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This thesis describes the design, experimental performance, and theoretical 

simulation of a novel time-of-flight analyzer that was integrated into a high resolution 

electron energy loss spectrometer (TOF-HREELS). 

First we examined the use of an interleaved comb chopper for chopping a 

continuous electron beam. Both static and dynamic behaviors were simulated 

theoretically and measured experimentally, with very good agreement. The finite 

penetration of the field beyond the plane of the chopper leads to non-ideal chopper 

response, which is characterized in terms of an "energy corruption" effect and a lead or 

lag in the time at which the beam responds to the chopper potential. 

Second we considered the recovery of spectra from pseudo-random binary 

sequence (PRBS) modulated TOF-HREELS data. The effects of the Poisson noise 

distribution and the non-ideal behavior of the "interleaved comb" chopper were 

simulated. We showed, for the first time, that maximum likelihood methods can be 



combined with PRBS modulation to achieve resolution enhancement, while properly 

accounting for the Poisson noise distribution and artifacts introduced by the chopper. 

Our results indicate that meV resolution, similar to that of modern high resolution 

electron energy loss spectrometers, can be achieved with a dramatic performance 

advantage over conventional, serial detection analyzers. 

To demonstrate the capabilities of the TOF-HREELS instrument, we made 

measurements on a highly oriented thin film polytetrafluoroethylene (PTFE) sample. We 

demonstrated that the TOF-HREELS can achieve a throughput advantage of a factor of 

85 compared to the conventional HREELS instrument. Comparisons were made between 

the experimental results and theoretical simulations. We discuss various factors which 

affect inversion of PRBS modulated Time of Flight (TOF) data with the Lucy algorithm. 

Using simulations, we conclude that the convolution assumption was good under the 

conditions of our experiment. The chopper rise time, Poisson noise, and artifacts of the 

chopper response are evaluated. Finally, we conclude that the maximum likelihood 

algorithms are able to gain a multiplex advantage in PRBS modulation, despite the 

Poisson noise in the detector. 
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Chapter 1 

INTRODUCTION 

1.1 General Description of HREELS 

High resolution electrons energy loss spectroscopy (HREELS) is a technique that 

uses an electron beam to measure the properties of solid surfaces, such as phonon 

vibrations or the vibrational modes of adsorbed molecules on the surface.[l] Because the 

momentum of the electrons is relatively large, the technique has played an important role 

in mapping the dispersive curves of surface phonons, i.e. the relationship between the 

phonon energy and momentum[l]. A primary role of HREELS in surface science has 

been to identify the fragments of molecules or intermediates, which form during 

adsorption on surfaces. By measuring the vibrational energy loss, the physical and 

chemical properties of the atoms or molecules adsorbed on the surface can be understood 

in considerable detail, for example in the work done by Rowe and Ibach on 

semiconductor surfaces[2, 31. By application of selection rules, especially on metallic 

substrates, the orientation of atoms or molecules on the surface can also be determined[4- 

91. A fundamental understanding of the vibrational properties of surfaces involves 

measurement of energy transfer processes and their associated lifetimes ~ E L S  has 

been particularly important in probing the dynamics of vibrational energy transfer when 

temporary negative ions are involved[l 0, 1 11. 

In HREELS, a highly monochromatic beam of low energy electrons (typically 1- 

10 eV ) is scattered from a solid surface as illustrated in Figure 1.1. Most surfaces have 

reflectivities less than 1%. Of the minority that backscatter, a large portion of the 

electrons are scattered elastically, that is, without losing any energy. The fraction of the 



Energy Loss \ 
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Figure 1.1 The schematic drawing of the energy distribution before and after scattering 

in the specula direction. 



incident electrons that are scattered inelastically, that is, after losing various amounts of 

energy, is typically less than of the incident electron beam current. These energy 

losses correspond to excitation of vibrational modes or electronic transitions in the 

surface. Because the fraction of electrons that convey "useful" information is so small, 

the throughput of the instrument is particularly important. In fact, only on relatively well 

surfkces, where the inelastically scattered electrons suffer small deflections away from 

the specular direction, has the intensity of the loss peaks beam sufficiently large to be 

practical. Therefore, by scanning the kinetic energy of the scattered electrons from the 

initial energy to lower kinetic energies, an energy loss spectrum is obtained. 

Because the magnitude of these energy losses is very small, varying between a 

few mili-electronvolts (meV), and several hundred meV, an HREELS spectrometer must 

prepare an electron beam with an energy distribution of width several meV or less. 

Typically the energy of the incident electron beam can be adjusted in the range of 1-200 

eV. 

From the 1970's to 1990's' Ibach and co-workers made major contributions to the 

development of the field and improvement of HREELS instrumentation[l2, 131. Ibach's 

ultimate monochromator achieves a resolution of 1 meV with lo6 times greater current 

than early spectrometers. Fig. 1.2 shows the relationship of the current measured at the 

detector versus the resolution (FWHM) of the ultimate spectrometer for the new 

spectrometer (squares) and the penultimate design (circles). Fig 1.3 shows the instrument 

used in this work, which was built according to Ibach's penultimate design (EELS 3000, 

LK Technologies). The major improvement in the optics[l2] involved careful modeling 

of the space charge effects in the monochromator. The analyzer design is similar to the 



I, penultimate design 
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Figure. 1.2 The relationship of the current measured at the detector versus the resolution 

(FWHM) of the ultimate spectrometer for the new spectrometer (squares) and the 

penultimate design (circles). 
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Figure 1.3 A photograph of the EELS 3000 (from LK Technologies) at the Laboratory 

for Surface Science and Technology. 



main monochromator and also achieves resolution at the 1 meV level. However, because 

it is a dispersive device, that accepts or transmits only one energy of electrons at a time, 

the data collection time is relatively long compared to other surface spectroscopies, such 

as infrared reflection absorption spectroscopy (IR-RAS)[14, 151. Therefore, the work 

described in this thesis focused on gaining a throughput advantage using time-of-flight 

(TOF) techniques for the electron energy analyzer. While the penultimate design[l2] 

does not achieve the performance of the ultimate design11 31, it is somewhat more flexible 

and was more convenient for coupling to the time-of-flight detector developed in this 

work. 

Before discussing the background and general approach that we have adopted, we 

first survey the information that may be obtained in HREELS to illustrate the reasons that 

a parallel detection electron energy analyzer may benefit the development of the field. 

There are three important scattering mechanisms involved in HREELS. The importance 

of each depends upon the surface and/or adsorbate system. 

1.1.1 Dipole Scattering Mechanism 

When electrons interact with adsorbed molecules or optical phonons of oxide 

surfaces through the dipole mechanism, the electric field of the incident electron perturbs 

the oscillating (time dependent) field of dipole active vibrational modes at the surfaceC1, 

16, 171. At large distances (10-100 nrn) the incident electron cannot distinguish 

individual oscillating atoms: but instead experiences the long-range field constituting 

surface phonons (collective oscillations of atoms). The energy losses are usually small 

compared to the incident energy and so conservation of energy and momentum causes the 



deflection of an inelastically scattered electron to be small (less than a few degrees). 

When the surface is periodic, the reflected electron beam is constrained to diffraction 

conditions, which means that the inelastically scattered electrons appear in a "dipole 

scattering lobe" within a degree of the specular (or other diffraction) condition. 

The so-called metal surface dipole selection rule applies for dipole scattering. 

This states that only vibrational modes which result in a change in the dipole moment 

perpendicular to the surface plane can be observed[l]. Fig. 1.4 shows a schematic diagram 

of a surface dipole at a metal surface. An image charge is set up on metallic surfaces 

which enhances dynamic dipoles perpendicular to the surface, but tends to cancel any 

dynamic dipole moment oriented parallel to the surface plane. Normal modes that have a 

component of their dipole perpendicular to the surface are dipole allowed, while modes 

that have no dynamic dipole moment perpendicular to the surface are forbidden (in 

reality, the screening is not perfect and weak "forbidden" modes are sometimes observed). 

The presence of certain vibrational modes and the absence of others can therefore be used 

to deduce the surface point group, from which the orientation of a molecule, with respect 

to the surface plane, can be determined. The scattering cross-section varies with the 

inverse of the incident electron energy and a theoretical treatment of dipole scattering has 

been developed based on classical electrodynamics[l]. 

1.1.2 Impact Scattering Mechanism 

In this mechanism, the incident electrons are scattered by much shorter range 

interactions, on the order of atomic dimensions. This short-range scattering mechanism 

involves much larger momentum transfer and produces a broad angular distribution of 
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Figure 1.4 A schematic drawing of how the orientation of a dynamic diple leads to the 

metal surface dipole scattering mechanism. 



inelastically scattered electrons. The final angle of the scattered electron is determined by 

the component of the phonon vibration parallel to the surface. Impact and dipole 

scattering mechanisms can be distinguished, therefore, by moving the detector away fiom 

the specular direction, since the dipole active modes decrease proportional to the intensity 

in the elastic peak off specular. The impact scattering cross-section varies with incident 

beam energy, generally increasing with energy. However, the cross section oscillates due 

to multiple scattering effects[l8] that are also important in the LEED IN experiment [19]. 

Thus, the calculations are very intensive, and the lack of available experimental data has 

limited the activity in this area. Nevertheless, good example of comparison between 

experimental and theory exist, for example in the early work of Wilson Ho and Ibach et. 

ac.[l, 201. Impact scattering usually has a much lower probability than dipole scattering. 

Because the acquisition time is large and a range of angle dependant spectra is required, 

such studies are less common. However, HREELS is one of the few techniques that can 

determine the azimuthal orientation of adsorbate or highly oriented material. While most 

HREELS spectrometers provide rotation of either the monochromator or analyzer in the 

scattering plane, out-of-plane rotation, as implemented in angle resolved UPS, has not 

been widely performed. This limits the symmetry of phonons that can be interrogated 

with typical HREELS instruments. 

1.1.3 Negative Ion Resonance Scattering Mechanism 

Here, the incident electrons are temporarily captured by empty electronic energy 

levels of atoms or molecules. In the gas phase, negative ion resonance (NIR) scattering 

dominates, and the theory has been extensively developed by Teillet Billy[21] and 



Gauyacq others[22]. The gas phase work has been reviewed in detail by Schulz[23, 241 

and The lifetime of the state is critical to the loss intensity, and for this reason Ibach and 

Mills argued that, for small molecules adsorbed on metallic surfaces, the negative ion 

cross section would be small[l]. However, for larger molecules[25, 261 or weakly bond 

adsorbates[27] the negative ion resonance scattering can be dominant. Palmer and 

Rouse[l 11 and Sanche[28] have reviewed recent work in this area. 

In the NIR scattering process, the electron is trapped into a temporary negative 

ion state derived fiom the unoccupied orbitals of the molecule. As the negative ion 

relaxes toward its equilibrium geometry, the vibrational wave function is no longer in a 

stationary state of the neutral molecule. Emission of the electron provides an efficient 

means of generating highly excited vibrational states of the neutral molecule. The process 

can be treated either within a Franck-Condon picture[29] or within a time dependent 

electron dynamics model using, for example, wave packet calculations[30]. 

Experimentally, the angular and energy dependence of the differential scattering 

cross section provides a wealth of information. The cross section of a vibrational mode 

goes through a maximum when the incident beam energy is in resonance with the 

"dressed" NIR state, which provides information about the energy and lifetime of the 

unoccupied orbital[lO]. The vibrational modes that are excited are related to the spatial 

localization of the state on the molecule[26]. The directions of the incident or scattered 

beam, in which the differential loss cross-section vanishes, allow nodal surfaces to be 

determined if the molecule is azimuthally oriented. Finally, the width of the resonance 



provides dynamical information concerning the lifetime and the displacement of the 

negative ion potential energy surface with respect to that of the ground state[3 11. 

1.2 The Advantages and Disadvantages of HREELS 

Generally, the main strengths of HREELS compared to other (optical) vibrational 

techniques rely on the properties of these scattering mechanisms. Electrons are scattered 

by the outermost one or two layers of a surface and do not penetrate the bulk, unlike 

photons. This makes HREELS intrinsically more surface sensitive than infrared. 

Furthermore, the range of losses observed in HREELS experiments covers the entire 

vibrational spectrum: vibrations of 4000 wavenurnbers cannot be observed in IR 

spectroscopy without specialized windows and detector technology. Angle- and incident 

energy-dependent experiments can be performed with most HREEL spectrometers 

allowing studies of molecular geometries and scattering mechanisms to be performed. In 

the following, the advantages and disadvantages of HREELS are classified. * 

The advantages of HREELS can be classified among properties of the mode of 

operation and implications of the nature of electron scattering. Because the loss spectrum 

is measured directly, rather than as a ratio to a "blank" or background spectrum (as in 

FTIR), HREELS can measure the vibrational loss spectrum of the clean, as well as the 

adsorbate covered surface. In this respect, it is similar to Raman and emission 

spectroscopies. Whereas the sensitivity of an absorption spectroscopy is limited by the 

fluctuations in the source, which leads to instability in the signal to background ratio, in 



HREELS the background is controlled by the dark count of the detector (< 2 ctsls) and so 

the background is usually negligible. 

Electron scattering offers a number of opportunities, which are apparent from the 

theoretical basis of the three scattering mechanism. Because the primary beam energy can 

be chosen over a range from 1 to several hundred eV, it is possible to optimize the cross 

section for vibrational losses (<0.5 eV) as well electronic losses (0-100 eV) in the same 

instrument. The strong interaction between electrons and condensed matter results in high 

surface specificity. This also leads to high sensitivity, typically small fractions of a 

monolayer coverage ( = 0.1%), particularly when the adsorbate has a strong dynamic 

dipole moment. Whereas the dipole mechanism (in HREELS and IR) only permits the 

orientation normal to a metal surface to be detected, the impact and NIR scattering 

mechanism yield additional information about azimuthal orientation and the structure of 

electronically excited states. Variation in the reflectivity, whether from negative ion 

resonance or properties of the bulk band structure, provides additional information. 

Although all materials vibrate, and in principle can be measured with HREELS, there are 

practical constraints. 

The disadvantages of HREELS can be understood in relation to the use of 

electrons to probe surfaces. First, the short mean free path in air and its sensitivity to 

electric and magnetic fields requires a high quality vacuum with magnetic shielding. The 

vacuum requirements are demanding because of the need to maintain clean surfaces 

within the dispersive sector so that the work function is as homogeneous as possible. The 

aberrations in ion and electron optics, as well as space charge effects make focusing 



electron beams difficult which limits the spatial resolution of conventional instrument. 

Despite dramatic improvement in resolution, the achievable resolution is not as good on 

rough surfaces as can be achieved on well-ordered surfaces. Surface charging presents a 

challenge on insulating surfaces, although considerable work has been done with thin 

films and neutralizing beams[32-341. However, the optical phonon spectra of many 

insulating materials, such as oxides, tend to obscure adsorbate losses and limit sensitivity. 

Some experimental[35] and theoretical deconvolution approaches[36] have been used to 

alleviate this problem. By comparison with other techniques, HREELS tends to be 

relatively expensive, difficult to operate due to the large number of potentials that must 

be tuned, and requires relative long data acquisition times. 

1.3 Possible Methods to Achieve a Throughput Advantage in HREELS 

As we discussed in Section 1.1, the angular dependence of the energy loss cross 

section contains a wealth of information. Depending upon the goals of a particular 

experiment, different types of analyzers could be designed to increase the throughput 

relative to a conventional HREELS instrument. The option chosen in this work was to 

use time-of-flight methods to gain a throughput and a multiplex advantage; however, the 

alternative means of using a spatially resolved, or parallel detector was also considered. 

We first discuss the ideal characteristics of a spectrometer designed for experiments that 

are optimized for dipole, impact, and negative ion resonance scattering, and then discuss 

the advantages of the TOF vs. parallel detector technology available at the time this work 

was started. 



In dipole scattering, the dipole lobe is somewhat broader than 'the angular 

distribution of the elastic peak. On well-ordered surfaces, the FWHM of the elastic peak 

is typically about *1-2". Because the dipole lobe shifts away from the specula direction 

for increasing loss energy and broadens at lower primary beam energies, the small 

acceptance angle of the state-of-the-art conventional spectrometers results in significant 

reduction in the transmission at low energies (2-4 eV) where the dipole cross section is 

maximized. The small acceptance angles are necessary to achieve the high energy 

resolution with the dispersive sector instnunents[l2]. Nevertheless, for the purpose of 

comparing on-specula with off-specular scattering, we suggest that the acceptance angle 

should be chosen to be large enough to include the entire dipolar lobe, which should be in 

the range of *2-4". Interestingly, this is similar to the range of early, lower resolution 

instruments, such as the Riber Sedra spectrometer[37]. 

On surfaces that are polycrystalline or poorly ordered, the lack of periodicity 

means that the momentum conservation condition does not hold and the'specular peak is 

considerably broadened. Often the elastic peak has a FWHM as large as *lo0. A lens 

that increases the acceptance angle to a larger range, such as this, would increase 'the 

signal with no loss of angular information. Perhaps such a design, if high energy 

resolution can still be achieved, would allow the use of HREELS on more technologically 

relevant surfaces. 

In the impact scattering regime, we consider two particular cases with 

significantly different requirements for the angular resolution required. For phonon band 

mapping, a high k// resolution is needed. The angular resolution is energy dependent, and 

at higher energies, where the impact cross section is generally larger, the deflection angle 



corresponding to the edge of the Brillouin zone decreases, requiring higher angular 

resolution. On the basis of these considerations, Ibach chose an acceptance angle 

criterion of order *0.5 [12]. 

By contrast, when impact scattering is utilized to determine the non-dipole active 

modes and to investigate the azimuthal orientation of molecules on single crystal surfaces, 

the cross section can vanish under special conditions, e.g. on specular when the surface 

point group contains a mirror plane perpendicular to the scattering direction or within the 

scattering plane when the scattering plane contains a mirror plane. In principle, the 

impact excited modes may show angular distributions that reflect these symmetries, but 

due to thermal motion of the molecules there will be minima but not necessarily zeroes in 

the high symmetry conditions. Therefore, the angular resolution required for 

measurement of the angular 'distribution is probably much lower than required for phonon 

band mapping. Early studies of impact scattering, for example by Ho and Willis for the 

WW(ll0) surface suggest that an angular resolution of *2-4" may be adequate. An 

instrument that could measure the angular distribution of in-plane vs. out-of-plane 

polarized modes would allow new experiments, such as the freezing out of molecular 

motion at low temperatures, in a manner similar to results with ESDIAD (electron 

stimulated desorption ion angular distributions)[38]. 

For negative ion resonance scattering, the characteristics of the angular 

distribution are perhaps more interesting than in the case of impact scattering. Recent 

work by Chen, et al, has shown that the CH stretch cross section varies significhly with 

both primary beam energy and emission angle for highly oriented benzene rings in the 

~(8x2)  benzoate structure on Cu(1 lo). High energy resolution is needed to resolve all of 



the ring modes and the throughput of the conventional spectrometer precluded 

measurement of entire loss spectra for a wide range of angles and energies. Thus, a 

dramatic improvement in throughput is necessary to enable more complete studies of the 

angle- and energy dependent loss cross section. Again, the symmetry of the molecular 

orbitals should lead to zeroes in the loss cross section when the scattering conditions are 

such that either the incident (i.e. monochromatic beam) or emission (i.e. analyzer) 

direction is in a nodal plane (or nodal surface) of the adsorbate. Due to thermal motion 

the angular resolution required is probably similar to that required for impact scattering, 

but the range of angles required is much larger than in impact scattering. For example, 

Richardson and Jones1391 measured the angular distribution of of the shape resonance 

for CO/Ni(l 10) over a 30" range in 3-4" intervals. 

On this basis, we now consider the use of both TOF and parallel detection 

methods to increase the performance of a high energy resolution spectrometer. As we 

will discuss in greater detail below, TOF methods could provide a dramatic throughput 

and multiplex advantage. This would be particularly useful in dipole scattering, where 

the information of interest is already collimated into a narrow solid angle (for well- 

ordered surfaces) or there is little angular information to be obtained, such as on poorly 

ordered surfaces. By contrast, in the area of negative ion resonance scattering, optics that 

transmit the angular distribution to a position sensitive detector could result in a 

tremendous parallel detection advantage. For the reasons outlined below, the former 

approach was chosen for development of the first generation TOF-HREELS spectrometer. 

The key factor in the development of a TOF electron spectrometer is the existence 

of a fast beam-chopping device. Sub-nanosecond rise times of the chopping system are 



required to guarantee that the resolution is comparable to the state-of-the-art conventional 

HREELS instruments. Several groups have demonstrated the use of a Bradbury-Nielsen 

gate, more recently referred to as an "interleaved comb" chopper to deflect or pass ions in 

a TOF mass spectrometer[40-421. This device consists of a plane of closely spaced 

parallel wire segments, in which alternate wires are biased with equal but opposite 

voltage. An ion beam travels perpendicularly to the plane of the chopper. If the potential 

on the wire sets are grounded, all of the ions pass through the chopper without being 

affected. However, if the wire sets are held at opposite potentials of equal magnitude with 

respect to the flight tube potential, the ions will be deflected to one side or the other side 

depending on the polarity of the field. In this case, the ions can be excluded from the 

detector by a slit and the chopper is effectively "shut off'. 

Prior to this work, there was no experimental evidence and insufficient theoretical 

understanding of this device to demonstrate whether the "interleaved comb" chopper 

could achieve sufficiently fast response times to allow electron energy analysis using 

TOF techniques. We should note, however, one experimental setup in which a pair of 

closely spaced grids was used to pass electrons by applying a sinusoidal signal. A second 

pair of grids placed further down a flight path functioned in a similar manner to create a 

notch filter with an effective energy resolution of 3 meV[43]. 

The time resolution of pulse counting electronics and microchannel plate 

detectors has been well established. In fact, several applications of TOF electron 

spectroscopy have already been reported in x-ray photoelectron spectroscopy in which 

the ultra-short light pulses of a synchrotron was used to provide the time base. Thus, the 

detector technology was already established and the time resolution of commercially 



available time to digital converters was sufficient for our purposes. We should note, 

however, that the dead time of these devices was a significant limitation and the need for 

customized timing electronics still exists. 

The alternative approach of using a position sensitive detector presents several 

challenges. The retarding field analyzer, coupled with microchannel plates and a 

fluorescent screen, is essentially one solution. However, the retarding field analyzer 

operates as a high pass filter and would not be practical for measurement of a particular 

vibrational loss energy if the primary beam is continuously impinging upon the surface. 

The energy resolution is insufficient, typically being limited to a large fraction of an 

electron volt due to variation in the work functions of grids and field penetration. If a 

pulsed primary electron beam could be prepared, then a set of grids could operate as a 

gating device to admit electrons only during a particular window of flight times. 

However, this adds the complexity of TOF methods to the challenges of a position 

sensitive detector. A number of methods have been reported[44-471 to determine 

positions, and in some cases arrival times, using microchannel plates to amplify electrons 

and achieve single particle counting. Thus, development work was focused on TOF 

gating technology, which will enable future work to be persued with larger area detectors 

having both time and position measurement capabilities to gain further performance 

advantages. 

We should also note the work of Dubois and Kevan,[48-501 and others[48-501, to 

implement dispersion compensation in HEELS.  In this approach, the exit and entrance 

slits of the monochromator and analyzer are removed. Electrons flying through the 

monochromator are dispersed at the exit focal plane. The positions of the electrons on the 



focal plane depend on their energy relative to the mean pass energy of the 

monochromator. By following their time reversal trajectories, these spatially dispersed 

electrons are focused again at the exit plane of the analyzer. This requires that the 

monochromator and analyzer be placed symmetrically with respect to the sample 

position. Therefore, parallel processing of electrons that enter the monochromator with a 

broad range of energies can be achieved, whereas only a small fraction of those electrons 

are utilized in the conventional spectrometer. Based on this design, a throughput 

advantage of a factor of 15 has been reported for the same resolution[49]. 

Another way to build a parallel detection system in HREELS is to use a 

multichannel detector, as shown by Ho and coworkers in the designed of their time 

resolved HREELS (TREELS). With the TREELS, they demonstrated that changes in the 

nature of the adsorbed species can be monitored in real time[5 11. This instrument is made 

of putting a multichannel detector at the exit focal plane of the analyzer, instead of a 

narrow slit. The rest of the instrument is the same as the conventional HREELS. TREELS 

is able to probe adsorbed species in real time, but it has a limited energy range and the 

instrument is relatively complicated to tune up. In the TREELS, a 96-channel detector 

was used and a time resolution of 5 millisecond was achieved. If a higher energy range or 

resolution is required, more detector channels are needed and the radius of the analyzer 

should be increased, although aberrations in the optics will limit the achievable range and 

resolution. Therefore, the throughput advantage that can be achieved by the dispersion 

compensation and TREELS techniques is limited. 



1.4 Comparison of TOF-HREELS and Conventional HREELS 

The conventional energy analyzer used in HREELS is based upon electrostatic 

field deflection. The analyzer is tuned to the energy of each energy loss channel and only 

electrons of that energy are measured. This serial detection scheme limits the actual 

performance defined in terms of the acquisition time to achieve a spectrum of a specified 

signal-to-noise ratio (SNR). For example, a scan of 600 meV with step size of 0.2 meV 

implies 3000 data channels. If the signal is collected for a duration of 1 second per 

channel, the acquisition time is typically an hour. If the energy of all electrons were 

measured simultaneously, in a parallel detection scheme, the acquisition time would be 

reduced from hours to seconds. 

Time of Flight (TOF) is a technique used extensively in secondary ion mass 

spectrometry [52] in which the mass of the ions is measured by determining the time 

required for the ions to reach the detector after the primary ion beam impinges on atoms 

in a sample surface and scatters secondary ions. In order to enable such time-dependent 

measurements; the beam has to be pulsed. The time of arrival of the detected particle can 

then be measured with respect to the pulsing of the ion beam. In a single pulse mode TOF 

experiment, in order to achieve high resolution, the duration of the primary pulse is small 

compared to the period (typically the pulse is - of the period) which limits the 

throughput of the instrument. However, the TOF technique has the advantage that all of 

the ions with different mass generated in a single primary beam pulse can be detected; 

that is, the TOF method is a parallel detection system which, in principle, can detect 

100% of the ions generated in a given pulse. However, when there is a continuous source 

of ions, such as in orthogonal ionization TOF mass spectrometers, now commercially 



available in GCMS systems[53, 541, the low duty cycle still leads to relatively poor 

efficiency. A significant improvement can be achieved by combining TOF with 

advanced modulation methods. 

In the conventional TOF method, the time period between two successive 

chopping events has to be larger than the width of the TOF distribution at the detector so 

that particles originating from different chopping events will not interfere when arriving 

at the detector at the same time. In order to improve the time resolution, the duration of 

the chopper pulse, 7, must be decreased. However, because the time between successive 

pulses, T, is determined by the width of the TOF distribution, the duty cycle TIT will also 

decrease with decreasing 7. This leads to the dilemma of the conventional TOF analysis: 

to choose between high resolution and high transmission (high SNR). 

The trade-off between the resolution and transmission can be overcome by 

applying the so-called "pseudo-random binary sequence" (PRBS) modulation time of 

flight technique[55-571. In this case, the time between successive pulses is no longer 

required to be larger than the width of the TOF distribution. Therefore, the resolution can 

be increased without affecting the transmission. On the other hand, the TOF spectra from 

successive chopping events will overlap at the detector resulting in an overall spectrum 

which is much more complex than the single pulse mode TOF experiments. In the ideal 

case, the time modulated spectrum, y = o @p, is a convolution of the object spectrum, o, 

with the modulation function, p. There are special sequences, known as PRBS, or 

maximal length shift register sequences [58, 591, having the unique property that their 

autocorrelation functions are approximately a delta function. Therefore, the object 



function can be recovered simply by cross-correlation; i.e. p e y  = ( p e p )  63 o = o. To 

be more precise, the maximal length shift register sequences have discrete autocorrelation 

functions that are two-valued functions: 1 at zero phase shift, and -1/(2"-1) at all other 

phase shifts. 

The PRBS-TOF modulation method is closely related to Hadamard spectroscopy. 

In the next section, we discuss the Hadamard method, since it illustrates the performance 

advantages in a somewhat simpler situation than in the PRBS-TOF method. 

1.5 General Description of the Hadamard Method 

The Hadamard technique was originally developed as a means of increasing the 

optical throughput of a dispersive spectrometer, as illustrated schematically in Fig. 1.5. 

The incident beam is dispersed spatially by a prism and then passes through a mask that 

has a specific combination of open and closed slots to accept or reject particular 

wavelengths. The transmitted part of the light is then collected and impinges on the 

detector. A data set is formed by using a series of masks that have slot combinations that 

change in a pattern derived from a Hadamard matrix or S-Matrix. The spectrum is 

obtained from this data set by a linear matrix multiplication using the inverse of the 

Hadamard matrix or S-matrix. There are two distinct advantages of this procedure. First, 

because each slot is open in half of the mask positions, the total amount of light is d 2  

times larger than is measured in the same amount of time with a conventional, n-element, 

dispersive instrument. This leads to a throughput advantage. Second, because in each 

measurement a different combination of the wavelengths pass through the mask, each 

wavelength is measured multiple times, which leads to an improved SNR, or multiplex 



Figure 1.5 A typical schematic drawing of Hadarnard transform spectrometer. 



advantage. The multiplex advantage can be understood by analogy to the statistical 

analysis of weighing experiments[58]. If three objects are to be weighed, the simplest 

procedure is to place each object on the balance and record its weight. However, the 

random error in each measurement can be reduced if instead the objects are weighed in 

combinations. First, the three objects can all be placed on the balance and the total is 

weighed. Then one object is removed and the weight of the two remaining objects is 

recorded. Finally, the first object is put back on the balance and one of the others is 

removed. In total, three measurements are still made, but the random errors are 

distributed among the measurements. When the masses are determined by solving the set 

of linear equations, the signal to noise ratio (i.e. mass divided by the standard deviation of 

each error) is increased by 43, or in general, dn, where n is the number of objects 

measured. 

There is a close connection between the maximal length shift register (or PRBS) 

sequences and the Hadamard matrix. The Hadamard matrix is an nxn matrix of +1's and 

-1's with the property that H,H:= H,TH,=nI,. The mask itself is obtained by first 

normalizing the Hadamard matrix such that the first row and column are all l's, then 

omitting the first row and column to produce an (n-1) x (n-1) matrix, and finally 

converting all +I 's to zero and the -1's to one. This matrix is known as the S-matrix. An 

example of an 1 1-element S-matrix is shown in Fig. 1.5. In fact, each row or column of 

the S-matrix is identical to a PRBS sequence. In the S-matrix, the rows are related by 

shifting the sequence cyclically to the left. Thus, in Hadamard spectroscopy, there is a 

spatial multiplexing of the n channels according to a PRBS sequence, which is shifted 

relative to the spectral elements, at each step in time. 



The multiplex advantage depends on both the nature of the spectrum and the 

noise. Under conditions that the detector noise is large and normally distributed, the 

multiplex advantage, as shown originally by Fellgett[60], is dn. However, when the 

noise is shot limited, Plankey and Winefordner[61], showed experimentally that 

correlations between the signal and noise in the detector, such as is the case for Poisson 

(counting) noise, reduces the multiplex advantage. Larson et al. [62] and Gompf [63] 

have shown that in the case of Poisson noise, the multiplex advantage, when recovering 

the spectrum with the Hadamard matrix inversion, is frequency dependent and is given by 

where xi is the intensity in the i' channel of the true spectrum and Y is the arithmetic 

mean of the intensities of the channels in the spectrum. For spectra with a few strong 

peaks there is still a significant multiplex advantage; however, for weak peaks in a dense 

spectrum, there is a distinct multiplex disadvantage. Nevertheless, because the overall 

performance is improved by the product of the multiplex and throughput advantages, the 

Hadamard technique may still be advantageous. 

1.6 Relationship Between Hadamard Spectroscopy and PRBS-TOF Methods 

We now illustrate the relationship between the time-modulated data and the 

Hadamard technique. Figure 1.6 shows a simple TOF spectrum, containing three delta 

functions. The chopper is opened and closed according to the PRBS sequence. If only 

the first peak is present in the TOF spectrum, then the signal at the detector is a phase- 

shifted copy of the modulation sequence. Note that the shift between the response 



function, p(0, and the contribution from the first peak, yl(t), is the time of flight for 01. 

When a second peak is added to the object function, it also generates a phase-shifted copy 

of the modulation function, where its phase shift is 02. The heights of yl and yt are 

determined by the intensities of the peaks in the object function. Therefore, the total 

signal at the detector is the superposition of these signals and, because a single detector is 

used to collect all particles, the experiment uses multiplexing in the time domain. 

The analogy to the weighing experiment can be seen by considering the 

components that add to any particular time bin. As illustrated in Figure 1.6, the signal in 

the time bin of y(tl), is a sum of 1 *ol + 1 *02 + 0.03, whereas y(t2) = 1 *ol + 1.02 + 1.03 

and y(t3) = O*ol + 0.02 + 1.03, In general, half of the elements of the object function 

contribute to each channel, but the combinations are different for every channel. The 

sum can be expressed either as a matrix multiplication, in which the object h c t i o n  is 

multiplied by the S-matrix: 

or as a convolution of the object function with the PRBS response function: 
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Figure 1.6 Illustration of the relationship between the time of flight spectrum, o(t), the 

PRBS modulation function, p(t), and the measured data, y(t). A single peak, 01, in the 

TOF spectrum, generates a copy of the modulation function yl(t) shifted by the flight 

time (100 ns). Each additional peak in o(0 produces a shifted copy that is scaled by the 

intensity of the peak in o(t). The total TOF histogram, y,,,(t), is a superposition of all of 

the contributions; in general each time bin is a unique binary combination of the 

intensities of half of the channels in o(g, which illustrates the analogy of the time domain 

multiplexing process to the weighing experiments (discussed in the text). 



1.7 Maximum Likelihood Methods for Resolution Enhancement 

As we have discussed in section 1.4, the Hadamard technique, or PRBS 

modulation in the TOF approach, suffers a multiplex disadvantage when the standard 

methods are used for data recovery. A careful analysis, as given by Larson, et a1,[62] 

shows that the correlation between the noise and the signal results in fluctuations that are 

significantly larger under the pulse counting noise conditions of HREELS. Both the 

Hadamard matrix multiplication and the cross correlation methods are linear inversion 

methods that are the correct maximum likelihood solution when the chopper function is 

ideal and the noise satisfies a normal distribution. However, in our case the noise should 

have a Poisson distribution, and we anticipate that the finite rise times of the chopper will 

lead to sufficiently non-ideal behavior, that neither assumption will be satisfactory for the 

HREELS spectrometer. In fact, finite thickness effects are well understood in molecular 

beam scattering, and lead to artifacts in the recovered spectnun[64]. An additional factor 

in the design of the TOF-HREELS instrument is the limitation that the finite rise time 

places on the minimum pulse width. 

Previous work[35] with maximum likelihood and Bayesian resolution 

enhancement algorithms suggests that, when the noise is Poisson and the response 

function approximates a square pulse, resolution enhancement by as much as a factor of 6 

or 8 can be achieved if the data can be described as a convolution. Therefore, we 

proposed to use maximum likelihood or Bayesian algorithms to improve the resolution, 

as well as estimate the underlying TOF spectrum when the noise is Poisson and the shape 

of the response function is not ideal. We therefore review the properties and assumptions 

of the maximum likelihood algorithm that will be used in the recovery of data in this 



thesis. In traditional spectral restoration work, the point spread function typically has the 

characteristics of a single Gaussian, a single square pulse, or occasionally a combination 

of one or two peaks. For example, the contribution of the x-ray source to the measured 

spectrum in x-ray photoelectron spectroscopy is the sum of two strong, overlapping 

Lorentzians, as well as four weaker Lorentzian peaks. The instrument has a finite 

resolution which often has an asymmetric Gaussian shape due to the aberrations of a 

dispersive energy analyzer. The response function of the instrument becomes 

approximately a convolution of these two contributions. The point spread function, p, 

must be determined very accurately for deconvolution to be possible, which has lead to 

much controversy in the XPS literature. 

The advantage in HREELS is that the elastic peak provides a good estimate of the 

shape of the response function, which can be used for resolution enhancement of the loss 

region, as demonstrated by Frederick, et a1[35, 361. In the proposed TOF-HREELS 

instrument, the monochromator can potentially be used to measure the chopper's 

response function. However, we are not aware of any work in which the response 

function is cyclic and involves multiple pulses, as is the case in PRBS modulation. Thus, 

we review the behavior of maximum likelihood algorithms for the case of a "simple" 

response function. In Chapter I11 we will show that, in fact, we have developed an 

algorithm that converges and can be used to handle the cyclic data characteristic of PRBS 

modulation methods. 

Consider a measured spectrum, characterized by its intensity distribution At), 

corresponding to the observation of an object spectrum o(t) that has been broadened by 

the point spread function, p(t), and measured in the presence of Poisson noise, ni. We 



assume that the system is linear and time-invariant, and relate the true object to the 

collected spectrum via a convolution: 

In Fourier space we have: 

Y(w) = O(w)P(w) + N(w) 

We want to determine o(t) knowing y(t) and p(t). This inverse problem has led to a large 

amount of work[65]. 

In the absence of noise, the data can be transformed to the frequency domain and 

then divided by the Fourier transform of the response function. In practice, the presence 

of noise requires some arbitrary filter to be chosen or the ratio will be amplified at higher 

frequencies as the Fourier transform of p(t) approaches zero: 

There are a number of methods that impose restrictions on the solution, such as in the 

Burg maximum entropy approach[66] in which all features in the object function have 

the same shape. For a vibrational spectrum[36], this assumption is simply not justified. 

There have been a number of iterative approaches [67, 681 that avoid the 

problems of division in Fourier space and formally acknowledge the Poisson noise in the 



data. The Lucy algorithm, maximizes the probability, P(y 1 o) , of obtaining the data, y(t), 

given an object function, o(t) , when the noise has a Poisson noise distribution: 

The algorithm used to optimize the object function is an iterative process in which the 

estimate at ok is used to genrate the next estimate, ok" : 

Lucy[67] proved that this algorithm will eventually converge to the likelihood maximum. 

The method makes no assumptions regarding the shape or number of features in the 

object function. It is simply a numerical array which, convoluted with the response 

function, matches the data as well as possible within the Poisson noise. The extent of 

resolution enhancement depends on the signal to noise ratio in a particular peak, the 

number of iterations, and the shape and accuracy of the response function itself. 

There are, however, disadvantages of this algorithm. When there is a background 

present, the algorithm will attempt to break the spectrum up into peaks that are not real 

and in practice the iteration process should be terminated. This is in effect, an arbitrary 

parameter. More fundamentally, the algorithm is a maximum likelihood algorithm: it 

optimizes the probability of obtaining the data, given a particular object fhction and 

information about the instrument's response function. We would prefer to optimize the 

probability that a particular object function, p(oly), is correct, given the data that has been 

measured. Methods such as the Bayesian maximum likelihood algorithms reported 

previously[36], have been shown to be reliable for use in HREELS and other 



conventional spectroscopies. However, the convergence of the algorithm, when applied 

to the PRBS modulated data, has proved to be difficult to achieve. 

1.8 Organization of the Thesis 

In the remainder of this thesis, we give in Chapter I1 a theoretical analysis of the 

design of the interleaved comb chopper to first define the optical properties of this device. 

We discuss both the static and dynamic behavior of the chopper theoretically and verified 

it experimentally using an HREELS instrument modified for the study. In Chapter 111, 

we first demonstrate the viability of maximum likelihood methods to recover the true 

o6ect spectrum for an ideal chopper. Then, using simulated data that based upon the 

work in Chapter 11, we present the preliminary indications that indicated that a TOF- 

HREELS spectrometer could be built based upon the interleaved comb chopper. Chapter 

IV then presents the design of the first generation PRBST-TOF HREELS spectrometer. 

In Chapter V, the first measurements are presented, together with a more thorough 

theoretical analysis and extensive simulation of the PTFE spectrum. We analyze the 

contributions to the time resolution of the instrument itself, the limitations of the noise 

and chopper characteristics for the recovery of the spectra, and define the throughput and 

multiplex advantages of the instrument. Chapter VI presents a summary and discussion 

of future work. The experimental methods used to prepare the highly oriented 

polytetrafluoroethylene (PTFE) films and their characterization by AFM and AES is 

included for completeness in the Appendix. 



Chapter 2 

APPLICATION OF THE INTERLEAVED COMB CHOPPER TO TOF- 

HREELS* 

2.1 Introduction 

A major limitation of commercially available, dispersive sector, electron energy 

analyzers is that they are inherently serial devices, leading to long data acquisition times, 

for example in high resolution electron energy loss spectroscopy (HREELS). Several 

groups have demonstrated that time-of-flight (TOF) methods can be utilized in 

photoelectron spectroscopy, where the time-base was provided via the pulsed light source 

of a synchrotron [69-711. If the electron source is continuous, rather than pulsed, a 

throughput advantage of order 500-1000 can be achieved by combining TOF methods 

with pseudo-random binary sequence (PRBS) modulation of the electron beam. PRBS 

modulation has been widely used with slotted spinning disk choppers for heavy particles, 

such as in neutron[55, 561 and molecular beam scattering[57]. The development of time- 

of-flight (TOF) electron spectrometers hinges upon the existence of a fast beam-chopping 

device. Recently, several authors have demonstrated the use of an interleaved comb of 

closely spaced wires of equal but opposite voltage to deflect or pass ions in a TOF mass 

spectrometer [40-421. The advantage of the "interleaved comb" or Bradbury-Nielson gate 

as compared to a deflection plate[40] is the much shorter length of the field along the 

flight direction, which confines the time resolution. We present a theoretical and 

experimental study, which demonstrates that the interleaved comb can modulate electron 

beams with sub-nanosecond rise times and discuss the limitations associated with 

chopper-charged particle interactions. 



2.2 Experimental Methods 

The construction of an interleaved comb ion deflection gate, first proposed by 

Loeb[72], has been described by Vlasak[40]. In our work, we fabricated choppers using 

two different methods as shown in the photograph of Figure 2.1. The first design utilized 

a circular, laser-cut ceramic disc with two sets of holes spaced 0.3 mm apart. Tungsten- 

rhenium wire (50 pm) was hand wired to achieve 0.6 mm or 1.5 mm spacing between 

oppositely charged wires. The two distinct wire sets are electrically isolated from one 

another by the ceramic plate and terminated on each line with a pair of surface mount 100 

i2 resistors in parallel. A second type of chopper fabrication used lithographic 

methods[73]. Gold 50 ohm microstrip leads were patterned onto polished square 

aluminum substrates using the lift-off method. Gold wires were then positioned using a 

jig to align and tension the wires, which were bonded using a parallel gap welder 

(UNITEK equipment, UNI Bond (11), Model (50F))[73]. With this method, wire 

diameters of 25, 50 and 100 pm, centered on inter-wire spacings of 250, 500 and 1000 

pm, respectively were achieved. The set of three chopper types, all with 90% 

transmission, were designed to test the dependence of optical properties on the scale of 

the device. 

Figure 2.2 shows a schematic diagram of the system designed to characterize the 

chopper response, based upon an HREELS spectrometer (McAllister Technical Services, 

Model PS200,Coeur d'Alene, Idaho) and a custom designed time-of-flight detector. The 

chopper was mounted at the center of rotation on the face of the monochromator and 

rotated with it. The electron beam was focused by the monochromator lens through the 



Figure 2.1 The photograph of the chopper made in two methods. Chopper A is the one 

made by hand wiring to a laser-cut ceramic disk. Chopper B is the one made by using 

lithographic method. 



Into dispersive analyzer: 

Into 

Figure. 2.2 Schematic diagram of the system designed to characterize choppers. The 

chopper is mounted on the monochromator at the center of rotation and rotates with it to 

measure, A) energy and angular distributions with the conventional analyzer as a hnction 

of the applied static potential, *VaPp; and, B) time-dependent response and angular 

distributions with the TOF detector. 



chopper into the analyzer to characterize the energy (typically 10-20 meV FWHM) and 

angular (typically *0.7') distributions of the incident electron beam. When static 

potentials were applied to the chopper, the monochromator was rotated by a stepper 

motor under computer control to measure the angular distribution of the deflected beams. 

Data acquisition and control were performed using a SPECTRA card (Ron Unwin, 

Cheshire,UK) customized with a user-written dynamic link library (DLL). When the 

monochromator was rotated so as to direct the beam into the TOF detector, a modulated 

signal was applied to the chopper grid and the time-dependent response was measured. 

The TOF detector was based upon a micro-channel' plate detector (AP-TOF, Gallileo 

Corp., Sturbridge, MA) which was custom-modified for negative particle detection. 

2.3   he ore tical Model 

We first present a two-dimensional analytical potential, based upon a conformal 

mapping of an infinite, periodic set of infinitely long, line charges fh, as illustrated in 

Figure 2.3A, onto two line charges, illustrated in Figure 2.3B. In real space (Fig. 2.3A), 

wires of diameter 2R and alternating potential, *V,,,, are spaced along the y-axis with a 

periodicity, d. Electrons passing in the positive x direction would be deflected in the *y 

directions. In real space, let a = x + iy . Using the complex trans'formation, 

11 = exp($ a ) ,  the line charges alternately map onto the points (0, t i )  in the 7 space (Fig. 

2b) for which the potential is well known. The infinite chopper potential is then 



A) Chopper 

t space 

B) Mapped 
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Figure. 2.3 A) Model for an infinite array of infinitely long wires of radius, R, and 

spacing, d, in the x=O plane, with alternating potential kV,,,. B) The two-wire problem 

obtained by by conformal mapping. 



The contours of this potential in the real space are nearly circular close to the line charges. 

Thus, for finite diameter wires with R<<d, i.e. near unity transmission, the line charge 

solution well approximates the actual chopper potential and we need only choose 

a point through which the potential passes to define the line charge h. Choosing the point 

(x  = 0,y = 4/2  - R) to have a potential Vapp we have 

The potential (see Fig. 2.6 below) is simply proportional to Vapp, and has the important 

feature that it decays as y - 4A , such that the potential is reduced to <3% of 

e Vapp within the first d spacing, and is < 10" e Vapp within 3.6 d. For Vapp of order 1 V, the 

potential for x> 3.6d is small compared to the typical (-2 meV) energy resolution of the 

monochromatic beam in HREELS. 

Trajectory calculations were performed numerically using an adaptive, 4' order 

Runge-Kutta method (MathCad v. 6 and 2000, Mathsoft) with initial positions chosen 

randomly in a region of negligible potential to the left ( x<O) of the chopper plane. The 

distribution of angular deflection was determined from the final angle after the electron 

leaves the field affected region ( y ~  < 10" V,,). To simulate time-dependent changes in 

chopper potential, trajectories were calculated either in free space or over the applied 

potential, assuming that the potential was changed instantaneously, until the electron was 

in a region of negligible potential. For comparison with experimental data, flight times 



were calculated from the final position and velocity to the detector at a chopper-to- 

detector distance of 16 cm. 

2.4 Experimental Results 

In Figure 2.4 A, we compare the angular distribution of the deflected electrons as 

a function of the applied potential using the TOF detector. Similar results were obtained 

with the dispersive analyzer. For small deflection angles and a beam size large compared 

to the wire spacing, d, the beam is split into a symmetric distribution, peaked at angles 

fedef, which is approximately linear in the ratio of the applied potential to the electron's 

kinetic energy, eV,,,,/KE. The modulation of the beam is clearly dependent upon both 

the angular distribution of the incident electron beam and the deflection angle. For an 

acceptance angle of *lo, 99.9% modulation is easily achieved under static DC applied 

potentials. As expected, the deflection angle is independent of the wire d spacing, for 

constant transmission, or Rld; i.e., as the chopper geometry is scaled to smaller 

dimensions, the applied voltage must remain constant to achieve the same deflection 

angle. 

The time-dependent response, illustrated in Figure 2.5 for the 2R=IOO p 

chopper, was measured for a range of applied voltages with an incident 5 eV beam 

having an angular distribution of FWHM = 1.5". The potentials were periodically 

dropped to zero for approximately 100 ns (period of 700 ns; riselfall times of 1.5 ns), 

during which time the undeflected beam was accepted through an aperture of half 

acceptance angle 8, = 1.5". The number of counts in each histogram varied with 

acquisition time, but are shown as counts to allow the noise level to be compared with 

that expect from the Poisson distribution. The TOF histograms, sampled on 250 ps time 



Figure. 2.4 A) A typical angular distribution, measured with the TOF detector, for a 5 eV 

beam as a function of the static DC vdtage, Vapp, applied to the chopper. (B) Theoretical 

angular distributions for a uniformly distributed (see text) beam of electrons (Ep = 5eV) 

as a function of applied voltage, Vapp, fiom trajectory calculations. Inset compares the 

experimental and theoretical peak deflection angle as a function the ratio Vap&E. Wire 

radius, R = 25 pm; wire spacing, d = 1.2 mm; flight distance 160 mm; acceptance angle 

*l O; angular bin size = 0.1 ". 



Figure 2.5 The time-dependent response of a 2R= 100 ,um, d = l m m  chopper to a 5 eV 

beam as a h c t i o n  of the chopper potential, V,,, (A) 0.25 V, (B) 0.5 V, (C) 1.0 V, and (D) 

2.0 V, for an acceptance angle of *1 So. (E) The difference between the time that the 

beam is on and the time (-100 ns) that the chopper voltages are off. Both of these times 

are measured using the appropriate half heights. 

Applied V o b e  /(V) 



bins, show that rise times of cO.5 ns are easily achieved. However, several features of the 

TOF spectra should be noted. First, the histograms display peaks and tails at the times 

when the chopper changes state that are significant compared to the Poisson noise 

distribution. Second, a detailed comparison of the time that the potentials are off and the 

time that the beam is on shows that the difference varies with applied voltage: the 

electron beam turns on late andor shuts off early. The dependence is shown in Fig. 2.5 E. 

Third, while the background on the high energy side (shorter flight times) for Vapp> 0.5 

V is less than lo-' of the average count rate when the gate is open, significant intensity 

with a distribution to lower energy appears with a relative intensity of loq2, which is 

attributed to inelastic scattering from the relatively thick apertures placed before and after 

the chopper. The origin of the first two features is discussed in light of the theoretical 

simulations presented in the following section. 

2.5 Theoretical Simulation Results and Discussion 

We first compare the angular distribution of the transmitted beam (Fig. 2.4A) with 

simulations based upon trajectory calculations. Electron positions were chosen randomly 

within the region (-40mm < x < 40 mm, -1.8mm < y 4 . 8  mm). The potentials were 

applied for the first 8 ns, during which time the first electrons enter the field-affected 

region. The potentials were then turned off for 8 ns, on again for 8 ns, and finally turned 

off to calculate the final angle and the time in the field-free flight tube to reach the 

detector. Figure 2.4B shows the angular distributions calculated for the infinite chopper 

corresponding to the geometry of the ceramic disk design as a function of V,,,. The 

results show that, for uniform filling of the chopper, the deflection angle in the angular 

distribution increases proportional to V,,,, and as shown superimposed in the inset of fig. 



2.4B, agrees quantitatively with the experimental measurements. Whereas the electrons 

in the simulation have initial velocity parallel to the x-axis, the angular distribution in the 

experiment leads to broader peaks in the angular distributions of Fig. 2.4A. 

The results of simulations of the time-dependent response are shown in Figure 2.6. 

The flight times, for electrons accepted by an aperture of *lo at a flight distance of 160 

mm, are shown as a function of Vapp in Fig. 2.6 a, b and c, and as a function of the wire 

spacing (for constant Wd) in Fig. 2.6 d, e, and f. While the beam is modulated as 

expected, turning the beam on then off and on again, several features noted in the 

experimental data are reproduced in the simulations. First, at the transitions, the 

simulations predict spikes and tails in the histograms which deviate significantly from the 

Poisson noise distribution. Second, the chopper response (here, the time-dependent beam 

current) has a lag or lead with respect to the applied voltage making it appear that the 

gate is open for times less than the 8ns used in the calculation and closed for times 

greater than 8 ns. These effects depend upon Vapp as well as the scale of the chopper (i.e. 

the wire spacing for constant Rld). Reduction of the applied voltage or reduction of the 

wire spacing noticeably decreases these effects. We note that late opening and eahy 

closing of the gate is analogous to the effect of finite thickness investigated by 

Zeppenfeld [64] for spinning disk mechanical choppers. 

The origin of the spikes and tails can be understood from consideration of 

trajectories over the potential, shown in Fig. 2.7. Consider first an electron approaching 

the chopper with potentials off (gate open). If an electron is near the gate and the 

potential is applied instantaneously, the electron may gain or lose potential energy, 

depending upon whether it is closer to a negative or positive wire, respectively. For 
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Figure 2.6 Calculated time-dependent response as a function of applied voltage, Vapp (a) 

0.5 V, (b) 1.0 V and (c) 2.0 V, and as a function of wire spacing (d, e, and f)  at constant 

R/d (i. e. constant transmission) for Vapp = 1.0 V. The peaks and tails, due to energy 

corruption, as was lag and lead effects, decrease with Vapp and with d. 
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Figure 2.7 Contour map of the potential, y(x,y), with critical boundaries, f(x,y, Oacc, Vapp), 

as a function of the acceptance angle and applied voltage. If the electron is at position 

(xo, yo) beyond the boundary at the time when the potential is applied, the electron has 

final angle Of < OaCc ; i.e. the electron reaches the detector, and suffers an energy 

corruption ey(xo,yo). 



electrons in the field affected region, it is necessary to compute trajectories to determine 

whether sufficient transverse field exists over the subsequent path to exclude the electron 

from the detector. Clearly, this is dependent upon the applied voltage and the acceptance 

angle of the aperture. The curves in figure 2.7 represent critical boundaries, 

f(x,y, eacc, VW), such that if the electron is beyond the curve at the time the potentials are 

applied, the electron has final angle 6j <eaCc ; i.e. the electron reaches the detector. For 

those electrons which reach the detector, their energy has been changed, or corrupted, by 

an amount given by the potential at the position of the electron when the potential was 

changed. Thus, there is a distribution of "energy corruption", ranging from -VaPp to Vapp. 

The symmetry of the potential shows that, for a uniformly distributed beam of electrons, 

the probability of gaining energy is equal to that of losing energy, producing both longer 

and shorter flight times in the TOF histogram. Therefore, the step function response of 

the chopper is modified, producing the spikes and tails, which we attribute essentially to 

these energy corruption effects. As Vapp is decreased, the maximum energy corruption 

decreases, and the magnitude of the spikes and tails in the simulations decrease. 

The energy corruption effect can be distinguished from a second effect, noted in 

both the experimental and simulation data, that there may be a lead or lag in the beam 

current with respect to the times that the potentials are changed. Consider an electron 

approaching the gate, with Vapp=O, along the mirror symmetry plane, x =0, such that 

y~(x=O,y) = 0. For this trajectory, the energy corruption effect is zero, since the electron 

is still at zero potential immediately after the voltages are applied. It propagates over 

some trajectory until leaving the field affected region, where again the potential is zero. 

However, depending upon the acceptance angle of the detector, the electron may or may 



not be detected. If the acceptance angle is small, e.g. 0.5"NaPp, only electrons that have 

passed the plane of the chopper (by approx. 112 d in this example), reach the detector: the 

chopper appears to close early. By contrast, for large acceptance angles, electrons in 

a small region before the gate (e.g. y 2 -.3d for €Iacc = 4"NaPp), still reach the detector 

and the chopper appears to close late. 

Examination of the boundaries for several combinations of Vapp and €I,, reveal 

that, since the deflection is approximately linear in the applied voltage for small 

deflection angles, the boundaries are a function of the ratio €IaJ Vapp, as indicated in the 

figure. Likewise, a scaling argument reveals that, for constant Rld ratio, the trajectories 

are the same if the electron enters from the field free-region independent of wire spacing, 

d, as long as the kinetic energy and applied voltage are constant. This implies that the 

deflection angle is only a function of the ratio eVap&E for the static chopper potential. 

Therefore, the information about the boundaries in Figure 2.7 summarizes everything that 

can be known about the time dependant optical properties of the chopper, within the 

approximation of a single, instantane'ous change in chopper potential. Examination of 

trajectories corresponding to the reverse process, namely electrons approaching the gate 

with the potential applied and then turned off while in the neighborhood of the chopper, 

shows that the boundaries are essentially just the mirror image about the plane of the 

wires and the effects on the time lead or lag mirror the previous case: if for a small 

acceptance angle the beam turns off early, then it turns on late. 

Since the energy corruption depends simply on the position of the electron when 

the potential is switched, the distribution of energy corruption for a given region of space 

near the chopper can be extracted simply as a histogram of the potential values (for 



electrons in the region which reach the detector). In Chapter 111, we utilize this potential 

to simulate the effects of energy corruption and leadllag in beam response on TOF 

spectra for applications in HREELS. 

2.6 Conclusions 

We have shown that for near unity transmission, trajectory calculations on the 

potential derived from a conformal map agree well with experimental measurements 

characterizing both the static deflection and time-dependent response of the chopper, 

suggesting that this potential is a useful limiting-case description of the interleaved comb 

device. The finite penetration of the field beyond the plane of the chopper leads to non- 

ideal chopper response, which is characterized in terms of an energy corruption effect and 

lead or lag in the time at which the beam responds to the chopper potential. 



Chapter 3 

ADVANTAGES OF MAXIMUM LIKELIHOOD METHODS FOR PRBS 

MODULATED TOF ELECTRON SPECTROMETRY 

3.1 Introduction 

Despite dramatic advances in the energy resolution and throughput of electron 

monochromators [12, 131 for high resolution electron energy loss spectroscopy 

(HREELS), a major limitation of conventional, dispersive sector, electron energy 

analyzers is that they are inherently serial devices, leading to long data acquisition times. 

The advantage of higher resolution leads to trade-offs in performance (throughput) 

because channel step size must be reduced, and therefore increasing the number of 

channels required to measure a given spectral region. Using a multi-channel plate 

detector to ameliorate this problem is one possibility. Indeed, time-resolved HREELS 

measurements have been demonstrated with a multi-channel plate in the dispersive plane 

of a conventional analyzer [46]. However, parallel detection can be accomplished in this 

way only over a limited spectral range without degrading resolution. Thus, development 

of an analyzer based upon parallel detection would benefit both typical spectral 

investigations and allow new experiments to be performed, such as recent inelastic 

diffraction experiments which are both momentum and energy resolved [74]. 

A throughput advantage of order 500-1000 can be achieved by combining time- 

of-flight (TOF) methods with pseudo-random (PRBS) modulation of the electron beam. 

In Chapter I1 [75], we examine the performance of an "interleaved comb" chopper for 

secondary modulation of an electron beam to provide a nanosecond timebase for time-of- 

flight (TOF) measurements. This shows that the electron beam can be modulated with 



rise and fall times of less than a nanosecond, which corresponds to 3 meV energy 

resolution for 2 eV energy electrons. The finite penetration of the fields associated with 

this electrostatic device of course produce certain non-ideal behavior, which we 

characterize in terms of an "energy corruption" effect and a lead or lag in the time at 

which the beam responds to the chopper potential. Here, we present simulations of PRBS 

modulated TOF data. We examine, for the first time, the use of maximum likelihood 

methods to recover the underlying TOF spectrum [76]. We find that, compared to the 

standard cross correlation method, i) the resolution is improved relative to the nominal 

time base resolution of the PRBS sequence; ii) the Poisson (pulse counting) noise is 

accounted for; and iii) artifacts associated with imperfections of the chopper performance 

are reduced. 

3.2 Theoretical Background 

Pseudo-random binary sequences, also known as maximal length shift register 

sequences [58, 591, for modulation of photon and particle beams have been widely used 

in time-of-flight techniques applied, for example, to neutron scattering [55, 561, 

molecular beam scattering [57,77] and ion mass spectroscopy [42,78]. The PRBS-TOF 

method achieves a throughput advantage over single pulse TOF due to the 50% duty 

cycle of the PRBS sequences. In the experiment, the underlying TOF spectrum (the 

object spectrum, o) is modulated with the PRBS sequence, p, resulting in a periodic, time 

sequence, (p8 0). In the standard cross-correlation method, an estimate of the TOF 

spectrum, r, is recovered by correlating the data with the PRBS modulation sequence, p :  

r = p @ ( p  8 0). Here, 8 and @ denote convolution and correlation, respectively. A 

special property of PRBS sequences is that the autocorrelation of the discrete sequence p 



is a delta function; therefore, the recovered spectrum, r, is identical to the original object 

spectrum, o. In reality, the modulation function is continuous, but r is an estimate of o as 

long as the time base (minimum pulse width) of the modulation function is small 

compared to the linewidth of the narrowest features in o. If this is not the case, then the 

throughput advantage is gained at the expense of resolution in the recovered spectrum, 

and over-sampling of the modulated signal, (p €3 o), leads to a recovered spectrum which 

is the autocorrelation (p @ p) (roughly, a triangular pulse) convoluted with the object 

function: r = (p @ p)€3 o . A segment of an ideal PRBS sequence is shown in Figure 3.1 

(curve a), together with its autocorrelation function (curve b). If the chopper is open (1) 

or closed (0) for the duration of a time step, 2, and the signal over-sampled (here 16x), 

then the autocorrelation is a triangular pulse with base 22. We note that for finite, linear 

rise and fall times, if the duty cycle is still 50%, as shown in curve c, the autocorrelation 

function (curve d) becomes rounded, but approaches zero smoothly without artifacts. 

The problems that arise in applying the charged particle gate, known as the 

"interleaved comb"[40], to PRBS modulated TOF mass spectrometry have been 

recognized by Zare [41,42]. In an accompanying paper, we examine in greater detail the 

artifacts that are introduced for electron spectroscopy [75]. Three effects can be 

distinguished: 

i) The "dead time" associated with the time for electrons to cross the field 

affected region leads to an error in the time at which the beam turns on and off. Wheh 

the PRBS sequence (Fig. 3.1, curve e) differs from a 50% duty cycle, the autocorrelation 

function (curve f) contains oscillations in the baseline and negative artifacts. This effect is 

analogous to the effects of machining errors and the finite thickness of mechanical 



Time (ns) Time (ns) 

Figure 3.1 Illustration of the non-ideal chopper response on the autocorrelation function: 

a) segment of an ideal 28-1 bit PRBS sequence which is over sampled by a factor of 16 

and b) its autocorrelation function; c) the effect of a linear rise time on d) the 

autocorrelation function; and e) the effect of exponential rise and fall times with a duty 

cycle less than 50% producing artifacts in f) the autocorrelation function. Central section 

of each autocorrelation function expanded to show peak shape. 



chopper disks, used for example in molecular beam scattering [64]. These negative 

artifacts can be assessed from the autocorrelation of the (imperfect) PRBS sequence, and 

removed a posteriori [64], although the effects of the finite disk thickness lead to a 

velocity dependent error. 

ii) The interaction of charged particles with an electrostatic gate causes a change 

in the energy of the particles when the potentials are switched. The change in energy, 

which we term "energy corruption"[75], leads to degredation of the information carried 

by the charged particle, i.e. its energy or velocity, which is the quantity measured in TOF 

spectrometry. Because the corruption depends upon the position of the electron, relative 

to the plane of the chopper, at the time the potential is switched on or off, a statistical 

distribution of energy corruption can be determined directly from the potential for spatial 

regions as a function of the distance from the chopper. 

Figure 3.2 shows energy corruption histograms for regions corresponding to the 

distance traveled in 0.5 ns time steps for a 2eV electron beam by an interleaved comb 

chopper with wire spacing of 1.2 mm and radius 25 pm with applied voltages of i0.4 V 

and an analyzer acceptance angle of +lo. From these results, it is clear that the energy 

corruption is large compared to the energy resolution of modern HREELS 

monochromators for the first 2-3 ns before or after switching the potentials. Since during 

the first 2 ns and last 2 ns of a pulse the energy distribution is heavily corrupted, the 

fraction of the pulse in which "good" information is obtained is (pulse width - 4 

ns)/(pulse width). Thus, reducing the time base of the PRBS sequence below about 8 ns 

(for this chopper) significantly degrades the effective resolution of the analyzer for the 

affected electrons. However, energy corruption is introduced only at the beginning and 
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Figure 3.2 Energy corruption histograms for a 2 eV electron as a function of distance 

fiom the chopper or, alternatively, time of arrival at the plane of the chopper before or 

after the potentials are switched. Histograms obtained via a Monte-Carlo sampling of the 

model potential [75] for 2 eV electrons arriving at the chopper within the time intervals a) 

0-OSns, b) 0.5- 1 ns, c) 1 - 1.5 ns, d) 1.5-2 ns, e) 2-2.5 ns, f) 2.5-3 ns, and g) 3-3.5 ns. 



end of multiple 1's in the PRBS modulation sequence, i.e. when the chopper voltage is 

changed. There are 2"-' edges in a sequence of length 2"-1 [64], so the fraction of 

electrons which pass the chopper un-corrupted depends upon the time base, o, but is 

about 50% less than would be the case for a single pulse TOF experiment. Our on-going 

research, to be reported elsewhere, shows that the energy corruption and other artifacts 

introduced by this chopper can be significantly reduced by improved chopper design. 

iii) If the detector is limited by quantum counting processes, as is the case with 

photomultipliers or electron multipliers operated in a pulse counting mode, and 

sometimes with continuous (analog) amplifiers, then the correlation between the noise 

and signal power spectra leads to artifacts in the cross-correlation recovery method. This 

effect is known as the "Multiplex Disadvantage". These artifacts arise from using least 

squares methods, or more precisely, the assumption that the autocorrelation of the noise 

is zero, which is true for Gaussian distributed, but not Poisson distributed noise. 

Maximum likelihood inversion methods, for example as applied to Fourier Transform IR 

spectrometers [79] and previous work in deconvolution of conventional HEELS' data 

[36], can overcome this noise limitation. 

3.3 Simulation of PRBS Modulated TOF Data 

Define the chopper response function, p, as the effect of the time-dependent 

chopper potentials on the detected electron beam current. More precisely, p is the 

chopper transmission function, p(t) = For the data described in this paper, p is 

given by a 255 bit (2*-1) PRBS ("shift register") sequence, with either an ideal step 

function response, or including one or more of the artifacts described in Sect. 2. Data 

were generated with the PRBS time base of o = 8 ns, and oversampled by factors of '8, 16 

56 



or 64, corresponding to detector time bins of 1 ns, 0.5 ns, and 0.125 ns, respectively. A 

typical HREELS loss spectrum was simulated with a Gaussian elastic peak (Ep = 2 eV; 

FWHM = 2 meV; 100 kCts/s) and a set of smaller Lorentzian peaks of relative intensity 

0.1-10% and FWHM 3 meV, representing inelastic gains and losses. Several doublets, 

whose separation was greater than or equal to their FWHM, were included to test the 

resolution enhancement capabilities. Previous experience with the Bayesiadmaximum 

likelihood algorithms [35] indicates that two peaks must be separated by at least their 

FWHM to be resolvable. One asymmetric lineshape and a feature in the tail of the 

elastic peak were also included to test the ability of the deconvolution algorithms to 

distinguish overlapping peaks from asymmetric ones. 

To generate PRBS modulated, time-series data, (p @ o), the following procedure 

was followed. The kinetic energy distribution (energy loss spectrum) was converted into 

a TOF distribution, o=N(t), with an integer number of counts in each of the discrete flight 

time bins (note that the object function is defined in the time domain, not the energy 

domain). A probability function, f(tj), was generated by creating a cumulative sum of 

counts over the array of flight times, f (t') = N(t)dt . The probability function, f(t), 

represents a look-up table, such that a random number chosen over the domain of f  

implies a flight time, t. To include energy corruption effects, each of the eight energy 

corruption histograms, corresponding to the seven energy corrupted spatial regions of Fig. 

3.2 and the uncorrupted distribution, were convoluted with the original energy 

distribution before being converted to TOF distributions. 

For a beam current of 100 kCts/s, the probability of detecting one electron per 

PRBS cycle is, in this simulation, (1 0' s'X255 bins 1 cycle x 8 ns / bin) = 0.2 / cycle . 



This shows that the noise should obey Poisson statistics and indicates that accumulation 

over millions of PRBS cycles is required for sufficient signal to noise to recover the 

object spectrum. Simulated data was produced by cycling through the response function, 

p ,  where on each time step, i, p(i) ranged between 0 and 1. If p(i) was greater than a 

random number between 0 and 1, the gate was "open" and the electron's flight time, t', 

was chosen randomly from f(tl). (Because the probability of selecting any one flight time 

from the distribution is small, a plot of the variance of the number of counts in each 

channel, for a single pulse TOF spectrum, was equal to the average count rate in each 

channel, demonstrating that a Poisson noise distribution was obeyed.) Then to generate 

PRBS modulated data, a count was added to the channel corresponding to the flight time 

plus the position in the modulation sequence, p. If the channel number exceeded the 

length of the sequence, the value was wrapped around by the PRBS sequence length (8, 

16 or 64' times 255). The process was continued, cycling through p until the desired 

number of total counts was recorded, producing data sets with 2 million to 256 million 

counts (MCts). 

3.4 Results of Cross Correlation vs. Maximum Likelihood Recovery 

We now compare the results of the standard cross correlation method with a 

maximum likelihood deconvolution. The cross correlation method [21] was performed 

in MatLab (Mathworks, Inc., 5' ed., Natick, MA) , resulting in a recovered spectrum, 

r = (p $ p)@ o . A maximum likelihood estimate of the object function, 0, was obtained 

from the modulated data, (p 8 o), using the well known, iterative LUCY algorithm [67, 

801 described previously [36]. The Lucy algorithm maximizes the probability, PG 1 o), 



of obtaining the data, y =  o @  p , given an object function, o, for a Poisson noise 

distribution: 

(o @ exp {- (o @ p), ) 
pG: I o)= 

Y,! 

by an iterative process in which the estimate at ok is used to generate the next estimate, 

ok+l. 

For deconvolution of the PRBS modulated data, the initial guess was obtained from the 

result of the cross correlation method, r, and a prime factor transform was utilized instead 

of the usual FFT algorithms, since the sequence length is not a power of 2. Because the 

PRBS modulated data is periodic (edge effects associated with the start of data 

acquisition are or can be made negligible), no packing of the array is required. 

Consider first the effects of the Poisson noise distribution on the cross correlation 

method. Figure 3.3 compares the object spectrum with the spectra from a single pulse 

TOF experiment (broadened by the 8ns gate time) and that recovered from a PRBS 

modulated experiment. The PRBS modulated data was generated using the ideal, step 

function sequence for p and the object function, o, shown. The single pulse TOF 

spectrum, generated with a square gate function of 8ns duration, results in degraded 

resolution and poor signallnoise compared to the PRBS recovered data. Despite the fact 

that the cross correlation method is not strictly valid due to the Poisson noise distribution, 

the method works reasonably well, presumably since the Poisson noise distribution 

approaches a normal distribution for sufficiently large count rates. 
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Figure 3.3 Comparison of the object spectrum with simulated single pulse TOF spectra 

(gate open 8 ns) and the spectra recovered from a PRBS modulated experiment using the 

cross correlation method. Acquisition times of 1 and 256 sec are shown for an incident 

beam current of lo6 counts/sec. Here, the response h c t i o n  is the ideal (step function) 

PRBS sequence as in Fig. 3.1 a. 



Figure 3.4 compares the results of maximum likelihood recovery with the cross- 

correlation method. In this example, the modulation function, p,  contained linear rise 

times of 1 ns (c.f. Fig. 3 . 1 ~ )  but maintained a 50% duty cycle. Results given in Figure 3.4 

are for 256 MCts in the modulated data. The resolution of the cross-correlated spectrum 

is degraded, as expected, by convolution with an approximately triangular autocorrelation 

function (c.f. Fig. 3.ld). In the maximum likelihood recovery method, the results 

improve with both the total number of counts in the data and the number of iterations. As 

iterations proceed, the Lucy algorithm refines the spectral estimate, significantly 

improving spectral resolution, while artifacts remain at a level of less than 0.01%. Note 

that the gain peaks at 1 160 ns, corresponding to 18 meV separation, are clearly resolved. 

Finally, we describe the results of maximum likelihood recovery when the 

modulation function, p ,  includes both energy corruption effects and the time lags 

predicted by the model potential for an interleaved comb with applied voltage, V,,, = 

*0.4 V, wire spacing, d= 1.2 mm, radius, R = 25 p and an acceptance angle of *lo [75]. 

The modulation function p,  used for deconvolution, was generated in the same way as the 

data, except that it included only the elastic peak energy distribution. Thus, p 

characterizes both the monochromater energy distribution and the non-idealities of the 

chopper, and would be measured in practice simply by directing the monochromatic 

beam directly into the TOF detector. Figure 3.5A compares the true object spectrum with 

results of the Lucy algorithm as a function of the number of iterations. This data was 

generated with a detector time bin of 0.5 ns, and the reproduction of the object function is 

excellent. Note that the feature in the base of the elastic peak is well resolved and the 

resolution of the doublets are comparable to that in the true object spectrum (the doublet 
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Figure 3.4 Comparison of the object function with estimates recovered from PRBS 

modulated data using the cross correlation method and the maximum likelihood method 

(for 50; 500 and 5000 iterations). The modulation function contains linear rise times as 

in Fig. 3 . 1 ~ .  Data shown for 256 MCts total in the modulated data. 
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Figure 3.5 A) Comparison of the object function with estimates recovered from PRBS 

modulated data that includes the non-ideal chopper response using the maximum 

likelihood method (for 50, 500 and 5000 iterations). The modulation function contains 

both energy corruption and the time lag in opening and closing based upon our model of 

the interleaved comb chopper [75] and the energy distribution of the monochromatic 

beam. Data shown for 256 MCts total in the modulated data. 



at 1230 ns corresponds to 9 meV separation). Even the feature at 1340 ns with intensity 

0.1% of the elastic peak is recovered with an intensity roughly an order of magnitude 

greater than the noise. Thus, the Lucy algorithm is able to account for both the rather 

substantial energy corruption effects of the chopper and the Poisson noise distribution. 

By contrast, Figure 3.5B shows the cross correlation results using the ideal PRBS 

response function to process the same energy-corrupted, PRBS modulated data. The 

negative artifacts appearing between channels 1700 and 1900 ns are consistent with the 

non-ideal behavior of the chopper, leading to an autocorrelation function similar to that 

shown in figure 3.lf. To illustrate the importance of accurately defining the modulation 

function, we also show the results of the maximum likelihood deconvolution using the 

ideal PRBS (c.f. Fig. 3.la) sequence. Artifacts appear at the positions of the negative 

artifacts in the cross correlation recovery and the true features are split. 

3.5 Conclusions 

We have simulated the effects of the Poisson noise distribution and non-ideal 

behavior of the "interleaved comb" chopper on PRBS modulated TOF-HREELS data. 

We have shown for the first time that maximum likelihood methods can be combined 

with PRBS modulation to achieve resolution enhancement, while properly accounting for 

the Poisson noise distribution and artifacts introduced by the chopper [76]. The results 

suggest that resolution similar to that of modem high resolution electron spectrometers 

can be achieved with a dramatic performance (throughput) advantage over conventional, 

serial detection analyzers. 
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Figure 3.5 (continued) B) Illustration of the negative-going artifacts in the cross 

correlation recovery due to the non-ideal response of the chopper (middle curve) and the 

importance of accurately determining the response function: results (upper curve) of 

using the ideal (step function) PRBS (Fig. la) sequence in the maximum likelihood 

method. 



Chapter 4 

DESIGN OF A TOP-HREELS SPECTROMETER 

4.1 Introduction 

In this chapter we describe the first generation instrument designed for time of 

flight electron energy loss spectroscopy, based upon the results of the work in Chapters I1 

and 111. The theoretical model of the interleaved comb chopper and the trajectory 

simulations presented in Chapter I1 indicate that sub-nanosecond rise times can be 

achieved. Comparison of the static and dynamic properties with experiment suggests that 

the model provides a good description of the optical properties of the chopper. However, 

the energy corruption effects are particularly severe with this chopper design. 

Nevertheless, incorporation of the energy corruption histograms into a stochastic model, 

as presented in Chapter 111, indicates that at a beam energy of 2 eV and a flight length of 

lm, the maximum likelihood recovery algorithms are able to compensate for the non- 

ideal characteristics of the chopper and improve the time resolution by at least a factor of 

8 over the nominal 8ns time step chosen for the PRBS generator clock. 

The major components of the instrument are a conventional HREELS 

spectrometer (LK Technologies, Model EELS3000), comprised of a double-pass 

monochromator and double-pass analyzer, and the TOF analyzer, comprised of a set of 

collimation slits, the chopper assembly, an output Einzel lens, a magnetically and 

electrically shielded flight tube, and a custom-modified micro-channel plate detector, 

shown schematically in Fig. 4.1. In the following sections, we will describe the 

conventional HREELS spectrometer and vacuum system, the TOF analyzer and the 

associated electronics. 



Conventional 
EELS 

Figure 4.1 Schematic drawing of the TOF-HREELS system, comprised of a rotatable 

double pass monochromator, a double pass analyzer, and a TOF analyzer. The TOF 

analyzer includes entrance apertures to limit the angular distribution at the chopper to * 1 



In the HREELS system, a LB6 filament is used to generate high density electron beam. 

Monochromation of electrons emitted by themionic emission is achieved by passing 

through two cylindrical-sector electron energy analyzer (called monchromators) - typical 

radius 35 mm, typical pass energy 0.38 eV. Electrons are retarded before entry into 

sector, and then accelerated to sample. Same two cylindrical-sector electron energy 

analyzer (called analyzers) are used to analyze electron kinetic energy. The 

monochromators can be rotated by an angle of 110 so as to direct the electron beam into 

either the conventional analyzer or the TOF detector. The schematic of the experiment is 

shown as in Fig 4.1. Samples to be studied are positioned at the center of the rotation. 

After the electron resolution are optimized by tuning straight through the conventional 

analyzer, the electron beam are directed to impact the sample and the scatted electrons 

are collected either by a conventional HREELS detector or by the TOF detector located at 

the end of a 1.2 m flight tube. An interleaved chopper assembly is put in front of the 

flight tube. When a PRBS modulation signal is applied to the chopper, the TOF detector 

will collect the electron spectrum modulated by the chopper. With the help the 

deconvolution software, the object spectrum can be post-processed. The entire instrument 

is magnetically shield. 

4.2 Description of the Conventional HREELS Instrument 

The HREELS spectrometer (ELS3000, LK Technologies, Bloomington, IN) 

makes use of a highly optimized double-pass monochromator design described by 

Ibach[l2]. The "penultimate" model ELS3000 instrument was chosen, rather than the 

"ultimate" spectrometer, because in the ELS3000 the monochromator is rotatable which 



was more conducive to retrofitting the TOF detector. Several design changes were 

specified for the spectrometer and the vacuum chamber. We first describe the features of 

the standard instrument, and then give the modifications chosen for the TOF spectrometer 

development project. 

The monochromatic source consists of an electron gun with a LaB6 cathode and 

mounted in a repeller electrode geometry designed to accelerate and focus the 

thermionically emitted electrons into the pre-monochromator[l2]. The pre- 

monochromator operates as a "retarding" monochromator, such that the electrons are 

decelerated by a factor of 1-2 at the entrance of the pre-monochromator. At the exit of 

this stage, as they approach the entrance slit of the second monochromator, the energy of 

the electrons is again reduced to about 115 of the nominal pass energy of the pre- 

monochromator. To compensate for space charge effects, Ibach modified both the 

overall deflection angle from the ideal 127" cylindrical deflector and the position of the 

exit slit in the pre-monochromator. The pre-monochromator has a total deflection angle 

of 119" with the exit slit offset by 1.1 mm. In addition, the design utilizes compression 

plates above and below the cylindrical sectors, adjusted to a negative potential relative to 

the beam energy, to reduce the vertical spread of the beam and generate a parallel beam 

in the non-dispersive direction at the exit slit. The second monochromator acts as a non- 

retarding monochromator. The deflection angle is increased to 140°, again to compensate 

the space charge effects. The monochromator also has compression plates; however, the 

magnitude of their potentials, relative to the potential of the beam, is much smaller than 

in the pre-monochromator. The analyzer is also a double-pass geometry with the design 

of each sector identical to the main monochromator. A symmetrical system of input- 



output "zoomlt lenses, positioned between the monochromator and analyzer, is used to 

focus and accelerate and decelerate the electron beam to and from the sample surface, 

respectively[l2]. These lenses are non-circularly symmetric with different focal lengths 

in the dispersive and non-dispersive plane. 

The whole ELS3000 unit is mounted on a 12 inch (305 mm) 0. D. vacuum flange. 

Construction materials are all non-magnetic to ensure the lowest possible stray magnetic 

fields. Dual magnetic shields are provided at the flange to interface with the chamber 

magnetic shields. The monochromator rotates by means of a precision, linear- 

feedthroughhack-and-pinion gear system. The range of motion was increased from the 

standard instrument to a full scale range of 1 lo0, such that the monochromator could 

rotate beyond the "straight through" position by lo0, through the position of the TOF 

detector, 90" away from the straight through, to a position 10" beyond the position of the 

TOF detector. A direct readout of the monochromator angle is provided by a scale, 

which is viewed through a port on the mounting flange. A custom motorized linear 

motion feedthrough was specified for future work to allow automated control of the 

monochromator position. 

The scattering chamber was also modified with a slot to allow the lens of the TOF 

detector access to the sample. The scattering chamber is biased at ground potential, 

rather than at the nominal beam energy implemented by Ibach[ 121. 

Since the purpose of the project was to develop a new TOF detector, we 

anticipated opening the vacuum chamber frequently and needing access to the 

spectrometer and components of the TOF detector. Therefore, we specified the vacuum 



chamber in an inverted orientation, so that the manipulator, top flange, and covers of the 

p-metal shielding could be removed, gaining access directly to the instrument. 

4.3 The TOF Analyzer 

4.3.1 Chopper Assembly 

The specification of a lens for a "wide band" analyzer presents a technical 

challenge, since the relative range of electron energies can vary by 100%. For example, 

if the primary energy is l ev ,  then we expect the vibrational loss spectrum to extend 

roughly 0.5 eV to lower energy. Furthermore, to achieve suficiently high time resolution, 

the free flight energy cannot exceed a few eV. Therefore, the possibility of accelerating 

the electrons in order to reduce the variation in the loss energy spectrum, relative to the 

elastic peak, limited the relative energy range to about 25%. If we further add constraints 

to have a well-defined angle of acceptance from the sample across the energy range and a 

&lo input acceptance angle to the chopper, then the input lens design becomes much more 

difficult. 

In order to avoid the complications of designing a wide band lens during the 

initial development of the instrument, the angles of acceptance were set by a set of three 

copper beryllium slits. Each of the three slits has a lateral width (i.e. in direction of the 

chopper deflection) of 0.5 mm and a height of 1.9 mm. Two of the three slits provide 

collimation to a maximum lateral angle of l o  from an edge of the first slit to the opposite 

edge of the second slit. This colliniation ensures that the chopper will not deflect any part 

of the electron beam into the detector when the chopper is closed, i.e. when the deflection 

voltages are present. The first slit is 43mm from the axis of rotation of the 



monochromator (the nominal sample position); the second is 28.6mm further; the 

chopper plane is 6.35mm beyond the second slit; and the last slit is 35.2mm from the 

chopper plane. The included angle of the last slit from the sample is 0.26" in the 

deflection direction, while the included angle of the last slit from the center of the 

chopper is 0.83". Both of these included angles are within the included angle of the 

18mm diameter detector from their respective origins. 

The chopper was constructed in the manner described in Chapter 11, using lift-off 

methods to pattern the gold bus bars and attachment pads on the square ceramic substrate. 

The chopper wires were 25 pm diameter, wire bonded to pads placed on 250 pm centers. 

The driver signals were coupled from impedance matched SMA feedthroughs to the 

chopper via shielded 50 Q cable. 

4.3.2 Magnetic Shielding 

The magnetic shielding was designed to provide attenuation of the local magnetic 

field (0.6 gauss oriented roughly vertically) so that a l e v  electron will fly longitudinally 

down the 1 m long horizontal tube with less than lmm of lateral deflection. This 

specification implies that the strength of a uniform vertical field be less than 0.07 

milligauss, which requires an attenuation of at least 8500. 

The magnetic shielding for the flight tube consists of two coaxial p-metal tubes, 

each separately reduced down to overlap with a corresponding p-metal collar. Each 

collar is fit into the TOF port of the corresponding layer of the double p-metal shields in 

the main HREELS chamber. This layer-by-layer coupling of the flight tube shields to the 

main chamber shields ensures a continuous magnetic field attenuation of >20 000. The 



overlapping collar joints provide a magnetic path with approximately half of the 

reluctance of either its associated tube or chamber shield, thus providing good flux 

containment where the tube enters the chamber. The flight tube p-metal shields were 

constructed by Amuneal Manufacturing Corporation with their 0.062 inch thick 

AMUMETAL. The inner shield has an I.D. of 4.18 inch and the outer shield has an I.D. 

of 5.00 inch and each extends from the main chamber shield 55 inches. Each tube is 

constructed in two sections to allow hydrogen annealing after construction. The sections 

were joined with an overlapping collar and secured by machine screws. In hindsight, we 

found that it would have been preferable to have an 8 inch Conflat port for the flight tube 

in order to avoid the reduction of the p-metal shield at the entrance to the chamber. 

4.3.3 ~ i d a ~  Shielding 

The low, 0.5 eV kinetic energy specification for the optics of the flight tube 

further requires a highly uniform work function along the flight tube and adequate 

shielding from both static electric and AC electromagnetic fields. The inner flight tube 

was constructed from a 60 inch long, 2.865 inch I.D., 0.0940 inch thick, OFHC copper 

tube that was bright dipped and coated with colloidal graphite. The colloidal graphite 

was applied in a custom-built apparatus to rotate the horizontal tube on its axis while the 

alcohol evaporated from the graphite suspension. 

4.3.4 The Detector 

A chevron design, micro-channel plate detector (MCP) with a cone-shaped high- 

speed anode (AP-TOF, Gallileo Corp., Sturbridge, MA) was modified to be biased for 

negative particle detection. The output was coupled to a 50 SZ Kapton transmission line 

with a 47pf capacitor. The anode bias forms the shunt part of a pole-zero canceled output 



circuit to reduce ringing in the output pulse signal. This provided pulses with a nominal 

800 ps FWHM. The detector assembly is mounted on an electrically isolated frame that 

is connected to the copper flight tube with a spring contact made fiom a loop of copper 

beryllium sheet. The front and back bias points of the MCP were bypassed to the 

detector fiame with 47 pf capacitors. Careful consideration was given to the copper 

enclosure around the anode connections to ensure that any current flowing on the outside 

of the shield of the detector signal coaxial cable does not flow into the enclosure. 

4.4 The Electronics 

A functional block diagram of the electronics is shown in Figure 4.2. The 

chopper driver circuitry consisted of a 125 MHz clock, generated by the Time-to-digital 

converter (TDC), which provided the time base for the PRBS sequence generator. At the 

core of the PRBS generator was designed to have daughter cards to select the feedback 

circuit for different shift register lengths. Only the 8-bit shift register length, generating a 

sequtnce of period 28-1 = 255 clock cycles, was implemented. The output of the shift 

register was inverted and then coupled, via a balun, to generate two synchronous output 

signals of equal and opposite magnitude. Each output signal provided the input to a pulse 

generator (E&H 1560, E&H International Inc) modified to utilize only the output stage of 

the pulse source. The 50 0 output signals could be tuned to balance the amplitude of the 

drive potentials. 

The detector pulse output signal was capacitively coupled to a 1 GHz bandwidth 

preamp (Ortec 9306, Oak Ridge, Tennessee) with a gain reduced to approximately 8. 

The output signal was then passed to a discriminator/amplifier (Ortec 9307, Oak Ridge, 
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Tennessee) that generated NIM pulses which supplied the event signal input to the TDC 

(FastComtec, Oberhaching, Germany) installed in a personal computer (Tratos system). 

The TDC was configured to start timing on the rollover pulse of the PRBS generator (all 

1's in the shift register) and stop upon receipt of an event pulse. The TDC time 

resolution was 250 ps, corresponding to an oversampling factor of 32, relative to the 8 ns 

time base of the 125 MHz clock. Software provided with the TDC was used to 

accumulate the TOF data into a histogram. In this configuration, the dead time required 

to reset the TDC after each stop event resulted in loss of 50% of the TOF events. This 

mode was convenient for examination of the TOF spectrum during data acquisition; 

however, the board could be configured to take data continuously for approximately 60 

seconds without losing events. The maximum burst rate of the device was 2 GHz. 

The monochromator was tuned up using the conventional KREELS analyzer and 

standard electronics supplied with the ELS3000 instrument. The lens voltages applied to 

the output Einzel lens were generated fiom the McAlister HREELS electronics of the 

system described in the measurements of Chapter 11. 



Chapter 5 

FACTORS AFFECTING INVERSION OF PRBS MODULATED TOF DATA 
WITH THE LUCY ALGORITHM 

5.1 Introduction 

Pseudo-random binary sequence (PRBS) modulation is a well known method to 

gain a throughput advantage in time-of-flight (TOF) instruments[42, 55-57, 77, 781, and 

is closely related to Hadamard spectroscopy[58]. The method utilizes special sequences, 

p ,  that admit particles to the flight path 50% of the time to gain a throughput advantage 

over single pulse TOF that can be as large as 500 or 1000, depending on the nature of the 

underlying time-of-flight spectrum, which we will refer to as the object function: o. 

In the ideal case, the time-modulated data, y = o@p,  is a convolution of the object 

function with the modulation function, p. These special sequences, known as Hadamard 

PRBS, or maximal length shift register sequences[58, 591, have the unique property that 

their autocorrelation is approximately a delta function. In principle, the object function 

can be recovered simply by cross-correlation; i .e. p @  y = @ @p) @ o k: o. 

In reality, the response of choppers, or modulators, is limited by finite thickness 

effects[64, 811 and interactions between the chopper and the particles[81], which lead to 

artifacts in the cross-correlation method[41, 641. Recently, we have demonstrated the use 

of probability-based spectral estimation methods[76, 821 to recover the object function by 

iteratively deconvoluting the raw time-modulated data, y. Using the Lucy algorithm, we 

find significant improvement in reducing the effects of noise and chopper-particle 

interactions. Additionally increased time resolution over the cross-correlate method can 

be obtained. 



We present a theoretical analysis of the interactions of a particular modulator (the 

"Bradbury-Nielsen gate7'[83] or the "interleaved comb" chopper[40]) with an electron 

beam and their effect on the ability of the Lucy algorithm to invert the raw time- 

modulated data, for applications in High Resolution Electron Energy Loss Spectroscopy 

(HREELS). We compare the results with experimental TOF-HREELS data for a 

polytetrafluoroethylene (PTFE) spectrum[33, 341. The results are particularly relevant to 

applications in ion TOF mass spectroscopy and, in a more general way, to PRBS 

modulation in neutron scattering or molecular beam studies. 

The Chapter is organized as follows. We begin with a theoretical model of the 

chopper interaction and distinguish features of the response that causes the unusual data 

to deviate from what would be obtained by convolution. Next, we present the 

experimental and theoretical methods. The results are given in section IV and the 

implications for data recovery and instrument design follow. 

5.2 Theoretical Background 

In Chapter II[81], we have given an analytical expression for the potential of a 

Bradbury-Nielsen gate in which an infinitely repeating set of wires, with bias, Vqp, 

alternatively positive and negative, are of finite diameter and infinite length. For the 

limiting case in which the wire radius, R, is small compared to the wire spacing, d, the 

potential, y/(x,y) is obtained from a conformal map as 

2%VW where the line charge is defined as, R = ,,,=,,,, . The potential is shown in Fig. 5.1A as qGmi] 

a contour plot, where 2R/d = 0. I. When equal and opposite potentials are applied to the 
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Figure 5.1. Contour plots of the potential for a wire diameter-to-spacing ratio of 0.1. 

Contour lines are plotted relative to the applied voltage, *Vapp, and dimensions are scaled 

relative to the wire spacing, d. The critical boundaries, beyond which an electron must 

be when the potential is turned on (dashed curves) and before which an electron must be 

when the potential is turned off (bold solid curves) to reach the detector are shown for the 

KE 
ratios 5 = - earn as indicated. To illustrate the effect of the energy variation across the 

C P P  

vibrational loss spectrum, we compare the critical boundaries for the experimental case of 

Vapp = f O.4V for eaCc = O S O ,  lo, 2" at A) the primary beam energy of 4 e V, and B) for an 

inelastically-scattered electron beam of energy 3.6 eV. The rectangular regions for time 

steps of 12.5 ps and d = 250 pm are also shown for A) a kinetic energy of 4 eV and B) 



grid wires, charged particles traveling in the +x direction are deflected in f y directions. 

For small deflection voltages, the angle is proportional to the ratio[81] of e VoP,JKE and an 

appropriate aperture can be selected to exclude the deflected particles. The advantage of 

this gate over a set of deflection plates is the more rapid spatial decay of the applied 

potential, V(x) K 42 exp(-~1x1 1 d )  , so that the particles do not interact strongly with the 

gate until they are within approximately one d-spacing of the plane of the chopper. 

In the simplest approximation, the time-dependent chopper voltage modulates the 

transmission of the gate such that the time-modulated data, y, is a convolution of the 

PRBS sequence, p, with the intrinsic time-of-flight distribution, o(0, as long as the 

applied voltage is sufficiently large to exclude all particles in the energy distribution, o(E). 

We will denote a time of flight distribution as n(t) and the corresponding energy 

distribution as n(E). Given the flight path length L and particle mass, m, they are related 

by 

A more detailed examination of the mechanics[81] reveals that the finite extent of 

the fields leads to deviations from the convolution in two distinct ways. First, if an 

electron is near the gate and the potential is applied instantaneously, the electron either 

gains or loses potential energy depending upon whether it is closer to a negative or 

positive wire, respectively. This means that the energy spread of a monochromatic beam, 

o(E) = 6(E - E,), is increased after it passes through the chopper. Because the energy 

change, or "energy corruption," depends upon the particle's distance from the chopper at 

the time the potential is switched, the spread in the energy domain varies with time. Since 

the energy determines the flight time, the particle's flight time distribution broadening 



depends on both its distance from the chopper at the time the potential switches and its 

original energy. Alternatively, the point spread function in the time domain varies with 

the relative time between a particle's arrival at the plane of the chopper and the time the 

potential switches, as well as with its original energy. Clearly, the spread in flight times 

varies with time and is energy- dependent; therefore, the modulation function can not be 

strictly described as a convolution in the time domain. 

When the time to cross the field-affected region is small compared to the time 

base of the modulation sequence (which becomes true for choppers of sufficiently small 

wire spacing, 4, we can define a critical boundary[81] between the positions of particles 

at the time the potential is switched, that will reach the detector from those that will not. 

These boundaries are shown as the bold solid curve (potentials turning off) and the 

dashed curve (potentials turning on) in Fig. 5.1. For the case in which the potentials k e  

turned off, the particle will reach the detector if it is before the solid curve at the time the 

potential is switched; whereas, when the potential is turned on, the particle get through if 

it is beyond the dashed curve. This leads to behavior (for { < 20) in which the gate opens 

late and turns off early, and vice versa for ({ > 20) which we refer to as a "lead / lag" 

effect. 

The energy corruption effect may be approximated as a convolution in the energy 

domain for a small interval of arrival times, 6s. Consider the situation for a single energy 

particle beam, i.e. o(E) = S(E - E,,) , where Eo is the monochromatic energy of the 

particles. We subdivide the modulation sequence time step, r, into m subintervals, i = 

O,l,. . .m, of width (St = z /m), as shown in Fig. 5.2A. We then divide the potential along 

the x-direction into equal intervals of width, v. St, where v is the particle's velocity, as 
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Figure 5.2. A) Schematic illustration of the relationship between the time dependence of 

the potential applied to the chopper, V,,,(t), and the hc t ions  gi(T), that represent the 

periods during which energy corruption histogram, hi(t), broadens the object fimction 

(See text for details). Energy corruption histograms, hi(E), are shown for time steps of 

12.5 ps, OaCc = lo, Vapp = 0.4 V, and a wire spacing of d = 250 pm for a kinetic energy of 

B) 4 eV and C) 3.6 eV. The vertical scales have been multiplied by the factors indicated. 



indicated by the rectangles in the upper half of Fig. 5.1A for i = 1,2,3.. . . If the particle is 

within region i at the time the potential is turned on, then statistically it gains or loses an 

energy chosen randomly from the distribution of potentials within the region of area 

!2i = v .St. d , given generally by 

where Sn(E) is a region between contours of constant energy E and E + dE . The energy 

corruption histogram was computed by Monte-Carlo integration over the portion of 

region i after the critical boundary, x = c(y) , where 

n 
1, E s  V ( X , Y )  5 E+6E,  x1>c(yl) 
0, otherwise 

and n points (x, , y,) are chosen randomly within region i [8 11. The leadllag effect was 

incorporated by including in !2i , only those portions of the regionx, > c(y,) for which 

particles will reach the detector, which reduces the area of the histogram. The integral 

area of h,(E) therefore includes the transmission of the grid for time interval i. We 

illustrate these histograms in Fig. 5.2B and 5.2C. (Note that the condition becomes 

x, < c(y,) when the potential is turned off) 

In any time step of the modulation sequence in which the particle arrives at the 

plane of the chopper i - St after the potential is switched off (or i - St before the potential 

is switched on, due to the symmetry of the potential), the beam of energy, 

o(E) = S(E - Eo) , will have a final energy distribution o(E) 8 hi (E) . While the energy 

corruption causes the same spread for particles of any energy, the definition of the spatial 

region to which the histogram h,(E) applies depends upon the particle's velocity. 



Therefore, only for o(E) within a limited energy range is it possible to approximate the 

new energy distribution as o(E) €3 h, (E) for an arbitrary distribution o(E) . In Fig. 5. I A, 

we show the size of the intervals v.6t for 4eV and 3.6 eV electrons, energies typical of 

vibrational loss spectrum for a primary beam energy of 4eV. If the chopper response 

varies significantly over the energy range of o(E), we must divide o(E) into separate 

intervals o, (E) and sum the resulting convolutions, o, (E) €3 h,,, (E) , for a particular 

arrival time, i -St  . After calculation of the energy- broadened object fimction for each 

time interval, we need to transform the energy distribution (o(E)€3 h,(E)) to the time 

domain Since the energy corruption histograms vary with the energy of the particles, the 

modulation is not strictly a convolution in energy either. 

Finally, to construct the entire PRBS time-modulated data, we note that the 

energy corruption histogram h,(t) applies to all time intervals that occur i -  St after (or 

before) the potential is switched off (on) in the entire, oversampled PRBS sequence. We 

therefore construct a time modulation function g,(t) which contains a square pulse of 

unit area and width St at all positions i .St after a falling edge in the potential and i St 

before a rising edge, as illustrated in Fig. 5.2A. The modulated data, y(t), is therefore 

expressed as a sum of convolutions: 

where z, (t) is obtained for a monochromatic beam from transformation of o(E) €3 h, (E) 

to a TOF distribution. When o(E) = S(E - E,,) , y(t) is the chopper response 



function, p(t) , this is the signal that is measured with a monochromatic beam of energy 

In summary, the chopper response function p(t) , deviates from a convolution in 

time because different energy corruption histograms must be applied for different arrival 

times at the chopper, due to the spatial extent of the field. To calculate the time- 

modulated data, y(t), for an arbitrary object function, o(E), equation 5.5 is valid only if 

the variation of the energy corruption histograms with the particle's energy is small; 

otherwise the object function must be divided into a set of energy intervals. Again, the 

formalism holds only when the time for the particle to cross the field- affected region is 

small compared to the PRBS base time step, z. 

5.3 Methods 

5.3.1. Experimental 

A schematic diagram of the system is shown in Fig. 5.3. The system is comprised 

of a double pass HREELS spectrometer (LK Technologies, Model EELS3000) and a 

custom-designed TOF analyzer. The TOF analyzer optics consist of a set of collimation 

slits (8 ,, =lo) ,  a chopper assembly, and an Einzel lens to deflect and focus the beam 

onto the microchannel plate detector. Detailed information about the design of the TOF- 

HREELS system is given in a separate paper [84]. The monochromator rotation was 

extended to a range of 110' to allow the beam to be directed into either the conventional 

analyzer or the TOF analyzer. The spectrum of a thin, azimuthally-aligned film of PTFE 

(Teflon@, Goodfellow), described elsewhere[33, 341, was measured with both analyzers. 

In the experiments, the chopper consisted of 80 gold wires, of 25 pm diameter and 250 
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Figure 5.3. Schematic drawing of the TOF-HREELS system, comprised of a rotatable 

double pass monochromator, a double pass analyzer, and a TOF analyzer. The TOF 

analyzer includes entrance apertures to limit the angular distribution at the chopper to *1 

in the horizontal plane, a Bradbury-Nielsen gate chopper, an output Einzel-type lens with 

deflection capabilities, and a microchannel plate detector. 



pm spacing, fabricated on patterned alumina substrates as described in Chapter II[81]. 

The exit slit was selected to exclude electrons deflected by more than + lo. The PRBS 

signal was generated by an 8-bit shift register and output drive electronics which allowed 

the magnitude of the + V,,, potentials to be varied as required. The TOF detector was 

based upon a micro-channel plate detector (AP-TOF, Gallileo Corp., Sturbridge, MA), 

which was custom-modified for negative particle detection. The pulse signal coming 

from the detector was amplified (Ortec 9306) and discriminated (Ortec 9307) and then 

directed to a TDC card (FAST Comtec, Oberhaching, Germany) in a PC. The response 

function, p(t), was measured with the monochromator directed straight into the TOF 

analyzer. After acquiring TOF data from the PTFE sample, a custom- designed 

implementation of the Lucy algorithm[82] was used to recover the time of flight 

spectrum. 

5.3.2. Trajectory Simulation Methods 

In order to simulate the noisy data obtained in the experiment and to test the 

recovery algorithm, we developed a stochastic simulation based upon trajectory 

calculations over the potential of an infinite array of finite diameter wires, described in 

section 11. Wires of diameter 2R and alternating potential, f V,,,, are spaced along the y- 

axis with a periodicity of d as shown in Fig. 5.4. Electrons passing in the positive f- 

direction would be deflected in the f y directions. Electrons with an initial velocity at 

randomly selected times fall along a line x  = x , ,  for -d < y < d. The two bounds, between 

which explicit trajectory calculations were run, were defined at xr = -Nd and x, = Nd, 

according to two criteria. First, the magnitude of the potential should be less than 0.1 



Figure 5.4. Schematic drawing of the trajectory simulation model used to generate noisy 

data. Electrons are started randomly in time at a position x = xl and y chosen randomly 

between M. Trajectory calculations are carried out numerically within the "field affected 

region", xl<x<x,, if the potential is on or analytically if the potential is off. In the 

example shown, the electron trajectory is calculated analytically for a time, At, during the 

remainder of the first modulation sequence step with potentials off, pi = 1 (voltage off). 

In the next time step the potentials are applied (p,,, = 0) and so the trajectory is calculated 

numerically for the portion of time step, z, before the particle reaches the right boundary 

of the field affected region, x,, and it is calculated analytically thereafter to the end of the 

modulation time step. 



meV to assure the accuracy of the calculations. Examination of the potential shows that 

y (x) a 42 exp(-z 1x1 1 d )  where 2 is proportional to the magnitude of the applied voltage, 

Vapp . In the simulations described here with Vapp = 0.4V, when x = -4d, y/ is 

approximately 1 .83~10 '~  V which is already negligible. Second, the boundary should be 

chosen sufficiently far from the grid such that the final trajectory is independent of the 

initial x-position. For electrons of a particular energy and applied voltage, Vapp, this 

condition was checked by comparing the chopper response as a function of the initial x- 

position, XI= -Nd, with N varied between 1 and 40. Within statistical uncertainties, when 

N 2 2, the difference of chopper response functions caused by the different initial 

positions is completely negligible. Thus, the electrons are treated as if there is no 

electrical field beyond the two lines and they can be considered to fly freely. 

To allow for a distribution of energies and the random arrival of electrons at the 

chopper, we developed the following method, illustrated in the flow chart of Fig. 5.5, to 

generate PRBS-modulated data while minimizing the amount of trajectory calculation 

work. The region between xl and x, is treated as the field-affected region. For the 

electrons with velocity, v, we define t a ~  = +, which represents the time for the 

electrons to pass through the field-affected region. The time dependence of the potential 

is determined by the modulation sequence, which may change state on multiples of the 

time step, T. In the experiment, the beam current is low ( 1 lo6 c ts ls)  and the arrival 

times are accumulated in a histogram over many cycles. In the simulation, it is more 

convenient to calculate the trajectory of a large number of electrons, n, at each step and 

cycle through the modulation sequence only once. In experiment, space charge effects are 

negligible and are therefore not considered in these calculations. In the ith step of the 
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Figure 5.5. Flowchart of the trajectory simulation method. We define Fkee (At, t, , q, , p,) 

and FfieId (At ,  t, , q, , p,) as the functions that calculate the final time, tis , the coordinates, 

qj, , and momenta, after a time At,, given the initial coordinates, q, , and momenta, 

p,, at time t, , for the cases in which the potentials are off ( 4  = 1 ) and on ( 4  = 0 ), 

respectively. 



modulation sequence, each of the n electrons arrives (is created) at x = x, randomly in 

time within the time step, z, according to a random value, At, such that 0 < At < z, and At 

is taken to be the time remaining within the ith step of the modulation sequence. Two 

different possibilities exist. First, if At > tag; then the electrons will pass through the 

field-affected region within the ith time step. If the chopper is open ( pi = I ), then the 

trajectory can be calculated analytically for At. If the chopper is closed (pi = 0), then the 

trajectory is solved numerically over the applied potential for At. Second, if At < tuff, then 

the electrons' information has to be recorded when the ith PRBS time step ends so that 

during subsequent PRBS time steps, the motion of the electron can be treated according 

to whether the chopper potential is on or off. In successive steps, the accumulated time is 

compared to tafi and the trajectory calculations, either analytical (potentials off) or 

numerical (potentials on), are carried out until the electron clears the field-affected region. 

Any portion of a time step that remains is then calculated analytically, since the particle is, 

by definition, in the field fiee region. At the end of the first time step in which the 

electron has left the field-affected region, the position, velocity, and the time values are 

recorded. 

In both the experiment and the simulation model, the PRBS sequence was the 8bit 

maximal length shift register sequence[58], with a total of 2' -1 = 255 time steps in the 

whole sequence. Each time step, z, represents 8 ns, so the total length of the PRBS 

sequence is 2040 ns. In the experiment, the data was oversampled by a factor of 32, 

resulting in a bin size of 0.25 ns with a total of 8160 channels collected. The trajectory 

calculations were performed using an adaptive, fourth order Runge-Kutta method 

(Mathcad v. 2000, Mathsoft). 



The results of the simulation were analyzed in a subsequent processing step. The 

instrument is designed to accept or reject electrons based upon their deflection angle, Oat,. 

For a particular acceptance angle, the results of the trajectory calculation were sorted to 

include only those electrons with tan(v,/ vJ < OaCc in the final time of flight histogram. 

The arrival time at the detector is calculated based upon the recorded time, position and 

the x component of velocity. Due to the cyclic nature of the PRBS sequence, the arrival 

time is calculated modulus the period of the sequence (here, 255 x 8 ns = 2040 ns), and 

binned into 0.25 ns intervals. 

5.4. Results 

We begin by presenting experimental data that illustrate the performance of the 

chopper and our ability to recover the object spectrum. We then turn to simulation results 

to illustrate the effect of several non-ideal characteristics of the chopper on the data 

inversion process. 

5.4.1. Experimental Results 

Fig. 5.6a shows the electrical signals applied to the chopper and, in 5.6b and 5.6c, 

the accumulated TOF signal at the detector for a section of the PRBS sequence with a 

potential of + 0.4V applied to the chopper. The base time step is 8 ns. The traces in Fig. 

5.6a, were measured with a 1.8GHz, 8G samplels digital storage oscilloscope (LeCroy 

LC584AM, Chestnut Ridge, NY). They show that the signals applied to alternate pairs of 

wires are well balanced, with a rise time of 1 ns (10-90%), and a fall time (returning to 

OV) of 1 ns. The sum of the two signals is the net potential on the grid. For our 

experimental conditions this is on the order of 10 meV. The field due to this potential 
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Figure 5.6. A section of the 255-bit PRBS modulation function showing a) the time 

dependence of the voltages applied to the chopper wires, b) the corresponding section of 

the TOF histogram measured at the detector with the 4 eV electron beam from the 

monochromator aimed directly into the chopper with the lens potentials off to illustrate 

the effects of scattering from the flight tube, and c) the improved TOF spectrum with the 

lens after the chopper is optimized. The effects of several non-ideal factors in the 

instrumental response function, as compared to the ideal PRBS modulation function 

(solid curve), are discussed in relation to the ability of the Lucy algorithm to recover the 

TOF data. 



decays away as l/x, while the potential due to equal and oppositely charged parallel wires 

decays as exp(-nlxll d )  . The TOF histogram in Fig. 5.6b shows the chopper response 

with the monochromator rotated so the beam is directed straight through the chopper. The 

time bin for acquiring data was 250 ps. The ideal PRBS sequence is shown in Fig. 5 . 6 ~  

(the black square curve). Although the collimation slits in front of the chopper limit the 

horizontal angular distribution to f lo, the vertical spread, together with any residual 

field, resulted in scattering from the flight tube walls. An Einzel lens directly after the 

chopper significantly improves the response function of the system, as illustrated in Fig. 

5 .6~ .  However, comparison with the ideal PRBS signal, also shown in Fig. 5.6c, reveals 

several non-ideal characteristics: 1) The rise time is finite; 2) the pulse widths differ from 

multiples of the nominal 8 ns time base; 3) the height of the single open bit is less than 

that of multiple open bit slots in the sequence; 4) there are oscillations accompanying the 

onset of the pulse; and 5) there is significant background during the "off" b i t s . ' ~ e  

quantifj two of these factors in Fig. 5.7. 

As discussed in our previous paper[81], the chopper response has a lag or lead 

with respect to the applied voltage depending upon the position of the critical boundaries 

(see also section I1 and Fig. 5.1). This effect depends on the ratio of the particle's kinetic 

energy to the potential on the chopper, the scale of the chopper and the acceptance angle. 

For the conditions of our experiments, 5 = f = lo, the chopper is effectively open 

for periods of time which are less than an integer multiple of 8 ns; and effectively closed 

for periods which are greater than an integer multiple of 8 ns. Because the capacitance of 

the shift register may cause a different lag depending upon how long the gate has been 

open, it is important to distinguish lags in the drive electronics from that of the chopper 



Number of cumulative 1's 

Cumulative 1's 

Figure 5.7. Analysis of the effects of A) the dead time of the drive electronics (circles) 

and the response function of the system (squares) as a function of the number of 

consecutive 1's (transmission on) in the PRBS sequence; and B) the transmission during 

the open periods. The data show that the response function turns on late and turns off 

early (positive deadtime) and that the transmission is significantly lower for a single 1 

than for multiple consecutive 1's in the sequence. The transmission rate is normalized to 

unity at average count rate of the 8 consecutive open time bits in the PRBS spectrum. 



itself. In Fig. 5.7A, the relationship between the deadtime and the number of cumulative 

1's was quantified for both the PFU3S signal applied to the chopper and the chopper 

response. Here, we defined the deadtime as 8. N - topen , where topen was measured as the 

time between the half-height (0.2V) of the falling edge and the next rising edge of the 

electrical signals (circles) and as the FWHM of the pulses in the TOF histogram for the 

chopper response (squares). The error bars are the standard deviation in values for all 

occurrences in the PRBS sequence (except for 8 cumulative l's, which only occurs once 

in the sequence). The variation in the deadtime is small for the drive signal, suggesting 

that the variation in the chopper response is mostly due to the difficulty in quantifying the 

peak widths. The chopper shows a significantly larger deadtime than the electronics. The 

magnitude is approximately that expected from the position of the critical boundaries, 

shown in Fig. 5.1 (Section 11), for a particle velocity of 2 x 1 o6 m 1 s and d = 250pm . The 

resulting decrease in duty cycle (below 50%) due to the leadllag effects discussed just 

above will generate characteristic artifacts in the spectra, when recovered by the cross- 

correlation method, which can be seen in the auto-correlation function described below 

(Fig. 5.8). 

The variation in the height (or transmission) of the pulses is shown in Fig. 5.7B. 

The average height of the single open slots (time width 8 ns) is significantly smaller than 

the height of the multiple open slots (16 ns or more). This difference in height is 

significantly larger than the Poisson noise distribution width (cf. Fig. 5.6~).  The origin of 

this artifact is partly the finite rise time, which derives from the finite extent of the 

chopper potential as well as the rise time of the chopper signals. However, it may also be 

due to the oscillations in the onset of the pulse, which may be associated with cavity 



modes in the chopper assembly[84]. The background (cf. Fig. 5 . 6~ )  is attributed to 

scattering off the flight tube walls. 

We now turn to the characteristics of the entire PRBS modulation function, which 

will be used for data recovery. In order to evaluate how the PRBS modulation function 

depends on the range of angles impinging on the entrance apertures, we varied the 

monochromator angle about the straight through position. To reveal the variation among 

the chopper response functions at different angles, we give the normalized 

autocorrelation functions in Fig. 5.8. The autocorrelation function of the ideal discrete 

PRBS sequence is a 6 function. However, in our experiment, the gate remains open for a 

finite time (i.e. the entire 8 ns time step), and the TOF histogram is oversampled by a 

factor of 32. The corresponding autocorrelation function becomes a triangle function with 

base equal to twice the time step (16 ns). Over the 90-91.5' range, the oscillation 

amplitudes are approximately 5 percent of the central peak height, but do not vary 

substantially with angle. Between 89.5 and 89", the features change with angle; however, 

the transmission is substantially reduced. Based on theoretical simulations, the reduction 

in the duty cycle due to the deadtime causes the artifacts near f 495 ns and the decrease 

in transmission for a single open slot produces artifacts near f 856 ns and f 936 ns in 

the auto-correlation function. All these artifacts are small in the experimental data. We 

have not yet found a completely satisfactory experiment for the features near f 610-700 

ns. 

After optimizing the chopper response by tuning the Einzel lens on the 

monochromatic beam, we measured the PRBS-TOF spectrum of an azimuthally- oriented 

sample. Fig. 5.9 compares the loss spectrum measured with the conventional analyzer to 
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Figure 5.8. Auto-correlation functions corresponding to chopper response functions 

measured for a range of different monochromator angles, illustrating substantial artifacts 

that vary significantly with the angular distribution feeding the chopper. 
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Figure 5.9. Comparison of the vibrational loss spectrum of an azimuthally-oriented 

PTFE film, measured on-specular (60") with a primary beam energy of 4 eV using a) the 

conventional HREELS analyzer, with the spectra measured by the TOF detector and 

recovered using chopper response functions for mono angles of b) 89S0, c) 90°, and d) 

90.5". The PRBS-TOF spectrum was collected in 1 minute, compared to the 

conventional spectrum data acquisition time of 2.3 hrs. 



the spectrum obtained by Lucy algorithm to deconvolute the PRBS-modulated data from 

the PTFE film using the chopper response functions measured at several monochromator 

angles. The conventional spectrum, curve a, was measured in 2.36 hours; by contrast, the 

PRBS-TOF spectrum required approximately 1 minute of data collection time, an 

improvement in throughput of approximately 85. The major peaks' flight times of 849 ns 

(65 meV loss) and 858 ns (150 meV loss) associated with the CF2 rocking 1 wagging 

modes and the CF2 stretches[85], respectively, are recovered with some decrease in 

resolution. In all of the PRBS-TOF spectra, additional artifacts are found at 838, 854, and 

873 ns, with extra intensity in the peak near 866 ns. The loss and gain features at + 2.5 

ns are not resolved from the base of the elastic peak. 

To summarize the experimental results, we demonstrate a significant performance 

(throughput) advantage, although the resolution of the spectrum is not as good as the 

conventional HREELS spectrum. The collimation slits restrict the angular distribution to 

achieve a response function independent of the source (or sample) position for the angles 

of largest transmission. Variations that occur for smaller angles do not affect the quality 

of the recovered spectrum. The loss in resolution, the presence of artifacts at the 5% level, 

and variations in relative intensity are significant problems. We use theoretical 

simulations to consider the origin of these problems in the following section. 

5.4.2 Simulation Results 

We begin with simulations of the chopper response function and the PRBS- 

modulated data corresponding to the PTFE spectrum. In Fig. 5.10a, the chopper response, 

p( t ) ,  includes an incoming electron beam, o(E), at 4 eV with a Gaussian energy 
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Figure 5.10. Simulation of a) the chopper response function for a 4 eV beam with a 

Gaussian distribution of 4 meV FWHM, and b) the corresponding TOF histogram with an 

energy distribution corresponding to the Teflon spectrum in Fig. 9 a. Trajectory 

simulations (histograms) were calculated as described to include the Poisson noise 

distribution (shown for a total of 4x10~ counts distributed among 8160 time bins), energy 

corruption effects, leaflag effects, and the contribution of the finite field penetration of 

the d = 250 pm chopper used in the experimental setup. For comparison, the ideal PRBS 

modulation function is shown (solid curve) after convolution with the TOF spectrum 

corresponding to the energy distributions for a) the monochromatic beam and b) the 

Teflon HREELS spectrum of Fig. 9a. 



distribution (o(E) ) of 4 meV FWHM. In Fig. 5. lob, the energy distribution (o(E) ) of 

the PTFE spectrum, measured with the conventional analyzer, was converted to a TOF 

distribution. The sections of the time-modulated data shown in Fig. 5.10 have been 

calculated in two ways. The solid curves are simply a convolution (using FFT's) of the 

appropriate energy distribution (converted to time-of-flight) with the ideal PRBS 

sequence. The histograms in Fig. 5.10 were calculated with the method described in 

Section I11 B. 

The trajectory calculations include the lead and lag effects, energy corruption, the 

Poisson noise distribution associated with the counting experiment, and deviations from a 

true convolution (as discussed in Sect. 11). The simulations do not include the 

experimental factors of the finite rise time of the chopper voltages, the f l o  angular 

distribution of the electrons incident on the chopper (all electrons have a component v, = 

0), electrical signal errors such as miscancellation of the applied voltage and possible 

coupling to cavity modes, or scattering from the chopper wires themselves. The data were 

calculated for a chopper of dimensions similar to the experimental data of Fig. 5.6 (d = 

250 pm, R = 12.5 pm, em = lo, Vqp = f 0.4V) with a total of 4 million counts in the 

entire 8 160 bin histogram. 

Comparison of the convolution (solid curve) and trajectory simulation data in Fig. 

5.10 shows good agreement, demonstrating that the time-modulated data is, to a very 

good approximation, a convolution. The energy corruption generates a tail to shorter 

flight times, most clearly seen in histogram a. Although the probability of gaining or 

losing energy is equally likely, conversion of a symmetric distribution of energies to a 

time-of-flight distribution results in an asymmetric distribution. Expansion of the 



histograms shows that the solid curves (convolution) pass through the noise, and a 

histogram of countslbin during the open time (Fig. 5.10a) confirms that the simulation 

has a Poisson noise distribution. The lag effect is also evident upon careful examination 

of the simulated data. The width of the histogram pulses are approximately 0.9 ns 

narrower than the convolution data in the chopper response function (part a), which is 

similar to the 1.2 ns difference shown in the results of Fig. 5.7A. 

With the simulated chopper response functions and the PRBS-modulated PTFE 

data of Fig. 5.10, we used the Lucy algorithm to estimate the TOF spectra, shown in Fig. 

5.1 1. Curve a is the object function used in the simulation and b is the recovered 

spectrum fiom the experimental data. Curve c shows that the Lucy algorithm is able to 

accurately recover the object spectrum when the data, y(t) , was generated by 

convolution of an ideal chopper response function, &(t) ,  with the TOF object function 

(curve a) and no noise was present. Curves d, e, and f correspond to results fiom the 

trajectory calculations for choppers of different scale; Curve f (d = 250 pm) corresponds 

to the experimental chopper dimensions. The assumption of the convolution should 

improve as the scale of the chopper is reduced. These recovered spectra show the more 

intense features in the correct positions, but the splitting of the band at 857-858 ns is lost. 

The recovered spectra of curve d (d = 50 pm) and curve e (d = 5 pm) are improved to 

some extent, especially on the 2.5 ns gain and loss peaks, but the weak dependence on the 

scale of the chopper suggests that other factors are more important. 

The factor which most dramatically affected the recovery of the simulated data is 

the estimation of the chopper response function fiom the noisy data. The assumption of 

the Lucy algorithm is that both the underlying object function and the response function 
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Figure 5.11. Comparison between a) the TOF spectrum (object function) corresponding 

to the Teflon HREELS spectrum of Fig. 5.9a, b) the recovered PRBS-TOF spectrum of 

Fig. 9c, and the results of using the Lucy algorithm to recover simulated data, c) from the 

convolution data (solid curve, Fig. 5.10b) using the response function (solid curve, Fig. 

1 Oa), shows that, at 4 eV a 1 m flight path, a PRBS time step of 8 ns, oversampling of the 

data by 32 (0.25 ns time bins), and in the absence of noise, the Lucy algorithm recovers 

the features very well. By contrast, the recovery of simulated data generated with the 

trajectory method for choppers of different wire spacing (d-f) results in somewhat 

degraded resolution, but not the artifacts found in the experimental results. 



are noise-free. In a separate paper[86], we have shown that the presence of Poisson noise 

in the response function, even at a S/N ratio in excess of 1000, causes noise and peak 

distortion in synthetic data. Most smoothing algorithms are not useful here since they 

degrade the resolution of the response function and create artifacts in the recovered 

spectra. 

Frederick and DeNoyer [86] have shown that a better estimate can be obtained by 

using the ideal (square wave) PRBS sequence to deconvolute the chopper response 

function. In essence, an effective broadening function, s,, (t) , is estimated from 

where z,(t) (in Eq. 5.5) reduces to h,(t), and where o(E) =S(E -E,,). Note that 

C g, (t) = p, (t) is the ideal PRBS response function. Thus, t (t) contains the energy 
i 

distribution of the primary beam, the energy corruption and other system limitations. 

After obtaining s,,(t) using the Lucy algorithm, the estimated response function, 

pest = se, (t) @ p, (t) , is calculated. Examination of the residuals shows that the noise is 

zero-distributed with Poisson character. Comparison with the true response function in 

synthetic data revealed that the maximum relative error, [p,,, (I) - p(t)] 1 p(t) , could be 

reduced to less than 10 -3 with this method. 

For the spectra shown in Fig. 5.1 1, curves d-f, the method was fiirther refined, 

since the deadtime results in a pulse width narrower than in the ideal PRBS sequence. 

Thus, sef(t) was obtained by deconvolution of the simulated response function, 

p(t) = sH(t)@pd(t) , using a PRBS sequence, pd(t), in which the duty cycle was 



reduced from 50% to 47% by narrowing the width of the pulses (as discussed below with 

regard to Fig. 5.13). While this approach to estimating p(t) tremendously improved the 

spectra recovered from the simulated data, the procedure did not eliminate the artifacts in 

the experimental spectrum. 

To distinguish between the various artifacts observed in the experimental data, we 

performed a direct convolution of the object fhction (i .e.  the PTFE TOF spectrum of Fig. 

5.9a) with chopper response hc t ions  which were non-ideal in some respect. Fig. 5.12 

shows the results for a response fhction in which the data cycle was decreased (part A) 

and increased (part B) by introducing a lead or lag. In the case of a decreased duty cycle, 

the artifacts generated in the autocorrelation are negative-going, while a duty cycle 

greater than 50% creates the artifacts which are positive-going[64]. The position of these 

artifacts in the cross-correlation result, shifted by 62 bits, is well defined and occurs at 

f 495 ns with respect to each of the real features[64]. In the spectra of Fig. 5.12, this 

artifact is negligible after 10,000 iterations and the features are accurately reproduced, 

suggesting that the deadtime of the chopper is not a major experimental concern. 

Figure 5.13 shows results in which the response fhction is ideal in all respects 

except that the height of the single open slots are reduced relative to the rest of the 

sequence. The recovered spectra for 80% reduction of the single open slots are shown for 

a range of iterations in part A. While the estimate at 1,000 iterations is comparable to the 

object fhction, fbrther iteration leads to better resolution (particularly in the 845.5 and 

858.5 ns peaks), but then artifacts appear (eg. at 835ns) and the 851 ns feature splits and 

the intensity redistributes. As the reduction in height deviates further from an ideal 

modulation sequence, as shown in Fig. 5.13B, the estimate after 1000 iterations degrades. 
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Figure 5.12. A) Comparison of a) the object function used to generate noise-free 

modulated data by convolution with a PRBS response function that is ideal except that 

the dead time leads to narrower pulse widths, resulting in a duty cycle of 47% rather than 

SO%, with recovered spectra using the Lucy algorithm after b) 1000 iterations, c) 5000 

iterations, and d) 10,000 iterations. B) The corresponding results in which the duty cycle 

is increased to 53%. 
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Figure 5.13. A) Comparison of a) the object h c t i o n  used to generate noise-fiee 

modulated data by convolution with a PRBS response function that is ideal except that 

the height of single 1's is reduced to 80%, with recovered spectra using the Lucy 

algorithm after b) 1000 iterations, c) 5000 iterations, and d) 10,000 iterations. Notice that 

loss of information results in artifacts and re-distribution of the peak intensities. B) 

Results after 1000 iterations for data generated as in A) but for the height of single 1's 

reduced to b) 80%, c) 70%, and d) 60%. 



This suggests that a major limitation of the current experimental system is the chopper 

response time, leading to decreased transmission in the single open bits of the PRBS 

sequence (as illustrated in Fig. 5.6~).  

5.5 Discussion and Conclusions 

In designing an instrument, the principal performance characteristics are the 

resolution, sensitivity, and integrity of the measured spectrum. We first address the 

factors that contribute to the intrinsic time resolution of the instrument, which would be 

observed in a single pulse TOF experiment, and then discuss the additional factors which 

effect the resolution of the recovered spectra in the PRBS-modulated mode. Next, we 

discuss the origin and fundamental limits that artifacts place on the dynamic range of the 

instrument, using the Lucy algorithm for data recovery. Finally, we assess the multiplex 

advantage obtained in the present instrument. 

5.5.1. Intrinsic Time Resolution (Single Pulse Mode) 

The traditional definition of resolution in a single pulse TOF instrument is simply 

the width of the pulse[64]. However, in our implementation of the Hadamard or PRBS 

modulation approach, the information concerning the flight times of different energy (or 

mass) particles is contained in the phase shifts of the cyclic PRBS sequence formed by 

particles of different energy. Therefore, the rise time of the pulse is of greater interest in 

our ability to recover the spectrum than the pulse width, as we will discuss in section B. 

To characterize the time resolution, we will associate the derivative of the step response 

function with the point spread function in the time domain. 



The dominant contribution to the time resolution of the present instrument is that 

of the chopper response function. In Sect. I1 we developed a model of the chopper 

response function, in terms of the applied voltage, kinetic energy, wire spacing and wire 

diameter. We distinguished two non-ideal characteristics of the response function of the 

chopper, p(t): the lag of the signal with respect to the time that the voltages are applied, 

and energy corruption due to the spatial extent of the fields. The critical boundaries 

determine, for a specified acceptance angle and ratio of chopper voltage to kinetic energy, 

which electrons reach the detector. The critical boundary can be before or after the plane 

of the chopper, so at short distances the response can lead or lag the applied voltage. 

However when the distance from the chopper to the detector is large, the energy 

corruption will always causes a lag in the effective chopper response. To illustrate this, 

we show in Fig. 5.14 the energy corruption histograms of Fig. 5.2, converted to TOF 

histograms for a 1 m flight path. The fraction of electrons within a spatial region that are 

after the critical boundary (x>c(y)) at the time the potential is switched off is initially 

small, but increases to 100% over the first 5 regions of 12.5 ps time width. Therefore, the 

transmission of the grid reaches 100% within approximately 60 ps. However, the 

response function at the detector is much slower. 

As curve a in Fig. 5.14 shows, the transmitted electrons arrive at the detector over 

a large range of times. The corresponding TOF histogram for the 6" time bin, in which 

the transmission is nearly loo%, has a time width of approximately 24 ns. As the 

potential decays spatially from the plane of the chopper, the corresponding TOF 

histograms narrow (and shift) and their contribution to the height of the time dependent 

response function increases. We show in the Fig. 5.14B the cumulative TOF histograms, 
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Figure 5.14. A) The TOF histograms converted from the energy corruption histograms 

of Fig. 5.2. for selected rectangular regions. In the Monte Carlo integration, 10,000 

electrons were chosen randomly in each region. B) The corresponding cumulative TOF 

histograms from 1 to iLh bin, as indicated in A) to illustrate the contributions of different 

spatial regions to the overall TOF histogram. The vertical scales have been multiplied by 

the factors indicated. 



n 

i.e. h, ( t ) .  In this case, it is not until the electrons from the 33'd rectangular region 
r=l 

(curve c) are added to the distribution that the response function reaches 0.5, of the steady 

state height. This implies that the lag of the chopper response is 33 x 12.5 ps = 412.5 ps. 

In the case of a Gaussian point spread function, the rise time from 10 to 90% corresponds 

to 1.680 where a is the standard deviation of the distribution. In this case, the 10-90% 

rise time is approximately 0.5 ns which gives the a= 0.3 ns. In general, as the d-spacing 

is decreased, both the lag and the rise time decrease. We show in Fig. 5.15 the onset of a 

pulse, calculated in the same way as in Fig. 5.14, for choppers of three different wire 

diameters, but all with 2R/d = 0.1. The lag and rise time are shown in parts B and C, 

respectively, as a function of d. The lag time and the rise time both can fit as a 

quadratical function of the d-spacing. According to the fitting, when d approaches zero, 

the lag and rise time approaches zero ps. Therefore, we predict that decreasing the wire 

dimensions will be a benefit in getting a reduced lag and rise time, which is helpful in 

achieving a higher resolution. 

In these simulations, we have assumed that the chopper voltages are turned on 

instantaneously. In the experiment, the slew rate of the output driver electronics is 

approximately 0.4 Vlns. For finite rise times, we can estimate the contribution to the 

chopper response function in the following way. The deflection angle of the beam varies 

with applied voltage as 0 = k , where k is characteristic of the chopper transmission. 
KE 

For 2Wd = 0.1, k = 17". If a beam of width w is to be excluded by a slit, also of width w, 

and the initial angular distribution has limits of *0S0, then the deflection angle must be 

l o  to completely turn off the beam. Since the deflection is approximately linear in 
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Figure 5.15. A) The onset of a chopper response fhction for 4 eV beam with 2R/d = 0.1. 

B) The relationship between the lag time and d-spacing. C) The relationship between the 

rise time and d-spacing. Both B) and C) are based on the 4 eV beam simulation. 



voltage (for the small angles), the contribution of the voltage time dependence to the 

chopper response should be approximately linear. Therefore, the time to turn off the 

electron beam completely is about 0.6 ns. Since the observed time is of this order, it 

appears that the minimum fall time is limited by the finite rise time fiom the drive signal. 

The next largest contribution to the measured step response function is the energy spread 

of the primary beam. The dependence of the rise time (10-90%) on both beam energy 

and the FWHM, AE, of the monochromatic beam, is shown in Fig. 5.16. At higher beam 

energies, the energy spread contributes less to the time-dependent response function. For 

the 4 eV, '4 meV beam, conditions that apply to the experimental data, the rise time is 0.3 

ns, which is a 'small but significant contribution to the observed chopper response 

function. 

We have also quantified a number of other potential sources of broadening. 

probably the largest of these is the jitter in the tirne-to-digital converter. The base time 

clock of the Fast Comtec TDC was adjusted to 125 MHz, and an internal phase lock loop 

provides interpolation of events to achieve a bin size of 250 ps. Examination of the jitter 

in the phase lock loop suggests that the uncertainty in the TDC is closer to 350 ps, as 

characterized by the standard deviation of the Gaussian-like jitter histogram. By contrast, 

the jitter in the PRBS generator (shift register), the chopper driver output stage 

electronics, and the pre-amp and discriminator is of order 10's of ps. The pulse width of 

the AP-TOF detector is approximately 750 ps, with a rise time of 350 ps. Recently, 

improvements in commercially available multichannel plate detectors have demonstrated 

pulse widths of 400 ps with a rise time of 200 ps. 
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Figure 5.16. The dependence of the rise time (10%-90%) on beam energy and the 

FWHM of the monochromatic electron beam. 



5.5.2. Resolution in Spectra Recovered from PRBS Modulation 

The performance of the maximum likelihood (ML) algorithm is dependent upon a 

number of factors. The resolution depends strongly upon the frequency content of the 

chopper response function, but also on the signal-to-noise level of the data and the 

number of iterations. The effect of these factors can be quantified in a relatively 

straightforward way. Other factors, such as a broad signal background, deviations from 

the assumption of a convolution, and errors in defining the response function, are more 

difficult to assess. In a separate paper[86], we have used synthetic data to quantify the 

resolution enhancement and dynamic range that can be expected for a simpler case in 

which there was no background present, the spectrum consisted of several Gaussian 

peaks, and the assumption of a convolution was valid. First, we make comparisons to 

those results and then discuss the effects of the background and the validity of the 

convolution assumption. 

In the situation that the PRBS time step, T, can be made small with respect to the 

width of the narrowest features in the spectrum, the cross-correlation recovery method 

should be able to accurately measure the width of the features. In our case, the 

interactions between the chopper grid and the charged particles preclude operation in this 

regime. Typically, z is chosen to be as much as a factor of 8 larger than the desired time 

resolution and the Lucy algorithm is used to improve the resolution relative to the 

nominal time resolution, z. For the case of a feature whose width is narrow compared to T, 

we have defined the resolution enhancement as the PRBS time step divided by the width 

of the recovered peak. The resolution enhancement has been shown to depend strongly 

on the ratio of the rise time to @6]. In the synthetic data, the ideal response function was 



broadened by a Gaussian. As a result, the rise time is simply related to the rise time of the 

Gaussian (measured between 10 and 90%). This Gaussian rise time is equal to 70% of 

the FWHM of the Gaussian. 

In the experimental data of Fig. 5.6, the rise time is approximately 1 ns, although 

the oscillations that occur at the leading and following edge decay over several 

nanoseconds. An alternative way to assess the bandwidth of the chopper response 

function is to plot the magnitude of its Fourier transform, as shown in Fig. 5.17. The 

magnitude of the Fourier transform of the ideal response function is (sin(x)/xl. We model 

the real PRBS response function as the convolution of a Gaussian with the PRBS 

sequence. The time step, z , was chosen to be 64 and the FWHM of the Gaussian 

broadening was varied from 4 to 16m such that the ratio of the rise time to time step 

varied from 1/16 to %. In the frequency domain, the sin(x)/x is multiplied by a Gaussian, 

which rapidly decrease the higher frequency content of the chopper response function. 

This in turn means that the higher frequency information in a particular object function 

will also be lost. When the ratio of the rise time to zreaches 118, the amplitude becomes 

small by the first zero in sin(x) l x . Therefore, comparing the Fourier transform of the 

experimental response function to the Gaussian-broadened response functions, an 

estimate of the rise time1.5 ratio of 1/16, or an effective rise time of - 0.5 ns is perhaps 

reasonable. We note that this is similar to the rise time in the trajectory simulation for the 

250 pm chopper. 

In the absence of noise and with an ideal PRBS response function, the TOF 

spectrum can be recovered with errors of order lo4, as shown in Fig. 5.1 1. However, as 

the rise time increases and the signal-to-noise ratio decreases, the resolution of the 
, . 
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Figure 5.17. A) The Fourier transform of the chopper response from synthetic data. 

Each chopper response h c t i o n  is a convolution of the ideal PRBS sequence, P, with a 

Gaussian. G(n) means the FWHM of the Gaussian is n which should be compared to the 

time step z = 64. B) Comparison of the Fourier transform a) of the ideal PRBS sequence, 

b) trajectory simulation data, c) convolution simulation data and d) experimental data. C) 

Data from B) offset for clarity. 



recovered spectrum degrades. For data obtained in a counting experiment, the signal-to- 

noise varies with the intensity (counts) in the peak. Therefore, for a chopper response 

function of a specified rise time, the resolution of the most intense peaks will be better 

than that of the weaker peaks. For the ratio of rise time/z = 1/16, a resolution 

enhancement of 11 was obtained for a peak of intensity 100,000 counts in synthetic data 

after 1000 iterations, whereas for a peak of intensity 10,000 counts, the resolution 

enhancement factor was only 10 after the same number of iterations. On this basis, we 

would expect an effective time resolution of 0.7 ns ( i .e .  1/10 of the 8 ns time base) for the 

elastic peak, but 0.8 ns or larger for the losses that are about 5% of the elastic peak 

intensity. Examining the resolution of the elastic peak in the trajectory simulation data, 

the FWHM of the elastic peak is approximately 1 ns; however, the resolution in the losses 

is not as good. This can be seen from the fact that the splitting in the 857-858 ns peaks is 

not resolved. The effective resolution of 2 ns expected in the loss peaks is consistent 

with this observation. As the dimensions of the chopper are reduced fiom 250 pm to 5 

pm (Fig. 5.1 1, curves f-d), the reduction in the rise time leads to a more ideal response 

function and greater resolution can be achieved in the loss peaks. This is most apparent 

in the gain and loss features in the base of the elastic peak at 840.5 and 845.5 ns. In 

principle, further iterations should lead to better resolved spectra; however, in both the 

experimental and trajectory simulation data, further iterations lead to an increase in 

artifacts. 

There are several reasons that artifacts appear in the recovered spectra. In 

synthetic data[86] containing a Poisson noise distribution, finite rise times, but no 

background, the' dynamic range (defined as the ratio of the most intense peaks to the 



magnitude of the largest artifacts) was found to be between lo3 and lo4, depending 

weakly on the total number of counts in the peaks. This appears to be a fundamental 

limitation of the information inherent in data obtained with PRBS modulation due to 

Lucy algorithm. The presence of background in the PRBS data, as well as in the object 

function itself, causes further degradation in the dynamic range. When there is a constant 

background added to the PRBS-modulated data (although still with a Poisson noise 

distribution), the algorithm tries to form more narrow spectral features. In our instrument, 

the transmission was less than 1% (for a VopJKE ratio of 0.1 and QoCc of lo), which leads 

to a background of order 1% of the total counts in the spectrum. When a background was 

added to the synthetic data [86] at a level of 1% of the total counts in the PRBS spectrum, 

there was a modest decrease in the dynamic range, but it was still of order lo4. However, 

when the background was increased to lo%, the dynamic range degraded to about 2000. 

Therefore the broad spectral background of continuum losses in most HREELS spectra 

represent a potential problem for the Lucy algorithm[35], however, the artifacts in the 

experimental data appear to be larger than expected simply from the presence of the 

background. Indeed, in the trajectory simulation data, the presence of the background 

does not appear to present significant difficulties. 

The primary source of artifacts appears to be the oscillations on the edges of the 

response function, which lead to a decrease in the height of the single open bits in the 

PRBS sequence. The effect of this is shown in Fig. 5.13. There is no noise and the rise 

time is zero, so the presence of artifacts implies that there is a fundamental loss of 

information. We conclude that it is critical to choose a time base that is sufficiently large 

compared to the rise time of the system, preferably by at least a factor of 8. 



Finally, we examine the convolution assumption and the extent to which it 

contributes to artifacts in the spectra for the case of HREELS. As discussed in Sect. 11, 

the response function deviates fiom a convolution in at least two different ways. First, 

the response function has an energy dependence, we have calculated the shape of the 

rising edge of the chopper response function for two energies, 4 eV and 3.6 eV, which 

correspond to the elastic peak and the largest energy loss in a typical HREELS spectrum. 

As shown in Fig. 5.18, the difference in the lag of the chopper response is only about 10 

ps. Since the experimental (and trajectory simulation) data is histogrammed on a 250 ps 

time scale, we do not expect these differences to be significant. For larger relative 

changes in energy, this may no longer be true. Second, the data deviates from a 

convolution in the sense that the energy corruption histograms vary in time. For a 

particular energy electron, the response function consists approximately of a sum of 

convolutions (Eq. 5.5). .These effects, if strong enough to change the shape of the rising 

and falling edge for different energy electrons, would lead to artifacts in the recovered 

spectrum. Note that Fig. 5.18 shows the shape of the edges are very similar for different 

energies. 

5.5.3. Performance of the PRBS-TOF Instrument 

We wish to distinguish the throughput advantage fiom the multiplex advantage 

(or disadvantage) of the TOF instrument, operated in either the single pulse or PRBS 

modes, and compare it to the conventional energy dispersive instrument. In order to 

compare our new instruments to the conventional HREELS, we first give some 

definitions for the conventional HREELS instrument. Then the corresponding properties 
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Figure 5.18. Comparison of the shape of the A) rising edge and B) falling edge of a 

single pulse calculated with the Monte Carlo method on a 25 ps time bin size for a kinetic 

energy of 4 eV (bars) and 3.6 eV (solid curves) to show that the energy dependence of the 

shape of the response function is negligible under the conditions of this experiment. 

This simulation is based on a chopper size of d = 250 pm, Vapp = + 0.4 V and 6,,, = + lo. 



of the single pulse TOF are discussed. Next, by applying the ML method in the single 

pulse mode TOF instrument, the throughput advantage and signal-to-noise improvement 

are discussed. Finally, the advantages of the PRBS-TOF method are demonstrated. 

5.5.3.1. Conventional HREELS Spectrometer 

In conventional HREELS, we define 

Ci = P(EJT(E) I. (5 .7 )  

as the count rate in the i~ energy channel. Here, P(EJ is the loss probability for electrons 

in the E, energy channel for a particular sample spectrum, T(E) is the transmission 

function of the instrument and I. is the primary beam density. Therefore, under the 

Poisson noise conditions, the signal-to-noise ratio is determined by S/N = 6. If the 

dwell time in each channel is At, then the total counts in one scan is 

If the resolution of the energy analyzer AE is defined as the FWHM of a Gaussian energy 

Transmission function, then the energy step size should be chosen 5 M I S .  Note that the 

apparent energy resolution of the elastic peak in HREELS is f i  times larger than the 

energy resolution of the monochromator and analyzer, if they are tuned to be similar. If 

the energy range of interest is Ehigh - Elow then the number of channels required are 

The time to acquire a spectrum is then 

Tconv= ncom At. 



Because the energy analyzer is based on electrostatic deflection, only one channel can be 

measured at a time, so the duty cycle is lh,,. For example, suppose the maximum count 

rate in the elastic peak Nelmfic = 10' cts/s for I. = lo8-lo9 cts/s with AE = 1 meV. (This 

would correspond to an apparent energy resolution of 1.4 meV in the straight through 

tuning.) The energy scan range Ehigh - Elow = 0.5 eV; the total number of channels is at 

least 2500. For dipole losses that are 1% of Nelaslic, if the dwell time per channel is 1 

second, the maximum count rate in the losses is of order lo3 counts and a signal-to- noise 

ratio of 33 can be achieved. This leads to typical data collection times, on-specular, of 1 

hour. For non-dipole losses (0.1% of NhtiC), collection times will be ten times longer to 

achieve the same signal-to-noise ratio. Typical times are 12-24 hours. Clearly, the 

sample and instrument stability are important. 

5.5.3.2. Single Pulse TOF Instrument 

For a single pulse TOF instrument, the resolution of a TOF analyzer is energy 

dependent. If we choose the time resolution of the TOF analyzer to be comparable to the 

resolution of the conventional analyzer at the energy of the elastic peak, then the 

resolution in the TOF spectrum will be higher in the loss region at lower kinetic energies. 

Suppose the time resolution is determined such that 

Here, L is the length of the flight path, and we assume AE is the FWHM of the point 

spread function (Gaussian energy transmission function) and take T to be the width of an 

ideal square pulse. If in the conventional spectrometer AE = 1 meV for a 4 eV beam, 

then T is 21 ps for L = 1 my which is only two orders of magnitude above the quantum 

limit. 



The duty cycle is limited by the range of flight times. The minimum and 

maximum flight times to cover the same energy range are 

m m 
ToFm, = L / -  and ToF,,, = L\J-- . 

2E,w Ehrgh 

Unless the energy distribution is limited, for example by a dispersive sector, the range of 

flight times may be considerably larger. Therefore, the minimum number of channels in 

the time domain is at least as large as 

Z 
and the duty cycle is . The count rate in the single pulse mode is related to 

ToF,, - ToF,,, 

the total count rate in the conventional spectrum by 

for the case in which the etendue of both instruments are identical. In fact, the etendue of 

a conventional energy analyzer is energy dependent, whereas that of a (simple) TOF 

analyzer is constant with mass and energy. (In our case, the TOF acceptance angle is 

approximately 1/3 that of the conventional analyzer, however comparison of the DC 

current suggests that the etendue of the TOF is about 0.02 times that of the conventional 

analyzer at the present stage.) Therefore, the time to collect a spectrum with the same 

number of counts as was obtained with the conventional spectrometer, Eq. 5.8, is 

T S  = (ToF- - ToFmin ) . 
ToF 

Z 



Now we can define the throughput advantage, G t y v  , of a single pulse TOF 

instrument compared to a conventional.energy analyzer as the ratio of TCon ,JTT0/: 

For comparison with the PTFE sample in which Eel,,, = 4 eV , Ehigh = 4.1 eV 

and Elo, = 3.6 eV, the throughput advantage of the single pulse TOF instrument over 

conventional HREELS is 4.7. Assuming the necessary time resolution can be achieved, 

and the etendue is equal, only 12 minutes are required to collect the same total number of 

counts as obtained in 1 hour with the conventional HREELS spectrometer. In single pulse 

mode, the signal-to-noise is still controlled by the Poisson distribution, so the S/N in the 

i' bin is ,/N(t.), where N(tJ is the number of counts in the i' time bin. However, if the 

time resolution improves at lower energy (relative to the width of the features) then the 

same number of counts are distributed amongst more time bins than there were energy 

bins in the conventional energy spectrum. Although this leads to a lower S/N in the time 

bins, conversion of the TOF histogram back into an energy distribution should give a 

spectrum with the same S/N in the corresponding energy bins. Therefore, the 

performance advantage is due simply to the reduction in time to acquire the spectrum, 

given by the throughput advantage (Eq. 5.15) 

In our spectrometer, the current chopper response time of 1 ns limits the width of 

the pulse. However, we can use a pulse of large width and then recover the resolution 

using ML or Bayesian algorithms. The resolution enhancement is a non-linear function of 

the S/N (or counts) in each time bin, as well as the shape of the point spread function. Fig. 

5.19 illustrates how the resolution enhancement that can be achieved depends on these 



Figure 5.19. The extent to which the underlying spectrum can be recovered depends 

strongly upon the signal-to-noise ratio (SIN) and the shape of the instrumental response 

function. Noisy spectra were generated by convolution of a pair of Lorentzians with a 

square pulse or Gaussian, in a and b, respectively, and adding noise with a normal 

distribution, for a S/N of 20. c) After deconvolution with the Bayesian maximum entropy 

algorithm[36], the resolution enhancement was quantified as the depth of the valley is 

compared to the average height of the pair of Lorentzians as a function of the S/N[87]. 

The resolution enhancement depends on S/N, but is significantly higher when the 

response function is a square pulse (upper curve) rather than Gaussian (lower curve). 



factors. A pair of Lorentzians, separated by the FWHM of the point spread function, were 

convoluted with either a Gaussian or a square pulse point spread function and then noisy 

data sets were generated. With the square pulse shape, the effective resolution after 

resolution enhencement can be more than 8 times higher than the normal pulse width. 

There is an additional throughput advantage that can be achieved by utilizing 

these ML and Bayesian algorithms, which is illustrated in Fig. 5.20 for the case of the 

single pulse TOF instrument. In a single pulse experiment, the object function is 

broadened by a triangular response function. When the chopper is left open for 8 ns, the 

spectrum contains 8 times more counts than with width 1 ns. Since the duty cycle is 

increased, there are lo4 counts in the center of the most intense peak (S/N -loo), which is 

sufficient to fully recover the underlying spectrum, as shown Fig. 5.20. The 

deconvoluted spectrum shows that the peaks are recovered with approximately 8x greater 

intensity. For a weaker peak with lower S/N, low resolution enhancement will be 

achieved, but the throughput advantage is still a factor of 8. This illustrates the fact that 

the signal-to-noise ratio in any particular peak is a function of the algorithm and other 

factors described previously[35]. 

The variation in the recovered spectra from one noisy measurement 'to another 

may be quantified in the manner defined by Larson[62]. Because the noise is correlated 

with the sample, it is necessary to calculate the S/N at each channel in the spectrum. 

Testing of the Bayesian maximum entropy algorithm has been reported previously, using 

synthetic data[35]. Larson et a1.[62] define the S/N ratio as 
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Figure 5.20. Comparison of the convolution of a pair of Lorentzians of equal height and 

two smaller Lorentzians of differing shape with a) a 1 ns FWHM triangular response 

function, and b) a 8 ns FWHM pulse (with 1 ns rise times) with Poisson noise. c) After 

deconvolution with the Bayesian maximum entropy algorithm, the resolution is improved 

by a factor of 8, yielding a throughput advantage as indicated by the 8x increase in the 

peaks. (The height difference in the shoulders of the noisy data (b) results in a higher 

intensity in the 30 ns peaks than the 25 ns peak simply due to statistical fluctuations.) 



where ( ~ ( t , ) )  is the average number of counts in theih channel of a noisy spectrum and 

the denominator is the standard deviation of the counts in the same channel. 

For a single pulse TOF instrument that uses a pulse width larger than the nominal 

time resolution and then employs probability-based estimation methods to recover the 

resolution, the overall performance advantage is a product of the throughput advantage 

(defined in terms of the reduction in the time to collect the same number of counts in a 

spectrum) and the improvement in the S/N ratio in a particular channel, e.g. relative to the 

S/N in the conventional (or standard single pulse) spectrum. Because the estimation 

method utilizes a priori information regarding the process that led to the measured data, 

an improvement in the S/N ratio is possible[35]. In the same way that the uncertainty in a 

parameter in a non-linear least squares fit quantifies the accuracy of the parameters, the 

fluctuations in a particular channel of the recovered spectrum, due to variations in the 

noise of the measured spectrum, can be used to define the S/N ratio. 

For a set of noisy spectrum (either synthetic or experimental), we can define the 

S/N ratio as the ratio of the mean value in the ih channel to the standard deviation in the 

ih channel of the recovered spectrum. Based on work reported previously 1351, the mean 

resolution enhancement, divided by the standard deviation of the resolution enhancement 

suggests that a S/N ratio of 4-30 can be achieved, depending upon the number of counts 

in a peak, using the Bayesian maximum entropy algorithm. Note that our definition is 

different from the more common definition of the S/N ratio often used in instrumentation, 

namely the ratio of a peak height to the noise level in the baseline near the peak. The 

latter definition does not consider variations in the height of the peak in the same way. A 

thorough analysis of the dependence of the ML processing advantage for the single pulse 



TOF mode is beyond the scope of the present article; however, because the transmission 

is linearly dependent on the duty cycle, there is little advantage or disadvantage. We will 

treat this issue in greater detail for the case of PRBS-modulated data, below. In general, 

the signal processing advantage depends on the number of iterations (for the Lucy ML 

method), the S/N in the data, the shape (e.g. the rise time) of the point spread function, 

and, in practice, factors such as the accuracy with which the point spread function can be 

determined. 

5.5.3.3. PRBS-Modulated TOF Instrument 

So far, we have discussed and compared the performance of the conventional 

HREELS spectrometer with the single pulse TOF instrument. Now we turn to the 

advantage of a Hadamard or PRBS-modulated TOF instrument. First we discuss the 

throughput and multiplex advantage of PRBS modulation using linear recovery methods. 

The Hadamard matrix method, using Hadamard transforms, is mathematically equivalent 

to the cross-correlation method which can be implemented with serial convolutions, or 

more efficiently with prime factor transforms[82]. To define the throughput advantage of 

the PRBS spectrometer relative to a single pulse TOF spectrometer and to the 

conventional spectrometer, both operated with the same resolution, we again define the 

width of the time step as in Eq. 5.1 1 and calculate the time to acquire a spectrum with the 

same total number of counts as in a conventional spectrum. The recovered spectrum will 

be sampled on the same time increment, z, as in the single pulse TOF spectrum. 

The length of the sequence should be chosen such that the period of the PRBS 

sequence is larger than the difference between TOF,, and the TOF,,,. Equivalently, the 

length of the sequence, 2"-1, should be greater than the minimum number of channels in 



the single pulse,experiment, n ~ o ~ ,  as given by Eq. 5.12. Increasing the length of the 

sequence increases the computational overhead, so the minimum PRBS sequence length 

would be typically chosen. Fernandez et a1.[88] have shown experimentally that, for a 

given number of PRBS cycles, the SM increases by a factor of f i  when the PRBS 

sequence length is doubled; however, the data acquisition time for the same number of 

cycles also doubles. Therefore, there is no advantage in the SM to increase the sequence 

length. Furthermore, the sequence length has no significant effect on the average count 

rate. The duty cycle of the PRBS sequence, generated by a shift register of length n, is 

L 
0.5 . Therefore, the count rate is related to the conventional spectrum by 

2" -1 

The time to collect a spectrum with the same number of counts as in the conventional 

spectrum is 

Therefore, the throughput advantage relative to the single pulse TOF instrument is 

approximately 

The throughput advantage in PRBS mode as compared to the conventional HREELS 

spectrometer is 

GtY?s,cOnv - 
5 

- - ('high - ' l a  ) 2AE 



In a typical HREELS spectrum, the region of interest is approximately 500 meV wide, so 

with AE = 1 meV, the throughput advantage is 1250. By contrast to the simulation of the 

single pulse mode, if the energy range of the spectrum exceeds the region of interest the 

length of the PRBS sequence should be increased, but the throughput advantage is not 

affected because the duty cycle is still approximately 0.5. 

Whereas the throughput advantage is defined based upon the time to collect a 

given total number of counts, the multiplex (Fellgett) advantage is usually defined in 

terms of the improvement in signal-to-noise due to simultaneous measurement of 

multiple signals with a single detector. There are two cases. If the noise is large and 

independent of the signal, as is the case in infrared spectroscopy[l5, 621, the Fellgett 

advantage is given by \InToF 12.  However, when the detector noise is shot limited (or 

Poisson), Larson et a1.[62] has shown that the multiplex (i.e. Fellgett) advantage varies 

across the spectrum, and is given by 

1 "P" 

, where = - N (t, ) . 
2N n p ,  i = ~  

Fernandez et a1.[88] have shown that under their conditions, the advantage is limited by 

the predictions of Wilhelmi and Gompf [63] and Larson et al. [62]. In practice, this 

means that the strong peaks will be measured with better S/N while the weaker peaks will 

be measured with worse SIN. In general, there is a multiplex advantage only for sparse 

spectra with a few strong peaks. In cross-correlate PRBS TOF-HREELS, there will be a 

large multiplex advantage for the elastic peak, while the loss peaks that contain the 

"interesting information" will be measured with a multiplex disadvantage, typically of 

order 0.1 ! Therefore, the product of the throughput and multiplex advantages is of order 
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25 compared to the single pulse experiment; approximately 125, compared to the 

conventional spectrometer. 

A further disadvantage of the cross-correlate PRBS approach is that non-ideal 

characteristics of the chopper lead to artifacts in the recovered spectrum[63, 64, 881 as 

discussed in Section 111. The presence of Poisson noise, which leads to fluctuations in the 

baseline, was included in the estimate of the S/N by Larson et al. [62]. As discussed by 

Fernandez et al. [88] and Brock [42], the SIN (defined in the alternate way noted above) is 

controlled by counting noise (Eq. 5.16) at low counts, but after data has been 

accumulated for larger times, the non-ideal characteristics of the chopper limit the S/N 

and W h e r  acquisition time does not lead to improvements in the S/N. These artifacts 

may, to some extent, be removed[89]. 

Application of the Lucy ML algorithm to the PRBS-modulated data provides two 

distinct advantages over the Hadamard or cross-correlation'method. First, by explicitly 

including the Poisson noise distribution in the model of the process that generated the 

data, the algorithm is able to overcome the multiplex disadvantage. Bialkowski[79] 

previously described the advantage of ML methods to overcome the multiplex 

disadvantage. Second, as was discussed in regard to the limitation of the chopper rise 

time in single pulse TOF mode, a substantial resolution enhancement can be achieved. 

We were the first to show[82] that the Lucy algorithm can be applied to PRBS-modulated 

data, account for the Poisson noise and artifacts in the chopper response function, and 

achieve resolution enhancement. Here we quantify the multiplex, or signal processing 

advantage. While these two advantages are distinct, calculation of the multiplex 



advantage is straightforward only when the resolution of the recovered spectrum is 

similar to the single pulse (or conventional) reference spectrum. 

In our instrument, the PRBS sequence was applied to the chopper with a time step 

of 8 ns, which was approximately 16 times longer than the effective chopper response 

time of 0.5 ns. As was discussed for the case of the single pulse TOF experiment, the 

resolution enhancement is a non-linear function of the S/N (or counts) in the ih time bin, 

as well as the shape of the point spread function. For the PRBS-modulated data, the rise 

time is critical. The resolution enhancement that can be achieved depends on the ratio of 

the rise time to the period, z. By contrast to the single pulse mode, there is no additional 

throughput advantage by increasing the base time period, z, since the duty cycle is fixed 

at 50%. When rise time/z is 1/16, we have shown [86] that, with the Lucy algorithm and 

peaks of intensity spanning approximately three orders of magnitude, the underlying 

spectrum can be fully recovered after 1000 - 10,000 iterations. Again, the variation in the 

recovered spectra from one noisy measurement to another should be quantified in the 

manner defined by Larson et al. [62]. Because the noise is correlated with the sample, the 

S/N and therefore the multiplex advantage, F,, is different for each channel in the 

spectrum. Calculation of F, depends upon the characteristics of the algorithm, and thus 

can only be done numerically. We calculate the SIN ratio, based upon Eq. 5.16, by first 

generating a set of 8 noisy PRBS-modulated data, all with 2 x lo6 total counts, using the 

trajectory simulation. After recovering each data set with the Lucy algorithm using 1000 

iterations, we calculated the mean and standard deviation in each channel, as shown in 

Fig. 5.21 a) and b), respectively. The SNRML, obtained in the ML method, is shown in 

curve c) as the ratio of curve a) to b). The multiplex advantage, using the Lucy method 



compared to a single pulse experiment, was calculated as the ratio of the SNRML to the 

S/N in the single pulse peaks, which is simply the square root of the number of counts in 

each channel due to the Poisson noise. For comparison, in Fig. 5.22, we plot the 

multiplex advantage that is predicted from Eq. 5.21 for the Hadamard transform recovery 

of this spectrum. Thus, in this example, the Lucy algorithm provides an advantage, 

particularly in the weak loss region of interest. A more general analysis of this will be 

given elsewhere[86]. 

In summary, the performance advantage of the PRBS (or Hadamard) approach, 

when combined with the ML recovery method is the product of the throughput and 

multiplex advantages. In practice, the throughput advantage in HREELS will be of order 

1000, while the multiplex advantage depends upon the total data collection time, the 

number of iterations, the rise time of the chopper relative to the PRBS time step, T, and 

the relative intensity of a peak in the object spectrum. However, for the weaker peaks a 

substantial improvement in the multiplex advantage is obtained, which is a significant 

advantage over cross-correlate PRBS method. Note that because the overall performance 

advantage increases with data collection time, the data collection time necessary to 

achieve a particular S/N ratio is not easily predicted. 
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Figure 5.21. Illustration of the numerical method used to assess the signal-to-noise ratio 

in the synthetic data recovered with the Lucy algorithm. A set of 8 noisy PRBS- 

modulated data (using the conventional PTFE spectrum as object function) , all with 2 x 

lo6 total counts, were generated by using trajectory simulation. a) The mean value of the 

recovered spectra in each channel; b) The standard deviation in each channel; c) The ratio 

of a) to b) showing how the S/N varies across the TOF spectrum. 
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Figure 5.22. A) The multiplex advantage predicted from the Eq. 21 for the Hadamard 

transform recovery of the PTFE spectrum. B) The multiplex advantage is calculated by 

taking the ratio of the S/N using Lucy and PRBS modulation to the S/N in a single pulse 

L 

mode experiment. 



Chapter 6 

SUMMARY AND FUTURE WORK 

6.1 Summary of Results 

In this thesis, we started by using a conformal map to solve the potential of an 

infinite array of alternately positive and negatively charged wires of finite diameter and 

infinite length. We simulated the trajectory of electrons on this potential to study the 

characteristics of the interleaved comb chopper. Experimental measurements of the static 

and dynamic properties were made, which were in good agreement with the theoretical 

model. We showed that the finite penetration of the field beyond the plane of the 

chopper leads to non-ideal chopper response, which we characterized in terms of an 

energy corruption effect and a lead or lag in the time at which the beam responds to the 

chopper potential. 

Next we have shown the feasibility of deconvoluting the PRBS spectrum by using 
a 

the maximum likelihood method. By simulating the effects of the Poisson noise 

distribution and non-ideal behavior of the "interleaved comb" chopper on PRBS 

modulated TOF-HREELS data, we have shown that resolution enhancement can be 

achieved, while properly accounting for the Poisson noise distribution and artifacts 

introduced by the chopper [76]. The simulation results suggested that a TOF-HREELS 

instrument with a comparable resolution and dramatic performance (throughput) 

advantage over conventional, serial detection analyzers, could be achieved. 

On the basis of the chopper properties and the performance of the maximum 

likelihood deconvolution software, we constructed the first time-of-flight HREELS 

spectrometer. The spectrometer was tested with a highly oriented PTFE (Teflon) thin 



film sample, which was characterized by AFM and Auger, as reported in a separate 

publication [90]. The data collected with the TOF-HREELS analyzer demonstrated that 

spectra could be acquired 85 times faster than with the conventional analyzer. However, 

the resolution of the TOF spectrum was not as high as was obtained in conventional 

HREELS instrument. Furthermore, the magnitude of artifacts in the recovered spectrum 

was significant compared to the loss features. 

We then presented a general formalism to describe the energy and time-dependent 

contributions to the chopper response function. Further simulation work was done to 

analyze the factors that have the most significant effect on the resolution and artifacts. 

The resolution obtained in the recovered spectrum depends on the signal to noise ratio, 

the ratio of the rise time to PRBS time base, and the number of iterations in the recovery 

algorithm. We concluded that the main contributions to the time resolution are the 

energy corruption effects, the finite rise time of the driver electronics, and the jitter in the 

TDC. The simulations indicated that reduction of the scale of the chopper should improve 

the time resolution. From the trajectory simulation data, we determined the relationship 

between the chopper wire d-spacing and both the lag time and the rise time. These factors 

limit the duration of the PRBS time base, and therefore, the time resolution that can be 

achieved. 

Several factors were analyzed regarding the artifacts in the spectrum. A major 

improvement in the recovered spectrum was achieved when better methods of smoothing 

the response function were devised. Another important factor is the observation that 

when the transmission of a single open bit is reduced, there is a fundamental loss of 

information that the Lucy algorithm cannot overcome. While the experimental origin of 



the oscillations at the beginning and end of the pulse are not understood, their effect on 

the recovery algorithm is clearly detrimental. By contrast, the artifacts that would 

normally be generated by the reduction in the duty cycle due to the leadllag of the 

chopper are compensated well by the Lucy algorithm. A careful analysis of the energy 

dependence of the chopper response fhction suggests that the deviation from the 

assumption of the convolution has a negligible effect on the recovery process; i.e. the 

assumption is valid within the energy range in our HREELS experiment. 

We then defined the throughput and multiplex advantages of the instrument and 

compared the performance of the TOF-HREELS analyzer with the conventional analyzer. 

For the PTFE spectrum, the throughput advantage was a factor of 85, while the multiplex 

advantage is frequency dependent due to the Poisson character of the noise, but exceeded 

the theoretical limit for the Hadamard transform recovery method by a factor of 2. The 

combination of the throughput and multiplex advantages resulted in an overall 

performance advantage of approximately 1000 compared to the conventional HREELS 

instrument. 

6.2 Future Improvements to Instrument 

6.2.1 Resolution 

In order to improve the time resolution, there are a number of directions that 

should be considered. Since we showed that the rise time decreases non-linearly as the 

chopper d-spacing is decreased, reduction of the chopper scale, while maintaining the 

same transmission ratio is perhaps the most important improvement. Micromachining 

methods may allow significant reductions in wire spacing and diameter. Because the 



flight time is strongly dependent on the kinetic energy, a retarding lens before the 

chopper would also be a benefit to the resolution of the spectrum. Because the recovery 

algorithms are very sensitive to the rise time and background, an important task is to 

understand the origin of the oscillations at the edges of the pulse. Solving this problem 

not only can improve the resolution but also should decrease the artifacts. The other 

significant contribution to the time resolution comes from the drive electronics and the 

jitter in the current TDC card. Improved driver output circuits and better quality phase 

lock loops should be able to reduce the contributions from these sources to less than 100 

ps. Finally, reducing the scattering of electrons from the flight tube wall should clean up 

the signal.  his will require either reduction of the collimation slit height or modification 

of the Einzel lens after the chopper. 

6.2.2 Reduction of Artifacts 

Since in simulations with synthetic data we showed that the maximum likelihood 

algorithm will generate artifacts when the response function decreases by as little as 20% 

in the single open bits, it is critical that the time step be at least eight times larger than the 

rise time. Understanding the origin of the oscillations and reduction of scattering within 

the flight tube, as discussed above, will improve the response k c t i o n  from an 

experimental point of view. The autocorrelation of the chopper response function 

provides a convenient way to quantify the non-ideal characteristics of the chopper 

response function. 

There are more fundamental questions regarding the infornlation that can be 

obtained from the noisy, PRBS modulated data. In the absence of noise, the Lucy 



algorithm converges to the correct solution with an error that is limited mostly by the 

numerical precision of the computer, which is of order lom6. However, when there is noise 

present, the resolution enhancement improves as a function of the number of iterations. 

However, tests with noisy synthetic data show that oscillations in the baseline are present 

at a level of to lo4, at least for as many as 10,000 iterations. An analysis of the of 

the likelihood of the true spectrum and that of the estimated spectra during iteration is 

needed to determine whether the oscillations arise simply due to the fluctuations in the 

noise or whether the convergence of the algorithm can be improved. 

Comparison of previous work with Bayesian maximum entropy algorithms with 

results of the Lucy algorithm has shown that the artifacts can be reduced significantly by 

incorporation of a maximum entropy constraint in the probability function. Dr. Lin 

DeNoyer, of Spectrum Square Assoc., is currently working on adapting the Bayesian 

iterative algorithms for the cyclic, PRBS modulated data. 

6.2.3 Improvement to Simulation Methods 

More realistic simulations are possible. The finite rise time of the chopper 

voltages could be included, instead of the instantaneously rise time implemented in the 

simulations described in this thesis. The angular distribution of the electron beam can 

also be included in the trajectory simulations, which would make the simulated results 

more realistic. In addition, the effect of scattering from the chopper wires could be 

included. 



6.2.4 Lens Design 

In order to achieve a higher throughput advantage and better match the angular 

distribution under different scattering conditions, it would be desirable to be able to 

adjust the acceptance angle from the high angular resolution of the current instrument to 

values of 2-4" for dipole scattering on well ordered surfaces, and even larger values of 

order *lo0 on rougher surfaces. A lens in front of the chopper could increase the etendue 

compared to the conventional HREELS, without affecting the time resolution as long as 

the angular distribution at the chopper can be kept small. The large relative change in 

energy, from the elastic peak down through the loss region, presents significant design 

challenges due to chromatic aberrations in electron optics. 

6.3 Applications to Demonstrate Performance Advantages 

In this project, we only examined the PTFE spectrum, in which dipole scattering 

was dominant. As we discussed in Chapter V, the multiplex advantage depends on the 

nature of the spectrum. To demonstrate the advantages of the Lucy algorithm over the 

standard cross-correlation recovery, a sample that has a higher density of closely spaced 

peaks with intensity, relative to the elastic peak that is significantly smaller than in the 

case of the PTFE spectrum, should provide a more dramatic test. We need to simulate the 

data to show the multiplex advantage of the Lucy recovery method, compared to the 

multiplex disadvantage of the standard method. 

The advantages of the greater throughput could be amply demonstrated by a study 

of the negative ion resonances of a complex molecule, such as benzoate on Cu(l10). A 

previous study by Chen, et a1.[26, 911, reported data only for the CH stretch region, due 



to the prohibitively long data acquisition times required to measure complete loss spectra 

for a range of incident beam energies and incident angles. A complete data set, that 

would take months to acquire with the conventional HREELS instrument could be 

reduced to an afternoon's work. For this to be done efficiently, it would be necessary to 

improve the tuning of the monochromator, so that the monochromatic beam stays 

properly tuned when the primary beam energy is scanned. 

Other experiments could exploit the fast data acquisition time. For example, if 

data acquisition times can be reduced to a few seconds, then potentially the PRBS TOF- 

HREELS instrument could measure useful spectra on insulating materials. On surfaces 

where charging occurs, the primary beam could be gated on or off for periods of tens or 

hundreds of milliseconds to allow the surface to discharge before being exposed to a 

further electron beam exposure. This also offers, at a more fimdamental level, an 

opportunity to study the charging mechanism itself. With fast acquisition times, we 

could take spectra step by step until the sample is fully charged. By characterizing the 

morphology of the sample, for example with AFM, the time dependence of the charging 

process could be quantified by modeling the electron transport properties, for example in 

thin insulating polymer materials. 

Based on the work we have done and the prospects for further improvements to 

the instrument, we are optimistic that this new approach of TOF-HREELS can achieve 

resolution comparable to state-of-the-art conventional HREELS instruments, but with a 

dramatic throughput advantage. To the extent that the properties of the TOF analyzer 

allow investigation of more realistic surfaces, we expect that the instrument will make a 

significant impact on the development of HREELS within the surface science field. 



APPENDIX 

Preparation of Highly Oriented PTFE Samples 

1. The Deposition of the PTFE films 

In our experiment, the PTFE rod used was ~ef lon@ from Good fellow, 99.99% 

purity, 0.5 inch diameter. The melting temperature of the PTFE rod is specified as 327 OC. 

PTFE films were deposited onto a 10 x 10 mm2 substrate cut from a silicon wafer having 

a 3000 A thick platinum or gold film on it. The rms roughness of the metallized substrate 

surface was measured by AFM to be less than 12 A within an area of the order of several 

square microns. 

The deposition of the PTFE films was accomplished by a custom-built device. 

The PTFE rod was fixed at one end of an aluminum rod; the other end of the aluminum 

rod was extended out of the oven so that weights could be put on the rod, as illustrated in 

Fig A.1. The substrate was put between two glass strips so that the PTFE rod could be 

preconditioned on these glass strips. All of the glass strips and the sample were put on an 

aluminum cart which slid on an aluminum groove. The cart was connected to a motor by 

a 114 - 40 stainless steel rod and the motor was fixed to the oven in order to reduce 

vibrational effects of the motor rotation. The end of the PTFE was beveled to 1 x 8 mm2. 

We cut the width of the PTFE rod 2mm less than from the width of the sample so that the 

surface profiler can be used to measure the thickness of the deposited PTFE films. Each 

time before the PTFE films were deposited onto the sample, the rod was preconditioned 

by rubbing the glass 3-4 cm for 20 or 30 minutes just in one sliding direction. Before the 

PTFE was deposited onto the sample, it was slid 2 to 3 cm on the glass then directly onto 

the sample. The rotation speed of the motor was selectable to achieve two sliding speeds, 
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Figure A.l A schematic drawing of the PTFE film deposition instrument. The substrate 

was clamped in a groove on the cart between two glass strips. The PTFE rod was 

attached to one end of the aluminum rod; the other end of the aluminum rod extended out 

of the oven so that the load on the PTFE rod could be adjusted by adding weight. The 

aluminum cart was connected to a motor by a ?4 - 40 stainless steel threaded rod which 

slid back and forth. The motor was mounted on the outside of the oven through supports 

on the back. A thermocouple was connected to the cart so the temperature of the 

instrument could be monitored. 



1 mmlsec and 2 mrnhec. A K-type thermocouple wire was attached to the cart so that the 

temperature of the system could be monitored. 

2. Microscopy Methods 

After the PTFE sample was prepared, it was first put under the microscope 

(Digitial camera Microscope, Zeiss, Germany) to observe the optical properties of the 

PTFE films. Figure A.2 shows the comparison between the optical image of the bare 

platinum substrate and the image of the PTFE films on the substrate when breathing on 

these samples. A clear orientation along the friction direction can be observed on the 

PTFE sample. In order to find the detailed structure of these PTFE films on the substrate, 

we used the AFM to characterize it. 

The AFM (Autoprobe CP AFM, Park Scientific Instruments, Sunnyvale, CA) was 

operated in air condition. In our measurement, we only used the contact mode, the 

biggest scanning area was 10x1 0 pm2, the smallest scanning area was 10x1 0 A ~ .  

3. The Results from AFM 

Fig. A.3 shows a sample of the images of the PTFE films measured by AFM. The 

image shown in Fig. A.3a is the bare platinum substrate; A.3b, A.3c, and A.3d are the 

images of PTFE films under 220 grams, 480 grams and 1 kg, respectively. From these 

images, we can see that the basic units of the deposited PTFE films are very long ribbons. 

The direction of these ribbons is along the sliding direction. As the load increased the 

ribbons were oriented more parallel to each other and the coverage on the platinum 

substrate increased. The detailed height profile is shown in Figure A.4. By subtracting the 



base slope, the detailed analysis showed that the average height of the PTFE ribbons was 

around 300 A.  



Figure A.2 A photo taken under the microscope. The upper image shows the view when 

breathing on the bare sample and the lower image is the case when breathing on the 

PTFE sample. 



Figure A.3 Some AFM images for the PTFE film on Pt substrate. 3a is the image of bare 

Pt. 3b,c,d are the AFM images of PTFE films with pressure of 27.5 g/mm2, 60 g/mm2, 

and 125 g/mm2 respectively. The image reveal the PTFE films forms long and parallel 

ribbon on the Pt substrate. The scanning area is 10 pm x 10 pm. 



Height Profile [A] 
0 0 

Figure A.4 A height profile for the PTFE films on platinum substrate was obtained by 

scanning along a line perpendicular to the PTFE ribbons. If subtract the base, the average 

height for the ribbons is about 300 A. 
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