172 research outputs found

    A classification of techniques for the compensation of time delayed processes. Part 2: Structurally optimised controllers

    Get PDF
    Following on from Part 1, Part 2 of the paper considers the use of structurally optimised controllers to compensate time delayed processes

    Advances in PID Control

    Get PDF
    Since the foundation and up to the current state-of-the-art in control engineering, the problems of PID control steadily attract great attention of numerous researchers and remain inexhaustible source of new ideas for process of control system design and industrial applications. PID control effectiveness is usually caused by the nature of dynamical processes, conditioned that the majority of the industrial dynamical processes are well described by simple dynamic model of the first or second order. The efficacy of PID controllers vastly falls in case of complicated dynamics, nonlinearities, and varying parameters of the plant. This gives a pulse to further researches in the field of PID control. Consequently, the problems of advanced PID control system design methodologies, rules of adaptive PID control, self-tuning procedures, and particularly robustness and transient performance for nonlinear systems, still remain as the areas of the lively interests for many scientists and researchers at the present time. The recent research results presented in this book provide new ideas for improved performance of PID control applications

    Advances in Control of Power Electronic Converters

    Get PDF
    This book proposes a list of contributions in the field of control of power electronics converters for different topologies: DC-DC, DC-AC and AC-DC. It particularly focuses on the use of different advanced control techniques with the aim of improving the performances, flexibility and efficiency in the context of several operation conditions. Sliding mode control, fuzzy logic based control, dead time compensation and optimal linear control are among the techniques developed in the special issue. Simulation and experimental results are provided by the authors to validate the proposed control strategies

    Improved Deadbeat Predictive Current Control of Permanent Magnet Synchronous Motor Using a Novel Stator Current and Disturbance Observer

    Full text link
    Thanks to the merits of superior dynamic response capability and current tracking performance, the deadbeat predictive current control (DPCC) has become a research hotspot for the permanent magnet synchronous motor (PMSM) drive system. However, DPCC is a model parameter sensitive control method. If there is a motor parameter mismatch, the performance of the DPCC drive system in terms of expected voltage vector, current harmonics, and torque ripple would be influenced. In this paper, firstly, a novel power sliding mode reaching law is proposed, which shortens the convergence time of the system state no matter what the initial state is. Then, an improved non-homogeneous disturbance observer (NHDO) with the proposed power sliding mode reaching law is established, which guarantees d-q axis current errors converge to zero when the PMSM drive system suffers uncertain disturbances, such as motor parameter mismatch. Finally, an improved DPCC using the novel stator current and disturbance observer, which includes the proposed power sliding mode reaching law and NHDO, is established. Hence the accuracy of the predicted current increases significantly, and voltage vectors can be immediately compensated once disturbances occur. Both simulation and platform experiments verify that the improved DPCC can maintain the current tracking performance with lower current ripples than the traditional DPCC when the major motor parameters mismatch. The proposed novel stator current and disturbance observer may also enhance the PMSM's drive performance under other control strategies

    FPGA design methodology for industrial control systems—a review

    Get PDF
    This paper reviews the state of the art of fieldprogrammable gate array (FPGA) design methodologies with a focus on industrial control system applications. This paper starts with an overview of FPGA technology development, followed by a presentation of design methodologies, development tools and relevant CAD environments, including the use of portable hardware description languages and system level programming/design tools. They enable a holistic functional approach with the major advantage of setting up a unique modeling and evaluation environment for complete industrial electronics systems. Three main design rules are then presented. These are algorithm refinement, modularity, and systematic search for the best compromise between the control performance and the architectural constraints. An overview of contributions and limits of FPGAs is also given, followed by a short survey of FPGA-based intelligent controllers for modern industrial systems. Finally, two complete and timely case studies are presented to illustrate the benefits of an FPGA implementation when using the proposed system modeling and design methodology. These consist of the direct torque control for induction motor drives and the control of a diesel-driven synchronous stand-alone generator with the help of fuzzy logic

    Performance Advantages of Maximum Likelihood Methods in PRBS-Modulated Time-of-flight Energy Loss Spectroscopy

    Get PDF
    This thesis describes the design, experimental performance, and theoretical simulation of a novel time-of-flight analyzer that was integrated into a high resolution electron energy loss spectrometer (TOF-HREELS). First we examined the use of an interleaved comb chopper for chopping a continuous electron beam. Both static and dynamic behaviors were simulated theoretically and measured experimentally, with very good agreement. The finite penetration of the field beyond the plane of the chopper leads to non-ideal chopper response, which is characterized in terms of an energy corruption effect and a lead or lag in the time at which the beam responds to the chopper potential. Second we considered the recovery of spectra from pseudo-random binary sequence (PRBS) modulated TOF-HREELS data. The effects of the Poisson noise distribution and the non-ideal behavior of the interleaved comb chopper were simulated. We showed, for the first time, that maximum likelihood methods can be combined with PRBS modulation to achieve resolution enhancement, while properly accounting for the Poisson noise distribution and artifacts introduced by the chopper. Our results indicate that meV resolution, similar to that of modern high resolution electron energy loss spectrometers, can be achieved with a dramatic performance advantage over conventional, serial detection analyzers. To demonstrate the capabilities of the TOF-HREELS instrument, we made measurements on a highly oriented thin film polytetrafluoroethylene (PTFE) sample. We demonstrated that the TOF-HREELS can achieve a throughput advantage of a factor of 85 compared to the conventional HREELS instrument. Comparisons were made between the experimental results and theoretical simulations. We discuss various factors which affect inversion of PRBS modulated Time of Flight (TOF) data with the Lucy algorithm. Using simulations, we conclude that the convolution assumption was good under the conditions of our experiment. The chopper rise time, Poisson noise, and artifacts of the chopper response are evaluated. Finally, we conclude that the maximum likelihood algorithms are able to gain a multiplex advantage in PRBS modulation, despite the Poisson noise in the detector

    Studies in Astronomical Time Series Analysis. VI. Bayesian Block Representations

    Get PDF
    This paper addresses the problem of detecting and characterizing local variability in time series and other forms of sequential data. The goal is to identify and characterize statistically significant variations, at the same time suppressing the inevitable corrupting observational errors. We present a simple nonparametric modeling technique and an algorithm implementing it - an improved and generalized version of Bayesian Blocks (Scargle 1998) - that finds the optimal segmentation of the data in the observation interval. The structure of the algorithm allows it to be used in either a real-time trigger mode, or a retrospective mode. Maximum likelihood or marginal posterior functions to measure model fitness are presented for events, binned counts, and measurements at arbitrary times with known error distributions. Problems addressed include those connected with data gaps, variable exposure, extension to piecewise linear and piecewise exponential representations, multi-variate time series data, analysis of variance, data on the circle, other data modes, and dispersed data. Simulations provide evidence that the detection efficiency for weak signals is close to a theoretical asymptotic limit derived by (Arias-Castro, Donoho and Huo 2003). In the spirit of Reproducible Research (Donoho et al. 2008) all of the code and data necessary to reproduce all of the figures in this paper are included as auxiliary material.Comment: Added some missing script files and updated other ancillary data (code and data files). To be submitted to the Astophysical Journa

    Control of a Multiphase Buck Converter, Based on Sliding Mode and Disturbance Estimation, Capable of Linear Large Signal Operation

    Get PDF
    Power-hardware-in-the-loop systems enable testing of power converters for electric vehicles (EV) without the use of real physical components. Battery emulation is one example of such a system, demanding the use of bidirectional power flow, a wide output voltage range and high current swings. A multiphase synchronous DC-DC converter is appropriate to handle all of these requirements. The control of the multiphase converter needs to make sure that the current is shared equally between phases. It is preferred that the closed-loop dynamic model is linear in a wide range of output currents and voltages, where parameter variations, control signal limits, dead time effects, and so on, are compensated for. In the case presented in this paper, a cascade control structure was used with inner sliding mode control for phase currents. For the outer voltage loop, a proportional controller with output current feedforward compensation was used. Disturbance observers were used in current loops and in the voltage loop to compensate mismatches between the model and the real circuit. The tuning rules are proposed for all loops and observers, to simplify the design and assure operation without saturation of control signals, that is, duty cycle and inductor current reference. By using the proposed control algorithms and tuning rules, a linear reduced order system model was devised, which is valid for the entire operational range of the converter. The operation was verified on a prototype 4-phase synchronous DC-DC converter. Document type: Articl

    Speech Production as State Feedback Control

    Get PDF
    Spoken language exists because of a remarkable neural process. Inside a speaker's brain, an intended message gives rise to neural signals activating the muscles of the vocal tract. The process is remarkable because these muscles are activated in just the right way that the vocal tract produces sounds a listener understands as the intended message. What is the best approach to understanding the neural substrate of this crucial motor control process? One of the key recent modeling developments in neuroscience has been the use of state feedback control (SFC) theory to explain the role of the CNS in motor control. SFC postulates that the CNS controls motor output by (1) estimating the current dynamic state of the thing (e.g., arm) being controlled, and (2) generating controls based on this estimated state. SFC has successfully predicted a great range of non-speech motor phenomena, but as yet has not received attention in the speech motor control community. Here, we review some of the key characteristics of speech motor control and what they say about the role of the CNS in the process. We then discuss prior efforts to model the role of CNS in speech motor control, and argue that these models have inherent limitations – limitations that are overcome by an SFC model of speech motor control which we describe. We conclude by discussing a plausible neural substrate of our model

    Nonlinear System Identification and Its Applications in Fault Detection and Diagnosis

    Get PDF
    • …
    corecore