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Abstract: 

 Quick responses to sudden-onset disasters and the effective allocation of rescue and relief 

resources are vital for saving lives and reducing the suffering of the victims. This paper deals with the 

problem of positioning medical and relief distribution facilities after a sudden-onset disaster event. 

The background of this study is the situation in Padang Pariaman District after the West Sumatra 

earthquake. Three models are built for the resource location and deployment decisions. The first model 

reflects current practice where relief distribution and victim evacuation are performed separately and 

relief is distributed by distribution centers within administrative boundaries. The second model allows 

relief to be distributed across boundaries by any distribution center. The third model further breaks 

down functional barriers to allow the evacuation and relief distribution operations share vehicles. 

These models are solved directly for small problems and by using a direct approach as well as 

heuristics for large problems. Test results on small problems show that resource sharing measures, 

both across boundaries and across different functions, improve on current practice. For large problems, 

the results give similar conclusions to those for small problems when each model is solved using its 

own best approach. 
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1. Introduction 

 Natural disasters kill thousands of people, affect millions of others and cause huge economic 

damage every year. Furthermore, the frequency of disasters has shown an increasing trend in recent 

decades. Natural disasters were classified into slow onset disasters and sudden onset disasters by Van 

Wassenhove (2006). An earthquake is a typical example of a sudden-onset disaster which happens 

suddenly and is difficult to predict. A strong earthquake could cause damage to areas over a hundred 

kilometers away from the epicenter, and the emergency disaster response period could last for two 

weeks.  This paper studies a logistics decision problem for victim evacuation and relief distribution in 

response to this type of disaster. In the remainder of the paper, we simply use disaster to refer to this 

type of disaster. 

 To reduce loss of life and the suffering of survivors, any disaster needs to be quickly responded to 

with on-site actions such as establishing temporary shelters and/or temporary medical facilities, 

evacuating victims, and distributing relief goods to the victims. Resources for the response to a 

disaster are often limited, and so it is common that a variety of organizations from different places 

become involved in the operations. This increases the complexity of management and calls for good 

coordination (Balcik et al., 2010; Coppola, 2007; Nolte et al., 2012). Different parties may be 

involved at different time periods (Norio et al., 2012), meaning that resources for disaster response are 

not always available at the same time points. These resources include vehicles (e.g., Pedraza Martinez 

et al., 2011; Jotshi et al., 2009) and temporary medical facilities (e.g., Abolghasemi et al., 2006; Merin 

et al., 2010). For an effective response to a disaster, information on resource availability is crucial. 

This information is dynamic in nature. 

 In this study, we consider the logistics decision problem in the emergency response phase with 

dynamic information on resource availability. The decisions in the problem include determining the 

locations of temporary medical facilities and relief distribution centers as well as deploying vehicles 

for carrying out relief distribution and victim evacuation operations. Temporary medical facilities 

represent medical teams coming with equipment from outside the disaster region. By modeling the 

problem under different assumptions, we investigate the benefit of coordination. 

 Our literature search found little previous work that deals with all three decisions on resource 

location, relief distribution and victim evacuation in response to a disaster. Sheu and Pan (2014) 

propose a centralized emergency supply network integrating shelter sub-network, medical 

sub-network and distribution sub-network. A three-stage design approach is taken. Each stage 

designs one of the sub-networks using a mathematical programming model.  The sub-

networks are integrated sequentially with the result of an earlier stage used as input for a later 

stage.  The models do not decide the deployment of transportation resources, but consider 

flow capacities as given constraints. Yi and Özdamar (2007) propose models to make decisions on 
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vehicle routing and the transportation of different commodities over time. The locations of emergency 

centers are not explicitly modeled as discrete decisions; rather, all potential temporary sites are 

considered with variable capacities, the allocation of personnel and other resources are modeled as 

decisions and these resources may be moved around during the planning horizon. Yi and Kumar 

(2007) consider the routing and distribution problem with fixed demand and supply locations and 

develop an ant colony optimization heuristic to solve the problem. Manopiniwes and Irohara (2017) 

develop stochastic programming models to make pre-disaster decisions on the locations and 

stock amounts of relief distribution centers, considering also post-disaster relief distribution 

and victim evacuation decisions in different disaster scenarios with probabilities. A known 

fleet of identical vehicles is assumed.  Uster and Dalal (2017) propose a mixed integer linear 

programming model for designing emergency preparedness network. The decisions include 

locations of distribution centers, locations and capacity levels of shelters as well as 

assignment of evacuee source-to-shelter and shelter-to-distribution center assignments. The 

model tries to minimize two criteria, the maximum distance traveled by evacuees and the 

system cost.  Moreno et al. (2016) study a multiperiod location-transportation problem for 

relief distribution and propose a method to solve the problem in two stages: location of relief 

centers and assignment of vehicles in the first stage and decision on distribution plan in the 

second stage.  Vehicle resources are considered known and unchanged during the planning 

horizon.  Najafi, et al. (2013) propose a multi-objective model to schedule vehicles for transporting 

relief commodities and injured people, considering uncertainties.  A vehicle may be used to transport 

commodities or people at different times, but the locations of demand and supply as well as hospitals 

are all considered to be known in advance. In our problem, however, temporary medical centers have 

to be located to accommodate the temporary medical teams and their equipment, and once established 

cannot be easily relocated in the planning horizon. In addition, medical teams may come at different 

times and the exact arrival time of each team may not be known in advance. 

 Most other previous research considers one aspect of disaster logistics – victim evacuation or 

relief distribution. On victim evacuation and treatment, Drezner et al. (2006) model a problem of 

locating casualty collection points considering multiple criteria. Jotshi et al. (2009) study a problem of 

dispatching and routing emergency vehicles to pick up casualties and sending them to hospitals. Jia et 

al. (2007) and Huang et al. (2010) consider the characteristics of large-scale emergencies and propose 

location models to determine the locations of medical services. 

 For relief distribution, Balcik et al. (2008) propose models for generating distribution routes from 

local distribution centers to demand locations and deploying vehicles on these routes. Li et al. (2011) 

develop a multi-objective optimization model for facility location and relief transportation and propose 

a genetic algorithm to solve it. Widener and Horner (2011) present an allocation model for distributing 
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aid. Afshar and Haghani (2012) propose an integrated model to determine the locations of temporary 

facilities, vehicle routes and delivery schedules of relief commodities. Lin et al. (2012) take a two-

phase approach to locating temporary depots, allocating demand points to the depots and then 

considering detailed operations for relief distribution. Huang et al. (2015) develop an integrated multi-

objective optimisation model for efficient distribution and delivery of humanitarian aid from supply 

locations to demand locations through a transportation network. There has been other research 

focusing on pre-disaster location of resources to prepare for efficient relief distribution operations 

considering possible disaster occurrences (e.g., Balcik and Beamon, 2008; Salmeron and Apte, 2010; 

Rawls and Turnquist, 2012; Kusumastuti et al., 2013). 

 In this research we include both relief distribution and victim evacuation. In deciding the 

locations of temporary facilities, we consider the constraint of vehicle resources and allow sharing of 

vehicles in the two operations. The rest of the paper is organized as follows. Section 2 describes the 

problem studied and provides the general framework for solving the problem. The models used to 

locate the temporary facilities and to deploy vehicles are presented in Section 3. Section 4 presents 

two heuristics for solving the models quickly. Computational experiments comparing the performance 

of the models are reported in Section 5. Finally, conclusions are given in Section 6. 

 

2. Problem Description and Solution Framework 

2.1 Background 

 The background of this study is the situation in Padang Pariaman District after the West Sumatra 

earthquake. The situation is typical in Indonesia where earthquakes strike frequently. Our field study 

reveals that, at different levels, the Indonesian government takes both proactive and reactive measures 

for disaster management. The main government departments responsible for disaster response are the 

Ministry of Social Affairs and the Ministry of Health (see also Kusumastuti et al., 2013). As a 

proactive measure, the Ministry of Social Affairs has built warehouses at the national and provincial 

level and some at district/municipality levels, whereas the Ministry of Health has set up some Centers 

for Disaster Management. In each district/municipality, there is usually also a warehouse for medical-

related goods. From these facility locations, commodity supplies as well as medical teams are 

dispatched to disaster areas when a disaster strikes. There are also hospitals and other medical 

facilities serving as destinations of injured victims in the disaster areas. 

 When a disaster strikes, existing facilities may have been incapacitated or become only partially 

functional and so cannot provide service optimally. In most cases, there are additional relief goods and 

medical teams coming from outside in response to the disaster. It is vitally important to position and 

deploy resources so as to evacuate victims and distribute relief efficiently. Therefore, reactive 

measures are also taken. Currently in Indonesia, the operations of victim evacuation and relief 
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distribution are conducted separately by the Ministry of Health and the Ministry of Social Welfare 

respectively. A National Board for Disaster Management and its derivatives have already been set up 

in several provinces and municipalities/districts, which are given command authority to coordinate 

various agencies involved during the response phase after a disaster. How to take advantage of this 

new establishment to coordinate the two operations is yet to be explored and has motivated our 

research. 

2.2 Problem statement 

 Based on the practice in Padang Pariaman District after the West Sumatra earthquake, disaster 

management is carried out at three levels. For model purposes and for consistency, we will use the 

following terms. The whole district affected by the disaster will be referred to as the region which 

comprises several sub-regions. Each sub-region consists of a number of disaster areas. Each disaster 

area is a basic unit which will be treated as a point and so local transportation within a disaster area 

will not be considered. This three-level structure models the problem in reasonable detail and at the 

same time keeps the complexity of the model manageable. Figure 1 shows a schematic example of the 

region, sub-regions and disaster areas. 

The region The region is divided 
into 2 sub-regions

The two sub-regions are subdivided 
into 6 and 7 disaster areas, respectively

 

Figure 1 A schematic example of region, sub-regions and disaster areas 

 Immediately after a disaster happens, information on damage is gathered to guide decisions for 

disaster relief operations. This known information includes the estimated number of injured victims 

and the estimated number of injury-free sufferers in each disaster area, distribution centers and 

hospitals that are still functioning, potential sites that can be used for temporary distribution centers 

and/or medical centers, available vehicles that can be used for victim evacuation and/or relief 

distribution, and the estimated travel time between any pair of relevant locations (e.g., existing 

distribution centers, hospitals, temporary distribution centers, temporary medical centers, and disaster 

areas), taking into account road damage. 

 Medical teams with equipment come from other regions or even other countries over time. Each 

medical team will be sent to a site and will serve as a temporary medical center. More vehicles may 

also become available over time. Accurate information on these resources will only become available 

on the day they arrive. While the incoming medical facilities and vehicles may also leave the disaster 

region at different times, it is sensible to assume that none of them will leave at the same time as they 
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arrive. To make the relief operation possible, it is also sensible to assume that there are at least one 

distribution center and at least one medical facility in every time period within the planning horizon. A 

time period here can be taken naturally as one day and the planning horizon is the time span of the 

emergency response phase, for example two weeks. 

 Our problem is (a) to determine the locations of temporary distribution centers and temporary 

medical centers, (b) to allocate each disaster area to a distribution center (existing or temporary) and to 

a hospital or medical center (existing or temporary), and (c) to deploy vehicles for distributing relief 

goods to disaster areas from their allocated distribution centers and for evacuating injured victims 

from the disaster areas to their allocated medical centers (including hospitals). The evacuation may 

include injury-free victims who need to be evacuated and taken care of.  The term “injured victims” 

will be used to mean all the victims that need to be evacuated. “Injury-free victims” will be used to 

mean those who do not need to be evacuated from the areas they are.  Relief goods need to be 

distributed to these areas for them use. 

 Once the location of a temporary center is determined, it will not be changed during the planning 

horizon, because re-locating a center will waste time and resources and will delay the disaster relief 

operations. Vehicles for relief distribution and/or for victim evacuation are assumed to use particular 

sites as bases. All available vehicles can be reallocated at the beginning of each period. Once a vehicle 

is allocated to a site at the beginning of a time period, it will serve the site during that whole period. 

 There are two types of relief goods. The demand for Type-1 is reoccurring. Examples of this type 

include food, medicine and clean water. The demand for Type-2 is one-off in the planning horizon. 

Examples of this type include tents and clothes. Because of the proactive measures taken before the 

disaster, supplies of relief goods are sufficient and can be considered as unlimited. If the victims 

experience a shortage of relief goods, they will suffer. This type of suffering is represented by the 

unsatisfied relief demand of victims multiplied by the duration over which the demand is not met. 

Similarly, before injured victims are evacuated, they continue to suffer. This type of suffering is 

represented by the number of un-evacuated injured victims multiplied by the duration of their waiting 

for evacuation. The total suffering for an area is the weighted sum of these two types of suffering. The 

objective of decisions in the problem is to minimize suffering in the worst area as well as the total 

suffering in all areas. 

2.3 Framework of the solution approach 

 We develop mathematical models to decide the locations of temporary medical centers and 

temporary relief distribution centers and the allocation of disaster areas and vehicles to these centers. 

Representing different management policies, three different models are developed. These will be 

presented in the next section. 
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 We further propose the following approach to make decisions using these models in response to 

the dynamic arrivals of resources. Any of the above three models can be run in this framework. 

Immediately after the disaster, the model is run considering the existing facilities and available 

temporary facilities to be located and the demands and vehicles to be allocated. The decisions will be 

implemented and operations will be carried out according to the results until the next run of the model. 

At the beginning of the next period or when new resources become available, the model is run again to 

plan and modify decisions for operations in the remaining periods using updated information at the 

time. Temporary facilities located in previous periods are treated as existing ones, and the demands 

that are already satisfied will not be considered in the subsequent model runs. In each run, the 

planning horizon of the model is from that time point to the end of the emergency response phase. It is 

worth emphasizing that the result of each run is only actually implemented for the period until the next 

run.  At the end, the overall performance of a decision model is calculated based on the decisions 

actually implemented in each period for the whole emergency response phase. Figure 2 illustrates this 

framework. The approach is implemented in the experiments to test and compare the performance of 

the models. The experimental results will be presented in Section 5. 

Time

0 1 2 3 4 14 15

The whole duration of the emergency response phase

Planning horizon of the model run at 
the beginning of the first period

Planning horizon of the model run 
at the beginning of the second period

Planning horizon of the model run at 
the beginning of the third period

··· ··· Model runs in later periods ··· ··· 

First run results are 
actually implemented

Second run results are 
actually implemented

Third run results are 
actually implemented

··· ···

 
Figure 2 Illustration of model runs in the solution approach 

 

3. The Models 

 The problem studied here shares a similar structure with a location-allocation problem. However, 

there are also significant differences. We try to minimize victim suffering in the worst area as well as 

total suffering over all areas. Therefore, the problem has a mixed feature of p-center and p-median 

types. Location-allocation models consider the total demand of each demand point, but do not consider 

transportation resource constraints and the timings for satisfying demand. In our problem, victim 

suffering depends on when their demands are satisfied, which is closely related to the availability of 

transportation resources and the decisions on their deployment. In this section, we present three 

different models for this problem. 
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3.1 Model I: The current practice 

 In the current practice as in the West Sumatra case, relief distribution and victim evacuation are 

carried out by different government agencies. To reflect this, these two parts can be considered as two 

sub-systems and modeled separately. Thus model I consists of two sub-models: sub-model Ia for relief 

distribution and sub-model Ib for victim evacuation. In addition, the current practice allows relief 

distribution to areas in a sub-region only from a distribution center within the sub-region. 

 To present the model, we first define the following notation. Some of these will also be used in 

the other two models later. 

Sets and parameters: 

𝑅𝑅 Set of sub-regions in the disaster region, 𝑅𝑅 = {1,2, … , 𝑛𝑛𝑟𝑟}; 

𝐴𝐴𝑟𝑟 Set of disaster areas in sub-region 𝑟𝑟 ∈ 𝑅𝑅, ⋂ 𝐴𝐴𝑟𝑟𝑟𝑟∈𝑅𝑅  = ∅; 

𝐴𝐴 Set of all disaster areas, 𝐴𝐴 = ⋃ 𝐴𝐴𝑟𝑟𝑟𝑟∈𝑅𝑅 ; 

𝒟𝒟𝑜𝑜𝑟𝑟 Set of existing sites with distribution centers in sub-region 𝑟𝑟 ∈ ℛ,  ⋂ 𝒟𝒟𝑜𝑜𝑟𝑟𝑟𝑟∈𝑅𝑅  = ∅; 

ℳ𝑜𝑜 Set of existing sites with medical facilities; 

𝐶𝐶𝐶𝐶𝐶𝐶𝑘𝑘𝑚𝑚 Capacity (number of injured victims can be handled per period) of the medical facility at 

existing site k, 𝑘𝑘 ∈ ℳ𝑜𝑜; 𝐶𝐶𝐶𝐶𝐶𝐶𝑘𝑘𝑚𝑚 = 0 for 𝑘𝑘 ∉ ℳ𝑜𝑜; 

𝒫𝒫𝑑𝑑𝑟𝑟 Set of candidate sites for temporary distribution centers in sub-region 𝑟𝑟 ∈ 𝑅𝑅, ⋂ 𝒫𝒫𝑑𝑑𝑟𝑟𝑟𝑟∈𝑅𝑅  = ∅; 

𝒫𝒫𝑚𝑚 Set of candidate sites for temporary medical facilities; 

𝛼𝛼𝑑𝑑𝑟𝑟  Set of all sites either with existing distribution centers or candidates for distribution centers 

in sub-region r, 𝛼𝛼𝑑𝑑𝑟𝑟= 𝒟𝒟𝑜𝑜𝑟𝑟 ∪ 𝒫𝒫𝑑𝑑𝑟𝑟, 𝒟𝒟𝑜𝑜𝑟𝑟 ∩ 𝒫𝒫𝑑𝑑𝑟𝑟 = ∅; 

𝛼𝛼𝑚𝑚 Set of all sites either with existing medical facilities or candidates for medical facilities, 𝛼𝛼𝑚𝑚= 

ℳ𝑜𝑜 ∪𝒫𝒫𝑚𝑚, ℳ𝑜𝑜 ∩ 𝒫𝒫𝑚𝑚 = ∅; 

𝑇𝑇 Set of time points from the current time to the end of the planning horizon, 𝑇𝑇 =

 {0, 1,2, … , 𝑛𝑛𝑡𝑡}; 

𝐹𝐹0𝑖𝑖𝑖𝑖 Set of temporary medical facilities arriving at time point 0 of model implementation; 

𝐶𝐶𝐶𝐶𝐶𝐶𝑗𝑗
𝑓𝑓 Capacity (number of injured victims can be handled per period) of temporary medical 

facility j, 𝑗𝑗 ∈ 𝐹𝐹0𝑖𝑖𝑖𝑖; 𝑉𝑉𝑉𝑉 Set of vehicle types used for relief distribution in the current practice; 

𝑉𝑉𝑉𝑉 Set of vehicle types used for victim evacuation in the current practice; 

𝑉𝑉𝑉𝑉 Set of all vehicle types, 𝑉𝑉𝑉𝑉 = 𝑉𝑉𝑉𝑉 ∪ 𝑉𝑉𝑉𝑉, 𝑉𝑉𝑉𝑉 ∩ 𝑉𝑉𝑉𝑉 = ∅; 

𝑡𝑡𝑖𝑖𝑖𝑖 Estimated travel time (including loading-unloading time) from disaster area 𝑖𝑖 to site 𝑘𝑘; 
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𝑡𝑡𝑗𝑗𝑗𝑗 Estimated travel time from site 𝑗𝑗 to site 𝑘𝑘; 

𝐻𝐻𝑖𝑖 Estimated total number of injury-free victims in disaster area 𝑖𝑖 (in number of people); 

𝑊𝑊0𝑖𝑖 Un-evacuated injured victims in disaster area 𝑖𝑖 at the beginning of model implementation (in 

number of people); 

𝑔𝑔1 Total amount of type-1 relief goods needed per time unit per person (in volume unit per 

person per time unit); 

𝑔𝑔2 Total amount of type-2 relief goods needed per person during planning horizon (in volume 

unit per person); 

𝐼𝐼0𝑖𝑖1 Inventory level of type-1 relief goods in disaster area 𝑖𝑖 at the beginning of model 

implementation (in volume unit); 

𝐺𝐺0𝑖𝑖𝑖𝑖2  Total amount of type-2 relief goods already sent from site 𝑘𝑘 to disaster area 𝑖𝑖 up to the 

beginning of model implementation (in volume unit); 

𝑝𝑝𝑔𝑔1 Penalty for unmet demand for type-1 relief goods of a victim during a particular time period; 

𝑝𝑝𝑔𝑔2 Penalty for unmet demand for type-2 relief goods of a victim during a particular time period; 

𝑝𝑝ℎ Penalty for an un-evacuated injured victim during a particular time period; 

𝑍𝑍0𝑣𝑣𝑣𝑣𝑎𝑎𝑎𝑎𝑎𝑎 Number of vehicles of type 𝑣𝑣 already available at site 𝑘𝑘 at the beginning of model 

implementation;  

𝐶𝐶𝐶𝐶𝐶𝐶𝑣𝑣
𝑔𝑔 Capacity of each vehicle of type 𝑣𝑣 when used for relief distribution (in volume unit); 

𝐶𝐶𝐶𝐶𝐶𝐶𝑣𝑣ℎ Capacity of each vehicle of type 𝑣𝑣 when used for victim evacuation (in number of people); 

𝑡𝑡𝐷𝐷 Time availability in one time period (in time unit); 

𝑀𝑀 A very big positive number; 

𝑁𝑁𝑑𝑑𝑑𝑑𝑟𝑟  Maximum number of temporary distribution centers to establish in sub-region 𝑟𝑟; 

𝑉𝑉𝑣𝑣𝑣𝑣𝑟𝑟𝑟𝑟𝑟𝑟 Number of new vehicles of type 𝑣𝑣 ∈ 𝑉𝑉𝑉𝑉 for relief distribution becoming available at the 

beginning of model implementation in sub-region 𝑟𝑟; 

𝑉𝑉𝑣𝑣𝑣𝑣𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 Number of vehicles of type 𝑣𝑣 ∈ 𝑉𝑉𝑉𝑉 for relief distribution leaving sub-region 𝑟𝑟 at the 

beginning of model implementation; 

𝑉𝑉𝑣𝑣ℎ𝑖𝑖𝑖𝑖 Number of new vehicles of type 𝑣𝑣 ∈ 𝑉𝑉𝑉𝑉 becoming available for victim evacuation at the 

beginning of model implementation; 

𝑉𝑉𝑣𝑣ℎ𝑜𝑜𝑜𝑜𝑜𝑜 Number of vehicles of type 𝑣𝑣 ∈ 𝑉𝑉𝑉𝑉 for victim evacuation leaving the disaster scene at the 

beginning of model implementation; 
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Decision variables: 

𝑋𝑋𝑋𝑋 Maximum amongst the weighted unmet relief demands in disaster areas in 𝐴𝐴𝑟𝑟, 𝑟𝑟 ∈ 𝑅𝑅 during 

the planning horizon; 

𝑋𝑋𝑋𝑋 Maximum among the weighted numbers of un-evacuated injured victims in disaster areas 

during the planning horizon; 

𝑆𝑆𝑖𝑖𝑖𝑖1  Type-1 relief goods shortages in disaster area 𝑖𝑖 at time point 𝑡𝑡 (in volume unit); 

𝑆𝑆𝑖𝑖𝑖𝑖2  Type-2 relief goods shortages in disaster area 𝑖𝑖 at time point 𝑡𝑡 (in volume unit); 

𝑊𝑊𝑖𝑖𝑖𝑖 Number of un-evacuated injured victims in disaster area 𝑖𝑖 at time point 𝑡𝑡; 

𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖 Number of injured victims evacuated from area 𝑖𝑖 to site 𝑘𝑘 in the period from time point 𝑡𝑡 to 

𝑡𝑡 + 1 ; 

𝐼𝐼𝑖𝑖𝑖𝑖1  Inventory level of type-1 relief goods in disaster area 𝑖𝑖 at time point 𝑡𝑡; 

𝐺𝐺𝑖𝑖𝑖𝑖𝑖𝑖1  Total amount of type-1 relief goods sent from site 𝑘𝑘 to disaster area 𝑖𝑖 in the period from time 

point 𝑡𝑡 to t + 1 (in volume unit); 

𝐺𝐺𝑖𝑖𝑖𝑖𝑖𝑖2  Total amount of type-2 relief goods sent from site 𝑘𝑘 to disaster area 𝑖𝑖 in the period from time 

point 𝑡𝑡 to t + 1 (in volume unit); 

𝑈𝑈𝑗𝑗𝑗𝑗 = �1, if medical facility 𝑗𝑗 is located to temporary site 𝑘𝑘
0, otherwise ; 

𝑄𝑄𝑘𝑘
𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 =  �1, if site 𝑘𝑘 is open 

0, otherwise           ; 

𝑈𝑈𝑘𝑘 = �1, if temporary distribution center  is located to site 𝑘𝑘
0, otherwise                                                                              ; 

𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖=�
1, if goods needed in area 𝑖𝑖 are sent from site 𝑘𝑘 in the period from 𝑡𝑡 to 𝑡𝑡 + 1
0, otherwise ; 

𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖 = �
1, if injured victims in area 𝑖𝑖 are transported to site 𝑘𝑘

in the period from time point 𝑡𝑡 to 𝑡𝑡 + 1                  
0, otherwise                                                                              

; 

𝑍𝑍𝑣𝑣𝑣𝑣𝑣𝑣𝑎𝑎𝑎𝑎𝑎𝑎  Number of vehicles of type 𝑣𝑣 at site 𝑘𝑘 from period 𝑡𝑡 to 𝑡𝑡 + 1; 

𝑍𝑍𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 Number of vehicles of type 𝑣𝑣 already available at site 𝑗𝑗 moved from site 𝑗𝑗 to site  𝑘𝑘 at time 

point 𝑡𝑡; 

𝑍𝑍𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑛𝑛 Number of new vehicles of type 𝑣𝑣 arriving at the beginning of model implementation 

assigned to site  𝑘𝑘; 

𝑍𝑍𝑣𝑣𝑣𝑣𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 Number of vehicles of type 𝑣𝑣 leaving site 𝑘𝑘 at the beginning of model implementation; 
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𝐷𝐷𝑖𝑖𝑖𝑖𝑖𝑖 Vehicle resources (total vehicle capacity-time) allocated/required for making trips between 

area 𝑖𝑖 and site 𝑘𝑘 in the period from time point 𝑡𝑡 to 𝑡𝑡 + 1; 

Sub-model Ia: Relief distribution 

 In model I, relief distributions in different sub-regions are performed independently. Therefore, 

sub-model Ia below is for each sub-region r. 

Minimize |𝐴𝐴𝑟𝑟| ∙ 𝑋𝑋𝑋𝑋 +  ∑ ∑ �𝑝𝑝𝑔𝑔1 ∙ 𝑆𝑆𝑖𝑖𝑖𝑖1 +  𝑝𝑝𝑔𝑔2 ∙ 𝑡𝑡 ∙ 𝑆𝑆𝑖𝑖𝑖𝑖2�
𝑛𝑛𝑡𝑡
𝑡𝑡=1𝑖𝑖∈𝐴𝐴𝑟𝑟  (0) 

Subject to 

∑ (𝑝𝑝𝑔𝑔1 ∙ 𝑆𝑆𝑖𝑖𝑖𝑖1 + 𝑝𝑝𝑔𝑔2 ∙ 𝑡𝑡 ∙ 𝑆𝑆𝑖𝑖𝑖𝑖2 )𝑛𝑛𝑡𝑡
𝑡𝑡=1 ≤ 𝑋𝑋𝑋𝑋, ∀𝑖𝑖 ∈ 𝐴𝐴𝑟𝑟 (1) 

𝐼𝐼𝑖𝑖01 = 𝐼𝐼0𝑖𝑖1, ∀𝑖𝑖 ∈ 𝐴𝐴𝑟𝑟 (2) 

𝑍𝑍𝑣𝑣𝑣𝑣𝑣𝑣0𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 =  0, ∀𝑗𝑗 ∈ 𝛼𝛼𝑑𝑑𝑟𝑟, 𝑘𝑘 ∈ 𝛼𝛼𝑑𝑑𝑟𝑟 , 𝑣𝑣 ∈ 𝑉𝑉𝑉𝑉 (3) 

𝑔𝑔1 ∙ (𝑊𝑊𝑖𝑖𝑖𝑖 +  𝐻𝐻𝑖𝑖) − 𝐼𝐼𝑖𝑖,𝑡𝑡−11 − ∑ 𝐺𝐺𝑖𝑖𝑖𝑖,𝑡𝑡−1
1

𝑘𝑘∈𝛼𝛼𝑑𝑑
𝑟𝑟  =  𝑆𝑆𝑖𝑖𝑖𝑖1 − 𝐼𝐼𝑖𝑖𝑖𝑖1 , ∀𝑖𝑖 ∈ 𝐴𝐴𝑟𝑟, 𝑡𝑡 ∈ 𝑇𝑇\{0} (4) 

𝑔𝑔2 ∙ (𝑊𝑊𝑖𝑖𝑖𝑖 +  𝐻𝐻𝑖𝑖) − ∑ 𝐺𝐺0𝑖𝑖𝑖𝑖2𝑘𝑘∈𝒟𝒟𝑜𝑜𝑟𝑟 − ∑ ∑ 𝐺𝐺𝑖𝑖𝑖𝑖𝑖𝑖2𝑡𝑡−1
𝜏𝜏=0𝑘𝑘∈𝛼𝛼𝑑𝑑

𝑟𝑟 ≤  𝑆𝑆𝑖𝑖𝑖𝑖2 , ∀𝑖𝑖 ∈ 𝐴𝐴𝑟𝑟, 𝑡𝑡 ∈ 𝑇𝑇\{0} (5) 

2 ∙ 𝑡𝑡𝑖𝑖𝑖𝑖 ∙ (𝐺𝐺𝑖𝑖𝑖𝑖𝑖𝑖1 +  𝐺𝐺𝑖𝑖𝑖𝑖𝑖𝑖2 ) ≤  𝐷𝐷𝑖𝑖𝑖𝑖𝑖𝑖 +  𝑀𝑀 ∙ (1 − 𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖), ∀𝑖𝑖 ∈ 𝐴𝐴𝑟𝑟, 𝑘𝑘 ∈ 𝛼𝛼𝑑𝑑𝑟𝑟, 𝑡𝑡 ∈ 𝑇𝑇\{𝑛𝑛𝑡𝑡} (6) 

𝐺𝐺𝑖𝑖𝑖𝑖𝑖𝑖1 +  𝐺𝐺𝑖𝑖𝑖𝑖𝑖𝑖2 − 𝑀𝑀 ∙ 𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖  ≤ 0, ∀𝑖𝑖 ∈ 𝐴𝐴𝑟𝑟, 𝑘𝑘 ∈ 𝛼𝛼𝑑𝑑𝑟𝑟, 𝑡𝑡 ∈ 𝑇𝑇\{𝑛𝑛𝑡𝑡} (7) 

∑ 𝑈𝑈𝑘𝑘  ≤  𝑁𝑁𝑑𝑑𝑑𝑑𝑟𝑟𝑘𝑘∈𝒫𝒫𝑑𝑑
𝑟𝑟  (8) 

∑ 𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖  ≤ 𝑀𝑀 ∗ 𝑈𝑈𝑘𝑘𝑖𝑖∈𝐴𝐴𝑟𝑟 , ∀𝑘𝑘 ∈ 𝒫𝒫𝑑𝑑𝑟𝑟, 𝑡𝑡 ∈ 𝑇𝑇\{𝑛𝑛𝑡𝑡} (9) 

∑ 𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖 = 1 𝑘𝑘∈𝛼𝛼𝑑𝑑
𝑟𝑟 , ∀𝑖𝑖 ∈ 𝐴𝐴𝑟𝑟, 𝑡𝑡 ∈ 𝑇𝑇\{𝑛𝑛𝑡𝑡} (10) 

∑ 𝐷𝐷𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖∈𝐴𝐴𝑟𝑟  ≤ ∑ (𝑡𝑡𝐷𝐷 ∙ 𝐶𝐶𝐶𝐶𝐶𝐶𝑣𝑣
𝑔𝑔 ∙ 𝑍𝑍𝑣𝑣𝑣𝑣𝑣𝑣𝑎𝑎𝑎𝑎𝑎𝑎 )𝑣𝑣∈𝑉𝑉𝑉𝑉 − ∑ ∑ (𝑡𝑡𝑗𝑗𝑗𝑗 ∙ 𝐶𝐶𝐶𝐶𝐶𝐶𝑣𝑣

𝑔𝑔 ∙ 𝑍𝑍𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)𝑣𝑣∈𝑉𝑉𝑉𝑉𝑗𝑗∈𝛼𝛼𝑑𝑑
𝑟𝑟 , ∀𝑘𝑘 ∈ 𝛼𝛼𝑑𝑑𝑟𝑟, 𝑡𝑡 ∈

𝑇𝑇\{𝑛𝑛𝑡𝑡} (11) 

𝑍𝑍0𝑣𝑣𝑣𝑣𝑎𝑎𝑎𝑎𝑎𝑎 +  𝑍𝑍𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑛𝑛 − 𝑍𝑍𝑣𝑣𝑣𝑣𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 + ∑ 𝑍𝑍𝑣𝑣𝑣𝑣𝑣𝑣0𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑗𝑗∈𝛼𝛼𝑑𝑑

𝑟𝑟 – ∑ 𝑍𝑍𝑣𝑣𝑣𝑣𝑣𝑣0𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑗𝑗∈𝛼𝛼𝑑𝑑

𝑟𝑟 = 𝑍𝑍𝑣𝑣𝑣𝑣0𝑎𝑎𝑎𝑎𝑎𝑎 , ∀ 𝑘𝑘 ∈ 𝛼𝛼𝑑𝑑𝑟𝑟 , 𝑣𝑣 ∈ 𝑉𝑉𝑉𝑉 (12) 

𝑍𝑍𝑣𝑣𝑣𝑣,𝑡𝑡−1
𝑎𝑎𝑎𝑎𝑎𝑎 + ∑ 𝑍𝑍𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝑗𝑗∈𝛼𝛼𝑑𝑑
𝑟𝑟 – ∑ 𝑍𝑍𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝑗𝑗∈𝛼𝛼𝑑𝑑
𝑟𝑟 = 𝑍𝑍𝑣𝑣𝑣𝑣𝑣𝑣𝑎𝑎𝑎𝑎𝑎𝑎 , ∀ 𝑘𝑘 ∈ 𝛼𝛼𝑑𝑑𝑟𝑟, 𝑡𝑡 ∈ 𝑇𝑇\{0, 𝑛𝑛𝑡𝑡}, 𝑣𝑣 ∈ 𝑉𝑉𝑉𝑉 (13) 

∑ 𝑍𝑍𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑘𝑘∈𝛼𝛼𝑑𝑑

𝑟𝑟  = 𝑍𝑍𝑣𝑣𝑣𝑣,𝑡𝑡−1
𝑎𝑎𝑎𝑎𝑎𝑎 , ∀𝑗𝑗 ∈ 𝛼𝛼𝑑𝑑𝑟𝑟, 𝑡𝑡 ∈ 𝑇𝑇\{0, 𝑛𝑛𝑡𝑡}, 𝑣𝑣 ∈ 𝑉𝑉𝑉𝑉 (14) 

∑ 𝑍𝑍𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑛𝑛𝑘𝑘∈𝛼𝛼𝑑𝑑
𝑟𝑟  =  𝑉𝑉𝑣𝑣𝑣𝑣𝑟𝑟𝑟𝑟𝑟𝑟, 𝑣𝑣 ∈ 𝑉𝑉𝑉𝑉 (15) 

∑ 𝑍𝑍𝑣𝑣𝑣𝑣𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑘𝑘∈𝛼𝛼𝑑𝑑
𝑟𝑟 =  𝑉𝑉𝑣𝑣𝑣𝑣𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟, 𝑣𝑣 ∈ 𝑉𝑉𝑉𝑉 (16) 

𝑍𝑍𝑣𝑣𝑣𝑣𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙  ≤  𝑍𝑍0𝑣𝑣𝑣𝑣𝑎𝑎𝑎𝑎𝑎𝑎, ∀ 𝑘𝑘 ∈ 𝛼𝛼𝑑𝑑𝑟𝑟 , 𝑣𝑣 ∈ 𝑉𝑉𝑉𝑉 (17) 

∑ 𝑍𝑍𝑣𝑣𝑣𝑣𝑣𝑣𝑎𝑎𝑎𝑎𝑎𝑎
𝑣𝑣∈𝑉𝑉𝑉𝑉 −  𝑀𝑀 ∙ 𝑈𝑈𝑘𝑘 ≤ 0 , ∀𝑘𝑘 ∈ 𝒫𝒫𝑑𝑑𝑟𝑟, 𝑡𝑡 ∈ 𝑇𝑇\{𝑛𝑛𝑡𝑡} (18) 

𝑋𝑋𝑋𝑋 ≥ 0 (19) 
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𝑆𝑆𝑖𝑖𝑖𝑖1 , 𝑆𝑆𝑖𝑖𝑖𝑖2 , 𝐼𝐼𝑖𝑖𝑖𝑖1 ≥ 0, ∀𝑖𝑖 ∈ 𝐴𝐴𝑟𝑟, 𝑡𝑡 ∈ 𝑇𝑇\{0} (20) 

𝐺𝐺𝑖𝑖𝑖𝑖𝑖𝑖1 , 𝐺𝐺𝑖𝑖𝑖𝑖𝑖𝑖2 , 𝐷𝐷𝑖𝑖𝑖𝑖𝑖𝑖 ≥ 0, ∀ 𝑖𝑖 ∈ 𝐴𝐴𝑟𝑟, 𝑘𝑘 ∈ 𝛼𝛼𝑑𝑑𝑟𝑟, 𝑡𝑡 ∈ 𝑇𝑇\{𝑛𝑛𝑡𝑡} (21) 

𝑍𝑍𝑣𝑣𝑣𝑣𝑣𝑣𝑎𝑎𝑎𝑎𝑎𝑎 , 𝑍𝑍𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, 𝑍𝑍𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑛𝑛, 𝑍𝑍𝑣𝑣𝑣𝑣𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ≥ 0 and integer, ∀𝑗𝑗 ∈ 𝛼𝛼𝑑𝑑𝑟𝑟, ∀𝑘𝑘 ∈ 𝛼𝛼𝑑𝑑𝑟𝑟, 𝑡𝑡 ∈ 𝑇𝑇\{𝑛𝑛𝑡𝑡}, 𝑣𝑣 ∈ 𝑉𝑉𝑉𝑉 (22) 

𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖 = 0 𝑜𝑜𝑜𝑜 1, ∀𝑖𝑖 ∈ 𝐴𝐴𝑟𝑟, 𝑘𝑘 ∈ 𝛼𝛼𝑑𝑑𝑟𝑟, 𝑡𝑡 ∈ 𝑇𝑇\{𝑛𝑛𝑡𝑡} (23) 

𝑈𝑈𝑘𝑘 = 0 𝑜𝑜𝑜𝑜 1, ∀𝑘𝑘 ∈ 𝒫𝒫𝑑𝑑𝑟𝑟 (24) 

 Objective function (0) is related to the weighted amount of unmet demand for relief goods in each 

disaster area in the sub-region over the planning horizon. While this quantity may be different for 

different areas, the objective is to minimize a weighted sum of the maximum among the quantities in 

the areas and the total quantity in the whole sub-region. The maximum is provided by constraints (1). 

In order to prioritize the minimization of the first term, a large weight is set for this term. The two 

terms represent the maximum and total victim suffering, respectively, due to the relief shortage. As 

can be seen in constraints (1), un-met demands for relief goods are weighted with penalty values. The 

demand for type-1 goods are reoccurring.  Each delivery may be enough for a few days.  Shortage of 

this type of goods on a day tends to appear only after the inventory is used up, and so related suffering 

tends to be short term.  The demand for type-2 goods are one-off.  Any shortage on a day means that 

the suffering has been accumulating since the disaster happened.  Therefore, the penalty for the un-met 

demand for type-2 goods is set to increase -with t. This will force the demand for type-2 goods to be 

fulfilled as soon as possible. Constraints (2) define the initial inventory level of type-1 goods. 

Constraints (3) relate to vehicle movement at the first time point of the first implementation of the 

model. This set of constraints does not apply in subsequent runs of the model in later time periods. 

 Constraints (4) determine the amount of the shortage or inventory of type-1 relief goods in each 

disaster area at the end of each period. If the demand in the period is greater than or equal to the 

supply including the inventory at the beginning of the period and the amount distributed to the area 

during the period, then the difference will be the shortage and there will be no inventory at the end of 

the period. Otherwise, there will be some inventory left and no shortage. The shortage of type-2 relief 

goods at time point one onwards, on the other hand, cannot be less than the amount of commodities 

required by un-evacuated injured victims and injury-free victims at the time point minus the total 

amount of the supplied goods of this type up to the point. Constraints (5) reflect this relation. 

 Constraints (6) require that the amount of supplied goods from a site to an area in a time period 

cannot exceed the goods vehicle resources allocated between the two locations during the time period. 

Constraints (7) ensure that a site can supply goods to a disaster area only if the area is allocated to the 

site. Constraint (8) relates to the number of temporary sites with distribution centers to open at the 

beginning of the first implementation of the model. In this case, the total number of sites with 

distribution centers to open in a sub-region cannot exceed the maximum number of new distribution 
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centers to establish for the sub-region. The constraints do not apply from the second model 

implementation onwards. Constraints (9) ensure that a site must be open in order for it to supply relief 

goods. Because provisional sites with distribution centers are determined only once in the first 

implementation of the models, constraints (9) do not apply to subsequent implementations of the 

models. The opened sites will be treated as existing sites in the subsequent implementations. 

Constraints (10) require that relief demands in an area in a given time period are satisfied by exactly 

one site. 

 Constraints (11) state that the vehicle resources at a distribution center during a time period is 

determined by the resources of all the vehicles at the site in the time period, minus the resources 

wasted on vehicle moving from other sites to this site at the beginning of the time period. The number 

of vehicles available for relief distribution at a given site from time point one onwards is determined 

by three different factors: 1) number of vehicles already available at the site, 2) number of vehicles 

moving into, and 3) number of vehicles leaving the site at that point. Constraints (13) reflect this 

situation, while constraints (12) correspond to the number of relief distribution vehicles available at 

sites at time point 0. When the model is first implemented, there is neither vehicle movement nor 

leaving vehicles at time point 0. The number of vehicles for relief distribution moving from a site to 

other sites (including those moving to the site itself, i.e., staying at the site) at the beginning of any 

particular time period (except the first time period) should be equal to the number of vehicles already 

available at the site in the previous time period. Constraints (14) reflect this relation. 

 Constraints (15) require that vehicles arriving and available for relief distribution within a 

particular sub-region are always deployed to sites. Constraints (16) state that the total number of 

vehicles for relief distribution leaving all sites with distribution centers in a sub-region at the 

beginning of any implementation of the model is equal to the number of relief distribution vehicles 

leaving the sub-region. Constraints (17) ensure that the number of vehicles for relief distribution 

leaving a site at time point 0 of the model implementation cannot exceed the number of vehicles 

available at the site at the time point. The constraints are in line with the requirement that no vehicle 

can arrive at and leave a site at the same time. Constraints (18) require that the relief distribution 

vehicles are deployed to a particular site only if the site is open, which apply to the first 

implementation of the models only. Constraints (19) to (24) define the value ranges of the variables. 

Sub-model Ib: Victim evacuation 

Minimize  |𝐴𝐴| ∙ 𝑋𝑋𝑋𝑋 +  ∑ ∑ (𝑝𝑝ℎ ∙ 𝑡𝑡 ∙ 𝑊𝑊𝑖𝑖𝑖𝑖)𝑛𝑛𝑡𝑡
𝑡𝑡=1𝑖𝑖∈𝐴𝐴  (25) 

Subject to 

∑ 𝑝𝑝ℎ ∙ 𝑡𝑡 ∙ 𝑊𝑊𝑖𝑖𝑖𝑖
𝑛𝑛𝑡𝑡
𝑡𝑡=1  ≤ 𝑋𝑋𝑋𝑋, ∀𝑖𝑖 ∈ 𝐴𝐴 (26)  

𝑊𝑊𝑖𝑖0 = 𝑊𝑊0𝑖𝑖, ∀𝑖𝑖 ∈ 𝐴𝐴 (27) 
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𝑍𝑍𝑗𝑗𝑗𝑗0𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 =  0, ∀𝑗𝑗 ∈ 𝛼𝛼𝑚𝑚, 𝑘𝑘 ∈ 𝛼𝛼𝑚𝑚 (28) 

𝑊𝑊𝑖𝑖𝑖𝑖 =  𝑊𝑊𝑖𝑖,𝑡𝑡−1 − ∑ 𝐸𝐸𝑖𝑖𝑖𝑖,𝑡𝑡−1𝑘𝑘∈𝛼𝛼𝑚𝑚 , ∀𝑖𝑖 ∈ 𝐴𝐴, 𝑡𝑡 ∈ 𝑇𝑇\{0} (29) 

2 ∙ 𝑡𝑡𝑖𝑖𝑖𝑖 ∙ 𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖 ≤ 𝐷𝐷𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑀𝑀 ∙ (1 − 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖),  ∀𝑖𝑖 ∈ 𝐴𝐴, 𝑘𝑘 ∈ 𝛼𝛼𝑚𝑚, 𝑡𝑡 ∈ 𝑇𝑇\{𝑛𝑛𝑡𝑡} (30) 

𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖 −  𝑀𝑀 ∙ 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖 ≤ 0, ∀𝑖𝑖 ∈ 𝐴𝐴, 𝑘𝑘 ∈ 𝛼𝛼𝑚𝑚, 𝑡𝑡 ∈ 𝑇𝑇\{𝑛𝑛𝑡𝑡} (31) 

∑ 𝑈𝑈𝑗𝑗𝑗𝑗𝑘𝑘∈𝛼𝛼𝑚𝑚  ≤ 1, ∀𝑗𝑗 ∈ 𝐹𝐹0𝑖𝑖𝑖𝑖 (32) 

𝑄𝑄𝑘𝑘
𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 ≤  ∑ 𝑈𝑈𝑗𝑗𝑗𝑗𝑗𝑗∈𝐹𝐹0

𝑖𝑖𝑖𝑖 , ∀𝑘𝑘 ∈ 𝒫𝒫𝑚𝑚 (33) 

𝑀𝑀 ∙ 𝑄𝑄𝑘𝑘
𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 ≥  ∑ 𝑈𝑈𝑗𝑗𝑗𝑗𝑗𝑗∈𝐹𝐹0

𝑖𝑖𝑖𝑖 , ∀𝑘𝑘 ∈ 𝒫𝒫𝑚𝑚 (34) 

∑ 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖 = 1 𝑘𝑘∈𝛼𝛼𝑚𝑚 , ∀𝑖𝑖 ∈ 𝐴𝐴, 𝑡𝑡 ∈ 𝑇𝑇\{𝑛𝑛𝑡𝑡} (35) 

∑ 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖  ≤ 𝑀𝑀 ∙ 𝑄𝑄𝑘𝑘
𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

𝑖𝑖∈𝐴𝐴 , ∀𝑘𝑘 ∈ 𝒫𝒫𝑚𝑚, 𝑡𝑡 ∈ 𝑇𝑇\{𝑛𝑛𝑡𝑡} (36) 

∑ 𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖  ≤ ∑ 𝐶𝐶𝐶𝐶𝐶𝐶𝑗𝑗
𝑓𝑓𝑈𝑈𝑗𝑗𝑗𝑗𝑗𝑗∈𝐹𝐹0

𝑖𝑖𝑖𝑖𝑖𝑖∈𝐴𝐴 , ∀𝑘𝑘 ∈ 𝑃𝑃𝑚𝑚, 𝑡𝑡 ∈ 𝑇𝑇\{𝑛𝑛𝑡𝑡} (37) 

∑ 𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖  ≤ 𝐶𝐶𝐶𝐶𝐶𝐶𝑘𝑘𝑚𝑚 + ∑ 𝐶𝐶𝐶𝐶𝐶𝐶𝑗𝑗
𝑓𝑓𝑈𝑈𝑗𝑗𝑗𝑗𝑗𝑗∈𝐹𝐹0

𝑖𝑖𝑖𝑖𝑖𝑖∈𝐴𝐴 , ∀𝑘𝑘 ∈ 𝑀𝑀𝑜𝑜, 𝑡𝑡 ∈ 𝑇𝑇\{𝑛𝑛𝑡𝑡} (38) 

∑ 𝐷𝐷𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖∈𝐴𝐴  ≤ ∑ (𝑡𝑡𝐷𝐷 ∙ 𝐶𝐶𝐶𝐶𝐶𝐶𝑣𝑣ℎ ∙ 𝑍𝑍𝑣𝑣𝑣𝑣𝑣𝑣𝑎𝑎𝑎𝑎𝑎𝑎 )𝑣𝑣∈𝑉𝑉𝑉𝑉 − ∑ ∑ (𝑡𝑡𝑗𝑗𝑗𝑗 ∙ 𝐶𝐶𝐶𝐶𝐶𝐶𝑣𝑣ℎ ∙ 𝑍𝑍𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)𝑣𝑣∈𝑉𝑉𝑉𝑉𝑗𝑗∈𝛼𝛼𝑚𝑚 , ∀𝑘𝑘 ∈ 𝛼𝛼𝑚𝑚, 𝑡𝑡 ∈

𝑇𝑇\{𝑛𝑛𝑡𝑡} (39) 

𝑍𝑍0𝑣𝑣𝑣𝑣𝑎𝑎𝑎𝑎𝑎𝑎 +  𝑍𝑍𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑛𝑛 − 𝑍𝑍𝑣𝑣𝑣𝑣𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 + ∑ 𝑍𝑍𝑣𝑣𝑣𝑣𝑣𝑣0𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑗𝑗∈𝛼𝛼𝑚𝑚 – ∑ 𝑍𝑍𝑣𝑣𝑣𝑣𝑣𝑣0𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝑗𝑗∈𝛼𝛼𝑚𝑚 = 𝑍𝑍𝑣𝑣𝑣𝑣0𝑎𝑎𝑎𝑎𝑎𝑎 , ∀ 𝑘𝑘 ∈ 𝛼𝛼𝑚𝑚, 𝑣𝑣 ∈ 𝑉𝑉𝑉𝑉 (40) 

𝑍𝑍𝑣𝑣𝑣𝑣,𝑡𝑡−1
𝑎𝑎𝑎𝑎𝑎𝑎 + ∑ 𝑍𝑍𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝑗𝑗∈𝛼𝛼𝑚𝑚 –∑ 𝑍𝑍𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑗𝑗∈𝛼𝛼𝑚𝑚 = 𝑍𝑍𝑣𝑣𝑣𝑣𝑣𝑣𝑎𝑎𝑎𝑎𝑎𝑎 , ∀ 𝑘𝑘 ∈ 𝛼𝛼𝑚𝑚, 𝑡𝑡 ∈ 𝑇𝑇\{0, 𝑛𝑛𝑡𝑡}, 𝑣𝑣 ∈ 𝑉𝑉𝑉𝑉 (41) 

∑ 𝑍𝑍𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑘𝑘∈𝛼𝛼𝑚𝑚  = 𝑍𝑍𝑣𝑣𝑣𝑣,𝑡𝑡−1

𝑎𝑎𝑎𝑎𝑎𝑎 , ∀𝑗𝑗 ∈ 𝛼𝛼𝑚𝑚, 𝑡𝑡 ∈ 𝑇𝑇\{0, 𝑛𝑛𝑡𝑡}, 𝑣𝑣 ∈ 𝑉𝑉𝑉𝑉 (42) 

∑ 𝑍𝑍𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑛𝑛𝑘𝑘∈𝛼𝛼𝑚𝑚  = 𝑉𝑉𝑣𝑣ℎ𝑖𝑖𝑖𝑖, 𝑣𝑣 ∈ 𝑉𝑉𝑉𝑉 (43) 

∑ 𝑍𝑍𝑣𝑣𝑣𝑣𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑘𝑘∈𝛼𝛼𝑚𝑚 =  𝑉𝑉𝑣𝑣ℎ𝑜𝑜𝑜𝑜𝑜𝑜, 𝑣𝑣 ∈ 𝑉𝑉𝑉𝑉 (44) 

𝑍𝑍𝑣𝑣𝑣𝑣𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙  ≤  𝑍𝑍0𝑣𝑣𝑣𝑣𝑎𝑎𝑎𝑎𝑎𝑎, ∀ 𝑘𝑘 ∈ 𝛼𝛼𝑚𝑚, 𝑣𝑣 ∈ 𝑉𝑉𝑉𝑉 (45) 

∑ 𝑍𝑍𝑣𝑣𝑣𝑣𝑣𝑣𝑎𝑎𝑎𝑎𝑎𝑎
𝑣𝑣∈𝑉𝑉𝑉𝑉 −  𝑀𝑀 ∙ 𝑈𝑈𝑘𝑘

𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 ≤ 0 , ∀𝑘𝑘 ∈ 𝒫𝒫𝑚𝑚, 𝑡𝑡 ∈ 𝑇𝑇\{𝑛𝑛𝑡𝑡} (46) 

𝑋𝑋𝑋𝑋 ≥ 0,  (47) 

𝑊𝑊𝑖𝑖𝑖𝑖  ≥ 0, ∀𝑖𝑖 ∈ 𝐴𝐴, 𝑡𝑡 ∈ 𝑇𝑇 (48) 

𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖, 𝐷𝐷𝑖𝑖𝑖𝑖𝑖𝑖 ≥ 0, ∀𝑖𝑖 ∈ 𝐴𝐴, 𝑘𝑘 ∈ 𝛼𝛼𝑚𝑚, 𝑡𝑡 ∈ 𝑇𝑇\{𝑛𝑛𝑡𝑡} (49) 

𝑍𝑍𝑣𝑣𝑣𝑣𝑣𝑣𝑎𝑎𝑎𝑎𝑎𝑎 , 𝑍𝑍𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, 𝑍𝑍𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑛𝑛, 𝑍𝑍𝑣𝑣𝑣𝑣𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ≥ 0 and integer, ∀𝑘𝑘 ∈ 𝛼𝛼𝑚𝑚, 𝑗𝑗 ∈ 𝛼𝛼𝑚𝑚, 𝑡𝑡 ∈ 𝑇𝑇\{𝑛𝑛𝑡𝑡}, 𝑣𝑣 ∈ 𝑉𝑉𝑉𝑉 (50) 

𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖 = 0 or 1, ∀𝑖𝑖 ∈ 𝐴𝐴, 𝑘𝑘 ∈ 𝛼𝛼𝑚𝑚, 𝑡𝑡 ∈ 𝑇𝑇\{𝑛𝑛𝑡𝑡} (51) 

𝑈𝑈𝑗𝑗𝑗𝑗 = 0 or 1, ∀𝑗𝑗 ∈ 𝐹𝐹0𝑖𝑖𝑖𝑖, 𝑘𝑘 ∈ 𝛼𝛼𝑚𝑚 (52) 
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𝑄𝑄𝑘𝑘
𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = 0 or 1, ∀𝑘𝑘 ∈ 𝒫𝒫𝑚𝑚 (53) 

 The objective of sub-model Ib is to minimize the weighted sum of the maximum suffering and 

total suffering of un-evacuated injured victims in disaster areas. Suffering here refers to the delay in 

evacuation. Again, a larger weight is assigned to the first term to prioritize the minimization of 

maximum suffering. 

 Constraints (26) calculate the maximum weighted number among un-evacuated injured victims in 

disaster areas during the planning horizon (i.e. maximum suffering). The number of un-evacuated 

injured victims at the first time point is defined in constraints (27). Constraints (28), which only apply 

to the first implementation of the model, represent vehicle movement at the first time point. 

Constraints (29) state that the number of un-evacuated victims in an area at a given time point is equal 

to the number of un-evacuated victims at the previous point minus the number of evacuated victims 

between these two time points. Constraints (30) calculate the vehicle resource requirement for 

evacuating victims from an area to a site in a time period based on the number of injured victims 

evacuated. Constraints (31) require that the number of evacuated victims for any unconnected site-area 

pair in the sub-models is zero. 

 Constraints (32) indicate that a temporary medical facility is deployed to at most one temporary 

site. Constraints (33) and (34) relate to medical facilities arriving at the beginning of the model 

implementation. In this sense, a provisional site is open for medical services when there is at least one 

temporary medical facility allocated to it. Constraints (35) require that, in a given time period, injured 

victims in an area are evacuated to exactly one site, while constraints (36) guarantee that evacuation 

must be to a site that is open. 

 Constraints (37) state that the total number of injured victims evacuated to a temporary site in 

each period must be no more than the total handling capacity of the temporary medical facilities 

allocated to the site. Constraints (38) are similar capacity constraints for the sites with existing medical 

facilities. The total handling capacity of such a site is the sum of the capacities of existing facilities at 

the site and the temporary medical facilities allocated to the site. 

 Vehicle resource requirement for a site with a medical facility to conduct evacuation during any 

time period is defined by constraints (39). Similar to constraints (11) of sub-model Ia, the vehicle 

resource is determined by the resources of all vehicles available at the site in the time period minus the 

resource wasted on vehicle moving from other sites to this site. Again, a special case appears in the 

first implementation of the model. That is, there are no vehicles moving in from other sites at that 

time. Vehicle availability for victim evacuation is defined by constraints (40) and (41). The 

explanations are similar to those for constraints (12) and (13). 

 Requirements on leaving vehicles in sub-model Ib are provided by constraints (42). Analogous 

with constraint (14) of sub-model Ia, the total number of evacuation vehicles moving out of a site to 
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all sites (including those staying at the site) at a given time point (except time point 0 and the last time 

point) is equal to the number of evacuation vehicles available at the site in the period. Constraint (43) 

requires that the total number of vehicles for victim evacuation arriving at the beginning of the model 

implementation and assigned to all sites is exactly equal to the number of available vehicles. 

 Constraint (44) requires that the total number of vehicles for victim evacuation leaving all sites 

with medical facilities is exactly the same as the number of victim evacuation vehicles leaving the 

disaster scene. Constraints (45) ensure that the number of vehicles for victim evacuation leaving a site 

at the beginning of the model implementation cannot exceed the number of vehicles already available 

at that time point at that site. Constraints (46) ensure the deployment of evacuation vehicles to a site is 

carried out only if the site is open. Constraints (47) to (53) define the value ranges of the variables. 

3.2 Model I revised: Current practice without sub-region boundaries 

 Even if relief distribution and victim evacuation operations continue to be carried out separately, 

the current practice may be improved by allowing relief distribution across the sub-region boundaries, 

just as the evacuation operation does. With the coordination of the National Board for Disaster 

Management and its derivatives, this can be achieved easily. We revise model I to represent this 

improvement. The revised model will be called model I_R. 

 Model I_R also consists of two sub-models, Ia_R and Ib_R, dealing with relief distribution and 

victim evacuation, respectively. Compared to model I, sub-model Ib_R is exactly the same as sub-

model Ib and so the difference is only in sub-model Ia_R which is presented below. Model Ia_R uses 

the following new sets and a new variable, some of which will also be used in model II. 

𝒟𝒟𝑜𝑜 Set of all existing sites with distribution centers, 𝒟𝒟𝑜𝑜= ⋃ 𝒟𝒟𝑜𝑜𝑟𝑟𝑟𝑟∈𝑅𝑅 ;  

𝒫𝒫𝑑𝑑 Set of candidate sites for temporary distribution centers, 𝒫𝒫𝑑𝑑= ⋃ 𝒫𝒫𝑑𝑑𝑟𝑟𝑟𝑟∈𝑅𝑅 ; 

𝛼𝛼𝑑𝑑 Set of all sites either with existing distribution centers or candidates for distribution centers, 

𝛼𝛼𝑑𝑑= 𝒟𝒟𝑜𝑜 ∪ 𝒫𝒫𝑑𝑑,𝒟𝒟𝑜𝑜 ∩ 𝒫𝒫𝑑𝑑 = ∅; 

𝑁𝑁𝑑𝑑𝑑𝑑 Maximum number of temporary distribution centers to establish in the whole region; 

YY Decision variable defined to represent the maximum among the weighted un-met demands 

for relief goods in all disaster areas during the planning horizon. 

 Using these and some notation defined earlier, sub-model Ia_R can be presented as follows. 

Minimize  |𝐴𝐴| ∙ 𝑌𝑌𝑌𝑌 +  ∑ ∑ �𝑝𝑝𝑔𝑔1 ∙ 𝑆𝑆𝑖𝑖𝑖𝑖1 +  𝑝𝑝𝑔𝑔2 ∙ 𝑡𝑡 ∙ 𝑆𝑆𝑖𝑖𝑖𝑖2�
𝑛𝑛𝑡𝑡
𝑡𝑡=1𝑖𝑖∈𝐴𝐴  (0_R) 

Subject to 

 Constraints (1_R) to (24_R) 
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 These constraints are similar to constraints (1)-(24), but slightly revised by replacing some sub-

region-related sets, parameters and variables with those related to the whole region. Five examples are 

listed below. 

∑ �𝑝𝑝𝑔𝑔1 ∙ 𝑆𝑆𝑖𝑖𝑖𝑖1 + 𝑝𝑝𝑔𝑔2 ∙ 𝑡𝑡 ∙ 𝑆𝑆𝑖𝑖𝑖𝑖2�
𝑛𝑛𝑡𝑡
𝑡𝑡=1  ≤ 𝑌𝑌𝑌𝑌, ∀𝑖𝑖 ∈ 𝐴𝐴 (1_R) 

𝐼𝐼𝑖𝑖01 = 𝐼𝐼0𝑖𝑖1, ∀𝑖𝑖 ∈ 𝐴𝐴 (2_R) 

∑ 𝑈𝑈𝑘𝑘  ≤  𝑁𝑁𝑑𝑑𝑑𝑑𝑘𝑘∈𝒫𝒫𝑑𝑑  (8_R) 

𝑌𝑌𝑌𝑌 ≥ 0 (19_R) 

𝑆𝑆𝑖𝑖𝑖𝑖1 , 𝑆𝑆𝑖𝑖𝑖𝑖2 , 𝐼𝐼𝑖𝑖𝑖𝑖1 ≥ 0, ∀𝑖𝑖 ∈ 𝐴𝐴, 𝑡𝑡 ∈ 𝑇𝑇\{0}  (20_R) 

 Sub-model Ia_R is essentially sub-model Ia applied to a whole region instead of a certain sub-

region. Therefore, the objective and constraints of this sub-model have similar meanings to those of 

sub-model Ia. Though model I_R is not much different from model I, the sharing of relief distribution 

resources among sub-regions does make an improvement as can be seen from the results comparing 

the two models presented at a conference (Setiawan, 2016) and those in Section 5. 

3.3 Model II: collaborated operation for relief distribution and victim evacuation 

 To fully utilize the coordination potential of the National Board for Disaster Management and its 

derivatives, another model, model II, is developed by further allowing each vehicle to be used for both 

relief distribution and victim evacuation, in addition to the lifting of sub-region boundary restrictions. 

But as in Najafi, et al. (2013), a vehicle will not be used to transport goods and people at the same 

time.  The vehicles normally used for relief distributions are vans or even light trucks which are not 

ideal for evacuating heavily injured people.  However, they can be used to evacuate people with minor 

injuries and this is better than leaving these victims at the disaster site waiting further for ambulances.  

Model II is an integrated model, rather than one with two separate parts. With vehicle sharing allowed, 

apart from vehicles delivering relief from a distribution center to a disaster area and back, and vehicles 

going from a medical center to a disaster area and returning to the medical center carrying victims, 

there are also vehicles delivering relief from a distribution center to a disaster area, then evacuating 

victims from this area to a medical center and then returning to the distribution center for the next trip. 

Such vehicles will be counted as based at the distribution center.  In the integrated model, among all 

the existing site with medical facilities, ℳ𝑜𝑜, some may be suitable for setting up a distribution center 

as well.  Similarly, among all the existing sites with distribution centers, 𝒟𝒟𝑜𝑜, some may also be 

suitable for locating medical facilities.  Therefore, after the initial period, some existing sites may have 

both medical facilities and distribution centers.  New sets need to be defined to represent different 

types of existing sites. 



18 

 In addition to the notation defined earlier, the following sets and parameters are defined and used 

in model II. 

𝒟𝒟 Subset of existing sites with distribution centers that are also suitable to locate medical 

facilities; 

𝒟𝒟′ Subset of existing sites with distribution centers that are not suitable to locate medical 

facilities; 

ℳ Subset of existing sites with medical facilities that are also suitable to locate distribution 

centers; 

ℳ′ Subset of existing sites with medical facilities that are not suitable to locate distribution 

centers; 

ℬ Set of sites with both distribution centers and medical facilities; 

𝐶𝐶𝐶𝐶𝐶𝐶𝑘𝑘𝑚𝑚 Capacity (number of injured victims can be handled per period) of all medical facilities at 

existing site k, 𝑘𝑘 ∈ ℳ𝑜𝑜 ∪ ℬ; 𝐶𝐶𝐶𝐶𝐶𝐶𝑘𝑘𝑚𝑚 = 0 for 𝑘𝑘 ∉ ℳ𝑜𝑜 ∪ ℬ; 

𝒫𝒫𝑏𝑏 Set of candidate sites for both temporary distribution centers and temporary medical 

facilities; 

𝛿𝛿𝑑𝑑 Set of all potential sites for new distribution centers in model II, 𝛿𝛿𝑑𝑑= ℳ∪𝒫𝒫𝑑𝑑 ∪ 𝒫𝒫𝑏𝑏, 

ℳ,𝒫𝒫𝑑𝑑, 𝒫𝒫𝑏𝑏  are mutually exclusive; 

𝛿𝛿𝑚𝑚 Set of all potential sites for new medical facilities in model II, 𝛿𝛿𝑚𝑚= 𝒟𝒟 ∪ 𝒫𝒫𝑚𝑚 ∪ 𝒫𝒫𝑏𝑏, 𝒟𝒟, 𝒫𝒫𝑚𝑚, 𝒫𝒫𝑏𝑏 

are mutually exclusive; 

𝛽𝛽𝑑𝑑 Set of all sites either with existing distribution centers or candidates for distribution centers 

in model II, 𝛽𝛽𝑑𝑑= 𝒟𝒟′ ∪ 𝒟𝒟 ∪  ℬ ∪ℳ ∪𝒫𝒫𝑑𝑑 ∪ 𝒫𝒫𝑏𝑏, 𝒟𝒟′,𝒟𝒟, ℬ, ℳ, 𝒫𝒫𝑑𝑑, 𝒫𝒫𝑏𝑏 are mutually 

exclusive;  

𝛽𝛽𝑚𝑚 Set of all sites either with existing medical facilities or candidates for medical facilities in 

model II, 𝛽𝛽𝑚𝑚= ℳ′ ∪ℳ ∪ ℬ ∪ 𝒟𝒟 ∪ 𝒫𝒫𝑚𝑚 ∪ 𝒫𝒫𝑏𝑏, ℳ′, ℳ, ℬ, 𝒟𝒟, 𝒫𝒫𝑚𝑚, 𝒫𝒫𝑏𝑏  are mutually 

exclusive;  

ℰ𝑑𝑑 Set of all sites with existing distribution centers in model II, ℰ𝑑𝑑 = 𝒟𝒟′ ∪ 𝒟𝒟 ∪ ℬ, 𝒟𝒟′, 𝒟𝒟, ℬ are 

mutually exclusive; 

ℒ Set of all sites in model II, ℒ= 𝒟𝒟′ ∪ 𝒟𝒟 ∪ℳ′ ∪ℳ ∪ ℬ ∪ 𝒫𝒫𝑑𝑑 ∪ 𝒫𝒫𝑚𝑚 ∪ 𝒫𝒫𝑏𝑏, 𝒟𝒟′𝒟𝒟, ℳ′, ℳ,

ℬ,𝒫𝒫𝑑𝑑, 𝒫𝒫𝑚𝑚, 𝒫𝒫𝑏𝑏 are mutually exclusive; 

𝑉𝑉𝑣𝑣𝑖𝑖𝑖𝑖 Number of new vehicles of type v becoming available at the beginning of model 

implementation; 
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𝑉𝑉𝑣𝑣𝑜𝑜𝑜𝑜𝑜𝑜 Number of vehicles of type v which leave the disaster scene at the beginning of model 

implementation. 

 In addition to some of the variables appearing in models I and I_R, model II also uses the 

following new decision variables. 

𝑍𝑍𝑍𝑍 Maximum among the sums of the weighted number of un-evacuated injured victims and the 

weighted unmet demands for relief goods during the planning horizon; 

𝐸𝐸�𝑖𝑖𝑖𝑖𝑖𝑖 Number of injured victims evacuated from area 𝑖𝑖 directly to site 𝑘𝑘 in the period from time 

point 𝑡𝑡 to 𝑡𝑡 + 1 ; 

𝐸𝐸�𝑖𝑖𝑖𝑖𝑖𝑖 Number of injured victims evacuated from area 𝑖𝑖 to site 𝑘𝑘 by vehicles that are allocated to 

another site j but going through site 𝑘𝑘 in the period from time point 𝑡𝑡 to 𝑡𝑡 + 1 ; 

𝐺̅𝐺𝑖𝑖𝑖𝑖𝑖𝑖1  Total amount of type-1 relief sent from site 𝑘𝑘 directly to disaster area 𝑖𝑖 in the period from 

time point 𝑡𝑡 to 𝑡𝑡 + 1 (in volume unit); 

𝐺𝐺�𝑖𝑖𝑖𝑖𝑖𝑖1  Total amount of type-1 relief sent from site 𝑘𝑘 to disaster area 𝑖𝑖 by vehicles going through site 

𝑗𝑗 in the period from time point 𝑡𝑡 to 𝑡𝑡 + 1 (in volume unit); 

𝐺̅𝐺𝑖𝑖𝑖𝑖𝑖𝑖2  Total amount of type-2 relief sent from site 𝑘𝑘 directly to disaster area 𝑖𝑖 in the period from 

time point 𝑡𝑡 to 𝑡𝑡 + 1 (in volume unit); 

𝐺𝐺�𝑖𝑖𝑖𝑖𝑖𝑖2  Total amount of type-2 relief sent from site 𝑘𝑘 to disaster area 𝑖𝑖 by vehicles going through site 

𝑗𝑗 in period from time point 𝑡𝑡 to 𝑡𝑡 + 1 (in volume unit); 

𝐷𝐷�𝑖𝑖𝑖𝑖𝑖𝑖 Vehicle resources (total vehicle capacity-time) allocated/required for distributing relief from 

site 𝑘𝑘 to area 𝑖𝑖 and return empty in the period from time point 𝑡𝑡 to 𝑡𝑡 + 1; 

𝐷𝐷�𝑖𝑖𝑖𝑖𝑖𝑖
𝑔𝑔  Vehicle resources (total vehicle capacity-time) required for relief distribution in the journeys 

distributing relief from site 𝑘𝑘 to area 𝑖𝑖 and then evacuating victims from that area, in the 

period from time point 𝑡𝑡 to 𝑡𝑡 + 1; 

𝐷𝐷�𝑖𝑖𝑖𝑖𝑖𝑖ℎ  Vehicle resources (total vehicle capacity-time) required for victim evacuation in the journeys 

distributing relief from site 𝑘𝑘 to area 𝑖𝑖 and then evacuating victims from that area, in the 

period from time point 𝑡𝑡 to 𝑡𝑡 + 1; 

𝑍𝑍�𝑣𝑣𝑣𝑣𝑣𝑣𝑎𝑎𝑎𝑎𝑎𝑎  Number of vehicles of type 𝑣𝑣 at site 𝑘𝑘 from period 𝑡𝑡 to 𝑡𝑡 + 1, for journeys distributing relief 

from site 𝑘𝑘 to an area and then evacuating victims from that area; 

𝑍𝑍�𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 Number of vehicles of type 𝑣𝑣 already available at site 𝑗𝑗 moved from site 𝑗𝑗 to site  𝑘𝑘 at time 

point 𝑡𝑡, for journeys distributing relief from site 𝑘𝑘 to an area and then evacuating victims 

from that area; 
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Figure 3 illustrates different kinds of vehicle journeys in model II and the associated amounts 

defined above. Variables 𝑍𝑍�𝑣𝑣𝑣𝑣𝑣𝑣𝑎𝑎𝑎𝑎𝑎𝑎  and 𝑍𝑍�𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 are related to the kind of trips as shown in solid lines in 

Figure 3.  Such a trip combines relief delivery and victim evacuation.  It may consist of three segments 

as shown in the figure, or two segments in case distribution center k and medical facility j are located 

at the same site. For each distribution center, only some vehicles are allocated for such combined trips.  

There are other vehicles for pure relief distribution trips between the distribution center and an area. A 

vehicle in a distribution center may be used for combined trips in part of the period and for pure trips 

in the rest part of the period.  Therefore, 𝑍𝑍�𝑣𝑣𝑣𝑣𝑣𝑣𝑎𝑎𝑎𝑎𝑎𝑎  and 𝑍𝑍�𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 need not to be integer. 

 

 

 

 

 

 

Figure 3 Example of vehicle journeys in model II 

Model II is presented below. 

Minimize  |𝐴𝐴| ∙ 𝑍𝑍𝑍𝑍 +  ∑ ∑ �𝑝𝑝ℎ ∙ 𝑡𝑡 ∙ 𝑓𝑓𝑔𝑔ℎ ∙ 𝑊𝑊𝑖𝑖𝑖𝑖 + 𝑝𝑝𝑔𝑔1 ∙ 𝑆𝑆𝑖𝑖𝑖𝑖1 + 𝑝𝑝𝑔𝑔2 ∙ 𝑡𝑡 ∙ 𝑆𝑆𝑖𝑖𝑖𝑖2�
𝑛𝑛𝑡𝑡
𝑡𝑡=1𝑖𝑖∈𝐴𝐴  (54) 

Subject to 

∑ �𝑝𝑝ℎ ∙ 𝑡𝑡 ∙ 𝑓𝑓𝑔𝑔ℎ ∙ 𝑊𝑊𝑖𝑖𝑖𝑖 +  𝑝𝑝𝑔𝑔1 ∙ 𝑆𝑆𝑖𝑖𝑖𝑖1 + 𝑝𝑝𝑔𝑔2 ∙ 𝑡𝑡 ∙ 𝑆𝑆𝑖𝑖𝑖𝑖2�
𝑛𝑛𝑡𝑡
𝑡𝑡=1  ≤ 𝑍𝑍𝑍𝑍, ∀𝑖𝑖 ∈ 𝐴𝐴 (55) 

𝑍𝑍𝑣𝑣𝑣𝑣𝑣𝑣0𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 =  0, ∀𝑗𝑗 ∈ ℒ, 𝑘𝑘 ∈ ℒ, 𝑣𝑣 ∈ 𝑉𝑉𝑉𝑉 (56) 

𝑔𝑔1 ∙ (𝑊𝑊𝑖𝑖𝑖𝑖 +  𝐻𝐻𝑖𝑖) − 𝐼𝐼𝑖𝑖,𝑡𝑡−11 − ∑ (𝐺̅𝐺𝑖𝑖𝑖𝑖,𝑡𝑡−1
1 + 𝐺𝐺�𝑖𝑖𝑖𝑖,𝑡𝑡−1

1 )𝑘𝑘∈𝛽𝛽𝑑𝑑  =  𝑆𝑆𝑖𝑖𝑖𝑖1 − 𝐼𝐼𝑖𝑖𝑖𝑖1 , ∀𝑖𝑖 ∈ 𝐴𝐴, 𝑡𝑡 ∈ 𝑇𝑇\{0} (57) 

𝑔𝑔2 ∙ (𝑊𝑊𝑖𝑖𝑖𝑖 +  𝐻𝐻𝑖𝑖) − ∑ 𝐺𝐺0𝑖𝑖𝑖𝑖2𝑘𝑘∈ℰ𝑑𝑑 − ∑ ∑ (𝐺̅𝐺𝑖𝑖𝑖𝑖𝑖𝑖2 + 𝐺𝐺�𝑖𝑖𝑖𝑖𝑖𝑖2 )𝑡𝑡−1
𝜏𝜏=0𝑘𝑘∈𝛽𝛽𝑑𝑑 ≤  𝑆𝑆𝑖𝑖𝑖𝑖2 , ∀𝑖𝑖 ∈ 𝐴𝐴, 𝑡𝑡 ∈ 𝑇𝑇\{0} (58) 

𝑊𝑊𝑖𝑖𝑖𝑖 = 𝑊𝑊𝑖𝑖,𝑡𝑡−1 − ∑ (𝐸𝐸�𝑖𝑖𝑖𝑖,𝑡𝑡−1𝑘𝑘∈𝛽𝛽𝑚𝑚 + 𝐸𝐸�𝑖𝑖𝑖𝑖,𝑡𝑡−1), ∀𝑖𝑖 ∈ 𝐴𝐴, 𝑡𝑡 ∈ 𝑇𝑇\{0} (59) 

2 ∙ 𝑡𝑡𝑖𝑖𝑖𝑖 ∙ 𝐸𝐸�𝑖𝑖𝑖𝑖𝑖𝑖 ≤ 𝐷𝐷𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑀𝑀 ∙ (1 − 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖),  ∀𝑖𝑖 ∈ 𝐴𝐴, 𝑘𝑘 ∈ 𝛽𝛽𝑚𝑚, 𝑡𝑡 ∈ 𝑇𝑇\{𝑛𝑛𝑡𝑡} (60) 

2 ∙ 𝑡𝑡𝑖𝑖𝑖𝑖 ∙ (𝐺̅𝐺𝑖𝑖𝑖𝑖𝑖𝑖1 +  𝐺̅𝐺𝑖𝑖𝑖𝑖𝑖𝑖2 )  ≤  𝐷𝐷�𝑖𝑖𝑖𝑖𝑖𝑖 +  𝑀𝑀 ∙ (1 − 𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖), ∀𝑖𝑖 ∈ 𝐴𝐴, 𝑘𝑘 ∈ 𝛽𝛽𝑑𝑑, 𝑡𝑡 ∈ 𝑇𝑇\{𝑛𝑛𝑡𝑡} (61) 

�𝑡𝑡𝑖𝑖𝑖𝑖+ 𝑡𝑡𝑘𝑘𝑘𝑘 +  𝑡𝑡𝑗𝑗𝑗𝑗� ∙  𝐸𝐸�𝑖𝑖𝑖𝑖𝑖𝑖 ≤  𝐷𝐷�𝑖𝑖𝑖𝑖𝑖𝑖ℎ +  𝑀𝑀 ∙ (2 − 𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖 − 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖), ∀𝑖𝑖 ∈ 𝐴𝐴, 𝑘𝑘 ∈ 𝛽𝛽𝑑𝑑, 𝑗𝑗 ∈ 𝛽𝛽𝑚𝑚, 𝑡𝑡 ∈ 𝑇𝑇\{𝑛𝑛𝑡𝑡} (62) 

�𝑡𝑡𝑖𝑖𝑖𝑖+ 𝑡𝑡𝑘𝑘𝑘𝑘 +  𝑡𝑡𝑗𝑗𝑗𝑗� ∙  �𝐺𝐺�𝑖𝑖𝑖𝑖𝑖𝑖1 + 𝐺𝐺�𝑖𝑖𝑖𝑖𝑖𝑖2 � ≤  𝐷𝐷�𝑖𝑖𝑖𝑖𝑖𝑖
𝑔𝑔 +  𝑀𝑀 ∙ (2 − 𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖 − 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖), ∀𝑖𝑖 ∈ 𝐴𝐴, 𝑘𝑘 ∈ 𝛽𝛽𝑑𝑑, 𝑗𝑗 ∈ 𝛽𝛽𝑚𝑚, 𝑡𝑡 ∈

𝑇𝑇\{𝑛𝑛𝑡𝑡} (63) 

𝐺̅𝐺𝑖𝑖𝑖𝑖𝑖𝑖1 + 𝐺̅𝐺𝑖𝑖𝑖𝑖𝑖𝑖2 + 𝐺𝐺�𝑖𝑖𝑖𝑖𝑖𝑖1 + 𝐺𝐺�𝑖𝑖𝑖𝑖𝑖𝑖2 − 𝑀𝑀 ∙ 𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖  ≤ 0, ∀𝑖𝑖 ∈ 𝐴𝐴, 𝑘𝑘 ∈ 𝛽𝛽𝑑𝑑, 𝑡𝑡 ∈ 𝑇𝑇\{𝑛𝑛𝑡𝑡} (64) 
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𝐸𝐸�𝑖𝑖𝑖𝑖𝑖𝑖 + 𝐸𝐸�𝑖𝑖𝑖𝑖𝑖𝑖 − 𝑀𝑀 ∙ 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖  ≤ 0, ∀𝑖𝑖 ∈ 𝐴𝐴, 𝑘𝑘 ∈ 𝛽𝛽𝑚𝑚, 𝑡𝑡 ∈ 𝑇𝑇\{𝑛𝑛𝑡𝑡} (65) 

∑ 𝑈𝑈𝑗𝑗𝑗𝑗𝑘𝑘∈𝛿𝛿𝑚𝑚  ≤ 1, ∀𝑗𝑗 ∈ 𝐹𝐹0𝑖𝑖𝑖𝑖 (66) 

𝑄𝑄𝑘𝑘
𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 ≤  ∑ 𝑈𝑈𝑗𝑗𝑗𝑗𝑗𝑗∈𝐹𝐹0

𝑖𝑖𝑖𝑖 , ∀𝑘𝑘 ∈ 𝛿𝛿𝑚𝑚 (67) 

𝑀𝑀 ∙ 𝑄𝑄𝑘𝑘
𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 ≥  ∑ 𝑈𝑈𝑗𝑗𝑗𝑗𝑗𝑗∈𝐹𝐹0

𝑖𝑖𝑖𝑖 , ∀𝑘𝑘 ∈ 𝛿𝛿𝑚𝑚 (68) 

∑ 𝑈𝑈𝑘𝑘  ≤  𝑁𝑁𝑑𝑑𝑑𝑑𝑘𝑘∈𝛿𝛿𝑑𝑑  (69) 

∑ 𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖  ≤ 𝑀𝑀 ∙ 𝑈𝑈𝑘𝑘𝑖𝑖∈𝐴𝐴 , ∀𝑘𝑘 ∈ 𝛿𝛿𝑑𝑑, 𝑡𝑡 ∈ 𝑇𝑇\{𝑛𝑛𝑡𝑡} (70) 

∑ 𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖 = 1 𝑘𝑘∈𝛽𝛽𝑑𝑑 , ∀𝑖𝑖 ∈ 𝐴𝐴, 𝑡𝑡 ∈ 𝑇𝑇\{𝑛𝑛𝑡𝑡} (71) 

∑ 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖  ≤ 𝑀𝑀 ∙ 𝑄𝑄𝑘𝑘
𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

𝑖𝑖∈𝐴𝐴 , ∀𝑘𝑘 ∈ 𝛿𝛿𝑚𝑚, 𝑡𝑡 ∈ 𝑇𝑇\{𝑛𝑛𝑡𝑡} (72) 

∑ 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖 = 1 𝑘𝑘∈𝛽𝛽𝑚𝑚 , ∀𝑖𝑖 ∈ 𝐴𝐴, 𝑡𝑡 ∈ 𝑇𝑇\{𝑛𝑛𝑡𝑡} (73) 

∑ (𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖 + 𝐸𝐸�𝑖𝑖𝑖𝑖𝑖𝑖)  ≤ ∑ 𝐶𝐶𝐶𝐶𝐶𝐶𝑗𝑗
𝑓𝑓𝑈𝑈𝑗𝑗𝑗𝑗𝑗𝑗∈𝐹𝐹0

𝑖𝑖𝑖𝑖𝑖𝑖∈𝐴𝐴 , ∀𝑘𝑘 ∈ 𝛽𝛽𝑚𝑚\(ℳ𝑜𝑜 ∪ ℬ) (74) 

∑ (𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖 + 𝐸𝐸�𝑖𝑖𝑖𝑖𝑖𝑖)  ≤ 𝐶𝐶𝐶𝐶𝐶𝐶𝑘𝑘𝑚𝑚 + ∑ 𝐶𝐶𝐶𝐶𝐶𝐶𝑗𝑗
𝑓𝑓𝑈𝑈𝑗𝑗𝑗𝑗𝑗𝑗∈𝐹𝐹0

𝑖𝑖𝑖𝑖𝑖𝑖∈𝐴𝐴 , ∀𝑘𝑘 ∈ ℳ𝑜𝑜 ∪ ℬ (75) 

∑ 𝐷𝐷𝑖𝑖𝑖𝑖𝑖𝑖ℎ𝑖𝑖∈𝐴𝐴  ≤ ∑ (𝑡𝑡𝐷𝐷 ∙ 𝐶𝐶𝐶𝐶𝐶𝐶𝑣𝑣ℎ ∙ 𝑍𝑍𝑣𝑣𝑣𝑣𝑣𝑣𝑎𝑎𝑎𝑎𝑎𝑎 )𝑣𝑣∈𝑉𝑉𝑉𝑉 − ∑ ∑ (𝑡𝑡𝑗𝑗𝑗𝑗 ∙ 𝐶𝐶𝐶𝐶𝐶𝐶𝑣𝑣ℎ ∙ 𝑍𝑍𝑗𝑗𝑗𝑗𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)𝑣𝑣∈𝑉𝑉𝑉𝑉𝑗𝑗∈ℒ , ∀𝑘𝑘 ∈ 𝛽𝛽𝑚𝑚, 𝑡𝑡 ∈ 𝑇𝑇\{𝑛𝑛𝑡𝑡}

 (76) 

∑ 𝐷𝐷�𝑖𝑖𝑖𝑖𝑖𝑖ℎ𝑖𝑖∈𝐴𝐴  ≤ ∑ (𝑡𝑡𝐷𝐷 ∙ 𝐶𝐶𝐶𝐶𝐶𝐶𝑣𝑣ℎ ∙ 𝑍𝑍�𝑣𝑣𝑣𝑣𝑣𝑣𝑎𝑎𝑎𝑎𝑎𝑎 )𝑣𝑣∈𝑉𝑉𝑉𝑉 − ∑ ∑ (𝑡𝑡𝑗𝑗𝑗𝑗 ∙ 𝐶𝐶𝐶𝐶𝐶𝐶𝑣𝑣ℎ ∙ 𝑍𝑍�𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)𝑣𝑣∈𝑉𝑉𝑉𝑉𝑗𝑗∈ℒ , ∀𝑘𝑘 ∈ 𝛽𝛽𝑑𝑑, 𝑡𝑡 ∈ 𝑇𝑇\{𝑛𝑛𝑡𝑡}

 (77) 

∑ 𝐷𝐷�𝑖𝑖𝑖𝑖𝑖𝑖
𝑔𝑔

𝑖𝑖∈𝐴𝐴  ≤ ∑ (𝑡𝑡𝐷𝐷 ∙ 𝐶𝐶𝐶𝐶𝐶𝐶𝑣𝑣
𝑔𝑔 ∙ 𝑍𝑍�𝑣𝑣𝑣𝑣𝑣𝑣𝑎𝑎𝑎𝑎𝑎𝑎 )𝑣𝑣∈𝑉𝑉𝑉𝑉 − ∑ ∑ (𝑡𝑡𝑗𝑗𝑗𝑗 ∙ 𝐶𝐶𝐶𝐶𝐶𝐶𝑣𝑣

𝑔𝑔 ∙ 𝑍𝑍�𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)𝑣𝑣∈𝑉𝑉𝑉𝑉𝑗𝑗∈ℒ , ∀𝑘𝑘 ∈ 𝛽𝛽𝑑𝑑, 𝑡𝑡 ∈ 𝑇𝑇\{𝑛𝑛𝑡𝑡}

 (78) 

∑ 𝐷𝐷�𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖∈𝐴𝐴  ≤ ∑ (𝑡𝑡𝐷𝐷 ∙ 𝐶𝐶𝐶𝐶𝐶𝐶𝑣𝑣
𝑔𝑔 ∙ (𝑍𝑍𝑣𝑣𝑣𝑣𝑣𝑣𝑎𝑎𝑎𝑎𝑎𝑎 − 𝑍𝑍�𝑣𝑣𝑣𝑣𝑣𝑣𝑎𝑎𝑎𝑎𝑎𝑎 ))𝑣𝑣∈𝑉𝑉𝑉𝑉 − ∑ ∑ (𝑡𝑡𝑗𝑗𝑗𝑗 ∙ 𝐶𝐶𝐶𝐶𝐶𝐶𝑣𝑣

𝑔𝑔 ∙ (𝑍𝑍𝑗𝑗𝑗𝑗𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑍𝑍�𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚))𝑣𝑣∈𝑉𝑉𝑉𝑉𝑗𝑗∈ℒ , 

∀𝑘𝑘 ∈ 𝛽𝛽𝑑𝑑, 𝑡𝑡 ∈ 𝑇𝑇\{𝑛𝑛𝑡𝑡} (79) 

𝑍𝑍0𝑣𝑣𝑣𝑣𝑎𝑎𝑎𝑎𝑎𝑎 + 𝑍𝑍𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑛𝑛 − 𝑍𝑍𝑣𝑣𝑣𝑣𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 + ∑ 𝑍𝑍𝑣𝑣𝑣𝑣𝑣𝑣0𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑗𝑗∈ℒ – ∑ 𝑍𝑍𝑣𝑣𝑣𝑣𝑣𝑣0𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝑗𝑗∈ℒ = 𝑍𝑍𝑣𝑣𝑣𝑣0𝑎𝑎𝑎𝑎𝑎𝑎 , ∀ 𝑘𝑘 ∈ ℒ, 𝑣𝑣 ∈ 𝑉𝑉𝑉𝑉 (80) 

𝑍𝑍𝑣𝑣𝑣𝑣,𝑡𝑡−1
𝑎𝑎𝑎𝑎𝑎𝑎 + ∑ 𝑍𝑍𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝑗𝑗∈ℒ – ∑ 𝑍𝑍𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑗𝑗∈ℒ = 𝑍𝑍𝑣𝑣𝑣𝑣𝑣𝑣𝑎𝑎𝑎𝑎𝑎𝑎 ,∀ 𝑘𝑘 ∈ ℒ, 𝑡𝑡 ∈ 𝑇𝑇\{0, 𝑛𝑛𝑡𝑡}, 𝑣𝑣 ∈ 𝑉𝑉𝑉𝑉 (81) 

∑ 𝑍𝑍𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑘𝑘∈ℒ = 𝑍𝑍𝑣𝑣𝑣𝑣,𝑡𝑡−1

𝑎𝑎𝑎𝑎𝑎𝑎 , ∀𝑗𝑗 ∈ ℒ, 𝑡𝑡 ∈ 𝑇𝑇\{0, 𝑛𝑛𝑡𝑡}, 𝑣𝑣 ∈ 𝑉𝑉𝑉𝑉 (82) 

∑ 𝑍𝑍𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑛𝑛𝑘𝑘∈ℒ  =  𝑉𝑉𝑣𝑣𝑖𝑖𝑖𝑖, 𝑣𝑣 ∈ 𝑉𝑉𝑉𝑉 (83) 

∑ 𝑍𝑍𝑣𝑣𝑣𝑣𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑘𝑘∈ℒ =  𝑉𝑉𝑣𝑣𝑜𝑜𝑜𝑜𝑜𝑜, 𝑣𝑣 ∈ 𝑉𝑉𝑉𝑉 (84) 

𝑍𝑍𝑣𝑣𝑣𝑣𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙  ≤  𝑍𝑍0𝑣𝑣𝑣𝑣𝑎𝑎𝑎𝑎𝑎𝑎, ∀ 𝑘𝑘 ∈ ℒ, 𝑣𝑣 ∈ 𝑉𝑉𝑉𝑉 (85) 

∑ 𝑍𝑍𝑣𝑣𝑣𝑣𝑣𝑣𝑎𝑎𝑎𝑎𝑎𝑎
𝑣𝑣∈𝑉𝑉𝑉𝑉 −  𝑀𝑀 ∙ 𝑈𝑈𝑘𝑘 ≤ 0 , ∀𝑘𝑘 ∈ 𝒫𝒫𝑑𝑑, 𝑡𝑡 ∈ 𝑇𝑇\{𝑛𝑛𝑡𝑡} (86) 
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∑ 𝑍𝑍𝑣𝑣𝑣𝑣𝑣𝑣𝑎𝑎𝑎𝑎𝑎𝑎
𝑣𝑣∈𝑉𝑉𝑉𝑉 −  𝑀𝑀 ∙ (𝑈𝑈𝑘𝑘 + 𝑄𝑄𝑘𝑘

𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜) ≤ 0 , ∀𝑘𝑘 ∈ 𝒫𝒫𝑏𝑏, 𝑡𝑡 ∈ 𝑇𝑇\{𝑛𝑛𝑡𝑡} (87) 

𝑍𝑍𝑍𝑍 ≥ 0 (88) 

𝐺̅𝐺𝑖𝑖𝑖𝑖𝑖𝑖 
1 , 𝐺𝐺�𝑖𝑖𝑖𝑖𝑖𝑖 

1 , 𝐺̅𝐺𝑖𝑖𝑖𝑖𝑖𝑖 
2 , 𝐺𝐺�𝑖𝑖𝑖𝑖𝑖𝑖 

2 ≥ 0, ∀ 𝑖𝑖 ∈ 𝐴𝐴, 𝑘𝑘 ∈ 𝛽𝛽𝑑𝑑, 𝑡𝑡 ∈ 𝑇𝑇\{𝑛𝑛𝑡𝑡} (89) 

𝐸𝐸�𝑖𝑖𝑖𝑖𝑖𝑖 , 𝐸𝐸�𝑖𝑖𝑖𝑖𝑖𝑖 ≥ 0, ∀𝑖𝑖 ∈ 𝐴𝐴, 𝑘𝑘 ∈ 𝛽𝛽𝑚𝑚, 𝑡𝑡 ∈ 𝑇𝑇\{𝑛𝑛𝑡𝑡} (90) 

𝐷𝐷𝑖𝑖𝑖𝑖𝑖𝑖 ≥ 0, ∀𝑖𝑖 ∈ 𝐴𝐴, 𝑘𝑘 ∈ ℒ, 𝑡𝑡 ∈ 𝑇𝑇\{𝑛𝑛𝑡𝑡} (91) 

𝑍𝑍𝑣𝑣𝑣𝑣𝑣𝑣𝑎𝑎𝑎𝑎𝑎𝑎 , 𝑍𝑍𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, 𝑍𝑍𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑛𝑛, 𝑍𝑍𝑣𝑣𝑣𝑣𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ≥  0 and integer,∀𝑗𝑗 ∈ ℒ, 𝑘𝑘 ∈ ℒ, 𝑡𝑡 ∈ 𝑇𝑇\{𝑛𝑛𝑡𝑡} (92) 

𝑍𝑍�𝑣𝑣𝑣𝑣𝑣𝑣𝑎𝑎𝑎𝑎𝑎𝑎 , 𝑍𝑍�𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ≥  0,  ∀𝑗𝑗 ∈ ℒ, 𝑘𝑘 ∈ 𝛽𝛽𝑑𝑑, 𝑡𝑡 ∈ 𝑇𝑇\{𝑛𝑛𝑡𝑡} (93) 

𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖 = 0 or 1, ∀𝑖𝑖 ∈ 𝐴𝐴, 𝑘𝑘 ∈ 𝛽𝛽𝑑𝑑, 𝑡𝑡 ∈ 𝑇𝑇\{𝑛𝑛𝑡𝑡} (94) 

𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖 = 0 or 1, ∀𝑖𝑖 ∈ 𝐴𝐴, 𝑘𝑘 ∈ 𝛽𝛽𝑚𝑚, 𝑡𝑡 ∈ 𝑇𝑇\{𝑛𝑛𝑡𝑡} (95) 

𝑈𝑈𝑘𝑘 = 0 or 1, ∀𝑘𝑘 ∈ 𝛿𝛿𝑑𝑑 (96) 

𝑈𝑈𝑗𝑗𝑗𝑗 = 0 or 1, ∀𝑗𝑗 ∈ 𝐹𝐹0𝑖𝑖𝑖𝑖, 𝑘𝑘 ∈ 𝛽𝛽𝑚𝑚 (97) 

𝑄𝑄𝑘𝑘
𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = 0 or 1, ∀𝑘𝑘 ∈ 𝛿𝛿𝑚𝑚 (98) 

and constraints (27), (48), (2_R) and (20_R). 

 The objective of the model is again to minimize the weighted sum of maximum suffering and 

total suffering with maximum suffering as the primary concern. Suffering in this model includes both 

that due to waiting for evacuation and that due to shortage of relief goods. 

 Many constraints in this model can be understood in a similar way to that for previous models. 

Due to vehicle sharing, the vehicle resource requirements are calculated differently, considering both 

pure trips and combined trips. Constraints (61) calculate vehicle resource requirement for pure relief 

distribution trips.  Constraints (62) and (63) calculate vehicle resource requirements for combined trips 

in terms of victim evacuation and relief distribution, respectively.  Constraints (74) state that the 

number of victims sent to any potential site in a period cannot exceed the total capacity of medical 

facilities at the site. Constraints (75) are similar capacity constraints for existing sites. Constraints (77) 

and (78) ensure that, at each distribution center, the vehicles allocated to combined trips can satisfy the 

requirement for both victim evacuation and relief distribution in these trips.  Constraints (79) ensure 

that the remaining vehicles in the distribution center can satisfy the requirement for the pure relief 

distribution trips. 

 

4. Heuristics for Simplifying the Models 

 The models, especially model II, take a very long time to solve. To make the models practically 

useful, we have to set a time limit on their solution process. However, our test shows that, except for 
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small problems, the solution found within the time limit is usually poor, if a feasible solution can be 

obtained at all. Therefore, we propose two heuristics to simplify the models to save computation time. 

Note that many variables in the models are defined for each of the time points in the planning horizon. 

Because only the result of one period is implemented, we propose to reduce the number of variables 

and so simplify the models by combining later time points in the models. The two heuristics do this in 

different ways. 

 In the first heuristic, the number of time points is reduced by combining more and more time 

points together as they are further away from the present time which is the beginning of the model 

planning horizon. The present time point and the next time point are kept unchanged, and so is the 

demand information at these two time points. The period between these first two time points remains 

as one time unit. It is reasonable to assume that the further away a period is from the present time, the 

less the information in that period would affect the decisions for the present period, and so the 

information may be considered in less detail. Under this assumption, therefore, the further ahead the 

time is, the longer the period between two adjacent new time points would be in the reduced model. 

The duration of each period is made one time unit longer than that of the previous period, or the same 

as the previous time period in cases where it is not possible to keep the period length increasing in the 

planning horizon. When applying the model in a rolling horizon fashion, time point reduction and 

information updating are performed every time the model is re-run. The coefficients of the S and W 

variables in the objective functions and relevant constraints in the reduced models need to be 

multiplied by the corresponding period lengths. Figure 4 shows examples of the periods with variable 

lengths in the reduced models for different runs and so with different planning horizons. This heuristic 

will be referred to as the v-Length heuristic. 
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Figure 4 Time point reduction, the v-Length heuristic 

 The second heuristic simply keeps the first four time points (or all points if the planning horizon 

contains less than four points) and their related information unchanged. All the remaining time is 

considered as one period and therefore only one additional time point, the end of the planning horizon, 

will appear in the reduced models after the first four. This is also in line with the assumption that later 

information, after four points in this case, has less impact on the decision for the present period. The 

coefficients in the objective for the combined period in the reduced models need to be modified in a 

similar way to that in the first heuristic. Figure 5 illustrates the periods in the reduced models using 

this heuristic. This heuristic is henceforth referred to as the 4-Point heuristic. 
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Figure 5 Time point reduction: the 4-Point heuristic 

 

5. Computational Experiments 

 Computational experiments are carried out to compare the performances of the three models and 

hence to observe the benefit of coordination in disaster logistics operations. The experiments also test 

the practicality of using a standard software package to solve the models directly as well as the 

efficiency of the proposed heuristics. 

5.1 Experiment settings 

 The experiments are carried out on problem instances of four different sizes defined by spatial 

and temporal dimensions. In the spatial dimension, large problems consist of 17 sub-regions and 47 

disaster areas, the same as in the region (district) affected by the West Sumatra earthquake which has 

17 sub-districts and 47 administrative areas (called nagaris); the small problems have 3 sub-regions 

and 9 disaster areas, representing a smaller region or a region considered in less detail. This small size 

is chosen in the hope of obtaining optimal or feasible solutions of the models in reasonable time. In the 
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temporal dimension, large problems include 15 time periods (16 time points) in the emergency relief 

operation, again similar to that for the West Sumatra earthquake; the duration of the emergency 

response phase for the smaller problems has 10 time periods (11 time points), representing response to 

a disaster with lighter damage. 

 We refer to these four groups of problem instances by listing the number of time points (T), the 

number of sub-regions (R) and the number of disaster areas (A) in the problem, e.g., T11R3A9 

indicates problems with 11 time points, 3 sub-regions and 9 disaster areas. Similarly, other problems 

are referred to as T11R17A47, T16R3A9 and T16R17A47, respectively.  For each problem size, we 

generate 30 instances as described below. 

 In each instance, there is an existing medical center representing a provincial level hospital, and 3 

potential sites for temporary medical centers. It is assumed that there are two potential sites in each 

sub-region for a distribution center. Other sites needed in model II are derived from the above sites. 

The existing hospital, for example, is allowed to have a distribution center. Travel times between 

different locations are generated using approximate minimum and maximum travel times based on 

existing places in the district. 

 For instances with 47 disaster areas, data about injured victims are based on those collected after 

the West Sumatra earthquake and data on injury-free sufferers are then calculated using these and the 

population in the areas. These data are then pooled into 9 disaster areas to be used for the small 

problems. 

 Information on vehicles for transporting injured victims is based on data in the response to the 

West Sumatra earthquake, which are obtained from the Ministry of Health Affairs office in the district. 

There are in total 139 such vehicles arriving at different times. Availability of vehicles at different 

time points varies. Information on vehicles for distributing relief, on the other hand, cannot be 

acquired from any sources and therefore needs to be generated. Using the total number of victim 

evacuation vehicles as a guideline, the average number of relief distribution vehicles newly available 

at each time point is about half of the number of sub-regions. Because model I requires specifying the 

number of vehicles for relief distribution arriving at each sub-region, the number of such vehicles for 

each sub-region at a certain time point is generated as 0 or 1 randomly. Because the transporting 

resources are limited, we assume in the experiment that the capacity of any site with medical facilities 

can handle the victims transported to the site. 

 While the objective is to minimize victim suffering, the suffering of injured victims, if not 

evacuated in time, is more severe than that of the non-injured victims due to lack of relief goods. 

Therefore, in the experiments, the weights for these two types of suffering are generated uniformly 

from the ranges of 10 to 20 and 1 to 10, respectively.  In real applications, the weights can be set by 

the user based on the specific situation. 
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 The experiments are carried out on a server with an Intel dual core Xeon 3 GHz processor and 4 

GB RAM. The models are run at the beginning of each time period and the overall performances are 

calculated at the end of the last period, as described in Section 2.3. For each instance, the three original 

models are solved using the Xpress MP software. This is henceforth referred to as the direct solution 

approach. The models are also simplified using the v-Length and 4-Point heuristics and then solved 

using Xpress MP. 

 For the R3A9 problems, each run of a model is limited up to 1200 seconds. For R17A47 

problems, we allow a longer time due to the large problem size. On the other hand, model size 

decreases from one run to another. Therefore, for these large problems, a longer time limit is set for 

the run at the first time point. The limit is decreased for each successive run. The same idea is also 

used for the maximum time allocated to the cutting process in the Xpress optimizer. The maximum 

total run time and the maximum time for re-optimization with cutting planes are set to (5400 – 600*T) 

seconds and (600 – 60*T) seconds respectively for the run at time point T. Note that as model I_R 

consists of a sub-model for victim evacuation and a sub-model for relief distribution, the run time limit 

for each sub-model is set to be half of the maximum time. For model I, the time limit for the relief 

distribution part is split between the sub-model Ia’s of the sub-regions. Apart from the maximum time 

limit, we also set another stopping criterion for the model runs - the run stops when a feasible solution 

is found within 5% of the best bound of the optimal solution. 

5.2 Results and discussions 

 Effect magnitude can be measured to determine whether research results are practically 

significant (Kirk, 2007). To compare the performance of different models in terms of practical 

significance, we calculate Cohen’s effect size d following Durlak (2009) with minor modifications 

because the objective function of our problem is to be minimized. Let 𝑀𝑀𝐸𝐸 and 𝑆𝑆𝑆𝑆𝐸𝐸 be the mean and 

standard deviation of the objective values obtained using a method being tested, 𝑀𝑀𝐶𝐶 and 𝑆𝑆𝑆𝑆𝐶𝐶 be those 

using another method as a reference for comparison, and 𝑁𝑁 be the sample size, then the effect size (ES 

in short) d is calculated as follows: 

 𝑑𝑑 = 𝑀𝑀𝐶𝐶− 𝑀𝑀𝐸𝐸
Sample SD pooled

× � 𝑁𝑁−3
𝑁𝑁−2.25

� × �𝑁𝑁−2
𝑁𝑁

,  where Sample SD pooled = �𝑆𝑆𝑆𝑆𝐸𝐸2+ 𝑆𝑆𝑆𝑆𝐶𝐶2

2
. 

 A positive value of ES indicates that the method being tested has an improved objective mean as 

compared to the reference method, and a negative ES indicates otherwise. A rule of thumb is that an 

ES of around 0.2 is small, around 0.5 is medium, and around or above 0.8 is large in magnitude (see 

Durlak, 2009). In addition, we also calculate the percentage of instances that the tested method 

produces a positive improvement with respect to the reference method. 

 All four groups of problems are first solved using the direct approach, i.e., the three models are 

solved using the Xpress software. The comparative results are shown in Table 1. From the ES values 
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and the percentages of improvement cases in the table it is obvious that for the two groups of small 

problems (T11R3A9 and T16R3A9), model II performs much better than models I and I_R, 

demonstrating clear benefit of coordination in disaster relief operations. Model I_R performs better 

than model I, indicating that even just lifting the geographical boundaries is also beneficial. 

Table 1 Comparison of the models solved directly for different problem sizes 

Problem size Performance 
measures I_R to I II to I II to I_R 

T11R3A9 ES 0.27 1.64 1.53 
% of positive 83 100 100 

T16R3A9 ES  0.45 1.64 1.33 
% of positive 97 100 100 

T11R17A47 ES  1.54 1.51 -0.06 
% of positive 100 100 50 

T16R17A47 ES  1.36 1.17 -0.76 
% of positive 100 100 10 

 
 For the large problems (T11R17A47 and T16R17A47), again both models II and I_R perform 

better than model I. However, model II shows similar performance to model I_R for NT11R17A47 

problems, and performs slightly worse than model I_R for NT16R17A47 problems, which differs 

from the results for the small problems. To understand the cause of this counter-intuitive result, we 

look at the model size and the quality of solutions obtained at the end of the time limit. Considering 

the relief distribution and the victim evacuation operations together, model II is much larger than 

model I_R (either Ia_R, or Ib_R or total) in terms of number of variables and number of constraints. 

This difference in size becomes larger when the problem size increases. Observing the model solution 

at the end of the time limit, the objective value of the model II solution has a larger gap to the lower 

bound than that for model I_R, and this is more so for T16R17A47 problems. Therefore, the poor 

performance of model II for the large problems is due to the fact that it is larger and more difficult to 

solve, and a within limited time the solution obtained is still very far from the optimum. Heuristics 

may speed up the solution process and so better solutions may be obtained in the time limit. 

 More computational experiments are carried out to solve the models using the two proposed 

heuristics and then compare the results. Table 2 shows the results comparing the models solved using 

each heuristic. Table 3 compares the results of different heuristics for each model. 

Table 2 Comparison of models solved using heuristics for large problems 

Heuristics Performance 
measures 

I_R to I II to I II to I_R 

v-Length 
ES  1.40 1.46 0.49 
% of positive 100 100 70 

4-Point 
ES  1.42 1.50 0.61 
% of positive 100 100 77 
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 The results in Table 2 clearly show that when being solved using either heuristic, the performance 

ranking of the models is in the order of model II, then model I_R and finally model I. The 

improvements made by models II and I_R over model I are large in magnitude, and the improvement 

made by model II over model I_R is medium in magnitude. 

Table 3 Comparison of heuristics for each model for large problems 

Model Performance 
measures 

v-Length 
to direct 

4-Point to 
direct 

4-Point to 
v-Length 

I ES  -0.05 -0.08 -0.02 
% of positive 37 17 37 

I_R ES  -0.26 -0.44 -0.17 
% of positive 37 23  40 

II ES  0.89 0.86 0.00 
% of positive 93 93 53 

 
 From Table 3, it can be seen that for models I and I_R, using heuristics gives slightly worse 

results than solving the models using the direct approach. This is because these two models are 

relatively small in size and the direct approach can give near optimal solutions in the time limit while 

the heuristics simplify the models and so sacrifice some accuracy. For model II, however, both 

heuristics produce much better solutions than the direct approach because of the large model size. The 

results also suggest that the direct approach is the best solution approach for models I and I_R. For 

model II, the two heuristics show similar performance, while both perform much better than the direct 

approach. We can choose v_Length to represent the best approach for model II. 

 A fairer and more useful comparison of the models is to use the results obtained by their 

respective best solution approaches (see Table 4). From Table 4, it is evident that when solved using 

their respective best solution approaches, models II and I_R perform much better than model I for all 

the instances tested. Model II performs slightly better than model I_R. This demonstrates that 

removing the restrictions imposed by the sub-region borders in relief distribution can greatly improve 

the effectiveness of the operation, and coordination between victim evacuation and relief distribution 

operations can make further improvements. 

Table 4 Comparison of models solved by their best approaches for large problems 

Performance 
measures 

I_R_direct to 
I_direct 

II_v-Length to 
I_direct 

II_v-Length to 
I_R_direct 

ES 1.36 1.39 0.26 
% of positive 100 100 63 
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6. Conclusions 

 In this paper we have studied the problem of positioning medical and relief distribution facilities 

for relief operation after a sudden-onset disaster event. Three models were developed for the resource 

location and deployment decisions. The first model reflects the current practice of separated victim 

evacuation and relief distribution operations with relief distribution limited within each sub-region, the 

second one is a revision of the first model allowing relief distribution across the sub-region 

boundaries, and the third one represents coordinated operations for victim evacuation and relief 

distribution. The models should be run whenever there are resource availability changes considering 

the resources available at that time and the demand for the rest of the emergency response phase. Two 

heuristics were proposed to simplify the models to reduce computation time. Experiments were 

conducted using background information from the West Sumatra earthquake. The results showed that 

removing the sub-region border restrictions in relief distribution can greatly improve the effectiveness 

of the operation, and coordination between the victim evacuation and relief distribution operations can 

make further improvements. In particular, the large problem instances in the experiments are similar to 

the situation in the West Sumatra earthquake case where relief distributions were limited by sub-

region borders. Our experiment results show that large improvement could be achieved if the 

restriction was removed. Future research could be done to develop more effective heuristic methods 

for solving the models, especially the complex model for the coordinated operations. More effective 

and efficient solution of the model will enhance the conclusion of this paper and will be more suitable 

for practical application. Road capacity may also be considered especially when deciding detailed 

vehicle routing. 
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