463 research outputs found

    An emergency vehicles allocation model for major industrial disasters

    Get PDF
    One of the main issues in the event of a major industrial disaster (fire, explosion or toxic gas dispersion) is to efficacy manage emergencies by considering both medical and logistics issues. From a logistics point of view the purpose of this work is to correctly address critical patients from the emergency site to the most suitable hospitals. A Mixed Integer Programming (MIP) Model is proposed, able to determine the optimal number and allocation of emergency vehicles involved in relief operations, in order to maximize the number of successfully treated injured patients. Moreover, a vehicles reallocation strategy has been developed which takes into account the evolution of the patients health conditions. Alternative scenarios have been tested considering a dynamic version of the Emergency Vehicles Allocation Problem, in which patient health conditions evolves during the rescue process. A company located in Italy has been considered as case-study in order to evaluate the performance of the proposed methodology

    A Bus Allocation Model for Major Industrial Disasters

    Get PDF
    The presented research is part of a broader project DIEM-SSP—Disasters and Emergencies Management for Safety and Security in Industrial Plants –aiming at managing major industrial emergencies by considering both medical and engineering/logistics issues. When a disaster occurs, it is necessary to immediately provide relief plans. Many decisions must be made in very short time, which may have a relevant impact on the consequences of the disaster. For an efficient and smart exploitation of available resources, it is necessary to mitigate damages. From a logistics point of view, one of the major issues in the event of a major industrial disaster (fire, explosion or toxic gas dispersion) is to evacuate the external population that can be affected by the disaster to specific evacuation areas. The purpose of the research is to determine the optimal number and allocation of vehicles (buses) which must be involved in order to evacuate the population located in a defined risk area around the emergency site and the optimal location for evacuation areas. For that reasons, a dynamic version of the bus allocation problem is proposed using a mixed-integer programming model

    Relief distribution networks : a systematic review

    Get PDF
    In the last 20 years, Emergency Management has received increasing attention from the scientific community. Meanwhile, the study of relief distribution networks has become one of the most popular topics within the Emergency Management field. In fact, the number and variety of contributions devoted to the design or the management of relief distribution networks has exploded in the recent years, motivating the need for a structured and systematic analysis of the works on this specific topic. To this end, this paper presents a systematic review of contributions on relief distribution networks in response to disasters. Through a systematic and scientific methodology, it gathers and consolidates the published research works in a transparent and objective way. It pursues three goals. First, to conduct an up-to-date survey of the research in relief distribution networks focusing on the logistics aspects of the problem, which despite the number of previous reviews has been overlooked in the past. Second, to highlight the trends and the most promising challenges in the modeling and resolution approaches and, finally, to identify future research perspectives that need to be explored

    Robust Platelet Logistics Planning in Disaster Relief Operations Under Uncertainty: a Coordinated Approach

    Full text link
    © 2017, Springer Science+Business Media, LLC. Resource sharing, as a coordination mechanism, can mitigate disruptions in supply and changes in demand. It is particularly crucial for platelets because they have a short lifespan and need to be transferred and allocated within a limited time to prevent waste or shortages. Thus, a coordinated model comprised of a mixed vertical-horizontal structure, for the logistics of platelets, is proposed for disaster relief operations in the response phase. The aim of this research is to reduce the wastage and shortage of platelets due to their critical role in wound healing. We present a bi-objective location-allocation robust possibilistic programming model for designing a two-layer coordinated organization strategy for multi-type blood-derived platelets under demand uncertainty. Computational results, derived using a heuristic ε-constraint algorithm, are reported and discussed to show the applicability of the proposed model. The experimental results indicate that surpluses and shortages in platelets remarkably declined following instigation of a coordinated disaster relief operation

    ОПТИМАЛЬНАЯ МАРШРУТИЗАЦИЯ ВОЗДУШНЫХ СУДОВ И МАШИН СКОРОЙ ПОМОЩИ В ЛОГИСТИКЕ ПРИ СТИХИЙНЫХ БЕДСТВИЯХ

    Get PDF
    One of the most vital aspects of emergency management studies is the development and examination of post-disaster search and rescue activities and treatment facilities. One of such issues to be considered while performing these operations is to reach the disaster victims within minimum time and to plan disaster logistics in the most efficient manner possible. In this study, the problem of planning debris scanning activities with Unmanned Aerial Vehicles after an earthquake and transporting the injured people to the hospitals by ambulances within minimum time was discussed, and mathematical models were developed to solve the problem. The ambulance routing problem and the mathematical model to be used in the solution to the problem are discussed for the first time in the literature. The developed model was tested on the problem sets created by taking into account the data of the province under investigation.Одним из наиболее важных аспектов исследований по управлению рисками и чрезвычайными ситуациями является разработка и изучение поисково-спасательных мероприятий и очистных сооружений после стихийных бедствий. Одним из вопросов, которые необходимо учитывать при выполнении этих операций, является обеспечение доступа к жертвам стихийных бедствий в минимальные сроки и планирование логистики в случае стихийных бедствий наиболее эффективным способом. В данном исследовании рассматривается проблема планирования работ по спасению с помощью беспилотных летательных аппаратов после землетрясения и транспортировки пострадавших людей в больницы на машинах скорой помощи за минимальное время. Для решения этой проблемы были разработаны и предложены математические модели. Впервые рассматривается задача маршрутизации скорой помощи и математическая модель, которая будет использоваться для решения этой задачи. Разработанная модель была протестирована на множествах задач, созданных с учетом реальных данных исследуемой провинции Турции

    Stochastic Multi-Objective Evacuation Model Under Managed and Unmanaged policies

    Get PDF
    Abstract Natural and man-created disasters, such as hurricanes, earthquakes, tsunamis, accidents and terrorist attacks, require evacuation and assistance routes. Evacuation routes are mostly based on the capacities of the road network. However, in extreme cases, such as earthquakes, road network infrastructure may adversely be affected, and may not supply their required capacities. If for various situations, the potential damage for critical roads can be identified in advance, it is possible to develop an evacuation model, that can be used in various situations. This paper focuses on the development of a model for the design of an optimal evacuation network which simultaneously minimizes retrofit costs of critical links (bridges, tunnels, etc.) and evacuation time. The model considers infrastructures' vulnerability (as a stochastic function which is dependent on the event location and magnitude), road network, transportation demand and evacuation areas. Furthermore, the model evaluates the benefits of managed evacuation (system optimum) when compared to unmanaged evacuation (user equilibrium). The paper presents a mathematic model for the presented problem. However, since an optimal solution cannot be found within a reasonable timeframe, a heuristic model is presented as well. This heuristic model is based on evolutionary algorithms, which also provides a mechanism for solving the problem as a multi-objective stochastic problem. Using a real-world data, the algorithm is evaluated and compared to the unmanaged evacuation conditions. The results clearly demonstrate the advantages of managed evacuation, as the average travel time can be reduced by 5% to 30%

    Human and modeling approaches for humanitarian transportation planning

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Engineering Systems Division, 2012.Cataloged from PDF version of thesis.Includes bibliographical references.Recent disasters have highlighted the need for more effective supply chain management during emergency response. Planning and prioritizing the use of trucks and helicopters to transport humanitarian aid to affected communities is a key logistics challenge. This dissertation explores ways to improve humanitarian transportation planning by building on the strengths of both humans and models. The changing, urgent, multi-objective context of humanitarian aid makes it challenging to formulate and deploy useful planning models. Humans are better able to understand the context, but struggle with the complexity of the problem. This research investigates the strengths and weaknesses of human transportation planners in comparison with models, with the goal of supporting both- better human decision-making and better models for humanitarian transportation planning. Chapter 2 investigates how experienced humanitarian logisticians build transportation plans in a simulated emergency response. Based on an ethnographic study of ten logistics response teams, I show how humans come to understand the problem and its objectives through sensemaking, and solve it through a search-like series of decisions guided by goal-oriented decision rules. I find that the definition of objectives is an important strength of the sensemaking process, and that the human reliance on greedy search may be a weakness of human problem-solving. Chapter 3 defines a performance measure for humanitarian transportation plans, by measuring the importance of the objectives identified in the ethnographic study. I use a conjoint analysis survey of expert humanitarian logisticians to quantify the importance of each objective and develop a utility function to value the performance of aid delivery plans. The results show that the amount of cargo delivered is the most important objective and cost the least; experts prefer to prioritize vulnerable communities and critical commodities, but not to the exclusion of others. Chapter 4 investigates the performance of human decision-making approaches in comparison to optimization models. The human decision-making processes found in Chapter 2 are modeled as heuristic algorithms and compared to a mixed-integer linear program. Results show that optimization models create better transportation plans, but that human decision processes could be nearly as effective if implemented consistently with the right decision rules.by Erica L. Gralla.Ph.D

    Resource location for relief distribution and victim evacuation after a sudden-onset disaster

    Get PDF
    Quick responses to sudden-onset disasters and the effective allocation of rescue and relief resources are vital for saving lives and reducing the suffering of the victims. This paper deals with the problem of positioning medical and relief distribution facilities after a sudden-onset disaster event. The background of this study is the situation in Padang Pariaman District after the West Sumatra earthquake. Three models are built for the resource location and deployment decisions. The first model reflects current practice where relief distribution and victim evacuation are performed separately and relief is distributed by distribution centers within administrative boundaries. The second model allows relief to be distributed across boundaries by any distribution center. The third model further breaks down functional barriers to allow the evacuation and relief distribution operations share vehicles. These models are solved directly for small problems and by using a direct approach as well as heuristics for large problems. Test results on small problems show that resource sharing measures, both across boundaries and across different functions, improve on current practice. For large problems, the results give similar conclusions to those for small problems when each model is solved using its own best approach
    corecore