optimally. Tolooie et al. (2020)

formulate a two-stage stochastic mixed-integer programming model to study the supply chain network design

under random demand and facility disruptions. In the first-stage, decisions on the selection of suppliers and

facilities to be established are made, while in the second-stage, once the uncertainties are realized, how the

customer demand should be fulfilled using the available facilities selected in the first stage is decided. The

problem we study in this chapter is different since we decide the order quantities using each available mode

of transportation under forecast and inventory error uncertainty.

A transportation mode selection problem for a global supply chain with supply chain node and

transportation link uncertainty is studied by Fan et al. (2017). The authors formulated a two-stage stochastic

programming model to select the transportation modes for various products to minimize the overall supply

chain cost. Three modes of transportation, with high, medium, and low speed, are considered in this problem.

In contrast to the Fan et al. (2017) wherein the supply chain planning using various transportation modes

under disruption risk is studied, we study the problem of supply chain planning using various transportation

modes under operational risk.

A two-stage stochastic programming problem is studied by Dillon et al. (2017) to minimize the or-

dering cost and the expected holding, shortage, and outdate cost for a blood supply chain. Dillon et al. (2017)

consider the demand as a stochastic parameter, and in the first-stage, the decision on the replenishment policy

(i.e., frequency of reviews (R) and target inventory levels for each blood type (S)) is made. In the second-

stage, the decisions related to the daily operation of the system, such as the order quantity for each blood type

and on-hand inventory, shortages, and obsolete inventory for each blood type in each period, are made once
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the demand is realized. Dehghani et al. (2021) also formulated a two-stage stochastic programming problem

under demand uncertainty for a multi-period blood supply chain problem. However, in their paper, the order

and transshipment quantities for the current period, along with the target inventory level (S), are determined

as first-stage decisions, whereas the order quantities for the future period are determined as the second-stage

decisions. Their objective is to minimize the order and transshipment costs for the current period (t=1), the

expected holding, outdating, and shortage cost for all periods, and the expected order costs for future periods

(t≥ 2). A two-stage stochastic programming problem with multiple objectives for a blood supply chain under

demand and supply uncertainty was studied by Hamdan and Diabat (2019). They considered three minimiza-

tion objectives: the total cost in the system, the delivery time, and the number of outdated units. The problem

was solved using the ε-constraint method.

Perishable supply chains have been studied extensively in the literature. The problems related to

perishable supply chains are of interest to us since they model inventory loss considering the deterioration

rate function. A single-product perishable inventory control problem to determine the ordering quantities in

different periods was studied by Pauls-Worm et al. (2016). They considered the demand to be non-stationary,

and the objective of the problem was to minimize the fixed inventory replenishment cost, variable inventory

replenishment cost, and the expected cost of inventory holding and wastage. Lin and Wang (2018) studied a

problem to determine facility locations and inventory policy for each facility under demand uncertainty. A

perishable supply chain problem under demand and supply uncertainty is studied using a two-stage stochastic

programming model in Azadi et al. (2019). In the first-stage, decisions on supplier selection and pricing

are made, while in the second-stage, inventory replenishment decisions are made. The above-mentioned

perishable supply chain studies do not consider the inventory deterioration rate as a random parameter.

Transportation and supply chain related problems are also studied exhaustively in the context of

humanitarian-aid logistics. Barbarosoǧlu and Arda (2004) studied a multi-commodity, multi-modal trans-

portation planning problem for a disaster relief operation using a two-stage stochastic programming model.

The supply and demand of the commodities and the capacity of each transportation mode were considered to

be uncertain. Afshar and Haghani (2012) studied a deterministic facility location and vehicle routing problem

to fairly distribute the relief commodities across all the demand points using a mixed-integer programming

formulation. A facility selection and inventory planning problem under demand and transportation link un-

certainty was studied by Rawls and Turnquist (2012). They formulated a two-stage stochastic programming

model with a reliability constraint to ensure that the demand is met in α% of scenarios. Salas et al. (2012)

studied a perishable inventory ordering problem under demand uncertainty for hurricane response. An opti-
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mal order quantity is determined in the first-stage using a two-stage stochastic programming model in Salas

et al. (2012).

We consider random fluctuations in the on-hand inventory at the beginning of each period that are

modeled by random error terms. Such errors can also be accounted for in the problems mentioned earlier,

such as the perishable supply chains, blood supply chains, and humanitarian aid logistics. However, to the

best of our knowledge, no study in the existing literature has accounted for the randomness in the inventory

errors for the ordering and transportation mode selection problem. There can be errors in the tracked levels of

on-hand inventory due to substitutions or misplacement of items, resulting in false loss of material. Moreover,

a volatile demand does not necessarily mean highly uncertain demand. Generally, in industrial practice, the

demand is forecasted using the ensemble modeling approach, i.e., the forecast is generated using various time

series models. Therefore, instead of treating demand as a stochastic parameter, we consider the errors in the

forecasted demand to be uncertain. In our problem, the cost of expediting an order and using an expensive but

fast mode of transportation such as air-freight can be reduced when the randomness of the inventory errors

are also accounted for during order placement.

2.3 Problem formulation

For the supply chain under consideration, sea-freight is the primary mode of transportation for

procuring materials. The air-freight is used to fulfill the emergency orders arising due to low inventory

levels in the manufacturing plant or sudden surge in demand for the material. Both transportation modes are

considered to be available all the time. Further, both transportation modes can be used without any capacity

constraints since any number of required transportation flights can be booked, and any number of required

sea-containers can be booked.

We assume that the order procurement lead time using sea-freight is seven weeks. In contrast, the

procurement lead times for express and slow air-freight are one week and two weeks respectively. The sea-

freight order procurement lead time can be further broken down as follows: two weeks for delivering the order

from supplier to consolidation center in Europe, one week for delivering the containers from consolidation

center to the port in Europe, twelve days on the sea (European port to US port), four days on the rail (US port

to the manufacturing plant) and twelve days of safety lead time (i.e., sea-cans containing these parts need to

be at the manufacturing plant twelve days prior to the required week).

In our formulation, the current week is denoted as week 0. We assume that the week i order has been
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placed to meet the demand arising in week i. For instance, when a new order is placed for sea-freight, it is

intended to meet the demand in week 7. When a new order is placed for material, there is already inventory

of that material across different locations in the supply-chain which corresponds to the following quantities:

• The orders corresponding to week 0 (i.e., current week) and week 1 (i.e., next week) of the same

material are already at the plant.

• Week 2 order is at the US port.

• Week 3 order is mid-way in the sea.

• Week 4 order is being shipped from the consolidation center to the port in Europe.

• Week 5 order is either being prepared at the consolidation center or on its way to EC.

• Week 6 order is either in transit to the consolidation center or being prepared by the supplier.

The demand for the current week is known accurately, and for the remaining weeks, the forecasted

demand is available. The forecast values corresponding to the near future weekly demands are more accurate

than those for far out in the future. Since the demand for the upcoming weeks is uncertain, there is a possibility

for excess inventory or shortage of the required material if only sea-freight is used to procure the material.

Further, the excess inventory at the beginning of each period (week) is uncertain due to reasons such as

inventory misplacement, quality issues, and over-usage. Due to these reasons, there can be either excess

inventory leftover or a shortage of the material. The resultant shortages can be met, and excess inventory

reduced by ordering the material one or two weeks ahead of actual requirement (i.e., when the demand

becomes less uncertain) using either slow or express air-freight.

Given the stochastic nature of the problem we described, we model our problem using a two-stage

stochastic integer program to optimize the allocation of orders to different transportation options. Since the

sea-freight is the primary mode of transportation for procuring the material and has the largest lead time,

the first-stage decision is determines the order quantity to be procured using sea-freight as part of the next

weekly order. The recourse decisions are for the orders that need to be procured using either slow or express

air-freight to meet the excess demand arising due to uncertainty in the system. A detailed description of our

two-stage stochastic integer problem is as follows.
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Table 2.1: Input parameters notation and description

Certain input parameters

D0 Current week’s demand

Fi Forecasted order quantity for week i (where i = 1, 2, 3, 4, 5, 6 and 7)

Ic Current total inventory on hand (week 0 and week 1)

I0 Excess inventory at the end of the week 0

S0 Shortage at the end of the week 0

Qisea Quantity of parts ordered and transported via sea-freight for week i

(where i = 2, 3, 4, 5 and 6)

Q0airexp
Quantity of parts ordered and transported via express air-freight for week 0

Qiairslow
Quantity of parts ordered and transported via slow air-freight for week i

(where i = 0 and 1)

csea Per unit cost of shipping via sea-freight

ctruck Per trip cost of hiring a delivery truck to transport the parts from US port to the plant

cairexpress Per unit cost of shipping via express air-freight

cairslow Per unit cost of shipping via slow air-freight

h Per unit weekly holding cost

b Per unit weekly back-order cost

pk Probability of scenario k

T Total number of scenarios

Uncertain input parameters

ξiδ Forecast error for week i (where i = 1, 2, 3, 4, 5, 6 and 7)

ξiι Inventory error for week i (where i = 0, 1, 2, 3, 4, 5, 6 and 7)

ξk A vector containing values of uncertain parameters for particular realization of scenario ‘k’

(where, ξk = [ξ k
1δ
, ξ k

2δ
, . . . ,ξ k

7δ
, ξ k

0ι
, ξ k

1ι
, . . . , ξ k

7ι
])
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Table 2.2: Decision variables notation and description

First stage decision variables

q7sea Quantity of parts to be ordered and transported via sea-freight for week 7

Second stage decision variables

qisea Quantity of parts to be ordered and transported via sea-freight for week i

(where i = 8 and 9)

qiairexpress
Quantity of parts to be ordered and transported via express air-freight for week i

(where i = 1, 2, 3, 4, 5, 6 and 7)

qiairslow
Quantity of parts to be ordered and transported via slow air-freight for week i

(where i = 2, 3, 4, 5, 6 and 7)

xi Binary variable, equals to 1 if the quantity of parts to be delivered at port for week i + 2

is more than zero (where i = 0, 1, 2, 3, 4, 5, 6 and 7)

zi Binary variable, equals to 1 if the demand for the week i is more than on-hand inventory

including containers in yard and incoming air-freights. (where i = 0, 1, 2, 3, 4, 5, 6 and 7)

wi Binary variable, equals to 1 if a trucking trip is made for delivery from US port to the plant,

i.e. if both ‘xi = 1’ and ‘zi = 1’. (where i = 0, 1, 2, 3, 4, 5, 6 and 7)

Ii Quantity of excess inventory at the end of the week i (where i = 0, 1, 2, 3, 4, 5, 6 and 7)

Si Quantity of shortages at the end of the week i (where i = 0, 1, 2, 3, 4, 5, 6 and 7)

Two-stage Stochastic Programming Model

minimize: csea ∗q7sea +E[cost2(q7sea , ξ )] (2.1)

Subject to:

q7sea ∈ Z≥0 (2.2)
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We define cost2(q7sea , ξ ) as follows:

cost2(q7sea , ξ ) := minimize csea ∗
9

∑
i=8

qisea + ctruck ∗
7

∑
i=0

wi

+ cairexp ∗
7

∑
i=1

qiairexp
+ cairslow ∗

7

∑
i=2

qiairslow
+h∗

7

∑
i=0

Ii +b∗
7

∑
i=0

Si. (2.3)

Subject to:

1. Weekly demand must be met in all weeks:

Ic +ξ0ι
+Q2sea +Q0airexp

+Q0airslow
− I0 +S0 = D0

I0 +ξ1ι
+Q3sea +q1airexp

+Q1airslow
− I1 +S1 = F1 +ξ1δ

+S0

Ii−1 +ξiι +Q(i+2)sea +qiairexp
+qiairslow

− Ii +Si = Fi +ξiδ +Si−1 . . . i ∈ {2, 3, & 4}

I j−1 +ξ jι +q( j+2)sea +q jairexp
+q jairslow

− I j +S j = Fj +ξ jδ +S j−1 . . . j ∈ {5, 6 & 7}

(2.4)

2. ‘xi = 1’ if the quantity of parts received for the week i+2 is greater than zero at US port:

Q(i+2)sea − (M+ ε)∗ xi ≤ 1− ε . . . i ∈ {0, 1, . . . , 4}

q( j+2)sea − (M+ ε)∗ x j ≤ 1− ε . . . j ∈ {5, 6 & 7}
(2.5)

3. ‘zi = 1’ if the demand for the week i is greater than on hand inventory comprising of warehouse and

inland port:

Ic +ξ0ι
+Q0airexp

+Q0airslow
+(M+ ε)∗ z0 ≥ (D0−1)+ ε

I0 +ξ1ι
+q1airexp

+Q1airslow
+(M+ ε)∗ z1 ≥ (F1 +ξ1δ

+S0−1)+ ε

Ii−1 +ξiι +qiairexp
+qiairslow

+(M+ ε)∗ zi ≥ (Fi +ξiδ +Si−1−1)+ ε

(2.6)

. . . i ∈ {2, 3, . . . , 7}

4. ‘wi = 1’ if a trucking trip is made for delivery from US port to the plant, i.e. if both ‘xi = 1’ and ‘zi = 1’:
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wi ≤ xi

wi ≤ zi

wi ≥ xi + zi−1


. . . i ∈ {0, 1, . . . , 7} (2.7)

5. Non-negative integer variables:

qisea ∈ Z≥0 . . . i ∈ {8, 9}

qiairslow
∈ Z≥0 . . . i ∈ {2, 3, . . . , 7}

qiairexp
∈ Z≥0 . . . i ∈ {1, 2, . . . , 7}

Ii ∈ Z≥0 . . . i ∈ {0, 1, . . . , 7}

Si ∈ Z≥0 . . . i ∈ {0, 1, . . . , 7}

(2.8)

The stochastic programming problem given by (2.1) – (2.8) is an infinite-dimensional optimization

problem if the uncertain parameters belong to a continuous probability distribution. In practice, such infinite-

dimensional problems are approximated by considering only finitely many realizations (T ) of a random vector

ξ , such that the sum of probabilities of all considered scenarios is one. We denote pk as the probability with

which a scenario k is realized. Using this information, we rewrite the problem given by (2.1) – (2.8) in its

deterministic equivalent form called extensive form as follows.

Extensive Form of Two-stage Stochastic Program

minimize: csea ∗q7sea +
T

∑
k=1

pk ∗ [csea ∗
9

∑
i=8

qk
isea + ctruck ∗

7

∑
i=0

wk
i

+ cairexp ∗
7

∑
i=1

qk
iairexp

+ cairslow ∗
7

∑
i=2

qk
iairslow

+h∗
7

∑
i=0

Ik
i +b∗

7

∑
i=0

Sk
i ] (2.9)

Subject to:

1. Weekly demand must be met in all weeks:
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Ic +ξ
k
0ι
+Q2sea +Q0airexp

+Q0airslow
− Ik

0 +Sk
0 = D0 . . .∀k

Ik
0 +ξ

k
1ι
+Q3sea +qk

1airexp
+Q1airslow

− Ik
1 +Sk

1 = F1 +ξ
k
1δ
+Sk

0 . . .∀k

Ik
i−1 +ξ

k
iι +Q(i+2)sea +qk

iairexp
+qk

iairslow
− Ik

i +Sk
i = Fi +ξ

k
iδ +Sk

i−1 . . .∀k & i ∈ {2, 3, 4}

Ik
4 +ξ

k
5ι
+q7sea +qk

5airexp
+qk

5airslow
− Ik

5 +Sk
5 = F5 +ξ

k
5δ
+Sk

4 . . .∀k

Ik
j−1 +ξ

k
jι +qk

( j+2)sea
+qk

jairexp
+qk

jairslow
− Ik

j +Sk
j = Fj +ξ

k
jδ +Sk

j−1 . . .∀k & j ∈ {6, 7}

(2.10)

2. ‘xk
i = 1’ if the quantity of parts received for the week (i + 2) is greater than zero at US port:

Q(i+2)sea − (M+ ε)∗ xk
i ≤ 1− ε . . .∀ k & i ∈ {0, 1, . . . , 4}

q7sea − (M+ ε)∗ xk
5 ≤ 1− ε . . .∀ k

qk
( j+2)sea

− (M+ ε)∗ xk
j ≤ 1− ε . . .∀ k & j ∈ {6, 7}

(2.11)

3. ‘zk
i = 1’ if the demand for the week i is greater than on hand inventory comprising of warehouse and

inland port:

Ic +ξ
k
0ι
+Q0airexp

+Q0airslow
+(M+ ε)∗ zk

0 ≥ (D0−1)+ ε . . .∀ k

Ik
0 +ξ

k
1ι
+qk

1airexp
+Q1airslow

+(M+ ε)∗ zk
1 ≥ (F1 +ξ

k
1δ
+Sk

0−1)+ ε . . .∀ k

Ik
i−1 +ξ

k
iι +qk

iairexp
+qk

iairslow
+(M+ ε)∗ zk

i ≥ (Fi +ξ
k
iδ +Sk

i−1−1)+ ε . . .∀ k & i ∈ {2, 3, . . . , 7}

(2.12)

4. ‘wk
i = 1’ if a trucking trip is made for delivery from US port to the plant, i.e. if both ‘xk

i = 1’ and

‘zk
i = 1’:

wk
i ≤ xk

i

wk
i ≤ zk

i

wk
i ≥ xk

i + zk
i −1


. . .∀ k & i ∈ {0, 1, . . . , 7} (2.13)
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5. Non-negative integer variables:

q7sea ∈ Z≥0

qk
isea ∈ Z≥0 . . .∀k & i ∈ {8, 9}

qk
iairslow

∈ Z≥0 . . .∀k & i ∈ {2, 3, . . . , 7}

qk
iairexp

∈ Z≥0 . . .∀k & i ∈ {1, 2, . . . , 7}

Ik
i ∈ Z≥0 . . .∀k & i ∈ {0, 1, . . . , 7}

Sk
i ∈ Z≥0 . . .∀k & i ∈ {0, 1, . . . , 7}

(2.14)

2.4 Solution methodology

In this section, we describe the components of our solution methodology. To approximate and solve

the two-stage stochastic programming problem given in equations (2.1) – (2.8), we use Sample Average

Approximation (SAA) method. In each iteration of SAA, we sample T realizations of each stochastic input

parameter, i.e., we consider T scenarios. The resulting SAA problem is then given as follows.

SAA problem

minimize: csea ∗q7sea +T−1 ∗
T

∑
k=1

[csea ∗
9

∑
i=8

qk
isea + ctruck ∗

7

∑
i=0

wk
i

+ cairexp ∗
7

∑
i=1

qk
iairexp

+ cairslow ∗
7

∑
i=2

qk
iairslow

+h∗
7

∑
i=0

Ik
i +b∗

7

∑
i=0

Sk
i ] (2.15)

Subject to:

(10), (11), (12), (13), and (14) . . . for k ∈ {1,2,3, . . . ,T} (2.16)

Let v∗ be the optimal objective value to the true stochastic program given by (1)-(8), and let v̂T be

the optimal objective value to an SAA problem (15)-(16). It is a well-known result that the SAA solution is

an under-estimator of the true stochastic program, that is, E[v̂T ]≤ v∗ (Mak et al., 1999). Further, this under-

estimator is monotonically better as number of scenarios in solved in each SAA replication (T ) increases, that

is, E[v̂T ]≤E[v̂T+1] (Mak et al., 1999). Also, it is well known that v̂T is a consistent estimator of v∗ (Kleywegt
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et al., 2002), that means,

v̂T → v∗ with probability 1 as T → ∞.

Thus, using a higher number of scenarios is desirable. However, this increases the size of the integer program

to be solved. In general, solving a large integer programming model to optimality can be challenging. To

address this computational issue, we use a scenario decomposition method, Progressive Hedging Algorithm

(PHA) proposed by Rockafellar and Wets (1991) as part of the SAA scheme. PHA is guaranteed to converge

to a global optimal solution in case of convex problems with continuous variables. However, it can be used

as a heuristic method in the presence of discrete decision variables (Watson and Woodruff, 2011).

In PHA, one can either solve each scenario sub-problem independently (unbundled-PHA) or create

b bundles containing n scenarios each and solve each of these bundles independently (bundled-PHA). To im-

plement unbundled-PHA, we need to reformulate our extensive formulation of the SAA problem as a scenario

formulation. In the extensive formulation of the SAA problem given by (15) and (16), Non-Anticipativity

Constraint (NAC) is implicitly applied. Stating NAC explicitly leads us to the scenario formulation, which is

as follows.

minimize: T−1 ∗
T

∑
k=1

[csea ∗
9

∑
i=7

qk
isea + ctruck ∗

7

∑
i=0

wk
i + cairexp ∗

7

∑
i=1

qk
iairexp

+ cairslow ∗
7

∑
i=2

qk
iairslow

+h∗
7

∑
i=0

Ik
i +b∗

7

∑
i=0

Sk
i ] (2.17)

Subject to:

1. Weekly demand must be met in all weeks:

Ic +ξ
k
0ι
+Q2sea +Q0airexp

+Q0airslow
− Ik

0 +Sk
0 = D0 . . .∀k

Ik
0 +ξ

k
1ι
+Q3sea +qk

1airexp
+Q1airslow

− Ik
1 +Sk

1 = F1 +ξ
k
1δ
+Sk

0 . . .∀k

Ik
i−1 +ξ

k
iι +Q(i+2)sea +qk

iairexp
+qk

iairslow
− Ik

i +Sk
i = Fi +ξ

k
iδ +Sk

i−1 . . .∀k & i ∈ {2, 3, 4}

Ik
j−1 +ξ

k
jι +qk

( j+2)sea
+qk

jairexp
+qk

jairslow
− Ik

j +Sk
j = Fj +ξ

k
jδ +Sk

j−1 . . .∀k & j ∈ {5, 6, 7}

(2.18)
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2. ‘xk
i = 1’ if the quantity of parts received for the week (i + 2) is greater than zero at US port:

Q(i+2)sea − (M+ ε)∗ xk
i ≤ 1− ε . . .∀ k & i ∈ {0, 1, . . . , 4}

qk
( j+2)sea

− (M+ ε)∗ xk
j ≤ 1− ε . . .∀ k & j ∈ {5, 6, 7}

(2.19)

3. ‘zk
i = 1’ if the demand for the week i is greater than on hand inventory comprising of warehouse and

inland port:

Ic +ξ
k
0ι
+Q0airexp

+Q0airslow
+(M+ ε)∗ zk

0 ≥ (D0−1)+ ε . . .∀ k

Ik
0 +ξ

k
1ι
+qk

1airexp
+Q1airslow

+(M+ ε)∗ zk
1 ≥ (F1 +ξ

k
1δ
+Sk

0−1)+ ε . . .∀ k

Ik
i−1 +ξ

k
iι +qk

iairexp
+qk

iairslow
+(M+ ε)∗ zk

i ≥ (Fi +ξ
k
iδ +Sk

i−1−1)+ ε . . .∀ k & i ∈ {2, 3, . . . , 7}

(2.20)

4. ‘wk
i = 1’ if a trucking trip is made for delivery from US port to the plant, i.e. if both ‘xk

i = 1’ and

‘zk
i = 1’:

wk
i ≤ xk

i

wk
i ≤ zk

i

wk
i ≥ xk

i + zk
i −1


. . .∀ k & i ∈ {0, 1, . . . , 7} (2.21)

5. Non-Anticipativity constraints:

qk
7sea
− q̂7sea = 0 . . .∀ k (2.22)

6. Non-negative integer variables:

q̂7sea ∈ Z≥0

qk
isea ∈ Z≥0 . . .∀k & i ∈ {7, 8, 9}

qk
iairslow

∈ Z≥0 . . .∀k & i ∈ {2, 3, . . . , 7}

qk
iairexp

∈ Z≥0 . . .∀k & i ∈ {1, 2, . . . , 7}

Ik
i ∈ Z≥0 . . .∀k & i ∈ {0, 1, . . . , 7}

Sk
i ∈ Z≥0 . . .∀k & i ∈ {0, 1, . . . , 7}

(2.23)

Before we state the unbundled PHA, we define additional notation. We let d denote the set of
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first-stage and second-stage decision variables for scenario k:

d := {q7sea , q8sea , q9sea , q1airexp
, . . . , q7airexp

, q2airslow
, . . . , q7airslow

, z0, . . . , z7,

x0, . . . , x7, w0, . . . , w7, I0, . . . , I7, S0, . . . , S7}

and let X k denote the set of feasible solutions for a scenario k. Finally, we define function f (d) as follows

f (d) =csea ∗
9

∑
i=7

qisea + ctruck ∗
7

∑
i=0

wi + cairexp ∗
7

∑
i=1

qiairexp

+ cairslow ∗
7

∑
i=2

qiairslow
+h∗

7

∑
i=0

Ii +b∗
7

∑
i=0

Si.

When using PHA to solve a two-stage stochastic program, the number of iterations required for

convergence as well as the quality of the final solution obtained is impacted by the selected value of a penalty

factor ρ (Gade et al., 2016). The value of parameter ρ can be either fixed by the decision-maker before

running the model or can be computed using the first-stage solutions obtained in the initialization step of

PHA. If the value of ρ is fixed by the decision-maker then the decision-maker would either provide a low

penalty which would result in slow convergence of PHA and high quality solution or provide high penalty

which would result in fast convergence of PHA and low quality solution. If the value of ρ is computed using

the first-stage solutions obtained in the initialization step, then the optimal value of ρ can be calculated using

the following formula provided in Gade et al. (2016):

ρ =
csea

max((T−1 ∗∑
T
k=1|qk0

7sea
− q̂0

7sea
|),1)

. (2.24)

In our implementation of the PHA, we compute the value of ρ using the first-stage solutions obtained in the

initialization step. The formal description of the unbundled PHA is given in Algorithm 1.
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Algorithm 1: Unbundled PHA
Input :

1. T: Scenario sample size

2. ξ = (ξ 1, ξ 2, . . . , ξ T ): Scenario sample vector

3. I: Maximum number of iterations for PHA

4. α: Scalar value greater than 1, used to update the penalty parameter ρ in each successive iteration of

PHA

Output: Vector of first stage solution (first stage solution corresponding to each scenario

sub-problem)

1 Initialization:

2.1 Let ν ← 0 and ωk
ν ← 0, for k = 1, 2, . . . , T . For each k = 1, 2, . . . , T compute:

dk
ν+1 ∈ argmin

d∈X k
f (d)

2.2 q̂0
7sea

= T−1 ∗∑
T
k=1 qk0

7sea

2.3 Initialize the value of ρ:

ρ1 =
csea

max((T−1∗∑T
k=1|q

k0
7sea−q̂0

7sea |),1)

2 Iteration Update: ν ← ν +1

3 Aggregation: q̂ν
7sea
← T−1 ∗∑

T
k=1 qk

7sea

4 Price Update: For each k = 1, 2, . . . , T compute:

ωk
ν ← ωk

ν−1 +ρν ∗ (qk
7sea
− q̂ν

7sea
)

5 Decomposition: For each k = 1, 2, . . . , T compute:

• dk
ν+1 ∈ argmin

d∈X k
f (d)+ωk

ν ∗q7sea +
ρν

2 ∗
∥∥∥q7sea − q̂ν

7sea

∥∥∥2

6 Updating parameter ρ: ρν+1← α ∗ρν

7 If all the scenario solutions qk
7sea

are equal or if max number of iterations I are completed,

stop. Else, go to step 3.
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In the unbundled PHA, sub-problems for each scenario are solved independently but need to be rec-

onciled. Therefore, the convergence rate of the unbundled PHA is slow. To accelerate the PHA convergence,

we can decompose the extensive form of the two-stage stochastic problem by bundles of scenarios (Gade

et al., 2016). Using the bundled PHA enables us to solve smaller extensive form formulations of the two-

stage stochastic problem (Gade et al., 2016). This also accelerates the convergence rate since we enforce the

non-anticipativity constraints (NAC) across all the scenarios considered in a given bundle (Gade et al., 2016),

i.e., the solutions obtained from bundles of scenarios need to be reconciled.

Before formally stating the bundled PHA, we will first introduce a problem formulation for a bundle

of scenarios. Suppose there are a total of T scenarios in a two-stage stochastic program. The set of T scenarios

are partitioned into b bundles containing n scenarios each. Let B denote the set of all bundles and β be any

bundle from the partition (β ∈B). The probability associated with the bundle β is given by Pβ = ∑k∈β pk,

where pk is the probability of realizing scenario k. The extensive formulation of the problem for a bundle of

scenarios β is given as follows.

minimize: csea ∗q7sea + ∑
k∈β

pk

Pβ

∗ [csea ∗
9

∑
i=8

qk
isea + ctruck ∗

7

∑
i=0

wk
i

+ cairexp ∗
7

∑
i=1

qk
iairexp

+ cairslow ∗
7

∑
i=2

qk
iairslow

+h∗
7

∑
i=0

Ik
i +b∗

7

∑
i=0

Sk
i ] (2.25)

Subject to:

(10), (11), (12), (13), and (14) . . .∀k ∈ β (2.26)

For any bundle β of scenarios, we define the set of decision variables for the extensive formulation

associated with the bundle β as d′ where

d′ := {q7sea , qk
8sea

, qk
9sea

, qk
1airexp

, . . . , qk
7airexp

, qk
2airslow

, . . . , qk
7airslow

, zk
0, . . . , zk

7,

xk
0, . . . , xk

7, wk
0, . . . , wk

7, Ik
0 , . . . , Ik

7 , Sk
0, . . . , Sk

7 ∀k ∈ β}

and let X β denote the set of feasible solutions for the extensive formulation of the problem associated with
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β . Finally, using the set d′, we define the function f (d′), where

f (d′) = csea ∗q7sea + ∑
k∈β

pk

Pβ

∗ [csea ∗
9

∑
i=8

qk
isea + ctruck ∗

7

∑
i=0

wk
i

+ cairexp ∗
7

∑
i=1

qk
iairexp

+ cairslow ∗
7

∑
i=2

qk
iairslow

+h∗
7

∑
i=0

Ik
i +b∗

7

∑
i=0

Sk
i ]

The bundled version of PHA is described in Algorithm 2.
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Algorithm 2: Bundled PHA
Input :

1. T: Scenario sample size

2. ξ = (ξ 1, ξ 2, . . . , ξ T ): Scenario sample vector

3. b: Total number of bundles

4. n: Number of scenarios per bundle

5. I: Maximum number of iterations for PHA

6. α: Scalar value greater than 1, used to update the penalty parameter ρ in each successive iteration of

PHA

Note: T = b×n, and T, b, n ∈ Z>

Output: Vector of first stage solution (first stage solution corresponding to each bundled

sub-problem)

1 Initialization:

2.1 Let ν ← 0 and ω
β

ν ← 0, ∀β ∈B. For each β compute:

d′
β

ν+1 ∈ argmin
d′∈X β

f (d′)

2.2 q̂0
7sea

= ∑∀β Pβ ∗qβ 0

7sea

2.3 Initialize the value of ρ:

ρ1 =
csea

max((∑∀β Pβ ∗|q
β0
7sea−q̂0

7sea |),1)

2 Iteration Update: ν ← ν +1

3 Aggregation: q̂ν
7sea
← ∑∀β Pβ ∗qβ

7sea

4 Price Update: For each β compute:

ω
β

ν ← ω
β

ν−1 +ρν ∗ (qβ

7sea
− q̂ν

7sea
)

5 Decomposition: For each β compute:

• d′
β

ν+1 ∈ argmin
d′∈X β

f (d′)+ω
β

ν ∗q7sea +
ρν

2 ∗
∥∥∥q7sea − q̂ν

7sea

∥∥∥2

6 Updating parameter ρ: ρν+1← α ∗ρν

7 If the first stage solutions (qβ

7sea
) for every bundled sub-problem is equal or if max number of

iterations I are completed, stop. Else, go to step 3.
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2.5 Numerical study

To conduct our numerical study, we analyzed the industrial data we obtained from BMW Manufac-

turing Company located in Spartanburg, SC. Our industrial collaborators provided us with historical three-

year data for actual demand, forecasted demand, and inventory errors for all the parts they procure from their

overseas suppliers. The values we use for per unit shipping cost of various transportation modes are based

on assumptions due to the sensitivity of the real cost information. The industrial collaborators approved the

assumed cost values used for the experimental purposes. However, we do not provide the experimental values

of these cost parameters due to confidentiality agreements with the industrial partner.

We studied the forecast errors for one-week to the seven-week ahead and the inventory errors for all

parts procured from the overseas region. Upon visualizing the demand data, we observed that the parts could

be divided into two categories, namely, low consumption and high consumption parts. A low consumption

level means that the given part is seldom required in daily production. A high consumption level means that

several boxes of the part are consumed daily to support the production process. The forecast for the low

consumption parts was noticeably more inaccurate compared to the high consumption parts. The forecast

accuracy for the i week ahead forecast was observed to be more accurate than the i+ 1 week out forecast.

Further, the inventory accuracy for the high consumption parts was higher than the low consumption parts.

We selected three parts with high, medium, and low mean forecast errors and two parts, with high

and low mean inventory errors. We fitted a probability distribution to all of error terms and observed that

the most follow the Johnson’s Unbounded distribution with different parameters. Thus, these distributions

were used to generate the data used in our study. To construct an SAA problem, sampling can be done in

various ways, such as the simple random sampling and stratified sampling using Latin Hypercube Sampling

(LHS) (McKay et al., 2000). Using simple random sampling may result in high variance within the SAA

scheme, leading to biased results or slowing convergence (Birge and Louveaux, 2011). To address this issue,

LHS can be used to reduce the variance in the SAA scheme (Ahmed et al., 2002; Linderoth et al., 2006) or a

high number of samples need to be used if one chooses to use simple random sampling. Performing LHS is

computationally time-consuming compared to simple random sampling but LHS produces better performing

samples at a given sample size. To weigh this trade-off, we decided to test both the sampling methods in our

experimental study to investigate the effects of the sampling technique on the quality of the solution obtained

and the time required to generate the samples.

It is challenging to solve a two-stage stochastic integer programming problem with a large number of
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scenarios in a short duration of time. Scenario decomposition-based methods such as unbundled and bundled

PHA can be used to reduce the computational time. In our experiments, we solve SAA replications both

with and without decomposition-based methods, i.e., unbundled and bundled PHA. For the bundled PHA,

we create four bundles of equal size and solve them using distributed computing on four different nodes.

The decision to have four bundles in bundled PHA was made due to the limited availability of computational

resources. In the case of unbundled PHA, we solve the problem on a single node using series computing.

To study the effects of sampling and decomposition-based methods on the quality of solutions and

run time to obtain a solution, we selected a part with medium forecast and high inventory errors. According

to our industrial partners (BMW Manufacturing Company) and the data we analyzed, the majority of the parts

have medium forecast errors. Further, the industrial partners were more interested in studying the parts with

high inventory errors since these parts caused the majority of the operational problems. Therefore, this set of

part characteristics is of interest. We run the experiments for the LHS method using all possible combinations

of the parameters given in Table 2.3.

Table 2.3: Input parameters values for the experiments with LHS method

Input parameter type Value

Number of scenarios is each SAA replication: 100, 200

Number of SAA replications: 30, 60

Number of evaluation scenarios: 500

Number of evaluation replications: 60

The results obtained using the LHS method are given in Tables 2.4 to 2.9. In these tables, values

in the ‘Extensive form’ row are obtained by solving the extensive form of the two-stage stochastic program

without using any decomposition-based algorithms, whereas the values in ‘U-PHA’ and ‘B-PHA’ rows cor-

responds to the values obtained by solving the extensive form of the two-stage stochastic program using

unbundled PHA and bundled PHA, respectively.

Table 2.4 provides the estimates of the expected objective value. We observe that the estimate

of the objective value obtained using unbundled and bundled PHA is very close to the value obtained by

solving the problem without using any decomposition methods. Table 2.5 presents the standard deviation

(σ ) of the estimate of the objective function value. These results show that with an increase in the number

of scenarios in each replication of SAA, the standard deviation value for the estimate of the objective value
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decreases. The standard deviation values obtained for a given experiment are nearly identical for all solution

methodologies. Table 2.6 shows the average time required to solve one SAA replication and the average time

required to generate samples per replication of SAA. We see that the average time required to solve one SAA

replication and the average time required to generate samples per replication of SAA increases as the number

of scenarios increase. Further, the time required to solve the problem without a decomposition method is the

lowest and the time required to solve the problem using unbundled PHA is the highest. Table 2.7 provides the

values of the optimality gap obtained by solving the problem using different methods. We observe that the

optimality gap values obtained by solving the problem using different methods are nearly identical. Table 2.8

and Table 2.9 provide the average number of iterations required for the PHA to converge and the percentage

of replications where PHA achieves convergence, respectively. These results indicate that the bundled PHA

converges faster and also has higher convergence percentage compared to the unbundled PHA.

Table 2.4: E[v̂N ] estimate using LHS

Scenarios 100 200
Replications 30 60 30 60
Extensive form 201401 201644 202837 203062
U-PHA 201410 201654 202844 203069
B-PHA 201412 201651 202839 203063

Table 2.5: σ of E[v̂N ] estimate using LHS

Scenarios 100 200
Replications 30 60 30 60
Extensive form 15493 15275 9480 9345
U-PHA 15494 15276 9479 9344
B-PHA 15491 15274 9479 9345

Table 2.6: Average solution time and average sample generation time per replication using LHS (in seconds)

Scenarios 100 200
Replications 30 60 30 60
Extensive form 0.36 0.37 0.77 0.75
U-PHA 79.15 80.16 203.36 193.56
B-PHA 2.49 2.46 2.92 13.84
Sample generation time 73.61 322.03
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Table 2.7: Optimality gap using LHS

Scenarios 100 200
Replications 30 60 30 60
Extensive form 7.76% 6.51% 6.05% 5.10%
U-PHA 7.76% 6.50% 6.05% 5.10%
B-PHA 7.80% 6.55% 6.05% 5.10%

Table 2.8: Average number of iterations per replication for PHA using LHS

Scenarios 100 200
Replications 30 60 30 60
U-PHA 115.47 115.83 148.83 141.63
B-PHA 11.67 11.52 7.47 34.80

Table 2.9: Percentage convergence for PHA using LHS

Scenarios 100 200

Replications 30 60 30 60

U-PHA 83.33 86.67 80.00 81.67

B-PHA 100.00 100.00 100.00 95.00

From the results discussed so far, we conclude that: (i) the time required to generate samples using

the LHS method is considerably high, (ii) solving the problem using bundled PHA and distributed computing

is better than solving the problem using unbundled PHA and series computing, and (iii) it is preferable to solve

the model without using any decomposition method because of the lower computational time requirement.

Based on these observations, we decided to run additional experiments using simple random sampling to

reduce the time required to generate the samples in each SAA replication. In this new set of experiments, we

solved each SAA replication using the bundled PHA and without using a decomposition algorithm to compare

the performance of these two methods as we increased the scenario sample size. We chose bundled PHA since

it performed better than unbundled PHA in our experiments. We again chose a part with medium forecast

errors and high inventory errors and ran experiments using all possible combinations of the parameters given

in Table 2.10.
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Table 2.10: Input parameters values for the experiments with simple random sampling

Input parameter type Value

Number of scenarios is each SAA replication: 200, 2000, 3000

Number of SAA replications: 30, 60

Number of evaluation scenarios: 10000

Number of evaluation replications: 60

The results for the experiments run with simple random sampling are presented in Tables 2.11–

2.14. In these tables, values in ‘Extensive form’ row corresponds to the values obtained by solving the

extensive form of the two-stage stochastic program without using any decomposition-based algorithm. For

the extensive form solutions, we set the maximum time limit to obtain the solution at five hundred seconds.

The values in ‘B-PHA’ rows correspond to the values obtained by solving the extensive form of the two-stage

stochastic program using bundled PHA.

Table 2.11: E[v̂N ] estimate using simple random sampling

Scenarios 200 2000 3000
Replications 30 60 30 60 30 60
Extensive form 200575 201294 206218 207055 207991 208604
B-PHA 200576 201295 206042 207048 207970 208564

Table 2.12: σ of E[v̂N ] estimate using simple random sampling

Scenarios 200 2000 3000
Replications 30 60 30 60 30 60
Extensive form 22384 23361 6539 7961 5752 5734
B-PHA 22384 23361 6520 7956 5750 5747

Table 2.13: Average solution time and average sample generation time per replication using simple random
sampling

Scenarios 200 2000 3000
Replications 30 60 30 60 30 60
Extensive form 0.77 0.75 473.00 474.01 506.32 498.67
B-PHA 4.51 5.54 148.04 141.84 307.67 327.15
Sample genera-
tion time

0.011 0.089 0.130

Table 2.11 shows the estimated expected objective function values. We observe that the estimate

of the expected objective values obtained using the two solution methods are very close. However, the
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Table 2.14: Optimality gap using simple random sampling

Scenarios 200 2000 3000
Replications 30 60 30 60 30 60
Extensive form 7.77% 6.26% 2.30% 1.57% 1.32% 0.56%
B-PHA 7.77% 6.26% 2.38% 1.58% 1.33% 0.58%

bundled PHA method obtained lower values for the estimate of the expected objective value when the number

of scenarios in each replication was greater than two hundred. Table 2.12 presents the standard deviation

value (σ ) for the estimate of the objective value. The results show that the standard deviation value for the

experiments with two hundred scenarios is higher when simple random sampling is used than when LHS is

used. Also, the standard deviation values obtained in the case of simple random sampling decrease as we

increase the number of scenarios in each SAA replication. Table 2.13 provides the average solution time

and average sample generation time per replication using simple random sampling. The time required to

generate the scenarios using simple random sampling is significantly lower than using LHS. Additionally, for

the experiments with two thousand and three thousand scenarios per replication, the average time required to

solve one replication of SAA using bundled PHA is lower than the time required to solve the problem without

a decomposition-based method. In Table 2.14, we present optimality gap values. In the experiments with two

thousand and three thousand scenarios per replication, the optimality gap values obtained without using a

decomposition method are negligibly lower than the optimality gap obtained by bundled PHA. However,

solving the problem without using a decomposition method underestimates the optimality gap. When solving

the problem without using a decomposition method, we have set a time limit on the solver to obtain a solution.

Therefore, in this case, we overestimate the expected objective value, resulting in the underestimation of the

optimality gap.

The final set of experiments were run to study the effect of forecast and inventory error uncertainties

on the various performance metric, such as the estimate of the objective value and its standard deviation,

solution time, and the estimated optimality gap. Generating scenarios using simple random sampling is time-

efficient. However, solving the problem with a small number of scenarios generated using simple random

sampling results in higher standard deviation values for the estimate of the objective value. Therefore, one

needs to solve the problem using a high number of scenarios to reduce the standard deviation for the estimate

of the objective value. Without a decomposition method that allows parallel computing, increasing the num-

ber of scenarios increases solution time for the two-stage stochastic programming problem. Thus, we run

our third set of experiments by generating scenarios using simple random sampling and solving the problem
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using bundled PHA with distributed computing. All possible combinations of the parameters provided in

Table 2.15 were used.

Table 2.15: Input parameters values for the experiments ran to study the effects of different levels of forecast
and inventory error uncertainties

Input parameter type Value

Forecast error uncertainty level: low, medium, high

Inventory error uncertainty level: low, high

Number of scenarios is each SAA replication: 2000, 3000

Number of SAA replications: 30, 60

Number of evaluation scenarios: 10000

Number of evaluation replications: 60

The forecast and inventory error uncertainty levels are defined using the mean error values. The

mean and standard deviation values according to the forecast and inventory error uncertainty levels are de-

scribed in Table 2.16 and Table 2.17.

Table 2.16: Forecast error uncertainty levels based on mean and standard deviation

Forecast error level Mean Standard deviation
Low Low High
Medium Medium Low
High High Medium

Table 2.17: Inventory error uncertainty levels based on mean and standard deviation

Inventory error level Mean Standard deviation
Low Low Low
High High High

In Table 2.18, we report the estimate of the E[v̂N ] and the standard deviation of the estimate obtained

for different experiments run for different part types. The results reported in Table 2.18 show that for the same

forecast error uncertainty level, the setting with a lower standard deviation of the inventory errors results in

a lower estimate of the objective function value and a lower standard deviation for this estimate. Moreover,

for the same inventory error uncertainty level, the setting with a lower standard deviation of the forecast error

has a lower estimate of the objective value and lower standard deviation for this estimate. In Table 2.19, we

report the optimality gap (based on 95% confidence interval) and run time for each setting considered. The
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minimum optimality gap we obtained is 0.53%, and the maximum is 4.49%. For the same set of experiments,

the minimum solution time per replication was 28.79 seconds, and the maximum solution time per replication

was 327.15 seconds. Additionally, we report the performance of the B-PHA using the values presented in

Table 2.20. The results reported in Table 2.20 show that for the setting considered, the average number of

iterations per replication required for bundled PHA to converge was between 4.83 and 10.32. Furthermore,

the percentage of replications where bundled PHA achieved convergence varies between 75 % and 100%

across all settings. In most settings, convergence was achieved in more than 83 % of replications.

Table 2.18: E[v̂N ] estimate and σ of E[v̂N ] estimate

Scenarios 2000 3000
Replications 30 60 30 60

Forecast
error
level

Inventory
error
level

Estimate σ Estimate σ Estimate σ Estimate σ

low low 121358 5407 122200 6451 121213 5075 121954 5242
low high 292914 9567 296346 10317 296846 8382 296823 7991
medium low 45043 1251 45051 1351 44879 958 44973 1014
medium high 206042 6520 207048 7956 207970 5750 208564 5747
high low 89750 3037 90003 3008 89452 2423 89902 2408
high high 269905 7218 272462 8298 272364 6351 272890 6343

Table 2.19: Optimality gap and average run time per replication

Scenarios 2000 3000
Replications 30 60 30 60

Forecast
error
level

Inventory
error
level

Optim
-ality
gap

Run
time
(sec)

Optim
-ality
gap

Run
time
(sec)

Optim
-ality
gap

Run
time
(sec)

Optim
-ality
gap

Run
time
(sec)

low low 2.62% 146.55 1.43% 142.34 2.58% 281.49 1.35% 282.33
low high 2.56% 146.84 0.99% 148.08 1.05% 283.66 0.59% 271.31
medium low 4.37% 30.91 4.04% 28.79 4.49% 50.51 3.96% 52.59
medium high 2.38% 148.04 1.58% 141.84 1.33% 307.67 0.58% 327.15
high low 3.11% 34.88 2.34% 36.49 3.15% 73.13 2.24% 79.45
high high 2.12% 132.13 0.87% 141.65 1.11% 287.03 0.53% 280.34
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Table 2.20: Average number of iterations per replication and percentage convergence for B-PHA

Scenarios 2000 3000

Replications 30 60 30 60

Forecast

error

level

Inventory

error

level

Iterat

-ions

Conver

-gence

(%)

Iterat

-ions

Conver

-gence

(%)

Iterat

-ions

Conver

-gence

(%)

Iterat

-ions

Conver

-gence

(%)

low low 6.83 100.00 6.32 100.00 5.87 100.00 6.02 100.00

low high 7.97 86.67 8.07 88.33 7.80 90.00 6.43 95.00

medium low 5.30 100.00 4.83 100.00 5.27 100.00 5.53 100.00

medium high 8.30 83.33 6.20 95.00 8.27 83.33 10.32 75.00

high low 5.47 100.00 5.87 100.00 6.30 100.00 6.22 100.00

high high 7.13 90.00 8.43 85.00 9.10 80.00 8.25 85.00

For obtaining the managerial insights related to the problem we solve, we analyze the optimality gap

and run-time per replication values presented in Table 2.19. In general, we can observe that as we increase the

number of scenarios or replications, the optimality gap values decrease. However, increases in the number

of scenarios in each replication results in an increase in solution time per replication, and an increase in the

number of replication results in an increase in the overall solution time required to solve the problem. Thus

to find a tradeoff such that a good quality solution is obtained in a reasonable amount of time, the decision-

maker can run the experiments with 2000 scenarios and 60 replications for the following reasons, (1.) the

solutions obtained using 3000 scenarios and 60 replications are not significantly better than the solutions

obtained using 2000 scenarios and 60 replications, (2.) the overall solution time required to solve a problem

with 2000 scenarios and 60 replications is approximately equal to the overall solution time required to solve

a problem with 3000 scenarios and 30 replications. Further, the overall solution time required to solve a

problem with 2000 scenarios and 60 replications is approximately 50% less than the overall solution time

required to solve a problem with 3000 scenarios and 60 replications. This is because, on average, solving a

single replication of a problem with 3000 scenarios takes twice the time of solving a replication of a problem

with 2000 scenarios. Therefore, we suggest that the decision-maker run the experiments with 2000 scenarios

and 60 replications.

Next, we compute the Value of Stochastic Solution (VSS) to obtain insights into the cost benefits of
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solving a stochastic programming model. To compute the VSS solution, we run the two-stage stochastic pro-

gramming model using SAA with 2000 scenarios and 60 replications because of the argument we discussed

in the previous paragraph. We first solve a Mean Value Problem (MVP), in which we solve a stochastic

programming model by replacing the values of uncertain input parameters with their respective mean values,

and as a result, we obtain an Expected Value Solution (EVS). We next solve a two-stage stochastic program-

ming model with 2000 scenarios and 60 replications and obtain 60 potential candidate solutions. We select a

solution with the minimum objective value of 60 solutions we found and call it a Stochastic Value Solution

(SVS). Using the EVS and SVS, we solve a problem with 10000 scenarios and 60 replications and record the

cost difference observed in each replication resulting from using the EVS solution against the SVS solution

(i.e., Value of EVS - Value of SVS). The VSS results obtained by running the experiments for different part

types with 10000 scenarios and 60 replications are presented in Table 2.21. The VSS savings reported in

Table 2.21 are the expected savings observed per week on a recurrent basis.

Table 2.21: Value of stochastic solution

Forecast
error level

Inventory
error level

Estimate of upper
bound (v∗) using
SVS

Objective value
estimate using
EVS

Estimate for VSS Percent savings
using VSS

low low 121640.88 132616.16 10975.28 8.28%
low high 295671.73 322791.88 27120.15 8.40%
medium low 46439.66 76415.81 29976.15 39.23%
medium high 207448.71 231735.94 24287.22 10.48%
high low 91064.31 119405.35 28341.04 23.74%
high high 271820.27 309186.27 37365.99 12.09%

From the values in Table 2.21, we observe that a minimum of $10,975.28 and a maximum of

$37,365.99 possible expected savings can be obtained every week from solving a stochastic model. Cor-

respondingly, we observe that a minimum of 8.28% and a maximum of 39.23% possible expected savings

can be obtained by solving a stochastic model. The results show that the lowest savings are obtained in the

case of low forecast and inventory error levels. This is because when the error levels are low, it is reasonable

to solve the mean value problem instead of the stochastic problem. Further, as discussed earlier, most parts

that the manufacturer procures fall under the category of medium forecast and high inventory error level. For

the parts falling in this category, the savings can be significantly improved by improving the inventory records

(i.e., reducing inventory error level by increasing the inventory accuracy).
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2.6 Conclusions

In this chapter, we formulated a two-stage stochastic integer programming model to reduce the

long-term expected material procurement cost for a manufacturing company while considering forecast and

inventory error uncertainty. By reviewing the existing literature related to supply chain planning under uncer-

tainty, we observe that the current studies have not considered uncertainty in inventory level in their problem

settings. Inventory uncertainty exists in the majority of the real-world manufacturing problem setting with

inventories.

We studied the effects of scenario sampling methods and solution methodologies on the quality

of the solution and computational time for the two-stage stochastic integer programming method. For the

problem under consideration, we showed that generating a large number of scenarios using simple random

sampling and solving the problem using bundled PHA is preferable. Using bundled PHA helps us decompose

the large-scale problem into easy-to-solve smaller sub-problems. Further, these smaller sub-problems are

solved independently at each iteration using distributed computing to reduce the computational time. In the

final set of experiments, we also studied the effects of varying the forecast and inventory error uncertainty

levels on solution quality, solution time, and the bundled PHA performance. From the results obtained by

running the final set of experiments, we observe that the estimate of the expected objective value and the

standard deviation of the estimate increases with an increase in the standard deviation of the uncertain input

parameter.

2.7 Potential future research

In this chapter, we solved the extensive form of the two-stage stochastic programming problem using

the PHA. In the algorithm we used, the lower bound information is not computed in any step. Even without

lower bound information, the PHA generates a high-quality solution (Gade et al., 2016). Having the lower

bound information in PHA can help us form the termination criteria and check the quality of the solution

with respect to the actual optimal objective value. We tried to compute the lower bounds at every iteration by

using the method proposed by Gade et al. (2016). However, the method proposed by Gade et al. (2016) did

not yield tight lower bounds for our problem. Future research work can be done to improve this aspect. A

potential idea to address this problem is discussed below.

In every Decomposition step of the PHA, we are solving the augmented lagrangian problem. Ad-
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ditionally, the first-order Lagrange multiplier (ω) is updated in Price Update step and the second-order La-

grange multiplier (ρ) in every Updating parameter ρ step. We can modify this problem such that in every

Decomposition step, we are solving a first-order Lagrangian relaxation problem. This modification can be

achieved by changing the non-anticipativity constraint (NAC) such that the absolute deviation of the first-

stage scenario solutions with respect to the aggregate of the first-stage scenario solution is equal to zero. We

refer to this revised NAC by ‘modified NAC’. We can have a linear integer programming problem by lin-

earizing the modified NAC, which can be done trivially. A first-order Lagrangian problem can be obtained by

dualizing the linearized version of modified NAC. Using this information, we can replace the second-order

objective function with the first-order objective function in the Decomposition step of the PHA. Another

modification can be made to the dual price update step in PHA. The Lagrangian multipliers (dual prices)

for the first-order Lagrangian problem can be obtained by using the sub-gradient method as discussed in the

Fisher (2004). We can use a similar way to update the dual prices in every PHA iteration. We believe these

modifications can help us compute the tight lower bounds for the PHA.
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Chapter 3

Optimal Sea-container Consolidation

under Uncertainty and Vendor Hub

Inventory Control

3.1 Introduction

For a manufacturing company that acquires parts and materials from overseas, there can be substan-

tial time between the placement and receipt of replenishment orders due to long lead times. Thus, companies

often need to rely on forecasted line-side demand when placing orders. The differences between the actual

demand for parts and the quantities forecasted well in advance might lead to part shortages or overflows

in the warehouse, which are both costly to the manufacturer. As a result, it is of interest to decrease such

discrepancies and minimize warehouse utilization while satisfying the demand. Supply chain infrastructure

such as consolidation centers or repackaging facilities can be used to better match the mix of products in each

shipment of parts to the expected demand.

We consider a manufacturer with an overseas consolidation center that can combine shipments from

multiple inbound trailers to load sea-containers with a favorable parts mix that helps reduce the manufac-

turer’s warehouse utilization. These sea-containers are then delivered to the manufacturer using a combina-

tion of maritime, rail, and road transportation. A sea-container contains multiple parts after the consolidation

process. Further, a sea-container is always unloaded entirely by the manufacturer at the destination ware-
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house. Therefore, when a sea-container is unloaded to restock a part whose inventory levels are low, other

parts that are in the same container but not needed to be restocked are also unloaded, filling the warehouse

with unnecessary parts. However, the warehouse space utilization needs to be maintained below a defined

level to ensure a smooth production process. Therefore, it is desirable to have a load-mix (i.e., a mixture of

various parts) in the sea-containers to avoid increasing warehouse utilization unnecessarily.

We assume that the orders for parts are placed using the weekly forecasted demand, whereas the

manufacturers’ warehouse is designed to carry less than a week’s part supply. Therefore, we compare the

effect of using the weekly and daily forecasted demand for consolidation on the manufacturing warehouse

utilization. We assume that the manufacturer considered in this chapter does not have a daily demand fore-

casting model. Consequently, in this chapter, we build and study the time-series forecasting models to predict

the daily demand quantities.

We observe the random errors in predicted and actual daily demand values from the time-series

study, resulting in excess inventory or shortages at the manufacturing warehouse. We assume that the sup-

pliers considered in this study must maintain an agreed inventory level of the part to fulfill any emergency

orders arising due to shortages at the manufacturer. Thus, we build and study the chance-constraint optimiza-

tion model to determine the optimal supplier inventory levels for emergency orders under uncertain forecast

errors.

The rest of this chapter is organized as follows, in Section 3.2 we review the existing literature on

shipment consolidation, demand forecasting and inventory management, and inventory replenishment. In

Section 3.3 we define the problem and describe the solution approach. A discussion on time-series models

built and the results obtained is presented in Section 3.4. The chance-constraint optimization problem formu-

lation is discussed in Section 3.5 and the solution methodology along with experimental results are provided

in Section 3.6. Concluding remarks are provided in Section 3.7, and the potential future research is discussed

in Section 3.8.

3.2 Literature review

We first review the literature that studies consolidation problems. Tyan et al. (2003) studied a ship-

ment consolidation problem for a global supply chain using air-freight as the transportation mode. They

aim to minimize the total cost due to linehaul, consolidation operations, inventory holding, penalty for late

shipments, and lost capacity by determining the optimal quantity for shipment mode picked on each day to
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be shipped by each flight. A freight consolidation problem considering multiple customers, multiple inter-

mediate (consolidation) facilities, and a single consolidation facility was studied by Hanbazazah et al. (2019)

and Hanbazazah et al. (2020). Hanbazazah et al. (2019) studies a freight consolidation problem with divis-

ible shipments to minimize the total cost of shipping by solving a Mixed Integer Linear Program (MILP).

Hanbazazah et al. (2020) considers a freight consolidation problem with indivisible shipments to minimize

the total cost. The divisible shipments considered in Hanbazazah et al. (2019) can be divided into multi-

ple subloads and transported from one consolidation facility to another, whereas the indivisible shipments

considered in Hanbazazah et al. (2020) cannot be. Zhang et al. (2021) studied a consolidation problem to

optimally consolidate the sub-orders originating from multiple warehouses via a transshipment among ware-

houses. The authors formulated a multi-commodity network flow problem to reduce the order fulfillment

cost by determining the consolidation warehouse for each order and transshipment for each suborder. All

these studies considered the order demand as a deterministic input to the optimization model along with other

input parameters, and solved a cost minimization problem. Sonntag et al. (2021) studied an inventory routing

problem with time-based shipment consolidation to minimize the cost under stochastic demand. The authors

formulate a chance constraint program to determine an optimal set of retailer groups, the shipment interarrival

times for each group, and the base stock quantity for each supplier. The authors consider minimizing inven-

tory holding costs along with other costs in the objective function. However, minimizing the holding cost is

not the objective of the end customer (manufacturer) in our case. In our problem, the manufacturer is more

interested in minimizing the daily warehouse utilization to support a smooth production process. Therefore,

the quantity of the particular material packed in a container is important for the manufacturer. As a result,

we formulate a problem to determine the daily demands of the manufacturer corresponding to the week the

container was built to satisfy the demand. Using these forecasted daily demands, the manufacturer and its

third-party logistics (3PL) service providers can solve transshipment consolidation problems to minimize

the cost and pack the containers using the forecasted daily demands instead of forecasted weekly demands.

Similar to the paper by Hanbazazah et al. (2019), we assume all the orders considered for this study to be

divisible. However, in our problem, there is only one consolidation center available.

To predict the daily demand quantities, we build a variety of time-series forecasting models. A com-

prehensive comparison study of univariate time-series models using Prophet and ARIMA and multi-variate

time series using Lasso and LSTM (Long Short Term Memory) was done by Motamedi et al. (2021) to fore-

cast the demand for platelet usage. In a univariate method, only demand is used as an input parameter to

train the time-series models. In a multi-variate method developed to forecast demand for platelets, clinical
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indicators are also used as input parameters in addition to demand. In this study, the authors demonstrate

that when a sufficient amount of data is available, the traditional methods like ARIMA perform as good as

the machine learning-based multi-variate methods. In this study, we only use univariate methods because

we assume that the manufacturer only has historical demand data. Acar and Gardner Jr (2012) performed a

time-series forecasting study to select a forecasting method based on the operational performance (i.e., the

total cost incurred and customer service level) in the supply chain. The authors studied three different expo-

nential smoothing methods: simple exponential smoothing, Holt’s additive model, and the damped additive

trend model. The experimental results suggest that the damped trend method performs best with respect to

the operational performance metrics. In this study, we build our forecasting models by considering Simple

Moving Average, Simple Exponential Smoothing, SARIMA, and Prophet methods. Li et al. (2021) and Guo

et al. (2021) studied the ensemble-based forecasting models. Li et al. (2021) did a comparison study using

various time-series models and suggested that the ensemble model that uses STL (Seasonal and Trend de-

composition using Loess) and XGBoost method is simpler to apply while generating good quality forecasts.

The STL method is used to predict the seasonal and trend component, while the XGBoost is used to predict

the residuals. The authors use the STL method because they observe an irregular seasonality over time. In

contrast, the analysis of the data provided by our industry partner shows that the seasonality is regular over

time. Thus, we chose not to test an ensemble model built using STL and XGBoost for our problem. Guo et al.

(2021) proposed an ensemble-based forecasting model using Prophet and SVR (Support Vector Regression)

to predict demands in the manufacturing industry with seasonality. The Prophet method predicts the linear

structures, while the residuals are predicted using the SVR. The final forecast is generated by summing the

linear structures and residual components. Similar to Guo et al. (2021), we use the grid search method to

select the best values for the hyperparameters in the Prophet method. However, unlike Li et al. (2021) and

Guo et al. (2021), we build our ensemble models by using simple average and weighted average methods. A

detailed discussion on the ensemble model used in this study is provided in Section 3.4.

Multiple approaches such as the traditional approach, Vendor Managed Inventory (VMI) approach,

and Vendor Hub approach are used to control the inventory levels across different areas within a supply chain

(Lee and Chu, 2005). In the traditional approach, the downstream partners in a supply chain decide on the

stock and hold the inventory. In the VMI, the supplier determines the stock levels and replenishment cycles of

the downstream partners. In the Vendor Hub approach, the supplier maintains a minimum agreed stock level

of a product at its warehouse, and the manufacturer only pays for the amount of stock consumed. Burke et al.

(2009), Bilsel and Ravindran (2011), and Moheb-Alizadeh and Handfield (2018) studied a sourcing problem
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under uncertainty for the traditional approach. In Burke et al. (2009), the authors studied the problem of

maximizing the expected profits under uncertain demand and supply by determining the optimal set of sup-

pliers selected for order placement, the total order quantity, and allocations of order quantities to each selected

supplier. A multi-objective chance constraint optimization model was formulated by Bilsel and Ravindran

(2011) to minimize the cost, maximize the quality, and minimize the lead times by optimally determining

the primary and backup suppliers for each product and the amount of each product to be shipped using each

supplier. The authors considered uncertainties related to the capacity of suppliers, customer demands, and

transportation costs in the problem formulation. Further, all uncertain quantities were assumed to follow

a normal distribution, and the multi-objective optimization model was solved using the goal programming

method. Moheb-Alizadeh and Handfield (2018) also studied a multi-objective chance-constraint optimiza-

tion model for supplier selection and order allocation. However, the authors only considered the demand

to be stochastic. The objectives of the problem was to minimize the cost, minimize carbon emissions, and

maximize the firm’s social responsibility by optimally selecting the suppliers and allocating orders to them.

Govindan (2015) compared the performance of the traditional and the VMI approaches under stochastic de-

mand using the total supply chain cost as a performance measure. Via a numerical study, the authors observed

that using the VMI approach results in lower costs compared to the traditional approach. The manufacturer

we consider uses the vendor hub approach for inventory management. In particular, the manufacturer places

the orders with its suppliers using the forecasted demand quantities and pulls the material. Further, the sup-

plier must maintain the agreed inventory levels at all times. The manufacturer utilizes this excess inventory

stored with the supplier to fulfill any emergency orders that may arise due to a stock-out. While there are

a plethora of studies done assuming a traditional or Vendor Managed Inventory (VMI) approach, to the best

of our knowledge, no study has been done considering the vendor hub approach. In this study, we assume

that only one supplier is available to fulfill the order for a particular material, and we determine the order

quantities (according to the final consolidation quantities) using forecasted demands. A problem of inventory

replenishment considering emergency orders was studied by Poormoaied et al. (2020) and Poormoaied et al.

(2022). Poormoaied et al. (2020) studied a problem of time-based inventory replenishment and emergency

orders, and Poormoaied et al. (2022) studied a quantity-based inventory replenishment and emergency orders.

In both the studies, the customer demand is considered to arrive as per the Poisson process, and the supplier is

assumed to have infinite capacity. In practice, obtaining an infinite capacity supplier is not possible because

the supplier also needs to maintain or lower its operating costs. Therefore, we assume that time when the

manufacturer will place the orders for the emergency shipments is known and determine the excess inventory
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level the supplier must maintain to fulfill these emergency orders.

3.3 Problem description and solution approach

We collaborated with BMW Manufacturing Company, located in Spartanburg, South Carolina, to

conduct the numerical study. The manufacturer has the deterministic daily demand known for the next four-

teen days, and after that, the weekly forecasted demand is available every week for up to one year from the

current day. The manufacturer provided us with the historical actual daily demand values for twelve different

parts for the years 2018 and 2019. Further, the manufacturer also provided us with the two years (i.e., 2018

and 2019) of historical forecasted weekly demand values up to seven weeks in the future from the forecast

date.

Figure 3.1: Splitting weekly order quantities into daily

The manufacturer uses sea-freight as the primary mode of transportation for procuring materials

from the overseas region. We assume that the lead-time using the sea-freight is seven weeks. This lead-time

can be further broken down as follows: two weeks for preparing and delivering the order from supplier to

consolidation center in Europe, one week for delivering the material from consolidation center to the port in

Europe, twelve days on the ship from the European port to the US Port, four days on the rail from the US

port to the manufacturing plant and twelve days of safety lead-time. Therefore, when a new sea-freight order

is placed, it is expected to satisfy the demand in the eighth week.

Due to the considerably long lead-time discussed above, the sea-containers are packed at the con-
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solidation facility five weeks before their consumption week, when no daily demand information is available.

However, the manufacturer keeps track of the historical daily demand for all parts. Using this data, we

build the time-series forecasting model that helps the manufacturer predict the daily demands in the week for

which the material is being packed into the sea-container at the overseas consolidation facility. In general,

the demand forecast generated for the week i is more accurate than the forecast generated for the week i+ j.

Therefore, we assume that the order quantities placed by the manufacturer can be adjusted at the time of

consolidation because the additional required material can be procured on an emergency basis, or the excess

material can be held by the cross-dock facility or returned to the supplier. Accordingly, the forecasted de-

mand quantities obtained during the consolidation are the final quantities using which the sea-containers are

packed.

The predicted daily demand values obtained using time-series models are subject to forecasting

errors. As a result of these errors, there will be either excess inventory in the manufacturer’s warehouse at

the end of the production day, or part shortages will impact manufacturing operations. The excess inventory

in the warehouse at the end of a production day is undesirable. However, shortages are detrimental because

they can lead to complete production line stoppage, which is very expensive. Suppose a material shortage

is anticipated, and it is infeasible to fulfill the emergency demands arising from shortages using sea-freight

due to its high transportation lead-time; in such circumstances, the material is expedited using a costly air-

freight option with a short transportation lead-time. To ensure the required material is always available at

the overseas supplier in case of such emergencies, the manufacturer has an agreement with the supplier

such that the supplier must always maintain the agreed amount of material available in their warehouse for

emergencies.

Since the shortages and the excess inventory are undesirable, we study the error distribution of the

predicted demand values. Using this error distribution, we formulate a chance constraint optimization model

to obtain the order quantity values such that the demand is met completely in (1-ε)% scenarios. Whereas,

in the rest ε% scenarios, shortages are allowable. Our objective in this optimization problem is to reduce

the amount of excess and shortage inventory at the end of each day across all the realized scenarios for a

given week. The decision variable is the order quantity corresponding to each day of the week. The optimal

order quantity corresponding to each day obtained by solving the optimization problem can be used by the

manufacturer to effectively manage the amount of inventory maintained by the supplier for emergency orders.
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3.4 Time series forecasting study

In this section, we discuss the time-series forecasting model we built to predict the daily values in

the sixth week (35th to 42nd days, i.e., when the sea-containers would be packed at the consolidation center)

from the current day (the time when the order is placed with a supplier). We start by building individual

models, such as simple moving average and simple exponential smoothing, which do not account for trend

and seasonality components in the time-series data. Then we progress toward building time series forecasting

models using triple exponential smoothing (aka Holt-Winters method), SARIMA (Seasonal Autoregressive

Integrated Moving Average), and Prophet methods (Facebook Open Source, 2017), which account for trend

and seasonality in the time-series data. Subsequently, we build our final time-series model using an ensemble

approach by combining different individual models.

In the simple moving average model (SMA) the average of the last x periods from the current period

n is taken to predict the value at period n+ 1 for the SMA model with order x. On the contrary, the simple

exponential smoothing (SES) method uses a smoothing parameter α , which influences the weights given to

the more recent and distant past observations. A large alpha value indicates more weight is given to the recent

past observations. Neither SMA or SES account for trend and seasonality components in time-series data.

Therefore, the forecast values generated by SMA and SES tend to be less accurate for the time-series data

which contains trend and seasonality factors. If the time-series contains the trend and seasonality compo-

nents, methods such as triple exponential smoothing (TES) and SARIMA can be used. Compared to SES,

TES uses two additional smoothing parameters to account for trend and seasonality. ARIMA (Autoregressive

Integrated Moving Average) has three parameters autoregression order (p), differencing factor (d), and mov-

ing average order (q). ARIMA model is suitable for forecasting when the time-series data has no seasonality

component. Seasonal ARIMA (SARIMA) is favorable when the time-series data has a seasonality com-

ponent. Compared to ARIMA, SARIMA has four additional parameters seasonal autoregression order (P),

seasonal differencing factor (D), seasonal moving average order (Q), and seasonality period (m). Hyndman

and Athanasopoulos (2018) provides a comprehensive explanation of these forecasting models. In addition to

the SMA, SES, TES, and SARIMA methods, we also build a forecasting model using Prophet. The Prophet

is an open-source package developed by Facebook for forecasting.

We build the time-series forecasting models in Python programming language using SMA, SES,

TES, and SARIMA methods. The pandas package is used to build the SMA models with different orders,

the statsmodels package is used to build the SES and TES models, the pmdarima package is used to build the
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SARIMA model, and the prophet package is used to build the Prophet model. We use different orders for

the SMA model, such as 2, 3, 4, 7, 14, and 28, and select the model with an order with the least root mean

squared error on the training data for forecasting. We train the SES model using different α values, such as

0.66, 0.5, 0.4, 0.25, 0.13, and 0.07, along with optimized SES in which the statsmodel package determines

an appropriate α value automatically. We select one SES model with the least root mean squared error on the

training data for forecasting. Forecasting using the TES model is very trivial using the statsmodel package,

we only need to specify the seasonality period and the type of trend and seasonality. For the forecasting

model developed using the SARIMA method, appropriate values for parameters p, q, P, and Q were searched

using the stepwise algorithm (Hyndman and Khandakar, 2008) in pmdarima package.

Prophet forecasting package is also available in Python in addition to the traditional methods dis-

cussed above. We referred to Facebook Open Source (2017) for building the forecasting model using Prophet.

To determine the appropriate values for the changepoint prior scale and seasonality prior scale hyperparam-

eters of the Prophet model, we use a grid search.

A single forecasting method cannot work satisfactorily for all parts. Further, the appropriate method

can change from time to time depending on the changes in the time-series data. Therefore, an ensemble model

is often created by combining different forecasting methods. Figure 3.2 provides a visual representation of

the ensemble forecasting model. The input time series data is used to train n different individual models

(i.e., SMA, SES, TES, etc.). The forecasted values generated by these individual models are then given as

an input to the generalizer module, which converts these multiple-input values into a single forecast value

according to a predetermined rule. We develop three ensemble forecasting models by blending (1.) TES and

SARIMA, (2.) TES, SARIMA, and Prophet, and (3.) SARIMA and Prophet. The generalizer generates the

final forecast value for each ensemble model by either taking (1.) a simple average of the forecasted values

by each individual model or (2.) a weighted average of the forecasted values by each individual model. As a

result, we evaluate six ensemble models, three using a simple average and three using a weighted average.
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Figure 3.2: Ensemble forecasting model to predict daily demand values

In the case of an ensemble model created using weighted averages, the weight for each individual

model was determined according to its error score. Particularly, we first compute an error score on the training

data either using the MAPE (Mean Absolute Percent Error) or RMSE (Root-Mean-Square Error) techniques

for every individual method (i.e., TES, SARIMA, Prophet). Then, we normalize these errors so that the sum

of errors for all the individual models is one. Subsequently, we subtract the normalized error scores from one

for each method to get the accuracy score. The final weights are then computed by normalizing the accuracy

score.

Our industrial partner provided us with two years of daily demand data for twelve different parts.

The twelve parts can be categorized as follows; six were high runners (i.e., the parts with a high amount

of daily consumption), and six were low runners (i.e., the parts with a low amount of daily consumption).

We label these distinct high runners and low runners parts as high runner− i and low runner− i, for i ∈

{1,2, . . . ,6}, respectively. We select three of each high runner and low runner parts for our first set of

experiments that are done to determine the final experimental setup. Later, for the final study, we use the

data for all twelve parts to evaluate the performance of candidate forecasting models. We use the first 625

days of data for training our time series models, and the last 90 days of data are used for testing purposes.

We run (train) all the models weekly and generate the daily forecast for the sixth week (35th to 42nd days).

We do not consider holiday weeks, such as Thanksgiving and Christmas, in the numerical study. Therefore,

we have a total of 13 weeks for which we test our forecasting models.

The initial numerical study is done to determine the error estimator and the training setup we will
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use to evaluate different forecasting models, and the final study focuses on this evaluation. In the initial study,

the error scores for the individual and ensemble forecasting models are computed by generating the forecast

values using five different experimental schemes for three different high runner and three different low runner

parts. The experimental schemes that we use are as follows: (1.) Use 60 weeks of recent past data to train

the forecasting model and compute the errors on the training model using MAPE (60 Rolling - MAPE), (2.)

Use 89 weeks of recent past data to train the forecasting model and compute the errors on the training model

using MAPE (89 Rolling - MAPE), (3.) Use 89 weeks of recent past data to train the forecasting model and

compute the errors on the training model using RMSE (89 Rolling - RMSE), (4.) Use all available data until

the current time period to train the forecasting model and compute the errors on the training model using

MAPE (MAPE), and (5.) Use all available data until the current time period to train the forecasting model

and compute the errors on the training model using RMSE (RMSE).

The abbreviations used in column headings of Tables 3.2 – 3.8 are defined in Table 3.1. The results

for the initial forecasting study, are provided in Table 3.2 – 3.5. Table 3.2 and 3.3 present the average daily

MAPE values obtained by running the trained individual forecasting models to make predictions on the test

data of different high runner and low runner parts. We observe that, in general, the forecasted values obtained

using SMA and SES methods have high average daily MAPE scores when compared to TES, SARIMA

and Prophet methods. Further, we observe that lower MAPE values can be achieved using the experimental

schemes 89 Rolling - MAPE or 89 Rolling - RMSE.

Table 3.1: Description of the abbreviations used in Tables 3.2 – 3.8

Notation Description

SMA Simple moving average

SES Simple exponential smoothing

TES Triple exponential smoothing

SARIMA Seasonal autoregressive integrated moving average

SA TS Simple average ensemble using TES and SARIMA

WA TS Weighted average ensemble using TES and SARIMA

SA TSP Simple average ensemble using TES, SARIMA and Prophet

WA TSP Weighted average ensemble using TES, SARIMA and Prophet

SA SP Simple average ensemble using SARIMA and Prophet

WA SP Weighted average ensemble using SARIMA and Prophet
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Table 3.2: Average of daily MAPE values for individual models obtained using different schemes for high
runner parts

Method Material number SMA SES TES SARIMA Prophet

60 Rolling - MAPE High Runner - 3 129.79 124.81 110.45 104.64 95.46

89 Rolling - MAPE High Runner - 3 130.49 129.93 105.92 88.98 80.38

89 Rolling - RMSE High Runner - 3 130.49 129.93 105.76 88.98 81.17

MAPE High Runner - 3 129.80 126.34 110.51 92.32 88.54

RMSE High Runner - 3 129.80 126.34 110.28 92.32 88.58

60 Rolling - MAPE High Runner - 5 90.15 91.39 84.11 69.28 58.46

89 Rolling - MAPE High Runner - 5 90.15 91.29 92.82 57.80 65.29

89 Rolling - RMSE High Runner - 5 90.15 91.84 93.40 58.70 65.29

MAPE High Runner - 5 90.15 91.59 85.53 57.86 68.52

RMSE High Runner - 5 90.15 91.81 89.00 57.57 68.58

60 Rolling - MAPE High Runner - 6 77.82 75.18 48.55 52.40 60.79

89 Rolling - MAPE High Runner - 6 77.82 75.62 49.07 51.25 68.99

89 Rolling - RMSE High Runner - 6 77.82 75.62 49.06 51.25 69.48

MAPE High Runner - 6 77.82 74.77 48.59 50.35 70.63

RMSE High Runner - 6 77.82 74.77 48.62 50.45 70.59
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Table 3.3: Average of daily MAPE values for individual models obtained using different schemes for low
runner parts

Method Material number SMA SES TES SARIMA Prophet

60 Rolling - MAPE Low runner - 1 79.89 79.86 56.65 50.93 50.79

89 Rolling - MAPE Low runner - 1 79.89 78.82 60.02 56.30 57.62

89 Rolling - RMSE Low runner - 1 79.89 78.98 58.62 56.25 57.65

MAPE Low runner - 1 79.89 78.67 64.18 49.71 50.17

RMSE Low runner - 1 79.89 78.67 63.97 49.71 50.20

60 Rolling - MAPE Low runner - 3 148.67 153.39 135.62 140.27 145.92

89 Rolling - MAPE Low runner - 3 148.67 156.18 140.47 158.58 133.12

89 Rolling - RMSE Low runner - 3 148.67 156.18 140.47 158.58 132.15

MAPE Low runner - 3 148.67 153.67 146.22 159.56 137.32

RMSE Low runner - 3 148.67 153.67 146.22 159.81 135.89

60 Rolling - MAPE Low runner - 6 74.94 74.03 47.07 49.18 52.07

89 Rolling - MAPE Low runner - 6 74.94 73.98 47.22 47.42 57.05

89 Rolling - RMSE Low runner - 6 74.94 73.98 47.18 47.45 57.01

MAPE Low runner - 6 74.94 73.98 47.10 47.24 58.19

RMSE Low runner - 6 74.94 73.98 47.05 47.25 58.23

Tables 3.2 and 3.3 show that not a single individual TES, SARIMA, and Prophet model has lowest

average daily MAPE scores for all parts. Therefore, we also evaluate ensemble models that combine these

forecasting models. Tables 3.4 and 3.5 present the average daily MAPE values obtained by running the

trained ensemble forecasting models to make predictions for different high runner and low runner parts.
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Table 3.4: Average of daily MAPE values for ensemble models obtained using different schemes for high
runner parts

Method Material number SA TS WA TS SA TSP WA TSP SA SP WA SP

60 Rolling - MAPE High Runner - 3 100.06 102.05 95.99 96.92 94.34 94.82

89 Rolling - MAPE High Runner - 3 95.83 96.11 87.02 87.24 82.33 82.13

89 Rolling - RMSE High Runner - 3 95.83 93.21 86.71 86.94 82.34 82.34

MAPE High Runner - 3 99.35 98.74 91.88 92.00 87.39 87.48

RMSE High Runner - 3 99.35 96.77 91.63 91.61 87.98 86.93

60 Rolling - MAPE High Runner - 5 74.94 77.03 67.99 68.06 61.43 59.65

89 Rolling - MAPE High Runner - 5 72.56 74.66 67.33 67.82 60.46 61.09

89 Rolling - RMSE High Runner - 5 73.28 73.71 67.92 68.20 60.73 60.67

MAPE High Runner - 5 69.84 71.13 64.62 64.95 61.60 62.42

RMSE High Runner - 5 71.16 71.52 66.31 66.51 61.48 61.50

60 Rolling - MAPE High Runner - 6 50.13 49.61 52.86 52.65 56.04 56.87

89 Rolling - MAPE High Runner - 6 49.97 49.67 54.91 53.41 59.20 57.89

89 Rolling - RMSE High Runner - 6 49.90 49.83 55.01 54.99 59.44 60.15

MAPE High Runner - 6 49.37 49.13 54.97 53.37 59.35 57.25

RMSE High Runner - 6 49.43 49.35 55.00 54.97 59.42 60.25

51



Table 3.5: Average of daily MAPE values for ensemble models obtained using different schemes for low
runner parts

Method Material number SA TS WA TS SA TSP WA TSP SA SP WA SP

60 Rolling - MAPE Low runner - 1 51.35 52.51 49.42 49.49 50.06 50.14

89 Rolling - MAPE Low runner - 1 52.29 52.52 51.68 51.66 54.98 55.04

89 Rolling - RMSE Low runner - 1 51.65 51.89 51.42 51.41 55.00 55.01

MAPE Low runner - 1 54.04 54.32 50.65 51.06 48.59 48.55

RMSE Low runner - 1 53.93 54.28 50.49 50.57 48.57 48.63

60 Rolling - MAPE Low runner - 3 135.83 136.04 139.02 138.95 141.50 143.33

89 Rolling - MAPE Low runner - 3 149.57 149.30 142.92 143.78 144.61 144.13

89 Rolling - RMSE Low runner - 3 149.57 149.48 143.34 144.59 144.75 144.38

MAPE Low runner - 3 151.26 151.09 146.98 146.98 148.29 147.24

RMSE Low runner - 3 151.92 151.99 146.55 148.92 147.49 147.36

60 Rolling - MAPE Low runner - 6 48.03 47.95 48.97 48.92 50.25 50.34

89 Rolling - MAPE Low runner - 6 47.25 47.23 49.56 48.90 51.18 50.11

89 Rolling - RMSE Low runner - 6 47.25 47.22 49.56 49.66 51.17 51.59

MAPE Low runner - 6 47.09 47.09 49.74 49.01 51.52 50.18

RMSE Low runner - 6 47.08 47.05 49.75 49.83 51.52 51.99

Based on the data obtained from individual and ensemble models, reported in Tables 3.2 – 3.5, we

observe that lower MAPE values can be achieved using either the 89 Rolling - MAPE or 89 Rolling - RMSE

scheme. Additionally, a smaller amount of training data is required to train the forecasting models using 89

Rolling - MAPE. Using a smaller data set means that potentially lower training time is required to build the

forecasting models. Therefore, we select the 89 Rolling - MAPE scheme for the final numerical study. We

also decide to exclude SMA and SES models from our analysis as they have, in general, high MAPE scores.

The final numerical study was done on all the twelve parts using the 89 Rolling - MAPE scheme. The

primary purpose of this study was to determine the forecasting model to be used to generate forecasts for all

parts. Tables 3.6 and 3.7 present the average daily MAPE values obtained by running the trained individual

and ensemble forecasting models, respectively, to make predictions on the test data for all twelve parts.
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Table 3.6: Average of daily MAPE values for individual models (using 89 Rolling - MAPE scheme)

Material number TES SARIMA Prophet

Low runner - 1 60.02 56.30 57.62

Low runner - 2 55.88 52.39 60.32

Low runner - 3 140.47 158.58 133.12

Low runner - 4 90.71 91.23 85.81

Low runner - 5 49.24 45.94 54.73

Low runner - 6 47.22 47.42 57.05

High runner - 1 134.90 108.27 127.25

High runner - 2 52.64 48.40 55.24

High runner - 3 105.92 88.98 80.38

High runner - 4 79.85 73.49 82.90

High runner - 5 92.82 57.80 65.29

High runner - 6 49.07 51.25 68.99

Average 79.90 73.34 77.39

Maximum 140.47 158.58 133.12
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Table 3.7: Average daily MAPE values for Ensemble models (using 89 Rolling MAPE scheme)

Material number SA TS WA TS SA TSP WA TSP SA SP WA SP

Low runner - 1 52.29 52.52 51.68 51.66 54.98 55.04

Low runner - 2 54.01 54.37 54.99 55.15 55.54 55.95

Low runner - 3 149.57 149.30 142.92 143.78 144.61 144.13

Low runner - 4 90.90 90.98 87.67 87.71 87.64 87.63

Low runner - 5 47.44 47.46 49.16 49.26 49.57 49.78

Low runner - 6 47.25 47.23 49.56 48.90 51.18 50.11

High runner - 1 115.66 115.72 118.01 119.20 117.64 116.16

High runner - 2 49.55 49.95 50.08 50.27 50.18 50.80

High runner - 3 95.83 96.11 87.02 87.24 82.33 82.13

High runner - 4 76.28 76.57 76.64 76.63 76.14 75.25

High runner - 5 72.56 74.66 67.33 67.82 60.46 61.09

High runner - 6 49.97 49.67 54.91 53.41 59.20 57.89

Average 75.11 75.38 74.16 74.25 74.12 73.83

Maximum 149.57 149.30 142.92 143.78 144.61 144.13

We observe that the MAPE values obtained using the SARIMA model are either best or better than

the worst performing individual model except for the parts Low runner - 3 and Low runner - 4. Further, we

observe from the values in Table 3.6 and 3.7 that all ensemble models are better than the worst performing

individual model for all parts. Therefore, we focus our attention on the ensemble models. To choose the

best ensemble model out of the six, we look at the average and maximum values of average daily MAPE

per part per week obtained using different ensemble models. Looking at the average values (in the second

last row of Table 3.6 and 3.7), we observe that the weighted ensemble model using SARIMA and Prophet

performs tantamount to the individual SARIMA model, which has the lowest average MAPE score. Further,

the maximum MAPE value (in the last rows of Tables 3.6 and 3.7) obtained using the weighted ensemble

model using SARIMA and Prophet is significantly lower than the maximum MAPE value obtained using

the individual SARIMA model. Therefore, we propose the weighted ensemble model that use SARIMA and

Prophet to generate forecasts for all the parts that will be used to pack the sea-containers using daily volumes

instead of the weekly volumes.
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To study how well our selected daily forecasting model performs compared to the weekly forecasting

model currently used by the manufacturer, we need to aggregate the forecasted daily volumes generated by

our model to the weekly level. The manufacturer (i.e., our industrial partner) currently uses a proprietary

forecasting model which takes inputs from multiple factors apart from the weekly historical demands. Due

to the sensitivity of the information, we did not have access to the details related to the forecasting model

currently used by the manufacturer. The results for the weekly average MAPE scores obtained using the

selected model against the model currently used by the manufacturer for all parts are presented in Table 3.8.

Table 3.8: Average weekly MAPE values for WA SP and the current model used by the industrial partner

Material number WA SP Current BMW forecasting model

Low runner - 1 25.63 12.25

Low runner - 2 16.47 13.80

Low runner - 3 79.41 92.94

Low runner - 4 25.40 97.40

Low runner - 5 11.34 11.12

Low runner - 6 11.96 11.23

High runner - 1 33.48 13.00

High runner - 2 12.27 12.17

High runner - 3 30.50 84.74

High runner - 4 38.76 18.75

High runner - 5 21.94 14.76

High runner - 6 26.93 15.11

The results presented in Table 3.8 show that there is no clear evidence that one model is better

in terms of accuracy than the other. However, using the proposed model (the weighted ensemble model

using SARIMA and Prophet) has a significant advantage over the current forecasting model used by the

manufacturer since our model can forecast daily demand, which the manufacturer’s model cannot. The

consolidation facility currently packs the weekly order quantity of each part into a single container as a

whole because they do not have any information related to the manufacturer’s daily demand. Given that

the manufacturer’s warehouse is designed to hold less than a week’s supply (one and a half days supply)

of a material, the current consolidation process causes overutilization of the warehouse when a sea-container
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containing weekly supplies is unloaded. Using our forecasting model, the manufacturer can generate forecasts

for the daily demand values, which can help the consolidation facility pack the sea-containers using the daily

volumes and thus reduce the manufacturer’s warehouse utilization on a daily basis.

3.5 Optimization problem formulation

The reported MAPE values and our discussion in the previous section shows that no forecasting

model can be perfectly accurate. Given that the manufacturer places orders with its overseas suppliers using

forecasted demand, there is often either excess or shortage of inventory for various parts at the manufac-

turer’s warehouse. As discussed in section 3.3, having excess inventory or shortages in the manufacturing

warehouse is undesirable for the manufacturer. However, having shortages are more problematic than having

excess inventory because they may cause a production shutdown. Hence, one must avoid shortages as much

as possible while reducing the excess inventory in the manufacturing warehouse. Given that we have uncer-

tainty in forecasting errors, we formulate our problem using the chance constraint programming approach

because the manufacturer is interested in obtaining the daily supplier emergency safety stock levels in a week

that would eliminate shortages in (1− ε)% of all possible scenarios. A detailed description of our chance

constraint problem is as follows.

Table 3.9: Certain input parameters notation and description

Notation Description

i Day index (i.e., 1=Monday, . . . , 7=Sunday)

N Total number of scenarios

n Scenario index

h per unit holding cost of excess inventory

b per unit back-order cost

Ic Inventory position at the beginning of the week for which we are solving the problem

qi Forecast for day i

ε Significance level
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Table 3.10: Uncertain input parameters notation and description

Notation Description

ξ n
i Realization of error in day i’s forecast for nth scenario

Table 3.11: Decision variables notation and description

Notation Description

xi Supplier safety stock quantity for day i

yn
i Excess or shortage inventory at the end of of day i in the nth scenario

en
i Excess inventory at the end of day i in the nth scenario

sn
i Shortages at the end of day i in the nth scenario

wn
i Binary variable equals one if there is shortage on day i in the nth scenario

zn Binary variable equals one if there is shortage of material on any day in the nth scenario

Chance Constraint Programming Model

Minimize:
7

∑
i=1

N

∑
n=1

h∗ en
i +

7

∑
i=1

N

∑
n=1

b∗ sn
i (3.1)

Subject to:

1. Excess inventory and shortages at the end of each day:

yn
1 = x1 + Ic− (q1 +ξ

n
1 ) . . .∀n

yn
i = xi + yn

i−1− (qi +ξ
n
i ) . . . i > 2 & ∀n

en
i ≥ yn

i . . .∀i,n

sn
i ≥−yn

i . . .∀i,n

(3.2)

2. ‘wn
i = 1’ if the there is shortage observed on day i in scenario n:

yn
i +M ∗wn

i ≥−1+ ε . . .∀i,n

sn
i ≥ wn

i . . .∀i,n
(3.3)
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3. ‘zn=1’ if ‘wn
i = 1’ for any day i in scenario n:

zn ≥ wn
i . . .∀i,n

zn ≤
7

∑
i=1

wn
i . . .∀n

(3.4)

4. At most εN zn variables can be equal to one:

N

∑
i=1

zn ≤ εN (3.5)

5. Integer variables:

yn
i ∈ Z . . .∀i,n

en
i ∈ Z≥0 . . .∀i,n

sn
i ∈ Z≥0 . . .∀i,n

xi ∈ Z≥0 . . .∀i

wn
i ∈ {0, 1} . . .∀i,n

zn ∈ {0, 1} . . .∀n

(3.6)

3.6 Solution methodology and numerical study

We first study the distribution of errors in the daily forecasting model we developed for all twelve

parts for the forecast values obtained on testing data (i.e., for the period of thirteen weeks). Our goodness-of-

fit analysis done using the JMP software package showed that more than half of the parts follow a mixture of

three normal distributions. We randomly selected one high runner and one low runner among these parts to

evaluate the chance constraint optimization model we formulated in Section 3.5.

Since the forecast errors we want to incorporate in our model follow a continuous distribution, we

resort to approximating the problem using a finite number of scenarios. In particular, we solve our chance

constraint formulation via a sampling approach. We refer to the works of Ahmed and Shapiro (2008) and

Luedtke and Ahmed (2008) for the sample approximation approach.

To solve a chance constraint optimization problem using the sample approximation approach, we

need to determine (1.) the number of times we will solve the problem (i.e., number of replications) to obtain
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the candidate feasible solutions and (2.) the number of scenarios we solve in each replication. Solving a

problem with a higher number of replications (M) and scenarios in each replication is desirable. However,

there are limitations on the number of iterations that can be made and the scenarios that can be considered

because the computational time required to solve the problem increases with these quantities. We need to

solve the problem such that the desired solution quality is achieved in a reasonable amount of time. We use

the Posteriori Feasibility Checking method described in Luedtke and Ahmed (2008) to obtain the feasible

solutions. In this method, we solve a sample approximation problem with a smaller sample size (N) and

significance level ‘α’ to obtain a candidate feasible solution (x̂). Another problem is constructed using a

sample of size N′ (considerably larger than N) and a significance level ‘ε’ to evaluate the number of scenarios

in which shortages are observed using the candidate feasible solution. The significance level ‘ε’ (nominal

risk level) is the maximum desired level of risk the decision-maker is willing to take. The significance level

‘α’ is used to construct the sample approximation problem, where α ≤ ε . Lower is the value of α , the higher

is the probability that the optimal solution of the approximation problem is feasible for the nominal risk level

problem with N′ scenarios.

In our experimental study, we solve the sample approximation problem using (1.) 0.02, 0.03, and 0.04

as the significance level α and (2.) 500, 750, and 1000 as the number of scenarios (N) in each replication.

The decision-maker’s desired nominal risk level (ε) is considered 0.04, and a sample of 25,000 scenarios is

used to conduct a posteriori analysis. Further, the number of replication was chosen to be 10.

To obtain the lower bounds for the sample approximation problem with N scenarios, we solve 10

replication of the sample approximation problem with α = ε = 0.04 with N scenarios. Since we solve

our problem by considering 10 replications, a lower bound with 0.999 confidence is obtained by taking the

lowest value amongst all optimal values, a lower bound with 0.989 confidence is obtained by taking the

second-lowest value amongst all the optimal values, and a lower bound with 0.945 confidence is obtained by

taking the third-lowest value amongst all the optimal values (Luedtke and Ahmed, 2008). In our problem, the

optimality gaps are computed using the lower bounds obtained with 0.945 confidence. Tables 3.12 and 3.13

present the average optimality gap values obtained over the period of thirteen weeks for different experimental

setups for high runner and low runner, respectively.
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Table 3.12: Optimality gap for the high runner part with at least 94.5% confidence

Scenarios 500 750 1000

Statistics Mean Standard

deviation

Mean Standard

deviation

Mean Standard

deviation

α = 0.02 9.12% 1.55% 8.00% 1.41% 7.23% 1.39%

α = 0.03 *** *** 7.04% 1.42% 5.72% 1.37%

α = 0.04 *** *** *** *** *** ***

Table 3.13: Optimality gap for the low runner part with at least 94.5% confidence

Scenarios 500 750 1000

Statistics Mean Standard

deviation

Mean Standard

deviation

Mean Standard

deviation

α = 0.02 10.22% 0.80% 8.23% 0.99% 7.87% 1.20%

α = 0.03 *** *** 7.85% 1.20% 6.92% 1.31%

α = 0.04 *** *** *** *** *** ***

From the values presented in Tables 3.12 and 3.13 we observe that the lower optimality gaps can be

obtained by increasing the number of scenarios and the significance level α . However, increasing one or both

of them causes an increase in the computational time required to solve the problem.

Next, we discuss the quality of the candidate feasible solutions and the number of feasible solutions

generated using the sample approximation approach. We obtain M candidate solutions, each corresponding

to daily demand quantities in a given week, by running the sample approximation problem with N scenarios

and the significance level α for M replications. We then solve the nominal problem with N′ scenarios M

times, each time by using the daily demand quantities (in a given week) obtained by solving the sample

approximation problem with N scenarios and the significance level α for M replications. For each solution,

we compute the solution risk value defined as the percentage of infeasible scenarios (i.e., the number of

scenarios in which we observe shortages) observed in the nominal problem. We report the average solution

risk value observed each week for high runner and low runner parts in Figures 3.3 and 3.4, respectively.
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Figure 3.3: Average solution risk observed each week for the high runner part

Figure 3.4: Average solution risk observed each week for the low runner part
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By analyzing the plots in Figures 3.3 and 3.4 for experiments run using different number of scenarios

(N) and significance levels (α), we observe that the average solution risk value observed in the nominal

problem increases as we increase the value of significance level α . Further, we observe that the average

solution risk value observed in the nominal problem increases as we decrease the number of scenarios (N)

solved in each sample approximation problem. A lower solution risk is desirable because it implies a high

likelihood of obtaining a feasible solution to the nominal problem.

In Tables 3.14 and 3.15, we provide the average number of feasible solutions obtained per week

corresponding to different parameter settings in sample approximation problem for high runner and low

runner parts, respectively. Further, in Figures 3.5 and 3.6 we plot the number of feasible solutions obtained

each week for high runner and low runner parts, respectively.

Table 3.14: Average number of feasible solutions obtained each week for the high runner part

Scenarios 500 750 1000

α = 0.02 7.31 8.62 9.77

α = 0.03 1.85 3.54 4.69

α = 0.04 0.15 0.15 0.31

Table 3.15: Average number of feasible solutions obtained each week for the low runner part

Scenarios 500 750 1000

α = 0.02 5.92 8.38 9.15

α = 0.03 1.62 3.00 3.62

α = 0.04 0.08 0.00 0.23

Results reported in Tables 3.14 and 3.15, show that as we decrease the value of significance level α ,

we obtain more feasible solutions to the nominal problem. Further, we also observe that as we increase the

number of scenarios (N), we obtain more feasible solutions to the nominal problem. A similar observation

can also be based on Figures 3.5 and 3.6.
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Figure 3.5: Number of feasible solutions obtained every week for the high runner part

Figure 3.6: Number of feasible solutions obtained every week for the low runner part
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In Tables 3.16 and 3.17, the weekly excess emergency stock quantity at the supplier is presented for

high runner and low runner parts, assuming that the manufacturer uses the solution obtained by solving the

chance constraint optimization model to determine the supplier’s emergency safety stock level for a given

week.

Table 3.16: Weekly excess emergency stock at the supplier for the high runner part

Week 500 scenarios 750 scenarios 750 scenarios 1000 scenarios 1000 scenarios

index & α =0.02 & α =0.02 & α =0.03 & α =0.02 & α =0.03

1 3301 2795 2903 3131 2968

2 5195 5137 4888 5549 5117

3 5350 5193 4933 4857 5393

4 4233 4362 4185 4170 4003

5 5002 4474 4528 4810 4820

6 4763 4152 4035 4391 3989

7 3247 2987 3419 3524 3235

8 5531 5395 5171 5236 5662

9 3202 3088 3300 3404 3226

10 5309 6005 5271 5514 5602

11 3009 3383 2892 3587 3196

12 5049 5201 5478 5233 5352

13 5377 5185 5247 5200 5838
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Table 3.17: Weekly excess emergency stock at the supplier for the low runner part

Week 500 scenarios 750 scenarios 750 scenarios 1000 scenarios 1000 scenarios

index & α =0.02 & α =0.02 & α =0.03 & α =0.02 & α =0.03

1 1053 1007 1016 998 895

2 1064 1138 998 1036 924

3 1151 1022 972 1052 951

4 1054 950 1085 1164 1038

5 1050 1111 973 1031 1019

6 1015 957 997 1043 1003

7 908 934 871 984 893

8 1117 1088 1073 992 1003

9 534 444 461 314 403

10 1037 944 1088 1034 1031

11 513 477 451 517 502

12 895 830 961 869 914

13 1146 1001 995 1087 973

The results reported in Tables 3.12 – 3.15, show that solving a sample approximation problem with

a higher number of scenarios is desirable because we obtain lower optimality gaps and a higher number of

feasible solutions. We also observe that a larger number of feasible solutions are generated with lower values

of α .

By comparing the values of excess emergency inventory at the end of each week obtained by solving

the sample approximation problem with 750 and 1000 scenarios and a significance level of 0.02 (i.e., see

Tables 3.16 and 3.17), we observe that increasing the number of scenarios considered from 750 to 1000 does

not result in a significantly lower amount of excess emergency inventory. Therefore, we propose that the

manufacturer use and solve the sample approximation problem with 750 scenarios and a significance level of

0.02.

Generally, the supplier maintains two weeks of stock at the supply hub, and the manufacturer pays

for the material consumed by it (Barnes et al., 2003). However, in our problem, the industrial partner requires

the suppliers to maintain 25% more stock than the forecasted value, and the manufacturer pays for the material
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it consumes. Therefore, we compare three different approaches to determine the supplier inventory levels,

which are as follows: (1.) Supplier inventory level using chance constraint optimization model, (2.) Supplier

inventory level using two weeks of forecasted demand, and (3.) Supplier inventory level using 1.25 times the

forecasted demand. In Figures 3.7 and 3.8, we plot the excess emergency stock levels at the supplier observed

at the end of each week using different approaches, and the weekly shortage quantities (shortages as a result

of using the order quantities obtained from the daily forecasting models) observed by the manufacturer. The

values for excess emergency stock levels at the supplier plotted in Figures 3.7 and 3.8 were computed as

follows:

• Excess supplier emergency stock using chance constraint model = Weekly chance constraint demand -

forecasted demand - emergency orders

• Excess supplier emergency stock using 2 weeks of forecasted = 2*Weekly forecasted demand - fore-

casted demand - emergency orders

• Excess supplier emergency stock using 25% of forecasted = 1.25*Weekly forecasted demand - fore-

casted demand - emergency orders

Figure 3.7: Weekly excess emergency stock at the supplier and shortages at manufacturer for the high runner
part
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Figure 3.8: Weekly excess emergency stock at the supplier and shortages at manufacturer for the low runner
part

In Figures 3.7 and 3.8, the manufacturer shortage values reported are the shortages faced as a re-

sult of using only the inventory of materials procured using the forecasted daily demands. These shortages

are mitigated by placing emergency air-freight orders which are fulfilled using the emergency stock levels

maintained at the suppliers. The excess supplier inventory reported in these figures is the amount of stock re-

maining at the supplier after fulfilling any emergency orders. Higher excess emergency stock levels at the end

of each week are observed by maintaining the stock levels using two weeks of forecasted demand approach.

In contrast, shortages are observed at the suppliers for multiple weeks if the stock levels are maintained using

the currently practiced approach by the industrial partner. The solution obtained using the proposed chance

constraint optimization model results in maintaining a sufficient amount of safety stock with suppliers for all

weeks such that neither excessive overstocks (as in the case of two weeks of forecasted demand approach) nor

shortages (as in the case of currently practiced approach by the industrial partner) are observed with suppliers.

In Figures 3.9 and 3.10, we present the plots for excess inventory in the manufacturer’s warehouse

at the end of each day for seventy seven consecutive production days. In the case of weekly consolidation, we

assume that the entire week’s order for a part is consolidated into a single sea-container, and this container is

unloaded at the beginning of the consumption week to avoid detention penalty costs. Similarly, in the case

of daily consolidation, we assume that the single day’s demand for a part is consolidated into a sea-container.

This container can be unloaded on any day corresponding to the week for which it was built and all the con-
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tainers belonging to a given week need to be unloaded by the end of the week. The manufacturer uses such a

consolidation process only for parts with weekly demands that can be packed into a single container. How-

ever, especially in the case of daily consolidation, the manufacturer would consolidate daily order quantities

of multiple parts in the same container to efficiently use container space and reduce transportation costs. This

means, in reality, the estimated daily order quantities may not be always used as is for all parts and, in order

to obtain an accurate estimate of the daily warehouse utilization, a packing problem under forecast uncer-

tainty needs to be formulated and solved. However, the values presented in Figures 3.9 and 3.10, provide an

estimate on optimistic warehouse utilization reduction.

Figure 3.9: Comparing excess inventory of the high runner part at the end of each day

Figure 3.10: Comparing excess inventory of the low runner part at the end of each day

In Figures 3.9 and 3.10, we observe that in the case of high runner part, a higher reduction in daily
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excess leftover inventory can be achieved using daily consolidation compared to the low runner part. For

the high runner part, over a period of seventy-seven consecutive production days, an average reduction of

86.91% is achieved by consolidating the orders using daily forecasted demand instead of weekly. Similarly,

in the case of low runner part, an average reduction of 42.04% is achieved. These reductions are optimistic

estimates for the actual reductions due to the reasons we discussed in previous paragraphs.

3.7 Conclusions

In this chapter, we built time-series models using various univariate methods, such as Simple Moving

Averages, Simple Exponential Smoothing, Holt-Winter’s (i.e., Triple Exponential Smoothing), SARIMA, and

Prophet. Further, we did a comparative analysis for all these methods using their respective MAPE scores

observed on the testing dataset for different parts. Based on the results, we concluded that using a single

of these methods is not advisable for generating forecasts for all parts. In order to build a single model

that would perform well for all parts, we built an ensemble-based forecasting model combining the forecast

values from different forecasting methods to yield the final forecast values. Six different ensemble-based

models were developed and thoroughly analyzed using the MAPE scores as a performance metric. We also

studied the effects of training data size and the metric (i.e., MAPE and RMSE) used for calculating the

weights (for the weighted average ensemble model) on the forecast quality. Our results, showed that we

could obtain a good quality of forecasted values by training the models using 89 weeks of historical data. We

also observed that for the models trained using 89 weeks of historical data, both MAPE and RMSE metrics

perform equally well for computing the weights for the weighted average ensemble model. Further, using 89

weeks of data instead of the entire dataset reduces the computational time required to train the forecasting

models. Therefore, we used the 89 weeks of historical data to train our time-series models for different parts.

In the case of the weighted average ensemble model, we computed the weights using MAPE values obtained

on the training dataset. Based on a numerical study, we concluded that the weighted average ensemble model

using the SARIMA and Prophet models performs reasonably well for all parts. We also observed that, in

general, the MAPE scores obtained for this daily forecasting model are as good as the industrial partners’

weekly forecasting model. An optimistic estimation of the excess inventory suggests a significant reduction

in the warehouse utilizations if the container are consolidated using the daily demand instead of the weekly

demand values.

We studied the distribution of forecasting errors for all parts and selected two parts, one high runner
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and one low runner, for further study. We built a chance-constraint optimization model using the uncertain

forecasting errors to help the decision-maker calculate the daily safety stock levels at the supplier for any

emergency orders. We solved the chance-constraint optimization model using the sample approximation ap-

proach. We also did an exhaustive analysis to select the number of scenarios and significance level for the

sample approximation problem. The results suggest that by using the lower significance level, a higher num-

ber of feasible solutions can be generated with respect to the nominal problem. However, we also observed

that the optimality gap increases by reducing the significance level of the sample approximation problem. We

conclude that the decision-maker should solve the sample approximation problem by considering the number

of scenarios and the significance level that provides the best trade-off between the number of feasible solu-

tions and the optimality gap obtained. The results obtained from the study indicate that the stock-outs are

prevented if the supplier safety stock level is maintained based on the chance-constraint solution.

3.8 Potential future research

In this study, the consolidation quantities are calculated using the daily forecasted values. However,

based on forecasting results presented in Tables 3.8, we observe that sometimes the weekly forecasts perform

better at predicting the weekly volumes. Hierarchical reconciliation-based forecasting can be built, and the

forecasted values at the daily and weekly levels can be reconciled by calculating the historical error variance

of the forecasted values. An optimal method to reconcile a hierarchical time series using the error variance

is given in Wickramasuriya et al. (2019) and can be used for reconciliation such that the overall forecast

accuracy is improved.

In Section 3.3, we assume that the order quantities placed by the manufacturer can be adjusted at

the time of consolidation. However, if a manufacturer cannot readjust the order quantities with the supplier

once they are placed, then either of the following two approaches can be used: (1.) The proposed hierarchical

model by Wickramasuriya et al. (2019) can be used by setting the error variance equal to zero for the weekly

forecast used to place the orders, and the daily volumes can be readjusted using their respective error variance,

or (2.) The ratio for each day’s daily demand can be calculated by dividing the daily demand by the sum of the

daily demands in a given week. Consequently, the readjusted daily demand can be obtained by multiplying

the weekly forecasted demands with the respective daily demand ratios. These two methods can be compared

and studied in future research.

In this study, we only focused on computing the daily demand volumes for consolidation and did
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not solve any vehicle routing or consolidation problems to move the material from inbound trailers into the

outbound trailers/sea-containers. To the best of our knowledge, there are no studies that considered the end

warehouse utilization while solving the vehicle routing or consolidation problems. The existing studies ac-

count for the inventory holding cost and backorder cost for minimizing the supply chain costs. However,

these costs are not necessarily proportional to the volume of space the parts occupy in the warehouse. Ac-

counting for the warehouse utilization in terms of bin or volumetric occupancy can potentially improve the

overall warehouse performance and reduce the warehouse space requirement due to the reduction in ware-

house utilization. Future research can also consider this new perspective of accounting for the end warehouse

utilization while solving the vehicle routing and consolidation problems.

71



Chapter 4

Optimal Containers Selection with

Potentially Conflicting Objectives

4.1 Introduction

In this chapter, we investigate warehouse replenishment strategies that balance two potentially con-

flicting objectives. Managing inventory replenishment to a warehouse is challenging when production plans

are subject to frequent changes. The warehouse we consider contains multi-product inventory, where the

materials are continuously consumed based on the line-side demand. The sea-containers and trailers carrying

materials arrive at the yard (loaded sea-containers and trailers holding facility at manufacturing plant) over

time, and detention penalties are incurred on a daily basis for holding them. The warehouse inventory is

replenished using the available trailers and sea-containers from the yard. The trailers and sea-containers need

to be entirely unloaded when called upon for unloading.

Figure 4.1 depicts the information flow and the decision-making process. The blue lines depict the

information flow into the Enterprise Resource Planning (ERP) system through Electronic Data Integration

(EDI). The data on the predicted incoming trailers and sea-cans (jointly termed as containers) is available for

the next two production days, along with the information for materials held in each of them, as shown in the

figure. The data for the containers currently available for unloading and the information for material held

in each of them is also available. The delivery date for each container to the manufacturing plant is known,

using which we calculate their detention days. The current warehouse stock for different materials is known,
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along with their daily deterministic demands for today and the next two days is also available. The cloud

in Figure 4.1 represents the decision-making done by the ERP system to select the containers for warehouse

stock replenishment.

Figure 4.1: Warehouse and yard operations for warehouse stock replenishment

We study the problem of optimally selecting the sea-containers and trailers to unload, to reduce

the number of remnant materials in the warehouse, and to minimize the detention penalties. We formulate

this problem using a multi-objective integer program and solve it using goal programming and ε-constraint

methods. The model is solved over a rolling horizon of three days. Solving a rolling horizon model allows

us to predict the future unloads and feasibility of the problem over a longer horizon.

The next section provides a literature review on this problem. We then describe the problem formula-

tion using a multi-objective integer programming model in Section 4.3. In Section 4.4 we discuss the solution

strategies. The experimental setup for the preliminary analysis is described in Section 4.5, whereas the data

requirement and results for preliminary analysis are provided in Section 4.6 and Section 4.7 respectively. The

observations for the models obtained via results of the preliminary analysis are discussed in Section 4.8. In

Section 4.9 we discuss the solution methodology selected for implementation in the production system of the

industry we collaborated with, the long-term performance of the selected method is also discussed in this

section. We also provide a detailed discussion about observations and conclusions for the solution of experi-

mental models. Finally, the impact value and significance of the problem solved in this chapter are provided

in Section 4.10.
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4.2 Literature review

We focus on a joint yard and warehouse optimization problem. Most of the literature in this area is

focused on: (i.) the dock door assignment problems for a cross-dock facility, (ii.) product-allocation inside

the warehouse, (iii.) resource-allocation in the warehouse, and (iv.) ordering policies. Here we focus on the

studies from the first three veins of literature as we are interested in optimizing the supply chain operations

after orders are placed.

The problem for assigning containers/trailers to docks is studied widely in the receiving and ship-

ping area for optimizing the cross-dock operations (Gu et al., 2007). Various objectives are considered for

this problem, such as minimizing total operational cost, minimizing total waiting time, and minimizing con-

gestion subject to a set of operational constraints. The warehouse storage problems are also discussed in

the literature. However, all the studies discussed in this paper for warehouse storage problems mainly focus

on lot sizing, ordering frequency, and/or storage allocation decisions. None of the studies mentioned here

in this review considers containers/trailers selection problems to optimize warehouse utilization and con-

tainers/trailers tardiness simultaneously. Tsui and Chang (1992) study a problem of dock-door assignment

problem, in which the objective is to assign the receiving doors to origin doors so as to reduce the total

distance traveled by forklift. Another truck-door assignment problem for inbound and outbound trailers in

a cross-dock facility was studied by Miao et al. (2009). Their objective is to minimize the operational and

penalty cost for unfulfilled shipments. In this problem, the penalty cost is incurred if any of the trucks is

missed in the dock assignment solution. A system of multiple cross-docks is studied by Chen et al. (2006).

The goal of this study is to minimize the transportation and inventory handling costs by optimally assigning

the inbound and outbound trailers to the set of available cross-dock facilities.

Another set of problems comprises of optimal product allocation inside the warehouse or cross-dock

facility. Poulos et al. (2001), study the warehouse replenishment process. They formulate a multi-objective

optimization model to optimally assign the storage locations to the set of various products to address the

problem. The problem of optimally assigning the products to a storage aisle to reduce the average order

picking time in the warehouse was studied by Kutzelnigg (2011). A cross-dock facility wherein a product

can be transported from a shipping area to a receiving area using one of the various kinds of flow processes

was studied by Heragu et al. (2005). The problem is to assign flow processes to all the products such that

the total handling and storage cost in the facility is minimized. The problems of optimizing the pick-up and

delivery process from warehouse to line-side and resource allocation is studied by Poon et al. (2011).
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A hierarchical optimization model was formulated by Berghman and Leus (2015) to optimally

schedule the timing of the tasks involved in the dock operations of the distribution warehouse. The pri-

mary objective of their problem is to minimize the weighted sum of the number of late outbound trailers and

their tardiness. The secondary objective is to minimize the weighted completion time of all trailers. Optimiz-

ing the primary objective is more critical than the secondary objective; therefore, they develop a hierarchical

optimization model. In contrast, the optimization of both objective functions is equally important in our

problem.

Muriel and Ruiz-Benitez (2006) studied an Integer Programming problem for yard and warehouse

management. Their problem is to minimize the overall cost in the warehouse by assigning each inbound

trailer to an outbound trailer for the time-period ‘t’ and deciding on the product storage policy in the inbound

trailers. The authors propose that the analysis can be restricted to three possible policies called full-truckload,

ready-to-go, and partial truck-load to search for an optimal solution. In this problem, all the inbound trailers

are considered to have a single product inside them, and the outbound trailers to customers have a mixture

of products in them. They assume that the on-hand inventory of the product is always more than the demand

for all the products for all time-periods, which in the general case is not always true. They also assume that

the decision-maker is more concerned about the total worth of inventory held in the warehouse and the yard,

and the handling costs. In our study, the decision-maker is more interested in minimizing the volumetric

warehouse occupancy and the detention-penalties incurred by storing the trailers and sea-cans in the yard.

Furthermore, our problem is subjected to a different set of operational constraints.

To the best of our knowledge, none of the studies done so far address the problem of simultaneously

minimizing the volumetric warehouse utilization and detention penalties of the trailers and sea-cans stored in

the yard along with the operational constraints of the system.

4.3 Optimization model development

We develop a model that minimizes the amount of remnant parts in the warehouse and the detention

penalties incurred for holding containers for a long time. These two objectives are represented by equations

(4.1) and (4.2) given under General Multi-Objective Mixed Integer Program in this section. To minimize the

detention penalties incurred on the containers that remain in the yard each day, we maximize the detention

penalties associated with the containers selected for unloading in one of the objective functions. Thus, the

model first tries to unload the older containers (i.e., the ones with higher penalties). Further, we are also
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interested in predictions on the set of containers to be unloaded in the next two production days. Thus, we

solve the model over a three-day period on each day using a rolling horizon. The new containers and trailers

loaded with materials arrive daily at the plant. Therefore, we use the Advanced Shipment Notification (ASN)

data to identify the trailers and containers expected to be delivered within the next two days.

A chosen container needs to be unloaded either on the current day or is predicted to be unloaded

on one of the next two days. The binary decision variables determine the set of containers to be unloaded

on each day. The selected containers should also meet specific requirements on daily demand fulfillment,

warehouse utilization, and containers and trailers unload capacity. These constraints are discussed below.

Ideally, the daily stock requirements should be met for all parts. However, the plant often has a

higher stock requirement than the cumulative available stock on all the containers of a given part. If this

is the case, the demand needs to be partially met as much as possible by unloading all the containers that

contain such parts. The constraints given in equation (4.3) ensure that the daily stock requirements for all the

parts are met either entirely or partially (if enough cumulative stock is not available on all containers). The

constraints given in equation (4.6) ensure that the daily warehouse utilization is maintained below a particular

percentage value on all production days. Maintaining the daily warehouse utilization below specified limits is

essential to ensure smooth warehouse operations. Further, there is also a capacity constraint on the maximum

number of containers that can be unloaded daily due to the limited workforce availability and warehouse

space. The constraint given in equation (4.7) ensures that the number of containers and trailers unloaded on a

particular day is not more than the permissible number. The constraint given in equation (4.8) ensures that the

containers expected to be delivered later in the three-day horizon are not chosen by the model to be unloaded

before their delivery.

We formulated this problem using a bi-objective optimization model with two potentially conflicting

objectives. The first objective is to minimize the number of remnant parts in the warehouse. The second

objective is to maximize the detention penalties associated with the selected sea-containers and trailers. These

objectives may conflict because the second objective may lead to excluding containers with a favorable load-

mix due to lower detention days. Thus, resulting in unloading more containers to meet the stock requirement

and flooding the warehouse with excessive remnant parts.

76



Table 4.1: Notations used in multi-objective optimization model

Sets

A Set of all the parts

I Set of required parts (I ⊆ A)

N Set of all the available sea-containers and trailers

N j Set of all the sea-containers and trailers available on day j (N0 ⊆ N1 ⊆ N2)

NS Set of all the available sea-containers (NS ⊆ N)

NT Set of all the available trailers (NT ⊆ N)

a Element of set A

n Element of set N

Parameters

j 0, 1 or 2 (0: today, 1: tomorrow, 2: day after tomorrow)

dn, j Number of days the container n spent in the storage until day j

ra, j Quantity of part a required to satisfy demand on jth day

• ra, j > 0 . . . if a ∈ I

• ra, j = 0 . . . if a /∈ I

Sa,n Quantity of part a in container n

Va Volume of part a

w0
a Quantity of part a in the warehouse at j = 0(today)

C Holding cost of a container per day

T Total available space in warehouse

µ Threshold percentage value for maximum warehouse utilization

αS Maximum number of sea-containers that can be unloaded on a given day

αT Maximum number of trailers that can be unloaded on a given day

Decision variables

xn, j Binary decision variable which takes value 1

when the container n is selected for unloading on day j

wa, j Quantity of part a in the warehouse on day j > 0
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General Multi-Objective Mixed Integer Program

minimize f1(xn, j) = ∑
a∈A

[[
2

∑
j=0

[∑
n∈N

(xn, j ∗Sa,n)− ra, j]]+w0
a] (4.1)

maximize f2(xn, j) =
2

∑
j=0

∑
n∈N

C ∗dn, j ∗ xn, j (4.2)

Subject to:

1. Satisfying the daily demand for part a on jth day:

∑
n∈N

xn,0 ∗Sa,n ≥ min{ra,0−w0
a, ∑

n∈N
Sa,n}

∑
n∈N

xn, j ∗Sa,n ≥ min{ra, j−wa, j, ∑
n∈N

Sa,n}

 . . . (∀ a) (4.3)

2. Amount of stock for part a in warehouse on j = 1:

wa,1 = ∑
n∈N

xn,0 ∗Sa,n− ra,0 +w0
a . . . (∀ a) (4.4)

3. Amount of stock for part a in warehouse on j = 2:

wa,2 = ∑
n∈N

xn,1 ∗Sa,n− ra,1 +wa,1 . . . (∀ a) (4.5)

4. Maintaining the warehouse utilization below permissible limit:

∑a∈A Va[∑n∈N(xn,0 ∗Sa,n)+w0
a− ra,0]

T
≤ µ

∑a∈A Va[∑n∈N(xn, j ∗Sa,n)+wa, j− ra, j]

T
≤ µ

 . . . ( j > 0) (4.6)

5. Maximum sea-can and trailer unload capacity:

∑
n∈NS

xn, j ≤ αS

∑
n∈NT

xn, j ≤ αT

 . . . (∀ j) (4.7)
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6. Containers unavailable for unloading on day j:

xn,0 = 0 . . . (∀ n /∈ N0)

xn,1 = 0 . . . (∀ n /∈ N1)

 (4.8)

7. Variable value restrictions:

xn, j ∈ {0, 1} . . . (∀ n, j)

wa, j ∈ Z≥0 . . . (∀ a and j > 0)

 (4.9)

4.4 Solution strategies

There are multiple ways to solve multi-objective optimization problems: the weighted-sum method,

lexicographic method, ε-constraint method, goal programming method and metaheuristic approaches. In our

problem, we cannot quantify the weights of each objective dependably. Hence we cannot use the weighted-

sum method. In the lexicographic method, the decision-maker needs to provide the ranking of the objectives.

The optimization is done individually on each objective using these rankings. After optimizing over the

highest ranked (most important) objective, if only one unique solution is obtained, then the optimization

stops. Whereas, if multiple solutions are obtained, then we continue with the optimization using the second-

highest ranked objective and a constraint on the solution obtained from the previous objective. Our industry

partner views the optimization of the two objectives as equally important, thus the lexicographic method

is not suitable for a practical implementation. In the ε-constraint method, we optimize by considering one

objective function and converting another objective function into a constraint. The optimization model is then

solved for different right-hand-side (RHS) values of the objective converted into constraint, thus generating

multiple Pareto optimal solutions. When using the goal programming method, the decision-maker needs

to provide the aspired target values for each objective function. The goal programming method minimizes

the sum of squared errors between the obtained objective values and decision-maker defined target values.

Metaheuristic algorithms have been used to generate a near-optimal solution for complex and difficult-to-

solve problems. Ant colony optimization, simulated annealing, and genetic algorithms are a few examples

of metaheuristic algorithms. Ant colony optimization and simulated annealing algorithm have been used to

solve scheduling, vehicle routing, and traveling salesman problems. NSGA-II, a genetic algorithm, has been

used to solve multi-objective optimization problems. In this study, we used goal programming (G.P.), the

ε-constraint (ε-con) and NSGA-II method as our solution strategies.
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To reformulate the bi-objective optimization problem using the ε-constraint method, we select the

minimization of remnant parts as the objective function and modify the other objective function (i.e., maxi-

mization of detention costs for selected containers) into a constraint. This constraint is formulated to impose

targeted minimum average detention days for the selected containers, mathematically represented by equa-

tion (4.11). The problem is then solved for different values of minimum average detention days that need to

be achieved, represented by ‘ε’ in equation (4.11). While using this method, one should determine the lower

and upper bound on ‘ε’ values to be considered. In our case, the lower bound is always zero as the number of

detention days cannot be negative. The upper bound is determined by the container with the highest detention

days and can be looked up in the available container data. The mathematical model for this solution strategy

is presented under ε-constraint model in this section.

ε-constraint model

minimize f1(xn, j) = ∑
a∈A

[[
2

∑
j=0

[∑
n∈N

(xn, j ∗Sa,n)− ra, j]]+w0
a] (4.10)

Subject to: (4.3) - (4.9)

∑
∀n

∑
∀ j

xn, j ∗dn, j ≤∑
∀n

∑
∀ j

xn, j ∗ ε (4.11)

The goal programming method minimizes the sum of squared errors between the obtained objective

values and utopia point values and produces a solution closest to the target objective function values. In our

model, the minimum number of remnant parts that can be achieved is zero (target value for the first objective

function). We calculate the target value for the second objective function using the available detention days

data. We select the first ‘N’ containers and sum their current detention days in the yard. The number ‘N’ is

obtained by summing the daily unloading capacity for the three days in the rolling horizon. The mathematical

model for this solution strategy is presented under Goal programming model in this section.

Goal programming model

minimize (∑
a∈A

[[
2

∑
j=0

[∑
n∈N

(xn, j ∗Sa,n)− ra, j]]+w0
a]−0)2 +(

2

∑
j=0

∑
n∈N

C ∗dn, j ∗ xn, j−δ )2 (4.12)

Subject to: (4.3) - (4.9)

Multi-objective optimization problems can also be solved using evolutionary algorithms. To solve

the multi-objective optimization problem discussed in this chapter, we use the NSGA-II method developed
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by Deb et al. (2002). Figure 4.2 shows the flowchart for the NSGA-II algorithm. A description of the steps

involved in implementing the NSGA-II is given below.

Figure 4.2: NSGA-II flow-chart

NSGA-II

Step 0 - Initialization: Create a random initial population (P0) of size N. This population can contain both

feasible and infeasible solutions.

Step 1 - Assigning a fitness (or rank): Find the non-dominated fronts (F1, F2, . . . ,Fn) using the population.

An example of the non-dominated fronts is shown in Figure 4.3. The figure represents the non-dominated

fronts for a problem with two minimization objectives g1(x) and g2(x). Therefore, in Figure 4.3 the solutions

belonging to front F1 are most preferable and the solutions belonging to front F3 are least preferable. The

non-dominated sorting approach described in Deb et al. (2002) is used to find these non-dominated fronts.

Figure 4.3: Non-dominated fronts
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Step 2 to 4 describe the creation of the offspring population at tth generation (Qt ). These steps are repeated

until the required offspring population size N is generated.

Step 2 - Selection: The two solutions are selected from the solution pool Pt (parent population at generation

t). There are three possible cases: (i) both solutions are feasible, (ii) one is feasible and the other is infeasible,

and (iii) both are infeasible. In case (ii), the feasible solution is selected, and in (iii), the solution with a

smaller constraint violation is selected. In case (i), where both solutions are feasible, we can have two cases:

(a) both solutions are non-dominated with respect to one another (i.e., both belong to the same Fi) and (b)

one dominates the other with respect to one another. In case (b), we select the non-dominated solution, and

in case (a), we select the solution using the crowded-comparison operator described in Deb et al. (2002).

Step 3 - Crossover: Two individual solutions are selected using the selection operator, and the crossover sites

for each of them are randomly selected. The offspring (a new solution) is created using the genes at the

crossover sites.

Step 4 - Mutation: Random genes are inserted into the offspring (a solution obtained in the crossover step)

with probability α .

Step 5 - Combining parent (Pt ) and offspring (Qt ) population: The offspring solution set (Qt ) generated by

repeatedly performing Step 2 to 4 for N times, is combined with the parent solution set (Pt ), the resultant set

is Rt which has 2N solutions.

Step 6 - Assigning a fitness (or rank): Fitness is assigned to the solutions in set Rt , in the same way as ex-

plained in Step 1.

Step 7 - Select N best individuals: The N best solutions are chosen. If the size of F1 is less than N, then all

the solutions belonging to F1 are chosen. This is subsequently done for all the fronts until the population

of size N is achieved. It may happen that not all solutions from Fi can be accommodated into the new

population of size N; then, in that case, solutions that need to be included in the population are selected using

the crowding distance sorting.

Step 2 to 7 are repeated until the stopping criterion is achieved. The final solution set is then returned.

4.5 Experimental setup

We collaborated with BMW Manufacturing Company (BMW MC) located in Spartanburg, South

Carolina for this study. When we started this project at BMW MC, they faced higher detention days for

the sea-cans than for the trailers. Therefore, our modeling focus was initially only on sea-cans. However,

82



the inclusion of the warehouse utilization constraint means that an accurate model must incorporate trailers

as well since the warehouse is filled with parts received from both sea-cans and trailers. To showcase the

impact of including trailers in the model, we decided to run our model twice for each solution strategy, once

considering only sea-cans data and once considering both sea-cans and trailers (this latter model is referred

to as the joint model). Furthermore, we investigate the benefits of including the maximum number of trailers

and sea-cans unload capacity constraint. The experiment was run once considering the maximum number of

trailers and sea-cans unloading capacity constraint (referred to as ‘Capacitated model’) and once by relaxing

this constraint (referred to as ‘Uncapacitated model’).

The NSGA-II method tries to generate the Pareto optimal solutions as shown in the Figure 4.4 to 4.6.

These Pareto fronts were generated for the problem considering a small dataset consisting of eight different

parts and thirteen containers (i.e., sea-containers and trailers). We can observe from these three figures that

the population size and the number of generations play a vital role in generating the Pareto front. Having a

higher population size and the number of generations is desirable. However, it increases the computational

time required to generate the final solutions.

Figure 4.4: Population size = 30 and max number of gen-
eration = 30

Figure 4.5: Population size = 60 and max number of gen-
eration = 30

Figure 4.6: Population size = 50 and max number of gen-
eration = 250

The optimality of the solutions generated using the NSGA-II cannot be guaranteed as the NSGA-II
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is a metaheuristic approach. In contrast, the solutions obtained using the ε-constraint method are all Pareto

optimal solutions. Therefore, we compared both the methods based on the computational time requirement

and the quality of the solutions generated. We ran both methods using a test data set for the comparative

study with a one-hour time limit. The test dataset consisted of more than four thousand different parts and

more than five hundred containers. The solutions obtained using the ε-constraint method are shown in Figure

4.7. The ε-constraint method took approximately thirty-one minutes to generate these solutions. We ran the

NSGA-II method for the initial population of size thirty and iterated it for thirty generations. However, using

the NSGA-II method, we could not complete a single iteration (generation) within one hour. Consequently,

we decided not to use the NSGA-II method because of the high run-time and the fact that the solutions

generated are not guaranteed to be Pareto optimal.

Figure 4.7: Pareto front generated using the ε-constraint method

In general, using the ε-constraint method requires further experimentation than the goal program-

ming method because it involves solving the model with multiple values of ε to generate a Pareto front. A

decision-maker then selects one Pareto optimal solution for implementation from the set of the generated

Pareto optimal solutions. While running the model with the ε-constraint method, we decided to run it using,

(i) minimum feasible ε value and (ii) maximum feasible ε value. The complete list of experiments we ran is

presented in Table 4.2
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Table 4.2: Experimental models descriptions

ε-constraint method Goal programming method

Capacitated

Minimum feasible ε value

• Sea-cans only

• Joint

Maximum feasible ε value

• Sea-cans only

• Joint

• Sea-cans only

• Joint

Uncapacitated

Minimum feasible ε value

• Sea-cans only

• Joint

Maximum feasible ε value

• Sea-can only

• Joint

• Sea-cans only

• Joint

For preliminary analysis, all models were solved for five successive days. The primary purpose of

the preliminary analysis was to decide on the most appropriate model for final implementation in BMW MC.

We analyzed each model on the following performance measures: (a) The number of sea-cans and trailers

needed to be unloaded and predicted to be unloaded, and (b) the set of sea-cans and trailers needed to be

unloaded and predicted to be unloaded. Furthermore, using the obtained results, the prediction accuracy of

each model is computed. The output of all models is described in the Results section.

4.6 Data requirements

Before discussing the results of our experimental study, we provide details on the data required to

run these models.

• We used the demand data for each part required to support the production process. Using this data, we

determine the minimum stock requirements of a given part in the warehouse.

• We used the data on the quantity of each part available on individual containers/sea-cans available in
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the yard for unloading. This data-set includes the containers to be delivered on the first day as well as

the containers expected to be delivered on the second and third day of the three-day rolling horizon.

• The packaging data for all the parts stored in the warehouse is also used. This data-set helps determine

the load unit quantity that would be unloaded from the container and the space occupied inside the

warehouse by the unloaded material from the container.

• The detention days data for each container.

These data sets were readily available via the BMW MC’s Enterprise Resource Planning (ERP)

system.

4.7 Results

The results for all twelve models are presented below in Table 4.3 and Figures 4.8 - 4.19 for five

consecutive production days. Table 4.3 provides the prediction accuracy values for different models. To

compute the prediction accuracy, we run the model on Day i and obtain the list of containers predicted to

be unloaded on next two days (i.e. Day (i+ 1) and Day (i+ 2)). Next, we run the model on Day (i+ 1)

and obtain the list of containers to be unloaded on Day (i+ 1) and containers predicted to be unloaded on

Day (i+2). We then compute the total number of predictions made on Day i, D, and the number of accurate

predictions made, d, using the two list obtained by solving the model on Day i and Day (i+1). The prediction

accuracy is then given by d/D.
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Table 4.3: Overall and one day ahead prediction accuracy of all models

Model Overall One day ahead

Uncap. ε-con (max. ε value) (sea-cans) 44.94% 81.67%

Cap. ε-con (max. ε value) (sea-cans) 45.29% 69.23%

Uncap. ε-con method (max. ε value) (joint) 41.89% 69.04%

Cap. ε-con method (max. ε value) (joint) 51.66% 56.95%

Uncap. ε-con method (min. ε value) (sea-cans) 73.91% 76.74%

Cap. ε-con method (min. ε value) (sea-cans) 72.46% 75.00%

Uncap. ε-con method (min. ε value) (joint) 81.07% 79.10%

Cap. ε-con method (min. ε value) (joint) 90.66% 88.01%

Uncap. Goal Programming (sea-cans) 68.38% 80.33%

Cap. Goal Programming (sea-cans) 68.38% 80.33%

Uncap. Goal Programming (joint) 72.85% 78.74%

Cap. Goal Programming (joint) 74.97% 79.58%

Figures 4.8 - 4.19, provides the visualization on number of actual and predicted unloading containers

for each of the experimental models for the initial study. Each plot shows the number of sea-cans or sea-cans

and trailers unloaded on a given day, along with its prediction a day before as well as two days before except

for Day 1, Day 2, Day 6, and Day 7. Since the models were run only for five consecutive days, for Day 1,

the plot shows only the number of containers actually unloaded, whereas, for Day 7, we only have unload

prediction two days before. Similarly, for Day 2, we have unload prediction one day before and actual unload;

for Day 6, we have unload prediction one day before and unload prediction two days before. In each figure,

we have up to three bars associated with each day and container type (i.e. sea-cans or trailers). Light gray

bar depicts the number of containers (sea-cans or trailers) actually unloaded on Day i obtained by solving

the model on Day i, medium gray bar depicts the number of containers predicted to be unloaded on Day (i)

obtained by solving the model on Day (i− 1), and dark gray for the number of containers predicted to be

unloaded on Day (i) obtained by solving the model on Day (i−2). Thus, plots where the height of all three

bars are close to each other, indicate a higher prediction accuracy.
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Figure 4.8: Uncapacitated ε-constraint method for sea-cans using
maximum ε value

Figure 4.9: Capacitated ε-constraint method for sea-cans using maxi-
mum ε value

Figure 4.10: Uncapacitated ε-constraint method for sea-cans and trail-
ers using maximum ε value

Figure 4.11: Capacitated ε-constraint method for sea-cans and trailers
using maximum ε value

Figure 4.12: Uncapacitated ε-constraint method for sea-cans using
minimum ε value

Figure 4.13: Capacitated ε-constraint method for sea-cans using min-
imum ε value

Figure 4.14: Uncapacitated ε-constraint method for sea-cans and trail-
ers using minimum ε value

Figure 4.15: Capacitated ε-constraint method for sea-cans and trailers
using minimum ε value
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Figure 4.16: Uncapacitated Goal Programming for sea-cans Figure 4.17: Capacitated Goal Programming for sea-cans

Figure 4.18: Uncapacitated Goal Programming for sea-cans and trail-
ers Figure 4.19: Capacitated Goal Programming for sea-cans and trailers

From the above results, we can observe that the performance for the goal-programming models is

in between the ε-constraint models that use the maximum and minimum ε values. The goal programming

model provides a single optimal solution compared to the multiple Pareto optimal solutions generated by the

ε-constraint method. In addition, using the minimum ε value puts more weight on minimizing the remnant

parts objective, whereas using the maximum ε value puts more weight on the maximization of the detention

objective. Choosing a single ε value for the implementation that would provide a fair trade-off between

both objectives requires additional complicated analysis. The decision-maker is not interested in obtaining

multiple Pareto optimal solutions generated using the ε-constraint method and choosing one on a daily basis.

Additionally, satisfying the capacity constraint is important for the decision-maker at BMW MC, because it

helps them operate successfully using the available workforce and other warehouse resources such as forklifts.

Based on these observations and discussions, we decided to do the pilot study using the capacitated goal

programming method for sea-containers and trailers.

4.8 Pilot study

After selecting a model, we had to validate its performance over a longer period and fix any issues

that might cause a problem after implementing it into the production system. For this, we did a pilot study
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for a period of 21 consecutive production days using the selected goal programming model. During the

selected period for the pilot study, the production was ramping up to the normal capacity after returning

to normalcy from COVID-19 related disruptions. Therefore, we got an opportunity to review the proposed

model’s performance during adversities. Figure 4.20 represents the decision tree used to decide on the unload

capacity constraint to be incorporated while solving the optimization model. In the Figure 4.20, T1 and

S1 denote the decision maker’s ideal unloading capacity for trailers and sea-cans, respectively. In case the

optimization model is infeasible when considering T1 and S1 as unloading capacity values, then the decision

maker’s second preferred unloading capacity values T2 and S2 are used. If the model remains infeasible when

T2 and S2 are used as unloading capacity, then the optimization model is solved by relaxing the unloading

capacity constraint.

Figure 4.20: Decision flow of selected model

The output values for number of trailers and sea-cans unloaded on each day is shown in the Figure

4.21 to Figure 4.24. The model remains feasible for every instance because we systematically relax the

constraints that make it infeasible, as given in Figure 4.20. From the 20 instances for which the model was
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run, we observed, (i) for the three instances, the model with T2 and S2 capacity was run, and (ii) only once

the model with relaxed unload capacity constraint was run.

In the pilot study, the proposed goal programming model has an overall prediction accuracy of

74.62%. Moreover, the accuracy of one-day ahead predictions is comparable at 73.87%. The overall predic-

tion accuracy for the sea-cans is 57.11%, and for the trailers, it is 77.71%.

We also investigated the daily total load units (LU) unloaded and the daily detention days achieved

over the validation study period. The plot for this is provided in Figure 4.25. In this plot, we can observe that

the daily total load units (LU) unloaded are stable overall except for Day 14 to Day 17 because the plant was

returning to normal operations after a three day holiday shutdown. Also, the daily detention days achieved

remain stable over time as observed from Figure 4.25.

Figure 4.21: Pilot study Day 2 to Day 6 Figure 4.22: Pilot study Day 7 to Day 11

Figure 4.23: Pilot study Day 12 to Day 16 Figure 4.24: Pilot study Day 17 to Day 21
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Figure 4.25: Daily LU unloaded and total detention days achieved

4.9 Observations and conclusions

The results show that the highest value of overall prediction accuracy is obtained from the model

using the minimum ε value for the capacitated model with the joint case. When the minimum ε value is

chosen, there are no restrictions on the average detention days that must be attained by the set of sea-cans and

trailers selected. In this case, the problem becomes a single objective optimization model to minimize the

number of remnant parts in the warehouse. Further, we observe the difference in the prediction accuracy for

the uncapacitated models versus the capacitated models for all methods. This difference is due to the change

in the selection pattern of the sea-cans and trailers caused by the additional unload capacity constraint.

The solution corresponding to the minimum ε value places more importance on minimizing the rem-

nant parts objective. Whereas, the solution corresponding to the maximum ε value places more importance

on maximizing the detention penalty objective. The goal programming model generates a single solution

with an appropriate trade-off between both objectives. In our problem, the decision-maker places equal im-

portance on both the objective and is interested in obtaining a single solution. Therefore, we selected the goal

programming model with unloading capacity constraints for the pilot study.

Sometimes, it might not be possible to satisfy the unloading capacity constraint for sea-cans and

trailers. Consequently, in the pilot study, we developed a logic by systematically updating and relaxing the

unloading constraints such that always a feasible solution is produced. In our pilot study, we analyzed the

performance of the proposed goal programming model for 20 consecutive production days. In the pilot study,

we observed that the total load units unloaded remain stable on the regular operating days. Whereas the daily

detention days achieved remained stable over time.
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In December 2017, BMW MC faced serious operational issues due to the overutilization of the ware-

house, which led to the shutdown of the entire assembly line. These issues were caused by the failure of the

current container selection method used by BMW MC. The current method used by BMW MC uses a heuris-

tic to calculate the available days of supply in the warehouse and only consider the present moment’s demand.

Warehouse utilization is not considered while deciding on unloading containers. Further, the decision-maker

often intervenes by overruling the decision taken by the current system.

The proposed model overcomes these issues experienced with the current container selection process

at BMW MC. Further, it provides the decision-maker with future unloading information, which is vital in

planning the warehouse operations. The model also ensures that the warehouse utilization is maintained

below the desired threshold on all three planning days considered in the rolling horizon.
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Chapter 5

Team Formation and Job Assignment to

Improve Warehouse Operations

5.1 Introduction

In a warehouse, inventory gets depleted as the parts are consumed to support the manufacturing

processes. Therefore, the inventory needs to be replenished regularly using incoming shipments of parts.

We consider a manufacturing plant that receives parts in sea-containers and trailers, and stores them on site

until a part replenishment is needed. Multiple sea-containers and trailers, which from here on we refer to

as containers, are often received daily by the manufacturing plant, and each container may hold a different

mixture of parts with potentially different packaging. Thus, the unloading of parts from these containers and

their storage in the warehouse may require unpacking of pallets and/or repacking of materials on a daily basis

before they can be scanned, transported, and stored. As it is often the case that workers have limited physical

space (i.e., one or more staging areas) for unloading, unpacking, and scanning materials, completing these

tasks often requires coordination between multiple workers to avoid backlogs and disruption of production.

Such coordination can be achieved by having workers work in teams to process contents of each container.

Optimization of the put-away operations is vital for timely processing and storage of materials de-

livered to the warehouse. Therefore, our goal in this research is to minimize the total time required to unload,

scan, breakdown, and store all pallets from containers that must be unloaded by determining the optimal

number of teams to be formed and the optimal worker to task assignment in these teams. To address these
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operational questions, we build a simulation-optimization model and analyze it using the daily container and

processing time data obtained from our industrial partner, BMW Manufacturing Company.

In the next section, we review the existing literature on optimizing warehouse operations, resource

allocation in healthcare and manufacturing, and studies that consider worker differences in workforce plan-

ning. In section 5.3, we provide the problem description, details of the simulation model we built, and

formulated optimization model. We discuss the experimental setup in section 5.4. In section 5.5, we present

the numerical results and discussion on the observations made. Finally concluding remarks are provided in

section 5.6.

5.2 Literature review

There are several previous studies on the optimization of warehouse operations. However, very few

of these studies have focused on receiving and shipping processes that are part of the warehouse operations

(Gu et al., 2007). Further, most of the studies related to receiving and shipping processes are concerned with

truck-to-door assignment problems in cross-dock facilities (Gu et al., 2007). An exhaustive review of inven-

tory replenishment problems that were addressed using simulation-based optimization methods is provided

by Jalali and Nieuwenhuyse (2015). In addition, Negahban and Smith (2014) performed a comprehensive re-

view of studies on manufacturing design and operations-related problems that were tackled via discrete event

simulation. According to their review, manufacturing operations planning and scheduling is a popular area

for the use of discrete event simulation as an analysis tool. In this section, we review the simulation studies

that have focused on optimizing worker and resource allocation to improve healthcare, manufacturing, and

warehouse systems.

Resource allocation problems in healthcare systems have been widely studied using simulation-

based optimization methods. Weng et al. (2011) used simulation optimization to study a physician and nurse

allocation problem in the emergency department of a hospital to minimize the NEDOCS value, which is

an indicator of crowdedness. Optimal staffing levels that balance the service level (i.e., quality of care)

and nurse utilization in each shift was studied by Sarno and Nenni (2016). Lucidi et al. (2016) studied the

optimal allocation of a hospital’s obstetrics ward resources such as stretchers, gynecologists, nurses, beds,

and operating rooms. Their objective was to maximize the profits of the hospital and minimize the cesarean

section birth rates.

A study on optimal resource allocation for a production logistics system was done by Li et al.
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(2020) using discrete event simulation. Their objective was to maximize the throughput of the system while

minimizing the economic input, which is achieved by determining the optimal number of automatic guided

vehicles (AGVs), speed and load capacity of AGVs, and buffer capacity. Ekren et al. (2012) studied the

problem of reducing the cycle time in the receiving area of a warehouse by determining the optimal number

of workers at each workstation. The truck’s arrival to the warehouse is considered deterministic. At the same

time, each truck’s contents are probabilistically known. A simulation-based optimization model is proposed

to decide the optimal staffing level at each station. In our study, we also minimize the total completion time

for the put-away operations. However, we achieve this objective by determining the optimal number of teams

(parallel workstations) to be formed, the number of workers and worker to task assignment in each team,

buffer space allocation, and the number of forklift operators needed. Ganbold et al. (2020) studied an optimal

workforce allocation problem to improve the warehouse service level using a simulation-based optimization

model. They considered a warehouse with inbound and outbound areas, each with various workstations.

In their model, there are multiple employees with different skills, and the goal is to optimally allocate these

employees to workstations while considering the warehouse operational constraints. However, the constraints

related to warehouse storage capacity, working areas, and buffer zones between activities are not considered

in this problem. In contrast, we determine the optimal number of parallel workstations (teams of workers)

that need to be created, the number of workers at each workstation, and the buffer space for each workstation.

Van Oyen et al. (2001) studied the benefits of a flexible workforce in a collaborative and non-

collaborative environment in a serial production system. In a collaborative environment, multiple workers

can simultaneously work on a job at a time. In contrast, in the non-collaborative environment, only one

worker can work on a job at a time. Andradóttir and Ayhan (2005) studied a flexible server assignment

problem to maximize the throughput of a serial production system. In this problem, the authors considered a

collaborative work environment and studied the server assignment policies for the two-station tandem system.

Işık et al. (2016) exhaustively studied the problem of flexible server assignments in a non-collaborative work

environment for a tandem queueing system with an equal number of stations and servers. Similar to our

study, the authors in Andradóttir and Ayhan (2005) also studied the assignment policies that involve grouping

available servers into two or three teams and assigning them to two stations. However, in contrast to the study

done by Andradóttir and Ayhan (2005), in our problem, we determine the number of teams (parallel queues)

that need to be formed and the server assignments and resource allocations to the different stations for each

queue formed. Further, for the problem we consider in this chapter, the work environment at some stations in

a parallel queue is collaborative, and at others, it is non-collaborative.
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Studies that consider the worker differences while solving the workforce planning problem have

been studied widely. Askin and Huang (2001) studied a team formation and training problem for cellular

manufacturing. The authors used the Kolbe Conative Index (KCI) in the problem formulation to estimate

an individual worker’s conative aptitude and team synergy. A multiobjective problem was formulated and

solved using a weighted average method to minimize (1.) the training cost, (2.) the misfit between worker’s

conative traits and job requirements, and (3.) deviations from desired team synergy. Wirojanagud et al.

(2007) studied a workforce planning problem by explicitly considering worker differences using the General

Cognitive Ability (GCA) metric in the problem formulation. A Mixed Integer Program (MIP) was formu-

lated and solved using a solution space partition approach (decomposition approach) to minimize the total

workforce-related (i.e., hiring, training, salary, and firing) and missed production costs over multiple periods.

In this study, the authors assumed that an individual worker’s productivity depends on the GCA level. The

computational time required to solve the problem studied by the Wirojanagud et al. (2007) could be high even

when using the decomposition approach proposed by the authors. Therefore, Fowler et al. (2008) developed

Linear Programming based heuristics to reduce the computational time required to solve the problem studied

by the Wirojanagud et al. (2007). In this study, we do not consider the differences between the individual

workers by assuming all of them to be identical.

5.3 Problem description and simulation model

Containers are delivered to the manufacturing plant daily to support the manufacturing process. Each

container holds multiple pallets containing a mixture of different parts with potentially different packaging.

The set of containers that need to be unloaded is known at the beginning of the day. Additionally, each

container is assigned a priority level for unloading such that containers that have the parts with the least

supply in the warehouse are assigned the highest priority. The manufacturer follows a defined procedure to

unload these containers in order to replenish warehouse stock. A container is docked, pallets are unloaded

and processed in a primary staging area, and then they are transported either to the warehouse for storage or

to a secondary staging area if they need further processing. In the primary staging area, two types of workers,

known as the Scanners and the Breakdowners, process the unloaded pallets. A scanner must scan all unloaded

pallets. Some pallets may also need to be broken down into individual boxes by a breakdowner. The entire

process is illustrated in Figure 5.1.
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Figure 5.1: Process flow chart

In this chapter, we only focus on the part of the receiving process until the parts are ready to be

transported out of the primary staging area. The equivalent queuing representation for this process is shown

in Figure 5.2. Process 1 has a finite number of containers whose contents need to be unloaded and processed.

Different containers that need to be unloaded are represented using different colored trapezoids in Figure 5.2.

The number of parallel queues in Process 1 is equivalent to the number of teams. Queues at Process 2 are

capacitated, and once again, the total number of parallel queues is equivalent to the number of teams. The

capacity of each queue in Process 2 is equal to the buffer size (i.e., number of staging areas) allocated to

each team. Not all pallets unloaded from a container are identical. In Figure 2, various shapes are used to

differentiate different types of pallets waiting in a queue at Station 2. Additionally, pallets unloaded from the

same container are depicted using the same color. Two different teams are represented in Figure 5.2 with the

colors orange and purple. Figure 5.2 illustrates the entire procedure with two teams; however, the number of

teams that need to be formed is a decision variable in our problem.
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Figure 5.2: Queue representation of the process

One or more unloading forklifts work at Station 1 to unload the pallets from the containers. At

Station 2, scanners and breakdowners work in teams to process (scan and breakdown) the unloaded pallets.

The order of processing for each container is determined by its priority level and known in advance. Only

one forklift can work on a container to unload all its contents. The unloaded pallets are then placed into the

staging area. Contents of a container can be placed in any of the available staging areas, however, a staging

area cannot simultaneously hold pallets from different containers. Once a container is completely unloaded,

the scanner starts scanning the unloaded pallets. After all pallets of a container are scanned, the breakdowners

can break down the pallets if required. The scanner starts scanning the pallets from a new container while

the breakdowners work on pallets from the previous container. The scanners and breakdowners work in a

team. In each team, there is one scanner and one or more breakdowners. Collaboration between teams is not

permitted. Furthermore, once the teams are formed at the beginning of the day, they cannot be changed until

all containers are processed. At the beginning of each day, every team is assigned a set of staging areas to

be used throughout the day. When the scanning and breakdown operations are completed for a container, the

transporter forklifts transfer the processed pallets to the warehouse storage spaces and clear the staging area.

The transporter forklifts can work for any team. Similar to the unloading forklifts working at Station 1, only

one transporter forklift can transport the materials belonging to a container.

On a given day, there are S staging areas available, as well as T transporter forklifts, and N workers

who can serve as a scanner, breakdowner, or an unloading forklift’s driver. Teams must be formed optimally

using the available resources (i.e., staging areas and workforce) to minimize the time required to process and

store the materials from the containers that must be unloaded for the day. We develop a simulation-based

optimization model to solve this problem. A detailed discussion of the simulation model is provided below.
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The simulation model is built in Arena, and OptQuest is used to build the optimization model. Figure

5.3 shows a representation of the simulation model we developed. The process starts with the arrival of all

containers (i.e., jobs). The containers enter the system in priority order. A container is held until a forklift

and a buffer space (i.e., staging area) are available to unload it. This process is executed using the Hold

module labeled as Hold containers in Figure 5.3. Once a forklift and buffer space is available, the Process

module labeled as Sieze forklift and buffer space seizes one unit of both resources for a container. The Process

module labeled as Release forklift releases the forklift after an Erlang distributed amount of time, once all

pallets from the container are unloaded. The service times per pallet for a forklift, scanner, and breakdowner

is assumed to be exponentially distributed, therefore, the service time for a container containing n pallets is

Erlang distributed. Our industrial partner had conducted the time study for each of these servers (i.e., forklift,

scanner, and breakdowner) and provided us with the mean service time for each process.

Figure 5.3: Representation of the simulation model

As mentioned previously, each team is allocated buffer spaces within which they are allowed to

work. Therefore, if a container is unloaded into the buffer space of a team, then only members of that team

can process it. Using the Assign module in Arena, we keep track of the team assignments. The job is then

routed to the specific team that needs to process it. Scanning is required for all pallets in a container. However,

there are two possibilities for the breakdown: (i) breakdown is not required for any of the pallets in a container,

and (ii) breakdown is required for some or all pallets in a container. We use the Decide module labeled as

Requires breakdown to route the job appropriately. In case (i), only scanning is required, and therefore only

the scanner resource is seized. Process times for scanning follow an Erlang distribution. In case (ii), first,

the scanner is seized to scan the pallets and released after and Erlang distributed amount of time. Then, the

breakdowners are seized to breakdown the pallets, and they are released after an Erlang distributed amount

of time. After scanning and breakdown of all pallets belonging to a container is completed, the transporter

forklift is seized using the Process module labeled as Transport pallets to clear all materials from the staging

area. Process times for transportation also follow an Erlang distribution. Finally, the buffer space is released
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upon completion of the transporter forklift process. A summary of the process time distributions per container

used in the model is provided in Table 5.1.

Table 5.1: Summary of the process time distributions

Process Distribution Shape parameter

Unload Erlang distribution Total pallets in a container

Scanning Erlang distribution Total pallets in a container

Breakdown Erlang distribution Total breakdown pallets in a container

Transporting to warehouse shelves Erlang distribution Total non-breakdown pallets in a container

Transporting to secondary staging Erlang distribution Total breakdown pallets in a container

Note: Rate parameter of each Erlang distribution was estimated by the industry partner using propriety data.

Using the input parameters defined in Table 5.2 and the decision variables defined in Table 5.3, we

formulate the optimization model given by equations (5.1) – (5.13).

Table 5.2: Input parameters notation and description

Notation Description

tmin Minimum number of teams to be formed

tmax Maximum number of teams that can be formed

S Total staging areas

N Total number of individuals available

Table 5.3: Decision variables notation and description

Notation Description

si Binary variable, equals to 1 if Team i is formed. (where i = 1, 2, . . . tmax)

bi Number of breakdowners in Team i. (where i = 1, 2, . . . tmax)

xi Number of staging areas allocated to Team i. (where i = 1, 2, . . . tmax)

f Number of unload forklifts
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minimize: Expected total time required to process and put-away all the containers (5.1)

Subject to:

tmax

∑
i=1

si ≥ tmin (5.2)

tmax

∑
i=1

si ≤ tmax (5.3)

bi− si ≥ 0 . . . i ∈ {1, 2, . . . , tmax} (5.4)

xi− si ≥ 0 . . . i ∈ {1, 2, . . . , tmax} (5.5)

si ∗bi−bi = 0 . . . i ∈ {1, 2, . . . , tmax} (5.6)

si ∗ xi− xi = 0 . . . i ∈ {1, 2, . . . , tmax} (5.7)

f +
tmax

∑
i=1

si +
tmax

∑
i=1

bi = N (5.8)

tmax

∑
i=1

xi = S (5.9)

si ∈ {0, 1} . . . i ∈ {1, 2, . . . , tmax} (5.10)

bi ∈ Z≥0 . . . i ∈ {1, 2, . . . , tmax} (5.11)

xi ∈ Z≥0 . . . i ∈ {1, 2, . . . , tmax} (5.12)

f ∈ Z> (5.13)

Constraints defined by equations (5.2) and (5.3) provide a lower and upper bound on the number of

teams that need to be formed. When Team i is formed, it is assigned a scanner using the decision variable si. If

Team i is formed, then it gets assigned a minimum of one breakdowner and one buffer space; constraints (5.4)

and (5.5) ensure this. Further, if Team i is not formed, then no breakdowner and buffer space are assigned

to Team i due to constraints (5.6) and (5.7). Constraint (5.8) ensures that all the available individuals are

assigned, and constraint (5.9) ensures that all the buffer spaces are allocated to teams.
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5.4 Experimental setup

We analyzed the data provided by our industrial partner for the number of containers unloaded on

a given day in the warehouse. We observed that around eight percent of the time, the number of containers

unloaded was less than 75. Most of the time, around 100 containers were unloaded daily, with the maximum

being 115 containers unloaded on a single day. Therefore, we chose to run our experiments using 75, 100,

and 125 as the number of containers to be unloaded. Further, by discussing with the process associates at

the BMW Manufacturing Company, we decided to vary the percentage of containers requiring breakdown as

25%, 50%, and 75%. Using this information, we construct nine scenarios for our simulation experiments.

The number of pallets in each container is generated using the discrete uniform distribution, U{15, 25},

as estimated by our industrial partner. The percentage of pallets to be broken down in each container that

requires breakdown is estimated to follow the continuous uniform distribution U [30,70] based on the analysis

carried out by our industry partner.

On each day, 14 individuals are available to work as either a forklift operator, scanner, or break-

downer. A minimum of 2 and a maximum of 4 individuals need to be assigned as forklift operators. The

remaining individuals need to be assigned to a minimum of 3 and a maximum of 5 teams, each team con-

sisting of one scanner and at least one breakdowner. There are 13 staging areas available that need to be

distributed amongst the teams. These details on capacity of resources and process requirements were pro-

vided by the industrial partner.

The optimization model was constructed in OptQuest using the parameters mentioned above. The

number of solutions to be explored in OptQuest was set as 100. Additionally, the number of replications per-

formed for each simulation run was dynamically determined by OptQuest using the 95% confidence interval

built around the mean of the total time required to complete all jobs, with a minimum of 30 and a maximum

of 50 replications. The best solution obtained by OptQuest was then evaluated using the simulation model

with 100 replications. We test the solutions obtained using OptQuest, against the currently practiced team

formation. For this purpose, we simulated the unloading process with the current team formation under each

scenario considered. These simulations were also run using 100 replications.
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5.5 Results

In this section, we discuss the results obtained using the simulation optimization model. In Table

5.4, the currently practiced team formation is presented. Currently, the same team formation with three

teams and two forklifts is used every day, regardless of the number and characteristics of containers to be

unloaded. Each team has an equal number of breakdowners and an approximately equal number of buffer

spaces allocated. The best solutions (i.e., solutions with a minimum total time for processing all jobs) for

nine different scenarios obtained using the OptQuest are presented in Table 5.5.

Table 5.4: Currently practiced team formation

Breakdowner Buffer space Scanner Number

of

forklifts

allocation allocation allocation

T1 T2 T3 T1 T2 T3 T1 T2 T3

3 3 3 4 4 5 1 1 1 2

Table 5.5: OptQuest solution for best team formation

Breakdown

(%)

Number of

containers

Breakdowner Buffer space Scanner Number

of

forklifts

allocation allocation allocation

T1 T2 T3 T4 T1 T2 T3 T4 T1 T2 T3 T4

25 75 2 1 2 1 8 2 2 1 1 1 1 1 4

25 100 3 1 1 1 8 2 2 1 1 1 1 1 4

25 125 3 1 1 1 8 2 2 1 1 1 1 1 4

50 75 1 1 1 3 2 2 2 7 1 1 1 1 4

50 100 1 1 3 1 2 2 8 1 1 1 1 1 4

50 125 1 1 3 1 2 2 8 1 1 1 1 1 4

75 75 2 1 2 2 2 2 4 5 1 1 1 1 3

75 100 2 1 2 2 2 2 4 5 1 1 1 1 3

75 125 3 1 2 1 4 2 6 1 1 1 1 1 3

Results reported in Table 5.5 show that currently, the forklift operators are a bottleneck. Further,

we observe that the optimal team formation is dependent on the breakdown percentage. The optimal team

formation remains the same for the scenarios with 25% – 50% breakdown and 100 – 125 containers. A similar

observation can be made in the case of 75% breakdown and 75 – 100 containers. Having fewer solutions to
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implement in different scenarios is better from a practical perspective for our industrial partner. Furthermore,

some of the solutions presented in Table 5.5 may be statistically equivalent in terms of performance under a

given scenario. To reduce the number of solutions we propose and eliminate statistically equivalent solutions,

we have performed 95% t-tests to compare the performance of the solutions in Table 5.5 across scenarios.

Based on this analysis, we present the proposed solutions that depend on the breakdown percentage in Table

5.6. The solutions presented in Table 5.5 and Table 5.6 are statistically equivalent as per our analysis.

Table 5.6: Proposed solution for best team formation

Breakdown

(%)

Number of

containers

Breakdowner Buffer space Scanner Number

of

forklifts

allocation allocation allocation

T1 T2 T3 T4 T1 T2 T3 T4 T1 T2 T3 T4

25 75 2 1 2 1 8 2 2 1 1 1 1 1 4

25 100 2 1 2 1 8 2 2 1 1 1 1 1 4

25 125 2 1 2 1 8 2 2 1 1 1 1 1 4

50 75 2 1 2 1 5 2 4 2 1 1 1 1 4

50 100 2 1 2 1 5 2 4 2 1 1 1 1 4

50 125 2 1 2 1 5 2 4 2 1 1 1 1 4

75 75 2 1 2 2 2 2 4 5 1 1 1 1 3

75 100 2 1 2 2 2 2 4 5 1 1 1 1 3

75 125 2 1 2 2 2 2 4 5 1 1 1 1 3

The average time required to complete all jobs under different scenarios using the current team

formation (i.e., Table 5.4) and the proposed solution (i.e., Table 5.6) is presented in Table 5.7. These re-

sults suggest a minimum 19% and maximum 39% of performance improvement under the various scenarios

considered.
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Table 5.7: Performance improvement

Breakdown

(%)

Number

of

containers

Currently practised Proposed Average

performance

improvement

team formation solution

Average (min) Half-width (min) Average (min) Half-width (min)

25 75 545.65 4.85 341.46 4.65 37.42%

25 100 714.40 4.94 434.10 4.26 39.24%

25 125 884.30 4.98 534.52 5.01 39.55%

50 75 554.11 4.37 391.39 5.00 29.37%

50 100 722.14 4.90 504.16 5.27 30.19%

50 125 896.92 4.99 615.53 5.77 31.37%

75 75 558.11 4.17 451.07 4.65 19.18%

75 100 728.99 4.56 582.69 4.77 20.07%

75 125 898.06 4.07 710.43 5.61 20.89%

The details related to the average utilization of each resource under the current team formation and

the proposed solution are presented in Table 5.8 and Table 5.9, respectively. We observe that utilizations of

breakdowners and buffer spaces increase when the breakdown percentage or number of containers increases.

In comparison, the average utilizations of scanners and forklifts increase only with an increase in the number

of containers. Additionally, the average utilization per scanner and the average utilization per forklift remain

the same for different breakdown percentages as long as the number of containers remain the same. This is

because the workloads of the forklifts and scanners are unaffected by the amount of breakdown needed. These

results also show that the average utilization per forklift is higher using the presently practiced team formation

because of the lower number of forklifts deployed when compared to the proposed solution. Furthermore, the

average utilization per scanner is higher under the currently practiced team formation because of the lower

number of teams formed when compared to the proposed solution. On the contrary, the average utilizations of

breakdowners and buffer spaces under the current team formation is lower than under the proposed solution

because improper resource allocation in the current practice results in a longer putaway time required to

process all containers. Table 5.10 presents the detailed per resource utilization in each team for all resources

under the proposed solution given in Table 5.6.
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Table 5.8: Average resource utilization using currently practised team formation

Breakdown (%)
Number of

containers
Breakdowner Buffer space Scanner Forklift

25 75 0.056 0.184 0.063 0.425

25 100 0.073 0.245 0.083 0.566

25 125 0.092 0.307 0.104 0.709

50 75 0.111 0.214 0.062 0.426

50 100 0.148 0.284 0.084 0.566

50 125 0.185 0.356 0.104 0.711

75 75 0.164 0.243 0.063 0.425

75 100 0.221 0.326 0.084 0.567

75 125 0.277 0.407 0.104 0.708

Table 5.9: Average resource utilization using proposed solution

Breakdown (%)
Number of

containers
Breakdowner Buffer space Scanner Forklift

25 75 0.084 0.226 0.047 0.212

25 100 0.110 0.301 0.062 0.284

25 125 0.139 0.381 0.078 0.354

50 75 0.167 0.271 0.047 0.213

50 100 0.223 0.363 0.062 0.283

50 125 0.279 0.455 0.078 0.354

75 75 0.211 0.305 0.047 0.283

75 100 0.285 0.408 0.063 0.378

75 125 0.351 0.510 0.078 0.475

107



Table 5.10: Resource utilization for proposed solution

Breakdown

(%)

Number

of

containers

Breakdowner Buffer space Scanner Forklift

utiliz

-ation

utilization utilization utilization

T1 T2 T3 T4 T1 T2 T3 T4 T1 T2 T3 T4

25 75 0.16 0.07 0.04 0.03 0.24 0.22 0.21 0.19 0.12 0.03 0.03 0.01 0.21

25 100 0.21 0.09 0.05 0.04 0.31 0.30 0.28 0.26 0.16 0.04 0.04 0.02 0.28

25 125 0.26 0.13 0.06 0.05 0.39 0.38 0.36 0.34 0.20 0.05 0.05 0.02 0.35

50 75 0.21 0.15 0.16 0.13 0.28 0.28 0.26 0.26 0.08 0.03 0.06 0.02 0.21

50 100 0.27 0.19 0.21 0.18 0.37 0.37 0.35 0.34 0.10 0.04 0.08 0.03 0.28

50 125 0.34 0.24 0.26 0.23 0.47 0.46 0.44 0.44 0.13 0.05 0.10 0.04 0.35

75 75 0.14 0.22 0.24 0.26 0.33 0.33 0.31 0.28 0.04 0.03 0.06 0.07 0.28

75 100 0.18 0.29 0.32 0.35 0.43 0.44 0.41 0.39 0.05 0.04 0.08 0.09 0.38

75 125 0.22 0.35 0.39 0.44 0.54 0.54 0.52 0.48 0.06 0.04 0.10 0.11 0.47

Based on the experimental results, we make three important observations. First, the unloading

forklifts are a bottleneck in the currently practiced team formation. Therefore, according to our proposed

solution, more forklift operators (3–4) must be assigned. Second, the number of workers assigned as break-

downers should increase with the increase in the breakdown percentage. This is because the breakdown

process becomes a bottleneck as breakdown percentages increase. The number of breakdowners is increased

by reducing the number of forklift operators assigned in our proposed solution. Third, four teams should be

formed instead of the three teams formed in the current practice. This is evident from the higher average

breakdowner and buffer space utilization achieved using the proposed solutions.

5.6 Conclusions

We study the problem of optimal team formation, buffer allocation, and job assignment to teams of

workers to optimize the container unloading and warehouse replenishment process. We solve this problem

using a simulation optimization approach. Currently, the industrial partner forms three teams with equal sizes

and approximately equal buffer space allocations. The solutions obtained using the simulation optimization

model suggest that the team formation should be dependent on the percentage of containers that require

additional processing (i.e., breakdown). Further, the unloading forklift operators are the bottleneck in the

current process. This bottleneck can be alleviated by increasing the number of unloading forklift operators. A

considerable reduction in the total time required to putaway all needed materials can be achieved by increasing
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the number of forklift operators and adjusting the number of teams formed depending on the percentage of

containers that require additional processing.
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Chapter 6

Conclusions, Research Contributions

and Future Research

In this dissertation, we studied and optimized multiple areas of the inbound supply chain of a manu-

facturing company. Further, we explained how a manufacturer could cohesively use all optimization models

we developed to make better overall operational-level decisions. In Chapter 2, we studied the problem of

reducing a manufacturer’s long-term expected procurement cost by determining the optimal order quantities

to be procured using each available transportation mode under forecast and inventory uncertainty. We solved

a two-stage stochastic program using the sample average approximation method and progressive hedging

algorithm, and obtained the optimal weekly order quantities to be placed with the overseas suppliers and

procured using sea-freight.

Based on the numerical study presented in Chapter 2, we conclude that a good quality solution

could be obtained by solving a problem with a large number of scenarios sampled using simple random

sampling. However, the computational time required to solve a two-stage stochastic program increases with

the number of scenarios. Therefore, we solved our sample approximation problem using the Progressive

Hedging Algorithm (PHA). Using the numerical results, we provided managerial insights on the number

of scenarios that need to be considered and replications that need to be performed to obtain a good-quality

solution in a reasonable amount of time. Additionally, using the value of the stochastic solution, we showed

that the procurement cost could be reduced by solving the stochastic program instead of the mean value

problem.
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We believe that our study in Chapter 2 is the first in the literature to account for the errors in total

available inventory. Further, we study a modal splitting problem under inventory and forecast error. Our

literature review have shown that the research in the area of modal splitting is underdeveloped. In this study,

we compared different sampling methods and different solution methods, such as solving the extensive form

of a two-stage stochastic program as is, unbundled progressive hedging algorithm, and bundled progressive

hedging algorithm using the performance metrics such as optimality gap, the standard deviation or the esti-

mate of the expected objective value, solution time, sample generation time and convergence rate. We also

studied the effects of different levels of error uncertainty on the quality of the solution obtained.

In the literature, there are methods proposed to compute the lower bounds of the PHA. However, the

lower bounds obtained using these methods are not always tight. Therefore, future research can be done in

this direction to compute tight lower bounds. In section 2.7 of Chapter 2, we propose and discuss a potential

approach to achieve this by modifying the non-anticipativity constraints and updating the dual prices using

the sub-gradient method.

The orders procured from overseas suppliers using sea-freight are first delivered to the overseas

consolidation facility using ground transportation services that perform milk-runs to collect orders from

different suppliers. The consolidation facility consolidates the orders from inbound trailers into outbound

sea-containers. These sea-containers are then delivered to the overseas port from where they are transported

to the port in the USA using sea-freight. The sea-containers that arrive at the USA port are delivered to the

manufacturing plant using rail and road transportation services. The parts in these sea-containers are then

used to replenish the manufacturer’s warehouse inventory to support the production process. Due to consol-

idation activity, every sea-container contains multiple part types. Further, when a sea-container is unloaded

to replenish the warehouse inventory, the manufacturer unloads it completely. Therefore, any unnecessary

parts that were packed into the sea-container are also unloaded along with the necessary parts. This results in

increased manufacturer’s warehouse utilization.

The manufacturing plant has limited space for holding inventories of various parts required for pro-

duction, and it is crucial to maintain a low warehouse utilization to ensure a smooth production process. In

Chapter 3, we assumed that the manufacturer could hold one to two days of parts supply. Therefore, the

warehouse will be over-utilized if the entire week’s order of a part is consolidated in a single container. In

this chapter, we build and study the time-series forecasting models to predict the daily demand values. We

propose the forecasting model and the amount of training data to be used by the manufacturer by performing

a comprehensive study and evaluation of different models. The numerical study suggests that the resulting
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predictions can be used to obtain parts daily sea-containers consolidation quantities and reduce the manufac-

turer’s daily warehouse utilization.

Additionally, in Chapter 3, we assumed that the manufacturer practices Vendor Hub inventory con-

trol for fulfilling the emergency orders that arise due to shortages of a part. Therefore, we formulate a chance-

constraint optimization model to determine the optimal emergency stock levels the supplier must maintain

under forecast error uncertainty. We did an exhaustive analysis to determine the number of scenarios and

significance level of the sample approximation problem to be used by the manufacturer to solve the chance-

constraint program. The results obtained by solving the proposed chance-constraint program suggest that a

sufficient amount of emergency stock is maintained at the supplier preventing shortages in all thirteen weeks

we studied.

In the literature, many studies consider the traditional or vendor managed inventory approach. Based

on the literature we reviewed, we believe that our study is the first to consider the vendor hub approach and

determine the supplier stock levels under forecast error uncertainty using probabilistic constraints. Using

the chance constraint optimization model, we also studied the effects of different levels of forecast error

uncertainty on the quality of solutions obtained under different experimental settings.

If the manufacturer uses the approach discussed in Chapter 2 to place the orders with overseas sup-

pliers and needs to consolidate the sea-containers using the daily demand to reduce the warehouse utilization,

applying the approach discussed in Chapter 3 to determine the daily consolidation quantities requires the use

of hierarchical forecast reconciliation. In hierarchical reconciliation, the top-level is weekly order quantities

procured using sea-freight (i.e., first-stage decision variable value), which is determined using the approach

in Chapter 2. At the bottom-level are the daily forecasted demand quantities predicted using ensemble fore-

casting models. The top-level forecast values can be assumed to be fixed as they minimize the overall supply

chain costs, and the bottom-level forecast values can be readjusted such that the sum of all bottom-level val-

ues is equal to the top level. When a sea-container consolidated using this approach is unloaded to replenish

the stock of required material, the warehouse would not be filled with an entire week’s supply of necessary

and unnecessary parts contained inside the sea-container. This approach can be evaluated as part of future

research.

The part mix in the outbound sea-containers from the consolidation center depends on the part mix

(as a result of milk runs) in the inbound trailers to the consolidation center. Therefore, a vehicle routing

problem and trailer assignments problem in the consolidation center can be solved such that a favorable part

mix is achieved in the outbound sea-containers, reducing the manufacturer’s daily warehouse utilization. This
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is another potential future research direction.

The manufacturer needs to replenish its warehouse inventory levels daily for multiple parts using

the parts received in sea-containers and trailers. Due to the consolidation process, each sea-container and

trailer contains a mixture of multiple parts. The manufacturer incurs a daily detention penalty (charged by

the freight partners who provide the sea-containers and trailers) for storing the sea-containers and trailers on

its property. Thus, the sea-containers and trailers must be unloaded and returned to the freight partner as soon

as possible. However, the manufacturer cannot unload all sea-containers and trailers because it has limited

warehouse space. In Chapter 4, we formulated and solved a multi-objective optimization model to determine

the sea-containers and trailers that need to be unloaded on a given day such that the warehouse utilization

and detention penalties are minimized. To the best of our knowledge, our study is the first in the literature

to simultaneously consider two objectives: minimizing the number of remnant parts in the warehouse and

detention penalty costs. We solved the multi-objective model using different methods and compared their

performances using the data obtained from our industrial partner. Based on the numerical results, we proposed

the goal programming method to be implemented by the manufacturer for selecting the sea-containers and

trailers that need to be unloaded daily. Further, we developed a logic to solve the goal programming problem

by systematically relaxing the constraint to obtain a feasible solution in any circumstance.

Once the sea-containers and trailers that need to be unloaded are selected using the approach de-

scribed in Chapter 4, the pallets of parts in these containers are unloaded and processed by the teams of

workers. In Chapter 5, we build and study a simulation optimization model to determine the number of teams

and the number of people in each team such that the total expected time required to unload all the required

sea-containers and trailers on a day is minimized. The proposed simulation-based optimization model helps

alleviate bottlenecks in the process by appropriately forming the teams and assigning the workers to each

team. In this chapter, we also studied the effects of the workload on team formation.

In Chapter 5, we assumed that the workers are the same. Future research can be done on team

formation and worker assignment by considering the workers to be different. This study also assumed that

the scanner only scans the pallets in a given team. We think that the overall expected processing times can

be reduced by switching the scanner to the breakdowner whenever a bottleneck is created at the breakdown

station. A future study can also be done to compare the results obtained using inflexible and flexible scanners

in a team.
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