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Abstract

In today's logistics businesses, increasing petrol prices, �erce competition, dynamic

business environments and volume volatility put pressure on logistics service providers

(LSPs) or third party logistics providers (3PLs) to be e�cient, di�erentiated, adaptive,

and horizontally collaborative in order to survive and remain competitive. In this cli-

mate, e�cient computerised-decision support tools play an essential role. Especially, for

freight transportation, e�ciently solving a Pickup and Delivery Problem (PDP) and its

variants by an optimisation engine is the core capability required in making operational

planning and decisions. For PDPs, it is required to determine minimum-cost routes to

serve a number of requests, each associated with paired pickup and delivery points. A

robust solution method for solving PDPs is crucial to the success of implementing de-

cision support tools, which are integrated with Geographic Information System (GIS)

and Fleet Telematics so that the �exibility, agility, visibility and transparency are ful-

�lled. If these tools are e�ectively implemented, competitive advantage can be gained

in the area of cost leadership and service di�erentiation.

In this research, variants of PDPs, which multiple depots or providers are consid-

ered, are investigated. These are so called Multi-depot Pickup and Delivery Problems

(MDPDPs). To increase geographical coverage, continue growth and encourage hori-

zontal collaboration, e�ciently solving the MDPDPs is vital to operational planning

and its total costs.

This research deals with designing optimisation algorithms for solving a variety of

real-world applications. Mixed Integer Linear Programming (MILP) formulations of the

MDPDPs are presented. Due to being NP-hard, the computational time for solving by
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exact methods becomes prohibitive. Several metaheuristics and hybrid metaheuristics

are investigated in this thesis. The extensive computational experiments are carried

out to demonstrate their speed, preciseness and robustness.
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Chapter 1

Introduction

The e�cient transportation of goods plays an important role in the economy of nations.

Logistics management require considerable attention to reduce the transportation costs.

Advancements in logistics planning systems encourage industrial players to reduce the

amount of money spent on distribution and transportation. These industrial players

attempt to create competitive advantage over competitors in terms of cost leadership.

Among IT tools, optimisation tools are among one of the most powerful equipment for

logistics planning.

Optimisation tools have been applied most often to logistics and supply chain deci-

sion problems. One of the most important operational decisions related to transporta-

tion along a supply chain relates to the Vehicle Routing Problem (VRP). Transportation

costs account for a signi�cant amount of the total cost of a product. In some industries,

such as food and drink, distribution costs at the transportation level can amount for

up to 70% of the value added costs of goods according to Chopra and Meindl (2004).

Indeed, the transportation process represents a relevant component (typically from

10% to 20%) of the �nal cost of the goods in general. Toth and Vigo (2002) pointed

out that, in the last few decades, the use of optimisation packages, for managing the

provision of goods and services in distribution system (based on Operations Research

and Mathematical Programming techniques) has received considerable attention. The

large number of real-world applications, both in North America and in Europe, has
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shown that the use of computerized distribution systems produces substantial savings

(generally from 5% to 20%) in the global transportation costs.

The trend of outsourcing logistics activities from manufacturers to logistics service

providers (LSPs) and Third-party Logistics Providers (3PLs) has recently emerged.

Transportation is one of the activities most frequently outsourced. A large number of

companies have outsourced all of the functions that fall outside their core competencies

to LSPs and 3PLs. These providers play a signi�cant role in driving supply chains

forward. For logistics service industries, the movement of goods is one of their core

activities. A �eet of vehicles, which transports goods from origin(s) to destination(s),

requires a large amount of resources: fuel, tyres and other consumable parts. For some

companies, these resources account for up to 50% of the �nal cost of the service. It is

therefore interesting to investigate how optimisation techniques can help reduce costs

through e�ective transportation planning.

For freight transportation, door-to-door delivery and local courier services consider

both pickup and delivery of shipments. Finding the minimum-cost routes of vehicles

for these services falls into the category of Pickup and Delivery Problems (PDPs) in

Operations Research (OR). Moreover, the PDPs are also embedded in the planning of

handicapped-person transportation, automated guided vehicles and helicopter routing.

1.1 Motivation

Currently, the 3PLs and Logistics Service Providers (LSPs) market are competitive at

the regional, national and international levels. Moreover, in the last few decades, fuel

and operating costs have increased dramatically. To gain a competitive advantage, a

large number of 3PLs and LSPs have sought to lower the cost of their operations, which

has led to rising interest in the applications of Operations Research(OR). Owing to

advances in computer technology, OR techniques have become more powerful, capable
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of e�ciently solving optimisation problems in reasonable time frame. Together with the

development of the Geographic Information System (GIS) and the Global Positioning

System (GPS), OR techniques turn transportation planning into reality.

Several companies and research centres have developed algorithms and software

for transportation optimisation that solve vehicle routing problems and their vari-

ants. These includes Paragon1, OPTRAK2, and PROCOM3. The business needs, en-

vironment and characteristics of each logistics company are di�erent, and routing and

scheduling software must be customised to re�ect these di�erent requirements. More-

over, logistics outsourcing models evolve from time to time: from LSPs to 3PLs, from

3PLs to Fourth Party Logistics (4PLs). However, the optimisation problems embedded

in these models nevertheless still require optimisation tools for streamlining their oper-

ations. Therefore, an in-depth understanding of PDPs and VRPs, the core optimisation

problems, is necessary for developing a model and solution algorithm that responds to

speci�c requirements and is �exible.

The Pickup and Delivery Problem (PDP) is a variant of the Vehicle Routing Problem

(VRP). In VRP, the problem is to �nd a set of minimum cost routes for a �eet of vehicles

to serve a number of customers. Each customer is visited once. Each vehicle starts and

ends at the same depot. For PDP, every transportation request is associated with a

pickup and corresponding delivery location. A vehicle must also depart from and return

to the same depot.

Research on PDPs is relatively scarce, compared to the body of research that exists

on VRPs. Possible reasons for this discrepancy include the fact that VRPs are embed-

ded in the distribution planning problem of raw materials or products by own �eets.

Although currently VRPs are more widely researched, the outsourcing of transportation

task to LSPs and 3PLs, which must e�ciently solve PDPs, has received more attention

in the last few decades. Another reason PDPs may be neglected is that, compared

1www.paragonrouting.com
2optrak.com
3www.procomp.�
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to the VRP, PDPs are more di�cult to handle due to their underlying problem con-

straints. There are many variants of PDPs, including heterogeneous �eet, maximum

duration time, multiple vehicles, multiple depots, time windows, special requests and

multi-dimensional capacity constraints. It is clear that gaps between theory and prac-

tice exist. Several metaheuristics have been applied to solve variants of PDPs. However,

some authors argue that hybridised metaheuristics can improve the performance of pure

approaches.

As a consequence, there remains ample room for the development of OR techniques

to model and solve real-world optimisation problems especially PDPs. Moreover, PDPs

are NP-hard problems for which no optimal algorithm running in polynomial time is

expected to be found. The e�ort required for solving these problems increases dramat-

ically with the problem size or the number of requests. Ropke (2005) emphasised that

solution methods for rapidly changing business environments have to be fast, robust

and precise. Moreover, these methods must be easy to apply to the speci�c problem

and its variants. Gendreau and Tarantilis (2010) also con�rmed that the performance

of di�erent algorithms on vehicle routing problems depends on e�ciency, e�ectiveness,

simplicity and �exibility.

1.2 Modelling and solution methods

Real-life routing problems incorporate practical complexities in addition to the classi-

cal VRPs and PDPs. E�cient modelling and solution methods are two major elements

required to solve these problems. Classical models of VRPs and PDPs often oversim-

plify the problems occurring in real world. Modelling can be considered both an art

and a science: real-life problems require a model that can tackle complexities arising

in operational planning, the art of modelling comes into play when modellers face the

challenging task of representing real-life constraints. The model should not be un-

necessarily sophisticated. However, the problems tend to be complex in nature. The
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model should be manageable for computer programming. The problems considered in

this thesis are built up from the basic model and incorporates real-life constraints for

modelling variants of PDPs. E�cient methods are then developed to implement these

models with the view to obtaining good solutions in reasonable time.

The Travelling Salesman Problem (TSP), VRP and PDP are categorised into combi-

national optimisation problems where a large number of possible solutions are obtained

depending on problem size. The basic VRP without capacity constraint is the TSP.

In TSP, a salesman must visit n cities exactly once, and start from and return to the

same city. The problem is to �nd a minimum distance route. The TSP is easy to un-

derstand but di�cult to solve. To illustrate the growth rate due to problem size, with

a symmetric TSP problem of size n, the number of possible solutions is n!/2. Then,

if n = 30, the number of possible solutions is approximately 1032. With a computer

evaluating the cost of trillion (1012) solutions per second, it approximately requires 1012

years to obtain all possible solutions. With n = 31, it then require over 1013 years or

an increase of 31 times the possible solutions if just one city is added. It is evidenced

that simple enumeration is prohibitive. The use of OR techniques is inevitable. There

are two major solution methods, exact and heuristic approaches, that are capable of

coping with these problems, but the issues of problem sizes toward computational time

and precision still exist.

One issue of solving the TSP and VRPs is that the computational complexity clearly

increases when the problem sizes become larger. This issue can be explained by means

of a theoretical schema that involves the notion of �polynomially-bounded� algorithms.

The problems which can be solved by the polynomially-bounded algorithms are denoted

by P. In general, the problems in class P can be e�ciently solved to optimality. Unlike

class P, the class NP-hard is a large class of combinatorial problems for which no optimal

algorithm running in polynomial time is expected to be found. Most vehicle routing

and scheduling problems fall into the NP-hard class where e�orts required for solving

the problems increase exponentially with the problem sizes.
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Mathematical models are idealised representations expressed in terms of a mathe-

matical symbol and expression. Similarly, the mathematical model of a business prob-

lem is the system of equations and expressions that describe the essence of the problem.

Decision variables, objective function, constraints and, parameters are used in the math-

ematical model. The problem is to choose the values of the decision variables so as to

maximise or minimise the objective function, subject to the speci�ed constraints. Exact

methods can guarantee to obtain the optimal solution to a decision problem up to a

certain size if su�cient time and space is given. Exact methods are clever in reducing

the search space in order to �nd the optimal solution. However, for NP-hard problems

embedded in transportation planning, obtaining solutions for large instances by exact

methods are time-consuming. The resulting computational time may be unacceptably

long and prohibitive for a rapidly changing business environment. Ropke (2005) solved

PDP with time windows (PDPTW) by using the Branch-and-Cut-and-Price for up to

500 requests with varying success and time.

Heuristics cannot guarantee that the optimal solution is found. However, this so-

lution method is much faster. Robust heuristics must be designed in order to �nd

good feasible solutions. Researchers design heuristics to solve test problem instances

and obtain competitively good solution quality within a reasonable amount of time.

The limitation of heuristics is their capability of escaping from local optimum. In the

last few decades, a special class of heuristics, called metaheuristics, has received con-

siderable attention. Metaheuristics are equipped with mechanisms to jump from local

optima to new points of search space. A metaheuristic can embed problem-domain spe-

ci�c heuristics within its general framework in order to solve many types of problems.

Ropke and Pisinger (2006) solved for PDPTW using Adaptive Large Neighbourhood

Search (ALNS) and obtained good solution quality within reasonable computational

time for large-scale problems. Practitioners prefer using heurisitcs and metaheuristics

to solve real-life problems of realistic sizes arising in industry.
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1.3 Goals

The core problems studied in this thesis are Multi-depot Pickup and Delivery Prob-

lems (MDPDPs), which arise when several depots are considered as covering a large

geographical area of customer locations. Many heuristics and metaheuristics have been

applied to solve di�erent variants of PDPs. This research further investigates the real-

world application of PDPs' variants and is motivated by the fact that current practi-

tioners in logistics businesses employ optimisation tools for managing their �eet with

the view to minimising the total costs. Moreover, in order to expand their businesses

to other regions, an e�ciently computerised approach to transportation planning is

required to support large-scale computations which occur repeatedly as well as to re-

duce human error and the reliance of businesses on highly-skilled employees to obtain

solutions. The e�ciency of an algorithm underpins key success factors of logistics busi-

nesses, such as cost, service level and �exibility. Aided by the optimisation technology,

geographical coverage is also one of the key success factors that the logistics businesses

are concerned. The real-life large geographical coverage problems have MDPDP at their

core.

This thesis focuses on investigating several variants of MDPDPs and developing e�-

cient methods for solving them. The models and algorithms are developed for di�erent

problem formulations by incorporating a number of constraints that vary from Chapter

to Chapter. The goal is to tackle real-life routing problems arising in logistics businesses

by e�ciently implementing the proposed new algorithms developed in the thesis.

1.4 Thesis Overview

This section provides an overview of the thesis.
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� Chapter 2 provides the literature review of Routing and Scheduling Problems,

namely, Travelling Salesman Problems, Vehicle Routing Problems, Multi-depot

Vehicle Routing Problems, Pickup and Delivery Problems, and Rich Vehicle Rout-

ing Problems. The solution methods for tackling the routing and scheduling prob-

lems are discussed. These include exact methods, heuristics, metaheuristics and

hybrid meta-heuristics. For each method, the advantages and disadvantages are

discussed, as well as its application in solving variants of routing and scheduling

problems.

� Chapter 3 examines the Multi-depot Pickup and Delivery Problem (MDPDP),

which involves serving a number of pickup and delivery locations using a hetero-

geneous �eet of vehicles located at several depots. This problem is formulated as

a mixed-integer linear programming problem. The objective is to �nd minimum

distance routes subject to precedence, capacity and maximum-route length con-

straints. This is an NP-hard problem and we use ILOG CPLEX for optimally

solving instances of small size only. A Memetic Algorithm is proposed, imple-

mented and computationally tested on various generated test instances. Compet-

itive near-optimal solutions are reported. The work described in Chapter 3 was

presented at the 24th European Conference on Operational Research, 11-14 July

2010 in Lisbon, Portugal.

� Chapter 4 investigates a Multi-depot Pickup and Delivery Problem with Time

Windows and Special Requests (MD-PDPTW-SR). The objective of this NP-hard

problem is to minimise the routing cost of the �eet of vehicles serving transporta-

tion requests over a large geographical coverage area and subject to customer

requirements. A new Adaptive Memetic Large Neighbourhood Search (AMLNS)

is proposed by hybridising the Adaptive Large Neighbourhood Search (ALNS) and

Memetic Algorithm (MA). The proposed meta-heuristic is computationally tested

on standard benchmark instances from the literature. The computational results
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are promising; the proposed heuristic is capable of obtaining improved feasible

solutions for several instances. The work described in Chapter 4 was presented at

the 9th International Conference on Computational Management Science, 18-20

April 2012, Imperial College London, England, and a more enhanced version of

the AMLNS was also presented at the 25th European Conference on Operational

Research, 8-11 July 2012, Vilnius, Lithuania.

� Chapter 5 demonstrates the development of the Adaptive Memetic Large Neigh-

bourhood Search (AMLNS). The recombination process of key components in the

selected meta-heuristics is used to evolve hybrid meta-heuristics. These hybrids in-

clude single-solution approaches, population-based approaches, and hybridisation

between population- and single- solution approaches. The empirical investiga-

tion of hybrid meta-heuristics are statistically conducted. The emerging hybrid

metaheuristic, the AMLNS, shows the promising results, as used in Chapter 4.

� Chapter 6 examine a routing problem arising in freight transportation. This prob-

lem is an extension of the MD-PDPTW-SR which takes into account the following

additional constraints: semi-trailer assignment, sub-contraction, special requests

for trucks and trailers, and multi-dimensional capacity constraints. We will re-

fer to this as the Integrated Truck and Semi-trailer Routing Problem (ITSRP),

which is widely used to model the essence of real-life routing problems in freight

transportation. Schedulers have to plan the ful�lment of their requests not merely

by routing and scheduling their own �eet, but also by selecting them to be out-

sourced to external carriers in some cases. The entire problem considers three

ful�lment modes, namely, self-ful�lment, sub-contraction on request basis, and

sub-contraction on tour basis. The ITSRP consists of �nding a feasible routing

and scheduling plan at minimal execution cost.

� Chapter 7 formulate the Integrated Truck and Semi-trailer Routing Problem (IT-

SRP) as a Mixed Integer Linear Program (MILP). The MILP is solved by CPLEX.
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A set of test instances are generated to simulate the real-life ITSRP and are

solved using the AMLNS and ALNS. New semi-trailer assignment operators for

the AMLNS and ALNS are proposed. In addition, the route measures of the IVX

are modi�ed according to the changed objective function. The experiments of

results demonstrate that the AMLNS is competitive compared to the ALNS.

� Chapter 8 summarises the research carried out in this thesis and highlights the

thesis's contribution to the �eld. Suggestions for future work are put forward and

aspects of computational implementation in practice are discussed.
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Literature Review

2.1 Routing and Scheduling Problems

Most routing and scheduling problems are combinatorial optimisation problems which

involve the selection of a combination of customers to be visited by feasible routes.

The objective of this section is to introduce several underlying routing and scheduling

variants of the Multi-Depot Pickup and Delivery Problems (MDPDPs). These problems

have been extensively studied in the literature for several decades. Therefore, a large

number of solution methods have been maturely developed. This section will review

the best performing methods available, some of which are used to solve the routing

problems investigated in this thesis.

2.1.1 Travelling Salesman Problem (TSP)

The Travelling Salesman Problem (TSP) is the fundamental problem of all routing

problems. Moreover, it is one of the most intensively studied problems in computa-

tional mathematics. The objective of solving TSP is to �nd a shortest tour through a

given set of cities by visiting each city once and returning to the starting city. The TSP

is proven to be a NP-hard problem. Despite this, a recent state-of-the-art exact al-
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gorithm, the advanced Branch-and-Cut-and-Price algorithms of Applegate (2007), can

optimally solve TSP instances of up to 85,900 cities. The research on TSP is somewhat

saturated and regularly successful. The TSP is a generic core model that captures the

combinatorial essence of most vehicle routing problems.

2.1.2 Vehicle Routing Problems (VRPs)

More than 50 years have elapsed since Dantzig (1959) introduced the VRP through its

application within gasoline delivery. Laporte (2007) claimed that the TSP and VRP

are two of the most popular problems in the study of combinatorial optimisation. VRP

is a generalisation of the TSP, though cities and salesmen in the TSP can be seen as

customers and vehicles in the VRP. Toth and Vigo (2002) discussed the basic version

of VRP, Capacitated VRP (CVRP). In CVRP, all customers correspond to deliveries

and the demand is deterministic, known in advance. The vehicles are identical and

based at a single central depot, and only the capacity restrictions for the vehicles are

imposed. The objective is to minimise the total cost of serving all of the customers. As

an extension of TSP, the CVRP is known to be a NP-hard problem. However, Laporte

(2007) emphasised that the VRP is practically more di�cult to solve than a TSP of

the same size. Since, VRPs consider practical constraints which add di�culties and

complexities to solve the problems.

Toth and Vigo (2002) considered the main variants of the VRPs as Vehicle Routing

Problem with Time Windows (VRPTW), Vehicle Routing Problem with Pickup and

Delivery (VRPPD) and Vehicle Routing Problem with Backhauling (VRPB). In ad-

dition, Golden and Assad (1988) pointed out that the VRPs may be interlinked with

other levels of planning decisions such as the Location-Routing Problem (LRP). The

LRP simultaneously seeks an optimal facility location and route design, interrelating

the routing problem and location-allocation problem. Vehicle routing problems can

be represented by mathematical models such as Mixed Integer Linear Programming
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(MILP). If time window constraints are imposed on the vehicle routing problem, it is

called a Vehicle Routing Problem with Time Windows (VRPTW). A more complicated

version of a time interval occurs when a task requires a speci�ed number of service times

over a certain duration of time, such as a week, and constraints can incorporate the

pattern of days for serving those tasks. This problem is called a Period Vehicle Routing

Problem (PVRP). Pickup and delivery tasks for the same vehicle explicitly determine

the task precedence relationship. The vehicle routing problem with a precedence rela-

tionship is called a Vehicle Routing Problem with Pickup and Delivery (VRPPD). The

Vehicle Routing Problem with Backhauling (VRPB) consists of line-haul customers,

who require a given quantity of products to be delivered, and backhaul customers, from

whom a given quantity of inbound product must be picked up. Other possible variants

are a heterogeneous �eet, multiple depots and a precedence relationship between paired

customer locations.

Mester and Bräysy (2005) proposed an e�ective metaheuristic algorithm for the

VRPTW called Active Guided Evolution Strategies (AGES). The algorithm combines

the strengths of the well-performing guided local search and evolution strategies. Com-

putational experiments were carried out on 302 benchmark problems. The authors

obtained improved feasible solutions in 86% of all test instances within a reasonable

time.

Pisinger and Ropke (2007) presented a uni�ed heuristic which is able to solve �ve

di�erent variants of VRPs: VRPTW, CVRP, MDVRP, SDVRP, and OVRP. All prob-

lem variants can be transformed into a Rich Pickup and Delivery Problem with Time

Windows. The Adaptive Large Neighbourhood Search (ALNS) applied was able to im-

prove 183 best known solutions out of 486 benchmark tests. The heuristic also shows

promising results for a large class of vehicle routing with backhauls.

Vidal et al. (2013) proposed a Uni�ed Hybrid Genetic Search (UHGS) metaheuristic

for solving 29 vehicle routing variants, 42 benchmark instances sets, with 1099 instances

overall. The UHGS combines four main optimisation methodologies: 1) hybridisation

39



Chapter 2 Literature Review

of genetic algorithm with local search procedures; 2) the use of penalised infeasible

solutions, managed through two distinct sub-populations during the search; 3) a so-

lution representation without trip delimiters; 4) an advanced population management

method with diversity-and-cost objective for solution evaluation. The UHGS matches

or outperforms the current state-of-the-art problem-tailored algorithms. Overall, 1046

of the 1099 best known solutions have been either retrieved or improved.

2.1.3 Pickup and Delivery Problems (PDPs)

Lokin (1978) introduced the precedence constraints, which are required to formulate

Pickup and Delivery Problems (PDPs) into the traditional TSP. Berbeglia et al. (2006)

stated that PDPs are class of VRPs in which goods or passengers are transported

between an origin and a destination. Lenstra and Kan (1981) have con�rmed that the

PDP is a NP-hard problem. Savelsbergh and Sol (1995) provided uni�ed notation of

most PDPs and a brief overview of existing solution methods until 1995.

Parragh et al. (2008) conducted a comprehensive survey on Pickup and Delivery

Problems (PDPs). They classi�ed the PDPs into two categories. The �rst category,

Vehicle Routing Problems with Backhauls (VRPB), deals with the transportation of

products from the depot to line-haul customers and from backhaul customers to the

depot. The second category refers to transportation between customers where goods

are moved from pickup to corresponding delivery locations, denoted as Vehicle Routing

Problem with Pickups and Deliveries (VRPPD). Parragh et al. (2008) classi�ed the

VRPPD into two subclasses. The �rst subclass refers to situations where pickup and

delivery locations are unpaired. In other words, identical products are considered.

Each unit picked up could be used to ful�l the demand of any delivery customer. Both

multi- and single-vehicle cases were studied in the literature. The second VRPPD

subclass comprises the classical Pickup and Delivery Problem (PDP) and the Dial-A-
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Ride Problem (DARP). Both types consider transportation associated with an origin

and a destination, resulting in pairs of pickup and delivery points. The PDP deals with

the transportation of goods while the DARP is concerned with passenger transportation.

This di�erence is usually expressed in terms of additional constraints or objectives.

However, the mathematical formulation of DARP and PDP shares some characteristics

and can be used interchangeably. In this thesis, the PDP is focused because of our

interest in its various applications for transportation companies.

Li and Lim (2001) proposed a metaheuristic with an annealing-like restart strategy

to guide the local search in three neighbourhoods and solve the general m-PDPTW. A

K-restarts annealing procedure with tabu-list is applied to avoid cycling in the search

process. The authors generated 56 problem instances of 100 customers from Solomon's

benchmark instances for VRPTW. The computational experiments on six di�erent data

sets show that the algorithm is e�cient for solving practical-sized multiple PDPTW

problem instances with various distribution properties.

Several authors proposed e�cient metaheuristics to solve the variants of PDPTW,

such as ALNS of Ropke and Pisinger (2006) and Memetic Algorithm of Nagata and

Kobayashi (2010). These authors were able to improve the best known solutions of Li

and Lim's (2001) benchmark instances.

2.1.4 Rich Vehicle Routing Problems

Hasle and Kloster (2007), the founders of a generic VRP solver, discussed the variants

of rich VRPs for industrial applications. The strengths of the generic VRP solver, SPI-

DER, are its modelling �exibility and solution quality. The variants were categorised

into: (1) �eet, vehicle, driver; (2) depots, tours, start, and stop locations; (3) order

types, type of operation; (4) distances, travel times, and service times; (5) waiting

time, time windows and capacity constraints; (6) idiosyncratic constraints and objec-
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tives; (7) stochastic and dynamics and (8) response time. The authors con�rmed that,

for industrial problem sizes, the heuristic approach is the only viable approach. The

SPIDER heuristic approach is based on Local Search using construction, tour depletion,

and iterative improvement. Several variants of VRPs such as CVRP, DVRP, VRPTW,

PDPTW, FSMVRPTW were tested. The SPIDER found new best known solutions

and obtained competitive results in comparison to other state-of-the-art heuristics.

Goel (2008) introduced a general model capable of handling the complexities evolv-

ing from various characteristics arising from real-life vehicle routing problems. The

model is termed the General V ehicle Routing Problem (GV RP ). The real-life re-

quirements include the employment of external carriers, route restriction, pickup and

delivery requests, drivers' working hours. Fleet-telematics, dynamic VRP and Large

Neighbourhood Search algorithms were also discussed. The number of case studies and

computational studies was investigated.

Drexl (2012) categorised the dimensions of richness in VRPs according to requests,

�eet, route structure, objectives and scope of planning. The author presented an

overview of these dimensions of richness in real-world VRPs, as shown in 2.1. Trends in

VRP research move toward the richer problems and more robust solution methods that

work well for a broad range of problems both in terms of running time and solution

quality. The author claimed that the most successful heuristics are so-called hybrid

procedures that combine several classical ones. Self-adaptation and hyperheuristics,

metaheuristics and parallel algorithms are among the active areas of VRPs' research.

Schmid et al. (2013) provided basic models for the related variants of VRPs in

the context of supply chain management. These include lot-sizing, scheduling, packing,

batching inventory and inter-modality. The mathematical models and solution methods

were also discussed.
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2.2 Logistics Outsourcing Models

Optimisation techniques are developed alongside logistics outsourcing models. The evo-

lution of logistics outsourcing plays an important role in advancing models and algo-

rithms by motivating researchers to respond to industrial needs. Routing and scheduling

problems are embedded in the planning process of these models. In this section, the

terminology and routing and scheduling problems of logistics outsourcing models are

described.

Langley et al. (2000) conducted a comprehensive study of the use of third-party

logistics (3PL) services in the United States. This comprehensive study had been an-

nually reported until 2013. Regarding logistics outsourcing models, the study revealed

at one end of the spectrum, clients keep their logistics in-house, or so-called insourcing.

However, once a client made the decision to outsource logistics, the outsourced services,

geographic coverage and expected bene�ts were all over the map. In Figure 2.2, Langley

et al. (2004) illustrated the changes in key attributes as the 3PL relationship models

evolve in Figure 2.2.

Figure 2.2: Logistics Outsourcing Models(Langley et al. 2004, p.23)

Gattorna, Selen and Ogulin (2004) de�ned the terms LSP, 3PL, LLP, 4PL as follows:
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LSP Logistics Service Provider: any organisation that provides a range of logistics

service capabilities to participating members of industry supply chains.

3PL Third Party Logistics: an external party that performs all or part of the

corporate logistics activities on behalf of the shipper, such as transportation,

warehousing and inventory management

LLP Lead Logistics Provider: a service provider that combines and utilises ad-

vanced capabilities to optimise logistics and supply chain activities across

multiple (subordinate) 3PLs/LSPs

4PL Fourth Party Logistics: a new business model, integrating resources, capa-

bilities and the technology of the lead enterprise(s) and other organisations

with complementary capabilities, to design, build, and run comprehensive

supply chain solutions.

In Figure 2.3, Langley et al. (2009) showed the evolution of the logistics service provider

from a traditional model o�ering individual, mostly execution-based, services, through

the 3PL and 4PL/lead logistic provider model to a full orchestrator of supply chain

services.

Figure 2.3: 3PLs Are Evolving Into Supply Chain Orchestrators(Langley et al. 2009, p.34)
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In Figure 2.3, a full orchestrator co-develops a supply chain coordination strategy in

concert with the shipper and then manages the complete cycle of supply chain activities.

When logistics providers evolve from one stage to the next, they assume more control

and responsibility for the customer's supply chain.

Bhatti et al. (2010) mentioned that an increasing number of 3PLs led to chaos of

another kind. The LLP is a 3PL with advantages of scale and other abilities which

allow it to act as the lead 3PL. It serves as a single point of contact in regards to

the organisation and all the 3PLs it has hired. The LLP may or may not have assets

e.g. trucks, but they are capable of integrating and co-ordinating the activities of the

other 3PLs. Gattorna, Ogulin and Selen (2004) argued that LLPs are primarily the

same as 3PLs providers but equipped with extra visibility tool, optimisation modelling

for decision support purposes, and payment rewarded by a fee and tari�, linked to

some mathematical modelling of costs, and corresponding bene�ts. For example, i2

technologies of JDA1 are used for LLPs' Transportation Management System (TMS).

The Load Planning and Optimisation feature of the TMS enables users to plan multi-

site, supports for private and third-party carrier environments and provides advanced

carrier selection. These functions can improve asset utilisation, service levels, and

planner productivity. Moreover, they can reduce freight expenses and incremental costs.

Vehicle routing and scheduling are the core transportation planning problems for

insourcing. When considering large LSPs, 3PLs, and LLPs, the Multi-Depot Pickup

and Delivery Problem or its variants are embedded.

2.3 Solution Methodology

In the 1950s, Dantzig and Ramser (1959) proposed the �rst mathematical programming

formulation and algorithmic approach for the solution of the gasoline delivery problem.

A few years later, several exact algorithms and heuristic algorithms were proposed for

1www.jda.com
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the optimal and approximate solution of di�erent version of the VRP. Exact algorithms

and heuristics are two major classes of solution methods for solving variants of TSP,

VRPs and PDPs. A special class of heuristics that has been successful in the last two

decades is meta-heuristics. Moreover, over the last few years, hybrid meta-heuristics

have received special attention for solving practical problems. These solution methods

are described in the following order: exact methods, heuristics, metaheuristics and

hybrids.

2.3.1 Exact Methods

The Vehicle Routing Problem and its variants can be formulated as Integer Program-

ming (IP), Mixed Integer Programming (MIP) and Mixed Integer Linear Programming

(MILP). Due to the fact that these problems are all NP-hard, the number of �nite

solutions in the enumeration procedure for �nding an optimal solution can be very

large. Hillier and Lieberman (2010) suggested that any enumeration procedure should

be cleverly structured so that only a fraction of feasible solutions needs to be exam-

ined. Toth and Vigo (2002) stated that many exact approaches for the capacitated

VRP (CVRP) are inherited from the extensive and successful work done for the exact

solutions of TSP. The most e�ective exact approaches for CVRP are mainly Branch-

and-Bound algorithms. The Branch-and-Cut algorithm has been extremely successful

in �nding optimal solutions for large instances of TSP. It mainly uses a combination of

three kinds of techniques: automatic problem pre-processing, the generation of cutting

plane and clever branch-and-bound. The PDPTW and variants studied in this thesis

involve solving MILPs. A MILP formulation is shown in Figure 2.4.
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Figure 2.4: Standard Mixed-Integer Linear Programming (MILP) Formulation

Simplex Method is a general and algebraic procedure for solving linear program-

ming problems. The MILP partially consists of continuous decision variables in linear

programming. Hillier and Lieberman (2010) summarised the Simplex Method as a

method comprised of initialisation, optimality test and iteration. The Simplex Method

is extremely e�cient in practice. However, one key limitation that prevents many more

applications is the method's assumption of divisibility, which requires non-integer val-

ues to be used for decision variables. In many practical problems, decision variables

have some integer values. The Simplex Method is applied to MILPs in solving the

LP relaxation problem, obtained by deleting the integer restriction. Several exact al-

gorithms such Branch-and-Bound, Branch-and-Cut, Branch-and-Price methods use a

sequence of LP relaxations to solve the overall MILP problem e�ciently. In order to

solve optimisation problems by exact methods, IBM ILOG CPLEX optimiser 2, an elite

state-of-the-art software package, is widely used. The CPLEX provides �exible, high-

performance mathematical programming solvers for linear programming, and mixed

integer programming.

Branch-and-Bound (B&B) approach applies the concept of divide and conquers

to solve integer programming and mixed integer programming. Hillier and Lieberman

(2010) suggested that the original �large� problem is too di�cult to be solved directly;

it is, therefore, divided into smaller and smaller sub-problems until these sub-problems

can be conquered. Dividing (branching) is done by partitioning the entire set of feasible

solutions into smaller subsets. After branching, new sub-problems are generated. Then,

2http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
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the LP relaxation of these problems is solved by the Simplex Method to obtain an

optimal solution. Conquering (fathoming) is carried out partially by bounding how

good the best solution in the subset can be and then discarding the subset if its bounds

indicate that it cannot possibly contain an optimal solution for the original problem.

The algorithm stops when all nodes of the search tree are either pruned or solved. Toth

and Vigo (2002) presented B&B algorithms for the capacitated VRP.

Branch-and-Cut (B&C) is equipped with the capability of solving very large

problems. Hillier and Lieberman (2010) discussed early reports of solving as many

as a couple thousand variables. B&C mainly uses a combination of three kinds of

techniques: automatic problem pre-processing, cutting plane generation, and clever

Branch-and-Bound techniques. The automatic problem pre-processing involves a �com-

puter inspection� of the user-supplied formulation to spot reformulations which fall

into three categories: �xing variables, eliminating redundant constraints and tighten-

ing constraints. The generation of cutting planes can reduce the feasible region for

the LP relaxation without eliminating feasible solutions. The cutting plane is a new

functional constraint that reduces the feasible region for the LP relaxation without

eliminating feasible solutions for the MILP. The B&C approach generates many cut-

ting planes before applying clever branch-and-bound techniques. As a result, LP re-

laxation is tightened. In other words, Ropke (2005) described that the B&C method

is to simply to generate valid, violated inequalities throughout the branch and bound

tree and not only in the root node. The valid inequalities are typically selected from

some preselected families of valid inequalities. Hillier and Lieberman (2010) pointed

out that the combination of cutting planes and branch-and-bound techniques provides a

powerful algorithmic approach for solving large-scale problems. Ropke (2005) proposed

Branch-and-Cut Algorithms for solving the PDPTW e�ciently.

Branch-and-Price (B&P) focuses on column generation to solve large scale Mixed

Integer Programming (MIP) problems. Barnhart et al. (1998) discussed that the phi-

losophy of Branch-and-Price is similar to that of Branch-and-Cut except that the pro-
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cedure focuses on column generation rather than row generation. Cutting and pricing

are complementary procedures for tightening an LP relaxation. A sub-problem, called

the pricing problem, is a separation problem for the dual LP that is solved in order to

identify columns to enter the basis. If such columns are found, the LP is reoptimised.

Branching occurs when no column price out to enter the basis and the LP solution

does not satisfy the integral conditions. Branch-and-Price allows column generation

to be applied throughout the Branch-and-Bound tree. It is also possible to combine

the Branch-and-Cut and Branch-and-Price paradigms, the so-called Branch-and-Cut-

and-Price algorithm, to obtain even tighter lower bounds. Ropke and Cordeau (2006)

introduced a Branch-and-Cut-and-Price algorithm with additional valid inequalities for

PDPTW.

Dynamic Programming (DP) provides a systematic procedure for determining

the optimal combination of decisions. Hillier and Lieberman (2010) described the DP

as an approach designed to �nd the optimal policy for the overall problem, i.e., a

prescription of the optimal policy decision at each stage for each of the possible states.

A problem can be divided into stages, with a policy decision required at each stage. DP

requires formulating an appropriate recursive relationship for each individual problem.

The solution procedure starts at the end and moves backward stage by stage- each

time �nding the optimal policy for that stage- until it discovers the optimal policy

starting at the initial stage and yielding an optimal solution for the entire problem.

Applying the DP produce signi�cant computational savings of time and space over

using exhaustive enumeration. Hang et al. (2003) solved linear relaxation to optimality

by using an exact dynamic programming algorithm to solve the sub-problem exactly in

the practical pickup and delivery problem.
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2.3.2 Heuristics

Laporte (2000) and Toth and Vigo (2002) classi�ed the heuristic methodology of VRP

into either classical heuristic or meta-heuristic approaches. Toth and Vigo (2002) ex-

pressed that even though classical heuristics perform a relatively limited exploration

of the search space, they typically produce good quality solutions within a reasonable

time. Moreover, most classical heuristics can be easily extended to account for the

diversity of constraints encountered in real-life contexts. The solutions obtained by

classical heuristics, however, are sometimes trapped in local optima, as shown in Figure

2.5.

Figure 2.5: Local optimum and global optimum in a search space (Talbi 2009, p.91)

Figure 2.5 represents the local optimum and global optimum in a search space

according to Talbi (2009). For Figure 2.5, Talbi (2009) stated that a solution s ∈ S is a

local optimum if it has a better quality than all its neighbourhood; that is, f(s) ≤ f(s
′
)2

for all s
′∈ N(s). However, classical heuristics have no mechanism to jump from local

optima to a new point of search.

Hosny (2010) stated that heuristic algorithms refer to the experience-based, common-

sense approach to problem solving. The search for a good problem solution is usually

divided into two phases: construction and improvement. The construction refers to the
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process of creating one or more initial feasible solutions that will act as a starting point.

The improvement attempts to modify the starting solution(s) to better solutions.

Talbi (2009) described that, Local Search starts with a given initial solution. At

each iteration, the heuristic replaces the current solution by a neighbour that improves

the objective function as shown in Figure 2.6. In Figure 2.6, the search stops when all

candidate neighbours are worse than the current solution i.e. local optimum is reached.

Figure 2.6: Local search (steepest descent) behavior in a given landscape (Talbi 2009, p.122)

Solomon (1987) presented several construction heuristics for solving vehicle rout-

ing and scheduling problems with time windows. The tour-building heuristics can

be categorised into sequential and parallel methods. Sequential procedures construct

one route at a time until all customers are scheduled, while parallel procedures con-

struct a number of routes simultaneously. The number of construction heuristics was

discussed, namely, Saving Heuristics, Time-oriented-Nearest-Neighbour Heuristic, In-

sertion and Time-Oriented Sweep Heuristic. In addition, the time feasibility condition

as a reduction rule of improving computational time was shown. The computational

results indicate that the insertion I1 heuristic proved to be very successful. Potvin and

Rousseau (1993) discussed a parallel version of heuristic I1 proposed in Solomon (1987).

First, each route is initialised with a di�erent �seed� customer. Then, the remaining

unscheduled customers are sequentially inserted into any route until all customers are

routed. Liu and Shen (1999) con�rmed that several parallel heuristics are better per-
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formed than sequential insertion heuristics. Regret heuristic is one of the well-known

parallel insertion heuristics, developed by Potvin and Rousseau (1993), for solving the

VRPTW. The regret-heuristic is equipped with a kind of �look-ahead information� so

that the placement of hard requests is not postponed to the late iterations. Ropke and

Pisinger (2006) and Pisinger and Ropke (2007) applied di�erent regret heuristics for

e�ectively solving variants of VRPs.

For improvement procedures, Potvin (1996) mentioned that among the local im-

provement procedures, the k − opt exchange heuristics are the most widely used, in

particular, the 2-opt, 3-opt, Or-opt, and Lin-Kernighan heuristics. Potvin (1996) illus-

trated an example of a 2-opt exchange in Figure 2.7.

Figure 2.7: Exchange of links (i, k),(j, l) for links (i, j), (k, l)

In Figure 2.7, the paths (i, k) and (j, l) are selected for 2-opt operator. The paths are

then exchanged and become (i, j), (k, l). It is clear that the total distance may improve

from applying this operator. Typically, exchange heuristics are applied iteratively until

a local optimum is found. In other words, a tour cannot be improved further via

the exchange heuristic under consideration. The 3-opt, Or-opt, and Lin-Kernighan

heuristics are extensions of the 2-opt operator.

However, heuristics are often trapped in local optimum. Therefore, several mecha-

nisms that are capable of escaping from local optimum have been developed in the last

decades. These mechanisms are embedded in meta-heuristic approaches equipped with

ways to jump from local optima e�ectively and seen as a class of heuristics.
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2.3.3 Meta-heuristics

Hillier and Lieberman (2010) stated that the meta-heuristic approach is a general kind

of solution method that organises the interaction between classical heuristic procedures

and higher level strategies to create a process that is capable of escaping from local

optima and performing a robust search of a feasible region. Di�erent meta-heuristic

methods execute the escape in di�erent ways. Talbi (2009) discussed that two contra-

dictory criteria namely diversi�cation and intensi�cation must be taken into account.

The diversi�cation refers to the exploration of the search space while the intensi�cation

refers to the exploitation of the good solutions found. Promising regions are the search

space where good solutions are located. In intensi�cation, the promising regions are ex-

plored more thoroughly in order to �nd better solution. In diversi�cation, non-explored

regions should be visited to ensure all regions of the search space are explored. Blum

and Roli (2003), Talbi (2009), and Ombuki and Hanshar (2009) con�rmed that �nding a

good balance between diversi�cation and intensi�cation is essential for meta-heuristics.

The metaheuristic must both quickly identify regions in the search space with high

quality solutions and not to waste too much time in regions of the search space which

are either already explored or which do not provide high quality solutions.

Blum and Roli (2003) discussed di�erent ways to classify and describe metaheuristics

such as nature-inspired vs. non-nature inspired and population-based vs. single point

search. Blum and Roli (2003) and Talbi (2009) described how the population-based

and single point search are classi�ed by the number of solutions used at the same time.

Metaheurisitcs based on a single solution are called trajectory methods and encompass

local search based algorithms, such as Simulated Annealing, Tabu Search, Iterated

Local Search, and Variable Neighbourhood Search. Single-solution approaches work on

a single solution at each time-step, describing a curve in the search space. In contrast,

population-based metaheuristics perform a search process which describes the evolution

of a set of points in the search spaces. The population-based meta-heuristics that are
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widely applied are Genetic Algorithms (GA), Ant Colony Optimisation (ACO), and

Particle Swarm Optimisation (PSO).

Single-solution based Metaheuristics

Simulated Annealing (SA), introduced by Kirkpatrick et al. (1983), is a widely

used meta-heuristic approach that has been successfully in tackling many combinatorial

optimisation problems. Talbi (2009) explained that SA applies the concepts of statis-

tical mechanics whereby the annealing process requires heating and slowly cooling a

substance to reach a strong crystalline structure. The SA is a stochastic algorithm en-

abling under some conditions the degradation of a solution. The objective is to escape

from local optima and delay the convergence.

Figure 2.8: Simulated annealing escaping from local optima (Talbi 2009, p.127)

Figure 2.8 shows the way SA escapes from local optima according to Talbi (2009).

The author explained that �the higher the temperature, the more signi�cant the prob-

ability of accepting a worst move�. At a given temperature, the lower the change of the

objective function, the more signi�cant the probability of accepting the move. A better

move is always accepted. The temperature is steadily decreased according to a cooling

schedule. At the end of the search, few non-improving solutions are accepted. Other
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similar methods include Threshold Accepting, Record-to-Record Travel, the Great Del-

uge Algorithm and Demon Algorithms. Ropke and Pisinger (2006) and Pisinger and

Ropke (2007) applied SA and obtained a good solution quality for many variants of

VRPs and PDPTW.

Tabu Search (TS) is a well-known meta-heuristic method introduced by Glover

(1986). Glover and Kochenberger (2003) explained that TS accepts non-improving

moves to escape from local optima when all neighbours are non-improving solutions.

When a better neighbour is found, it replaces the current solution. However, when

the local optimum is reached, the search carries on by choosing a candidate that is

worse than the current solution. The best solution in the neighbourhood is selected as

the current solution even if non-improving solutions are found. The TS introduces the

concept of tabu list to avoid cycles. Tabu list constitutes the short-term memory that

manages a memory of the solutions or moves recently applied. It can avoid cycles by

discarding the neighbours that have been previously visited. It memorises the recent

search trajectory. In addition, medium-term memory can be applied to intensify the

search. Moreover, the long-term memory can be applied for diversi�cation. Glover and

Kochenberger (2003) con�rmed that the TS practically provides solutions very close to

optimality and is among the most e�ective ways to tackle NP-hard problems. Cordeau

et al. (1997) also applied the Tabu Search to e�ciently solve the MDVRP.

Iterated Local Search (ILS) is a simple but e�ective meta-heuristic, introduced

by Martin et al. (1991). Stutzle (1999) described how the ILS applies local search

techniques to an initial solution until it reaches a local optimum. Then, it perturbs the

solution before restarts the local search. Perturbation is a mechanism used to escape

from the basis of the attraction of the local optimum. The acceptance criterion is the

conditions that the new local optimum must satisfy to replace the current solution.

Talbi (2009) illustrated the principle of ILS in Figure 2.9.
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Figure 2.9: Iterated Local Search escaping local optimum (Talbi 2009, p.147)

Talbi (2009) suggested, �the perturbation operator may be seen as a large random

move of the current solution�. The operator should keep some part of the solution and

perturb strongly another part of the solution in order to move, hopefully, to another

basin of attraction. Blum and Roli (2003) argued that too small a perturbation might

not enable the system to escape from local optimum. However, too strong a perturba-

tion would make the algorithm similar to a random restart local search. Ibaraki et al.

(2005), Ibaraki et al. (2008), Hashimoto et al. (2006), Hashimoto et al. (2008) and

Subramanian (2012) applied the ILS to e�ectively solve several variants of VRPs.

Variable Neighbourhood Search (VNS) was introduced by Mladenovic and

Hansen (1997). The authors described how the VNS framework provides a systematic

change of neighbourhood in a local search algorithm. It increasingly explores distant

neighbourhoods of the current incumbent solution and escapes from the solution to

a new one if and only if an improvement has been made. In this way, favourable

characteristics of the incumbent solutions are already at their optimal value and may be

kept and used to obtain promising neighbourhoods. In addition, a local search routine

is applied repeatedly to move from these neighbouring solutions to local optima. Blum

and Roli (2003) explained that VNS's main cycle is composed of three phases: shaking,

local search and move. The objective of the shaking phase is to perturb the solution to
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obtain a new good starting point for the local search. The choice of neighbourhoods of

systematically increasing cardinality yields a progressive diversi�cation. Polacek et al.

(2004) and Kytojoki et al. (2007) applied the VNS for solving variants of VRPs.

Population-Based Metaheuristics

Genetic Algorithm (GA) was �rst developed by John Holland in the 1970s to

investigate the adaptive processes of natural systems. The concept of GA is to simulate

the biological evolution through natural selection, crossover, mutation, and survival of

the �ttest in living organisms. Goldberg (1989) described how a population of strings

or chromosomes is used to represent the solutions. The chromosomes are evaluated

according to their objective function of fitness and are selectively mated to reproduce

offspring through the use of genetic operators: crossover, mutation. The recombi-

nation of strings is operated by crossover allowing a rapid exploration of the search

space by producing large jumps while attempting to improve the �tness of o�spring.

Mutation allows a small amount of random search to a single chromosome to main-

tain the diversity in the population. The survival of the �ttest or replacement ensures

that the overall solution quality increases from one generation to the next generation.

Blum and Roli (2003) discussed the use of a population and mutation ensures an ex-

ploration of the search space. Although, the selection, crossover, and replacement

constitutes the exploitation of good solutions, the intensive use of these operators can

cause premature convergence or the lack of population diversity. Goldberg (1989),

Rocha and Neves (1999), and Lozano et al. (2008) con�rmed that the population is

crucial to a GA's ability to explore the search space. The variants and extensions of

GAs include Evolution Strategies, Evolutionary Programming, and Genetic Program-

ming. Thangiah and Salhi (2001) and Baker and Ayechew (2003) applied GAs to solve

variants of VRPs e�ectively.
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Ant Colony Optimization (ACO) is a recent meta-heuristic introduced by Marco

Dorigo and his colleagues in the 1990s. Dorigo and Stutzle (2004) stated that the con-

cept of ACO is to imitate the cooperative behaviour of real ants performing complex

tasks such as transporting food and �nding the shortest paths to food sources. A chem-

ical trail or pheromone is left on the ground to guide the other ants toward the target

points. The communication mechanism is that the larger the amount of pheromone on

a particular path, the larger the probability that other ants select the path. For a set

of ants, paths are chosen according to the smelt quantity of pheromone. Goss et al.

(1989) illustrated the process of an ant colony searching for an optimal path between

their food and their nest in Figure 2.10.

Figure 2.10: Inspiration from an ant colony searching an optimal path between the food and
the nest (Talbi 2009, p.241)

Figure 2.10 illustrates an experiment carried out by Goss et al. (1989), as shown in

Talbi (2009): when ants face an obstacle on the paths, with less travel time, the ants

will end up leaving a higher level of pheromone. The higher the pheromone trail that

is left, the more other ants follow. Eventually, the shortest path is selected. Blum and

Roli (2003) suggested that the component of ACO managing the update of pheromone

values has the e�ect of changing the probability distribution for sampling the search.

The component of ACO is guided by the objective function and also in�uenced by

a function applying the pheromone evaporation. This component is to intensify the

search while there is a diversifying component that depends on the greediness of the
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pheromone update. Pellegrini et al. (2007) and Yu et al. (2009) applied the ACO for

solving variants of VRPs.

Particle Swarm Optimisation (PSO) is a population-based search method pro-

posed by Kennedy and Eberhart (1995). The authors described that the PSO simulates

the social behaviour and movement of natural organisms such as bird �ocking and �sh

schooling to �nd a place with enough food. Talbi (2009) illustrated the decision space

of particle swarm in Figure 2.11.

Figure 2.11: Particle swarm with their associated positions and velocities

In Figure 2.11, Talbi (2009) explained that, at each iteration, a particle moves from

one position to another in the decision space. Optimisation takes advantage of the

cooperation between the particles. The success of some particles will in�uence the be-

haviour of their peers. Each particle successively adjusts its position toward the global

optimum according to the two conditions: the best position visited by it and the best

position visited by the whole swarm. Particle neighbourhood de�ne the social in�uence

or the degree of communication between the particles. Using large neighbourhoods,

more individuals are attracted to the best global solution: large neighbourhoods en-

courage the intensi�cation of the search toward the best global solution. When using

small neighbourhoods, more diversi�cation of the search space is carried out. Ai and

Kachitvichyanukul (2009) applied the PSO to solve the VRP with simultaneous Pickup
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and Delivery Problem.

2.3.4 Hybrid Meta-heuristics

Over the last few years, hybrid meta-heuristics has received more attention, due to

its success in solving combinatorial optimisation problems, and is now seen as a class

of heuristics. Blum et al. (2011) explained that the main motivation behind the hy-

bridization of di�erent algorithms is to exploit the complementary strengths of di�erent

optimisation strategies and gain the advantage from synergy e�ect. The authors em-

phasised that developing an e�ective hybrid approach is in general a di�cult task which

requires expertise from di�erent areas of optimisation. Talbi (2009) discussed that the

design of hybrid metaheuristics involves issues such as functionality and architecture of

the algorithm. Blum and Roli (2003) suggested that one of the most popular means

of hybridisation concerns the use of trajectory methods in population-based methods,

such as GAs and ACOs using local search procedures. The population-based methods

are better in identifying promising areas in the search space, while trajectory methods

are better in exploring promising areas in the search. Blum et al. (2011) discussed that

the current state of research does not provide conclusive answers about appropriate hy-

brid metaheuristics working well for a particular type of problem. For the development

of well-performing algorithms, Raidl (2006), Blum et al. (2011) and Sorensen (2012)

suggest the following: 1) a careful literature search with the aim of identifying the most

successful optimisation approaches for the problem at hand or for similar problems; 2)

the study of di�erent ways of combining the most promising features of the identi�ed

approaches.

Talbi (2009) and Blum et al. (2011) identi�ed one successful way of using meta-

heuristic hybrids, combining metaheuristics with (complementary) metaheuristics. The

authors encouraged the use of population-based approaches hybridised with single-

solution approaches. Talbi (2009) refers to this hybrid as a Low-level Teamwork Hybrid

(LTH). GAs make use of local search methods, called Memetic Algorithms (MAs), which
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are usually successful in solving combinatorial optimisation problems. For variants of

VRPs, MAs are also well-known for achieving a high performance level, for example

that of Vidal et al. (2013) Nagata et al. (2010), Nagata and Kobayashi (2010). The

Adaptive Large Neighbourhood Search (ALNS) using SA and Large Neighbourhood

Search (LNS) are widely adopted due to their solution quality and speed for solving a

wide range of VRPs. Therefore, this section is devoted to the design issues of this type

of metaheuristic hybrid from di�erent perspectives.

Concerning the philosophy of engineering design principles, Goldberg (2002) dis-

cussed the systematic approaches for invention or design for genetic algorithms and

other innovating machines such as airplanes. Conceptual engineering are comprised

of three tools: design decomposition, modelling middle and integration principles. In

brief, decomposition refers to breaking large problems into smaller ones. It is a com-

monplace technique in design to attempt to build subsystems that correspond to the

sub-function or so-called functional requirements. For example, the lift, control, and

propulsion subsystems of an aircraft correspond to those sub-functions or functional

requirements of an aircraft. The modelling middle investigates models that are little

(less complex), applicable (small-size) and facet-wise (small number of facets). The

integration principle is used to unify little models into dimensional scales such as time.

Goldberg (2002) outlined the GA design theory as follows: 1) Know what GAs

process-building blocks (BBs) are; 2) Know the BB challenger-BB wise di�cult prob-

lems; 3) Ensure an adequate supply of raw BBs; (4) Ensure an increased market share

for superior BBs; 5) Know BB takeover and convergence times; 6) Make decisions well

among competing BBs; 7) Mix BBs well. It should be noted that building blocks (BBs)

refer to well-adapted sets of features that form subcomponents of e�ective solutions.

The basic idea is that GAs (1) identify building blocks or subassemblies of good so-

lutions and (2) recombine di�erent subassemblies to form high performance solutions.

The author stated that selecting and combining the good features of two or more ap-

proaches can promote intelligent jumping while the combination might be better than
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either individuals. In addition, when selection and mutation are applied, they become a

form of a hill-climbing mechanism, where a mutation creates variants in the neighbour-

hood of the current solution, called continual improvement. Continuing to experiment

in a local neighbourhood is a powerful means of potential improvement. A GA will be

called competent if it can solve hard problems, quickly, accurately, and reliably.

Similar to Goldberg (2002), Sorensen's (2012) outline of the design principles of

metaheuristic hybrids is two-fold: 1) focus on the problem; 2) analyse your method.

To focus on the problem, the following suggestions are made: 1) Do not develop a

method without a problem; 2) Study the problem in detail; 3) Know the literature

on the problem and on related problems; 4) Study the relationship between methods

from the literature and the problem; 5) Use the best parts from existing methods for

the problems (e.g. metaheuristics). To analyse the method, the following issues are

suggested: 1) Deconstruct the methods; 2) Make sure each component matters; 3)

Find the best parameter settings; 4) Use statistics; 5) Try to �nd out why and how

the methods work; Use the best parts from di�erent sub-areas of optimisation (e.g.

metaheuristics).

Blum et al. (2011) emphasised that it is important that the contribution of di�erent

components to the algorithms' performance must be identi�ed by considering theoreti-

cal models for describing properties of hybrid metaheuristics and using an experimental

methodology. Blum and Roli (2003) introduced a framework, called the I&D (Inten-

si�cation and Diversi�cation) frame to put di�erent intensi�cation and diversi�cation

components into relation with each other. Although the metaheuristics are di�erent,

the mechanisms e�ciently explore search spaces which are all based on intensi�cation

and diversi�cation. Chapter 5 will show how a meta-heuristic hybrid is constructed.

Goldberg (2002) stated that the design of hybrid metaheuristics should combine

strengths, and eliminate weaknesses among several methods. Mahfoud and Gold-

berg (1995) proposed Parallel Recombination Simulated Annealing by incorporating

strengths and eliminating weaknesses between SA and GA. Nagata and Kobayashi

63



Chapter 2 Literature Review

(2010), Nagata et al. (2010), Vidal et al. (2013), Mester and Bräysy (2005) hybridised

the variants of GAs with local search or other metaheuristics for solving VRPs.

2.3.5 Summary

Vehicle routing problem and its variants are extensively investigated in the last few

decades. However, there are still gaps between theory and practice in terms of problem

characteristics while the solution methods are somewhat well-developed. The com-

plexity in logistics business models and customer requirements motivates the research

community to further bridge the gaps. While, the requirement of maintaining a high

level of service quality, cost reduction, and timely optimisation for logistics planners in

the rapidly changing business environments of the large size problems drives the needs

for developing e�cient and e�ective optimisation techniques.

The preceding section provided a survey of literature related to the problem targeted

i.e. the optimisation problems of LSPs, 3PLs, LLPs for freight transport. Since, these

problems have gained little attention but they are important to the economy of logistics

sector. Several optimisation techniques have been successful in solving the related

problems. However, it is interesting to see the strengths and weaknesses of these solution

methods which challenge the researchers to explore the areas of improvement. One

way to go from strength to strength is to hybridise the state-of-the-art optimisation

techniques of related problems. The e�ort in this thesis is devoted to both tackle

problem complexities and develop well-performing optimisation techniques.
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A Memetic Algorithm for the

Multi-depot Pickup and Delivery

Problem

3.1 Introduction

The Pickup and Delivery Problem is the core basis of optimisation problems arising

in, for example, local courier operations and freight transportation. Parragh et al.

(2008) explained that the single vehicle variant of the PDP, which a capacity constraint

is not imposed, can be referred to as the Pickup-Delivery Travelling Salesman Problem.

For multiple vehicle cases, which the capacity constraints are imposed, the variant is

referred to as the Multi-vehicle Pickup and Delivery problem (MV-PDP). This Chapter

investigates the Multi-depot Pickup and Delivery Problem (MDPDP), an extension of

CVRP and TSP, in which multiple-depots, precedence constraints, heterogeneous �eets

of vehicles, and maximum route length constraints are considered. The multiple-depots

characteristic arises in practice when large LSPs or 3PLs seek to gain geographical

coverage.
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Parragh et al. (2008) presented the basic model for MV-PDP using Mixed Integer

Linear Programming (MILP). Cordeau (2006) showed the linearisation of some con-

straints, demonstrated in Parragh et al. (2008), using a Big M formulation. Ropke and

Pisinger (2006) presented the formulation of PDPTW which can be applied to multiple

depot cases. However, the MDPDP is NP-hard as it is an extension of CVRP. Unfortu-

nately, exact methods are not practical for solving large-size problems: computational

time considerably increases as the problem size becomes larger. Therefore, heuristics

are preferred due to the prohibitive computational time in rapidly changing business en-

vironments. However, the solutions of heuristics are sometimes trapped in local optima.

Therefore, several researchers resort to apply meta-heuristics. Metaheuristics provide

a general framework for embedding heuristics to escape from local optima. Several

metaheuristics are widely used for variants of VRPs because of their robustness. To

summarise, the investigation of MDPDP is motivated by both theoretical challenges

and practical signi�cance.

Blum and Roli (2003) described that one way to classify metaheuristic algorithms

is population-based vs. single point search. It is Goldberg's (1989) belief that single

solution approaches can locate false peaks in multi-modal (many peaks) search spaces

for problems, such as, vehicle routing and scheduling problems. The population-based

approaches such as GA can reduce the probability of locating false peaks. The GA

climbs many peaks simultaneously and, as a result, provides robustness and parallelism.

GAs are easy to implement and do not depend as much on the quality of the initial

solutions as in the case of other heuristics and meta-heuristics (Hosny and Mumford

2007). Blum and Roli (2003) con�rmed that population-based algorithms provide a

natural, intrinsic way to explore the search space. Yet, the �nal performance strongly

depends on the way the population is manipulated. Creput et al. (2004) and Jih

et al. (2002) con�rmed that GAs have been successfully applied to solve combinatorial

optimisation problems such as PDPTW. Jayalakshmi et al. (2001), Talbi (2002), Blum

and Roli (2003), Talbi (2009) and Blum et al. (2011) con�rmed that the hybridization of
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GA with other local search heuristics is powerful in the exploration of the search space

and the exploitation of solutions found. Several variants of hybrid Genetic Algorithms,

or Memetic Algorithms, prove to be successful in solving Combinatorial Optimisation

Problems, Vehicle Routing Problems, Pickup and Delivery problems. Therefore, this

Chapter investigates a Memetic Algorithm (MA) to solve the MDPDP. As there is no

benchmark instance for MDPDP, randomly generated instances were used to investigate

the computational performance of CPLEX and Memetic Algorithm. Due to being NP-

hard, the CPLEX cannot solve a large-sized problem. However, the CPLEX's results

can be used to validate the MA.

3.2 Literature Review

This section provides a survey of related work for solving the MDPDP. Up to present,

several sub-problems of the MDPDP are extensively investigated and solved by exact,

heuristics, metaheuristics, and hybrid-metaheuristics. These problems, together with

their GA-related solution methods, include Vehicle Routing Problems, Multi-Depot

Vehicle Routing Problems, Pickup and Delivery Problem with Time Windows.

3.2.1 Multi-Depot Vehicle Routing Problems (MDVRP)

The housing of vehicles can be classi�ed as either a single depot or multiple depots.

Lawrence (1983) claimed that the Multi-Depot Vehicle Routing Problem (MDVRP) is

a generalisation of the VRP problem in that �eets of vehicles serve their customers from

a number of depots rather than one. All other constraints placed on the single-depot

VRP still apply. Moreover, some additional constraints and assumptions may appear in

Multi-Depot Problems. Renaud et al. (2002) claimed that the MDVRP is an NP-hard

problem and very di�cult to solve to optimality even for relatively small-size instances.

Many methodologies have been proposed for the single-depot VRP. Nevertheless, these

methodologies cannot be properly extended to deal with the presence of several depots
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because of storage and computational requirements.

Salhi and Sari (1997) claimed that little attention has been paid on MDVRP even

though, in practice, it is likely that a distribution system operates from several depots.

The authors proposed a multi-level composite heuristic for solving the multi-depot ve-

hicle �eet mix problem. The route perturbation procedure (RPERT), modi�ed for

multiple-depots, is referred to as MULTI-RPERT. Two reduction tests were devised;

one for single depot routing and the other for multi-depots routing problems. The com-

putational experiments were carried out on the standard benchmark problems varying

in size from 50 to 360 customers, using 2 to 9 depots, and 5 di�erent vehicle capaci-

ties. The algorithm was capable of �nding 7 new best known solutions out of 26 test

problems. Also, it yielded solutions which are on average just over 1% above the best

solutions and required only 10% of the computational time compared to the benchmark

instances.

Skok et al. (2000) used the �steady-state� genetic algorithm to solve a Multiple

Depot Capacitated Vehicle Routing Problem. In this study, the initial population

was created randomly, and six crossover operators were compared. The experiment

showed that Cycle Crossover and Fragment Reordering Crossover performed well. Three

mutation operators were tested, and Order Based Mutation was a clear winner. Several

test instances were used. The authors claimed that the proposed GA was e�ective in

producing high quality solutions in a reasonable amount of time.

Thangiah and Salhi (2001) applied an Adaptive Genetic Clustering (GenClust)

method to solve the MDVRP. The GenClust method is based on using a route prim-

itive. The GA is used to adaptively search for the attributes of a set of circles that

cluster customers using the routing cost as the �tness value for individual chromosomes.

GenClust uses the local search method and customer interchange method to improve

the solution. Moreover, the post-optimisation phase is applied. Two reduction tests

are embedded to speed up computation. The GenClust was tested on benchmark prob-

lems varying in size from 50 to 360 customers and two to nine depots. The GenClust
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obtained 10 new best known solutions and matched one best known solution.

Ombuki and Hanshar (2009) presented a Genetic Algorithm (GA) for solving the

MDVRP with capacity and route-length constraints. The algorithm was tested on 23

classic MDVRP standard benchmark problems with 50 to 360 customers. The proposed

GA is compared with the state-of-the-art GA, GenClust, which was developed by

Thangiah and Salhi (2001). The author claimed that the proposed GA improves the

solution quality and obtains 17 out of 23 new GA solutions compared to the best

published GA. The computational results show that the proposed GA is equally good

compared to other existing non-GA based meta-heuristics.

Lau et al. (2010) proposed a Fuzzy Logic guided Genetic Algorithm (FLGA) to solve

the MDVRP. The role of FuzzyLogic is to dynamically adjust the crossover rate and

mutation rate after ten consecutive generations. Partial Uniform and Partial Order

(PUPO) crossover and Partial Uniform and Partial Swap (PUPS) were developed. A

number of benchmark problems are utilised to investigate its search ability by comparing

with various search techniques, Branch-and-Bound, standard GA, SA, TS. The results

show that the FLGA method outperforms other search methods.

Several authors proposed e�ective single-solution metaheuristics for solving the MD-

VRP such as ALNS of Pisinger and Ropke (2007), Iterated Local Search of Subramanian

(2012) and UHGS of Vidal et al. (2013). These authors are able to improve the best

known solutions of standard benchmark instances of MDVRP.

3.2.2 Pickup and Delivery Problems (PDPs)

Lokin (1978) introduced the precedence constraints, which are required to formulate

the PDP, into the traditional TSP. Savelsbergh and Sol (1995) �rst provided a uni�ed

notation of most PDP and a brief overview of existing solution methods. Li and Lim

(2001) proposed a tabu-embedded simulated annealing algorithm to solve the PDPTW.

The test instances of Li and Lim (2001) have been widely tested by several researchers.

Parragh et al. (2008) carried out a survey of variants in PDPs. In this section, hybrid
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Genetic Algorithms for solving PDPs are surveyed.

Jih et al. (2002) proposed a Family Competition Genetic Algorithm (FCGA) for

solving the single vehicle PDPTW: �The FCGA is based on GA with the added concept

of families. The concept is that, for every population, each individual owns its family.

To maintain, the constant size of a population, only the champion at a family survived�.

A set of randomly generated instances was created. From their experiments, the FCGA

outperform the traditional GA in most cases.

Pankratz (2005) proposed a Grouping Genetic Algorithm (GGA) for solving the

multiple-vehicle PDPTW that features a group-oriented genetic encoding in which each

gene represents a group of requests instead of a single request. The GGA, which adopts

the concept of a grouping problem in Falkenauer (1998), applies a steady-state ap-

proach without duplicates. In order to detect duplicates, a simple comparison of ob-

jective values is used. The group-oriented crossover operator, the group-oriented muta-

tion operators and embedded insertion heuristics are used. The GGA was tested with

benchmark instances, provided by Nanry and Barnes (2000) and Li and Lim (2001),

for the PDPTW. The experimental results of the GGA are competitive to previous

metaheuristic methods for solving the PDPTW.

Rekiek et al. (2006) applied a Grouping Genetic Algorithm to the Handicapped

Person Transportation (HPT) problem, which is a real-life application based on the

concepts of the PDP. This GGA also modi�es the GA's Falkenauer (1998) for the

grouping problem. The crossover consists of four steps: select crossing sections; inject

group(s); eliminate empty group(s) and group(s) with doubles; and reinsert missing ob-

jects. The mutation and inversion operators are also applied to each chromosome with

a small probability. The local improvement procedures, namely Fareast heuristic and

Go-and-Return heuristics are also used. The test problem, generated for the Brussels

region, consists of a trip, with service requirements for 164 clients and 18 vehicles.

Hosny and Mumford (2007) presented a duplicate gene encoding that guarantees the

satisfaction of the precedence constraints for solving single vehicle PDPTW. The author
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discussed that the genetic encoding developed can avoid the precedence issue by simply

assigning the same code to both the pickup and its designated delivery locations, relying

on a simple decoder to identify its �rst occurrence as the pickup and the second as the

delivery. The use of merge crossover (MX1) and directed mutation show competitive

computational results from the data set of Jih et al. (2002).

3.2.3 Memetic Algorithms

Goldberg (1989) de�ned that a Simple Genetic Algorithm (GA) is composed of three

operators: reproduction, crossover, and mutation. Moscato (1989) introduced the con-

cept of Memetic Algorithm (MA) by illustrating the martial arts that are considered

memes. Dawkins (1976) introduced the word meme to denote the idea of a unit of imi-

tation in cultural transmission which in some aspects is analogous to the gene. Moscato

(1989) discussed that while GAs are inspired in trying to emulate biological evolution,

MAs would try to mimic cultural evolution. In the context of OR, the MA is a mar-

riage between a population-based global search and the heuristic local search made by

each of the individuals. Goldberg (1989) refers to MAs as Hybrid Genetic Algorithms.

Moscato and Cotta (2003) discussed that MAs are intrinsically concerned with exploit-

ing all available knowledge about the problem. The incorporation of problem domain

knowledge is a fundamental feature that characterises MAs. The success of MAs can

probably be explained as being a direct consequence of the synergy of the di�erent

search approaches they incorporate. These approaches include heuristics, approxima-

tion algorithms, and local search techniques. The MA exploits the global perspective of

GA as the population-based approach, the rapid convergence by tournament selection

and the problem speci�c knowledge for genetic operators. Krasnogor and Smith (2005)

and Nguyen et al. (2007) discussed the design issues of MA being applied to well-known

combinatorial optimisation problems. Krasnogor (2005) presented a review of Genetic

Local Search, GLS_Based_Memetic_Algorithm and Genetic hybrid Algorithm.

To the best of our knowledge, there is no GAs or MAs applied to the MDPDP which
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is an extension of MDVRP. Therefore, the framework of hybrid GA or MA, as used in

Ombuki and Hanshar (2009) for MDVRP, is investigated in this Chapter, due to its

simplicity and computational performance, and shown in Algorithm 3.1.

Algorithm 3.1 Outline of the genetic routing system
1. Generate an initial population, POP ;
2. Evaluate the �tness F(x) of each chromosome x of the population, and calculate the
average �tness;
3. Create a new population by repeating the following steps unitl the new population is
complete;

� Selection Select two parent chromosomes from the population, POP, by tourna-
ment selection;

� Recombination Apply crossover with a probability to the parents to form new
o�spring. If no crossover is performed, o�spring is an exact copy parents;

� MutationWith a mutation probability, apply intra-depot mutation to mutate new
o�spring. If a certain number of generation is reached and mutation was applicable
use, inter-depot mutation instead;

� Acceptance Place a new o�spring in the population, replacing the parents;

� Elitism Randomly replace 1% of the population with the best 1% parents' popula-
tion;

4. Update the old population with the newly generated population;
5. If the preset number of generation is reached, stop, return the average �tness, and
the �tness of the best (chromosome) solution in the population;
6. Else go to step 2;

Ombuki and Hanshar (2009) described how the evolutionary part is carried out with

ordinary GAs, using crossover and selection operations on chromosomes. In Algorithm

3.1, the tournament selection with elite retention is used to perform a �tness-based selec-

tion of individuals. The GA applies an adaptive inter-depot mutation to re-assign some

of the boundary customers to di�erent depots from the initial static clustering which

takes place before evolution. Intra-depot mutation involves bringing diversity within

the routes of each depot. Three types of intra-depot mutations were used, namely,

reversal, single customer rerouting, and customer swapping. The removed customers
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are reinserted into the best feasible insertion location within the entire chromosome.

The single customer rerouting can be considered a local search operator.

3.3 Problem Description and Formulation

In MDPDP, a heterogeneous �eet of vehicles located at several depots transports

goods to satisfy customer requests from pickup to corresponding delivery points or

paired requests. The pickup locations must precede their delivery destinations and both

must be served by the same vehicle. The number of vehicles stationed at each depot is

known. The pickup and delivery requests are also known in advance. The vehicles must

start from and return to the same depot. Each vehicle has limited capacity. In addition,

a route-length restriction for each vehicle is imposed. The objective function is to �nd

minimum-distance routes served by those vehicles to satisfy customer requirements.

All vehicles have to serve each request once, and all transportation requests must be

met. Parragh et al. (2008) presented the multi-vehicle Pickup and Delivery Problem

formulations, which can be extended to time window constraint and maximum user

ride time constraint for multi-vehicle Dial-a-ride Problem (DARP). Ropke and Pisinger

(2006) also presented a formulation for PDPTW, which can be extended to the multi-

depot characteristic.

Exact methods cannot solve the MDPDP to optimality within a reasonable time

frame because MDPDP is NP-hard. Therefore, the MILP formulation is only solved

by default exact algorithms using CPLEX 11.0 for validation purpose. The PDPTW

formulation provided by Ropke and Pisinger (2006) is adapted for the MDPDP. Accord-

ing to Cordeau (2006), in order to solve as large a problem as possible, the formulation

must exclude infeasible networks, due to precedence relationships, and use Big-M to

formulate a linear form. Moreover, several controlling parameters in CPLEX, such as

MIP search and Variable Selection, are tuned to obtain optimal solutions in a reason-

able amount of time. First, the notation used throughout the formulation is given.

73



Chapter 3 A Memetic Algorithm for the Multi-Depot Pickup and Delivery

Problem

Then, the formulation and an illustrative example are shown.

The MDPDP is comprised of n requests, and m vehicles. The problem is de�ned

on a graph, P = {1, . . . , n} is the set of pickup nodes, D = {n+ 1, . . . , 2n} is the set of

delivery nodes. Request i is represented by nodes i and i+n. K is the set of all vehicles,

where | K |= m. Some vehicles can only service some requests. Let N = P ∪D. Denote

τk = 2n+ k, k ∈ K, and τ
′

k = 2n+m+ k, k ∈ K be the nodes that represent the start

and end depots of vehicle k, respectively. The graph G = (V,A) contains the nodes

V = N ∪{τ1, . . . , τk}∪{τ
′
1, . . . , τ

′
m} and the arcs A = V ×V . For each arc (i, j) ∈ A, the

distance dij > 0 and a travel time tij > 0. The triangle inequality for time is satis�ed:

tij < til + tlj for all i, j, l ∈ V. For each node i ∈ N , li is the amount of goods that

must be loaded onto the vehicle at the particular node li > 0 for i ∈ P , and li = −li−n

for i ∈ D. The capacity of vehicle k ∈ K is denoted Ck. R
k is the maximum distance

allowance for vehicle k.

Four types of decision variables are used in the mathematical model. xijk, i, j ∈

V, k ∈ K is a binary variable that is one if the arc between node i and j is used by

vehicle k and zero otherwise. Sik, i ∈ V, k ∈ K is a non-negative integer that indicates

when vehicle k starts the service at location i. Lik,i ∈ V, k ∈ K is a nonnegative integer

corresponding to the total load of vehicle k at vertex i. zi, i ∈ P , is a binary variable

that indicates whether or not request i is placed in the request bank. The variable

is one if the request is placed in the request bank and zero otherwise. For practical

reasons, the arc set, Ak is reduced to the feasible network: A
′

= {(i, j) : i, j ∈ V, i 6=

τ
′

k, j 6= τk, i 6= j, i ∈ P ⇒ j 6= τ
′

k, i = τk ⇒ j /∈ D, i ∈ D ⇒ j /∈ P where i = j + n}.

Parragh et al. (2008) pointed out that non-linear constraints can be linearised using

a big M formulation. Therefore, we formulated the model in linear form by applying

Big-M formulation to speed up the search.
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A mathematical model of the problem is

Min α
∑
k∈K

∑
(i,j)∈A′

dijxijk + γ
∑
i∈P

zi (3.1)

Subject to:

∑
k∈Ki

∑
j:(i,j)∈A′

xijk + zi = 1 ∀i ∈ P (3.2)

∑
j:(i,j)∈A′

xijk −
∑

j:(n+i,j)∈A′
xn+i,j,k = 0 ∀k ∈ K, i ∈ P (3.3)

∑
j∈P∪{τ ′k}

xτk,j,k = 1 ∀k ∈ K (3.4)

∑
i∈D∪{τk}

xi,τ ′ ,k = 1 ∀k ∈ K (3.5)

∑
i:(i,j)∈A′

xijk −
∑

i:(i,j)∈A′
xjik = 0 ∀k ∈ K, ∀j ∈ N (3.6)

Sik + si + tij −M(1− xijk) ≤ Sjk ∀k ∈ K, ∀(i, j) ∈ A′ (3.7)

Sik ≤ Sn+i,k ∀k ∈ K, ∀i ∈ P (3.8)

Lik + lj −M(1− xijk) ≤ Ljk ∀k ∈ K, ∀(i, j) ∈ A′ (3.9)

Max{0, lj} ≤ Lik ≤ Min{Ck, Ck + lj} ∀k ∈ K, ∀i : (i, j) ∈ A′ (3.10)∑
(i,j)∈A′

dijxijk ≤ Rk ∀k ∈ K (3.11)

xijk ∈ {0, 1} ∀k ∈ K, ∀(i, j) ∈ A′

zi ∈ {0, 1} ∀i ∈ P

Sik ≥ 0 ∀k ∈ K, ∀i ∈ V

Lik ≥ 0 ∀k ∈ K, ∀i ∈ V

The objective function is to minimise the weighted sum of the travelled distance,
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and the number of requests not scheduled. Constraint (3.2) ensures that each pickup

location is visited or placed in the request bank. Constraint (3.3) ensures that both

pickup and corresponding delivery requests are visited by the same vehicle. Constraints

(3.4) and (3.5) ensure that every vehicle departs from a start terminal and returns to a

designated end terminal. Together with constraint (3.6), this ensures that consecutive

paths between τk and τ
′

k are established for each k ∈ K. Constraints (3.7) ensure that Sik

is set correctly along the paths. These constraints also prevent sub-tours. Constraint

(3.8) ensures that each pickup precedes its delivery location. Constraints (3.9) and

(3.10) ensure that the load variables satisfy the vehicle capacity. Constraint (3.11)

ensures that every vehicle do not travel exceed the pre-de�ned distance.

3.4 An Illustrative Example

This section presents an illustrative example consisting of 2 depots and 10 paired

pickup and delivery locations (20 locations). The network topology is produced by yEd

graph editor. Figure 3.1 shows the test instance no. 1, as described in Table 3.2.

In Figure 3.1, the squares represent depots. The triangles and circles labelled by

the same numbers denote the pickup and corresponding delivery locations respectively.

The blue dashed arrows represent the precedence relationship between the pickup and

associated delivery locations. To illustrate the transportation demand, in Figure 3.1,

these paired pickup and delivery locations are not yet scheduled. The geographical

distribution is uniform. Using the notation de�ned for the MDPDP mathematical

formulation earlier, the following input data is given for this illustrative example:

� n = 10

� P = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, D = {11, 12, 13, 14, 15, 16, 17, 18, 19, 20}

� (li, li+n) = {(l1,l11), (l2,l12), (l3,l13), (l4,l14), (l5,l15), (l6,l16), (l7,l17), (l8,l18), (l9,l19), (l10,l20)

= {(15,−15), (12,−12), (12,−12), (12,−12), (7,−7), (16,−16), (7,−7), (19,−19), (7,−7), (9,−9)}
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Figure 3.1: Illustrative Example: Network typology of 2 depots and 10 requests (20 locations)

� Ck = 20 ∀k ∈ K

� Rk = 1450 ∀k ∈ K

The program for implementing the mathematical formulation is written in Microsoft

Visual Studio 2008: C# and run on Intel Core 2, Processor 2.49 GHz, 3.48 GB of RAM.

This example of MDPDP is optimally solved by ILOG CPLEX 11.0. The objective

function is computed from the total distance travelled by the vehicles. The optimal

solution of this illustrative example is demonstrated in Figure 3.2.

In Figure 3.2, the optimal routes are demonstrated by coloured arrows. Notice that

the di�erent colours from the same depots represent di�erent vehicles. The dashed

lines of the transportation requests are superimposed by the vehicles' routes when the

vehicles pick up a certain amount of goods and, immediately transport them to the

designated delivery location. Otherwise, the vehicles can detour to pick up or deliver

at other locations before completing the transportation requests e.g. paired requests 3
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Figure 3.2: Illustrative Example: Optimal solution obtained from CPLEX

and 5. This usually generates savings toward the total travelling distance.

3.5 Test Problem Generation

To computationally evaluate the performance of CPLEX and a Memetic Algorithm,

di�erent test instances with varied characteristics are solved. To the best of our knowl-

edge, there is no standard test instance for the MDPDP but there is a set of test

instances for its variants, for example that from Ropke and Pisinger (2006). There-

fore, 32 small test instances are generated by adapting the test instances of Ropke and

Pisinger (2006). Experiments were conducted on the problem with up to 10 requests

(20 locations), 4 vehicles and 4 depots. Several authors claimed that problems consist-

ing of borderline customers between depots are more di�cult to be solved. Therefore,
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the last 8 instances are designed for testing the di�culty of solving borderline requests.

The computational complexity of the MDPDP is evaluated in terms of computa-

tional time corresponding to each problem parameter and the number of decision vari-

ables generated. Several performance features in CPLEX are experimented to obtain

the appropriate setting, which reduces the computational time. Then, the MA is vali-

dated, and its performance is compared with optimal solutions obtained by CPLEX for

these test instances. The detailed characteristics of test instances are shown in Table

(3.2) and Table 3.3.

3.5.1 Study of problem parameters

Based on the experiments carried out, the computational results con�rmed that the

larger the number of paired requests and vehicles, the larger the number of decision

variables and constraints, and, as a result, the longer the computational time. The Sik

and Lik, as continuous variables, have less in�uence compared to xijk.The maximum

route length and vehicle capacity parameters only constrain a vehicle from servicing

customers according to its restrictions. The computational time varies for these two

parameters, since, for Mixed-Integer Linear Programming (MILP), the computational

time is mostly in�uenced by the number of discrete decision variables: integer and/or

binary variables. The larger the problem size to be solved, the more the dynamic search

or Branch-and-Cut algorithm in CPLEX requires branching decision variables.

Based on the solutions obtained for the test instances, we observe that the use of

reduced feasible network A
′
and Big M linearisation can reduce the CPLEX's compu-

tational time from 10 % to 20%.

3.5.2 Tuning Performance Features in CPLEX

There are a number of parameters in performance features that are used for con-

trolling search strategies. Applying suitable parameters for a speci�c problem can lead
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to a better performance in terms of computational time. The controlling parameters

tested are, namely, MIP search, Variable Selection, Node Selection, Backtracking toler-

ance, Branching direction, MIP Emphasis, Probe, Repeat presolve, CutPass, HeurFreq,

Flowcover, Mircut and Rinsheur. According to the reference manual1, these controlling

parameters are described as having the following characteristics:

� MIP Search sets the search strategy for a mixed integer program whether ap-

plying a dynamic search or conventional Branch-and-Cut based on characteristics

of the model.

� Variable Selection sets the rules for selecting the branching variable at the node

which has been selected for branching, namely, minimum feasibility, maximum

infeasibility, pseudo cost and strong branching.

� Node Selection sets the rule for selecting the next node to process when back-

tracking and includes Depth-�rst search, Best-bound search, Best-estimate search

and alternative best-estimate search.

� Backtracking Tolerance controls how often backtracking is done during the

branching process: the objective function value of the best integer feasible solu-

tion, the best remaining objective function value of any unexplored node and the

objective function value of the most recently solved node are all used to control

backtracking.

� Branching Direction decides which branch, the up or the down branch, should

be taken �rst at each node, uses down branch selected �rst, let CPLEX choose

and up branch selected �rst to determine direction.

� MIP Emphasis controls the trade-o� between speed, feasibility, optimality, and

moving bounds in MIP through the application of balance optimality and feasi-

1http://www-eio.upc.es/lceio/manuals/cplex-11/pdf/refparameterscplex.pdf
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bility, the emphasis of feasibility over optimality, the emphasis of optimality over

feasibility, the emphasis of moving best bound and the emphasis of �nding hidden

feasible solutions.

� Probe sets the amount of probing on variables to be performed before MIP

branching, namely, no probing, let CPLEX choose, moderate probing level, ag-

gressive probing level, very aggressive probing level.

� Repeat Presolve decides whether to re-apply presolve, with or without cuts, to

a MIP model after processing at the root is otherwise complete, by letting CPLEX

choose, turning o� represolve, using represolve without cuts, using represolve with

cuts or using represolve with cuts and allowing new root cuts.

� CutPass sets the upper limit on the number of cutting plane passes CPLEX

performs when solving the root node of a MIP model, by choosing either none, by

letting CPLEX choose or the number of passes to perform.

� HeurFreq decides how often to apply the periodic heuristic. The choices are:

none, let CPLEX choose or apply the periodic heuristic at this frequency.

� Flowcover decides whether or not to generate �ow cover cuts for the problem.

Flowcover choices are: do not generate �ow cover cuts, let CPLEX choose, gener-

ate �ow cover cuts moderately or generate �ow cover cuts aggressively.

� Mircut decides whether or not to generate MIR cuts. The choices are: do not

generate MIR cuts, let CPLEX choose, generate MIR cuts moderately or generate

MIR cuts aggressively.

� Rinsheur decides how often to apply the relaxation induced neighbourhood

search heuristic. The choices are none, let CPLEX choose or frequency to ap-

ply RINS heuristic.
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In addition, the automatic tuning tool is also experimented to �nd an initial setting. To

compare the performance of each performance feature, 13 representative instances were

used. First, automatic tuning obtained the initial set of parameters. Then, beginning

with the MIP, each setting was experimented on, and the setting producing the best

time was selected and �xed. This continues untill all of the parameters are tested.

The average computational time was reduced by 58.15% for all 13 test instances. The

results showed that the pseudo reduced costs used in the Variable Selection, using

represolve with cuts and allowing new root cuts in Repeat Presolve, and the default

parameters for the rest are the appropriate setting for solving these test instances.

3.5.3 Investigation of Borderline Customers

Gillett and Johnson (1974) and Golden et al. (1977) considered how MDVRP, which

contains borderline customers, becomes more di�cult to be solved by heuristics. The

authors de�ned the borderline customer as those located approximately halfway be-

tween two depots. Gillett and Johnson (1974), Golden et al. (1977), Salhi and Sari

(1997), Salhi and Nagy (1999) and Nagy and Salhi (2005) proposed heuristics to tackle

borderline customers by using a depot clustering algorithm, one of the most widely used

approaches for Multi-Depot Vehicles Routing and Scheduling Problems (MDVRSP).

Intuitively, when applying the depot clustering fashion to multi-depot problems,

it is rather di�cult to predictably assign borderline customers to a particular depot.

However, the problem considered in this study is a variant of Pickup and Delivery

Problem. Therefore, this di�culty for the MDPDP should be re-investigated for the

MA.

Unlike MDVRSP, the MDPDP requires a completed pickup and delivery for each

customer, served by the same vehicle. Therefore, borderline customers of the MDPDP

are de�ned as �the pickup and corresponding delivery requests that are approximately
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Figure 3.3: Network typlogy for testing the depot clustering heuristic with borderline paired
requests

equidistant from several depots�. Hereafter, borderline customers of MDPDP are re-

ferred to as the borderline paired requests. According to Salhi and Sari (1997), the ratio

of measuring the borderline status of a customer (ε) is determined as �the distance of

the customer locations to nearest depot divided by that of second nearest depot�. If

ε is greater than 0.7, the customers are considered borderline customers. Similarly,

the borderline of a paired request (δ) is de�ned as �the sum between the distance of

the pickup and delivery locations to nearest depot divided by that of second nearest

depot� with δ= 0.7. From observations, the average value of δ for all customers in each

distribution: uniform, clustered, semi-clustered from 24 instances, as shown in Table

(3.2) and (3.3), are 0.49, 0.55 and 0.57, respectively. These values is below δ= 0.7.

Therefore, 8 new test instances, for which the average value of δ for all customers is

equal to 0.98 are designed. Their network typology of requests and its optimal solution
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Figure 3.4: The optimal solution of test instance 25

of test instance 25 is displayed in Figure 3.3 and Figure 3.4, respectively.

3.6 Design of a MA for the MDPDP

As expected, based on the reported experimental results, CPLEX cannot solve large

problems within a reasonable amount of time. Hence, a heuristic approach to e�ciently

solving practical-sized MDPDPs must be developed. Among meta-heuristics, Memetic

Algorithms are well-known for their capability to perform reasonably well on highly

constrained problems. Moreover, Ombuki and Hanshar (2009) applied MA to MDVRP

and emphasised that the Hybrid GA or MA is equally good, compared to other existing

non-GA based meta-heuristics, and it yields competitive results. Therefore, the use

of MAs seems to be a justi�ed option for MDPDP, which is highly constrained and

classi�ed as NP-hard.

In this Chapter, we applied the framework of MA proposed by Ombuki and Hanshar

(2009), with modi�cations. The proposed Memetic Algorithm consists of three phases:

evaluation of the �tness of each chromosome, selection of the parent chromosomes and
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applications of the genetic operators to the parent chromosomes. Recombination or

crossover operators replace some of the genes in one parent, with some other genes of

the other parent, consequently, introducing changes to produce an o�spring. The bet-

ter solution is accepted. Otherwise, the o�spring is copied exactly. If identical genes,

evaluated by �tness function, are recombined, a random o�spring is generated, as in the

procedure of Random O�spring Generation (ROG) of Rocha and Neves (1999). The

random o�spring generation is embedded in the recombination operator to prevent pre-

mature convergence from the ine�ectiveness in cross-fertilising the identical individuals.

Mutation operators are applied to a single chromosome, where some of the individuals

are selected with probability. The local search operators such as depot-clustering and

worst removal heuristics are secondary operators that aid the MA for further exploita-

tion of the solution space and, as a result, provide improvement of the solution quality.

The evolution process is repeated until the termination condition is met.

3.6.1 Framework

The �owchart of our proposed MA is shown in Figure (3.5).

Figure 3.5: Flowchart of Memetic Algorithm (MA) for MDPDP
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3.6.2 Population Structure and Initialisation

Initial Depot Clustering

A depot-clustering algorithm is slightly modi�ed from that of Ombuki and Hanshar's

(2009) so that it may be applied in population initialisation and further used within

inter-depot operators. Initially, each paired request, i and i + n, is assigned to the

nearest depot in terms of the Euclidean distance of each pickup and associated delivery

location to the depot. Some paired requests are identi�ed in a similar way to that

of assigning borderline paired requests in Section 3.5.3 with δ= 0.7. By using the

inter-depot operator, borderline paired requests can be reassigned to other potential

depots.

Population structure

In order to apply a GA or MA to a particular problem, it is required to select a chro-

mosome representation that is suitable for and which will be e�cient in the implementa-

tion of MDPDP. Moscato (1989) mentioned that a genetic, or a zero-one representation,

would be useful under certain circumstances. However, for some problems, they are not

the best representations, and one must use those that naturally belong to the problem.

Pankratz (2005) encoded the PDPTW into cluster level (phenotype) and routing level

(genotype). The author discussed that, for the PDPTW, it is not obvious how cluster

and routing sub-problems can be simultaneously represented by a homogeneous encod-

ing such as the standard binary representation of the classic Genetic Algorithm. The

author also emphasised that permutation encoding such as in TSP can be problematic

when being applied to highly constrained multi-vehicle routing problem like PDPTW.

Moreover, most order-based crossover operators are context-insensitive. In other words,

they do not take into account contextual information, such as precedence relationship,

during recombination. As a result, even small modi�cations by genetic operators such
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as a crossover operator will cause the o�spring to have almost no phenotypical simi-

larities to its parents. Therefore, it is hard for the GA to sample meaningful building

blocks. Pankratz (2005), Rekiek et al. (2006) and Matthew and Gary (2005) apply a

similar structure of chromosome representation for solving vehicle routing and schedul-

ing problems. Ombuki and Hanshar (2009) applied the chromosome representation for

MDVRP which speci�es the number of routes (i.e., vehicles) and also the delivery order

of each of these routes. The authors adopted a chromosome representation of the MD-

VRP that consists of several integer vectors, say n, where n corresponds to the number

of depots. Each vector consists of a cluster of routes; each route is composed of an or-

dered subset of customers (genes). The structure includes the permutation of sequences

in routes. Hosny and Mumford (2007) employed a duplicate gene encoding to guarantee

the satisfaction of the precedence constraint in PDPTW. The same codes in terms of

paired numbers are assigned to both pickup and its associated delivery locations. The

pickup or delivery nodes of the same code are identi�ed by the supply (+) and demand

(-). This kind of encoding is simple and will eliminate the problem of backtracking to

repair an infeasible solution violating the precedence relationship. In this way, a local

search operator is capable of applying to the chromosome without decoding back to the

solution structure. Based on their success, a chromosome representation for a MDPDP,

considering PDPTW and MDVRP as sub-problems, adapts these approaches.

A chromosome representation for MDPDP consists of several lists, say n, where n

corresponds to the number of depots, as shown in Figure 3.6. Each depot comprises

a number of routes, and each route is comprised of a subset of paired requests. An

example of a randomly generated chromosome which represents two depots and eight

paired pickup-delivery locations served by four vehicles is illustrated in Figure 3.6.

Pickups are shown in boldface while deliveries are presented in italics. The vehicle id

is listed and corresponds to the depots where it starts and ends its journey.
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Figure 3.6: Example of chromosome representation for MDPDP

3.6.3 Fitness Function

The �tness value of each chromosome is determined by calculating the total distance

travelled by vehicles and the weighted penalty for the number of unscheduled request(s)

and maximum-route length violation. The �tness function of a chromosome is:

F =
∑
k∈K

(D(k) + w1 ×MV (k)) + w2 × UR

Where D(k) is the total distance of route k, MV (k) is the length exceeding the

route length allowance of route k, and UR is the number of unscheduled requests. For

each route length violation, the weight w1 = 1000 is multiplied. For each unscheduled

request, the weight w2 =10000 is multipled.It is worth noting that the penalty function

is incorporated to consider maximum-route length restrictions as a soft constraint so

that the MA can further explore the search space in tightly constrained maximum-route

length. The evaluation of �tness function is carried out only when particular routes

change in order to reduce redundancy and computational time.
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3.6.4 Tournament Selection

Pankratz (2005) also used the binary tournament selection for PDPTW because of

its low time complexity, compared to the classical �roulette wheel selection scheme�.

Ombuki and Hanshar (2009) applied binary tournament selection in MA for the MD-

VPR. Moreover, the authors implement the techniques of using tournament selection

probability which provides adjustable sensitivity to the tournament selection. As a

result of its �exibility, we therefore apply these accordingly.

In every generation, parents must be selected for mating and reproduction. Two

individuals called �a tournament set� are randomly selected from the population. A

random number, r, between 0 and 1 is generated. If r is less than a certain parameter,

say Φ (tournament selection probability), the �ttest chromosome in the tournament

set is then chosen as the one to be used for reproduction. Otherwise, any individual is

selected for reproduction from the tournament set randomly. This procedure is repeated

to choose another chromosome for mating and reproduction.

3.6.5 Recombination Operator

The recombination operator is one of the most important components in improving

the solution quality. The crossover of the proposed MA adapts the Best Cost Route

Crossover (BCRC) developed by Ombuki and Hanshar (2009). The BCRC is the prob-

lem speci�c operator for MDVRP that ensures the feasibility of solutions generated

through genetic evolution.

In order to clarify the BCRC for the MDPDP, it is hereafter referred to as the Pickup

and Delivery Route Crossover (PDRC). An illustrative example of PDRC is shown in

Figure 3.7.

In Figure 3.7, parent 1, (P1), and parent 2, (P2), contain 2 depots and 8 requests

served by 4 vehicles. Assume that one paired request is selected in this example. This

crossover deals with one mutual depot in both parents, i.e. say depot D1 is randomly
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Figure 3.7: Illustrative example of PDRC
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selected.

� In step a), D1 of P1and P2 both have two vehicles and each vehicle in each parent is

randomly selected. For example, vehicle 2 with the pair 1 in D1 of P1 is randomly

chosen. Similarly, vehicle 2 with the pair 8 in D1 of P2 is randomly chosen.

� In step b), the chosen pairs from the opposite parents are removed. For example,

pair 8 is removed from P1(random selection from P2 in step a). Likewise, pair 1

is removed from P2.

� In step c), the pairs removed from step b) �nd all feasible locations and are inserted

at the best insertion cost location.

� In step d), �tness function is calculated and the o�spring are accepted only when

the �tness is improved.

It is noted that, in step c), we develop the insertion technique for the Pickup and

Delivery problem for this MA. The insertion prevents violating precedence relationships

between paired pickup and delivery locations, which is called the Fixed-Forward method

as described in Section 3.6.8.

During the experiment, premature convergence to local optima occurred and resulted

in making crossing the same chromosomes ine�ectual. Once identical chromosomes

are mated and detected by �tness comparison, a new random o�spring is generated

and recombined. The Random O�spring Generation increases the e�ectiveness of the

recombination operator while promoting population diversity.

3.6.6 Local Search

Local search operators are designed to intensify the search in a particular search
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Algorithm 3.2 Modi�ed Worst Removal
Function Modi�ed Worst Removal (chromosome j, route k, depot d)

set of pickup requests: P = {1, . . . , n},i ∈ P ;
for(int i = 1; i≤ n; i++);
Calculate c(i, k, d);

Sort c(i, k, d) in descending order;

return �rst entry of the cost (i, k, d) list

space. The GA is hybridised with local search operators using domain-speci�c knowl-

edge, such as greedy removal, Shaw's removal and depot clustering heuristics.

Similar to the recombination operator, the local search procedures are comprised

of removal, insertion, �tness evaluation and acceptance. In the proposed MA, several

heuristics that remove paired request(s) at one route and insertion is then performed.

The operators are devised to search in several boundaries for the MDPDP, namely, at

intra- and inter-depot levels. At the intra-depot level or within a depot, two neigh-

bourhood operators, rerouting and trip exchange, are applied by using problem-speci�c

knowledge in the paired request removal. In the inter-depot level or between depots,

alternative depot search is introduced in order for paired requests to �nd the feasible

insertion locations in other potential depots. The removal heuristic used in the rerout-

ing and alternative depot search is the �worst removal heuristic�, originally presented by

Ropke and Pisinger (2006). The concept is that it seems reasonable to remove requests

with high costs and insert them at another place in the solution to obtain a better

solution value. The cost without request i in route k, depot d is de�ned as c(i, k, d).

The slightly modi�ed worst removal for MDPDP is shown in pseudo code in Algorithm

3.2.

In the trip exchange intra-depot operator, Shaw's removal heuristic, as used in

Shaw (1997) and Ropke and Pisinger (2006), is applied with slight modi�cations by

specifying the selected routes. The concept is to remove requests that are similar in

terms of distance between paired requests, since it seems reasonably easy to swap or
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Algorithm 3.3 Modi�ed Shaw's removal heurisitc
Function Modi�ed Shaw's Removal (route k1, route k2, depot d)

set of pickup requests in k1: P1 = {1, . . . , n}, i ∈ P1;

ramdomly select a request from P1;

set of pickup requests in k2: P2 = {1, . . . ,m};
for (int j = 1; j ≤m; j ++)

Calculate R(i, j);

Sort R(i, j) in ascending order;

return �rst entry of the cost R(i, j) list

shu�e similar requests between two routes in order to seek potentially better solutions.

The relatedness measure is given by

R(i, j) = dA(i),A(j) + dB(i),B(j)

Where A(i), B(i) represent the pickup and delivery locations of request i, respec-

tively. dA(i),A(j), dB(i),B(j) denote the distance from A(i) to A(j), and B(i) to B(j),

respectively. The pseudo code for removing requests is shown in Algorithm (3.3).

Rerouting intra-depot operator

This operator randomly selects the route that contains at least one request. Then,

the worst removal as shown in 3.2, is applied. Sequentially, we use the �x-forward

insertion method to �nd neighbourhoods of the solutions. Only the better solution

is accepted. Otherwise, there is no change made to the chromosome. The rerouting

operations inside routes and among routes are carried out by this rerouting intra-depot

operator.

Trip exchange intra-depot operator

The operator randomly selects the depot and two routes. The modi�ed Shaw's

removal heuristic in Algorithm (3.3) is implemented and the selected requests in both

routes are removed. The �x-forward insertion is used for one route at a time with a
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view to improving solution quality. However, in the �rst route, the �rst solution and

other solutions are always accepted if their �tness values are improved, since there is

no reference �tness value to compare to justify whether or not the �rst route's �tness

has been improved. This intuition is also applied to the second route. After the

trip exchange intra-depot operator is completed, the non-improving solution may be

accepted. This can be seen as the mutation operator. The experiments, however,

showed that the operator often produced a higher quality chromosome.

Alternative depot operator (inter-depot operator)

The concept of Depot Clustering Algorithm in Ombuki and Hanshar (2009) is

adapted to the inter-depot operator used in this study. This operator removes a paired

request(s) on a randomly selected route using a modi�ed worst removal heuristic and

allows the swapping of the paired request(s) from one depot to another to help explore

the search space while seeking improvements. The candidate depots are considered

according to Ombuki and Hanshar (2009) with slight modi�cations due to investigating

the MDPDP. The potential depots can be derived from the following inequality:

distance(p, di)−min
min

≤ BOUND

where distance (p, di) is the Euclidean distance from the pickup and delivery loca-

tions of p request to depot di, min is the distance from p to the nearest depot, and

BOUND is a constant value. In this study, BOUND = 2 according to Ombuki and

Hanshar (2009). The �x-forward insertion is then applied through all routes to �nd

the lowest insertion cost location. The alternative depot operator, as a unary opera-

tor, complements the recombination operator by considering moving paired requests to

other potential depots in a sensible way.
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3.6.7 Replacement Strategy

In this study, the MA applies generational replacement strategy according to Om-

buki and Hanshar (2009). The generational replacement strategy replaces the parents

so that the size of the population remains constant. It is possible that applying a ge-

netic operator produces non-improving solutions. The non-improving o�spring is also

accepted in order to keep exploring the search space, while the best solution found is

kept during the search.

3.6.8 Fix and Forward Insertion Method and Reduction Rule

To insert a paired request into another route, a systematic insertion method of Hang

et al. (2003) called GENERATE is re�ned. Owing to the nature of the pickup and

delivery problem, load is reduced after unloading, and a reduction rule for preventing

capacity violations is introduced so as to avoid checking capacity violations at every

insertion location. This method is hereafter refers to as the ��x-forward� insertion

method.

Fix-forward insertion method

For n existing customer locations served on a route, there are n+1 insertion positions

available. For example, in Figure 3.8, a route in a depot consists of 3 paired requests

or 6 customer locations, which are visited in a particular order. There are 7 insertion

positions available in which the pickup node of the paired request (4+, 4−) can be

inserted.

The principle is that once the pickup node, 4+, is �xed at one location, the delivery

node, 4−, tries to insert and reinsert forward to the end of the route. Then, 4+ is

moved forward and �xed at the next position. These steps are repeated through to the

end of the route for both 4+ and 4−. The procedure is illustrated in Figure 3.9, 3.10,

3.11, and 3.12.
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Figure 3.8: Illustrative example of available insertion position

Figure 3.9: Illustrative example of �x-forward insertion: 1st �x (pickup) and 1st forward
(delivery) position

Figure 3.10: Illustrative example of �x-forward insertion: 1st �x (pickup) and 7th forward
(delivery) position

Figure 3.11: Illustrative example of �x-forward insertion: 2nd �x (pickup) and 2nd forward
(delivery) position
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Figure 3.12: Illustrative example of �x-forward insertion: 2nd �x (pickup) and 7th forward
(delivery) position

The �x-forward method without reduction rule or GENERATE has a known time

complexity or neighbourhood exploration of

O(
n∑
i=0

(n+ 1− i))

Reduction Rule due to Vehicle Capacity

Generally, the normal procedure in each neighbourhood exploration is to insert each

request and check to see if the sum of the load violates the vehicle capacity. To reduce

computational time, a novel reduction rule is proposed by considering vehicle capacity

as the hard constraint. Therefore, the insertion continues without calculating the sum of

load status again and again. The procedure is comprised of three steps. For example, in

Figure 3.13, there are three requests: (1+,1-), (2+,2-), (3+,3-). These have the supply

and demand units of goods as follows;

(1+, 1−) = (+1.3,−1.3)

(2+, 2−) = (+1.5,−1.5)

(3+, 3−) = (+1.2,−1.2)

First step: As shown in Figure 3.13, the current load status in the route is calcu-

lated. For n+ 1 insertion locations, the vehicle load at the 1st location is always set to

zero. The vehicle loads at 2nd toward (n + 1)th positions are the accumulated sum of

load status once visited.
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Figure 3.13: Illustrative example of reduction rule in �x-forward insertion: vehicle loading

Second step: In Figure 3.14, the new request to insert is considered and the vehicle

load status from 1st to (n + 1)th positions is updated. For example, the pair request

(4+, 4−), which has the supply and demand units of (+0.8,−0.8), is inserted in this

route. The vehicle load in each insertion location is then updated by summing the

supply unit of the customer's pickup request with the vehicle load.

Figure 3.14: Illustrative example of reduction rule in �x-forward insertion: updated vehicle
loading

Third step: In Figure 3.15, the vehicle load is checked against the vehicle capacity.

In any insertion location, if the vehicle loads exceeds the vehicle capacity, then that

location is marked. For example, the vehicle capacity is 2.9, then the 3rd pickup location

where the load exceeds the vehicle capacity is marked.

Figure 3.15: Illustrative example of reduction rule in �x-forward insertion: marked inserting
location
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The pickup node cannot be inserted in the marked insertion location and, for any

�xed pickup position, the delivery request can only be moved up to the position before

the marked insertion location.

There are several advantages of using the �x-forward insertion method embedding

with this reduction rule. First, it ensures that the paired request is served by the same

vehicle. Second, unlike the method used in Moon et al. (2002) which transformed the

route into a network graph for validating precedence relationships, this proposed rule

is simple and avoids checking precedence relationships between the pickup and corre-

sponding delivery requests. Third, it avoids checking vehicle capacity violation. In

addition, by preventing insertion at the expectedly violated inserting location, it elim-

inates redundancy in insertion and recalculating total load at all insertion locations

again and again. Moreover, the reduction rule does not abandon any feasible loca-

tion. The experiments validate the reduction rule against the normal procedure. The

reduction rule signi�cantly reduces the computational time, compared to the normal

procedure.

3.7 Computational Experiments

3.7.1 Implementation and Parameter Setting

The MA was implemented in Microsoft Visual Studio 2008: C#, on Intel Core

2, Processor 2.49 GHz, 3.48 GB of RAM and evaluated on the 32 test instances, as

described in Section 3.7.2, solved by CPLEX.

It is widely known that obtaining good GA parameter setting that works for a

particular problem is a non-trivial task. There are a number of critical factors to deter-

mine a robust parameter setting. These include population size, number of generations,

genetic representation, type of selection and genetic operator probabilities.

The experiments were conducted for tuning parameters using 4 representative test
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Parameters Setting

Population size 400

Chromosome initialisation random

Min-Max generation span 300-3000

Termination ratio if not improved 0.4

Tournament prob. 0.6

Recombination prob. 0.75

Intra-depot operator prob. 0.3

Inter-depot operator prob. 0.3

Table 3.1: Experimental parameters

instances. The initial set of parameters was set, based on experience while developing

the heuristic, then, these parameters were improved one-by-one. For each parameter, a

number of values in a speci�ed range are allowed while the rest of the parameters is kept

�xed. For each parameter setting, we apply the heuristic on our set of test problems

�ve times. The best setting that produces the best average gap is selected. Then, the

next parameter is experimented on. These parameters include the population size, % of

heuristic initialisation, tournament probability, recombination probability, intra-depot

probability and inter-depot probability. The experimental parameters found are shown

in Table 3.1.

It should be noted that the algorithm stops when the best solution has not been

improved for the last 0.4× n generations.

3.7.2 Computational Results

Each test instance is run 10 times using the proposed MA. The results are then

compared to the optimal solutions obtained from CPLEX. The average and best values

of 10 solutions, and its average computational time are demonstrated in Table 3.2

and Table 3.3. In these tables, each geographical distribution (Geo dist.) uses a varied

number of problem parameters, including vehicles' capacity (Veh Cap), maximum route
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length (Max Legt), the distribution of vehicles in each depot (Veh/Dep) and the number

of depots. The geographical distributions are uniform (U.), clustered (C.) or semi-

clustered (SC.). Veh Const. refers to the vehicle constraints. In terms of computational

results, Sol. represents the objective value and Gap(%) shows the percentage deviation

of GA's solutions from the optimal solutions obtained by CPLEX. hr:mm:ss refers to

the computational time.

The network typology of the optimal solutions for test instances 2, 4, 6, 13, 19, and

20 are shown as a, b, c, d, e, f, respectively in Figure 3.16. The results are obtained

from CPLEX so that the proposed Memetic Algorithm can be comparatively validated.

In order to obtain the optimal solution of large solvable problems by CPLEX, the

computational time is limited to 4 days.

Over 32 test instances, the average value of MA's avg. sol. in 10 runs for 32

test problems is 0.015%. The average values of percentage deviation in MA's avg.

sol. of clustered problems and those with borderline customers are 0.095% and 0.15%

respectively. The MA can �nd the optimal solutions for all test instances within 10 runs.

The average computational time of the MA is approximately 6 seconds while that of

CPLEX is more than 16 hours. Therefore, the experiment shows that the clustered

problems and those with borderline customers are rather di�cult to be solved than the

uniform and semi-clustered problems. Overall, the MA can produce competitive results,

compared to those obtained by CPLEX, in reasonable time for this set of small-sized

test problems.

3.8 Summary

The Multi-depot Pickup and Delivery Problem (MDPDP) is one of the NP-hard

problems which arise in real-life logistics problems. In this Chapter, a mathemati-

cal formulation for MDPDP was presented. Various test instances were generated by

adapting test instances from the literature. The problem parameters that critically in-
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�uence the computational time of CPLEX were investigated. The performance features

available in CPLEX 11.0 were tuned to solve the 32 test instances. Due to being an

NP-hard problem, exact methods cannot handle larger problem sizes within a reason-

able time frame. As a result, we resort to using a meta-heuristic approach to solve

the problem to near optimality in a timely manner. A Memetic Algorithm (MA) for

the MDPDP was presented. Chromosome representation, genetic operators and frame-

work were designed. Several removal and insertion heuristics are used to search the

neighbouring solutions. The �x-forward insertion method is presented with a reduction

rule for improving the computational time. The implementation and evaluation of the

MA were conducted on a set of 32 test instances that were solved to optimality by

CPLEX. The computational study demonstrates the capability of the proposed MA to

�nd near optimal solution within seconds. The literature review shows that the research

relating to this problem and its variants still receive limited attention in the literature.

This calls for further investigation of GAs, MAs and other meta-heuristics to solve the

related MDPDPs.
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Chapter 4

An Adaptive Memetic Large

Neighbourhood Search for the

Multi-Depot Pickup and Delivery

Problem with Time Windows and

Special Requests

4.1 Introduction

Vehicle Routing and Scheduling Problems are one of the most important problems

in managing logistics and supply chain networks. E�cient routes not only reduce cost

signi�cantly, but also maintain the service level. The vehicle routing problem with

time window (VRPTW) is one of the most studied NP-hard combinatorial optimisa-

tion problems. It consists of designing minimum cost routes for a �eet of vehicles

to satisfy a set of requests within speci�ed time windows. The pickup and delivery
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problem with time windows (PDPTW) is a variant of VRPTW where each request

is served from a pickup location to its delivery location by the same vehicles within

speci�ed time windows. The Multi-Depot Pickup and Delivery with Time Windows

(MDPDPTW) is an extension of PDPTW in which the �eet of vehicles are located in

several depots. The problem concerns a core basis of managing a �eet of vehicles in

Logistics Service Providers (LSPs), Third-Party Logistics Providers (3PLs), horizon-

tal cooperation among freight carriers. These providers can apply the MDPDPTW

to solve Full-Truck-Load and Less-Than-Truck-Load transportation requests in a large

geographical coverage area.

As it is a special case of VRPTW, the MDPDPTW is an NP-hard problem. The

optimal solution cannot be obtained in a reasonable computational time using exact

approaches, especially when the problem size is large. In real-life scenarios, both a

reasonable computational time and good solution quality must be achieved. As a result,

we resort to meta-heuristics with the view to obtaining near optimal solutions in a timely

manner.

In this Chapter, we designed an Adaptive Memetic Large Neighbourhood Search

(AMLNS), which incorporates several local search operators, in order to solve a variant

of MDPDPTW. This variant extends the MDPDPTW in such a way that the heteroge-

neous �eet of vehicles and special requests are considered. Moreover, routes can depart

and return to di�erent depots. We refer this problem as a Multi-depot Pickup and

Delivery Problem with Time Windows and Special Requests (MD-PDPTW-SR).

4.2 State-of-the-art Reviews of Related Problems

Ropke and Pisinger (2006) recently studied the PDPTW and multi-depot PDPTW

with special requests (MD-PDPTW-SR). The authors applied an Adaptive Large Neigh-

bourhood Search (ALNS) to e�ciently solve the large test instances of Li and Lim

(2001), which employed up to 500 requests or 1000 locations. The ALNS is composed

107



Chapter 4 An AMLNS for the Multi-Depot Pickup and Delivery Problem with

Time Windows and Special Requests

of a number of competing sub-heuristics that are used with a frequency corresponding

to their recorded performance. The heuristic was tested on more than 350 benchmark

instances of PDPTW, and it was able to obtain the new best known solutions for more

than 50% of the problems upon Bent and Van Hentenryck's (2004) computational re-

sults. Ropke and Pisinger (2006) also generated new test instances for MD-PDPTW-SR

and reported the computational results. They con�rmed that the use of several compet-

ing sub-heuristics, instead of just one, results in robustness. The ALNS demonstrated

the capability of handling such large instances in a reasonable time period.

Pisinger and Ropke (2007) further applied the ALNS to solve variants of the vehicle

routing problems. The authors slightly modi�ed the ALNS from that of Ropke and

Pisinger (2006) by incorporating more removal heuristics. The heuristic demonstrated

robustness and e�ciency by improving a large number of best known solutions for

the 486 benchmark instances of VRPTW variants. ALNS is an extension of the large

neighbourhood search framework of Shaw (1998) with an adaptive layer that chooses

a number of removal and insertion heuristics to intensify and diversify the search. In

addition to Shaw (1998), in which the algorithm accepts only better solutions, Ropke

and Pisinger (2006) and Pisinger and Ropke (2007) applied Simulated Annealing (SA),

which, on occasion, accepts solutions being worse than the current solution leading to

a high-quality solution.

The computational result of ALNS for solving the multi-depot PDPTW with special

requests (MD-PDPTW-SR) in Ropke and Pisinger (2006) is reported at www.diku.dk/~sropke.

The authors further clari�ed that the ALNS that produced the computational result in

the website is the updated ALNS from Pisinger and Ropke (2007). 1.

Dondo et al. (2007) presented a new Mixed Integer Linear Programming (MILP) for

1 On the website, the author mentioned �that these are not the results from the

paper, but a table constructed later on, with a somewhat updated heuristic. The

original results appear to be lost.�
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the multiple vehicle pickup and delivery problem with time windows (MVPDPTW).

The formulation is capable of dealing with heterogeneous vehicles, multiple depots,

many-to-many requests and pure pickup/delivery nodes. The optimal solutions of the

problems with 36 locations including one test instance of multi-depot PDPTW were

solved by ILOG OPL.

Therefore, the only available heuristics and large size standard benchmark test in-

stances for solving the MD-PDPTW-SR are those of Ropke and Pisinger (2006). For

other related problems, Bent and Van Hentenryck (2004) proposed a two-stage hy-

brid algorithm to solve the PDPTW. The �rst stage uses a simple simulated annealing

algorithm to reduce the number of routes, while the second stage applies a Large Neigh-

bourhood Search (LNS) to decrease the total travel cost. The heuristic was also used to

experiment on the test instances of Li and Lim (2001). It demonstrated the improve-

ment of 47% and 76% of the best solutions on the 200 and 600 customer benchmarks,

respectively.

Variants of Genetic Algorithms (GAs) were also used to solve the PDPTW. Pankratz

(2005) applied the Grouping Genetic Algorithms to solve Nanry and Barnes (2000)'s

and Li and Lim (2001)'s benchmarks, up to 100 requests. The computational results

are competitive with the results of Nanry and Barnes (2000) and Lau and Liang (2001).

Nagata and Kobayashi (2010) applied a Memetic Algorithm (MA) to solve the PDPTW.

The authors developed a particular crossover operator to tackle this tightly constrained

problem. A simple hill climbing algorithm with the �rst improvement strategy is then

used as the local search algorithm. The MA was tested on Li and Lim's (2001) bench-

marks and improves almost 50% of the best-known solutions upon those of Ropke and

Pisinger (2006) and Bent and Van Hentenryck (2004).
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4.2.1 Gaps in the Literature

Reduction in the number of removed requests

For the ALNS, Pisinger and Ropke (2007) observed that it may be bene�cial to

reduce the number of requests (q) that are removed in each iteration as the simulated

annealing framework generally accepts only minor changes toward the end of the search.

As a result, this could speed up the algorithm or allow it to perform more iteration

within the same amount of time. We believe that, in order to schedule this reduction,

a master local search framework should equip this mechanism. However, the ability

to accept solutions in SA is controlled by the exponential probability function and

temperature. Both of which are di�cult to be manipulated in di�erent problem sizes.

In this Chapter, we aim to redesign the algorithm so that the master local search

framework allows the continuous exploration of good solutions, with a schedule of small

requests to remove, while maintaining the same search behaviour as the SA.

Parallelising the ALNS

Ropke (2009b) attempted to design a parallel ALNS (PALNS) for solving variants

of VRPs with the view to speeding up the search. In brief, one current solution and one

global best solution was shared among the worker threads and each thread obtained

a copy of the current solution and performed �destroy and repair� operations on its

local copy. The shared current and global best solutions were updated as necessary.

The weights of destroy and repair methods, the temperature of the SA and iteration

counter were also shared to the worker threads. Other operators were similar to those in

Pisinger and Ropke (2007). The computational results showed linear speedup. However,

the author believed that the PALNS seemed to be working against the SA principle.

For example, the authors considered a current solution x at some point during the

search. In a sequential LNS, the search might move away from this solution during,
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for example, 8 iterations. However, a parallel LNS may move away from this solution

for 7 iterations, but when the destroy and repair operation that was initiated with x is

�nished, it may move back to a solution close to x and thereby cancel the work done

in the intermediate iterations. They suggested that further experiments are necessary

to fully understand this e�ect.

In our view, instead of searching one single solution in parallel using di�erent op-

erators, it may be bene�cial if a number of diverse solutions were searched using a

population-based approach in parallel, due to the following reasons:

Firstly, Jones (1995) mentioned that one particular operator has one search land-

scape. In ALNS or PALNS, we believe that the randomised parameters, the number

of operators and the random number of requests to remove within a limited range,

increase the degree of freedom of the search. Therefore, it is di�cult to control the

search direction that attempts to move away from the current solution without cycling.

With the use of shared weights in the roulette wheel in PALNS, when some operators

have high probability of selection but the same operators may be selected with some

di�erences due to randomness. Even though the PALNS applies parallel computing to

search for several solutions at a time, at every iteration, it then starts from a single so-

lution previously accepted. Therefore, it should still be categorised as a single-solution

approach or trajectory method, while, the operators of population-based approaches

work on diverse populations or several reference points. As a consequence, it is pos-

sible that the accepted solution may not move far away from the previously accepted

solution and the search spreading from a single solution may concentrate on one basin

of attraction. As a result, it is rather di�cult to prevent cycling.

Secondly, in Pisinger and Ropke (2007), several moves have a distance of zero,

meaning that no changes were made to the solution vectors. Thus, such moves should

be avoided. In addition, we believe that searching one current solution to several near

solutions in parallel may not be able to move some solutions trapped in deep local

optima. Moreover, some basins of attraction containing local optima may be far away
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from one another. We expect that searching several diverse solutions in parallel, like in

typical population-based approaches, can potentially explore more search space.

One way to handle these suggestions is to hybridise the ALNS with a population-

based approach in order to combine strengths and counteract limitations. Thus, we

sought a rather simple metaheuristic as the local search framework at the master

level. However, each metaheuristic framework has its own philosophy, characteristic

and behaviour. All key components and their contribution toward intensi�cation and

diversi�cation must be investigated. In hybrid metaheuristics, the synergy e�ect of

diversi�cation and intensi�cation is essential. Therefore, we investigated the design

principle of hybrid metaheuristics accordingly.

4.3 Problem Formulation

The formulation is based on Desaulniers et al. (2002) and Ropke and Pisinger (2006).

The authors presented the formulation for the PDPTW that can be adapted to the

(MD-PDPTW-SR).

4.3.1 Notations

i location

n number of pickup and delivery request

K set of all vehicles

m number of vehicles, m =| K |

P set of pickup nodes, P = {1, . . . , n}

D set of delivery nodes, D = {n+ 1, . . . , 2n}

li demand/supply at vertex i

ai earliest time to begin service at vertex i
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bi latest time to begin service at vertex i

si service duration at vertex i

Ki set of vehicles that are able to serve request i,

Pk set of pickups that can be served by vehicle k;Pk ⊆ P

Dk set of deliveries that can be served by vehicle k;Dk⊆ D

τk set of start terminal of vehicle k;

τ
′

k set of end terminal of vehicle k;

dij distance from vertex i to j

tij travel time from vertex i to j

Ck Capacity of vehiclek

xijk =


1 , if arc (i, j) is traversed by vehicle k

0 , else

zi =


1 , if request i is placed in the request bank

0 , else

Sik a non-negative number that indicates when truck k with semi-trailer t starts

the service at location i

Lik a non-negative number that indicates space of truck k with semi-trailer t

when leaving vertex i
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4.3.2 Mathematical Model

A mathematical model of the problem is

Min α
∑
k∈K

∑
(i,j)∈Ak

dijxijk + β
∑
k∈K

(Sτ ′k,k
− aτk) + γ

∑
i∈P

zi (4.1)

Subject to:

∑
k∈Ki

∑
j:(i,j)∈Ak

xijk + zi = 1 ∀i ∈ P (4.2)

∑
j:(i,j)∈Ak

xijk −
∑

j:(n+i,j)∈Ak

xn+i,j,k = 0 ∀k ∈ K, ∀i ∈ Pk (4.3)

∑
j∈Pk∪{τ

′
k}

xτk,j,k = 1 ∀k ∈ K (4.4)

∑
i∈Dk∪{τk}

xi,τ ′ ,k = 1 ∀k ∈ K (4.5)

∑
i:(i,j)∈Ak

xijk −
∑

i:(i,j)∈Ak

xjik = 0 ∀k ∈ K, ∀j ∈ Nk (4.6)

xijkt = 1⇒ Sikt + si + tij ≤ Sjkt ∀k ∈ K, ∀(i, j) ∈ Ak (4.7)

ai ≤ Sik ≤ bi ∀k ∈ K∀, i ∈ Vk (4.8)

Sik ≤ Sn+i,k ∀k ∈ K, ∀i ∈ Pk (4.9)

xijkt = 1⇒ Likt + lj ≤ Ljkt ∀k ∈ K, ∀(i, j) ∈ Ak (4.10)

Lik ≤ Ck ∀k ∈ K, ∀i ∈ Vk (4.11)

Lτkk = Lτ ′kk
= 0 ∀k ∈ K (4.12)
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xijk ∈ {0, 1} ∀k ∈ K, ∀(i, j) ∈ Ak

zi ∈ {0, 1} ∀i ∈ P

Sik ≥ 0 ∀k ∈ K, ∀i ∈ Vk

Lik ≥ 0 ∀k ∈ K, ∀i ∈ Vk

It is important to note that some vehicles can only service some requests. For

example, a request might require the vehicles with freezing compartment or other com-

patible equipment. Therefore, for all i and k: k ∈ Ki ⇔ i ∈ Pk ∧ i ∈ Dk. Spe-

cial requests are those where Ki 6= K. Let N = P ∪ D and Nk=Pk ∪ Dk. Denote

τk = 2n + k, k ∈ K, and τ
′

k = 2n + m + k, k ∈ K be the nodes that represent the

start and end depots of vehicle k, respectively. The graph G = (V,A) contains the

nodesV = N ∪ {τ1, . . . , τk} ∪ {τ
′
1, . . . , τ

′
m} and the arcs A = V × V . For each vehicle,

we have a subgraph Gk = (Vk, Ak), where Vk = Nk ∪ {τk} ∪ {τ
′

k} and Ak = Vk × Vk.

For each arc (i, j) ∈ A, the distance dij > 0 and a travel time tij > 0. The triangle

inequality for time is satis�ed: tij < til + tlj for all i, j, l ∈ V. For each node i ∈ N ,

li > 0 for i ∈ P , and li = −li−n for i ∈ D.

The objective function in Equation 4.1 is to minimise the weighted sum of the

travelled distance, the sum of the time spent by all vehicles and the number of requests

not scheduled. Constraint 4.2 ensures that each pickup location is visited or placed in

the request bank. Constraint 4.3 ensures that both pickup and corresponding delivery

requests are visited by the same vehicle. Constraints 4.4 and 4.5 ensure that every

vehicle departs from a start terminal and return to a designated end terminal. Together

with constraint 4.6, this ensures that consecutive paths between τk and τ
′

k are established

for each k ∈ K. Constraints 4.7 and 4.8 ensure that Sik is set correctly along the paths

and that satisfy time windows of i. These constraints also prevent sub-tours. Constraint

4.9 ensures that each pickup precedes its delivery location. Constraints 4.10, 4.11 and
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4.12 ensure that the load variables is formed correctly along the paths and satisfy the

vehicle capacity.

4.4 Design of Hybrid Metaheuristics

As discussed in Section 2.3.4, we �rst survey the related methodologies that provide

competitive results for variants of vehicle routing problems. The conceptual design is

described in order to understand the rationales underpinning our hybrid metaheuristic.

4.4.1 State-of-the-Art Review of Related Methodologies

Rapid changing environments in business need solution methods that are fast, easy

to understand, �exible, accurate, and robust in terms of consistent performance across

di�erent problems. Gendreau and Tarantilis (2010) surveyed the state-of-the-art meta-

heuristics for solving large-scale problem instances of Vehicle Routing Problems. The

authors suggest that many approaches have failed to provide a good compromise be-

tween quality and computational time while a few approaches scored well on other

dimensions, such as simplicity and �exibility. Parallel and cooperative search meth-

ods should be considered to take advantage of available multiple CPUs. The authors

concluded that Nagata et al. (2010), using a penalty-based edge assembly Memetic

Algorithm, is one of the most e�ective and e�cient approaches. In terms of the sim-

plicity of its structure, Pisinger and Ropke (2007), using ALNS, demonstrated a good

compromise between speed and accuracy. The ALNS has also been applied to a wide

variety of di�erent VRP variants due to its simplicity and �exibility. Braysy (2004b)

also scored well due to its simple structure, using multi-start local search with Thresh-

old Accepting (TA). We also noticed that the concept of Memetic Algorithm proposed

by Nagata et al. (2010) for solving VRPTW is similar to that of Nagata and Kobayashi

(2010) for solving PDPTW.

In terms of methodological comparison, Yagiura and Ibaraki (2001) investigated
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several metaheuristics and compared their performance. In their experiments, TA was

shown to be the best metaheuristic when compared to several other metaheuristics

namely, SA, GLS, ILS, GDA, GRASP, GA, MLS, TA. Braysy (2012) con�rmed that the

record-to-record travel algorithm and TA are among the most e�cient metaheuristics

in the literature.

Ulder et al. (1991) argued that Genetic Local Search should not be viewed as being

opposed to SA and TA because elements of these strategies can be implemented in

Genetic Local Search at the improvement or selection step. Genetic Algorithms and

Memetic Algorithms, as population-based approaches, proved successful in e�ciently

solving variants of VRPs and PDPTW. We then focused on the Memetic Algorithm

by Nagata and Kobayashi (2010) to hybridise with the ALNS, using TA, in order to

obtain a fast and reliable metaheuristic.

4.4.2 Conceptual Design

Blum and Roli (2003) report that a current trend is the hybridisation of methods

in the direction of the integration of a single point search algorithm into population-

based ones. Grefenstette (1987), Goldberg (1989), Merz and Freisleben (1999), Hart

et al. (2005) and Blum and Roli (2003) showed that GAs are useful for identifying good

areas of the search space, i.e. exploration but they are often less good at re�ning near-

optimal solutions i.e. exploitation. GAs use diverse population to search in di�erent

regions of the search space, which then restores the search of promising solutions rather

than replacing the single solution. Goldberg (1989) stated that, when problem-speci�c

information exists, it may be advantageous to consider a GA hybrid. GAs may be

crossed with various problem-speci�c search techniques to form a hybrid that exploits

the global perspective of the GA and the convergence of the problem speci�c technique.

Ulder et al. (1991), Davis (1991) and Blum et al. (2011) con�rmed that metaheuristic

hybrids, in some way, are often successful at managing to combine the advantages of

population-based methods to ensure an exploration of the search space with the strength
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Algorithm 4.1 Pool Template for Hybrid Metaheuristics
Initialise pool P by an external procedure;

while termination = FALSE do

S ← OF (P );

if | S |> 1 then

S
′ ← SCM(S)

else

S
′ ← S;

S
′′ ← IM(S

′
);

P← IF (S
′′
)

Apply a post-optimising procedure to P.

of trajectory methods and to help identify quickly good areas in the search space.

Raidl (2006), Greistorfer and VoB (2005) discussed a pool template by which they

cover di�erent classes of metaheuristics and hybrids. The authors pointed out that

most existing metaheuristics share some ideas but di�er in certain characteristics and

key components. �Making these key components explicit and collecting them yields a

toolbox of components from which one can choose in the design of an optimisation algo-

rithm, as it seems to be most appropriate for the target problem at hand.� Greistorfer

and Voÿ (2005) introduced a pool template, as shown in Figure 4.1.

In Figure 4.1, P represents Pool, IF/OF stand for Input/Output Function. IM

represents ImprovementMethod and SCM stands for SolutionCombinationMethod.

Interpreting metaheuristics as instances of such a common template results in a decom-

position of the algorithms.

We perceived that this pool template can provide a uni�ed view of metaheuristics

and their hybrids. It comprehensively covers the single-solution and population-based

approaches in terms of their key components. We attempted to combine strengths

and eliminate weaknesses from the selected metaheuristics by using the ALNS as a

point of departure i.e. possible improvements from Pisinger and Ropke (2007), as

discussed in Section 4.2.1. There are several possible hybrids of key components from

the metaheuristics of Nagata and Kobayashi (2010), Pisinger and Ropke (2007) and
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others. Therefore, we begin with the suggestions of Pisinger and Ropke (2007): (1) use a

small number of requests when necessary and (2) make the ALNS parallel. We consider

that Threshold Accepting (TA), a deterministic version of SA, can easily schedule the

use of a small number of requests to remove. Also, it is widely known that GAs and

MAs are among the most successful metaheuristics used for combinatorial optimisation

problems. Therefore, the conceptual design of our proposed hybrid metaheuristic is

discussed in regards to the key elements of GAs, ALNS and TA perspectives by framing

into the pool template. Moreover, the intensi�cation and diversi�cation e�ects of each

operator and their interactions are discussed.

Pool and S

Greistorfer and Voÿ (2005) de�ned that, for example, simulated annealing in terms

of this template has | S |= 1 and when the overall so-far best solution is collected

| P |= 2.

Goldberg (1989) pointed out that a single-solution approach may locate a false peak

while population-based approaches such as GAs climb many peaks in parallel. Blum

and Roli (2003) con�rmed that population-based algorithms provide a natural, intrinsic

method for the exploration of the search space.

In our opinion, the concept of GAs should avoid the PALNS concern of Ropke

(2009b), speci�cally that the search may return to the near locations solutions visited

earlier. Moreover, it should help in the exploration of the search space where local

optima may be far away from each other in tightly constrained problems. The use of

population constitutes the diversi�cation e�ect.

OF (P )

Raidl (2006) identi�ed OF , output function, as selection technique for GAs while

the SA simply returns the current solution. When using a population-based approach

such as GAs, one important operator is the selection operator, e.g. binary tournament
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selection. Goldberg (2002) described that the selection pressure ensures the propagation

of good building blocks or subassemblies of good solutions. Therefore, the tournament

selection introduces more intensi�cation than diversi�cation to the search process.

SCM(S) and IM(S)

For GAs, Raidl (2006) identi�ed SCM - crossover operators; IM -mutation operators,

repair schemes, decoding functions. The population-based approaches such as GAs

typically consist of SCM and IM , whereas the single solution approach only uses IM .

Goldberg (2002) explained that the basic concept is that GAs identify and re-

combine di�erent subassemblies of good solutions to form high performance solutions.

The recombination of these subassemblies is usually carried out by crossover or SCM .

The crossover operator with repair, as proposed by Nagata and Kobayashi (2010) and

Pankratz (2005), exchanges the routes between two selected parents. In this way, a good

sequence of locations is still maintained. Nagata and Kobayashi (2010) suggested that

meaningful building blocks from combining both parents must be inherited. The au-

thors designed the Selective Route Exchange Crossover (SREX) to tackle this problem.

Grefenstette (1987) also con�rmed the success of using heuristic crossover operators.

Since the selection pressure based on the overall tour length is insu�cient to distin-

guish among small competing sub-tours, the probabilistic choices of selected-sub tours

are however preferable to deterministic ones. Other well-performing hybrid GAs in-

clude the use of local search operators. The crossover, we suggest, constitutes to both

diversi�cation and intensi�cation. In terms of diversi�cation, the crossover changes or

replaces some subassemblies of one solution from the other. This can be considered as

one way to jump from one point to another. In terms of intensi�cation, the high quality

solutions are mated in order to apply the crossover. The crossover even recombines the

good subassemblies from both solutions and expectedly forms a higher solution. We

believe that heuristic crossover posses more diversi�cation than intensi�cation due to

route relocation and implicit mutation.
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Pisinger and Ropke (2007) demonstrated that the removal and insertion operators

performed well on the variants of VRPs. These operators are referred to as Large

Neighbourhood Search (LNS) operators, as originally introduced by Shaw (1998). By

using these operators, Pisinger and Ropke (2007) speci�ed the range of the number of

requests to remove i.e. for small problems, the interval is [0.1n, 0.4n] where n is the

number of customers or requests, while for larger instances, it is [30,60]. Berger and

Barkaoui (2004) considered large neighbourhood search as the mutation operators in a

parallel hybrid genetic algorithm for the vehicle routing problem with time windows.

The interval range is [12,17] customers in the problem size of 100 customers. Therefore,

the LNS in Pisinger and Ropke (2007) can be viewed as mutation operators in variants

of GAs. Moreover, we believe that when the number of requests to remove is small, the

LNS acts as a local search. The LNS in Pisinger and Ropke (2007) is equipped with

several removal and insertion operators, randomised parameters and random selection

of the number of requests to remove. These operators help diversify the search. Pisinger

and Ropke (2007) stated that the adaptive mechanism to choose among a number of

insertion and removal heuristics is to intensify and diversify the search. Pisinger and

Ropke (2007) con�rmed that a search of the ALNS can quickly move away from the

currently best known solution, compared to ideas of VNS where one tries to remain

close to the currently best known solution. Therefore, we suggest that in the ALNS,

the diversi�cation force is stronger than intensi�cation.

If the GA and the ALNS are hybridised, a number of population or points of search

should help the ALNS to explore very far away from the currently best solution. This

idea is preferable for the ALNS as mentioned in Pisinger and Ropke (2007). The popu-

lation can be viewed as the memory of complete good solutions. The crossover operator

can take advantage of the information from these single solutions by recombining good

subassemblies. Moreover, we can perceive that crossovers, which consist of removing

subassemblies before replacing them from another solution, causing some requests to

move to the request bank, have the same mechanism as removal operators that try to
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remove some requests before using insertion.

LNS operators apply on one solution. Therefore, crossovers should help LNS tackle

the search from the population of solutions. The ALNS operators, as heavy mutation

operators, should help the crossover in terms of avoiding premature convergence and

maintaining the population diversity, since when the population become too similar

or identical, crossing over two identical parents may generate the same o�spring. For

adaptive MAs, Krasnogor and Smith (2005) con�rmed the signi�cant improvement by

using multiple local search operators and an adaptive mechanism. We expect that the

crossover and ALNS are complementary key components that improve the search in

hybrid metaheuristics.

The next question is where these operators should apply. Krasnogor and Smith

(2005) pointed out that, by applying a local search after each of the genetic operators,

the population of individuals consists solely of local optima. Aguirre and Tanaka (2002)

found that applying mutation parallel to a crossover is more e�ective than mutation

serial to crossover. The best performance was achieved by a parallel varying mutation

self-adaptive GA. From this concept, it is interesting to incorporate the use of ALNS

operators parallel to the crossover operator. From our experiments, the concept of

parallel varying mutation self-adaptive GA provides promising results.

IF (S)

IF is the input function of solutions obtained, back to the Pool. Raidl (2006)

mentioned that the input function, IF, of GAs refers to the replacement strategy. The

IF of SA applies the Metropolis criterion in order to either accept or reject the new

solution. The temperature update can also be considered part of the input function.

The replacement strategy in GAs has an impact on intensi�cation and diversi�cation.

The replacement strategy used in Vidal et al. (2013) is the steady-state replacement

strategy, similar to the steady-state replacement used in Syswerda (1991) and Pankratz

(2005). It allows the deterioration of some good solutions. For example, a very good
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solution is made worse but is still accepted after a pre-de�ned number of solutions,λ, is

removed. However, without the additional mechanism developed by Vidal et al. (2013),

we observed that the steady-state replacement which replaces worst solutions generally

converges quickly and even worse for small-sized population. We also believe that

the modi�ed objective function and the population management of Vidal et al. (2013)

can make the convergence slower. However, this mechanism is complex and requires

considerable computational e�orts. The MA of Nagata and Kobayashi (2010) only

replaces one parent rather than both parents in the population. The author con�rmed

that this selection model is superior to conventional ones in maintaining population

diversity because it prevents two-parent solutions from being replaced by two similar

o�spring solutions. The crossover of Nagata and Kobayashi (2010) ensured that the

better o�spring was more similar to the �rst parent than to the second parent. However,

we view that this replacement strategy is highly intensi�ed. Since only better o�spring

replaces the �rst parent; therefore, the solution may not traverse much of the search

space. As a result, we attempt to simplify this mechanism using a replacement strategy

similar to that of Nagata and Kobayashi (2010), with slight modi�cations by accepting

some non-improving solutions according to Threshold Accepting (TA). TA diversi�es

the search in the beginning and intensi�es the search toward the end.

Moreover, in order to schedule the use of a smaller number of removed requests,

TA is quite �exible. Braysy et al. (2003) hybridised the Hybrid Genetic Algorithm

(HGA) with TA post-processor and demonstrated a good performance over a set of 356

benchmark instances for the VRPTW. It is interesting to note that the recombination

of the HGA is similar to that of Nagata and Kobayashi's (2010) in terms of removing

the whole route at a time. Braysy et al. (2009) modi�ed the TA of Dueck and Scheuer

(1990) and improved upon the framework of Mester and Bräysy (2005) and Braysy et al.

(2003). For other related applications, Liu (2011) improved the Genetic Local Search

(GLS) with the TA by only applying a local search when the new solution is accepted

by the TA. For our design, when using a smaller number of requests to remove, the
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LNS becomes a local search. Then, toward the end of the search, the small number of

requests to remove should be applied, so as to correspond to the accepting threshold

and the intensi�cation e�ect required for searching large-sized problems.

One may hybridise metaheuristics with or without special mechanisms. In this

hybrid metaheuristic, some mechanisms are designed to integrate these key components

together. Our algorithm stops after a number of iterations as in Ropke and Pisinger

(2006) and Pisinger and Ropke (2007).

We reintegrate the key components with the view to constructing the mechanism

that allows the balance between diversi�cation and intensi�cation. The optimal balance

of intensi�cation and diversi�cation or exploitation and exploration is required.

4.5 An Adaptive Memetic Large Neighbourhood Search (AMLNS)

We proposed the Adaptive Memetic Large Neighbourhood Search (AMLNS) with

the view to searching e�ciently, improving computational time, and simplifying imple-

mentation. Moreover, considering the ALNS as the PDPTW solver as stated in Pisinger

and Ropke (2007), the AMLNS should be able to substitute the ALNS and solve several

variants of VRPs, once these are transformed to the Rich PDPTW. The AMLNS is a

hybrid metaheuristic based on the ALNS, MA and TA. Following the discussion of each

key component, hybrid metaheuristics should be recombined from the most promising

key components. There are many possibilities for hybrid metaheurisitcs. We demon-

strated the development of the AMLNS according to the discussion of conceptual design

in Chapter 5. The AMLNS di�ers from typical ALNS in that the number of solutions,

tournament selection, crossover, replacement and TA are used. The AMLNS di�ers

from typical MAs in that adaptive mechanism, large neighbourhood search, and TA

are used. The AMLNS di�ers from typical TAs in terms of being population-based and

using crossover, tournament, replacement and large neighbourhood search operators.

Moreover, some specialised mechanisms are incorporated such as a cut-o� mechanism
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and roulette wheel partitioning, as described in Section 4.5.7. We demonstrated the

�owchart of the AMLNS in Figure 4.1 .

Figure 4.1: Flowchart of the AMLNS

According to Figure 4.1, the AMLNS �rst initialises the number of solutions, Thresh-

old, and other parameters. One solution is selected by a tournament selection. Then,

the AMLNS chooses a removal operator using roulette wheel selection. If a crossover is

applied, second tournament selection chooses another solution. After that, the AMLNS

chooses insertion operator using roulette wheel selection. A new solution x
′
is gener-

ated from x using the chosen removal and insertion operators. If x′ can be accepted

by Threshold, then set x := x
′
. If f(x) < f(x′), set x∗ = x, where x∗ is the best

known solution of the search so far. The threshold and adaptive weights are updated.

If Threshold is smaller than Cuto� Value, 2nd set parameters are used. The best so-

lution of the population at the cut-o� point is selected for further search. Until stop

criteria is met, x∗ is returned.
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4.5.1 Removal Operators

The combination of di�erent neighbourhood operators contributes to diversi�cation.

Each local search operator introduces a di�erent search direction. The large neighbour-

hood search with a large number of requests to remove can also be considered as a heavy

mutation in the context of GAs or MAs. The heavy mutation can drive a solution away

from its current location in the search space.

In the AMLNS, we categorise the removal operators into unary and binary operators.

The unary operators are those of Pisinger and Ropke (2007) while the binary operators

are the crossover operators developed in this study. For additional details of the removal

operators of the original ALNS, we refer the reader to Pisinger and Ropke (2007).

However, we summarised these methods accordingly. The �rst seven removal heuristics

return the number of pre-de�ned requests (q) to remove. In this study, we de�ne the

upper and lower bound q in both large- and medium-sized problems. The upper and

lower bound of q in large-sized problems are ql,up and ql,low. Similarly, the upper and

lower bound of q in medium-sized problem are qm,up and qm,low, respectively.

Random Removal (1)

This simple removal heuristic randomly selects q requests to remove. This removal

heuristic aims to diversify the search.

Worst Removal (2)

This greedy heuristic removes requests with high costs and then inserts them at another

place in the solution to obtain a better solution value. Intuitively, the measure is the

di�erence between the objective function with and without that request. All requests

are sorted by descending order according to the di�erence. The selection of requests
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involves randomness parameters, pw , substituted into p in Equation 4.13. The worst

removal heuristic now repeatedly chooses a new request, having the largest cost until

all q requests have been removed.

Most removal operators considered in this study apply the selection of randomised

requests as described in Ropke and Pisinger (2006). Let L be the ranked list of all

requests. | L | is the number of requests. We choose a random number, y, from the

interval [0, 1). p ≥ 1 is the determinism parameter that introduces some randomness

in the selection of the request. It is to note that if p = 1, removal heuristics become

the random removal operator. A low value of p corresponds to much randomness. We

then select the request i, where

i = yp· | L |, (4.13)

Related Removal (3)

Pisinger and Ropke (2007) modi�ed the removal heuristics from Shaw (1997) and Shaw

(1998). The authors then proposed Related Removal, Cluster Removal, and Time-

oriented Removal. The concept is to remove requests that are similar to other requests

and are expected, therefore, to be able to exchange positions easily and perhaps create

better solutions. For the related removal, the relatedness is de�ned in terms of distance.

We present this measure, as stated in Pisinger and Ropke (2007). The relatedness, rij,

of two orders i and j is solely measured by the distance between the requests. Since,

each request i consists of a pickup node i and a delivery node, i+n, then the relatedness

rij is expressed in terms of

rij =
1

D
(d
′
(i, j) + d

′
(i, j + n) + d

′
(i+ n, j) + d

′
(i+ n, j + n)), (4.14)
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Where the distance measure d
′
(u, v) between two nodes in this context is de�ned as

d
′
(u, v) =


duv if u and v are not located at a terminal

0 if u or v is located at a terminal

Pisinger and Ropke (2007) discussed that the motivation for neglecting the distance

from a terminal is that the terminal is going to be visited in any case, and thus should

not contribute to the relatedness measure of two requests. The denominator D is set

to the number of non-zero term i.e. number of pickups and deliveries taking place at a

site di�erent from a terminal. Therefore, for the PDPTW, the denominator D is set to

4. The lower rij is, the more related are the two requests.

All planned requests are sorted in ascending order. The algorithm initially selects

a request i by random. Then, it repeatedly chooses an already selected request j and

selects a new request which is most related to j. The algorithm stops when q requests

have been chosen. The selection of requests is controlled by a randomisation parameter,

pr, used in Equation 4.13.

Cluster Removal (4)

Pisinger and Ropke (2007) tried to remove clusters of related requests from a few routes,

since, with a route grouped into two geographical clusters, it is better to remove one of

these clusters. The insertion heuristics would otherwise likely insert the single removed

request back into the route. The Kruskal's algorithm for the minimum spanning tree

problem (using rij for the edge distances) is used and terminated when two connected

components remain. One of these clusters is chosen at random and the requests from the

selected cluster are removed. If less than q requests have been selected, we randomly

pick a removed request and choose the most related request from a di�erent route.

Then, the route of the new request is partitioned into two clusters and the process
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continues until q has been removed.

Time-oriented Removal (5)

Pisinger and Ropke (2007) stated that this heuristic tries to exchange the requests that

are expected to exchange easily, namely those that are served at somewhat the same

time as these requests. A request
∼
r is selected at random and the B requests that are

closest to
∼
r according to 4.15 are marked. Time-related measure is the arrival time of

two pickup-and-delivery requests as shown in Equation 4.15.

4tij =| tpi − tpj | + | tdi − tdj |, (4.15)

where tpi and tdi are the times of the pickup and delivery of request i in the current

solution. Among the B marked requests we select the q−1 that are nearest to
∼
raccording

to 4tij. The request selection process is also controlled by a randomisation parameter,

pt, used in 4.13.

Historical Node-pair Removal (6)

Pisinger and Ropke (2007) stated that, in this heuristic, the historical success of visiting

two nodes right after each other in a route is recorded. With each pair of nodes (u, v) ∈

A, a weight f ∗(u,v) indicating the best solution value found so far, in a solution which

used edge (u, v). Initially, f ∗(u,v) is set to in�nity. Each time a new solution is found, the

weights f ∗(u,v) of all edges used in the given solution are updated. f
∗
(u,v) is used to remove

requests that seem to be misplaced. The heuristic sums the weights of edges incident

to i and i+n. The most costly request is removed. The randomness parameter, pnp, is

also introduced to ensure some variation.
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Historical Request-pair Removal (7)

Pisinger and Ropke (2007) stated that this heuristic uses the historical success of placing

pairs of requests in the same routes. For this operator, the weight h(a,b) for each pair

of requests (a, b) ∈ {1, . . . , n} × {1, . . . , n} is introduced. The weight h(a,b) denotes the

number of times the two requests a and b have been served by the same vehicle in the

B best unique solutions observed so far. Initially, h(a,b) is set to zero, and each time a

new unique top-B solution is observed, the weights are incremented and decremented

according to the solutions entering and leaving the top-B solution. The graph is used

to de�ne the relatedness between two requests, such that two requests are considered

to be related if the weight of the corresponding edge in the request graph is high. This

relatedness measure is used as in the related removal heuristic. From experiments, we

also set the B value to 100 as in Pisinger and Ropke (2007) and Ribeiro and Laporte

(2012). The randomness parameter, prp, is also used.

4.5.2 Identical Vehicle Crossover (IVX)

In this metaheuristic hybrid, we introduce a crossover operator that transfers good

routes from one parent to another. The MD-PDPTW-SR is a highly constrained prob-

lem. Nagata and Kobayashi (2010) con�rmed that the existence of the pickup and

delivery constraint makes the design of an e�ective crossover operator more di�cult.

Since, after applying an appropriate repair operation, the constraint violation may be

eliminated, however the resulting solutions will no longer inherit meaningful building

blocks from the parents. The authors designed a Selective Route Exchange Crossover

(SREX) by combining routes from two parents in such a way that the amount of con-

straint violation from these routes is approximately minimised by a specialised local

search. However, we experimented the SREX to the MD-PDPTW-SR and found that

the constraints in terms of special requests, capacity and time windows in the MD-
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PDPTW-SR creates some di�culties to the SREX due to constraint violations and

repair. It is important to note that the violation of time windows possibly occurs

due to relocating requests to another farther depot because di�erent routes in di�er-

ent vehicles from di�erent depots can be recombined. Moreover, the specialised local

search is rather complex and requires some computational e�ort. However, the concept

of combining routes still remains. Berger et al. (2003), Berger and Barkaoui (2004),

Pankratz (2005) and Hosny (2010) applied di�erent ways of recombining routes to form

an o�spring, but all aim to preserve the orientation of the route. Recall that we aim to

design a metaheuristic that is easy to understand while providing �exibility, accuracy

and robustness. To achieve this, we simply transfer the routes from the same vehicles

in both parents. In this way, we avoid the concern of violating the constraint related to

special requests. Then, we term this operator as the Identical Vehicle Crossover (IVX).

The IVX can be broken down into 5 steps.

Main steps of the IVX

Step (1): The number of routes within the interval [r1, r2] is selected randomly.

Step (2): The �good� routes of the second parent are selected. We determine the

good routes similar to Berger et al. (2003), Berger and Barkaoui (2004) and Hosny

(2010). The authors rank routes according to the number of nodes in descending order.

Ties are broken by the route travelled distance. Moreover, when employing Grefen-

stette's (1987) use of probabilistic selection for crossover, we found that introducing

some randomness can improve the search performance for the IVX. We adapt the ran-

domness parameter from Equation 4.13 and consider L as the ranked list of non-empty

routes instead. In order to rank non-empty routes, we introduce two di�erent route

selection rules: average distance and average time and distance. These rules are used

to measure the route quality. To illustrate, the average distance is the average value of

distance separating the consecutive locations in a route. The average distance re�ects

131



Chapter 4 An AMLNS for the Multi-Depot Pickup and Delivery Problem with

Time Windows and Special Requests

the total distance of the route. The average time and distance re�ects the total distance

and total time, as considered in the objective function. The randomness parameters

pc are also introduced. To probabilistically choose the good routes, we select route i

according to Equation 4.13 where | L | is the number of non-empty routes.

Step (3): The selected routes in the second parent are checked to avoid duplicate

o�spring. Hereafter, we refer to selected routes or inserting routes interchangeably.

The replaced routes refer to the same vehicle in the �rstly selected parent. In order

to prevent duplication, the inserting routes and replaced routes must not be identical,

since we transfer the requests to the same vehicle. If the route is identical, it is not

selected. Instead, it is removed from the list for selection, and the selection of routes

continues.

Step (4): We remove all requests in the replaced routes to make room for inserting

the selected routes from the second parent. That means the requests contained in both

the replaced and inserting routes are not removed, while the requests that are in the

replaced routes, but not the inserted routes, are removed to the request bank. If some

requests appear twice in the solution, we delete them from the routes that originally

belonged to the �rst parent.

Step (5): We reproduce the second o�spring in Step 2-4 with the parents in

reversed roles. An illustrative example of the recombination process of the IVX is

demonstrated in Figure 4.2.

In Figure 4.2, assume that one route is selected in step 1. Step 2 is to select good

route(s), e.g. the route in vehicle 4 of P2. Then, in step 3, the duplication is checked at

the same vehicle of P1. In step 4, the request 5 is removed to the request bank because

it is neither request 3 nor 1. Then, requests 3 and 1 of the original P1 are deleted.

Some requests may, therefore, be removed to the request bank and reinserted back to

the solution, which in this situation is called implicit mutation.
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Figure 4.2: The Identical Vehicle Crossover (IVX)

4.5.3 Insertion Operators

Once some requests are removed by the removal operators described in Section 4.5.1,

these requests are reinserted by the insertion operator, according to Pisinger and Ropke

(2007), as follows:

Given a number of k partial routes in a solution, where k ∈ R and a number of

unassigned requests, U , is in the request bank. The regret-k heuristics are considered

for parallel insertion, which construct several routes at the same time. Denote 4f qi the

change in the objective value when inserting request i into its best position in the qth

cheapest route for request i. At each iteration, the regret heuristic selects the request

i according to

i := arg max
i∈U

(

q∑
h=2

4fhi −4f 1
i )

Ties are broken by selecting the request with lowest insertion cost. Then, the request

i is inserted at its minimum cost position, in its best route. The heuristics tries to insert

a request on the q best routes and select the requests whose cost di�erence between

inserting it into the best route and the q−1 best routes is largest. This type of insertion
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heuristics incorporates look-ahead information when selecting the request to insert.

Otherwise, the placement of di�cult requests in the last iterations or myopic behaviour

normally happens in a basic greedy heuristics i.e. when q = 1. In our proposed heuristic,

we apply regret-1, regret-2, regret-3, regret-4 and regret-m (m =| K |).

4.5.4 Adaptive Mechanism

The adaptive mechanism is used to keep track and adjust the use of each operator

according to their historic success. It consists of using a roulette wheel selection and

adaptive weight adjustment.

Roulette Wheel Selection

The adaptive mechanism uses the roulette wheel selection for choosing the pre-de�ned

rules in each of the removal heuristics, insertion heuristics, noise methods and IVX's

route selection in the AMLNS. The mechanism controls the selection of pre-de�ned

rules, according to their past performance (score). Let πi be the past score of a pre-

de�ned rule i and ω pre-de�ned rules in each method. The roulette wheel selects

pre-de�ned rule j with probability:

Prob. Roulette =
πj
ω∑

i=1

πi

(4.16)

Note that the removal and insertion heuristics are selected independently by a sep-

arate roulette wheel, thus, the noise method and IVX's route selection. Moreover, due

to being a population-based approach, the AMLNS allocates separate roulette wheels

to each solution.
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Adaptive Weight Adjustment

According to Pisinger and Ropke (2007), the roulette wheel selection mechanism is

based on the scores πi of pre-de�ned rules in each method. A successful heuristic gains

a high score and, as a result, the heuristics should be selected with a larger probability.

In this study, the scores are collected every 100 iterations as in Ropke and Pisinger

(2006). The observed score
−
πi,j of a pre-de�ned rule i in generation j is increased with

the following values depending on the new solution x
′
.

σ1 : The last remove-insert operation produced by a new global best solution x
′
.

σ2 : The last remove-insert operation produced a solution x
′
that its cost is better

than the cost of the current solution.

σ3 : The last remove-insert operation produced a solution x
′
that its cost is worse

than the cost of the current solution, but still acceptable by Threshold.

At the end of each segment, the smoothened scores are calculated as follows:

πi,j+1 = ρ

−
πi,j
ai

+ (1− ρ)πi,j

where ai is the number of times the heuristics are used in each segment. The reaction

factor ρ controls how quickly the weight adjustment reacts to changes in the scores.

Pisinger and Ropke (2007) further observed that a mixture of good and less good

heuristics leads to better solutions than solely using good heuristics. It is necessary that

well-performing heuristics are given most in�uence, but still all heuristics participate in

the solution process. Therefore, in this study, we set a minimum value of probability of

each pre-de�ned rule (Prob. Roulette), in the roulette wheel selection, to 0.1 to remain

useful to all operators.
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4.5.5 Applying Noise to Objective Function

Noise is applied at the insertion heuristics, which are either with noise or without noise.

The objective function corresponds to the weighted sum of distance travelled, time

travelled and the number of requests in the request bank. We also set the coe�cients

of the objective function in Equation 4.1, α = β = 1 and γ = 100000 as in Ropke and

Pisinger (2006).

An alternative diversi�cation procedure is to apply noise to the objective function.

The insertion cost C can be modi�ed with some noise δ. The modi�ed insertion cost

C
′

= max{0, C + δ}. The noise is randomly selected as a random number in the

interval [−Nmax, Nmax], where Nmax = η ·maxi,j∈V {dij}, where η is a parameter that

controls the amount of noise. The clean or the noise imposed insertion is selected by

the roulette wheel mechanism.

4.5.6 Initialisation

In the AMLNS, the solution structure contains location sequences served by vehicles as

described in Section 3.6.2. We avoid the encoding of chromosomes in other formats that

cannot apply local search operators and which cause a violation after using operators.

Chu (1997), Hart et al. (2005) and Ho et al. (2008) pointed out that using problem-

speci�c knowledge as the heuristic initialisation is superior to the use of random gener-

ation. Grefenstette (1987) suggested that, in contrast to a single solution approach, the

population diversity and the quality of the initial solutions are essential for the search

performance.

As a result, we generate an initial population that are diverse and good quality.

The regret insertion heuristics are the core of the population initialisation. Di�erent

seeding criteria can di�erentiate the individuals from one another, resulting in diverse

solutions. We apply two seeding strategies, namely, no seeding and a single-request
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seeding. Then, the regret-1, regret-2, regret-3, regret-4 and regret-m construct the

solutions by inserting requests from the request bank.

In terms of no seeding, all regret heuristics are used. The initialisation criterion

for single-request seeding is to determine the single request for insertion in any vehicle.

According to Li and Lim (2001), we select two criteria: minimal combined latest bound

of time windows and minimal combined period of time windows because these requests

seem to be di�cult to insert. For each seeding strategy, all regret heuristics are se-

quentially applied. It is important to note that these no-seeding and 2 single-request

seeding criteria with regret-k insertion can produce up to 15 di�erent feasible solutions,

depending on whether or not solutions are duplicated. If there is no duplication at

all, the set of solutions seeded from minimal combined latest bound are generally used

before those from a minimal combined period of time windows. From the experiment,

we found that this method produces a diverse population.

4.5.7 Master Local Search Framework

Ropke and Pisinger (2006) and Pisinger and Ropke (2007) applied the Simulated An-

nealing as the master local search framework for the ALNS. In this Chapter, we hy-

bridise the ALNS with other metaheuristics. Therefore, the ALNS framework is modi-

�ed and incorporated with a specially designed mechanism for this hybridisation.

Modi�ed Threshold Accepting

Dueck and Scheuer (1990) simpli�ed the SA procedure by leaving out the stochas-

tic element when accepting worse solutions. Instead, they introduced a deterministic

threshold, Thres, and always accept a worse solution if the percentage di�erence to the

incumbent solution is smaller or equal to the Threshold.
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Pisinger and Ropke (2007) stated that the start temperature control parameter of

di�erent problem sizes should be divided by the number of requests in that instance.

One advantage of TA is that there is no need to determine the start temperature control

parameter that corresponds to the problem size. Dueck and Scheuer (1990) emphasised

that the advantages of the TA are its simplicity and e�ciency. In our opinion, the

exponential probability function of the SA makes the ALNS di�cult to be manipulated

due to its temperature and stochasticity.

By using the TA, if the objective function of the new solution is less than (1+Thres)×

the objective function of the current solution, the modi�ed solution is accepted. In this

de�nition, Thres is typically a fraction. Due to its determinism, it is rather easy to be

manipulated for hybridisation and implemented. We denote the starting Threshold as

St. Thres. According to the experiments in Chapter 5, we modify the original Thresh-

old Accepting (TA) in terms of threshold reduction by using the exponential cooling

rate, cexp, according to Equation 4.17.

Thres = Thres · cexp (4.17)

Tournament Selection

Selection pressure plays a vital role to ensure increased proportions for good routes.

Pankratz (2005) pointed out that the binary tournament selection mechanism has low

time complexity. In addition, a simple comparison of the objective values is su�cient.

From the literature, we selected the binary tournament selection according to Ombuki

and Hanshar (2009), due to its �exibility. To begin with, two individuals, i.e. tourna-

ment set, are randomly selected from the population. A random number, r, between

0 and 1 is chosen at random. If r is less than ProbT , the �ttest individual in the

tournament set is then selected for reproduction. Otherwise, the solution is selected at
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random from the two solutions. The typical binary tournament approach is a special

case of this tournament approach with tournament probability = 1.0.

In the AMLNS, the tournament selection is di�erent from conventional selection,

which selects two or more solutions consecutively. We separate the selection of two so-

lutions by using two binary tournament selection wheels. The two binary tournament

selection wheels are applied at the di�erent time and or even possibly di�erent probabil-

ities. The �rst tournament selection wheel is applied when selecting one solution from

the population. Then, the roulette wheel selection determines the removal operator

to apply, according to Equation 4.16. If the roulette wheel selects the crossover, the

second tournament selection is then called to select another solution in the population

for mating and reproduction. The �rst and second tournament selection probabilities

are denoted as ProbT,1st and ProbT,2nd respectively.

Crossover Probability

The selection pressure from route quality measures in crossover and tournament selec-

tion reinforces the intensi�cation e�ect. However, whole route (s) removal and implicit

mutation causes a change in the large number of requests and results in diversi�cation.

From the experiments in Chapter 5, the signi�cant change in the objective function due

to the crossover often exceeds the Threshold and is relatively less accepted than the

removal operators of the original ALNS. Without a mechanism to prevent the adap-

tive weights of the original operators that overtake that of the crossover, the crossover

cannot compete.

Therefore, we modify the roulette wheel selection in Section 4.5.4 to control the

use of di�erent neighbourhood operators. To simplify the implementation and take

advantage of the roulette wheel selection for removal operators, we partition the wheel

between the ALNS's original removal operators and the proposed crossover. In the
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IVX, two route measures are applied. These are treated as two operators. We refer this

partition value to crossover probability, probcross. The probcross separates the probabil-

ities in the roulette wheel into two intervals e.g. [0, probcross) and [probcross, 1) for two

crossover operators and original ALNS operators, respectively. Even though, all origi-

nal ALNS operators performed very well, the range of probabilities is still restricted to

[probcross, 1). In each partition, the probabilities of operators are adaptive according to

their historic performance.

Replacement Strategy

A replacement strategy plays an important role in preserving the diversity of the pop-

ulation in GAs and MAs. According to the surveyed literature and the discussion

described earlier, we redesigned the replacement strategy as similar to that of Nagata

and Kobayashi (2010). The similarity is that the parent is replaced by its o�spring.

Nagata and Kobayashi (2010) generated a number of o�spring by crossover and local

search operators. Only an improved o�spring replaces its parents. In the AMLNS, we

generate one o�spring at a time. According to the experiments, we observe that accept-

ing only improved o�spring may obstruct the traversal of modi�ed solutions to explore

di�erent regions of search space. Therefore, in the AMLNS, the parent is replaced by

its o�spring only if the o�spring is accepted by the Threshold. Acceptance of non-

improving solutions can diversify the search for the continued innovation of a crossover.

However, the best solution thus far for each solution is always kept. The experiments

con�rmed that this proposed replacement strategy helps maintain population diversity,

preventing premature convergence, and allowing the exploration of the search space to

some extent.
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Cut-o� Mechanism

As suggested by Pisinger and Ropke (2007), the number of requests to remove should be

reduced when the algorithm rarely accepts non-improving solutions. We then propose

a mechanism or so-called cut-o� mechanism to schedule the use of smaller moves. For

simplicity, we monitor the Threshold whether or not reducing down to a percentage,

Coff , of the St.Threshold. The rationale of using the percentage of the start Threshold

is that the acceptance of changes in the objective function depends on the Threshold, as

described in Equation 4.17. The lower the Threshold is, the lower the acceptance will

be. Then, it may be appropriate to avoid using the IVX and large number of requests

to remove for the LNS. Therefore, the percentage of the start threshold is one of the

suitable indicators to initially determine the cut-o� point for smaller moves.

The cut-o� mechanism separates the AMLNS into two stages. Before the cut-o�

point, the number of solutions, tournament selection, crossover and the original ALNS's

operators are used. The second stage of the algorithm is applied after the number of

iterations, where the Threshold is reduced down to the value of Coff × St.Threshold.

In this stage, the Threshold becomes too small: the crossover operators and LNS with

large q are rarely accepted, but the LNS with applying a small number of requests

to remove is often accepted. Therefore, we avoid using the crossover, and only use

LNS with a smaller number of requests to remove. As we assume that a good basin of

attraction is located by the best current solution among the population after the �rst

stage, this solution is individually selected to intensify the search. It is important to

note that the selected solution for the second stage, which is selected from the solutions

gained at the Coff × St. Threshold iteration, is not necessarily the best solution

found thus far. In this stage, the tournament selection is not used anymore. We also

set probcross to zero. Recall that the range of crossovers and original ALNS operator are

[0, probcross) and [probcross, 1) respectively. Therefore, the crossover operators cannot

be used but only original ALNS operators. The new solution is only accepted according
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to the Threshold. The number of requests to remove is then reduced to θ% for both of

their upper and lower bounds.

By determining the two stages of the AMLNS, before and after the cut-o� point,

we then obtain the aggregate diversi�cation (D>I) and intensi�cation phases (I>D),

respectively. In other words, the �rst stage aims at diversifying the search by using

population, crossover, LNS operators and large Threshold. The second stage aims at

intensifying the search by using smaller Threshold and a LNS with a small number of

requests to remove, but still applying multiple local search operators, each with its own

search direction. The use of multiple local search operators and randomised parameters

can still help to diversify the search while other diversi�cation mechanisms such as the

population, crossover, and LNS with large q are omitted. Roulette wheel selection gives

larger intensi�cation force than diversi�cation force.

4.5.8 Reduction Rules for Improving Computational time

One of the most time-consuming parts in the AMLNS is the regret-k heuristics. In

order to �nd the minimum cost position of one route, the objective function of all

possible insertion must be calculated. A known time complexity of O(n2), when all

possible insertion of a request in a route containing n nodes, is quanti�ed. Due to

being a highly constrained problem, the MD-PDPTW-SR restricts the feasibly inserted

locations according to several constraints. If a reduction rule is found, this can help

reduce computational time without leaving out any feasible solution. Two examples are

the reduction rules for precedence and capacity constraints, as described in Chapter

3. The MD-PDPTW-SR can be decomposed into several sub-problems such as time

windows and special requests.
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Time Windows

In this problem, the violation of time windows in each customer location is not allowed.

Jaw et al. (1986), Solomon (1987), and Diana and Dessouky (2004) applied a similar

concept of time feasibility checking. The authors took advantages of slack, idle or

waiting time in order to seek feasibly inserted locations. According to Solomon (1987),

the service at a customer, say i, i = 1, . . . , n, involving pickup and/or delivery of goods

or services for si units of time, can begin at time bi, within a time window de�ned by

the earliest time ei and the latest time li that customer i will permit the start of service.

Hencem if a vehicle travels directly from customer i to customer j and arrive too early

at j, it will wait, that is, bj = max{ej, bi + si + tij}, where tij is the direct travel time

between i and j. Solomon (1987) examined the necessary and su�cient conditions for

time feasibility when inserting a customer, say u, between the customers ip−1, and ip,

1 ≤ p ≤ m, on partially constructed feasible route, (i0, i1, i2, . . . , im), i0 = im = 0,

for which the times to begin service, bir , for 0 ≤ r ≤ m, are known. It is assumed

that initially each vehicle leaves the depot at the earliest possible time, e0. After the

complete vehicle schedules have been created, we can adjust the depot departure time

separately for each vehicle to eliminate any unnecessary waiting time.

Denote by bnewip the new time when service at customer ip, begins, given the insertion

of customer u. Also, let wirbe the waiting time at ir for p ≤ r ≤ m. If we assume that

the triangle inequality holds both for travel distances and times, this insertion de�nes

a push forward in the schedule at ip :

PFip = bnewip − bip ≥ 0

Furthermore,

PFir+1 = max{0, PFir − wir+1}, p ≤ r ≤ m− 1
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If PFip > 0, some of the customers ir, p ≤ r ≤ m, could become infeasible. It

should then examine these customers sequentially for time feasibility until we �nd some

customer, say ir with r < m, for which PFir = 0, or ir is time infeasible, or, in the

worst case all the customers ir, p ≤ r ≤ m are examined.

Solomon (1987) proved that:

Lemma 1 The necessary and su�cient conditions for time feasibility when inserting

a customer, say u, between ip−1 and ip, 1 ≤ p ≤ m, on a partially constructed feasible

route (i0, i1, i2, . . . , im), i0 = im = 0 are

bu ≤ lu, (4.18)

bir + PFir ≤ lir , p ≤ r ≤ m (4.19)

The Fix-forward Insertion using Reduction Rule for Time Windows is described in

Appendix A. We also validated the TW reduction rule by comparing with the explicit

testing of time feasibility at each customer location. The feasibly inserted locations are

equivalent, yet a substitution can signi�cantly reduce computational time.

Special Requests

In the multi-depot problems, customers may be geographically dispersed. Due to the

latest time windows of the vehicles, some customers can not even be served by some

vehicles, even, for the �rst request. These customer requests correspond to the vehicles

and can be recorded to incorporate with the special request lists and constraints.
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Calculation of the Incremental Distance

The change in distance can occur due to either a removal or insertion operator. When

calculating the distance in each route, we only calculated changed distances for changed

edges. We only calculated the changed edges because of the application of the removal

and insertion operators. For the insertion operator, recall that the insertion of a cus-

tomer, say u between ip−1 and ip, 1 ≤ p ≤ m, on a partially constructed feasible route,

(i0, i1, i2, . . . , im), i0 = im = 0. Let dip−1,ip be the travelling distance from ip−1 to ip.

Denote dip−1,u the distance from ip−1 to u and du,ip the distance from u to ip. The

incremental distance, 4in, is dip−1,u +du,ip -dip−1,ip . The insertion of both pickup and

delivery location must be calculated. When the consecutive node from pickup node

is its corresponding delivery node, the overlapped edges will cancel out each other.

Therefore, we can apply the same calculation.

Calculation of the Incremental Time

The time calculation is di�erent from the distance calculation due to waiting time. The

incremental time is the push forward time toward the end depot. The push forward is

mentioned in Appendix A. The reduction rule for both distance and time can speed up

the computational time of the insertion heuristics. The objective function of the new

route is the objective of the previous route with an incremental change.

Calculation of the Objective Function

We mark the change of each route after removal and insertion. For this problem, the

sum of the distance and time of each route refers to the sub-objective function values.

The sub-objective function values of only changed routes are recalculated. Other routes'
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sub-objective function values remain the same. This rule can considerably improve the

speed of calculating the objective function, especially in large-sized problems since only

a few routes are changed.

4.6 Computational Experiments

Pisinger and Ropke (2007) coded the MD-PDPTW-SR and ran on an AMDOpteron 250

(2.4 GHz). The algorithm measures the solution cost using double precision �oating

point number. The objective function value is then rounded to two decimals. The

AMLNS was run on a single-thread of Intel Core I7 (3.5 GHz). It is important to note

that the computer languages used for our heuristic and that of Pisinger and Ropke

(2007) heuristic are di�erent: while they used C++, we coded our heuristic using the

high-level computer language, C# in Visual Studio 2010.

4.6.1 Small-sized Test Instances

We derived the small test instances containing the partial requests from the benchmark

test instances of Ropke and Pisinger (2006) for validating the AMLNS by CPLEX.

In Ropke and Pisinger (2006), there are 12 types of test instances available with the

problem sizes varied from 50 to 500 requests (100 to 1000 locations). The 12 small-

sized problems are also characterised by route type, request type and geographical

distribution. The Mixed Integer Linear Programming presented in Section 4.3, is coded

into CPLEX and optimally solved the problems of up to 18 requests or 36 locations,

within a two-day limit imposed. Using CPLEX, we found that the number of requests

signi�cantly a�ects the computational time. In addition, the computational time is

varied according to di�erent problem types. From the experiments, while the CPLEX
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optimally solved the problem size of 18 requests in a few hours, the AMLNS can solve

to optimality in seconds.

4.6.2 Medium-sized and Large-sized Test Instances

To the best of our knowledge, we only found one set of standard benchmark test in-

stances for medium-sized and large-sized problems of Ropke and Pisinger (2006). The

description of the test instances is illustrated in Section 4.4.3 of Ropke and Pisinger

(2006). The benchmark test instances and their computational results for MD-PDPTW-

SR are available from www.diku.dk/~sropke, and updated by the ALNS proposed by

Pisinger and Ropke (2007). The computational results were tested on 10 runs. There

are 48 test instances varied by route type, request type, geographical distribution and

the number of requests (50, 100, 250, 500). Each request contains a pickup and corre-

sponding delivery location. Therefore, the problems size of 500 requests contains 1000

customer locations. The three problems' features, according to Ropke and Pisinger

(2006), are shown below:

� Route type: (1) A route starts and ends at the same location, (2) a route starts

and ends at di�erent locations.

� Request type: (1) All requests are normal requests, (2) 50% of the requests are

special requests. The special requests can only be served by a subset of the

vehicles. In the test problems each special request could only be served by between

30% to 60% of the vehicles.

� Geographical distributions: (1) uniform, (2) clustered, and (3) semi-clustered.

Table 4.1 shows the problem types (A-L) arising from the combination of geographical
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distribution, route type and request type. In term of abbreviations, Same dep. and Di�.

dep. refer to the problem that a route starts and ends at the same location, and a route

starts and ends at di�erent locations, respectively. Norm. req. and Spec. req. refer to

normal requests and special requests, respectively. In terms of geographical distribution,

U., C, and SC. stand for uniform, clustered, and semi-clustered respectively.

Route type Request type Geographical distributions
Type Same dep. Di�. dep Norm. req. Spec. req. U. C. SC.
A

√ √ √

B
√ √ √

C
√ √ √

D
√ √ √

E
√ √ √

F
√ √ √

G
√ √ √

H
√ √ √

I
√ √ √

J
√ √ √

K
√ √ √

L
√ √ √

Table 4.1: The features of the benchmark test instances used in Ropke and Pisinger (2006)

Tuning Instances

Since, design changes and parameter tuning require numerous experiments, only

some instances are experimented, so called tuning instances. The tuning instances are

some of instances whose characteristics and sizes represent the benchmark instances

targeted. In this study, the set of representative tuning instances contains twelve in-

stances in 50, 100, 250, and 500 requests. Each instance is applied �ve times and its

average values were recorded. The tuning instances, according to Table 4.2, are used

to represent all problem types in di�erent problem sizes. These tuning test instances

are used in both tuning parameters and developing the AMLNS in Chapter 4 and 5.
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Problem size

Geo. Distribution 50 100 250 500

Uniform A B C D

Clustered E F G H

Semi-Clustered I J K L

Route type Same dep. Same dep. Di� dep. Di� dep.

Request type Norm req. Spec req. Norm req. Spec req.

Table 4.2: Tuning Instances for Problem Type in Each Problem Size

We abbreviate Geographical Distribution, depots, and special requests as Geo. Dis-

tribution, dep., and Spec req. respectively. According to Table 4.2, the following

problem sizes and types are used as the tuning instances: 50A, 50E, 50I, 100B, 100F,

100J, 250C, 250G, 250K, 500D, 500H and 500L.

Parameter Tuning

In order to keep parameter tuning to a minimum, we adopted some original param-

eters as empirically set in Ropke and Pisinger (2006) and Pisinger and Ropke (2007).

The setting of some parameters is also obtained from the literature. For example, Merz

and Freisleben (1999) showed that a population size of 10 up to 40 is common in MAs

because the local search in MAs is time-consuming. In addition, we experimented with

the randomness parameters of some removal operators that are not described in Ropke

and Pisinger (2006) and Pisinger and Ropke (2007). Moreover, some parameters were

obtained from the development of the AMLNS in Chapter 5.

Design and Tuning Process

Gendreau and Tarantilis (2010) stated that, in e�ectiveness and e�ciency analysis,

the solution quality and computational time can be viewed as the performance measures

for a multi-objective optimisation. To tackle multi-objective optimisation, one can ap-

ply the weighted sum of these performance measures to perform comparative analysis
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of objective values. Ropke and Pisinger (2006), Pisinger and Ropke (2007), and Vi-

dal et al. (2013) compared the performance of their algorithms to other state-of-the-art

heuristics by best solution, average solution, and average computational time of 10 runs

for each instance. We distinguish the measure of solution quality into preciseness and

reliability that are re�ected by deviation from best known solution and average solution

respectively. In this study, the improved computational time is measured by the devia-

tion of the average time obtained from the �rst design, the mimicked algorithm, or the

benchmark algorithm. The objective of the problem is to minimise a weighted sum,

(Obj fn), consisting of the following three components: (1) the percentage deviation

of average of average solutions using the new design/setting, (2) percentage deviation

of average of best solutions using the new design/setting, and (3) percentage devia-

tion of the average time using the new design/setting, from the mimicked benchmark

algorithm. The three terms are weighted by the coe�cients φ, υ, ς, respectively. To

illustrate, the weighted sum, Obj fn, is de�ned as:

Obj fn = φ ·Gapav/BA(%) + υ ·Gapb/BA(%) + ς · Avg. T ime(%) (4.20)

where

� Gapav/BA(%): Percentage deviation of average of average solutions obtained by

the AMLNS compared to that of the benchmark algorithm

� Gapb/BA(%) : Percentage deviation of average of best solutions obtained by the

AMLNS compared to that of the benchmark algorithm

� Avg. T ime(%) : Percentage deviation of the average time from the �rst design or

the benchmark algorithm

� φ, υ, ς : Weights of Gapav/BA(%), Gapb/BA(%), Avg. T ime(%) respectively
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In this study, the benchmark algorithm is the ALNS proposed by Ropke and Pisinger

2006. However, the computational time is di�cult to be compared, due to using dif-

ferent computing environments. In the development stage, we used the same computer

throughout the experiments in order to investigate signi�cant changes at their com-

putational time in the same computing environment. Therefore, the Avg. T ime(%)

measures percentage deviation of the average time from the �rst design, providing a

comparative value to the later design .

When designing the AMLNS, we systematically developed the AMLNS by three

stages: design changes, parameter scanning and parameter �ne-tuning. The design

changes and parameter scanning, as shown in Chapter 5, are experimented prior to

parameter �ne-tuning. We observe that design changes and parameter scanning can in-

�uence both solution quality and computational time. However, parameter �ne-tuning

mainly focuses on the solution quality. Design changes, parameter scanning, and pa-

rameter tuning are carried out by allowing one parameter to change at a time, while

the rest of the parameters are kept �xed. Then, we select the setting resulting the

most improved Obj fn (the largest negative value). As we deal with the minimisa-

tion problem, the negative values of Gapav/BA(%) and Gapb/BA(%) demonstrate the

improvement over the benchmark algorithm. Also, the negative value of Avg. T ime(%)

means the improved computational time. After selection of the best parameter setting

at one experiment, we move on to the next parameter and run the AMLNS on tuning

instances again. The development of the tuning principle is similar to the method of

parameter tuning in Ropke and Pisinger 2006. It is noted that some (new) best known

solutions were obtained and also recorded during the experiments. To avoid the reading

interruption due to the extensive development of the AMLNS, which will be shown in

Chapter 5, we next demonstrate the parameter �ne-tuning.

Parameter Fine-tuning
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Due to focusing on solution quality, in the parameter-�ne tuning, we set φ, υ = 1 and

ς = 0. In this experiment, we attempt to �ne-tune the parameters that are signi�cant

or novel due to hybridisation among MAs, ALNS and TAs.

Table 4.3 shows the weighted sum, Obj fn, of the interaction between St Thres and

cexp.

cexp\St Thres 0.0175 0.015 0.0125 0.01 0.0075 0.005 0.0025

0.99990 2.27 1.44 0.75 0.19 0.20 -0.19 0.58

0.99985 0.05 -0.08 -0.01 -0.1 -0.21 -0.22 0.64

0.99980 -0.12 -0.12 -0.03 -0.3 0.11 0.27 1.32

0.99975 0.04 0.01 0.17 0.42 0.74 0.28 1.41

Table 4.3: Experiments between Cooling Rate and Start Threshold

From the experiments, according to Figure 4.3, we observed that the higher St Thres

and cexp give the diversi�cation e�ect. Since, the AMLNS allows the long period of

searching non-improving solutions. Inversely, the lower St Thres and cexp provides the

intensi�cation e�ect. Ideally, we must balance between diversi�cation and intensi�ca-

tion. The bold numbers in Table 4.3 potentially re�ect the appropriate range of balanc-

ing St Thres and cexp. According to Table 4.3, the St Thres = 0.01 and cexp = 0.99980

are selected for further experiments due to producing the largest negative value.

Table 4.4 shows the Obj fn of the interaction between �rst and second binary tour-

nament selection probability.

ProbT,1st\ProbT,2nd 0.6 0.7 0.8 0.9 1.0

0.5 0.01 0.22 0.07 0.19 0.34

0.6 0.06 0.42 0.05 -0.33 0.08

0.7 0.03 -0.09 -0.33 -0.01 0.01

0.8 -0.18 0.15 -0.3 0.05 -0.25

0.9 0.05 0.21 0.02 -0.33 0.0

Table 4.4: Experiments between First and Second Tournament Selection Probability

From the experiments, we observed that the higher ProbT,1st and ProbT,2nd give the

intensi�cation e�ect. Since, the tournament selection of the AMLNS gives the pressure

to exploit relatively good solutions. Among the equivalent value of -0.33, we selected
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0.7 and 0.8 as they resulted in larger negative Gapav(%) than that of 0.6 and 0.9.

Table 4.5 show the weight sum, Obj fn, of the interaction between probability and

randomness of crossover.

probcross\pc 3 6 9 12 15

0.2 0.02 0.06 0.00 0.18 -0.09

0.3 0.11 -0.12 0.00 0.57 -0.16

0.4 0.13 -0.01 -0.04 -0.45 0.03

0.5 0.05 -0.33 -0.06 0.02 0.19

0.6 0.22 0.31 0.04 0.10 0.05

0.7 0.10 -0.04 0.25 0.19 -0.21

Table 4.5: Experiments between Probability and Randomness of Crossover

According to the Equation 4.13, the higher randomness parameter or pc for the

IVX gives the intensi�cation e�ect. Also, the higher probcross value results in a faster

convergence or giving intensi�cation e�ect. probcross= 0.4 and pc = 12 produced the

best result in Table 4.5. From Table 4.3 to 4.5, the values of Obj fn are improved from

-0.3 to -0.45.

Parameter Setting

Table 4.6 shows the complete set of parameters used for the AMLNS. In Table 4.6,

it is to note that ql,low is relatively lower than that of the original ALNS of Pisinger

and Ropke (2007). Since, we already equipped the AMLNS with the diversi�cation

features by using the number of solutions and crossover, we must then require the large

neighbourhood search operators to sometimes act as the local search operators, similar

to the concept of MAs.

4.6.3 Analysis of Typical Search

Ideally, in GAs or MAs, the population diversity should be maintained in order that

the crossover avoids recombining two identical solutions and continues generating new
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Parameters Setting

pw,pr, pt, pnp, prp 3,6,6,6,6

η 0.025

ρ 0.1

σ1, σ2, σ3 33,9,13

Coff 30%

Population size 10

[r1, r2] [1, 2]

[qm,low, qm,up] [0.1n, 0.4n]

[ql,low, ql,up] [5, 40]

θ 75

St. Thres 0.0100f
cexp 0.9998f

ProbT,1st 0.7
ProbT,2nd 0.8
Probcross 0.4

pc 12
# of iterations 25,000

Table 4.6: Parameters and settings used throughout the development

solutions. Zhu and Liu (2004) measured the hamming based population diversity of

population for TSP, VRP, VRPTW.

Let s be an integer sequence that represent a genotype. The authors denote A(s)

to be a set of arcs in s. The edge distance between genotype u and v is de�ned as:

De(u, v) =| A(u) \ A(v) |

In other words, edge distance is de�ned as the number of arcs in u but not in v,

which is equivalent to that in v but not in u. If De(u, v) = 0, it means that both

solutions are identical. The hamming based population diversity is measured as:

gtype(P ) =

∑
i 6=j De(P [i], P [j])

(K − 1)(N − 1)N
(4.21)

where P [i] and P [j] are ith and jth genotypes in P and K is the number of customer

locations. N is the population size. (N − 1)N is the number of possible comparisons

excluding itself. To illustrate, Zhu (2003) encoded the representation that depots are
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Figure 4.4: Route structures for MD-PDPTW-SR

not coded in as delimiters, so that ordinary crossover operations can be used. Figure

4.3 shows the encoding of one chromosome's VRPTW according to Zhu (2003).

Figure 4.3: Zhu (2003)'s encoding for VRPTW (Zhu 2003,p.3)

In Figure 4.3, given K= 12, the number of edges is then equal to 11 in the encoding.

However, in the multi-depot PDPTW, the edges from start and end terminal can di�er-

entiate two solutions and we also apply natural route representation as shown in Figure

4.4. Figure 4.4 is illustrated to gain insight into the slight modi�cation of population

diversity from the original measure.

In Figure 4.4, we applied the same example as described in Figure 4.3 to compare

the di�erence due to problem domains and chromosome representations. The customer

location is equal to 12 or 6 requests. The number of routes or vehicles is equal to 3. To

illustrate, in vehicle 1, A and A' represent the start and end location since a start and

end location can be di�erent. It is then coded in as delimiters. As can be seen from

Figure 4.4, the number of edges is equal to K+ # of V eh, or 15, where # of V eh is the

number of vehicles. Therefore, for the MD-PDPTW-SR in this Chapter, the diversity

is measured by the sum of the edges' distance between any two genotypes or solution

structures as follows:
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gtype(P ) =

∑
i 6=j De(P [i], P [j])

(K + # of V eh)(N − 1)N
(4.22)

We demonstrated the search trajectories and diversity of population, solved by the

AMLNS for Problem 50A, obtaining a new best known solution in Figure 4.5. This

new best known solution of problem 50A has the objective value of 62833.33, while

www.diku.dk/~sropke reported the best known solution with its objective value of

63414.76.

Figure 4.5: Search Trajectories (left) and Population Diversity (right) of Solutions by the
AMLNS for Problem 50A

In Figure 4.5 (left), we only showed the search for 12,300 out of 25,000 iterations to

enlarge the detail of the search trajectories. To begin with, the population is initialised

by di�erent greedy heuristics, providing good diverse solutions. It is interesting to ob-

serve that the solution selected for further search (red line) does not need to be the

best solution from the beginning. Figure 4.5 (right) shows that the initial population is

diverse. After the use of tournament selection and crossover for a number of iterations,

the population diversity is dramatically reduced from above 0.7 to below 0.4, while the

solution quality also improves rapidly in 5000 iterations. After applying the cooling rate

to the Threshold for a number of iterations, the Threshold becomes too small for the

large change in objective function due to crossover. As a result, it is sensible to ignore
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Figure 4.6: Roulette Wheel Probability (left) and Smoothened Score (right) of the Selected
Solution using AMLNS for Problem 50A

the use of crossover after the pre-determined cut-o� point. The �uctuation of popula-

tion diversity before cut-o� point mainly results from the use of large neighbourhood

search operators by choosing a large number of requests to remove, considered as heavy

mutation, and the implicit mutation caused by the insertion of route(s). It is important

to note that, in the AMLNS using sequential search (opposed to parallel search), the

population diversity is not necessarily measured after the cut-o� point because only one

solution is modi�ed.

Figure 4.6 (left) and (right) show the adaptive weights and probabilities of the

separated roulette wheel for the solution that the search continues, respectively. Each

coloured line represents each removal operator.

In Figure 4.6 (left), the probabilities of the IVX with average distance, and IVX with

average distance and time are higher than all of the large neighbourhood operators due

to the partition mechanism, probcross = 0.4. That means each IVX operator takes the

initial probability of 0.2.

Figure 4.6 (right) shows the adaptive weights from the corresponding probabilities

in Figure 4.6 (left). As the adaptive weights re�ect the success of operators, Figure

4.6 (right) shows that the crossover with two measures cannot compete with the large
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neighbourhood search operators because signi�cant changes of objective function occur

from transferring a large number of requests in route(s) and from implicit mutation.

Each IVX di�erentiated by route measure has an initial probability of 0.2, and each

original ALNS operator has the initial probability of 0.086. This should not be inter-

preted as IVX is unsuccessful and unnecessary because the IVX can improve solutions

and diversify the search, as seen from the increased adaptive weights in Figure 4.6 (left),

to some extent and be viewed as a removal operator. Moreover, the IVX can recom-

bine di�erent good routes from di�erent good solutions, an ability that the original

ALNS operators cannot take advantage from several good solutions in the search space.

Among the ALNS operators, the worst removal and the random removal operators are

relatively successful.

We observed that the search trajectories and diversity of population are di�erent for

the large-sized problems due to the size of its search space. We then showed the search

trajectories and diversity of population by using the AMLNS for problem size 500A in

Figure 4.7.

Figure 4.7: Search Trajectories (left) and Population Diversity (right) of Solutions by AMLNS
for Problem 500A

Figure 4.7 (left) shows that the selected solution for further search (red bold line)

is also not necessarily the best solution, from all solutions, among the population since
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the beginning. However, during this process, the objective value of each solution re-

duced dramatically. We believe that this is the e�ect and pressure of using tournament

selection, heuristic crossover, and LNS with small q. In Figure 4.7 (right), the popu-

lation is very diverse( at 0.86) due to the use of di�erent construction heuristics and

resulting in the di�erent solution structures. Then, the population diversity sharply

reduces and �uctuates until reaching the cut-o� point. Due to its problem size and

replacement strategy that well maintains the diversity, the population diversity rarely

converges. It is obvious that the trend of population diversity is not continuously re-

duced as in Figure 4.5 (right) due to using tournament selection and crossover. However,

the tournament selection and the IVX can considerably improve the search. Then, the

Threshold rarely accepts a large change in the objective function when reaching the

cut-o� point. Therefore, it makes sense to ignore the use of heuristic crossover after

passing the cut-o� point. We believe that the �uctuation is caused by the e�ects of

large neighbourhood search and implicit mutation.

After the cut-o� point, the purpose of this stage is to intensify the search. In Figure

4.7 (left), after cut-o� point, the cost of a single solution is considerably reduced by the

ALNS. The �uctuation of solution costs is also caused by the Threshold to allow the

exploration of the search space to some extent.

To illustrate the search behaviour of the AMLNS, we illustrate the hamming distance

between accepted solution and the currently best known solution of the AMLNS in

Figure 4.7.

In Figure 4.7, we set the N = 2 in Equation 4.22, one is accepted solution and

the other is the currently best known solution. That means, the hamming distance

is normalised by the maximum number of edges from two solutions, 2(K + # of V eh)

in Equation 4.22. The cut-o� point of the AMLNS is at approximately 6,000 itera-

tions. From the beginning of the search toward the cut-o� points, the population of

solutions are recombined, mutated and searched by di�erent LNS operators. Figure

4.7 shows the normalised hamming distances of the accepted solutions to the currently
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Table 4.7: Hamming distance between accepted solutions and the currently best known solution,

using the AMLNS for Problem 500A .

best known solution are highly concentrated between 0.78 and 0.9 approximately. This

observation shows that the use of population enables the AMLNS to frequently explore

other regions of search space. Moreover, the AMLNS quickly searches far away from

the currently best known solution as a result of exploring a number of diverse solutions,

while tournament selection tries to choose good solutions for crossover or LNS as it is

expected to reproduce a new and better solution. We believe that this mechanism of

the AMLNS can enhance the search capability on the ALNS.

4.6.4 Computational Results

The standard benchmark instances of the multi-depot PDPTW in Ropke and Pisinger

(2006) is used to test the AMLNS. The ALNS used in Pisinger and Ropke (2007) repro-

duced the updated computational result in www.diku.dk/~sropke. The table shows the

average and best solution found in 10 runs and its average time. In order to evaluate

the performance of the AMLNS, we applied these measures accordingly. In Table 4.8

and Table 4.9, the following information is shown for each problem:

� z : Currently best known solutions obtained either from www.diku.dk/~sropke or
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the AMLNS presented in this Chapter over all experiments

� zav, zb : Values of the average and best solutions in 10 runs, respectively

� Gapav(%), Gapb(%) : Percentage deviation of the

average and best solution found from current best known solutions, computed as

100×(zav − z)/z and 100× (zb − z)/z , respectively

� Avg. time (s): the average time (in seconds) of 10 runs

� Ref : RP refers to the computational results reported in Ropke (2009a), based

on the research in Ropke and Pisinger (2006), and CH refers to the AMLNS developed

in this Chapter.

Table B.1 of Appendix B shows the scaling factor that converts the approximate

computational time of the AMLNS used in this Chapter relative to the computational

time of ALNS reported in Ropke (2009a), due to di�erent computing environments. The

scaling factor of 1.44 is multiplied by the computational time of the AMLNS for each

instance. However, it is also known that C# programs, used to code the AMLNS in this

Chapter, are usually slower than C++ programs. According to Gutin and Karapetyan

(2008), these instructions are 1.1 to 4 times slower in C# than in C++. Other factors

such as e�ciency of data structure and coding a�ect the computational performance

of the algorithm. Nevertheless, these issues are not taken into account in the scaling

factor.

One may view AMLNS as an extension of the ALNS that a number of solutions,

tournament selection operators, and adaptive crossover operators have incorporated at

an early stage. We believe that these operators have low time complexity relative to

some removal operators used in Pisinger and Ropke (2007). The IVX only requires

the sorting of the number of routes and duplication checking. Initialising a number

of solutions as population is expected to only increase a fraction of computational

time, but it is essential to the exploration of the search space and is considered as

the memory of the solutions. Moreover, the smaller number of requests to remove can

reduce computational time, as expected in Pisinger and Ropke (2007). With optimised
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coding, and the e�cient data structure used in C++, the computational time of the

AMLNS could be comparable or faster than the ALNS.

From the computational results in Table 4.8 and 4.9, the Avg. of Gapav between the

ALNS and the AMLNS are 1.77 and 1.64 respectively. In other words, we improved the

Avg of Gapav of 0.13% from the original ALNS. The average of 10 runs determines the

robustness of an algorithm. Double-underlined numbers indicate the average value of

best solutions of 10 runs, which is obtained from the AMLNS, and shows a better result

than the ALNS of Pisinger and Ropke (2007). Single-underlined numbers indicate the

best solution out of 10 runs, which is obtained from the AMLNS, and is better than the

numbers from that in Ropke (2009a). Bold numbers mark the best known solution from

all experiments conducted in this Chapter. We obtained 47 best known solutions out

of 48 test instances during all experiments. According to the improved average values,

we then conclude that the AMLNS is competitive to the ALNS in terms of solution

quality in this set of test instances.

In Figure 4.8, we illustrate the network structure of a new best known solution

obtained for Problem 50A with the new objective function value = 62833.33.

The squares represent depot. Each coloured arrow represents each vehicle. The

pickup is symbolised by a triangle with an even number. Its corresponding delivery

location is that even number plus one. It is to note that not every vehicle has to

be used. In other words, a vehicle may not leave the depot, for instance in Depot 4

(rectangle with number 4). The detailed schedule of the solution in Figure 4.8 is shown

from Table 4.10 to 4.12.

164



Chapter 4 An AMLNS for the Multi-Depot Pickup and Delivery Problem with

Time Windows and Special Requests

Figure 4.8: New Best Known Solution of Problem 50A (100 locations) obtained by the AMLNS

Seq. Arr. t Dep. t S/D L. Seq. Arr. t Dep. t S/D L. Seq. Arr. t Dep. t S/D L.

V1 V4 V5

D2 - 0.00 0 - D5 - 0.00 0 - D1 - 0.00 0 -

76 90.96 1192.00 14 14 52 97.01 291.01 15 15 46 169.85 758.00 15 15

48 1233.73 1443.73 17 31 90 445.21 594.21 6 21 74 1013.31 1175.31 14 29

62 1587.46 1879.00 14 45 20 1026.39 1165.00 6 27 42 1296.19 1483.19 13 42

49 1978.73 2091.73 -17 28 21 1358.26 1761.00 -6 21 43 1717.53 1892.53 -13 29

77 2220.76 2406.76 -14 14 34 2062.90 2239.90 10 31 28 2053.56 2175.56 6 35

63 2588.79 2830.79 -14 0 35 2449.02 2580.02 -10 21 29 2330.25 2584.00 -6 29

56 3065.35 3176.35 16 16 0 2643.52 2823.52 15 36 75 2810.04 2992.04 -14 15

70 3324.60 3531.60 9 25 91 3107.94 3248.94 -6 30 82 3298.03 3502.03 13 28

71 3748.78 3862.78 -9 16 53 3274.02 3400.02 -15 15 47 3607.03 3780.03 -15 13

57 4043.33 4145.33 -16 0 54 3651.47 3859.47 7 22 83 3887.07 4012.07 -13 0

18 4343.35 4476.35 9 9 1 4030.61 4183.61 -15 7 88 4198.09 4311.09 12 12

19 4641.34 4826.34 -9 0 55 4367.60 4498.60 -7 0 89 4472.71 4681.71 -12 0

D2 4883.79 - 0 0 D5 4802.09 - 0 0 D1 4860.52 - 0 0

Table 4.10: Detailed Schedule of the New Best Known Solution for Problem 50 A
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Seq. Arr. t Dep. t S/D L. Seq. Arr. t Dep. t S/D L. Seq. Arr. t Dep. t S/D L.

V7 V9 V10

D3 - 0.00 0 - D5 - 0.00 0 - D1 - 0.00 0 -

98 87.97 681.00 19 19 22 103.59 925.00 19 19 78 177.53 1228.00 9 9

66 877.50 1005.50 15 34 72 1373.26 1483.26 17 36 79 1495.80 1712.80 -9 0

2 1140.92 1320.00 12 46 73 1543.70 1722.00 -17 19 16 1841.84 2015.84 7 7

3 1397.28 1636.00 -12 34 68 2282.76 2384.76 18 37 80 2138.82 2285.82 6 13

67 1860.18 2013.18 -15 19 69 2551.15 2788.15 -18 19 6 2402.55 2595.55 12 25

84 2075.19 2220.19 16 35 50 3035.79 3185.79 12 31 81 2811.10 2991.10 -6 19

85 2364.25 2498.25 -16 19 23 3359.35 3579.35 -19 12 8 3069.13 3226.13 7 26

58 2629.11 2878.11 17 36 51 3628.85 3784.85 -12 0 17 3391.26 3639.26 -7 19

60 3154.92 3328.92 6 42 38 3970.04 4097.04 14 14 7 3774.08 3973.08 -12 7

61 3536.71 3732.71 -6 36 39 4265.34 4507.34 -14 0 64 4085.85 4310.85 10 17

59 3941.38 4112.38 -17 19 D5 4730.94 - 0 0 9 4378.28 4613.28 -7 10

99 4291.80 4458.80 -19 0 65 4646.40 4810.40 -10 0

D3 4721.31 - 0 0 D1 4924.28 - 0 0

Table 4.11: Detailed Schedule of the New Best Known Solution for Problem 50 A (cont.)

Seq. Arr. t Dep. t S/D L. Seq. Arr. t Dep. t S/D L. Seq. Arr. t Dep. t S/D L.

V11 V12 V14 -

D2 - 0.00 0 - D3 - 0.00 0 - D5 - 0.00 0

96 320.36 878.00 13 13 30 303.86 499.86 5 5 10 232.59 889.00 16 16

97 1117.74 1277.74 -13 0 94 571.21 1183.00 8 13 92 1010.83 1210.83 12 28

40 1385.54 1543.54 11 11 31 1429.36 1677.36 -5 8 24 1389.58 1517.58 19 47

86 1632.81 1906.00 13 24 4 1997.76 2244.76 12 20 93 1681.73 1902.00 -12 35

87 2107.42 2306.42 -13 11 12 2409.01 2545.01 7 27 36 2707.04 2892.04 5 40

26 2415.82 2657.82 12 23 13 2635.22 2829.22 -7 20 37 2995.36 3436.00 -5 35

44 2691.36 3123.00 19 42 14 2961.92 3106.92 19 39 25 4057.42 4179.42 -19 16

41 3139.16 3641.00 -11 31 5 3144.57 3311.57 -12 27 11 4295.27 4493.27 -16 0

27 3794.84 3988.84 -12 19 15 3449.46 3695.46 -19 8 D5 4936.90 - 0 0

45 4088.77 4194.77 -19 0 32 3912.06 4145.06 12 20

D2 4314.58 - 0 0 95 4326.10 4562.10 -8 12

33 4596.59 4760.59 -12 0 Tot. Dis. 19677.03

D3 4981.89 - 0 0 Obj. fn. 62833.33

Table 4.12: Detailed Schedule of New Best Known Solution for Problem 50 A (cont.)

From Table 4.10 to Table 4.12, the details of 9 vehicles are shown in terms of arrival

time, departure time and loading. The �rst row of each table represents the vehicle

id. The following rows are the location sequences. The location with D represents the

depot id. It can be used to validate the solution of the benchmark instances of Ropke

and Pisinger (2006). The objective value of the new best known solution of problem
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Figure 4.9: New Best Known Solution of Problem 500E (1000 locations)

50A is 62,833.33 which is comprised of the total distance, 19,677.03, and the total time,

43,156.30.

We also demonstrate the size and complexity of problem 500 E in Figure 4.9. This

problem is characterised by the same depots, normal requests, and clustered geograph-

ical distribution. In this problem, we also obtain a new best known solution with

objective function = 340001.49. Moreover, the new best known solutions of Problem

50K, 100B, 250C, 500D and the network topology of the new best known solution of

problem 50F, 50L, 50H are shown in Appendix C.
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4.7 Discussion

From the GAs' point of view, Goldberg (1989) and Goldberg (2002) emphasised

the importance of Building Blocks (BBs) toward the design of competent GAs. It

is assumed that recombining the best sub-structures from the good individuals may

result in reproducing an individual with higher �tness. The author discussed that a

schema is a similarity template describing a subset of strings with similarities at certain

string positions. It seems perfectly reasonable to play mix and match with some of the

substrings that are highly correlated with the past success. Nagata and Kobayashi

(2010) suggested that meaningful building blocks from combining both parents must

be inherited. Falkenauer (1998), Pankratz (2005), Rekiek et al. (2006) discussed that,

for grouping problems, each gene represents a group of objects instead of a single object.

Thus, the groups are the building blocks that are sampled and recombined by genetic

operators. In this problem, it is also assumed that the genes, subassemblies, groups and

building blocks are de�ned as routes over a speci�ed number of vehicles. Similar to the

concepts by these authors, given a �nite number of vehicles, the same vehicle id between

two parents represents the same string position. The route measure of IVX increases

the selection pressure for highly �t building blocks for a crossover. Similarly, it seems

reasonable to mix and match good routes to other solutions. Goldberg (1989) and

Goldberg (2002) also con�rmed that, in competent GAs, it is ensured that the building

blocks will propagate from generation to generation without using special memory other

than the population. This refers to implicit parallelism. For the AMLNS, the IVX

also ensures the propagation of good routes by tournament and IVX, resulting in the

implicit parallelism. The IVX can also inherit good building blocks from one parent to

the other with the view to interrupting the structure of solutions at minimum.

The proposed IVX can prevent any feasibility violation from vehicle capacity con-

straints. In the IVX, if the vehicles from both parents have the same sequence of routes

but selected by the route measure, then the exchange operation for that vehicle is ig-
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nored as it can generate the same o�spring. This technique is implemented because,

sometimes, if the pressure of tournament selection, crossover and replacement is so

high that the population prematurely converges, many routes become identical. This

technique should alleviate the concern of reproducing the same o�spring as its parents.

Moreover, the ALNS with the large q can be viewed as the heavy mutation avoiding

the premature convergence due to a small population size, and the pressure from se-

lection and IVX. When the small q is used, the ALNS act as local search operators

to exploit the search space or intensify the search. Adaptive features help decide the

competing operators. Using several large neighbourhood operators and the adaptive

mechanism that collect the adaptive weights of worse solutions within Threshold can

diversify the search and also correspond to the concept of Adaptive Memetic Algorithm

or Meta-Lamarckian Learning in MAs in Ong and Keane (2004) and Ong et al. (2006).

Applying randomness parameters and noises can also be seen as one feature of the

mutation operator.

From ALNS's perspective, population can be considered as a memory collecting the

partial feasible routes. Population contains di�erent referent points in the search space,

thus restoring the search of promising solutions using binary tournament selection. The

IVX can be seen as a removal operator or neighbourhood structure that removes whole

good route(s) at a time. Modi�ed TA is a deterministic version of SA which posses SA's

behaviour and helps scheduling the smaller q after a simple criteria, the cut-o� point.

The separate tournament selection and wheel partitioning is a novel mechanism that

helps bridge the population based and single-solution approach into one algorithm.

The design of the hybrid meta-heuristics requires the synergy e�ect of all recombined

components. From the experiments, we observe that each metaheuristic has its own

mechanism for intensi�cation and diversi�cation. All functional components must be

well investigated in terms of the e�ect of intensi�cation and diversi�cation, and the the-

oretical aspects of how each component of each state-of-the art metaheurisitic works to

solve the problem must be understood. They can be recombined if they can strengthen
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the search, but they should be avoided if they obstruct each other in each stage. All

functional components should work together to synergise the di�erent promising parts

from the considered metaheuristics. One has to understand the ideal situation that the

search of the solution must be e�cient. Many authors claim that the balance between

diversi�cation and intensi�cation is important. However, Sorensen (2012) con�rmed

that it is di�cult to quantify the optimal balance. This is still open to research.

In this experiment, the aggregate diversi�cation and intensi�cation phases are sep-

arated into two stages: before and after cut-o� points respectively. When the problem

is large, the solution space is also large, but only a limited time is given. In order to

cope with these issues, the early state should diversify the search but still obtain good

solutions from intensi�cation. The later stage should intensify more than diversify the

search in order to thoroughly search for the good basin of attraction. Toward the end

of the search, the TA nearly rejects non-improving change. Then, due to the reduction

of q, the number of di�erent neighbourhood operators plays an important role in di-

versi�cation, providing di�erent search directions. We believe that operators and their

interaction in the diversi�cation and intensi�cation phases must be e�cient. The bal-

ance between diversi�cation and intensi�cation is empirically approximated by design

changes, parameter scanning and parameter tuning. The synergy of diversi�cation and

intensi�cation is essential in designing hybrid metaheuristics.

In order to apply the AMLNS to several VRP problems, one may consider that in

some problems, the number of customer locations in each route is too large or too small.

In these cases, we suggest that the number of routes to remove may be re-adjusted or

remain the same upon empirical investigation of problem domains. With di�erent

objective functions, the route quality measure(s) should correspond to the objective

function. They should not only look for the long routes but also short routes with

good quality. However, these also require empirical investigation for implementation

comparing the solution quality of the AMLNS against the standard benchmark test

instances taken from the literature.
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4.8 Summary

In this Chapter, we designed a new Adaptive Memetic Large Neighbourhood Search

(AMLNS). The AMLNS is the hybrid metaheuristic between the ALNS, GAs and TA.

A new adaptive crossover operator was designed for highly constrained problems such as

MD-PDPTW-SR. The separate tournament selection and modi�cation at the roulette

wheel selection can simply incorporate the crossover operator into ALNS. The cut-o�

mechanism is designed to separate the search into two stages: population-based and

then single solution approaches. The �rst stage gives the diversi�cation e�ect. The

second stage has the intensi�cation e�ect. In other words, the aggregate diversi�cation

and intensi�cation phases are separated by the cut-o� mechanisms. The proposed

partitioning mechanism is useful in organising the crossover and LNS operators in each

stage, before or after cut-o� point. The Modi�ed Threshold Accepting replaces the

Simulated Annealing at the master local search framework to schedule the small q.

The synergy e�ect and contribution of all operators in both stages are essential. The

AMLNS hybridises the population-based and single solution approaches into one hybird

metaheuristic.

We evaluated using small- to large-sized test instances from Ropke and Pisinger

(2006). From all of the experiments, we obtained 12 feasible solutions of 50 requests,

which had objective function values equal to the best known solutions from Pisinger and

Ropke (2007). Overall, we obtained 47 best known solutions out of 48 test instances

from all experiments. In 10 runs, for all 48 test instances, we improved the Avg of Gapb

0.01 %, compared to the computational results of Pisinger and Ropke (2007). We also

improved the average values of 10 runs, Gapav, 0.13 % compared to the computational

result of Pisinger and Ropke (2007). Moreover, we expect that, with optimised coding,

the computational time of the AMLNS is comparable to the ALNS. We then concluded

that the computational results of the AMLNS are competitive to those of the ALNS in

this set of test instances. We believe that implementing the AMLNS is worthwhile for
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improving robustness, speed and accuracy.

The concept of parallelising the ALNS by the AMLNS seems promising and can

avoid the concern of PALNS in terms of solution cycling. A further experiment is to

use the AMLNS by parallel computing with slight modi�cations. We expect that the

AMLNS applied in parallel computation can improve both e�ciency and e�ectiveness.

We suggest that, when using multi-threading technology, each thread represents the

individual solution. The number of individuals in the population is equal to the number

of threads. The Memetic operators, excepting the �rst tournament selection, are applied

until the cut-o� point. Instead of applying the ALNS to the best solution found, the

ALNS is used for all threads (solutions) containing its own roulette wheel and Threshold.

In this way, it is easy to extend the AMLNS to parallel computing that can speed up

the search further. By using the principle of the AMLNS, we believe that searching

from the larger number of solutions, depending on the number of threads, can help

improving both solution quality and computational time.
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Chapter 5

Development of the Adaptive Memetic

Large Neighbourhood Search:

Implementational Aspects

This Chapter shows the development of the Adaptive Memetic Large Neighbourhood

Search (AMLNS), as used in Chapter 4. The development of the AMLNS in this

Chapter is based on the computational experience derived from the experiments using

the MA presented in Chapter 3 The development of MA in Chapter 3 provides the

in-depth investigation of implementing a population-based approach to the variants of

the MDPDP. In addition, components of the MA from Chapter 3 including tournament

selection, chromosome representation, �xed forward insertion method and a reduction

rule in terms of vehicle capacity are the core basis for further implementation to solve

the MD-PDPTW-SR.

Comparing the ALNS and MA, recently, Ribeiro and Laporte (2012) investigated

the cumulative capacitated vehicle routing problem (CCVRP). The authors presented

an Adaptive Large Neighbourhood Search (ALNS) for the CCVRP and compared it

with two recently published MAs, proposed by Ngueveu et al. (2010). Even though
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MAs provide some better solutions than ALNS, the ALNS overall outperforms the two

MAs in terms of computational time and robustness.

The computational comparison between the ALNS and MAs from Ribeiro and La-

porte (2012) and Blum and Roli (2003)'s con�rmation, �mixing and hybridising is often

better than purity�, have encouraged a hybrid metaheuristic study rather than a study

focusing exclusively on MAs. . Blum et al. (2011) pointed out that the hybridisation

of di�erent algorithms is to exploit the complementary character of di�erent optimi-

sation strategies, that is, hybrids are believed to bene�t from �synergy�. Choosing

an adequate combination of complementary algorithmic concepts can be the key for

achieving top performance in solving many hard optimisation problems. However, the

contribution of key components must be thoroughly investigated.

According to the principles described earlier of designing hybrid metaheuristics,

the selected state-of-the-art metahueristics are broken down according to functional

components and analysed in terms of diversi�cation and intensi�cation. It is important

to understand how each metaheuristic works and why they are successful. Figure 5.1

shows the design matrix we developed for hybridising metaheuristics and the AMLNS.

In Figure 5.1, the key components of each state-of-the-art metaheuristic selected are

shown with the analysis of its e�ect toward intensi�cation (I) and diversi�cation (D) in

brackets. The uni�ed framework of the hybrid metaheuristic presented in Raidl (2006)

and some other operators gives ideas of the key components required for metaheuristics,

as shown in the top row in Figure 5.1.

Each metaheuristic has its own concepts, philosophies and operators. Blum and Roli

(2003) suggest that although di�erent metaheurictics are di�erent in terms of concepts,

the mechanisms for e�ciently exploring a search space are all based on intensi�cation

and diversi�cation. It is important to identify �sub-tasks� or functional components in

the search process where some metaheuristics perform better than others.

In Figure 5.1, from our analysis, some components may be solely contributing to

diversi�cation or intensi�cation. However, it is also possible that some operators have
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both diversi�cation and intensi�cation or one of them is higher than the other. The

possible combinations of designs of all state-of-the-art metaheuristics are numerous.

Enumerating and experimenting on all designs is prohibitive. Designing a hybrid meta-

heuristic from many metaheuristics can be viewed as solving a combinatorial opti-

misation problem with in�nite number of solutions. One way to limit the possible

combinations of designs is through the selection of the state-of-the-art metaheuristics.

Once limited, it can be solved by a metaheristic, for example a number of promising

designs may be explored and the promising ones are further improved upon. The re-

sulting design may not be the global best design, but it should provide a good design

with a certain level of robustness, preciseness and speed. Then, the designer should

understand the underlying principle of the successful reintegration and promising hy-

bridisation. The principles of hybridisation can be viewed in Raidl (2006), Talbi (2009)

and Blum et al. (2011). In this Chapter, the design concept for a hybrid metaheuristic

is similar to that of a Memetic Algorithm. The process of design involves selection +

recombination and selection + improvement. After good metaheuristics are selected,

the functional components are recombined. If the o�spring obtains a higher solution

quality, then it replaces its parents. The improvement can be carried out both by design

changes from problem-speci�c knowledge and observation etc. Moreover, the improve-

ment can be carried out by parameter scanning and parameter �ne-tuning. The models

are compared on a pairwise basis, reasoning about the direction of the desirable results.

In order to reintegrate, new operators or mechanisms may be required to synergise the

metaheuristics or modify some operators to tackle the nature of the problems. It is also

possible to replace an existing component that seems weak in terms of the functional

requirement, from other metaheuristics with the same function.

As mentioned in Section Design and Tuning Process, we categorised the development

into three stages: design changes, parameter scanning and parameter �ne-tuning. In

this section, we will show the development of designs and parameter scanning. We

observe that the design change can have a signi�cant e�ect on both solution quality
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and computational time. According to Equation 4.20, we therefore set φ, υ, ς = 1

and follow the Design and Tuning Process. Due to page width limit, hereafter, the

Gapav/BA(%) and Gapb/BA(%) are represented by Gapav(%) and Gapb(%), respectively.

In order to investigate the e�ect of each design change or signi�cant changes in

parameters, we only modify one design or parameter at a time. We initially mimicked

the original ALNS of Pisinger and Ropke (2007) as a point of departure. Therefore,

the benchmark algorithm is the ALNS of Pisinger and Ropke (2007). However, the

randomness parameters of some removal operators were not reported in either Pisinger

and Ropke (2007) and Ropke and Pisinger (2006). These parameters are empirically set

as shown in Table 4.6. For matters of clarity the selected design changes are grouped

into single-solution, population-based, and hybrid approaches.

5.1 Single-solution Approach

From Pisinger and Ropke (2007), the SA uses an exponential cooling rate from the

start temperature, Tstart, and decreasing temperature, T , according to the expression

T = T · c, where c is the cooling rate, 0 < c < 1. Given the current solution x, a

candidate solution x
′
is accepted with probability:

e−(f(x
′
)−f(x))/T

Ropke and Pisinger (2006) stated that, by using Simulated Annealing, the start

temperature is set such that a solution that is w% worse than the current solution is

accepted with probability 0.5. The authors empirically set the w% to 0.05.

5.1.1 ALNS using Threshold Accepting

In this design, the Simulated Annealing used in the ALNS is replaced by the Thresh-

old Accepting because Yagiura and Ibaraki (2001) suggested the superior performance

of TA over SA. Once the start Threshold, St. Thres, is initialised. The Thres is reduced
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by 4E in every iteration, as shown in Equation 5.1.

Thres = Thres−4E (5.1)

We denote 4E as a linear cooling rate. The w% in Pisinger and Ropke (2007) can

be viewed as St. Thres from the TA's point of view. Therefore, the TA always accepts

the solutions if its w % worse objective function is better than the Threshold, or with

probability =1, in contrast to = e−(f(x
′
)−f(x))/T of SA. Therefore, we initially set the

w% to half i.e. 0.025 or 0.05
2
.

As suggested by Pisinger and Ropke (2007), the number of requests to remove

should be reduced at the latter half of iterations. We then introduce the cut-o� point

to determine where the smaller number of q should be applied. The percentage of Start

Threshold is used to determine the cut-o� points, Coff(%). The number of requests to

remove is then reduced to θ% of its original size. We term this algorithm as Threshold

Accepting and Adaptive Large Neighbourhood Search (TA-ALNS). The �rst design

was developed on the ALNS with some modi�cations. The Threshold Accepting (TA)

replaces the Simulated Annealing (SA) in the original ALNS, so called TA-ALNS 1.

We experimented by considering design changes and parameter scanning, as shown in

Table 5.1.

Design St. Thres 4E Coff(%) θ(%) Gapav(%) Gapb(%) Avg. T ime(%) Obj. Fn

TA-ALNS 1 0.025 0.000001 100 100 0.94 1.23 0.00 2.17

TA-ALNS 2 0.025 0.000002 100 100 0.75 0.78 -0.33 1.20

TA-ALNS 3 0.005 0.0000002 100 100 -0.22 -0.04 -0.02 -0.28

TA-ALNS 4 0.025 0.000001 15 75 1.11 1.27 -0.014 2.39

TA-ALNS 5 0.025 0.000001 15 50 1.29 1.42 -0.04 2.67

TA-ALNS 6 0.025 0.000001 30 75 1.17 1.45 -0.081 2.54

Table 5.1: Experiments on design and parameters for TA-ALNS

In Table 5.1 , the cut-o� mechanism is not used in the design TA-ALNS 1 to 3. It is

important to note that the Threshold of TA-ALNS 2 reaches zero at the 12,500th itera-

tion due to the linear cooling rate,4E , at 0.000002. After that, we set the Threshold
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equal to zero toward the end of the search. We demonstrated the parameter setting and

also computational results of the TA-ALNS designs in Table 5.1. The following remarks

consider the knowledge gained from our experiment, and its potential implications for

further research:

� By comparing TA-ALNS 1 and TA-ALNS 2, TA-ALNS 1 is shown to be more

diversi�ed than TA-ALNS 2 due to lower 4E.

� By comparing TA-ALNS 1 and TA-ALNS 3, the interaction between the Threshold

and cooling rate was revealed. The smaller St. Thres gives a higher intensi�cation

e�ect. While the smaller the cooling rate applied, the less the intensi�cation a�ect.

Therefore, TA-ALNS 3 is more intensi�ed at the beginning due to the smaller

start Threshold but more diversi�ed during the search due to the smaller cooling

rate. We also observed that the interaction between St. Thres and 4E makes a

signi�cant impact on solution quality.

� By comparing TA-ALNS 4 and 5 when using small moves, too large reduction in

the number of requests, θ%, to remove may give worse solution quality.

We observed that the exponential cooling rate of the SA reduces acceptance probability

sharply in the early stage. Therefore, we modi�ed the TA to possess that behaviour.

5.1.2 ALNS using Modi�ed Threshold Accepting

In this design, we modify the TA by applying an exponential cooling rate, cexp, and

updating Thres in every iteration, as shown in Equation 5.2.

Thres = Thres · cexp (5.2)
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We refer to this algorithm as Modi�ed Threshold Accepting and Adaptive Large

Neighbourhood Search (MTA-ALNS). The experiments on parameter scanning and

their computational results are given in Table 5.2.

Design St. Thres cexp Coff(%) θ(%) Gapav(%) Gapb(%) Avg. T ime(%) Obj. Fn

MTA-ALNS 1 0.025 0.99975 100 100 0.24 0.23 -0.15 0.32

MTA-ALNS 2 0.025 0.99985 100 100 0.12 0.39 -0.13 0.38

MTA-ALNS 3 0.005 0.99985 100 100 -0.10 0.16 -0.30 -0.24

MTA-ALNS 4 0.025 0.99975 15 75 0.05 0.33 -0.23 0.15

MTA-ALNS 5 0.025 0.99975 15 50 0.41 0.40 -0.36 0.45

MTA-ALNS 6 0.025 0.99975 30 75 0.17 0.18 -0.26 0.09

Table 5.2: Experiments on designs and parameters for TA-ALNS

According to the experiments in Table 5.2, we draw the remarks for the MTA-ALNS

design as follows:

� By comparing MTA-ALNS 1, 2 and 3, the interaction between St. Thres and cexp

has impact on solution quality.

� By comparing MTA-ALNS 4, 5, and 6, the interaction between Coff , and θ also

has impact on solution quality.

In order to explain the di�erences between MTA-ALNS and TA-ALNS, we showed the

di�erent Threshold values due to the di�erent implementation of the cooling rate in

Figure 5.2 (left).

According to the TA-ALNS and MTA-ALNS, we represented the typical search

trajectory when applying the linear and exponential cooling rate by TA-ALNS 3 and

MTA-ALNS 3, as demonstrated in Figure 5.2 (right).

According to Figure 5.2 (right), given the same St. Thres for TA-ALNS 3 and MTA-

ALNS 3, Thres of MTA-ALNS 3 is dramatically reduced in the early stage, resulting in

less accepting non-improving solutions. In other words, MTA-ALNS 3 initially possesses

a more intensi�ed behaviour, while, TA-ALNS 3 is rather diversi�ed and potentially
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Figure 5.2: (Left) Thresholds between a linear and exponential cooling rate for TA-ALNS 3
and MTA-ALNS 3, respectively. (Right) Search trajectories between TA-ALNS 3 and MTA-
ALNS 3

explores a larger search space. In this section, up to now, we gain the improved designs

from the cycle of selection + recombination and selection + improvement. We also

learnt the impact of solution quality due to several key components. In order to further

improve the designs, we then repeated the cycle of selection + recombination and

selection + improvement again.

Ropke (2009b) attempted to take advantage of parallel computing using the Parallel

ALNS (PALNS). However, the PALNS seems to work against the SA principle. In terms

of parallel computing, the concept of Genetic Algorithm and Memetic Algorithms are

widely used. We therefore experimented with the ALNS embedded in population-based

approaches in Section 5.2.

5.2 Population-based Approach

Rodriguez-Diaz et al. (2010) claimed that the design of hybrid metaheuristics, com-

bining the simulated annealing and evolutionary algorithms, provides a fruitful research

line. The authors proposed a GA-based Multiple SA (GAMSA), whose search process
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simulates several parallel simulated annealing processes. They performed an empir-

ical study comparing the behaviour of a representative set of the hybrid approaches

based on evolutionary algorithms and simulated annealing found in the literature. The

GA-based multiple SA (GAMSA) is the best performing hybrid metaheuristics between

evolutionary algorithms and simulated annealing (HM-EA/SA). The GAMSA considers

the execution of multiple SA processes that share a unique steady-state EA. Several

SA processes promote diversi�cation by exploring di�erent regions of the search space.

On the other hand, the population of the EA allows the SA agents to communicate

with one another in order to explore the search space. One can view that GAMSA uses

a population of SA processes that cooperate by employing EA's operators to explore

the search space. The steady-state EA creates one single candidate solution at each

iteration by crossing over the solution of the master SA and another one from the popu-

lation. GAMSA can be classi�ed as teamwork collaborative in Talbi (2009). Therefore,

the GA is one promising metaheuristic for hybridising with the SA.

In this experiment, due to the original ALNS implementing on a single solution, we

implemented a single-threading program by modifying the ALNS for the population-

based approach. In other words, several solutions of ALNS are executed in a sequential

manner, one after another. We begin with applying the MTA-ALNS to a number of

solutions. It is important to note that, in hybrid principles, the selection of GA and

MTA-ALNS is due to their historic success. The key components of both metaheuristics

are recombined.

5.2.1 Multiple ALNS

In this design, we initially construct a number of solutions by using di�erent regret

insertion heuristics. Merz and Freisleben (1999) showed that due to the computation

times consumed by local search operators, the population size of a memetic algorithm

is typically small compared to genetic algorithms. According to Rodriguez-Diaz et al.

(2010), 4 solutions was an appropriate number for GAMSA. We also set the number of
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solutions accordingly. In this design, we attempt to take advantage of operators widely

used in GAs. We �rstly adopted the binary tournament selection operator in order

to investigate its e�ect with the number of solutions. The TA and MTA were both

experimented on together using the binary tournament selection. We choose the binary

tournament selection according to Ombuki and Hanshar (2009) due to its �exibility and

adjustable sensitivity. Then, we adopted the replacement strategy similar to Nagata

and Kobayashi (2010) to maintain the population diversity.

The reason for using this type of tournament and replacement strategy is due to its

�exibility, synergy e�ect, and, with a small population size, its prevention of premature

convergence. The Threshold is shared throughout the solution due to the tournament

selection operator. When the Threshold belongs to each solution, and it is reduced

only when generating that solution: the worse solutions are kept diversi�ed and rarely

selected by the tournament selection. The roulette wheel is separated for each solution

in order to trace the e�ciency of operators corresponding to the time state of each so-

lution. According to the experiments conducted on the shared wheel and the separate

wheel of roulette wheel selection for operators, smoothened scores and roulette wheel

probabilities were found to be di�erent toward the end of the search. From our exper-

iments, separating the roulette wheel and allocating to each solution can measure the

goodness of operators better than sharing the roulette wheel with all solutions. Since,

we believe that each solution has a di�erent stage of exploration or exploitation at time

t. Therefore, the roulette wheel should apply the operators to suit a particular stage of

the search by each solution.

As shown in Table 5.3, MALNS 1 to 3 applied TA and, MALNS 4 to 6 applied MTA.

The St. Thres is equal to 0.005 for MALNS 1 to 6.

According to the experiments, we draw the remarks from Table 5.3 as follows:

� By comparing the MALNS 1 and MALNS 3, and MALNS 4 and MALNS 6, using

tournament selection mechanism, we can improve the solution quality.
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Design Cooling Rate Coff Tour. Prob. Gapav(%) Gapb(%) Avg. T ime(%) Obj. Fn

MALNS1 4E = 0.0000002 0.15 0.0 0.60 1.04 -0.07 1.57

MALNS2 4E = 0.0000002 0.3 0.0 0.70 0.92 -0.09 1.53

MALNS3 4E = 0.0000002 0.15 0.8 0.36 0.57 -0.08 0.85

MALNS4 cexp = 0.99985 0.15 0.0 0.65 0.65 -0.12 1.18

MALNS5 cexp = 0.99985 0.3 0.0 0.87 1.25 -0.17 1.95

MALNS6 cexp = 0.99985 0.15 0.8 0.31 0.48 -0.14 0.65

Table 5.3: Experiments on design and parameters with computational results for MALNS

� By comparing the MALNS 3 and MALNS 6, the MTA is more suitable than the

TA for the MALNS.

In the MALNS design, we showed that the tournament selection has a signi�cant impact

on the solution quality. Goldberg (1989) claimed that the power of GAs is the result

of synergy e�ect between tournament selection and crossover operator. Therefore, it is

investigated in the next section.

5.2.2 Memetic Algorithm and ALNS

In this experiment, we attempt to incorporate the crossover operator into the MALNS.

The operators in ALNS can be viewed as the local search or heavy mutation operators

depending on the number of requests to remove, q. Therefore, the integration of tourna-

ment selection, crossover and ALNS's operators can be considered as a variant of MAs.

We, therefore, refer to this design as Memetic Algorithm and ALNS (MA-ALNS).

Pankratz (2005), Nagata and Kobayashi (2010) and Hosny (2010) applied GAs and

MAs to variants of VRP and PDPTW. Some of their computational results are com-

petitive to the existing state-of-the-art heuristics. The crossovers they used share some

similarities in that the whole route(s) can be selected from one solution and transfered

to another. The multi-depot PDPTW, however, is di�erent from those problems in

terms of assumptions and constraints, as described in SCM(S) and IM(S) at Section
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4.4.2. Therefore, we propose a new crossover operator for the MDPDPTW. We expect

that the new operator introduced can search in di�erent directions of the search space

and increase the level of diversi�cation while improving solution quality.

To integrate the use of crossover into the ALNS, we design the partition mechanism

into the roulette wheel selection. The partition value can be seen as the crossover prob-

ability, Probcross. As described in Section 4.4.2, one reason to con�gure the partition

is that the crossover moves a large number of requests in the route(s) at a time, while

the ALNS can remove the range of number from small to large of misplaced requests

and usually improve the solutions. Often, the replacement of long routes, implemented

by the IVX, results in non-improving solutions. The partition mechanism protects the

crossover's adaptive scores from being overtaken by ALNS's operators. The proposed

crossover can be di�erentiated by measures corresponding to the route quality. From

the surveyed literature and the corresponding objective function of this problem, we

chose four rules of route selection to experiment on, according to Table 5.4.

Rule First Measure Second Measure Notation

1 The number of locations total distance Req. Dis.

2 The number of locations total distance and time Req. Dis. & Time

3 Avg. distance - Avg. Dis.

4 Avg. time and distance - Avg. Dis. & Time

Table 5.4: Crossover rules to measure route quality

In Rule 1 and 2, the �rst measure is determined by the number of locations and

ties are broken by the second measure. Rule 3 and 4 take either route distance or

time and divide them by the number of locations. To illustrate, the average distance

is the average value of distance separating the consecutive locations in a route. For

MA-ALNS, we designed the crossover to be adaptive according to the accumulated

performance of each rule by adopting the original ALNS's adaptive mechanism. Also,

the randomness parameters of crossover, pc, is empirically set and used as in the original

ALNS.

In order to recombine one solution with another, we again use the binary tournament

185



Chapter 5 Development of the Adaptive Memetic Large Neighbourhood Search:

Implementational Aspects

selection for mating, according to Ombuki and Hanshar (2009). In the following exper-

iments, we set ProbT,1nd = 0.8 and Probcross= 0.5. The number of routes to remove

[r1, r2] is [1,2].

Design Measure ProbT,2nd pc Gapav(%) Gapb(%) Avg. T ime(%) Obj. Fn

MA-ALNS1 1 0.0 6 0.91 0.94 -0.51 1.34

MA-ALNS2 2 0.0 6 0.71 0.92 -0.52 1.11

MA-ALNS3 3 0.0 6 0.72 1.03 -0.49 1.26

MA-ALNS4 4 0.0 6 0.64 0.87 -0.49 1.02

MA-ALNS5 1+ 2 0.0 6 0.84 0.93 -0.50 1.27

MA-ALNS6 1+ 3 0.0 6 0.79 0.95 -0.50 1.24

MA-ALNS7 3 +4 0.0 6 0.52 0.71 -0.48 0.75

MA-ALNS8 2 + 4 0.0 6 0.60 0.69 -0.43 0.86

MA-ALNS9 1+2+3+4 0.0 6 0.81 1.03 -0.46 1.38

MA-ALNS10 1+2+3+4 0.0 1 1.02 1.06 -0.45 1.63

MA-ALNS11 1+2+3+4 0.8 6 0.59 0.61 -0.45 0.75

Table 5.5: Experiments on design and parameters for MA-ALNS

We give the concluding remarks as follows:

� By comparing from MA-ALNS 1 to 9, the combination of Avg. Dis. +Avg. Dis.

& Time used in MA-ALNS 7 shows the best result in terms of Obj Fn.

� By comparing MA-ALNS 9 and 10, using pc = 6 and pc = 1 respectively, some

greediness of route selection is useful to the solution quality

� By comparing MA-ALNS 9 and 11, using ProbT,2nd can improve the solution

quality.

From the experiments, we observed that when the Threshold becomes too small. The

use of crossover is rarely accepted due to the replacement of large routes and the implicit

mutation. We therefore resort to the only use of the original removal operators from

the ALNS, which use a �ne-grain search in terms of the number of requests to remove,

q, in the next section.
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5.3 Hybridisation between Population- and Single- Solution Ap-

proaches

In this section, we propose a hybrid metaheuristic based on the experience pre-

sented in Section 5.1 and Section 5.2. We again repeat the selection + recombination

and selection+improvement. The concept of this design is to combine strengths and

counteract limitations between population-based and single solution approaches.

We view the strength of the population-based approach, such as MALNS and MA-

ALNS, in terms of diversi�cation due to the use of diverse solutions and gathering good

information from di�erent solutions. However, the population-based approach requires

good local search operators to re�ne the search.

We view the strength of ALNS in terms of the use of several large neighbourhood

operators and its adaptive mechanism. However, the single solution may locate a false

peak or require a more diversi�ed mechanism to search thoroughly, but still with the

limited computational time.

Therefore, we synergise the use of population, tournament selection, crossover, large

neighbourhood search, and its adaptive mechanism. It is important to note that the

number of requests to remove also determines the large neighbourhood search whether

the operator intensi�es or diversi�es the search. The wide range of q enables the large

neighbourhood search to act as a local search and heavy mutation operators when using

together with the crossover.

5.3.1 Adaptive Memetic Large Neighbourhood Search (AMLNS)

From the observation in the MA-ALNS 7 design, we attempt to modify the MA-

ALNS 7 so that:

Firstly, the best solution of the population, at the cut-o� point, should continue the

search and stop the rest of the solutions due to the limited computational time for this
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single-thread computing.

Secondly, the IVX removes a large number of requests in the good routes (long

routes or well-sequenced locations). Moreover, its implicit mutation when replacing

the routes potentially occurs. Therefore, the IVX is good at diversifying the search

while sometimes contributes the improvement due to the use of route quality mea-

sure. However, when the Threshold is small, the large change produced by crossover is

rarely accepted by the Threshold. We should then resort to the use of original ALNS's

operators containing both diversi�cation and intensi�cation mechanisms with smaller

q.

We coin this modi�ed design as the Adaptive Memetic Large Neighbourhood Search

(AMLNS). The AMLNS hybridises the operators between the single-solution and population-

based approaches into the same search to take advantage of their strengths. Moreover,

we pay attention to details about the synergy e�ect of this hybridisation. We compare

the search between MA-ALNS7 and AMLNS1 in Figure 5.3.

Figure 5.3: Search Trajectories of Solutions by MA-ALNS 7 (left) and AMLNS (right) for
Problem 500L

In Figure 5.3 (left), after 10, 000th iteration, it is quite clear that the 3rd solution

is the best solution in terms of solution quality. When tournament selection is used,

the better solution is frequently selected. Then, tournament selection continues to

frequently sample this solution, while the others are less carried out. However, the other
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solutions somehow keep improving but never overtake the best solution. Therefore,

it seems that the search through the other solutions, apart from the best solution, is

fruitless. In order to evaluate their overall e�ciency, Table 5.6 shows the computational

results between MA-ALNS 7 and AMLNS1.

Design Gapav(%) Gapb(%) Avg. T ime(%) Obj. Fn

MA-ALNS 7 0.52 0.71 -0.48 0.75

AMLNS1 0.22 0.09 -0.30 0.01

Table 5.6: Computational results for MA-ALNS 7 and AMLNS 1 designs

In Table 5.6, AMLNS1 shows superior results over the designs of MA-ALNS and

MALNS according to Obj. Fn. We attempt to apply a single parameter set to all

problem sizes and types. From the experiments on population size, the constant size of

population of 10 gives promising results for all problem sizes. In terms of the number

of routes to remove [r1, r2] = [1, 2] routes are applied.

From Section 5.1 to 5.3, we showed the development process from the algorithms

in this Chapter. In this study, even though the Obj. Fn of AMLNS1 may be worse

than those of some designs in the single-solution approach, in this study, we attempt

to �nd an appropriate metaheuristic for parallelising the ALNS, instead of using SA as

in Ropke (2009b). We also seek the large improvement from the hybridisation between

the single-solution and the population-based approaches in term of solution quality and

computational time. Among the population-based approaches, the AMLNS1 is one of

the most promising approaches. We therefore select the AMLNS1 for further parameter

�ne-tuning in Section 4.6.2.
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Chapter 6

An Integrated Truck and Semi-trailer

Routing Problem: A Practical

Multi-Depot Pickup and Delivery

Problem for Road Freight Transport

6.1 Introduction

An automated routing and scheduling software is one of the most important optimi-

sation tools in the fast changing and competitive environments of Freight Forwarders,

Logistics Service Providers (LSPs) and Third-Party Logistics Providers (3PLs). In or-

der for a 3PL to gain a competitive advantage in terms of cost leadership, an e�cient

optimisation tool is required. The problem in this Chapter is inspired by a real-life rout-

ing problem of road freight transport in Thailand. A medium-sized third-party logistics

provider is analysed to understand and represent an illustration of current practices in

the industry. The problem can be viewed as a variant of the MD-PDPTW-SR pre-

sented in Chapter 4 with additional constraints and characteristics incorporated. In

this Chapter, the metaheuristics used to solve the MD-PDPTW-SR in Chapter 4, the
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ALNS and the AMLNS, will be applied to this problem. Problem overview, description

and formulation will be presented. Finally, a description of the algorithms and their

computational results will be shown.

6.2 Problem Overview

A 3PL for freight transportation in Thailand is analysed in order to understand the

current practice of its operational planning. The company selected specialises in trans-

porting heavy weight, containerised, and large-volume goods. The complexity of rout-

ing and scheduling arises from the number of locations served, the constraints and

from the number of service providers involved. Full-truck load and less-than-truck load

transportation are provided to customers from pickup to their corresponding delivery

locations.

Figure 6.1: (Left) Truck with 3 axles (Right) Semi-trailers with 3 axles

In this study, a vehicle is de�ned as the combination of truck and semi-trailer,

according to Figure 6.1 (left) and Figure 6.1 (right) respectively. The articulated truck

can be equipped with di�erent semi-trailers allowing the transport of various types of

shipments. Therefore, vehicles, truck with interchangeable bodies, can have variable

capacities. There are two types of trucks namely 'normal' trucks and a 'Genset', those
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equipped with a power generator. In this study, for each type of truck, there are two

numbers of axles: two and three. Figure 6.1 (left) shows the truck with three axles

or ten tyres. The truck with two axles typically contains six tyres. The trucks with a

di�erent number of axles usually have not only a di�erent performance outcome, but

also a di�erent weight.

In this type of problem, the number of semi-trailers typically exceeds the number

of trucks in order to provide �exibility in serving various types of products. There are

two types of semi-trailers: platform and skeleton. Figure 6.1 (right) shows the skeleton

semi-trailer with three axles. In this study, each trailer type has two or three axles.

The facilities include depot, port, intermodal facilities etc. Each of customers/facilities

also imposes time windows constraints. Waiting occurs when a truck arrives at a cus-

tomer location before the earliest time window. The truck cannot arrive after the latest

time window of the requests. Moreover, the availability of the truck is imposed by

temporal availability.

Figure 6.2: (Left) 20ft Reefer container (special request for truck) (Right) 20ft Dry container

There are also special requests that can only be served by particular types of trucks.

Figure 6.2 (left) is the reefer container and Figure 6.2 (right) is the dry container. In

this study, the refrigerated container or reefer container is the special request for truck,

since the truck requires the power generator or Genset to supply electricity to reefer

container, while dry containers can be served by any type of truck. Therefore, a dry
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container is considered a normal request for a truck.

Figure 6.3: (Left) Normal request for semi-trailer (Right) Special request for semi-trailer

Figure 6.3 (left) shows the articulated truck using 40ft skeleton semi-trailer with

three axles carrying two 20ft dry containers. Some types of goods or freight are re-

quired to be transported by platform trailer such as palletised goods or non-standardised

shipments. Figure 6.3 (right) demonstrates the articulated truck using 40ft platform

semi-trailer with two axles transporting non-standardised shipments. The heavy pack-

age freight, non-standardised shipments and palletised goods requires platform trailers.

These kinds of goods are therefore considered the special request for trailers. Since, the

skeleton trailer, according to Figure 6.1 (right), has no �atbed to support the goods,

unlike the platform trailer, the transportation of empty or laden containers is, therefore,

the normal request for trailers as they both can be served by the platform and skeleton

trailers. The right assignment of semi-trailers to trucks and to requests can reduce the

operating costs, as di�erent semi-trailers have di�erent weights and, thus, variable cost

rates.

The truck is capacitated by its performance on pulling the weight of goods and a

semi-trailer. The semi-trailer is capacitated by volume. Moreover, the total weight of

a truck, semi-trailer, and goods is capacitated by the road regulations. The di�erent

combinations between truck axles and semi-trailer axles also a�ect di�erent weight

restriction, as shown in Figure 6.4.
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Figure 6.4: (Left) The combination of 2-axles truck and 2-axles trailer (Right) the combination
between 3-axles truck and 2-axles trailer

In Figure 6.4 (left), the 2-axle truck and 2-axle trailer have a total weight restriction

of 35 tons according to Thai road regulations. In Figure 6.4 (right), the 3-axle truck

and 2-axle trailer have a total weight restriction of 45 tons. The 3-axle truck and 3-axle

trailer have total weight restriction of 50.5 tons. The 2-axle truck and 3-axle trailer has

total weight restriction of 40.5 tons.

The company selected for this study usually uses its own �eet of trucks and has one

depot to serve a large geographical coverage area of customers. However, the company

sometimes had to outsource some requests to external carriers or subcontractors due to

the following reasons: the �uctuating demand of the transportation market, a limited

number of available vehicles, low revenue of requests and urgency of service. There

are also di�erent types of sub-contraction. In this study, two typical types of sub-

contraction for freight transportation are investigated. First, a subcontractor is directly

called and the cost is paid per request. The sub-contraction cost of a request is deducted

from the price by a pre-determined percentage. This type of sub-contraction is so-called

sub-contraction on a request basis. Second, owing to the online logistics market that

encourages the reduction of empty miles or the so-called backhauling system, a scheduler

can subcontract a request subject to the availability of backhaul trips. sub-contraction

costs of this type depend upon the agreed tari� rate per travel unit and the distance

travelled. This type of sub-contraction cost is usually cheaper from the backhauling

system approach than from the request basis. Since, the vehicle has high possibility of

having empty trip and the subcontractor always seeks to ful�l transportation requests.
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As a result, the subcontractor has low bargaining power and often accepts lower rate,

which is still better than empty trucks travelled.

In terms of costing, the �xed and variable costs of each truck and semi-trailer are

varied. The costs of own �eet and subcontractor are also di�erent. Moreover, the

di�erent types of subcontractors have di�erent ways of calculating the costs. The

e�cient routing and assignment of requests to their own �eet or subcontractors are

essential for operational planning in terms of cost reduction. In order to investigate the

problem, information was gathered from interviews with front-line sta�, interviews of

top management and from historical data from the case-study company.

6.3 State-of-the-art Reviews of Related Problems

Real-life routing problems become more sophisticated. Hasle and Kloster (2007) pointed

out that rich VRP models captures several problem characteristics from industrial set-

ting. The e�ciency of a routing tool is highly dependent on the quality of its solver.

First, the applicability and �exibility of the tool are determined by the richness of

the underlying model. Second, the algorithmic performance depends on the solution

quality and computational time. The authors discussed the generic VRP solver named

SPIDER, a concrete software product of SINTEF. The SPIDER can handle a large

number of constraints and complexities such as VRPTW, Fleet Size and Mix VRP

(FSMVRP), Multi-depot VRP (MDVRP), Pickup and Delivery Problem (PDP), Peri-

odic (PVRP), Inventory Routing (IRP), Real-Time Time-dependent VRP(RTTDVRP),

Multiple Time Windows VRP (MTWVRP), Compatibility Constraints, Dynamic VRP

(DVRP) etc. The SPIDER heuristic approach is based on Local Search: Construc-

tion, Tour Depletion and Iterative Improvement. A hybrid of Variable Neighbourhood

Descent (VND) and Iterated Local Search (ILS) is used as the overall strategy. The

computational results show that SPIDER is robust and e�cient over a large variety of
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VRPs.

Goel and Gruhn (2008) studied a rich vehicle routing problem incorporating vari-

ous complexities found in real-life applications. The authors refer the problem to the

General Vehicle Routing Problem (GVRP), a combined load acceptance and routing

problem which generalises the well-known VRPs. The real-life requirements of this

problem include time windows, heterogeneous �eet with di�erent travel times, travel

costs, capacity, multi-dimensional capacity constraints, order/vehicle compatibility con-

straints, orders with multiple pickup, delivery and service locations, di�erent start and

end locations for vehicles and route restrictions for vehicles. The authors were moti-

vated to model GVRP by a practical problem arising in air-cargo transport or Road

Feeder Service (RFS). The Reduced Variable Neighbourhood Search (RVNS) and Large

Neighbourhood Search (LNS) are applied as the meta-heuristics strategy. Good com-

putational results were obtained.

Wen (2010) dedicated his Ph.D. thesis to investigating rich VRPs namely, VRPs

with cross-docking options, Dynamic VRPs (DVRP) and integrated vehicle routing

and driver scheduling problems. The rich VRP models are formulated from real-life

scenarios. The meta-heuristics namely, Tabu Search, Three-Phase Rolling Horizon

Heuristics and Multi-level Variable Neighbourhood Search, were used to solve these

problems e�ciently.

In this Chapter, a third-party logistics provider for freight transportation is investi-

gated. The problem simultaneously considers several real-life constraints and char-

acteristics as a complex routing problem, i.e. a Multi-Depot Heterogeneous Fleet

Pickup and Delivery Problem with Time Windows, Special Requests for truck and

semi-trailer, Multi-dimensional Capacity Constraints, Assignment of semi-trailers, and

sub-contraction. The problem can be broken down into sub-problems. To the best

of my knowledge, some of these sub-problems receive little attention. Moreover, the

integration of these sub-problems has not been tackled in the literature. The problem

characteristics and methodologies are surveyed. Due to the computational complexity,
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meta-heuristics are also considered for implementation in competitive business environ-

ments.

6.3.1 Multi-Depot Pickup and Delivery Problem with Time Windows and

Special Request

The company faces a problem of how to serve its customers: either using their own �eet

or subcontractors. The multiple-depot problem arises from this characteristic. Time

windows are imposed. Some customers also require a particular type of vehicles. There-

fore, this set of constraints and characteristics is modelled as the Multi-depot Pickup

and Delivery Problem with Time Windows and Special Requests (MD-PDPTW-SR) as

investigated in Chapter 4. Ropke and Pisinger (2006) presented the mathematical for-

mulation for solving PDPTW. The authors applied an Adaptive Large Neighbourhood

Search (ALNS) to solve these problems e�ciently. The authors also generated the new

test instances for MD-PDPTW-SR and reported the computational results. Pisinger

and Ropke (2007) modi�ed the ALNS of Ropke and Pisinger (2006) by introducing

a larger number of removal heuristics, and adjusting parameters. The computational

results of MD-PDPTW-SR were updated in www.diku.dk/~sropke. Chapter 4 of this

thesis proposed the Adaptive Memetic Large Neighbourhood Search (AMLNS) for solv-

ing the MD-PDPTW-SR e�ciently and competitive to the ALNS.

6.3.2 Multi-dimensional Capacity Constraints

In this problem, the heterogeneous �eet of vehicles has a simultaneously limited capac-

ity: both weight and volume are restricted. This situation arises due to heavy weight of

goods transported and the road regulations. In the terminology of VRPs, this problem

is known as multi-dimensional capacity constraints. Confessore et al. (2008) considered
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a VRP with heterogeneous �eet with di�erent capacity and multi-dimensional capacity

constraints. The authors applied an evolutionary algorithm based on the combination

of a genetic algorithm and local search heuristics. They investigated the performance

of the implemented algorithm in large-scale retail and waste collection industries.

6.3.3 Truck and trailer routing problem

In the Truck and Trailer Routing Problem (TTRP), trailers are said to be used when

customers are serviced by a truck pulling a trailer. In addition, due to practical con-

straints, some customers may only be serviced by a truck. Lin et al. (2009) claimed

that the truck and trailer routing problem (TTRP) is computationally more di�cult

to solve than the vehicle routing problem (VRP). In TTRP, the number of available

trucks is typically greater than or equal to the number of available trailers. The authors

proposed an SA heuristic for the TTRP and show competitive results to the existing

approaches using benchmark instances from the literature.

Derigs et al. (2011) studied the vehicle routing problem with the multiple use of

tractors and trailers. The authors solved variants of the TTRP problems by using

local search and large neighbourhood search as well as standard metaheuristic control

strategies. This approach can solve the standard benchmark instances e�ectively.

Lee et al. (2003) investigated a local logistic company that provides a transportation

service for moving empty and laden containers within Singapore. The authors presented

a vehicle capacity planning system (VCPS). There are three major types of container

movement: importation, exportation and empty container movement. In the study of

Lee et al. (2003), the company holds a large number of semi-trailers, and the ratio of

trucks to semi-trailers can be as high as 1: 9. Therefore, it is assumed that the right

type of semi-trailers is always available at every exchange point. In other words, the

semi-trailer type feasibility constraints are not considered in the model. The problem
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is modelled as VRPTW and solved by Tabu Search (TS). The authors devised some

new rules on how to assign jobs for outsourcing.

Tan et al. (2006) extended the model of Lee et al. (2003) with the detailed ma-

noeuvring of semi-trailers in a routing plan. The authors presented a transportation

solution for trucks and semi-trailers vehicle routing problem (TTVRP) containing mul-

tiple objectives and constraints. In TTVRP, the semi-trailers are resources with certain

limitations that are similar to real world scenarios and the allocation of semi-trailers

in di�erent locations could a�ect the routing planes. Unlike TTRP, the TTVRP re-

quires the trucks to visit semi-trailer exchange points for picking up the correct semi-

trailer types depending on the jobs to be served. A hybrid multi-objective evolutionary

algorithm (HMOEA) featured with specialised genetic operators, variable-length rep-

resentation and a local search heuristic is applied to search for the Pareto optimal

routing solutions for the TTVRP. The route-exchange crossover allows a good sequence

of routes or genes in a chromosome to be shared with other chromosomes in the pop-

ulation. The operation consists of two steps: (1) two random routes are selected and

swapped between two chromosomes; (2) the route with the highest number of tasks

from each chromosome is swapped. The number of semi-trailers must be up-to-date

and a routing plan must include supplementary information of semi-trailer availability

at every semi-trailer exchange point. The computational results have shown that the

HMOEA is e�ective in solving multi-objective combinatorial optimization problems.

6.3.4 sub-contraction

Lee et al. (2003) investigated the VCPS as stated in Section 6.3.3. Outsourcing is

considered due to the limited capacity of its own �eet of vehicles. The authors assume

that it is often impossible for the company to wait for all the orders to come in before

contacting other companies to outsource jobs. They therefore devised some rules to
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guide the planner in how many jobs should be outsourced and how to select jobs for

outsourcing. A Tabu search heuristic has been chosen to solve the problem. The

proposed new rules can save a total cost of up to 8.14%.

Tan et al. (2006) studied the TTVRP as described in Section 6.3.3. In terms of

cost-related issues, there is no hard rule to specify whether the cost for the internal

�eet is cheaper than the outsource �eet or vice versa, i.e. the cost merely depend on

the type of jobs to be served. In the HMOEA, any task that is not assigned to a route

is considered for outsourcing. All the outsourced tasks are contained in a list. After

applying the operators, the approach checks their feasibility in the routes so that any

tasks violating the constraints are deleted and later considered as outsourced tasks.

Goel (2008) stated that after an order is received, the carrier has to decide whether to

con�rm or reject it. The load acceptance problem is the problem of e�ectively choosing a

subset of transportation requests to con�rm; it has signi�cant e�ect on the pro�tability

and e�ciency of the carrier's operations. A decision on the load acceptance problem

is based on the cost estimate of providing service and on the expectation about future

requests. In exceptional cases, some of the con�rmed orders can neither be assigned to

self-operated vehicles nor subcontracted by external carriers. If the previously con�rmed

orders have to be rejected or postponed, a penalty fee has to be paid to the shipper.

Once an order is subcontracted, the actual transportation process is under control of

that carrier. The cost of certain subcontracts may be lower than the company's costs of

providing the service themselves. The author modelled the rich vehicle routing problem

with subcontractors. It is assumed that external carriers can be employed at double

costs of the cheapest vehicle capable of transporting the shipments, i.e. the cost for the

transport plus the costs for an empty trip.

Krajewska and Kopfer (2009) investigated a medium-sized freight forwarding com-

pany using its own vehicles and external carriers for its operations in several regions of

Germany. The authors determined that only about 30% of the requests were ful�lled

by the company's own �eet. They pointed out that, typically, planning decisions are
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made hierarchically by the dispatchers. At �rst, the most attractive requests are as-

signed to their own �eet based on the pro�t contribution. Next, the requests which are

not planned to be performed by self-ful�lment are forwarded to subcontractors. The

authors modelled particular types of sub-contraction, namely tour basis, daily basis

and freight consolidation. The shipment is calculated on the tour basis using an agreed

tari� rate per travel unit and the length of the transferred tour. When using an ex-

ternal carrier is based on a daily basis. The maximal tour length cannot exceed the

pre-determined amount of distance and time. The third sub-contraction type consists

of forwarding some requests to independent freight carriers. The payment is determined

by freight consolidation as a function of load and distance. In practice, there are fur-

ther, not cost-oriented aspects of deciding for and against using a company's own �eet,

e.g. service aspects and �exibility are important arguments to use an own �eet.

6.3.5 Capacity-Driven Activity Based Costing (CDABC)

One reason for incorporating CDABC is to determine the cost of each order and then

to simulate its price. This is because the amount of money paid to subcontractors on

a request basis is calculated using the price.

Vehicle Routing Problems (VRP) are daily operational planning problems. The

VRP objective function depends on the problem's characteristics such as a minimal

number of vehicles. Examples of objective function are shown in Figure 2.1. Also, it

can be comprised of �xed cost per day and variable cost per travel unit. For other

variants of VRPs such as the long-haul routing problem, the �xed costs per day and

variable costs still apply. From the management accounting perspective, according to

Drury (2005); Atrill and McLaney (2009), �xed cost remains constant over a wide range

of activities for a speci�ed time period, while variable costs vary with the volume of

activity. The �xed cost is one that recurs regardless of utilisation, while the variable
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cost recurs only when the equipment is used. The �xed and variable costs make up

the full cost. However, the full cost can also be viewed according to direct and indirect

costs. The direct costs are those costs that can be speci�cally and exclusively identi�ed

with a particular cost object, while the indirect cost cannot be identi�ed exclusively

with a given cost object. The direct and indirect costs are used for calculating the full

cost of each order, as a basis of pricing.

The complexity of management accounting arises when the indirect costs or over-

heads are apportioned to individual cost units. The widely used method to apportion

costs to a cost unit is Activity-Based Costing (ABC), proposed by Cooper and Ka-

plan (1988). Atrill and McLaney (2009) described that the ABC aims to overcome the

problem of tracing the cost of all support activities particular products and services.

The factor that causes a change in the costs of each support activity is the cost-drivers.

They have a cause-and-e�ect relationship with activity costs and are used as a basis for

attaching activity costs to a particular product or service.

Atrill and McLaney (2009) showed the relationship between the direct, indirect,

variable and �xed costs of a particular job in Figure 6.1.

Table 6.1: The relationship between direct, indirect, variable and �xed costs of a particular
job

In Figure 6.1, the total cost is the sum of direct and indirect cost. Also, it is the

sum of �xed and variable costs. These two facts are independent of one another. The

�xed and variable costs are sometimes applied in the objective function of the VRP.

For the problem studied in this Chapter, the relationship between the �xed/variable
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cost and the direct/indirect cost is analysed and shown in Appendix D.

Moolman et al. (2010) proposed the use of ABC toward VRP. Kaplan and Anderson

(2004); (2007) updated the ABC, considering time as the activity cost driver called

Time-Driven Activity-Based Costing (TDABC). The principle for measuring the cost

of other capacities remains the same as the time for other cost drivers. Therefore,

in more general terms, the authors referred to it as Capacity-Driven Activity Based

Costing (CDABC). To elaborate, Kaplan and Anderson (2007) assumed that capacity

is measured by the time usually available for people and equipment. They opted for

time because it represents the great majority of resources. The authors proposed the

Time-Driven Activity-Based Costing (TDABC) to improve the Activity-Based Costing

(ABC). TDABC simpli�es the costing process of the ABC by eliminating the need to

interview and survey employees for allocating resource costs to activities before driving

them down to cost objects. The TDABC assigns resource costs directly to the cost

objects (orders or products) in two steps. First, it calculates the cost of supplying

resource capacity. Second, TDABC uses the capacity cost rate to drive process resource

costs to cost objects by estimating the demand for resource capacity (typically time)

that each cost object requires. TDABC allows the time estimate to vary on the basis

of the speci�c demands of particular orders or orders from a new customer without an

existing record.

From the analysis of management accounting methods and routing problems, in

CDABC terminology, one supplying resource is the �eet of vehicles. The cost rate of

the vehicle per time unit can be calculated according to the principle of TDABC. The

travelled time, which is the demand to be served by a vehicle for each request, can be

obtained from a digital map. Then, the full cost of each request, order costing, can be

estimated for pricing.

In routing terminology, the function of time or distance is the objective function

as the measure of solution quality. The routing cost is calculated from the sum of

the product of cost rates per travel unit, travel units, and 0-1 binary variables. The
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objective function of the routing problems and TDABC also share some cost rates e.g.

variable costs per travel unit.

6.3.6 Pricing

Krajewska and Kopfer (2009) modelled the objective function for self-ful�lment using

�xed and variable costs. For decisions on sub-contraction, the author applies tour basis,

daily basis, and freight consolidation. Typically, variants of Vehicle Routing Problems

do not consider the price of the requests. However, in this study, when requests were

subcontracted by a request basis, the price of each request must be known. According

to Atrill and McLaney (2009), one simple approach widely used for pricing is called

cost-plus pricing. In this approach, an amount of pro�t is calculated as a percentage of

the total cost (full cost), and the proposed price of the service is the sum between the

amount of pro�t and the total cost. The proposed price is then negotiated by customers

upon their bargaining powers. The advantage of this method is its simplicity.

Powell (2003) and Goel (2008) described that there are a number of methods which

show how transportation requests are priced, for example, static pricing, contract pric-

ing, and spot pricing. Static pricing is the standard prices a carrier demands for moving

freight between locations. This method of pricing is not speci�c to a contract and is

set by the carrier in advance. They are generally the highest price a carrier will quote.

For contract pricing, prices can be set on a contract basis. Transportation costs have to

re�ect the possibility of combining the load with other loads. For spot pricing, the price

can be negotiated. The transportation request is usually demanded near the time the

operation has begun and should achieve the yield required to compensate the cost of

the decision. In this study, we consider the static pricing corresponding to the practice

of the case-study company.

Sukhotu (2011) applied cost-plus pricing to determine the o�ered price for heavy-
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cargo or freight transportation. In practice, this required pro�t is often set in relation

to the amount of capital invested in the business. Drury (2005) explained that the

return on capital employed or the return on investment is calculated by dividing the

average annual pro�ts from products from a project into the average investment costs.

Therefore, the pro�t loading on full cost should re�ect the business's target pro�t.

Atrill and McLaney (2009) con�rmed that the cost-plus can be used as a basis of

negotiating a price in advance, which then becomes the �xed price. They found that

cost plus is regarded as important in determining selling prices by most businesses, but

many businesses only use it for a small percentage of their total sales. Cost-plus pricing

tends to be particularly important in service businesses, where many businesses are

quite small.

6.3.7 Gaps in the Literature

1. Ropke and Pisinger (2006) considered the Multi-Depot Pickup and Delivery Prob-

lem with Time Windows and Special Requests (MD-PDPTW-SR). In their study,

special requests can only be served by a subset of the vehicles. However, in this

study, some requests required a particular type of both trucks and semi-trailers.

Moreover, the problem considered sub-contraction and multi-dimensional capacity

constraints. This Chapter considers a more sophisticated problem than that in

Ropke and Pisinger (2006).

2. Lee et al. (2003) and Tan et al. (2006) assume that once the container is picked

up, it will be directly sent to the destination location. However, in this study,

there were some cases where vehicle capacity is not exceeded, and it is possible to

consolidate the laden and empty container in one trip. This results in potential

savings. This assumption can be tackled by one-to-one pickup and delivery prob-
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lems, unlike as VRPTW considered by Lee et al. (2003) and Tan et al. (2006).

Moreover, the weight and variable costs of semi-trailers are di�erent in this study.

The assignment of correct semi-trailers contributes the overall routing costs.

3. Krajewska and Kopfer (2009) considered three types of sub-contraction: tour

basis, daily basis, and consolidation. However, from the investigation of practices

in freight transportation, the subcontractor paid on request basis is widely used.

Moreover, the problem considered in this Chapter incorporates the complexity in

terms of constraints and characteristics.

4. Derigs et al. (2011) modelled the vehicle routing problem with multiple use of

tractors and trailers. The tractor and trailer assignment was considered with their

compatibility to requests. The objective function was to minimise the number

of required tractors. The problem studied in this Chapter is the Pickup and

Delivery Problem, an extension of VRPs. The truck and semi-trailer assignment

also in�uenced the routing cost in the objective function.

5. Goel (2008) considered the generalised VRP that can incorporate several real-life

constraints and characteristics. In this study, we further investigate the char-

acteristics of trailer assignment, two types of sub-contraction cost and multi-

dimensional capacity constraints.

6. Generally, the objective functions of routing problems contained the cost elements.

The total costs in a planning horizon are possibly the sum of the �xed and variable

costs, as described in Krajewska et al. (2008). However, when the cost of each

request must be determined, it is di�cult to accurately estimate the cost of each

request from the �xed and variable costs of serving all requests in the planning

horizon. Instead, it should be viewed as the sum of direct and indirect cost. Es-

pecially in real-life scenarios, the accurate order costing method such as CDABC

from management accounting's point of view should be investigated. The inte-
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gration of optimisation and management accounting perspectives should enhance

the e�ectiveness of operational planning.

6.3.8 Problem Complexity

The problem studied in this Chapter is considered an extension of the VRP, where

several real-life constraints and characteristics are incorporated. Therefore, this is

an NP-hard problem. These constraints and characteristics include multiple depots,

pickups and deliveries, time windows, special requests for trucks, special requests for

semi-trailers, a heterogeneous �eet of vehicles, the assignment of semi-trailers, sub-

contraction and multi-dimensional capacity constraints. In addition, where the number

of semi-trailers is greater than or equal to the number of trucks, it is required to as-

sign exactly one semi-trailer to each truck in such a way that the objective function is

minimised.

Pankratz (2005) mentioned that the PDPTW is a combination of two interdependent

sub-problems. On the one hand, of clustering requests and assigning them to a vehicle

has to be solved. On the other hand, for each cluster of requests, constraints in each

route have to be satis�ed.

The problem considered in this study adds further complexities. First, the combina-

tion of truck and semi-trailers with the view to minimising the cost of their utilisation

can be seen as the assignment problem. Second, when the requests are subcontracted,

the requests must be outsourced with a view to minimising the sub-contraction cost.

The sub-contraction cost is di�erent to the cost structure of one's own �eet in the

objective function. Therefore, vehicles may have di�erent cost structures. Last, the

capacity constraints consist of several restrictions namely volume, weight due to truck

performance and weight due to road-regulation. These complexities make this problem

tightly constrained and di�cult to solve.
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6.4 Problem Description

6.4.1 Requests

For freight transportation, the operations involve the transportation of intermodal

containers, pallets and non-standardised units etc. The intermodal containers are 2.44

metres (8ft) wide and either 6.1 metres (20ft) or 12.2 metres (40ft) long. These in-

termodal containers can be reefer or normal. As mentioned earlier, this is the special

request for the truck. For pallets, the goods are placed on the top of the pallets. The

pallets can be placed only on the platform semi-trailer but not the skeleton semi-trailer.

Therefore, the transportation of palletised goods can be considered as the special re-

quest, while the intermodal containers can use both platform and skeleton semi-trailers.

There are several types of intermodal transportation: importation, exportation, empty

container movement. For each request, a shipper sends a proposal to logistics ser-

vice providers. The given information includes pickup and delivery locations, truck

and semi-trailer type requirements, weight and volume, total units, time windows and

estimated loading and unloading time.

6.4.2 Trucks

According to the problem studied in this Chapter, the types of trucks are classi�ed

into truck with and without a power generator set (Genset). The truck with Genset

allows the transportation of both refrigerated and normal containers. However, the

truck without Genset cannot transport refrigerated containers. Trucks without Genset

type fall into two axle categories: (1) two axles; (2) three axles, while the truck with

Genset has only one category, three axles. Di�erent combinations of truck axles to each

type of semi-trailer allow di�erent road weight limits. It is also possible that di�erent

types of trucks or individual trucks are di�erent in terms of weight, �xed costs and

variable costs. In this study, it is assumed that one driver is responsible for one truck.
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6.4.3 Semi-trailers

There are two types of semi-trailers: skeleton and platform. In this study, each type

of semi-trailer has two lengths: 20 and 40 feet. The size of a semi-trailer is compatible

with the intermodal containers. In addition, for a 40-feet semi-trailer, there are two

categories of axles: (1) two-axle; (2) three-axle. These categories allow the di�erent

truck and semi-trailer combination, resulting in a di�erent road weight limit.

6.4.4 Costing

Accurate costing of the objective function is required in order to re�ect correct

decision making values on variables. The �xed and variable costs of truck and trailers

are the main costs of own �eet. The �xed costs of trucks includes the depreciation,

insurance, license, taxes etc. The departmental cost, rent and employee salary can

be considered as �xed cost and allocated to each truck, since, the income is derived

from the truck utilisation. These �xed costs must be covered and can be calculated in

the format of monetary units per month. The �xed cost per day is simply obtained

from the total �xed costs per month divided by the number of working days. It is

also noted that even though a request is served by a subcontractor, the �xed costs still

recur but not the variable costs. It is noted that, as the number of vehicles in the own

�eet cannot be changed on the operational planning level, these costs do not in�uence

the short-term planning process. However, as we design the algorithm for not only

solving the operational planning but also tactical planning for the �eet composition

and strategic planning for alternative depot con�gurations, the block of �xed costs

remains importance. Therefore, these costs are included in our further assumptions for

cost modeling.

One signi�cant di�erence between the transportation of heavy goods and the mall

package freight is the amount of fuel used when serving a request. The amount of fuel

used for heavy goods signi�cantly depends on both distance and weight. Thus, the
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variable cost must take the fuel consumption of the truck and the requests in terms of

distance and weight into account. The fuel consumption is de�ned as the ratio of litre

per ton per km. The di�erence between distance and load status a�ects the amount of

fuel used along the paths in each route. Typically, in freight transportation, the fuel

is approximately accounted 30-60 per cent of the total costs. Therefore, the cost of

fuel consumption is one of the main cost elements to be minimised. The costs of tyres

and maintenance, and the driver's wage per trip are elements of the variable costs. For

semi-trailers, �xed costs and variable costs are relatively low compared to the trucks'

costs. The cost of each semi-trailer type or even individual semi-trailer can be di�erent.

However, with the large number of trailers, relative to that of trucks, the correct trailer

type, size, weights and costs should be e�ciently assigned since the substantial savings

in long-run can be gained from e�cient assignment of semi-trailers to trucks in daily

operational planning.

6.4.5 Pricing

When the sub-contraction on a request basis is introduced, the price of each request

must be known. By using the cost-plus pricing, the total cost of a pickup-and-delivery

request must be calculated. The CDABC can be used for estimating the full cost of

each request. From the analysis of the problem in this study and from the CDABC, the

demand elements that each request requires are namely time, distance, weight-distance

and pickup-delivery point. The costs of supplying resource capacity in terms of time

are for example, the vehicle's depreciation, the employee's salary and the departmental

cost. These can be considered �xed costs. The time cost rate can be obtained from the

total �xed costs per month divided by the amount of practical working hours. Tyre

and maintenance are the resource costs in relation to the travelled distance. The fuel

is the resource cost mainly corresponding to the weight and distance. The time and

distance are measured from the depot to pick up-and-delivery points and back to the

depot because the potential backhauling in advance or consolidation is unknown. The
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driver wage is, for example, the resource cost depending on pickup-delivery points. The

details of these resource costs and order costing are explained in Appendix D. The

total cost of each request is the sum of these major resource costs utilised for serving

the request.

In this study, it is assumed that static pricing applies. The price is set by the carrier

in advance and not to a speci�c contract. The price is �xed over a certain period of time

unless the costs i.e. petrol price or cost structures change. The �xed and variable costs

of each truck and semi-trailer can be di�erent. However, the trucks and semi-trailers

can be grouped according to their costs for the matter of simplicity in terms of data

collection. In order to determine the price, the average cost of each group of trucks and

semi-trailers must be calculated. The selection of a truck and semi-trailer for pricing

is the best combination resulting in minimum costbetween a company's own truck and

semi-trailer, while all constraints are satis�ed.

In this study, cost-plus pricing is used. The o�ered price is usually negotiated by

customers. For the accepted price, the pro�t margin is randomly generated in the

interval of the maximum expected return on investment (ROImax) and the minimum

expected return on investment (ROImin). Let oi be the percentage of full cost for pro�t

of request i. The oi is selected at random at interval [ROImin, ROImax].

Pricei = Costi ×
(100 + oi)

100

Even though, the consolidation of requests by optimisation result in lower costs, the

static price do not take into account the possibility of combining load with other loads.

Since, the arrival of requests is unknown and uncertain. Therefore, the requests are not

always consolidated.

6.4.6 Subcontractors

In this study, there are two types of sub-contraction, namely sub-contraction on a
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request basis and sub-contraction on a tour basis. For the sub-contraction on a request

basis, each subcontractor may have a di�erent sub-contraction rate for a request de-

pending on negotiations within its own company. Denote K
′
the set of subcontractors

on request basis. Let k be the subcontractor id where k ∈ K ′ . The rate, Yi,k, refers to

the percentage deducted from the price for subcontractor k for request i. If subcontrac-

tor k cannot serve request i, the Yi,k is then equal to large negative number or -1000.

Therefore, the sub-contraction cost of subcontractor k for request i, ci,k, is equal to

ci,k = Pricei ×
(100− Yi,k)

100

In order to capture the practices and generate test instances, Yi,k is selected at

random in the interval [φmin, φmax] where φmin and φmax are the acceptable minimum

and maximum percentage deducted for sub-contraction.

For the sub-contraction on tour basis, the cost is the product of travelled distance

and cost rate per distance. The start location and end location of this type of sub-

contraction is usually di�erent. The constraints are also imposed as the company's own

�eet of vehicles.

The cost of using a subcontractor on a request basis is usually higher than using

a company's own �eet. However, it is also possible that the cost of using their own

�eet is higher than that of the subcontractors. For example, some requests are located

far away from their own depot(s) but close to the subcontractor hired by tour basis.

The sub-contraction costs on request and tour basis are mutually agreed earlier. The

subcontractors are called only when required. This variable cost of truck from sub-

contraction by tour basis is always higher than that of own �eet, as observed from

the current practices, because it must cover a part of �xed costs of the subcontractor.

However, the total sub-contraction cost on tour basis is generally lower than the total

cost of using own �eet due to being backhaul trips.

The current state of the vehicles from subcontractor on a request basis is unknown.
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Therefore, it is assumed that the start location of vehicles for this sub-contraction type

is from the subcontractors' depots. The vehicle's capacity of this sub-contraction type

depends on the historical information of subcontractors including the �eet size and

mix. If sub-contraction is required and subcontractors are communicated, the status of

subcontractors' vehicles can be updated and re-optimised.

For sub-contraction on a tour basis, owing to the backhauling system, the current

state and information of vehicles used are given. The information about the subcon-

tractors' vehicles can be imported to the optimisation engine. A typical process of

routing with sub-contraction is shown in Figure 6.5.

Figure 6.5: Iterative sub-contraction Process

Figure 6.5 is the typical scenario of sub-contraction. It is assumed that the pool

of subcontractors at the beginning period is always available. After the optimisation

process, subcontractors are approached if their services are needed, and their availability

is con�rmed. If no unserved requests exist, the process is terminated. Otherwise, with
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the existence of unserved requests and no available subcontractors, the penalty cost for

the unserved requests must be paid to their corresponding shippers.
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Chapter 7

Solution Methods for the Integrated

Truck and Semi-trailer Routing

Problem

7.1 Problem Formulation

The Integrated Truck and Semi-trailer Routing Problem (ITSRP) investigated in

this Chapter consists of several sub-problems. It extends the MD-PDPTW-SR of Ropke

and Pisinger (2006) by several assumptions, constraints and characteristics. Hereafter,

the problem is called the Integrated Truck and Semi-trailer Routing Problem (ITSRP).

The ITSRP forms the core of logistics planning and hence of practical interest. The

entire problem considers three ful�lment modes, namely, self-ful�lment, sub-contraction

on a request basis and sub-contraction on tour basis. All sub-problems have the same

structure in terms of constraints. In addition, the self-ful�lment requires the assignment

of semi-trailers. All sub-problems di�er in terms of cost structures in the objective

function. We formulated the ITSRP as the Mixed Integer Linear Program (MILP).

215



Chapter 7 Solution Methods for the Integrated Truck and Semi-trailer Routing

Problem

7.1.1 Assumptions

All transportation requests have their own pickup and corresponding delivery loca-

tions. The quantity of goods and the location of the pickup and delivery are known

in advance. Both full-truckload and less-than truck load shipments are carried out in

the operation. The self-ful�lment of requests is to service all requests using its own

�eet. The own �eet of vehicles is heterogeneous. The number and types of trucks and

semi-trailers in the own �eet are known in advance. Due to the limited number of

vehicles and the large penalty cost of unserved requests, the sub-contraction of requests

is sometimes required. The own �eet of vehicle must depart from and return to the own

depot. The vehicles' locations of subcontractors paid by request basis are unknown and

assumed to depart from and return to a depot. For those subcontractors paid on a tour

basis, the vehicles may start and end at di�erent locations. At a company's own depot,

the number of semi-trailers is known, and semi-trailers are available for interchanging

with base trucks. The capacity restriction for a truck with the assigned semi-trailer is

imposed by road regulations. However, information concerning semi-trailers of subcon-

tractors paid on a request basis is unknown. Therefore, we assume that the capacity

of each truck and semi-trailer is large. After communicating, the subcontractor will

decide whether their truck and semi-trailers are available or not and reply.

Nevertheless, the information about semi-trailers of subcontractors paid on a tour

basis is known. For the company's own �eet, the number, weight, and capacity re-

strictions of trucks and trailers are known. Earliest and latest time windows are also

known in both pickup and delivery locations. In case of early arrival at the location, the

vehicle has to wait until the earliest time window. A truck might not be able to serve

all requests; for example, a request might require that the truck has a power generator

for a reefer container. Also, some goods such as palletised goods require a platform

semi-trailer. These requests are called special requests. The �eets of trucks and trailers

are heterogeneous in terms of ownership, start and end locations, truck types, maxi-
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mum weight capacities, truck weight, �xed costs per day, capacity cost rate in terms

of distance, fuel consumption per truck and request compatibility. The �eets of semi-

trailers are also heterogeneous in terms of ownership, semi-trailer types, semi-trailer

axle types, weight, �xed costs per day, capacity cost rates in terms of distance and

request compatibility. All requests must be served. The one-day operational planning

horizon is investigated.

7.1.2 Notations

n number of transportation requests

K set of all vehicles

Ko set of own trucks

K
′

set of subcontractors' vehicles on request basis

K
′′

set of subcontractors' vehicles on tour basis

m number of vehicles, m =| K |

P set of pickup nodes, P = {1, . . . , n}

D set of delivery nodes, D = {n+ 1, . . . , 2n}

li volume demand/supply at vertex i: pickup vertices are associated with a

positive value, delivery vertices with a negative value; at the start depot and

end depot the demand/supply is zero.

l
′
i weight demand/supply at vertex i: pickup vertices are associated with a

positive value, delivery vertices with a negative value; at the start depot and

end depot the demand/supply is zero.

ai earliest time to begin service at vertex i
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bi latest time to begin service at vertex i

si service duration at vertex i

Ki set of vehicles that are able to serve request i,

Pk set of pickups that can be served by truck k;Pk ⊆ P

Dk set of deliveries that can be served by truck k;Dk⊆ D

τk set of start terminal of truck k;

τ
′

k set of end terminal of truck k;

cfk the �xed cost of the company's own truck k

cft the �xed cost of the company's own semi-trailer t

cdk the variable cost rate of the company's own trucks k; monetary unit per km

cdt the variable cost rate of the company's own semi-trailer t: monetary unit

per km

cdwk the variable cost rate of the company's own truck k on distance and weight

wt the weight of semi-trailer t

uk the weight of truck k

gi the wage paid per request i

dij distance from vertex i to j

tij travel time from vertex i to j

ai,t the coe�cient matrix of compatible semi-trailers t for request i

ci,k the sub-contraction cost in request basis for request i for vehicle k

cd
′

k the variable cost rate of the truck k on tour basis; monetary unit per km
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Vt Volume capacity of semi-trailer t

Wk Weight capacity of truck k

E the number of semi-trailer types according to semi-trailer' axles

T set of semi-trailers, T={t | 0 ≤ t < E} .

H the number of truck type depending on axles

χ set of truck types, χ={h | 0 ≤ h < H}

Rt,χ(k)
Road weight capacity of semi-trailer t and truck k

xijkt =


1 , if arc (i, j) is traversed by truck k with semi− trailer t

0 , else

zi =


1 , if request i is placed in the request bank

0 , else

Sikt a non-negative number that indicates when truck k with semi-trailer t starts

the service at location i

Likt a non-negative number that indicates space of truck k with semi-trailer t

when leaving vertex i

L
′

ikt a non-negative number that indicates load of truck k with semi-trailer t when

leaving vertex i

hijkt a non-negative number that indicate load of truck k with semi-trailer t if arc

(i, j) is traversed

De�ne N = P ∪D and Nk = Pk ∪Dk. Let τk = 2n + k and τ
′

k = 2n + m + k, k ∈ K.

The ITSRP is modelled on complete graphs G = (V,A) that consists of the nodes
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V = N ∪ {τ1, . . . , τm} ∪ {τ
′
1, . . . , τ

′
m} and the arcs A = V × V . For each vehicle, due

to special requests, we have subgraph Gk = (Vk, Ak) where Vk = Nk ∪ {τk} ∪ {τ
′

k} and

Ak = Vk × Vk. We assume that distance and time from vertex i to j, are given by dij

and tij. For each edge (i, j) ∈ A, we assign a distance dij ≥ 0 and tij ≥ 0 . Both

dij and tij satisfy the triangle inequality. Further, we also assume that ti,n+i + si > 0

to eliminate sub-tours. Each node i ∈ V has a time window [ai, bi]. For one-to-one

pickup and delivery problem, for each node i ∈ N, li is the amount of goods that must

be loaded onto the vehicle at the particular node, li ≥ 0 for i ∈ P and li = −li−n for

i ∈ D. For practical reasons, the arc set can be reduced to A
′

k = {(i, j) : i, j ∈ Vk, i 6=

τ
′

k, j 6= τk, i 6= j, i ∈ Pk ⇒ j 6= τ
′

k, i = τk ⇒ j /∈ Dk, i ∈ Dk ⇒ j /∈ Pk where i = j + n}.

The following six decision variables are used in the mathematical model.

7.1.3 Objective Function

The ITSRP consists of �nding a feasible routing and scheduling plan with minimal

execution costs. The objective function (C) comprises the costs from self-ful�lment

(Co), the cost from sub-contraction (Cs) the cost from penalty due to unserved requests

(Cp).

Min C = Co + Cs + Cp (7.1)

The costs Co from self-ful�lment of requests consist of the combination of the �xed

costs and the variable costs for both trucks and semi-trailers. A semi-trailer must be

attached to a truck for serving a transportation request. The costs are distinguished

according to resources, corresponding to the CDABC. There are four cost elements

involved in serving requests by own �eet namely, �xed cost (Co,f ), variable cost on

distance (Co,d) , variable cost on distance weight (Co,dw) and variable cost on requests

(Co,r) as shown in Equation. 7.2.
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Co = Co,f + Co,d + Co,dw + Co,r (7.2)

where,

Co,f =
∑
k∈Ko

cfk +
∑
t∈To

cft (7.3)

Co,d =
∑
k∈Ko

∑
t∈To

(cdk + cdt) ·
∑

(i,j)∈A′k,t

dij · xijkt (7.4)

Co,dw =
∑
k∈Ko

cdwk ·
∑
t∈To

∑
(i,j)∈A′k,t

dij · (wt · xijkt + hijkt) (7.5)

Co,r =
∑
k∈Ko

∑
t∈To

∑
i∈Pk

(gi · xijkt) (7.6)

The costs for sub-contraction (Cs) consist of the sum of the sub-contraction on

request basis Cs,req and tour basis Cs,tour.

Cs = Cs,req + Cs,tour (7.7)

where,

Cs,req =
∑
k∈K′

∑
t∈T ′

∑
i∈P

ci,k · xijkt (7.8)

Cs,tour =
∑
k∈K′′

cd
′

k ·
∑
t∈T ′′

∑
(i,j)∈A′k,t

dij · xijkt (7.9)

The penalty cost (Cp) arises when a request is not served according to service agree-

ment. This cost is relatively high when compared to other cost elements.
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Cp = γ
∑
i∈P

zi (7.10)

Altogether, the objective function is given by

C =
∑
k∈Ko

cfk +
∑
t∈To

cft +
∑
k∈Ko

∑
t∈To

(cdk + cdt) ·
∑

(i,j)∈A′k,t

dij · xijkt

+
∑
k∈Ko

cdwk ·
∑
t∈To

∑
(i,j)∈A′k,t

dij · (wt · xijkt + hijkt) +
∑
k∈Ko

∑
t∈To

∑
i∈Pk

(gi · xijkt)

+
∑
k∈K′

∑
t∈T ′

∑
i∈P

ci,k · xijkt +
∑
k∈K′′

∑
t∈T ′′

∑
(i,j)∈A′k,t

cd
′

k · dij · xijkt + γ
∑
i∈P

zi

7.1.4 Constraints

The feasibility of the ITSRP is assured if each request is assigned to exactly one ful-

�lment type and all constraints are satis�ed. Constraints are similar to the formulation

of PDPTW presented in Desaulniers et al. (2002) and Ropke and Pisinger (2006). How-

ever, the �ow index of semi-trailers is introduced in the decision variables. In addition,

the sets of subcontractors' vehicles are considered.

Subject to

∑
k∈K

∑
t∈T

∑
j:(i,j)∈A′k,t

xijkt + zi = 1 ∀i ∈ P (7.11)

∑
j:(i,j)∈A′k,t

xijkt −
∑

j:(n+i,j)∈A′k,t

xn+i,j,kt = 0 ∀k ∈ K, ∀t ∈ T,∀i ∈ Pk (7.12)
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∑
j∈Pk∪{τ

′
k,t}

xτk,j,kt = 1 ∀k ∈ K, ∀t ∈ T (7.13)

∑
i∈Dk∪{τk,t}

xi,τ ′ ,kt = 1 ∀k ∈ K, ∀t ∈ T (7.14)

∑
i:(i,j)∈A′k,t

xijkt −
∑

i:(i,j)∈A′k,t

xjikt = 0 ∀k ∈ K, ∀t ∈ T,∀j ∈ Nk (7.15)

xijkt = 1⇒ Sikt + si + tij ≤ Sjkt ∀k ∈ K, ∀t ∈ T,∀(i, j) ∈ Ak (7.16)

ai ≤ Sikt ≤ bi ∀k ∈ K, ∀t ∈ T,∀i ∈ Vk (7.17)

Sikt ≤ Sn+i,kt ∀k ∈ K, ∀t ∈ T,∀i ∈ Pk (7.18)

xijkt = 1⇒ Likt + lj ≤ Ljkt ∀k ∈ K, ∀t ∈ T,∀(i, j) ∈ Ak (7.19)

Likt ≤ Vt ∀k ∈ K, ∀t ∈ T,∀i ∈ Vk (7.20)

Lτkkt = Lτkkt =0 ∀k ∈ K, ∀t ∈ T (7.21)

xijkt ∈ {0, 1} ∀k ∈ K, ∀t ∈ T,∀(i, j) ∈ Ak (7.22)

zi ∈ {0, 1} ∀i ∈ P (7.23)

Sikt ≥ 0 ∀k ∈ K, ∀t ∈ T,∀i ∈ Vk (7.24)

Likt ≥ 0 ∀k ∈ K, ∀t ∈ T,∀i ∈ Vk (7.25)

Constraint 7.11 ensures that each pickup location is visited or that the correspond-

ing request is placed in the request bank. Constraint 7.12 ensures that both pickup and

corresponding delivery locations must be served by the same vehicle with semi-trailer.

Constraints 7.13 and 7.14 ensure that a vehicle with semi-trailer leave every start ter-

minal and enter every end terminal. Note that this does not mean that every vehicle

has to be used. A vehicle and semi-trailer may only use the arc (τk, τ
′

k), i.e. it does

not leave the depot. Constraint 7.15 ensures that consecutive paths between τk and τ
′

k

are formed for each k ∈ K. Constraint 7.16 is the sub-tour elimination constraint by
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time variables, given that (tij + si) > 0. Constraint 7.17 ensures that the time windows

of each location is obeyed. Constraint 7.18 ensures that each pickup occurs before the

corresponding delivery. Constraint 7.19, 7.20 and 7.21 ensure that a variable is set

correctly along the paths and capacity constraints of the semi-trailer in terms of space

is respected. Non-linear constraints, given in 7.16 and 7.19, can be linearised using a

big M formulation and the computational time speed up. These constraints are similar

to the MD-PDPTW-SR in Chapter 4. The following are constraints due to additional

characteristics of the ITSRP, as an extension of the MD-PDPTW-SR.

Assignment of semi-trailers

In order to e�ciently assign a semi-trailer to a vehicle in the own �eet, the assignment

problem then arises. The following constraints must be satis�ed.

∑
t∈T

xτkjkt = 1 ∀k ∈ K (7.26)

∑
k∈K

xτkjkt ≤ 1 ∀t ∈ T (7.27)

Constraint 7.26 states that, for each truck, only one semi-trailer is assigned in the

planning horizon. Constraint 7.27 states that, for each semi-trailer, it is assigned to

one vehicle or not assigned in the planning horizon.

Multi-dimensional capacity constraints

The MD-PDPTW-SR in Chapter 4 has only one capacity constraint. However,

the problem in this study considers real-life capacity constraints which simultaneously

involve a number of capacity constraints. In this problem, the space and weight of goods

are both considered. The space capacity constraint is already stated in Constraint

7.20. The weight capacity is both restricted according to truck performance and road

224



Chapter 7 Solution Methods for the Integrated Truck and Semi-trailer Routing

Problem

regulation. In terms of truck performance, the summed weight between semi-trailer and

goods must not exceed the weight capacity in terms of truck performance. In terms of

road regulation, the summed weight is combined from trucks, semi-trailers, and goods

and must not exceed the road-regulation according to the combination of truck's and

trailer's axles. An additional decision variable for load variable, L
′

ikt, are stated in

Equation 7.28.

L
′

ikt ≥ 0 ∀k ∈ K ∪K ′ ,∀i ∈ Vk (7.28)

The following constraints must be satis�ed.

xijkt = 1⇒ L
′

ikt + l
′

j ≤ L
′

jkt ∀k ∈ K, ∀i : (i, j) ∈ A′k, ∀t ∈ T (7.29)

L
′

ikt ≤ Min{ (Rt,χ(k)
− wk − wt), (Wk − wt)} ∀k ∈ K, ∀i : (i, j) ∈ A′k,∀t ∈ T (7.30)

L
′

τkk
= L

′

τkk
= 0 ∀k ∈ K (7.31)

Constraints 7.29, 7.30 and 7.31 ensure that load variable is set correctly along the

paths and the capacity constraints of the truck, in terms of weight, are respected. These

constraints are similar to those of space capacity in Constaint 7.19, 7.20 and 7.21.

Path Loading

It is to note that L
′

ikt is the decision variable of location, i. However, in order to

estimate the amount of fuel used, the loading between path, i to j, must be used. There-

fore, one decision variable is introduced in Equation 7.32 for calculating the amount of

fuel used due to the distance and weight between locations.

hijkt ≥ 0 ∀k ∈ K, ∀i : (i, j) ∈ A′k,∀t ∈ T (7.32)

If the truck k and trailer t traverse from vertex i to j, then the loading status must
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be greater than or equal to L
′

ikt according to Equation 7.33. The hijkt is modelled also

in the objective function in Equation 7.5 for minimisation of fuel use.

xijkt = 1⇒ L
′

ikt ≤ hijkt ∀k ∈ K, ∀i ∈ Pk,∀t ∈ T (7.33)

Special requests for trailers

For the special requests in terms of truck, the decision variable xijkt are restricted

to the network Ak = Vk × Vk. In addition, in this problem, the special requests for

semi-trailers are introduced. Therefore, the decision variable xijkt is also restricted on

the compatibility relationship between vertice i and trailer t.

xijkt ≤ ait ∀k ∈ K, ∀i ∈ Pk (7.34)

In Constraint 7.34, the coe�cient matrix ait has value either 0 and 1. If the ai,t is

equal to zero, all decision variables xijkt that traverse from vertex i by trailer t is not

used.

7.1.5 Illustrative Example

In order to illustrate the problem, a small example is presented. In this example,

it is assumed that 6 requests are considered. For each request, location coordinate,

weight, volume, time windows, service time, pro�t and pickup-delivery expenses are

given. For special requests, the compatible trucks and trailers are determined. The

pickup and delivery locations of these requests are shown in Figure 7.1.
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Figure 7.1: Pickup and corresponding delivery locations of 6 requests

From Figure 7.1, the pickup and delivery locations are represented by a triangle and

circle, respectively. The locations are paired by dashed line with an arrow. A number

of trucks and semi-trailers are located in each depot. The company's own depot, and

the depot of the subcontractor paid on request basis are represented by rectangles with

the numbers 0 and 1, respectively. The start and end depot of a subcontractor paid

by tour basis is represented by rectangles with number 2+ and 2-, since, this type of

sub-contraction has a di�erent start and end location. In this example, the truck k0

and trailer t0, t1 are available in the company's own depot. The trucks k1 and t2 are

provided by the subcontractor paid on a request basis. The truck k2 and t3 are available

from the subcontractor paid by tour basis.

For all trucks, the following details are given: depot location, truck type id, weight

capacity due to truck performance, temporal availability of trucks. The truck type

id is used to classify the types of trucks. For the company's own �eet, the following

additional details are determined: truck weight, �xed cost, variable cost on distance

and variable cost on distance-weight. For the subcontractor for tour basis, the variable

cost for distance is also given. The sub-contraction rates for request basis are given by

the relationship between request and subcontractor.
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For each trailer, type id, weight, �xed cost, variable cost by distance, volume capac-

ity, weight capacity due to road regulation for the combined truck and trailer type are

determined.

In order to calculate the total cost of each request, the average values of each truck

type id are, namely, truck type, truck's axles, weight, time cost rate, variable costs on

distance and variable costs on distance-weight. For each trailer, the average value of

each trailer id includes: trailer type, weight capacity due to weight capacity, weight,

volume capacity, time cost rate and variable costs depending on distance.

Figure 7.2 shows the optimal solution obtained from CPLEX 12.5 for this illustrative

example.

Figure 7.2: Optimal solution of the illustrative example

In Figure 7.2, all available trucks are used. For the company's own �eet, one truck

is articulated with one semi-trailer while one semi-trailer is left unused. The pickup

and corresponding delivery locations are the even number and that even number plus

one, respectively. Di�erent colours of solid lines with arrows indicate the routes of the

vehicles. The assumption that all requests are served is satis�ed. The optimal routes

and costs of the company's own and hired vehicles are shown in Table 7.1.
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k t Tour Dist. Dist.·W. Objective function Costs

k0 t0 0, 1, 8, 9 238 3616 cfk0 + cft0 + cft1 + 238 · (cdk0 + cdt0) + 3616 · cdwk0 + Σgi 3825

k1 t2 2, 4, 3, 5, 6, 7 c2,k1 + c4,k1 + c6,k1 4317

k2 t3 10, 11 77 77 ∗ cd
′
k2

1769

Table 7.1: Routes and costs of own and subcontractor's vehicles

Table 7.1 shows a ful�lment plan for all 6 requests. The cost of the company's

own �eet's vehicle depends on both distance and distance-weight. The cost of sub-

contraction on a request basis depends on the amount subtracted from the request

price. The cost of sub-contraction on a tour basis depends on the distance. The

following constraints are satis�ed: (1) precedence, (2) request time windows, (3) weight

capacity due to road regulation, (4) weight capacity due to truck performance, (5) truck

time windows, (6) volume capacity of the trailer, (7) special requests for trucks and (8)

special requests for semi-trailers.

We also vary the parameters and constraints of the illustrative example in order

to investigate their sensitivities toward objective function and design and to validate

proposed meta-heuristics. The following parameters and constraints are used in the ex-

periment: special request due to trucks, special requests due to semi-trailers, cost rates,

weight capacity, volume capacity, time windows, price and number of subcontractors.

The MILP of the ITSRP is solved by CPLEX 12.5 with default algorithm. Exact

methods can guarantee that the optimisation solution is found if the method is given

su�cient time. However, the ITSRP is NP-hard and rapidly changing business envi-

ronments require the solution within reasonable time frame. While, heuristics are fast

but the optimality is not guaranteed. With an industrial sized problem, a scheduler

has to select an appropriate optimisation method for solving the problem e�ciently.

For the problem size studied in this Chapter, a heuristic has to be developed with the

view to �nding a near-optimal solution in a timely manner. We introduce the ALNS
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and AMLNS for this Chapter in order to solve this problem e�ciently.

7.2 Adaptive Memetic Large Neighbourhood Search (AMLNS)

The Adaptive Memetic Large Neighbourhood Search (AMLNS) developed in Chap-

ter 4 is extended to solve the ITSRP in this Chapter for two reasons: (i) the MD-

PDPTW-SR is a related problem, and (ii) the computational results produced by the

AMLNS and presented in Chapter 4 were promising. In order to demonstrate the ap-

plicability of AMLNS to other routing problems, the design of the AMLNS is changed

at minimum. The operators and adaptive mechanisms are described in the following

sections.

7.2.1 Removal Operators

The number of removal operators applied in the ITSRP is identical to those in

Chapter 4, with one exception: the Identical Vehicle Crossover (IVX) is altered in

terms of route measures. Moreover, unlike the MD-PDPTW-SR, the ITSRP involves

the assignment of a trailer. Therefore, a Semi-Trailer Removal Heuristic is introduced

to tackle this characteristic.

Identical Vehicle Crossover (IVX)

The IVX procedure is similar to that in Chapter 4. However, the conceptual design

of the IVX is to select good routes corresponding to the objective function. Due to

the di�erence of objective function and ful�lment modes, several route measures are

experimented on and compared to the existing measures in the original IVX. The av-

erage distance and average distance-time are replaced by two new measures. First, the

objective value of each route is divided by the number of locations. The lower the av-

erage value is, the better each vehicle is routed. For the second measure, the objective
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value of the company's own vehicle excludes the �xed cost of trucks and semi-trailers.

Then, this objective value is divided by the number of locations. Intuitively, the �rst

measure used in the company's own �eet estimates the average �xed cost and di�eren-

tiates the routes with a large number of requests. The second measure assumes that

the make-or-buy decision of whether or not requests are served by either their own or

by a subcontractors' �eet depends on the variable costs of the company's own �eet and

the objective value of a subcontractors' �eet. From our observations, the route that

has a few requests, but is also e�cient in terms of variable costs, can be obtained from

the second measure, while the �rst measure prefers having a large number of requests.

These two measures provide some variations to the route selection.

The experiments are conducted by replacing the average distance and average distance-

time in all possible ways for each new measure. The computational results of tuning

instances show that replacing these two new measures provide promising results, as

shown in Table 7.4 and 7.5. This con�rms our assumption that the route measure

should correspond to the objective function. Since, improving or non-improving moves

are evaluated from the objective function. In order to select the ranked non-empty

routes, some randomness is introduced as in the original AMLNS in Chapter 4.

In contrast to the MD-PDPTW-SR, the ITSRP models the truck with interchange-

able trailers or variable capacities. The concept of an Identical Vehicle Crossover (IVX)

is to remove the good sequences of locations to the other solution without feasibility

checking. In order to apply the IVX to the ITSRP, the requests and semi-trailers must

be transferred together, as the selected identical vehicle for both solutions may be at-

tached with di�erent trailers, and thus capacities. The requests in inserting routes may

then violate the capacity constraints.

Once, the requests and semi-trailers are transferred, the repeated requests are re-

paired similarly to the request repair carried out in Figure 4.2 in the Chapter 4. To

illustrate, let Ti,j be the semi-trailer of i
th truck in the jth solution. Assume that j = 1 is

selected from the �rst binary tournament selection or j = 1 is called replaced solution,
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while, j = 2 is selected from the second tournament selection and refers to inserting

solution. According to the IVX in Chapter 4, the ranked non-empty routes with route

measures are selected. The chosen truck, i, in j = 2 uses the inserting trailer, Ti,2. The

corresponding truck, i, in j = 1, uses the replaced trailer, Ti,1. For all semi-trailers in

j = 1, the truck id, i, which pulls Ti,2 is identi�ed or this semi-trailer is called �repeated

semi-trailer�. All available semi-trailers are either attached to the truck or left unused.

The pool of unused semi-trailers is hereafter called free semi-trailer list. We show the

Semi-trailer Repair Operator in Figure7.1.

Algorithm 7.1 Semi-trailer Repair Operator
1. Delete all repeated semi-trailers in the replaced solution.

2. Remove all requests in these repeated trailers to the request bank.

3. For each inserting vehicle, if the inserting trailer is di�erent from the replaced trailer,

then the replaced trailer is removed to the free semi-trailer list.

4. Insert the inserting trailer to the corresponding truck

5. Record the volume capacity of all replaced semi-trailers

6. Use Semi-trailer Insertion Heuristics to insert trailers from free semi-trailer list

In Algorithm 7.1, the Semi-trailer Insertion Heuristic is described in Algorithm 7.3

in Section 7.2.2. Step 2 in Algorithm 7.1 is similar to the group-oriented mutation

operator for the PDPTW, used by Pankratz (2005). Once a cluster or route is selected

and removed, each request is reinserted again to the insertion location that causes

minimal additional cost.

Semi-trailer Removal

To cope with the ITSRP, trailer re-assignment plays a vital role in improving the

solution quality because each trailer has di�erent weight, weight capacity, volume ca-

pacity and variable cost. The semi-trailer removal is only applied for the company's

own �eet and consists of three operators for the attached trailer: the random removal of
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Algorithm 7.2 Heuristic selection of semi-trailer
1: Calculate the average fuel used per location for each vehicle

2: For all vehicles, sort the average fuel used per location in descending order

3. Select one vehicle, k, with some randomness, psr, according to Equation 4.13

4. Record the volume capacity of the selected semi-trailer

5. Remove all requests in k to the request bank

6. Remove the selected trailer to the free-trailer list.

one trailer, the random removal of two trailers and the heuristic removal of one trailer.

The removed requests from the random removal of one and two trailers are placed in

the request bank. The heuristic selection is shown in Algorithm 7.2.

It is important to note that the heuristic removal operator only requires the heuristic

insertion operator as described in Algorithm 7.3 in Section 7.2.2. These three semi-

trailer removal operators are applied to every pre-de�ned number of iterations, NSR.

7.2.2 Insertion Operators

The same regret-heuristics as in Ropke and Pisinger (2006) are used to solve the

ITSRP. The detail of regret-1,2,3,4,m are shown in Section 4.5.3 of Chapter 4.

In order to maintain the feasibility for the ITSRP, each insertion requires constraint

checking for special requests and multi-dimensional capacity constraints in addition to

those in the MDPDPTW. Before insertion, the compatibility between requests and the

truck/semi-trailer must be checked. This is carried out in the same way as the special

requests for vehicle in Chapter 4.

Moreover, two additional capacity constraints are modelled in the ITSRP. These

two capacity constraints are simultaneously considered when inserting a request. The

special requests and multi-dimensional capacity constraints are embedded in the �x

forward insertion developed in Chapters 3 and 4.
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Semi-trailer insertion heuristic (SIH)

In the ITSRP, the trailer re-assignment is essential to improve the solution quality.

Therefore, the semi-trailer insertion heuristic (SIH) was proposed after a number of

experiments for several semi-trailer insertion heuristics were conducted. The SIH is

applied for both the semi-trailer removal and the trailer repair operator. Hereafter, the

volume of removed trailers in a semi-trailer removal and trailer repair operator is called

the record volume. The pseudo code of the SIH is outlined in Algorithm 7.3.

Algorithm 7.3 Procedure of Semi-trailer Insertion Heuristic (SIH)
1. Recall the recorded volume

2. Record the set of semi-trailers, Tv, in the free semi-trailer list, where Tv have

the volume equivalent to the recorded volume

3. For all Tv, sort the variable cost in ascending order

4. Select one semi-trailer, T
′
, with some randomness, psih, according to Equation 4.13

5. Insert semi-trailer, T
′
, to k

6. Insert the requests in the request bank to the solution by randomly selecting an

insertion heuristic

In Algorithm 7.3, the reason we prioritise the semi-trailer equivalent to recorded

semi-trailer earlier is that using lower semi-trailer capacity may result in unscheduled

requests left in the request bank. The IVX also helps compacting the semi-trailer

assignment. The combination of the Semi-trailer Removal and Semi-trailer insertion

Heuristic can be seen as trailer re-assignment operators.

7.2.3 Adaptive Mechanism

The adaptive mechanism of the AMLNS for the ITSRP is the same as that used in

the AMLNS in the Chapter 4. It is also important to note that the roulette wheel selec-

tion is not required for semi-trailer removal and SIH. From the experiments, the �xed
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probability of one-third for each semi-trailer removal operator is simple and su�cient.

7.2.4 Applying Noise to Objective Function

The method of applying noise to the objective function remains the same as in

Ropke and Pisinger (2006).

7.2.5 Initialisation

The population is initialised according to the AMLNS in Chapter 4. For each

initial solution, the trailer is assigned to each truck randomly. A number of rules were

designed for initialising trailers to trucks. However, from the experiments, the random

trailer insertion shows promising results over the designed rules. It is believed that the

random trailer initialisation can generate diverse populations as essentially required for

the AMLNS.

7.2.6 Master Local Search Framework

The master local search framework in the AMLNS for the MD-PDPTW-SR is ap-

plied to the ITSRP. Regarding the reduction rules namely the calculation of the ob-

jective function, the calculation of incremental distance, and calculation of incremental

time, described in Chapter 4, are removed in the ITSRP due to changes in the structure

of the objective function.

7.3 Computational Experiments

The AMLNS for solving ITSRP was coded in high-level computer language, C#,

in the Visual Studio 2010. The proposed AMLNS was run on a single-thread of Intel

core I7 (3.5 GHz). The objective values were rounded to a double precision �oating

point number. The aim of the experimental study was to compare the performance

between the proposed AMLNS and original ALNS with slight modi�cations for solving
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the ITSRP.

7.3.1 Development of Sets of Problem Instances

Up to present, there is no suitable test sets for the ITSRP. For computational exper-

iments, 36 test instances were therefore developed for testing for the ITSRP using the

ALNS and AMLNS. The generated ITSRP instances that contain features of the model

were not used in Ropke and Pisinger (2006). These features include di�erent ful�lment

modes, special requests for trucks and semi-trailers and multi-dimensional capacity con-

straints. The problem features of the test instances developed for the ITSRP are shown

in Table 7.2. When developing these instances, the cost rates and parameters, which

should be related, are obtained from the real-life business operations of the case-study

company. For the matter of generalisation, we develop the test instances according

to the literature. Several geographical distributions: uniform, clustered, and semi-

clustered are experimented on. These three types of problem were inspired from Ropke

and Pisinger (2006). The small-test instances for validating the ALNS and AMLNS by

CPLEX are also developed. In this experiment, the problem size of 50 and 100 requests

are considered. It is to note that the problem sizes of 50 and 100 requests have 100 and

200 customer locations, respectively. For each problem size, we generated 18 problems

according to every combination of the three problem features shown below:

� Proportion of �eets: for the case study company's own �eet and for the sub-

contractor paid by request basis, a route starts and ends at the same location.

However, the subcontractor paid tour basis, a route starts and ends at di�erent

location. In this study, to simulate the possible scenarios occurring in the real-life

operation, three di�erent mixed percentages of �eets were experimented on for

own, sub-contraction on request basis, and sub-contraction on tour basis.

� Request types: (1) all requests are normal requests: the normal request is for
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the 20-feet dry container that can be served by all type of vehicles. (2) 50 % of

the requests are special requests. For special requests, they can be served by a

subset of trucks or semi-trailers.

� Geographical distribution: (1) uniform, (2), clustered and (3) semi-clustered.

For all problems, the ratio of the number of the company's own trucks and own semi-

trailers is 1: 2. It is important to note that the network structure of the real-life data of

the case-study company is usually clustered. This geographical distribution is already

included in the developed test instances. The possible combination of problem types A

to R is shown in Table 7.2.

Type Mix �eet type Request type Geographical distribution

Own Own + 1stSub Own + 1st + 2nd Sub Norm. req. Spec. req. U. C. SC.

A
√ √ √

B
√ √ √

C
√ √ √

D
√ √ √

E
√ √ √

F
√ √ √

G
√ √ √

H
√ √ √

I
√ √ √

J
√ √ √

K
√ √ √

L
√ √ √

M
√ √ √

N
√ √ √

O
√ √ √

P
√ √ √

Q
√ √ √

R
√ √ √

Table 7.2: The features of the test instances for the ITSRP

In Table 7.2, Own, Own + 1stSub, and Own + 1st + 2ndSub represent the use of

(1) own �eet, (2) own �eet and sub-contraction on request basis, and (3) own �eet

and sub-contraction on request basis and sub-contraction on tour basis, respectively.
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Norm. req. and Spec. req. refers to the request types of normal request and special

request, respectively. U., C., and UC. stand for uniform, clustered, and semi-clustered

geographical distribution, respectively.

7.3.2 Tuning instances

First, a set of representative tuning instances is identi�ed. In order to perform

numerous experiments, the set of tuning instances must have a fairly limited size and

related to the problem targeted. The set of tuning instances consists of 6 instances

namely, 50A, 50I, 50Q, 100B, 100J, and 100R. In each instance, the name, the number

and letter indicate the problem size, followed by type.

7.3.3 Parameter tuning

A number of experiments are conducted to �nd a good set of parameters. The initial

set of parameters is adopted from Chapter 4 and new parameters are produced by an

ad-hoc trail-and-error phase. Design and Tuning Process as in Chapter 4 is also applied.

The parameter setting is tested by running the algorithms �ve times. The potential

range of each parameter is tested. The parameter tuning is improved by allowing one

parameter to take a number of values, while the rest of the parameters remain �xed.

The best known solution for each problem is kept and updated. The next parameter

is tested by applying the values found so far and the values of the parameters that

have not been considered yet. This procedure continues until all parameters have been

tuned. The development process of the AMLNS for the ITSRP is also similar to that of

Chapter 4 but with minimum changes of design. Therefore, we mainly focus on solution

quality, instead of computational time. Thus, the problem is to minimise the Obj fn

, as described in Section Design and Tuning Process in Chapter 4, using φ, υ = 1 and

ς = 0.
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In order to compare the AMLNS with the existing metaheuristics, the ALNS was

developed. In order to cope with the ITSRP, the semi-trailer removal and insertion

operators are also added to the ALNS with the low rate of Nsr (Nsr = 5), applying

them every 5 iteration, to acheive good results. For this ALNS, all operators are used

according to Pisinger and Ropke (2007), instead of Ropke and Pisinger (2006), since,

in the table of computational results shown in www.diku.dk/∼ropke is obtained from

the updated heuristic. However, the start temperature control parameter and cooling

rate are not given in Pisinger and Ropke (2007). Therefore, the start temperature

control parameter and cooling rate shown in Ropke and Pisinger (2006) are applied.

According to Pisinger and Ropke (2007), in order to cope with di�erent problem sizes,

the start temperature control parameter should be divided by the number of requests

in the instance. From the experiments of the ALNS for the ITSRP, this implementation

also works well for the start temperature and cooling rate obtained from Ropke and

Pisinger (2006).

The AMLNS for solving the ITSRP is extended from the AMLNS for the MD-

PDPTW-SR. In order to keep the parameter tuning to a minimum, the set of parameters

used in the AMLNS in Chapter 4 is also used here. However, the ITSRP is di�erent

from the MD-PDPTW-SR in terms of objective function and constraints. The number

of parameters and designs are thus experimented on. One of the experiments that has

had a signi�cant impact on the performance of the heuristic is the pre-de�ned number

of iterations for using the semi-trailer removal, NSR. Moreover, this mechanism is not

used in the AMLNS in Chapter 4. The range of NSR from 5 to 500 over 25000 iterations

is tested in the AMLNS.

NSR 2 5 10 20 50 100 200 500 None

Obj fn (%) -0.02 -0.11 0.04 0.39 0.89 1.35 1.6 1.61 1.9

Table 7.3: Parameter NSR vs. Obj fn

Table 7.3 shows the in�uence of NSR toward the Obj fn. The results show that the
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NSR is essential in improving the solution quality. Since, initial random assignment of

trailer may not be e�cient. The re-assignment of trailer is then required. However,

the frequency of NSR should be also limited to a certain value so that the removal and

insertion of requests can also work on routing the locations, instead of only using the

semi-trailer removal. According to Table 7.3, NSR = 5 is selected. In addition to NSR,

the number of parameters was further experimented in terms of measures in the IVX for

the ITSRP. Moreover, the number of designs was proposed. Table 7.4 and 7.5 show the

experiments of the �rst and second measures used in IVX in Section 7.2.1, respectively,

on the following designs:

� AMLNS_1 uses the original measures as in Chapter 4.

� AMLNS_2 replaces a new measure to average distance

� AMLNS_3 replaces a new measure to average distance-time

� AMLNS_4 add the new measure to average distance and average distance-time

� AMLNS_5 uses only the new measure

� AMLNS_6 uses random selection of good routes and the new measure

AMLNS_1 AMLNS_2 AMLNS_3 AMLNS_4 AMLNS_5 AMLNS_6

Obj fn (%) -0.29 -0.31 -0.27 -0.27 -0.3 -0.32

Table 7.4: First measure of IVX in di�erent designs vs. Obj fn

From AMLNS_ 2 to AMLNS_6, the new measure can refer to either �rst measure

or second measure, as stated in Section 7.2.1. In Table 7.4, the new measure refers to

the �rst measure. The solution quality of IVX's �rst measure on design AMLNS_6 is

slightly better than the other design. The second measure was tested on the same set of
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designs but also the combinations between �rst and second measure are experimented

in AMLNS_7, as shown in Table 7.5.

AMLNS_1 AMLNS_2 AMLNS_3 AMLNS_4 AMLNS_5 AMLNS_6 AMLNS_7

Obj fn (%) -0.29 -0.3 -0.28 -0.31 -0.28 -0.3 -0.33

Table 7.5: Second measure of IVX in di�erent designs vs. Obj fn

From Table 7.4 and 7.5, the combination between �rst and second measure show the

most promising results. Therefore, the AMLNS_7 design in Table 7.5 was selected for

further experiments. The randomisation parameters psr and psih are both empirically

set to 6. The rest of parameters are applied according to the AMLNS in Chapter 4.

7.3.4 Analysis of Typical Search

In order to illustrate how the ALNS and AMLNS work, the representative test

instance, problem 100L, was selected to visualise the search behaviour of each meta-

heuristic for solving the ITSRP. Figure 7.3 (left) and (right) demonstrate the objective

value as a function of the iteration count for the ALNS and AMLNS, respectively.

Figure 7.3: (Left) ALNS and (Right) AMLNS used for solving problem 100L

From Figure 7.3 (left), this search behaviour is typical for a simulated annealing
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heuristic, and it is also similar to the ALNS search in Pisinger and Ropke (2007). In

Figure 7.3 (right), the search behaviour is similar to the AMLNS for the MD-PDPTW-

SR in Chapter 4.

7.3.5 Computational results

The computational results are obtained from solving the test instances, as described

in Section 7.3.1, by the ALNS and AMLNS, developed for the ITSRP. In order to analyse

the performance of the heuristics, a number of notations is introduced, as follows:

� z : Current best known solutions obtained either from the ALNS or the AMLNS

during all experiments in this study

� zav, zb : Values of the average and best solutions in 10 runs, respectively

� Gapav(%), Gapb(%) : Percentage deviation of the average and best solution found

from the current best known solutions, computed as 100×(zav−z)/z and 100×(zb−z)/z

, respectively

� Avg. time (s): the average time (in seconds) of 10 runs

Table 7.6 and 7.7 report the computational results of the ALNS and the AMLNS for

50 and 100 requests, respectively. The AMLNS obtains 32 best known solutions over

the 36 test instances while the ALNS obtains 4 best known solutions. Single-underlined

numbers indicate the best solution in 10 runs, obtained from the AMLNS that are better

than those of the ALNS of Pisinger and Ropke (2007). Double-underlined numbers

indicate the average values of each problem in 10 runs, obtained from the AMLNS,

better than those of the ALNS of Pisinger and Ropke (2007). The average of Gapav

to the best known solutions between the ALNS and the AMLNS are 0.79 and 0.37

respectively. The average of Gapb between the ALNS and the AMLNS are 0.27 and

0.01. Compared in the same computing environment, the AMLNS also spends less

computational time than the ALNS. Since the large number of requests is still applied

to the ALNS until the last iteration. From the analysis, the AMLNS outperforms the
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ALNS in this set of test instances of the ITSRP. In order to understand the solution

structure of the problem, the network topology of the best known solution of problem

50F is illustrated in Figure 7.4.

Figure 7.4: Network topology of best known solution: problem 50F (100 locations)

In Figure 7.4, the problem 50F contains the following characteristics: 50 requests

(100 locations), special requests for trucks and semi-trailers, uniform geographical dis-

tribution. There are 18 company owned trucks, 6 trucks owned by subcontractors who

work on a paid by request basis, and 3 trucks owned by subcontractors paid by tour

basis. The ratio of own trucks and trailers is 1:2 while that of subcontractors is 1:1.

Table 7.8 shows the attached trailer id to each truck of the solution corresponding to

Figure 7.4.
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k t k t k t k t

0o 23 7o 12 14o 15 21S1 39

1o 22 8o 3 15o 16 22S1 40

2o 1 9o 13 16o 32 23S1 41

3o 25 10o 14 17o 29 24S2 42

4o 26 11o 33 18S1 36 25S2 43

5o 30 12o 2 19S1 37 26S2 44

6o 17 13o 0 20S1 38

Table 7.8: Semi-trailer assignment of the best known solution: problem 50F (100 locations)

In order to validate the solution obtained, the schedule of each route is visualised

and its feasibility checked. Table 7.9 illustrates the schedule of the sampled routes. It

is important to note that the truck id 17, 21, and 25 belong to the company's own

�eet, to subcontractors paid by request basis and to subcontractors paid by tour basis,

respectively.

In Table 7.9, the schedules of representative routes for each ful�lment mode are

illustrated. The �rst column is the truck id, followed by semi-trailer id. Seq. stands

for the sequence of location id. The following abbreviations indicate travelling time

(tra. t.), arrival time (arr.t.), time windows (TWs), service time (ser.t), departure

time (dep.t.), supply load (SL), demand load (DL), loading status (L), combined load

between trailer and goods (L
′
), total load (Tot.L), supply volume (Sv), demand volume

(Dv) and volume status (V ) are reported. The �rst line of each route for TWs, L
′
(T+G),

Tot.L and V are their constraints. The last line of each route shows the cost detail of

each truck and trailer. For the company's own �eet, the truck �xed cost (Truck FC),

trailer �xed cost (Trailer FC.), fuel cost (Fuel C.) distance cost (Dist. C.) and expense

for all pickup-delivery requests (PD.C.) are given. For the subcontractors' �eet, the

cost of sub-contraction on request basis (Sub.Req.C.) and the cost of sub-contraction

on tour basis (Sub.Tour.C.) are also shown. The details and costs of all routes are

illustrated in Appendix E. Moreover, the network topology of the best known solution

obtained from the AMLNS for problem 100Q is also shown in Figure 7.5.
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Figure 7.5: Network topology of best known solution: problem 100Q (200 locations)
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In order to demonstrate problem size, and complexity, in Figure 7.5, the best

known solution of the problem 100Q (200 locations) geographically distributed by

semi-clustered are illustrated. For this problem type, own �eet, subcontractors paid

by request basis, and subcontractors paid by tour basis are all used.

7.4 Discussion

7.4.1 Algorithmic Perspectives

The ITSRP is a complex combinatorial optimisation problem. To be precise, the

assignment of trailers to truck, sub-contraction, and multi-dimensional capacity con-

straints are incorporated in to the MD-PDPTW-SR. In Chapter 4, the solution quality

obtained from the AMLNS was slightly better than that from the ALNS. However, for

the ITSRP, the AMLNS shows very promising results.

In Ropke and Pisinger (2006) and Pisinger and Ropke (2007), the ALNS was devel-

oped for solving various routing problems. In this Chapter, the ALNS for the ITSRP

was slightly modi�ed by adding the random initial trailer assignment of trailer and

trailer re-assignment operator. The AMLNS originally developed from the ALNS in

Chapter 4 was also proposed for solving the ITSRP. The random initial trailer assign-

ment and trailer re-assignment operator were also incorporated in the AMLNS.

For the AMLNS, the random initial trailer assignment is applied to all solutions in

the population. The di�erent seeding and insertion heuristics are also used for generat-

ing the initial population, as originally applied in Chapter 4. These operations provide

diversity in terms of the assignment of semi-trailers to trucks and, then, di�erent con-

�gurations of locations in routes. The IVX operator transfers both sequenced locations

and their attached trailers together. According to the design concept of the AMLNS,

the good routes and its semi-trailers are selected according to the route quality mea-
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sures corresponding to the objective function of the ITSRP. It is, therefore, believed

that these additional operators and features naturally tackle the semi-trailer assignment

problem, and thus enhance the performance of the AMLNS. With these operators, only

few changes are made to from the original AMLNS. In order to improve the performance

of the ALNS for solving the ITSRP, specially designed operators for trailer assignment

may be required.

7.4.2 Managerial Perspectives

By analysing the cost structures from the ITSRP, the use of own �eet's vehicles

is generally cheaper than hiring a vehicle from a subcontractor paid by request basis.

Since, the sub-contraction rate, Yi,k is normally lower than the percentage of pro�t

margin, oi added to the total cost of each request, resulting the higher cost of request

execution. In addition, the distance saving of request consolidation is not taken into

account as the costing of the company's own �eet. The more the sub-contraction

on request basis is used, the more possible it is for expensive total costs to occur.

Moreover, if there are vehicles of the company's own �eet left unused, and vehicles

of subcontractors paid by request basis are utilised instead, due to ine�cient routing.

From subcontractors' point of view, the �xed costs of the company's own �eet are sitll

incurred. The cost structure of sub-contraction on request basis is also comprised of a

�xed cost and variable cost. Thus, in other words, the �xed costs are approximately

paid twice i.e. for the vehicles of the company's own �eet and the subcontractor's. This

situation is undesirable, but is usually faced by third-party logistics providers. To avoid

this, priority should be given to the use of the company's own �eet, if sub-contraction

is used on a request basis, corresponding the result of the AMLNS.

In this study, a vehicle of a subcontractor on tour basis is inputted from the backhaul-

ing system, which seeks to reduce empty backhauling among logistics service providers.

Therefore, the cost of sub-contraction is rather cheap because some of its �xed costs and

variable costs to the pickup location are already covered from the line-haul customer.
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However, the requests served should align between the start and end location of the

vehicle and the diversion time from this aligned route is limited.

In practice, there are issues with using subcontractors, for example, the service

aspects, control, monitoring and �exibility. These aspects may still convince the use of

a company's own �eet as much as possible. However, the demand varies over the year

and logistics providers normally cover the base load of demand through their own �eet,

while inevitably using hired vehicles over peak periods. Nevertheless, if the requests

are always subcontracted in every period, an appropriate number of the vehicles and

equipment should be re-calculated. The AMLNS developed in this Chapter are the

essential basis for daily operational planning. It optimises the total cost and determine

the most e�ective mix of a company's own and hired vehicles. Then, this historical

information daily produced by the algorithm can be used for �nding the optimal �eet

size or least cost mix of �eet over a period of time. The company should revise the �eet

capacity, which is part of tactical level decisions. Moreover, the depot con�guration

can be analysed using the AMLNS.

7.5 Summary

In this Chapter, the Integrated Truck and Semi-trailer Routing Problem (ITSRP)

was presented and one case-study company was investigated accordingly. The cost

structure of ful�lment modes for a company's own �eet and their use of sub-contraction

were analysed. The ITSRP is formulated as Mixed-Integer Linear Programming. The

ITSRP is a complex combinatorial optimisation problem. Due to being NP-hard prob-

lem, a meta-heuristic must be developed to e�ciently solve the ITSRP within reason-

able time to cope with rapidly changing business environments. The Adaptive Memetic

Large Neighbourhood Search (AMLNS) and the Adaptive Large Neighbourhood Search

(ALNS) were then proposed to solve the ITSRP. The AMLNS and ALNS were success-

fully used to solve the MD-PDPTW-SR, as shown in Chapter 4. For the ITSRP, the
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ALNS and AMLNS were incorporated with additional operators to tackle the semi-

trailer assignment problem. Furthermore, the crossover of the AMLNS was slightly

modi�ed from that of its original version, according to its design principle of IVX, to

cope with the di�erent objective function. The heuristics were tested on the set of

test instances simulating the real-life scenarios. The AMLNS provides very promising

results to solve the ITSRP.
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Chapter 8

Conclusions

8.1 Contributions

Starting with an overview of the current literature on variants of vehicle routing

problems, and pickup and delivery problems, the solution methods applied to these

problems were then discussed. In Chapter 3, the Multi-depot Pickup and Delivery

Problem was formulated by Mixed-Integer Linear Programming (MILP). The problem

incorporates several constraints and characteristics over the classical VRP, namely mul-

tiple depots, heterogeneous �eet, precedence relationships and maximum route length.

The objective function is to minimise the total distance travelled. CPLEX was used to

solve the generated test instance. Several CPLEX parameters were tested. However,

CPLEX using default Branch-and-Cut can solve small-sized problems only. Due to

being NP-hard, the Memetic Algorithm was proposed to tackle the MDPDP. The solu-

tion representation used is able to handle complicated constraints and is applicable for

crossover and local search. The operators were adapted from those with related prob-

lems such as Multi-depot Vehicle Routing Problems and Pickup and Delivery Problem

with Time Windows. The MDPDP and its variants are complex and highly constrained.

Therefore, a specialised insertion operator, called �xed forward, was developed to reduce
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the computational time by taking advantage of infeasibility conditions such as prece-

dence and capacity constraint. The �xed forward can be further embedded in local

search and insertion operators. Chapter 3 was presented at 24th European Conference

on Operational Research, 11-14 July , 2010 in Lisbon, Portugal.

In Chapter 4, a complex variant of MDPDP was investigated. The problem referred

to the Multi-depot Pickup and Delivery Problem with Time Windows and Special

Request (MD-PDPTW-SR). Over the MDPDP, this problem incorporates time win-

dows, special requests, multi-depot characteristics- a route starts and ends at di�erent

locations (route type)- and maximum route time into consideration. The objective

function is to minimise the weighted sum of total travelling distance, travelling time

and the number of unserved requests. The solution representation developed from

Chapter 3 was adapted to tackle this problem. The reduction rules based on time

feasibility and objective calculation were developed and incorporated into the �xed for-

ward. A hybrid metaheuristic, called Adaptive Memetic Large Neighbourhood Search

(AMLNS) was proposed. The AMLNS is hybridised among Adaptive Large Neighbour-

hood Search (ALNS), Memetic Algorithms (MA), and Threshold Accepting (TA). It is

important to note that the ALNS is the state-of-the-art metaheuristics in this problem.

The design principles for hybridising metaheuristics were surveyed together with the

state-of-the-art metaheuristics for its related problems. An adaptive crossover operator,

Identical Vehicle Crossover (IVX), was proposed. The proposed hybrid metaheuristics

were tested with the 48 standard benchmark test instances taken from the literature, as

generated by Ropke and Pisinger (2006). The range of problem sizes are from 50 (100

locations) to 500 (1000 locations) requests. Three di�erent types of problems, namely

route types, request types, and geographical distribution problems were tested. The

computational results of ALNS and AMLNS were compared. From all experiments,

over 48 test instances, 4 best known solutions equivalent to those from the ALNS of

Pisinger and Ropke (2007) were retrieved. Moreover, 43 new best known solutions were

obtained. The proposed AMLNS is promising in terms of robustness, and is measured
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from the overall average gap (%). The problem and solution method in this Chapter

were presented at 9th International Conference on Computational Management Science,

18-20 April 2012, Imperial College London, United Kingdom, and also at the 25th Eu-

ropean Conference on Operational Research, 8-11 July 2012 in Vilnius, Lithuania. In

Chapter 5, extensive computational experiments on developing the AMLNS were car-

ried out. Specialised mechanisms were developed to hybridise the population-based and

single solution approach.

In Chapter 6, another complex variant of MDPDP, arising in practice, was stud-

ied. Over the MD-PDPTW-SR considered previous, the problem incorporates several

characteristics and constraints arising in real-life problems, including sub-contraction,

semi-trailer assignment, multi-dimensional constraints and special requests in terms of

trucks and/or semi-trailers. A case-study company providing freight transportation

service was investigated. This problem is then entitled Integrated Truck and Semi-

trailer Routing Problem (ITSRP). A management accounting technique, Capacity-

Driven Activity-Based Costing, was applied to obtain the cost structure and pricing

method for formulating the problem. The information concerning costs and parameters

was obtained from historical data collected from the case-study company. In Chapter

7, the problem was formulated as MILP, as CPLEX can only solve small problem sizes.

The 36 test instances generated up to 100 requests (or 200 locations). Three problems

characteristics were studied to generalise and simulate the possible scenarios arising in

this problem. These include the types of sub-contraction considered, request type for

trucks and trailers, and geographical constraints. The ALNS and AMLNS, previously

used, were modi�ed at minimum while being capable of handling additional constraints

of the ITSRP. The computational experiments show the AMLNS provides very promis-

ing results. From analysis, one observation is that the ITSRP involves semi-trailer

assignment problems that can naturally be tackled by the IVX. However, the ALNS

may require a specialised operator for semi-trailer assignment to deal with the ITSRP.

In terms of fundamental research, this thesis provides the development of Adap-
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tive Memetic Large Neighbourhood, which is a hybridisation of Memetic Algorithms,

Adaptive Large Neighbourhood Search and Threshold Accepting. The AMLNS cannot

be categorised as a population-based or single-solution approach because the AMLNS

bridges the strengths and applies the key components of both population-based and

single-solution approaches. Specialised mechanisms are designed to integrate the key

complementary components from these algorithms. The key components are investi-

gated and discussed in details in this thesis. The AMLNS provides robustness over

the test instances of Ropke and Pisinger (2006) for solving the MD-PDPTW-SR and

the test instances for the ITSRP. The AMLNS may be an emerging powerful hybrid

metaheuristic that requires further investigation for other variants of the VRPs and

PDPs.

In terms of applied research, the problems consider several real-life characteristics

and constraints arising in logistics, transportation of goods and passengers, and freight

transportaion etc. These are categorised by requests, �eet, route structure objectives

and scope planning according to Drexl (2012). Figure 8.1 shows the dimension of

richness covered in this thesis, according to Drexl's (2012) framework. In addition, in

term of cost, sub-contraction on request basis and sub-contraction on tour basis are

incorporated. Moreover, the ITSRP considers the compatibility between requests and

semi-trailer, referred to as special requests for semi-trailer. All of these are incorporated

into the variants of the MDPDPs. The problems are the core basis of the real-life routing

problems for logistics businesses. We formulated these variants of MDPDPs by Mixed-

Integer Linear Programming (MILP) and solved by CPLEX. They are also solved by

the proposed AMLNS for industrial problem sizes.

8.2 Concluding remarks

The variants of MDPDP, including MD-PDPTW-SR and ITSRP are the backbone

of several routing problems arising in the real-world applications for freight forwarders,
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LSPs and 3PLs. These problems are complex in terms of problem characteristics and

constraints. Moreover, they are NP-hard problem as extensions of VRP. The models,

operators and algorithms considered should be able to tackle the variants with slight

modi�cations. Due to advances in computational power and algorithmic development

of exact methods, it is important for schedulers to select the right methodology to tackle

the problem at hand in terms of problem size and complexity. Each method has ad-

vantages, disadvantages and, thus, trade-o�. While the exact methods provide optimal

solution, the allowed computational time in rapidly changing business environments is

also restricted. The schedulers must evaluate these dimensions of trade-o�.

When introducing a heuristic to a new routing problem e.g. arising form a new

business model, one important issue is the robustness of the algorithm due to not

being guaranteed of obtaining optimal solution. A new problem may take di�erent

sub-problems into account as shown in Chapter 6 and 7. The algorithmic design of the

heuristic and an in-depth understanding of the problem domain are therefore important.

Moreover, several problems scenarios in the test instances must be covered to replicate

real scenarios. Due to the unavailability of benchmark values in new test instances,

several designs and experiments must be carried out to ensure the robustness of the

heuristic considered.

Among implementation issues, the integration of Geographical Information System

(GIS) is essential. According to Gruenert (2012), the shortest distance of an origin and

destination matrix from some commercial GIS software is not optimal. However, the

exact method for solving this problem exists. In addition, most GIS software cannot

distinguish if the road can be traversed by car or truck, an important point for its

application in freight transportation. These characteristics should also be solved and

made publicly available for improving accuracy in routing and scheduling.

The design and implementation of solution methods in solving real-life routing prob-

lems still requires considerable attention. There are still gaps between theory and

practice. However, substantial skills and knowledge are required for practitioners to
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develop a metaheuristic to tackle their routing problems, yet researchers still lack prob-

lem data, costs, and parameters in real world applications. Possible reasons for this

are commercial sensitivity and accessibility of the information. These issues must be

resolved.

8.3 Future work

In terms of algorithmic development, one interesting direction is to apply Parallel

Computing to the AMLNS, since one motivation of development of the AMLNS is that

Ropke (2009b) discussed was that the Parallel ALNS seems to work against the SA

principle. The AMLNS was then developed from GAs widely implemented in parallel

computing to speed up the search.

In terms of problem characteristics, it may be possible to take a dynamic feature into

account. The problems considered in this thesis assume that all relevant data is known

a priori , then routes and schedules can be generated using static planning systems. In

dynamic problems, some input is unknown at the time of planning, and some input is

not known with certainty. The planning horizon cannot be known or be an open-ended

process. Algorithms for dynamic planning must have fast response times. Simulation

can be used to generate dynamic scenarios.

In terms of implementation in the real world, the integration of �eet telematics must

also be considered. The developed algorithm should integrate with the Order & Fleet

Management System (OFMS) and Messaging & Fleet Monitoring System. If possible,

the electronic freight market must be electronically connected. The system should be

user friendly for schedulers. Graphical use interfaces (GUI) should be provided.
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Appendix A

Lemma and Proof for Reduction Rule

of Time Windows

Fix-forward Insertion using Reduction Rule for Time Windows

From Equation 4.18 and 4.19, we designed Fix-forward Insertion using Reduction

Rule for Time Window in Figure A.1.
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Appendix A: Lemma and Proof for Time Windows Reduction Rule

Figure A.1: Fix-forward Insertion using Reduction Rule of Time Windows

From Figure A.1, there are four decisions on time feasibility checking for pickup and

delivery problems with time windows:(1) at pickup node checking Eq.1, (2) at pickup

node checking Eq.2, (3) at delivery node checking Eq.1, (4) at delivery node checking

Eq.2. We describe the rationale of these rules in Figure A.2 and Figure A.3 in form of

data structure and network structure.

Figure A.2: Figure illustrating for 1st and 2nd decisions
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Appendix A: Lemma and Proof for Time Windows Reduction Rule

For the 1st decision, in Figure A.2, if the Check Eq.1 at pickup node 2 (triangle

No.2) in a) returns NO, then the search starts at the next route. Assume that Eq1. is

violated at pickup node 2. After the �x-forward insertion from a) to b), the network

structure is shown in network structure of b). As the triangle inequality holds, using

�x-forward for pickup node 2 will always violate Eq.1.

For the 2nd decision, in Figure A.2, even though the Check Eq.2 at delivery node 1

in a) is violated, after the �x-forward insertion from a) to b), it is possible to search by

�x-forward method further because it can reduces the arrival time at delivery node 1.

Figure A.3: Figure illustrating for 3rd and 4th decisions

For the 3rd decision, in Figure A.3, assume that the delivery node 2 (circle No.2) is

violated by Eq. 1 or return NO at Check Eq.1. It is possible that �x-forward insertion

which sequences the route well enable delivery node 2 feasible again as shown in b).

For the 4th decision, in Figure A.3, assume that the pickup node 3 (triangle No.3) is

violated by Eq.2. The better sequencing due to �x-forward can reduce the arrival time

in pickup node 3.
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Appendix B

Comparison of Run Times for the

AMLNS

The CPU time of the AMLNS in Chapter 4 can be scaled into the equivalent AMD Opteron

250 2.4GHz. No (�op/s) measure could be found for Intel Core i7 3.5 GHz in Jack J. Dongarra

(2012). Therefore, we made the assumption that the processor should be approximately linear

with frequency among the processors from the same family. The computational time of the

AMLNS is multiplied by 1.44.

Authors Processor MFlop/s Factor

Ropke and Pisinger (2006) AMD Opteron 250 2.4 GHz 1291 1.0

Pisinger and Ropke (2007) Intel Pentium IV 3.0 GHz 1573 1.22
AMLNS for Chapter 4 Intel Core i7 3.5 GHz - 1.44

Table B.1: Scaling factors for computational time
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Appendix C

New Best Known Solutions on Ropke

and Pisinger's (2006) Instances

In this appendix, some new best known solutions obtained from the AMLNS are

provided for Ropke and Pisinger's (2006) test instances for the multi-depot PDPTW.

For other new best known solutions, they can be obtained from us.
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Appendix C: New Best Known Solutions on Ropke and Pisinger's (2006)

Instances

Two Best Known Solutions of Problem 50K

Vehicle Visit sequence

0 8 82 4 5 26 27 50 9 83 51

1

2 78 34 46 79 12 35 98 99 90 91 47 13

3 40 14 22 23 44 64 45 41 65 15

4

5 36 42 80 24 81 94 37 30 43 95 31 25

6 48 49 68 28 92 56 69 72 73 57 29 93

7

8

9

10 52 53 32 84 85 96 54 6 33 55 74 75 97 7

11 2 3 86 87 10 18 19 11 0 1

12 38 58 62 63 88 76 59 77 39 16 17 89

13

14 60 70 20 21 66 61 71 67

Vehicle Visit sequence

0 8 82 4 5 26 27 50 9 83 51

1

2 78 34 46 79 12 35 98 99 90 91 47 13

3 40 14 22 23 44 64 45 41 65 15

4

5 36 42 80 24 81 94 37 30 43 95 31 25

6 48 49 68 28 92 56 69 72 73 57 29 93

7

8

9

10 52 53 84 32 85 96 54 6 33 55 74 75 97 7

11 2 3 86 87 10 18 19 11 0 1

12 38 58 62 63 88 76 59 77 39 16 17 89

13

14 60 70 20 21 66 61 71 67

Figure C.1: Two Best Known Solutions of Problem 50K
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Appendix C: New Best Known Solutions on Ropke and Pisinger's (2006)

Instances

New Best Known Solution of 100 B

Vehicle Visit sequence

0
1 190 191 0 110 4 111 5 188 174 189 1 175
2
3
4 56 192 48 122 123 176 177 193 164 165 49 57
5
6
7
8
9 98 99 54 156 50 55 126 82 51 157 127 70 83 71
10 80 74 52 53 124 166 125 167 81 182 75 183
11
12 92 66 78 79 58 93 59 22 8 67 186 23 187 9
13
14 170 40 128 64 129 104 105 41 171 65
15
16 138 132 2 139 3 114 115 20 90 133 21 91
17 72 76 46 14 15 26 27 77 44 73 47 45
18 84 100 101 160 68 85 69 161
19 62 178 106 179 63 102 172 173 107 103 34 35
20 6 30 134 31 154 148 7 38 39 135 149 155
21
22
23 96 136 32 97 137 184 33 185
24 120 158 121 94 95 16 108 118 109 119 159 17
25 116 146 117 88 147 144 196 197 152 89 153 145 142 143
26 150 36 168 151 169 180 18 24 19 25 12 181 13 37
27 198 60 130 10 199 131 86 87 140 61 11 141
28 28 42 29 194 112 162 113 43 163 195
29
Obj 106248.99

Table C.1: Best Known Solutions of Problem 100B
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Appendix C: New Best Known Solutions on Ropke and Pisinger's (2006)

Instances

New Best Known Solution of 250 C

Vehicle Visit sequence

0 470 254 228 255 296 80 297 471 81 246 86 87 247 229
1
2
3 184 222 322 185 396 397 498 476 499 96 477 276 97 323 223 277
4 400 302 401 56 438 303 366 367 439 57
5 28 29 440 474 441 180 294 181 104 475 240 105 295 241
6 414 22 356 164 415 232 357 23 165 233
7
8
9 172 14 15 114 480 481 4 173 115 5 252 253
10 48 212 49 442 256 108 257 443 109 402 403 213
11
12 324 54 325 90 360 98 361 99 55 91 334 335
13 2 3 466 376 242 377 243 154 467 170 155 171
14 62 344 406 332 345 272 407 333 273 63
15
16
17 204 88 89 205 326 428 20 450 451 426 429 427 21 327
18 416 244 220 245 206 152 153 221 417 207 64 65
19
20 178 179 192 262 263 193 216 446 162 447 202 203 217 163
21
22 134 140 190 226 227 424 425 58 135 260 261 191 141 59
23 368 78 369 200 201 478 166 479 18 167 19 79
24
25 8 9 490 482 94 236 483 112 430 95 237 113 431 491
26 444 310 311 384 410 411 74 75 116 456 385 117 26 27 457 445
27 488 486 330 364 218 365 219 331 10 11 388 489 389 487
28
29 300 304 398 208 305 188 496 497 399 301 209 189

Table C.2: Best Known Solutions of Problem 250C: Route 0-29
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Appendix C: New Best Known Solutions on Ropke and Pisinger's (2006)

Instances

Vehicle Visit sequence

30
31
32
33
34 348 454 12 13 32 274 455 33 275 238 168 210 349 211 239 169
35 158 464 465 346 38 159 39 314 315 347
36
37
38
39 422 198 320 423 199 150 321 174 151 175
40
41 468 469 362 270 144 363 271 145
42
43 282 283 186 358 70 187 412 71 359 160 161 413
44
45
46
47 372 374 46 375 373 472 47 404 390 354 473 405 355 391
48 52 318 319 53 452 132 340 341 286 287 453 133
49
50 394 68 196 395 197 69 352 6 353 492 7 493
51 224 264 328 265 336 225 82 83 329 337
52 386 382 146 147 122 24 25 420 421 448 449 383 123 387
53 380 126 34 278 127 381 136 182 137 35 183 268 269 279
54 284 106 285 128 129 292 266 267 110 293 42 111 43 107
55 16 298 17 342 299 230 231 36 37 343
56
57
58
59

Table C.3: Best Known Solutions of Problem 250C: Route 30-59
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Appendix C: New Best Known Solutions on Ropke and Pisinger's (2006)

Instances

Vehicle Visit sequence

60
61
62
63
64
65
66 250 0 234 235 1 308 156 251 309 157
67
68 392 458 393 76 84 77 248 142 143 370 85 371 459 249 60 61
69 44 408 409 130 494 495 432 45 258 131 259 433
70 436 462 92 437 484 463 66 93 485 194 195 148 67 149 214 215
71 378 50 51 290 138 139 379 291
72
73
74 338 40 350 288 41 351 460 339 280 461 281 289
Obj 244974.17

Table C.4: Best Known Solutions of Problem 250C: Route 60-74
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Appendix C: New Best Known Solutions on Ropke and Pisinger's (2006)

Instances

New Best Known Solution of 500 D

Vehicle Visit sequence

0 910 800 911 980 252 801 130 981 131 253
1
2
3 330 754 286 700 287 906 701 907 72 331 940 73 755 941
4 162 354 163 350 351 258 259 355 154 155 74 760 75 761
5
6
7
8 530 774 426 427 176 390 391 788 789 934 935 531 772 177 773 775
9
10
11
12 714 504 505 446 447 948 362 949 836 837 212 363 715 213
13 734 735 614 262 740 263 741 962 856 576 615 577 963 332 857 333
14 266 684 462 914 463 912 180 913 646 685 181 647 915 267
15 508 470 542 932 933 676 471 677 509 543
16 324 850 851 756 558 746 747 872 325 757 559 873
17 328 329 224 6 225 7 978 108 979 686 546 547 109 687
18 412 612 528 413 344 613 538 650 651 744 745 345 529 539
19
20
21
22 628 40 592 936 937 88 41 682 593 683 629 89
23
24
25 554 824 190 398 399 825 406 498 499 968 407 555 191 969
26 904 894 720 905 670 278 444 721 895 736 671 445 737 279
27 322 392 393 323 568 468 469 569
28 810 464 811 2 726 372 727 306 3 373 307 718 465 719
29

Table C.5: Best Known Solutions of Problem 500D: Route 0-29
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Appendix C: New Best Known Solutions on Ropke and Pisinger's (2006)

Instances

Vehicle Visit sequence

30
31
32 500 66 501 67
33
34
35 410 492 411 564 876 565 608 877 732 733 493 609
36
37
38 870 798 244 871 245 784 428 140 141 310 799 311 429 785
39
40
41 708 414 552 415 432 688 433 689 709 553 86 404 172 87 405 173
42
43 394 54 395 296 476 297 477 368 302 369 562 618 619 563 303 55
44 298 78 638 136 844 299 845 514 137 22 515 79 23 639
45 288 418 312 419 678 274 275 289 70 982 71 983 313 68 679 69
46
47 890 228 80 92 891 81 920 229 188 189 160 93 921 532 161 533
48 458 574 294 459 575 942 295 304 943 44 590 591 305 45
49
50 156 50 930 51 931 282 440 441 157 283 728 340 729 341
51
52 60 512 61 520 521 490 828 82 829 491 454 513 455 83 988 989
53
54
55 602 752 603 716 717 556 814 815 790 290 291 76 753 77 557 791
56 178 150 998 402 999 403 634 635 526 527 179 780 781 151
57 42 648 43 616 922 20 923 21 46 617 308 47 309 649
58
59 366 964 886 482 483 924 367 965 386 387 887 925

Table C.6: Best Known Solutions of Problem 500D: Route 30-59
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Appendix C: New Best Known Solutions on Ropke and Pisinger's (2006)

Instances

Vehicle Visit sequence

60 342 484 896 506 343 507 897 578 485 292 579 293
61
62
63 256 644 642 645 610 611 643 738 739 257
64
65
66
67
68 24 892 893 524 510 511 25 218 525 918 219 919 370 371
69
70
71
72 110 111
73
74 230 356 226 227 357 380 231 144 928 929 900 901 145 381
75
76 58 122 778 123 94 596 95 597 534 535 214 215 59 779
77
78 926 854 992 632 633 927 222 993 450 451 223 855
79
80 832 840 420 62 794 722 841 723 63 833 884 885 421 795
81
82 698 580 338 699 842 339 704 581 280 516 281 705 517 238 239 843
83
84
85
86
87
88
89 318 624 625 146 972 973 776 147 194 195 666 777 102 667 319 103

Table C.7: Best Known Solutions of Problem 500D: Route 60-89
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Appendix C: New Best Known Solutions on Ropke and Pisinger's (2006)

Instances

Vehicle Visit sequence

90
91
92 358 12 359 182 124 125 566 952 953 183 567 384 28 385 13 29
93 782 30 966 783 802 803 134 135 132 967 796 797 31 242 133 243
94
95
96 186 187 858 436 34 96 97 204 205 994 437 35 995 859
97 466 518 100 101 792 793 174 175 467 220 519 221
98
99 348 652 660 661 326 848 849 148 480 653 349 481 149 327
100
101
102 762 763 862 863 882 216 768 486 217 52 769 53 487 883
103 316 198 430 431 694 199 866 695 820 867 184 317 821 185
104 834 18 860 4 861 364 90 91 365 835 990 19 5 991
105 334 8 838 916 839 335 584 917 588 585 448 449 9 589
106
107
108
109
110 770 494 272 495 248 771 273 236 138 139 237 730 731 249
111 846 847 898 118 119 114 115 38 899 818 39 819 570 571
112
113 996 128 164 129 944 165 496 945 320 321 497 997
114
115 626 627 36 260 64 472 473 65 37 360 261 361
116
117
118 868 816 664 986 665 987 946 947 817 830 210 211 438 158 439 831 869 159
119

Table C.8: Best Known Solutions of Problem 500D: Route 90-119
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Appendix C: New Best Known Solutions on Ropke and Pisinger's (2006)

Instances

Vehicle Visit sequence

120
121
122
123 104 826 954 955 827 416 456 105 417 457 478 434 479 435
124 594 662 26 27 710 711 663 196 766 197 595 956 168 169 957 767
125 206 112 346 232 347 113 864 400 233 401 207 865
126 548 120 254 121 255 878 240 241 549 879
127 16 974 106 975 14 17 15 674 675 107
128 976 812 813 276 902 903 10 234 235 977 376 377 277 11 880 881
129 586 587 352 374 166 353 758 759 375 522 658 167 523 659
130 970 971 630 314 804 264 805 56 265 631 250 251 315 208 209 57
131
132
133 806 422 423 606 600 807 601 488 192 607 193 489 396 397
134 152 170 874 706 707 750 751 572 573 950 951 171 153 875
135 246 668 938 247 669 640 641 0 1 939 908 742 743 909
136 378 654 379 680 598 681 984 655 808 985 809 599
137 958 474 560 712 959 475 452 536 537 453 822 823 713 561
138
139
140
141
142
143 550 692 748 696 697 142 749 656 693 32 33 657 551 852 143 853
144 888 284 889 724 544 285 582 545 725 583 300 301
145 672 98 99 622 604 605 786 787 270 623 271 48 49 673
146 388 460 389 442 443 116 117 690 502 461 424 425 691 503
147 960 126 200 336 337 127 201 268 620 269 621 961 382 383
148 202 408 409 764 702 703 84 203 765 636 540 637 85 541
149
Obj 482608.05

Table C.9: Best Known Solutions of Problem 500D: Route 120-149
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Appendix C: New Best Known Solutions on Ropke and Pisinger's (2006)

Instances

The Structure of New Best Known Solution of 50E

Figure C.2: The New Best Known Solution of Problem 50E (49923.61)
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Appendix C: New Best Known Solutions on Ropke and Pisinger's (2006)

Instances

The Structure of New Best Known Solution of 50L

Figure C.3: The New Best Known Solution of Problem 50L (64936.76)
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Appendix C: New Best Known Solutions on Ropke and Pisinger's (2006)

Instances

The Structure of New Best Known Solution of 50H

Figure C.4: The New Best Known Solution of Problem 50H (56761.36)
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Appendix D

Capacity-Driven ABC for Road
Freight Transport

Capacity-Driven ABC

Atrill and McLaney (2009) con�rmed that the notion of �xed and variable costs are

concerned with cost behaviour related to the changes in the volume of activity. The

notion of direct and indirect, on the other hand, are concerned with the extent to which

cost elements can be measured in respect of particular cost unit or job.

Kaplan and Anderson (2007) stated that the capacity cost rate is calculated as

the ratio of departmental costs to practical capacity, to drive resource costs down on

orders, and products. The numerator aggregates all the costs associated with a depart-

ment, including the compensation of frontline employees and their supervisors. The

denominator in the capacity cost rate calculation represents the practical capacity of

the resources that perform work in the department. With numerator and denominator

determined, the capacity cost rate is calculated by dividing the department's costs by

the department's practical capacity.

According to the analysis, we construct the relationship between �xed & variable

costs and direct & indirect costs in order to validate the use of CDABC to allocate

�xed cost to job costing in the study, as shown in Table D.1.
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Appendix D Capacity-Driven ABC for Road Freight Transport

Fixed costs Variable costs
Indirect costs Rent Truck and semi-trailer accessories

Driver Monthly Salaries Truck and semi-trailer tyres
Welfare

Equipment Depreciation
Monthly Equipment Expense

Utilities
Insurance and License

Maintenance Department
General Administration Department
Accouting and Finance Department

Security Department
Insurance and License Department

Direct costs Expense for each order, Container Lifting Fuel cost
wage per trip

Table D.1: Cost elements of Routing and Truck Operation

In Table D.1, each coordinate has di�erent cost drivers. The cost driver of the

elements in the �xed-indirect cost is the time. The cost driver of maintenance and

tyres is the distance. The cost driver of fuel is the distance and weight. The cost driver

of the expense is speci�c to each order. These cost drivers are integral parts of order

costing. In conclusion, the order costing and route costing may apply di�erent travel

paths. In the �xed-indirect cost, the route costing applies the �xed cost per day while

the order costing applies TDABC.

Indirect cost Traveling Time of Each Order Distance
Direct cost Each Order Distance and Weight

Table D.2: Cost rates corresponding to Table D.1 for order costing

Fixed cost Variable cost
Fixed Cost per day Distance

Each order Distance and Weight

Table D.3: Cost rates corresponding to Table D.1 for daily operational planning

The application of Table D.2 and D.3 is di�erent between route costing and order

costing. In the order costing, the travelled distance and time is individually calculated

from the travel from the depot and return to the depot. Since, the information of other
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Appendix D Capacity-Driven ABC for Road Freight Transport

requests in the same planning horizon may be unknown due to its earliness. Moreover,

the request may not be served for the whole day. Therefore, the cost must be allocated

to a speci�c order.

However, when the daily operational routing is conducted, the information of all

requests in the same planning horizon is known. E�cient routing methods can combine

trips together in one trip and result in �nancial savings. Therefore, one vehicle may

serve a number of requests in each trip. The �xed cost per day, derived from the �xed

cost per month, of the vehicle still recurs regardless of its services.

Therefore, the direct and indirect costs are used to calculate the order costing. The

�xed cost and variable costs are used to carry out the daily operational planning. Some

cost rates of direct & indirect costs and �xed & variable costs are the same. From

Table D.2 to Table D.3, the cost rates for distance and for distance and weight are the

same for each order. Recall that the sum of all direct costs and indirect costs, as with

the full cost, is typically supposed to be equal to the sum of �xed cost and variable

cost. However, the savings from e�cient algorithms can reduce the full cost for daily

operational planning and become the essential tool for logistics companies.
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Appendix E

Schedule of the Best Known Solution
of Problem 50F (Chapter 7)

This section aims to illustrate the detailed schedules and routes for one test instance.

The following constraints are satis�ed: (1) precedence, (2) request time windows, (3)

load due to road regulation, (4) load due to truck power, (5) volume capacity of trailer

and (6) Special Requests. All requests are served. The truck's �xed cost is the sum of

the �xed costs of the company's own truck. Also, the trailer �xed cost is the sum of

the �xed costs of trailers. Even though some trucks are not used as shown in the Table

E.1 to E.6, the �xed costs still incur. Moreover, the �xed costs of trucks and trailers

recur even if the subcontractors' vehicles are used. The subcontractors, however, are

not paid if they are not contacted to work. Table E.7 illustrates the summary of costs.

The detailed schedules are shown from Table E.1 to Table E.6.

Costs Value

Total Truck Fixed Cost 10200.6
Total Trailer Fixed Cost 11669.4

Total Fuel Cost 15559.13
Total Distance Cost 18264.68

Total PD Cost 7870
Total Requet Subcon Cost 8541.64
Total Tour Subcon Cost 1810.64
Objective Sunction 73916.09

Table E.7: Cost elements of the best known solution of problem 50E
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Appendix E Schedule of the Best Known Solution of Problem 50E (Chapter 7)
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Appendix E Schedule of the Best Known Solution of Problem 50E (Chapter 7)
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Appendix E Schedule of the Best Known Solution of Problem 50E (Chapter 7)
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Appendix E Schedule of the Best Known Solution of Problem 50E (Chapter 7)
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Appendix E Schedule of the Best Known Solution of Problem 50E (Chapter 7)
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Appendix E Schedule of the Best Known Solution of Problem 50E (Chapter 7)
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