10,597 research outputs found

    A randomised feasibility study of serial magnetic resonance imaging to reduce treatment times in Charcot neuroarthropathy in people with diabetes (CADOM): A protocol

    Get PDF
    Background Charcot neuroarthropathy is a complication of peripheral neuropathy associated with diabetes which most frequently affects the lower limb. It can cause fractures and dislocations within the foot, which may progress to deformity and ulceration. Recommended treatment is immobilisation and offloading, with a below knee non-removable cast or boot. Duration of treatment varies from six months to more than one year. Small observational studies suggest that repeated assessment with Magnetic Resonance Imaging improves decision making about when to stop treatment, but this has not been tested in clinical trials. This study aims to explore the feasibility of using serial Magnetic Resonance Imaging without contrast in the monitoring of Charcot neuroarthropathy to reduce duration of immobilisation of the foot. A nested qualitative study aims to explore participantsā€™ lived experience of Charcot neuroarthropathy and of taking part in the feasibility study. Methods We will undertake a two arm, open study, and randomise 60 people with a suspected or confirmed diagnosis of Charcot neuroarthropathy from five NHS, secondary care multidisciplinary Diabetic Foot Clinics across England. Participants will be randomised 1:1 to receive Magnetic Resonance Imaging at baseline and remission up to 12 months, with repeated foot temperature measurements and x-rays (standard care plus), or standard care plus with additional three-monthly Magnetic Resonance Imaging until remission up to 12 months (intervention). Time to confirmed remission of Charcot neuroarthropathy with off-loading treatment (days) and its variance will be used to inform sample size in a full-scale trial. We will look for opportunities to improve the protocols for monitoring techniques and the clinical, patient centred, and health economic measures used in a future study. For the nested qualitative study, we will invite a purposive sample of 10-14 people able to offer maximally varying experiences from the feasibility study to take part in semi-structured interviews to be analysed using thematic analysis. Discussion The study will inform the decision whether to proceed to a full-scale trial. It will also allow deeper understanding of the lived experience of Charcot neuroarthropathy, and factors that contribute to engagement in management and contribute to the development of more effective patient centred strategies. Trial registration ISRCTN, ISRCTN, 74101606. Registered on 6 November 2017, http://www.isrctn.com/ISRCTN74101606?q=CADom&filters=&sort=&offset=1&totalResults=1&page=1&pageSize=10&searchType=basic-searc

    Focal Spot, Spring 2005

    Get PDF
    https://digitalcommons.wustl.edu/focal_spot_archives/1099/thumbnail.jp

    Multistep Measurement of Plantar Pressure Alterations Using Metatarsal Pads

    Get PDF
    Metatarsal pads are frequently prescribed for nonoperative management of metatarsalgia due to various etiologies. When appropriately placed, they are effective in reducing pressures under the metatarsal heads on the plantar surface of the foot. Despite the positive clinical reports that have been cited, there are no quantitative studies documenting the load redistribution effects of these pads during multiple step usage within the shoe environment. The objective of this study was to assess changes in plantar pressure metrics resulting from pad use. Ten normal adult male subjects were tested during a series of 400-step trials. Pressures were recorded from eight discrete plantar locations at the hindfoot, midfoot, and forefoot regions of the insole. Significant increases in peak pressures, contact durations, and pressure-time integrals were noted at the metatarsal shaft region with pad use (P ā‰¤ .05). Statistically significant changes in metric values were not seen at the other plantar locations, although metatarsal pad use resulted in mild decreases in mean peak pressures at the first and second metatarsal heads and slight increases laterally. Contact durations decreased at all metatarsal head locations, while pressure-time integrals decreased at the first, second, third, and fourth metatarsal heads. A slight increase in pressure-time integrals was seen at the fifth metatarsal head. The redistribution of plantar pressures tended to relate not only to the dimensions of the metatarsal pads, but also to foot size, anatomic foot configuration, and pad location. Knowledge of these parameters, along with careful control of pad dimensions and placement, allows use of the metatarsal pad as an effective orthotic device for redistributing forefoot plantar pressures

    Multimodal optical diagnostics of the microhaemodynamics in upper and lower limbs

    Get PDF
    The introduction of optical non-invasive diagnostic methods into clinical practice can substantially advance in the detection of early microcirculatory disorders in patients with different diseases. This paper is devoted to the development and application of the optical non-invasive diagnostic approach for the detection and evaluation of the severity of microcirculatory and metabolic disorders in rheumatic diseases and diabetes mellitus. The proposed methods include the joint use of laser Doppler flowmetry, absorption spectroscopy and fluorescence spectroscopy in combination with functional tests. This technique showed the high diagnostic importance for the detection of disturbances in peripheral microhaemodynamics. These methods have been successfully tested as additional diagnostic techniques in the field of rheumatology and endocrinology. The sensitivity and specificity of the proposed diagnostic procedures have been evaluated.<br/

    Shape Memory Polyurethane-Based Smart Polymer Substrates for Physiologically Responsive, Dynamic Pressure (Re)Distribution.

    Get PDF
    Shape memory polymers (SMPs) are an exciting class of stimuli-responsive smart materials that demonstrate reactive and reversible changes in mechanical property, usually by switching between different states due to external stimuli. We report on the development of a polyurethane-based SMP foam for effective pressure redistribution that demonstrates controllable changes in dynamic pressure redistribution capability at a low transition temperature (āˆ¼24 Ā°C)-ideally suited to matching modulations in body contact pressure for dynamic pressure relief (e.g., for alleviation or pressure ulcer effects). The resultant SMP material has been extensively characterized by a series of tests including stress-strain testing, compression testing, dynamic mechanical analysis, optical microscopy, UV-visible absorbance spectroscopy, variable-temperature areal pressure distribution, Fourier transform infrared spectroscopy, Raman spectroscopy, X-ray diffraction, differential scanning calorimetry, dynamic thermogravimetric analysis, and 1H nuclear magnetic resonance spectroscopy. The foam system exhibits high responsivity when tested for plantar pressure modulation with significant potential in pressure ulcers treatment. Efficient pressure redistribution (āˆ¼80% reduction in interface pressure), high stress response (āˆ¼30% applied stress is stored in fixity and released on recovery), and excellent deformation recovery (āˆ¼100%) are demonstrated in addition to significant cycling ability without performance loss. By providing highly effective pressure redistribution and modulation when in contact with the body's surface, this SMP foam offers novel mechanisms for alleviating the risk of pressure ulcers

    A Randomized, Controlled Clinical Study to Assess the Effect of Anodal and Cathodal Electrical Stimulation on Periwound Skin Blood Flow and Pressure Ulcer Size Reduction in Persons with Neurological Injuries

    Get PDF
    The use of electrical stimulation (ES) should be considered for treating nonhealing pressure ulcers (PUs), but optimal ES wound treatment protocols have yet to be established. A randomized, controlled, double-blind clinical study was conducted to evaluate the effects of cathodal and anodal high-voltage monophasic pulsed current (HVMPC) on periwound skin blood flow (PSBF) and size reduction of Stage 2 to Stage 4 PUs of at least 4 weeksā€™ duration.Persons \u3e18 years of age, hospitalized with neurological injuries, at high risk for PU development (Norton scale \u3c14 \u3epoints; Waterlow scale \u3e15 points), and with at least 1 Stage 2 to Stage 4 PU were eligible to participate in the study. Persons with necrotic wounds, osteomyelitis, electronic or metal implants in the PU area, PUs in need of surgical intervention, acute wound inflammation, diabetes (HBA1c \u3e7%), diabetic neuropathy, cancer, and/or allergies to standard wound treatments were excluded. Patients were randomly assigned to 1 of 3 groups: anodal (AG), cathodal (CG), or placebo (PG) ES. All groups received individualized PU prevention and standard wound care. In the PG, sham ES was applied; the AG and CG were treated with anodal and cathodal HVMPC, respectively (154 Ī¼s 100 Hz; 360 ĀµC/second; 1.08 C/day), 50 minutes per day, 5 days per week, for a maximum of 8 weeks. PSBF was measured using laser Doppler flowmetry at baseline, week 2, and week 4, and wound surface area measurements were obtained and analyzed using a digitizer connected to a personal computer. Data analysis utilized the maximum-likelihood chi-squared test, the analysis of variance Kruskal-Wallis test, the Kruskal-Wallis post-hoc test, and Spearmanā€™s rank order correlation. Nonlinear approximation based on exponential function was used to calculate treatment time needed to reduce the wound area by 50%. In all tests, the level of significance was set at P ā‰¤.05. Of the 61 participating patients, 20 were in the AG (mean age 53.2 Ā± 13.82 years), 21 in the CG (mean age 55.67 Ā± 17.83 years), and 20 in the PG (mean age 52.5 Ā± 13.18 years). PUs (baseline size range 1.01 cm2 to 59.57 cm2; duration 4 to 48 weeks) were most frequently located in the sacral region (73.77%) and classified as Stage 3 (62.29%). PSBF at week 2 was significantly higher in the AG and CG than in the PG (P P = .0391 and P = .0024, respectively). In both ES groups, PSBF at week 4 and percent wound surface area reductions between weeks 4 and 8 were positively correlated, but only the AG correlation was statistically significant (P = .049). In this study, both ES modalities improved blood flow and wound area reduction rate. Studies examining optimal ES treatment times for healing to occur, the effect of comorbidities and baseline wound variables on ES outcomes, and the nature of the relationship between blood flow and healing are necessary

    A Review of Wearable Sensor Systems to Monitor Plantar Loading in the Assessment of Diabetic Foot Ulcers

    Get PDF
    Diabetes is highly prevalent throughout the world and imposes a high economic cost on countries at all income levels. Foot ulceration is one devastating consequence of diabetes, which can lead to amputation and mortality. Clinical assessment of diabetic foot ulcer (DFU) is currently subjective and limited, impeding effective diagnosis, treatment and prevention. Studies have shown that pressure and shear stress at the plantar surface of the foot plays an important role in the development of DFUs. Quantification of these could provide an improved means of assessment of the risk of developing DFUs. However, commercially-available sensing technology can only measure plantar pressures, neglecting shear stresses and thus limiting their clinical utility. Research into new sensor systems which can measure both plantar pressure and shear stresses are thus critical. Our aim in this paper is to provide the reader with an overview of recent advances in plantar pressure and stress sensing and offer insights into future needs in this critical area of healthcare. Firstly, we use current clinical understanding as the basis to define requirements for wearable sensor systems capable of assessing DFU. Secondly, we review the fundamental sensing technologies employed in this field and investigate the capabilities of the resultant wearable systems, including both commercial and research-grade equipment. Finally, we discuss research trends, ongoing challenges and future opportunities for improved sensing technologies to monitor plantar loading in the diabetic foot
    • ā€¦
    corecore