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Abstract

Recent disasters have highlighted the need for more effective supply chain management
during emergency response. Planning and prioritizing the use of trucks and helicopters
to transport humanitarian aid to affected communities is a key logistics challenge. This
dissertation explores ways to improve humanitarian transportation planning by building on
the strengths of both humans and models. The changing, urgent, multi-objective context
of humanitarian aid makes it challenging to formulate and deploy useful planning models.
Humans are better able to understand the context, but struggle with the complexity of the
problem. This research investigates the strengths and weaknesses of human transporta-
tion planners in comparison with models, with the goal of supporting both- better human
decision-making and better models for humanitarian transportation planning.

Chapter 2 investigates how experienced humanitarian logisticians build transportation
plans in a simulated emergency response. Based on an ethnographic study of ten logistics
response teams, I show how humans come to understand the problem and its objectives
through sensemaking, and solve it through a search-like series of decisions guided by goal-
oriented decision rules. I find that the definition of objectives is an important strength of
the sensemaking process, and that the human reliance on greedy search may be a weakness
of human problem-solving.

Chapter 3 defines a performance measure for humanitarian transportation plans, by
measuring the importance of the objectives identified in the ethnographic study. I use a
conjoint analysis survey of expert humanitarian logisticians to quantify the importance of
each objective and develop a utility function to value the performance of aid delivery plans.
The results show that the amount of cargo delivered is the most important objective and
cost the least; experts prefer to prioritize vulnerable communities and critical commodities,
but not to the exclusion of others.

Chapter 4 investigates the performance of human decision-making approaches in com-
parison to optimization models. The human decision-making processes found in Chapter
2 are modeled as heuristic algorithms and compared to a mixed-integer linear program.
Results show that optimization models create better transportation plans, but that human
decision processes could be nearly as effective if implemented consistently with the right
decision rules.

Thesis Supervisor: Charles Fine
Title: Chrysler LGO Professor of Management and Engineering Systems
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Chapter 1

Introduction

A number of recent disasters have highlighted the importance of logistics in emergency re-

sponse. Supply chain challenges hampered aid efforts in the South Asian tsunami (CNN,

2005), Hurricane Katrina (Walsh, 2006), and the Haiti earthquake (BBC, 2010). Improve-

ments should be possible, since there are decades of supply chain research to build upon.

However, the circumstances of relief work are unique, and many of the models and principles

developed for other contexts do not apply directly to the humanitarian setting. Humanitar-

ian logisticians operate under extreme time pressure, in a changing and novel environment,

and in many cases cannot access much information about the evolving emergency. Unfor-

tunately, traditional methods of modeling and optimization depend on the availability of

data and time. In humanitarian logistics, it seems, the challenging context requires a new

breed of tools.

Currently, many aspects of humanitarian logistics are managed by people, using tools

like spreadsheets and white boards. There may be very good reasons for relying on this

approach, beyond the simple lack of better technological solutions. The challenging context

may be better captured by human understanding than by models: people may better see

how the environment is changing, perceive the impact of constraints, and guess at missing

information. On the other hand, people may make worse decisions without the benefit

of decision support tools to handle complex information and search large decision spaces.

To better support the humanitarian logistics function, it is important to understand these

trade-offs in detail. What are the most challenging aspects of logistics in the humanitarian

context, and can they be captured by models? How do people manage these elements of

the problem? What are the strengths and weaknesses of these "human approaches" and
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what we will call the "modeling approach"? In this thesis, I explore these questions, looking

to understand how humans solve complex logistics problems in the humanitarian context,

assessing the implications of their methods for supply chain performance, and investigating

the relative merits of modeling and human approaches to humanitarian logistics.

Humanitarian Transportation Planning

To investigate these general issues, I focus on a specific, analytically tractable problem

faced by humanitarian supply chain managers: the planning of aid shipments within an

emergency-affected country. In many large-scale, international emergencies, a United Nations-

managed coordinating team called the Logistics Cluster provides transport services for other

aid organizations. These partner organizations submit cargo movement requests, specifying

the origin, destination, type, and amount of cargo to be moved. The Cluster must deter-

mine how to use its fleet of trucks and helicopters to deliver the most-needed aid cargo as

quickly as possible.

This is a challenging task, which requires logisticians to integrate large amounts of in-

formation, create a complex plan involving movement of both vehicles and cargo, and make

difficult decisions about prioritizing shipments in light of limited transportation resources.

It is also a challenging technical problem for models: optimization algorithms can solve this

type of problem, but none are able to solve it rapidly, nor trade off among competing priori-

ties (see, e.g., Crainic, 2000; Wieberneit, 2008; de la Torre et al., 2011). This "humanitarian

transportation planning" problem provides a useful setting in which to explore human and

modeling approaches, because it provides both analytical tractability and enough critical

aspects of the humanitarian context to challenge both models and humans.

The humanitarian transportation planning problem is not only a good case from which

to learn about human problem-solving, it is also an extremely important problem in its

own right. Transportation decisions determine when and where aid arrives. Poor planning

could result in deliveries that do not meet priority needs, backlogs at the arrival port, or

inefficient use of limited transportation capacity. Better planning could increase the number

of people who receive aid, or ensure that those who need it most receive what they need

more quickly. Such improvements could have a major impact on aid delivery worldwide.

In 2011 alone, the Logistics Cluster provided services in 12 countries (Logistics Cluster,

18



2012b). In one operation, after the Haiti earthquake, they transported cargo from 124

different organizations, totaling almost 17,000 metric tons of cargo, including health, water

and sanitation, shelter, and food (Logistics Cluster, 2012a).

This research was developed in cooperation with the Logistics Cluster, to develop knowl-

edge and tools to assist in transportation planning. Improving their extensive transportation

operations could enhance the ability of many humanitarian aid organizations (those who

use their transport services) to reach people affected by emergencies, ensuring that aid is

delivered in greater quantities, more quickly, to those who need it most. To further illustrate

the challenges of transportation planning and the potential benefits from its improvement, I

examine a motivating case: logistics operations in the Pakistan flooding emergency in 2010.

Motivating Case: Pakistan Flooding 2010

Beginning in late July, 2010, and continuing for months, Pakistan experienced some of

the worst flooding in the history of the country. Heavy monsoon rains led to flooding in

northwest Pakistan, then the floodwaters traveled down the Indus river to the Arabian

sea, severely impacting the central and southern parts of the country. Figure 1-1 shows

the extent of the flooding in early September. The floods receded relatively quickly in

the provinces of Khyber Pakhtunkhwa (KPK) and Balochistan, but lingered for weeks in

Punjab and for months in parts of Sindh, where waters still had not receded in some areas

in January (Polastro et al., 2011; NDMA, 2011).

The flooding devastated about one-fifth of the country, including 78 districts in 6

provinces, encompassing an area of one hundred thousand square kilometers. The dis-

aster affected 20.2 million people, about 10% of the population of Pakistan (Polastro et al.,

2011). Flooding destroyed 1.6 million houses, 23,831 kilometers of roads, and 485 health

facilities (NDMA, 2011). More than 12 million people were in need of humanitarian assis-

tance (Polastro et al., 2011). The scale of this emergency, in terms of area and population

affected, was larger than the 2004 tsunami and the Haiti earthquake combined.

The main logistics challenges were access to affected areas, storage facilities, and coor-

dination (Logistics Cluster, 2010a). The Logistics Cluster, an inter-agency organization led

by the World Food Programme, was quickly launched to provide coordination and fill oper-

ational gaps. The Cluster provided transportation services to reach cut-off areas, managed

storage facilities throughout the country, and coordinated with other aid organizations and
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with government and military authorities (Logistics Cluster, 2010a).

Broad-ranging evaluations of the humanitarian response to the 2010-2011 floods in Pak-

istan reported mixed success (Polastro et al., 2011; NDMA, 2011). Not all needs were met,

and moreover the response was not always targeted at those most in need. The response

was very fast and effective in KPK province, where many organizations already had oper-

ations, but less so in more-affected areas like Punjab and Sindh, prompting the Pakistani

government to urge better coordination among aid organizations. Coordination is often a

major challenge in an emergency of this scale, and it worked well between militaries and

some humanitarian organizations, but there were some difficulties coordinating between

many humanitarian organizations and the military (Polastro et al., 2011; NDMA, 2011).

Logistics challenges One of the most important operational challenges was lack of access

to affected areas. Many affected areas were cut off when roads were destroyed by the

flooding or clogged with people fleeing the destruction (Khan, 2010; British Red Cross,

2010; WFP News, 2010; UN News, 2010). As the United Nations World Food Programme

reported, many of the "main roads were under water and the side routes congested with

people trying to evacuate" (WFP News, 2010, para. 2). To access these cut-off areas, aid

organizations relied on diverse transportation methods, like using donkeys or travelling by

foot (Khan, 2010). However, for large-scale deliveries, helicopters were "the only viable

means to reach many areas that have been cut off" (UN News, 2010, para. 8), meaning

that air transportation was an essential part of the aid supply chain. Aid organizations had

to weave together various methods of getting around the access challenges to reach affected

areas.

Air transportation was a key bottleneck: it was the lack of sufficient air transport

capacity that kept aid from reaching those who needed it. About a month after the start

of the flooding, the British Red Cross reported, "There are massive logistical challenges in

Pakistan which are holding us back from reaching all the people in need. At the moment

there are relief items ready to go but the challenge is getting them to places where roads,

rail, and all normal transport have been wiped out" (British Red Cross, 2010, para. 4).

Thus, aid cargo was available but could not be delivered because of the difficulty in reaching

cut-off areas. As the BBC reported, "Help is coming, but painfully slowly. ... Helicopters

are a vital part of the aid operation... though for now there are far too few of them" (BBC
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News, 2010, paras. 14, 21). The lack of sufficient helicopter capacity was one of the main

reasons for slow delivery of humanitarian relief.

In an attempt to address the air transportation bottleneck, the Cluster managed a

huge air operation, using "all available air assets" to reach affected populations, including

9 helicopters from the United Nations Humanitarian Air Service, along with many other

aircraft provided by governments and militaries. In six months, the air operation utilized

more than 60 aircraft to reach 300 locations, delivering more than 12,200 metric tons of cargo

to nearly 1 million beneficiaries (Logistics Cluster, 2011). It was a particularly complex air

operation, because as the floodwaters spread into some areas and receded from others, the

helicopters had to move within the country to reach newly affected destinations. Figure 1-2

shows the extent of the Cluster-facilitated air operation. Nevertheless, the air transportation

capacity was still insufficient to meet the needs (Schlein, 2010; BBC News, 2010).

A lack of sufficient financial resources likely contributed to the logistical bottlenecks, as

well as the difficulty of scaling up the wider relief effort. Only a month after the earthquake,

WFP was already appealing for funding (UN News, 2010), and the broader appeal of the

humanitarian community was only half-funded at the end of 2010 (OCHA, 2010). As a

result, the Logistics Cluster director had to spend "lots of time thinking about how to get

the most out of finite resources" (WFP News, 2010, para. 7), managing an expensive air

operation as efficiently as possible.

Getting the most out of the available aircraft required coordination among at least

three sets of stakeholders: the aid organizations with cargo to deliver; the military, govern-

ment, and UN organizations with available aircraft; and the Pakistani government agencies

responsible for directing the response. The Logistics Cluster participated in a Joint Air

Coordination Cell, coordinating with all interested stakeholders (Logistics Cluster, 2011)

and thereby attempting to efficiently and effectively utilize the air transportation assets

available (US Embassy, Islamabad, Pakistan, 2010). Analysis of the response indicated

that coordination efforts generally had mixed success, but the Logistics Cluster and WFP

were relatively successful in coordinating (NDMA, 2011).

Because of the limited transport capacity available, prioritization of aid deliveries was

crucially important. The Joint Air Coordination Cell provided a forum in which to discuss

prioritization, which was at least in part implemented by choosing which cargo flew when

on the Cluster-managed aircraft. The Cluster received cargo movement requests from other
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aid organizations, and decided when to deliver each of them (this problem is the focus of

this thesis). The Cluster followed Pakistani government directions to prioritize deliveries of

kits containing shelter, hygiene, and food items from various agencies, and later delivered

shelter cargo to snowed-in areas (Logistics Cluster, 2011). Nevertheless, a later UN analysis

lamented a "poor capacity to prioritize" as a challenge in the broader relief effort (OCHA,

2010, "Pakistan," para. 5), and other reports suggested a more general inadequacy of aid

targeting (NDMA, 2011; Polastro et al., 2011). Despite steps toward better prioritization

through coordination, there is room for improvement.

In summary, the key logistics challenges in responding to the Pakistan floods were a

lack of access to flooded areas, insufficient air transportation capacity, insufficient financial

resources, coordination difficulties, and prioritization of humanitarian aid deliveries. The

Logistics Cluster worked to address many of these challenges on behalf of the humanitarian

community or in cooperation with its partner organizations. Nevertheless, many challenges

remain.

Importance of transportation planning Better transportation planning could address

many of the key logistics challenges identified in this case study. Transportation planning

is the process by which the Cluster (or any organization managing a fleet of vehicles) de-

termines where and when each vehicle will move and what cargo it will carry. Currently,

the Logistics Cluster does transportation planning by hand, meaning a human planner re-

ceives requests for cargo movement and decides where and when vehicles will move, usually

with a 3-4 day time horizon. Transportation planning is a challenging problem for people

to manage, because it involves searching through a space of many possible vehicle move-

ments and cargo loads, and it is difficult to know the impact of one decision on a later

decision or on the final performance metrics for the overall plan. Therefore, there are prob-

ably opportunities to improve transportation planning with decision support tools. Better

transportation planning would address several important logistics challenges, especially the

lack of sufficient transportation capacity and the prioritization of aid deliveries.

First, better transportation planning could identify ways to make limited transportation

capacity go farther, by optimizing the use of vehicles to deliver the most possible cargo.

In Pakistan, limited transportation capacity was a key bottleneck that slowed the delivery

of aid. With better transportation planning, it might have been possible to increase the

22



Pakistan
Flood Zones
as of 2nd September 2010

and
Affected Districts

as of &h September 2010

A f g h a n i s t a ni
PESHO

A

FA

Salochistan
anna eluu

C h i n a

-0'"K Gilg it B a t is ta n

ASrORE A

"*U
a

)SLAMASAI

'Tom

DERANJGI

JH1& M

N4

IA K

I n d i a

Figure 1-1: Extent of flooding in Pakistan, as of early September 2010. (Logistics Cluster,
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Figure 1-2: Logistics Cluster Air Operations Map (Logistics Cluster, 2011).
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capacity of the helicopter fleet without requiring additional financial resources, which were

already stretched.

Second, transportation planning is an important way in which prioritization of aid is

implemented. Prioritization policies are often handed down from government organizations,

as was the case in Pakistan, and it is up to the logisticians to ensure that their plans are

in line with government prioritization requests. With careful selection of which cargo to

deliver and when, government prioritization policies could be implemented more effectively.

Better transportation planning provides a way to increase transportation capacity and

improve prioritization of aid deliveries without drawing on stretched financial resources. In

Pakistan, such improvements would have addressed many of the key challenges of the aid

effort: the difficulty in reaching cut-off areas because of limited transportation capacity and

the lack of effective prioritization of aid deliveries.

Research Questions and Thesis Outline

This thesis is motivated by the need for better humanitarian transportation planning in

emergencies like the Pakistan floods. Better planning must take into account the complex

challenges of the humanitarian context. In Pakistan, for example, operations had to quickly

adapt as floodwaters moved, priorities shifted, affected areas became more or less accessible,

and vehicle availability changed. In this dynamic context, good planning approaches may

require a combination of human intuition to understand the context and mathematical

modeling to handle the complexity. This thesis explores the strengths and weaknesses

of human and modeling approaches, to identify ways to improve transportation planning

by building on the strengths of each. More specifically, I address the following research

questions:

1. How do humanitarian logisticians manage transportation planning, in the emergency

response context?

2. How should the performance of humanitarian transportation plans be measured?

3. How do human approaches compare to mathematical modeling approaches? What

are the strengths and weaknesses of each?
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The thesis is organized into three stand-alone chapters, and each addresses one of the

three research questions. With the first research question, I aim to increase our under-

standing of how humans solve complex operational problems, in realistic and urgent prob-

lem settings, by studying the extreme case of humanitarian transportation planning. We

know little about how humans solve problems that are both ill-defined and require complex

reasoning, challenging humans in both sensemaking and solving (Rudolph and Repenning,

2002). In Chapter 2, I use social science methods to understand how experienced logis-

ticians make sense of the problem and create a transportation plan. I observe logistician

teams in a rich and detailed emergency response simulation that replicates many aspects of

the humanitarian context. Based on my observations, I identify patterns of decision-making

behavior, which show how sensemaking and solving processes are linked in humanitarian

transportation planning.

The second research question arose from an interesting finding in the first study. One of

the most important elements of understanding the problem was figuring out the right goals

or objectives for the transportation plan. Humanitarian logisticians used several criteria to

judge their plans (such as the amount of cargo delivered, or the speed of delivery), but it

was difficult to determine which were the most important. Weighting these success criteria

is important because such weights can be used to develop objective functions for planning

tools that account for the goals of humanitarian aid delivery. Chapter 3 aims to quantify

the importance of various objectives of transportation planning and develop a performance

measure that can evaluate a given plan. I use a conjoint analysis survey of humanitarian

logisticians to develop a piecewise linear utility function that describes how experts trade

off the multiple objectives of humanitarian aid.

The third research question explores how well people solve transportation planning

problems. In Chapter 4, I seek to compare the performance of human problem-solving

approaches (discovered in the first part of the research) with that of mathematical models,

in order to identify the strengths of each. The simulation field research in Chapter 2 did

not enable evaluation of decision-making performance, so in this chapter I develop formal

models of the human approaches found in Chapter 2. I compare their performance with

that of an optimization model, to evaluate the relative merits of each approach.

Addressing these research questions requires a wide array of methods. I aim to under-

stand both how and how well humans manage a complex planning problem in a challeng-
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ing environment. Meeting this goal requires a combination of ethnographic social science

methods to address how people make plans, conjoint analysis surveys to measure their per-

formance criteria, and modeling methods to address how well humans plan in comparison

with mathematical models. I chose to focus on a single, rich planning problem, and to ex-

plore it with a variety of methods. Using multiple methods to understand a single problem

provides complementary perspectives, enabling us to identify important elements of human

decision-making, then measure and model those elements to draw conclusions about their

effectiveness.

In this thesis, I show how experienced logisticians understand the problem of making

aid delivery plans, in the messy environment of humanitarian response. I describe how

they see the problem, the information they consider in their decision-making, and how

their understanding of the problem shapes their decision processes. Then, I build on this

knowledge to suggest tools and models to improve aid transportation planning. I identify

one key element to which humans pay attention, the goals and objectives of aid delivery

plans, and I capture these human goals to create objectives for planning models that fit

human goals. I also use the results from the first study, knowledge of how humans see and

solve planning problems, to provide the formulation for a set of models. The models provide

a simpler environment than the simulation, yet capture certain key elements of the problem

considered by human logisticians. In this model world, I explore the effectiveness of human

decision-making processes, identifying simple and intuitive planning approaches that are

effective and implementable. Thus, the three chapters of this thesis utilize diverse methods

but provide complementary insights about human decision-making. Together, they enable

the development of better planning approaches for humanitarian aid delivery.
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Chapter 2

Humanitarian response

transportation planning: a

behavioral study of

problem-solving and sensemaking

2.1 Introduction

Logistical challenges in several recent disasters, including Hurricane Katrina (Walsh, 2006)

and the Haiti earthquake (BBC, 2010), have sparked efforts to improve humanitarian sup-

ply chain management. Improvement efforts often attempt to build upon experience in

commercial logistics, adapting modeling techniques developed for the private sector for use

in humanitarian logistics. However, the humanitarian context is particularly challenging

to capture in mathematical models, because it is dynamic, information-poor, and exhibits

multiple competing objectives. Human decision-makers may be better able to make sense

of the complex context, but may make worse decisions without the benefit of tools to

manage information and search for good solutions. Understanding how humanitarian lo-

gisticians make transportation planning decisions might both suggest better ways to model

the challenging context and also identify weaknesses that could be improved with training

or decision support tools. To that end, this chapter investigates human decision-making

processes in humanitarian emergency response.
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Humanitarian logistics spans many activities, including assessing infrastructure, esti-

mating needs, bringing in warehouses and vehicles, procuring and managing inventory, and

transporting aid to those who need it. This study focuses on the latter problem, on plan-

ning the delivery of aid to affected communities. After cargo reaches a disaster-affected

region, it must be transported over the "last mile" to reach its final destination. Trans-

portation capacity is often insufficient to satisfy the need for cargo movement, so aid may

be delayed in reaching those who need it. Improved transportation planning could enable

better use of scarce transportation resources, so that more aid could reach beneficiaries

faster. In addition, transportation decisions - such as which cargo to load and where to

send vehicles - have a major impact on who receives aid and what kind of aid they receive.

Better transportation planning, therefore, offers an opportunity to improve the operational

prioritization of humanitarian aid, in addition to the amount and speed of its delivery.

Aid delivery planning was chosen as the focus for this study because it is important

in emergency response and complex enough to challenge both modeling and human ap-

proaches. Related transportation problems have long been studied in the commercial con-

text (e.g. Kim et al., 1999; Griinert and Sebastian, 2000), and recently have been examined

in the humanitarian context specifically (for reviews, see de la Torre et al., 2011; Caunhye

et al., 2012). While such modeling approaches are very good at finding route plans in a

complex network flow problem, they struggle to accommodate some essential elements of

the humanitarian context. After an emergency, there may not be enough information to

build a useful model, as organizations try to determine the needs of scattered beneficiaries

and the state of infrastructure. The goals are not clear - who should be served first and

what should be sent? Finally, the situation is dynamic: new information arrives, roads

wash out, or priorities change. It might be possible to incorporate some of these elements

into mathematical models, but in many cases the "right" formulation is unclear, suggesting

the need for a combination of human and modeling approaches.

Human decision-makers may have some advantages over models, especially in under-

standing the complexities of the humanitarian setting. Experienced aid workers may be

able to estimate missing information, make assumptions or form expectations about infras-

tructure, and interpret the context to determine goals. Research on human problem-solving

in other urgent contexts suggests that this sort of "sensemaking" activity is essential, and

that human experts are often (but not always) good at it (Klein, 1993; Klein et al., 2007;
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Weick, 1988, 1993). On the other hand, humans are typically not as good at managing

complex information and searching large decision spaces for the best solutions. In making

decisions under uncertainty, humans rely on shortcuts or heuristics that yield suboptimal

solutions (Simon, 1956; Tversky and Kahneman, 1974). Humanitarian transportation plan-

ning requires both making sense of the context (akin to formulating) and solving a complex

technical problem. Therefore, improvements may require a combination of human and mod-

eling approaches. Little is known, however, about how people make sense of these problems

and how well they solve them. In this chapter, I explore how humans solve humanitar-

ian transportation planning problems, in order to untangle their sensemaking and solving

processes and illuminate the strengths and weaknesses of their problem-solving approaches.

This research has two related goals. The first is a practical goal: identifying ways to

improve the practice of humanitarian transportation planning by combining the strengths

of human and modeling approaches. To that end, this chapter seeks to precisely describe

how humans solve humanitarian transportation planning problems and to identify specific

strengths and weaknesses. The second goal goes beyond the specific context of humanitar-

ian transportation planning, seeking to broaden our understanding of how humans solve

urgent problems that require serious effort in both sensemaking and solving. Humanitarian

transportation planning is an extreme case of such a problem, so its understanding should

shed light on the interactions between sensemaking and solving in ill-structured, complex

problems.

2.2 Theoretical Framework

Researchers have long been interested in how humans solve problems and make decisions.

Decades of laboratory research has shown that people use shortcuts to make decisions. Field

research, on the other hand, shows how experts make decisions in certain ill-defined prob-

lem settings, suggesting that defining or making sense of the problem is more important

than solving it. There is much less research on problems that combine the challenges of

defining problems and solving them, but a few studies suggest that sensemaking and solv-

ing are intertwined. Understanding problem-solving in realistic settings requires a better

understanding of how sensemaking and solving interact. In the following paragraphs, I

review relevant findings in these areas, focusing on problem-solving in general and on prob-
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lems most relevant to humanitarian transportation planning, such as those in the industrial

operations domain.

Decades of research on human problem-solving and decision-making shows that people

use shortcuts to solve problems and make decisions, in comparison to so-called "rational"

mathematical models. Human problem-solving is often described as search through a prob-

lem space of possible solutions, a model most famously derived from empirical studies of

human problem solvers by Newell and Simon (1972). Given their cognitive limitations, it is

thought that humans employ limited search, rather than searching until an optimal solution

is achieved (Simon, 1955). In problems of choice under uncertainty, people use heuristic rea-

soning shortcuts that create biases compared with rational models (Tversky and Kahneman,

1974; Kahneman et al., 1982), though these biases may be considered rational themselves

(Gigerenzer et al., 1999).

The same kinds of shortcuts have been observed in studies of people solving indus-

trial operations management problems, in the same domain as the transportation planning

problem of interest in this research. This work on behavioral operations has focused on a

small set of problems, including scheduling in manufacturing plants (Crawford and Wiers,

2001) and inventory management (Bendoly et al., 2006). Laboratory research confirms that

people use the same sorts of non-rational heuristics as they do in other problems of judg-

ment under uncertainty, when solving newsvendor problems (Schweitzer and Cachon, 2000;

Ben-Zion et al., 2008; Bolton and Katok, 2008), multi-period inventory problems (Sterman,

1989; Croson and Donohue, 2002), and supply contracting problems (Kalkanci et al., 2011).

People rely on anchoring and adjustment heuristics in newsvendor and multi-period inven-

tory problems (Schweitzer and Cachon, 2000; Sterman, 1989), show evidence of statistical

biases (Bolton and Katok, 2008; Ben-Zion et al., 2008), and generally rely on simple rules

in complex problems (Kalkanci et al., 2011; Moxnes, 1998). These problems are in the same

domain but not of the same type as the transportation planning problem of interest in this

research. Studies of humans solving traveling salesman problems and vehicle routing prob-

lems are more relevant, because they have the same kind of solutions and require search

through a large problem space. Humans are surprisingly good at solving traveling salesman

problems when they are represented visually: they find solutions less than 15% worse than

optimal with performance degrading only linearly with increasing problem size. Various

heuristic mechanisms have been proposed to explain this performance, including clustering,
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avoiding crossed arcs, and utilizing the convex hull (MacGregor and Chu, 2011). In gen-

eral, then, a wealth of laboratory research suggests that humans use simplified heuristics or

shortcuts in solving industrial operations problems, just as they do in making other types

of decisions.

The research discussed in the above paragraphs focuses on what we might call the "solv-

ing" of problems: going from a formulation, with all relevant information and a description

of what is to be done, to a solution to the problem. However, in real-world situations, it is

usually necessary to figure out what the problem is, which information is relevant, and what

needs to be done. This process of going from an ill-defined problem to an understanding of

it could simply be called "formulating", but here we label it "sensemaking" because of its

resemblance to sensemaking processes observed in similar contexts.

Sensemaking is the process by which people understand situations. They perceive stim-

uli or cues, and these cues are placed into a frame that helps to interpret the cues (Klein

et al., 2007; Weick, 1995). The frame, in turn, influences what cues are perceived and how

they are interpreted. The frame also generates expectations and directs action. Action gen-

erates additional cues. Actions are interpreted retrospectively, and this new understanding

may revise the frame. Thus, sensemaking is about perceiving and interpreting stimuli and

creating the actions and stimuli that are interpreted. Many varied aspects of sensemaking

have been described by theorists (see, e.g., Weick et al., 2005; Weick, 1995). Most relevant

here are the social aspects of sensemaking. While sensemaking may seem to be an individual

process, it often occurs through communication in social settings and the "locus" may be

in a group rather than an individual (Weick et al., 2005). Sensemaking has long been con-

sidered an important component of how people and organizations respond to emergencies

(Maitlis and Sonenshein, 2010), with implications that human actions can fix or exacer-

bate crises (Weick, 1988) and that failed sensemaking can have disastrous consequences

(Weick, 1993). More recent studies use the sensemaking perspective to understand how re-

sponders effectively manage information and understand the evolving situation (Landgren,

2005; Landgren and Nulden, 2007; Muhren and Van de Walle, 2009). While the literature

provides a reasonable understanding of sensemaking and its use in crisis response, there is

little attempt to connect sensemaking to decision-making. Indeed, the sensemaking per-

spective assumes that once a situation is understood, decisions or actions are taken, but

the process of going from understanding to decision is not well articulated.
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Research on experts making decisions in urgent settings suggests that formulating or

sensemaking, rather than solving, drives the decision-making process. Firefighters recognize

a situation as typical and match it to an appropriate action, often implementing the first

option they consider (Klein, 1998, 1993). In a wide variety of contexts, including firefighting,

military operations, design engineering, airline piloting, and speed chess, experts appear to

generate only a single option based on their assessment of the situation, evaluate it for

appropriateness, and generate a second option only if the first is unsuitable (Lipshitz et al.,

2001). Similarly, in crisis response, a study of 15 diverse decision-making processes suggests

that options are evaluated successively rather than concurrently (Hale et al., 2006). Doctors

train to avoid fixating on a single erroneous diagnosis (Rudolph et al., 2009). This propensity

for matching a single action to a situation is not universal; in fact, multiple options may

be implemented simultaneously to hedge against uncertainty (Smith and Dowell, 2000).

However, it does appear that in a wide variety of contexts, experts faced with urgent

decisions assess the situation and match it to an appropriate action. In these cases, the

process of "sensemaking" drives the decision-making process, while "solving" consists simply

of retrieving a seemingly appropriate action once the situation is understood.

Most of this literature studies problems in which sensemaking is the only challenge.

Sensemaking research stops short of studying the decision processes that come after it, and

research has focused mainly on environments in which an understanding of the situation is

enough to generate an appropriate decision (see Lipshitz et al., 2001). Because sensemaking

and solving have been studied in distinct literatures, very few studies have explicitly focused

on how these processes work together (Rudolph et al., 2009).

Transportation planning in humanitarian aid requires serious effort in both sensemaking

and solving, as does problem-solving in many other contexts. Empirical studies shed some

light on how sensemaking and solving interact. Rudolph et al. (2009) advance a conceptual

model that describes the relationships between sensemaking and solving in the medical

diagnosis problem setting. Actions generate information about the patient's condition, the

information is interpreted either in support of a leading diagnosis or an alternative diagnosis

(and may induce a change in the leading diagnosis), and new action is generated to further

illuminate the plausibility of the diagnoses. Thus, sensemaking guides action intended to

gather information to distinguish among two choices (solving), and these choices suggest

further action to gather additional information (sensemaking), and so on. This model is
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specific to choice-oriented problems, and therefore does not apply directly to the search-

oriented transportation planning problem. Nevertheless, it suggests that sensemaking and

solving are intimately intertwined and must be understood together, by studying a complex

problem in a realistic setting.

There are empirical studies of problem-solving in industrial operations, which may be

more relevant to transportation planning. Field research in this setting has focused rather

narrowly on production planning and scheduling. Observations of planners and schedulers

suggest that people predict or monitor potential problems by collecting information (Vernon,

2001; Jackson et al., 2004; McKay et al., 1995; Webster, 2001), and that problems are dealt

with using heuristics or rules (McKay et al., 1995; Webster, 2001; McKay and Wiers, 2001;

Grant, 1986). These studies do not explicitly consider sensemaking or solving processes, but

monitoring suggests an ongoing sensemaking process, while heuristics and rules resemble

the solving processes found in behavioral operations laboratory studies. Most of these

studies stopped short of generating analytically generalizable theory of human problem-

solving, focusing instead on the types of activities performed and how to support them.

Nevertheless, sensemaking and solving appear to be intertwined in planning and scheduling,

though exactly how they interact is not clear.

To understand how people solve complex problems in ill-defined, realistic settings, it

is not enough to focus on the solving or the sensemaking processes separately. This re-

search looks to elaborate the intertwined processes of sensemaking and solving in an urgent,

complex, and ill-defined problem. Humans solving pre-formulated (laboratory) operations

problems tend to rely on simple heuristics or rules. Humans making decisions in ill-defined,

urgent contexts rely on sensemaking to generate appropriate actions. These problems have

been studied separately, leaving it unclear how sensemaking and solving interact. Elaborat-

ing these processes in a particularly ill-defined, urgent and complex problem-solving setting

should shed light on how humans make decisions more generally in this important class of

real-world problems.

2.3 Research Design and Methods

This study describes how people solve transportation planning problems in the humanitarian

context. As discussed above, little is known about how humans solve real-world problems
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that require both sensemaking and solving. In such situations, when existing theory is

inadequate to describe a phenomenon, qualitative case studies can enable the generation of

new theory (Eisenhardt, 1989).

A qualitative study is ideal for several reasons, beyond the lack of existing theory. There

are two key elements of the research question that drive this decision. First, the setting is

important. We are interested in how planning is achieved under the conditions present in

humanitarian emergencies: time pressure, high stakes, information scarcity, rapid uncertain

changes, and unclear objectives. Without these conditions, the methods of planning might

be different, so it is essential that the research take place in this context. It would be

difficult to replicate this set of conditions in a laboratory, but qualitative methods allow us

to capture action in context (Pettigrew, 1990; Yin, 2009). Second, we are interested in how

planning is managed by humanitarian logisticians. We cannot understand how a plan was

created by looking only at the plan itself. We require a method that enables us to "see" the

behavior and ways of thinking that led to the generation of the plan. Qualitative methods

can capture rich data to describe how the action occurs (Langley, 1999; Pettigrew, 1990;

Woods, 1993). In short, qualitative methods enable us to explore human approaches to

transportation planning, and to build new theories that describe their ways of approaching

the problem.

In focusing on how logisticians manage transportation planning, this study seeks to

build a process theory of the phenomenon. Mohr (1982) distinguishes between process the-

ories and variance theories: variance theories explain phenomena based on relationships

among variables (e.g. more of an independent variable leads to more of a dependent vari-

able), whereas process theories explain outcomes based on sequences of events, activities,

and choices (Langley, 1999). Process theorizing is appropriate here, because we wish to un-

derstand the process by which humanitarian logisticians create transportation plans. The

process orientation drives both the kind of data to be collected and the methods of anal-

ysis, discussed in more detail below. In short, however, we seek patterns of behavior that

represent logisticians' approaches to transportation planning.

Before describing the research design, data collection, and data analysis methods in

more detail, we describe the setting in which the research was conducted.
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2.3.1 Research Setting

The research setting is a simulated emergency response, conducted for the purpose of train-

ing logisticians to work with the Logistics Cluster. The Logistics Cluster is an organization

that coordinates logistics efforts among the aid agencies responding to an emergency. It is

part of a system of coordination organizations - including a Shelter Cluster, Health Cluster,

etc. - that focus on coordinating each component of a humanitarian response. The Cluster

system is managed by an inter-organizational committee of humanitarian organizations,

and in a given response each of these organizations typically participates in meetings and

utilizes services of relevant Clusters. The Logistics Cluster provides coordination, informa-

tion sharing, and sometimes transportation services to the humanitarian community. The

World Food Programme (WFP) is the lead organization, but the Logistics Cluster is usu-

ally run by a team of logisticians who are seconded by various aid agencies. The simulated

emergency response, the setting for this research, is run by WFP to train logisticians from

other agencies to work with the Logistics Cluster. As such, it brings together teams of

experienced logisticians to create a logistics-focused response to a major emergency, and it

is repeated periodically, with virtually identical scenarios, to train multiple teams.

Each training is a week-long simulated emergency, run 24 hours a day for 6 days. The

participants live and work in prefabricated housing and tents, with satellite-based internet

and limited electronic resources; these are the same facilities that WFP deploys to real

emergencies. The trainees, or "participants", are divided into 2 teams of approximately

10 people each. They are tasked as Logistics Response Teams, the group that arrives

immediately after a disaster to set up a Logistics Cluster. The two teams are independently

responding to the same emergency (and are instructed to ignore the existence of the other

team). A team of facilitators are also present to play the roles of other actors in the

emergency and to manage the logistics of the training. The scenario is defined ahead of

time, and is the same for each team and each training (minor variations will be described

in the next section). Each facilitator has talking points and information to discuss in each

meeting, email and document "injections" are already prepared to send to the teams, and

an extensive script describes how the scenario unfolds over the course of the week.

The teams are given only news releases before their arrival, saying that a large earth-

quake has overwhelmed a fictional developing country called Snowland (this and other
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names have been disguised throughout the thesis). They spend most of the first two days in

meetings with representatives of other humanitarian organizations (played by facilitators),

in which they are given more, often conflicting, information about the situation they face:

how many are affected, which areas are worst-hit, what the population needs, what other

organizations are doing, what roads and air facilities are available, what transportation and

storage assets can be found, the customs situation, etc. By the third day, they must create

a logistics plan to address the situation. This "operational plan" should include the roads

and hubs they plan to use, temporary warehousing and vehicles they need to bring in, and

the services they will provide to the humanitarian community. On the fourth day, they are

asked to use their operational plan to execute (virtually) a logistics operation. They are

given a large set of cargo movement requests from other organizations, and asked to create

a 7-day plan for using their fleet of trucks and helicopters to deliver these requests. On the

following day, the fifth day of the simulation, they must present their plan to donors and

to the humanitarian community. Throughout the simulation, they are given changing and

conflicting information about the situation, and they face challenges in coordinating their

plans with the rest of the humanitarian community. They are put under extreme pressure

by those they work with (played by the facilitators), and rarely get more than three or

four hours of sleep each night. Thus, the context is a fair representation of the urgent,

information-poor environment of humanitarian logistics. Data are collected throughout the

simulation, but this study focuses on the data from the fourth and fifth day of the simula-

tion, in which (day four) teams are asked to create a 7-day transportation plan and (day

five) present their accomplishments to donors and the humanitarian community.

I chose to study the simulation rather than real emergencies for three reasons. First,

because the simulation is repeated with the same scenario for multiple teams, it enables

a powerful multiple case research design. Second, it is intrusive and ethically difficult to

(merely) observe in a real emergency. All available personnel should be working to assist

those in need, and an observer would not only fail to help but also get in the way. The

simulation provides the opportunity to observe the teams with minimal disruption to their

work. Third, the simulation is realistic enough to spark the same ways of thinking that

logisticians would employ in a real emergency. The participants, all of whom have worked

in real emergencies, support the idea that the simulation is realistic. According to WFP

(2009, para. 3), "participants reported that the training had replicated the feel of a real
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emergency". One participant wrote that, although it was a "simulation exercise, it feels like

we've been through the wringer and back" (Freeman, 2010, para. 6). Thus, the simulation

comes close to replicating the challenging humanitarian context. The teams sent to a real

emergency typically have fewer than 10 members, and they usually plan 1-4 days ahead,

though they aim to plan farther ahead when possible. The simulation may be more difficult

than transportation planning in reality (requiring coordination among more planners to

create a longer plan), but captures the same kinds of problems and challenges faced by real

Logistics Response Teams.

While the simulation is very realistic in many ways, it does not probe all the dynamics

of real emergencies. Two important dynamics are not emphasized within the transportation

planning portion of the simulation: uncertainty and changes. In the early days of response

to most emergencies, there is a lot of uncertainty about the needs, state of infrastructure,

and other relevant details. As planners learn more about the situation, and as they gather

feedback over time, their understanding of this information will change. In the context

of the transportation planning problem, this could mean changes in the cargo movement

requests, in the priority of locations or types of aid items, or in the availability of vehicles or

roads. The simulation only included one day of transportation planning, and in this limited

timeframe only one small change was made to the problem: additional cargo movement

requests were made in the middle of the day. Anecdotally, based on observations of this

minor change in the simulation and on conversations with Logistics Cluster personnel about

past operations, planners seem to deal with changing information by re-planning to take

into account the new situation. However, the simulation did not prompt enough discussion

of change and uncertainty to draw further conclusions. On the other hand, despite the

limited changes to the transportation planning scenario, teams were certainly considering

the situation uncertain and likely to change, based on their experiences in the first three days

of the simulated response. In those three days, they had received changing and conflicting

information, and needed to update their plans around it. Thus, while the transportation

planning problem on the fourth day included few changes, teams were already primed to

consider the dynamic situation as they made transportation planning decisions.
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2.3.2 Research Design

The repetition of the training described above enables a powerful multiple case study re-

search design. Each case study is analogous to an entire experiment, rather than a sample

in an experiment (Yin, 2009). Theory arising from one case is confirmed or disconfirmed by

the other cases. Because the theory ultimately has been "tested" a number of times, more

confidence can be placed in it.

This study is designed to develop a process theory of how humanitarian logisticians

solve the transportation planning problem. Each case therefore represents an instance of

such a process: a single team of participants navigating days four and five of the logistics

training described above. The cases are chosen to be "literal replications" of one another

(Yin, 2009), meaning that they are chosen to be similar and the same kinds of results are

expected in each case (as opposed to "theoretical replications", chosen to vary along some

dimension, in which the same theory is expected to explain different results).

There is no law dictating the number of case studies required to generate a theory. In

general, in theory-building research, one concludes there is "enough" data when a point of

theoretical saturation is reached, meaning the incremental improvement in theory is small

because any new data confirms existing suppositions (Glaser and Strauss, 1967). In case

study research, the same principle applies (Eisenhardt, 1989). It is difficult to know, ahead

of time, the number of cases required to reach theoretical saturation. Eisenhardt (1989)

recommends, as a guideline, selecting between 4 and 10 cases: fewer than 4 cases is less

convincingly grounded in the data, and the data from more than 10 cases becomes difficult

to handle.

I studied five trainings, each with two (independent) teams. The unit of analysis is

the Logistics Response Team described above: a group of approximately ten experienced

logisticians who are sent to manage logistics in the simulated emergency. It makes sense

to define the team as the unit of analysis because such teams are, in reality, the main

decision-makers in emergency response (though they are usually smaller teams). Moreover,

observations of the interactions between the team members will shed light on their problem-

solving process without the need for more disruptive techniques like thinking aloud (Woods,

1993).

With each team as the unit of analysis, there are two options for defining the multiple
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case study design. Each training could be considered a case, with two embedded units

of analysis. Alternatively, each team's experience could be considered a single case. The

former design would be more appropriate if the trainings differed significantly; in that

case, it would make sense to consider each training separately and compare how the two

teams within that case responded to the particular set of circumstances in that training.

However, in this case, each training is very similar to the others. While the participants and

facilitators are different, the scenario is roughly the same. An extensive script governs the

information provided to the participants at any given meeting or interaction. The script

is adapted to the needs and decisions of the teams, but the set of possibilities is restricted

by the training scenario. Moreover, every communication with the teams is approved by

the training coordinator, who designed the scenario and supervises all the trainings. As a

result, each of the ten teams observed (in five trainings) had roughly the same experience.

Therefore, it makes more sense to consider each team a separate case. Thus, there are ten

cases, each consisting of one team solving a transportation planning problem in the same

emergency scenario.

The ten cases do nevertheless vary in some ways. Most importantly, in the fourth

and fifth trainings (the last four cases), I introduced a tool for transportation planning.

Previously, the teams had been given no support beyond the data for the problem. In

cooperation with the training organizers, I developed a simple Excel-based tool, which

provided a template for writing down the movements of trucks and cargo, and additionally

verified the feasibility of the plans and calculated some basic performance metrics about

the plan. This tool was provided to both teams in the final two trainings, but it was only

used by two of the four teams. The key difference in these four cases is that the teams were

provided with (1) a structured template for recording the plan, and (2) the ability to check

its feasibility and its performance (how much was delivered, of what cargo). I expected

that the addition of such a tool would reduce the amount of time teams spent defining data

formats, and would lead them to think more carefully about the performance of a plan, thus

illuminating the aspects of problem-solving in which I was most interested. The second,

more minor, source of variation within the cases was that the specific problem data was

different in each training. The number of cargo movement requests was generally reduced,

and the number of vehicles increased, to make it easier to deliver a significant portion of

the requested cargo (mainly to increase the morale of the team). The problem remained
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overwhelmingly difficult to solve in the time provided, so these changes should not have

made much difference to the teams' problem-solving behavior.

Even though I observed teams, the team dynamics were not the focus of this study. The

team setting was a convenient way to ensure that participants verbalize and explain their

thought processes as they work (which will be discussed in more detail later). Of course,

with teams of ten people under pressure, team dynamics were important, but they appeared

to impact problem-solving work only when problems were very severe, perhaps in one or two

of the ten teams observed. Such conflicts were generally either resolved, occasionally with

help from facilitators, or other members of the team picked up more of the problem-solving

work. I focused on capturing the problem-solving processes rather than the interactions

between team members.

It would be useful to link problem-solving processes with performance on the transporta-

tion planning process. Unfortunately, the research setting did not enable linking process

and performance, for two reasons. First, it was practically impossible to measure the suc-

cess of a given team's transportation plan, because there was no requirement to "turn in"

a completed plan, and collected data was insufficient to judge performance. Second, it

would be difficult to determine which problem-solving processes contributed to the team's

performance. There were many other factors that contributed to success in planning, such

as leadership and teamwork. In addition, most teams used a mix of problem-solving pro-

cesses, so it would be difficult to link a team's performance to the performance of a given

type of process. Because it was impossible to analyze the performance of problem-solving

processes in this research setting, I chose to analyze performance using models of human

problem-solving processes, as described in Chapter 4 of this thesis.

As in experimental research, threats to validity are considered within the research design.

Internal validity requires that the proposed explanation (our theory) actually explains the

effect, rather than some other plausible explanation. In experiments, there are a number

of clear threats to internal validity (Campbell and Stanley, 1966), and these are generally

addressed through careful research design. In case studies, as opposed to experiments, the

threats are less clearly delineated, and we concentrate instead on the key underlying point:

the ruling out of rival explanations. In case study research, internal validity is addressed

by taking care to consider and rule out rival hypotheses during data analysis (Yin, 2009).

External validity deals with questions of generalizability: to what situations beyond the
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case study itself are the results generalizable? Generalizability of any experimental or case

study result requires an assumption that the same kinds of laws seen in one setting - the

experiment or case study - work similarly in another setting (Campbell and Stanley, 1966).

In quantitative research, samples are chosen to ensure "statistical" generalizability to a

specific population, but the theory resulting from such experiments is often considered to

apply more broadly, to other similar populations. This is termed "analytic generalization"

by Yin (2009). He argues that case studies enable analytic generalization rather than

statistical generalization: the theory arising from specific case studies can be applied across

other similar settings.

Addressing external validity, then, requires selection of cases that will enable the gener-

ation of theory that applies beyond the specific instance studied. In multiple case studies,

the replication logic - showing that the same theory applies in multiple independent cases

- confirms that the theory is at least generalizable to all the cases included in the study,

and suggests that it is probably generalizable to similar cases beyond those considered in

the research. In this study, I argue that the theory arising from ten diverse teams solv-

ing a transportation planning problem in one (simulated) humanitarian scenario (designed,

for training purposes, to be representative of other major emergencies) generalizes to hu-

manitarian logisticians solving similar problems in similar emergency settings, and may

apply to experienced planners solving similar problems in other urgent, information-poor

environments.

2.3.3 Data Collection

The primary method of data collection was field observation, which could also be termed

participant-observation, or ethnography. Documents and emails from the simulation were

also collected.

Selection of Data Collection Methods

The nature of the phenomenon of interest dictated the choice of data collection method.

Problem-solving processes are at least partly realized in the hidden cognitive processes of

each participant. The data collection method had to enable some understanding of these

cognitive processes. Two clear options were interviews and field observation.

Interviews offer the advantage of more direct access to participants' ways of thinking:
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participants can be asked to describe how they made choices and decisions. However,

interviews would have required participants to recall their thought processes retrospectively.

Retrospective recollections can be unreliable, because subjects may over-simplify, rationalize

decisions, or simply not remember what they were thinking at the time (Golden, 1992; Miller

et al., 1997). While such concerns do not preclude the use of retrospective interview data,

they seemed likely to be especially severe in the fast-moving context of emergency response.

Due to stress and lack of sleep, participants might be especially susceptible to the problem

of inaccurate recall. In addition, this study focuses on intuitive shortcuts and heuristics;

participants might be especially tempted to rationalize their use of these shortcuts. For

these reasons, field observation was chosen as the primary method of data collection.

Field observation enabled data collection in real time, with confidence that problems of

recall and rationalization would not obscure participants' thought processes. However, the

problem remained that much of the problem-solving work is hidden in the minds of par-

ticipants. Various techniques have been developed to "externalize" such internal processes

(see Woods, 1993, for a review), including asking participants to verbalize their thought

processes (either afterwards or in real time), withholding information to see when and how

participants use data, and making the task cooperative so that participants discuss their

ideas with each other (e.g. Miyake, 1986). These techniques vary in the extent to which

they disrupt the normal thought processes of subjects and twist the study scenario for

the purposes of gathering data. As argued earlier, it was essential for this study that the

problem-solving context remain as authentic as possible; therefore, we leaned toward those

techniques with minimal disruption. The training scenario offered a natural opportunity to

use the cooperative technique: teams of participants solve the transportation planning prob-

lem cooperatively, so they verbalize their thought processes to a certain extent. Through

observations of their behavior as they interacted with each other, with facilitators, with

maps, and with computers and other aspects of the environment, it is possible to make

inferences about their problem-solving processes.

The selection of field observation as the primary data collection method and the logistics

training as the research setting prohibited interviews as a further check on our inferences

about participants' thought processes. The immersive environment of the training made

it impossible to conduct interviews during the simulation. The trade-off was considered

reasonable, given concerns about interviews and the advantages of the research setting.
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Instead of interviews, I attempted to accomplish the same purpose - asking participants to

describe their thought processes - within the training scenario. As part of their meetings

on the fifth day of the simulation, participants were asked to describe their "methodology"

for transportation planning, meaning the way they went about making the transportation

plan. Their descriptions provided a second data point to verify and triangulate at least

some of the inferences about problem-solving thought processes.

Documents and emails produced during the simulation were also collected. These doc-

uments served three related purposes. First, they provided another data point with which

to verify evidence from other sources (Yin, 2009). Second, they provided evidence of the

teams' starting points for problem solving, as well as the results of the problem-solving and

decision-making processes. Third, and more broadly, they filled in the story: they show

what information the teams had, believed, and sought; what decisions they made and how

they were justified; and more subtle elements like what they considered important.

Observation

I spent the full week of the simulation on-site, as a training facilitator. I played the role of

an aid worker for Oxfam, another aid organization. In that role, I had two meetings with

each of the teams during the first two days, and I participated in the nightly coordination

meetings hosted by the teams, in which I was acting as their customer, asking what services

they would provide and how quickly they could help me solve my logistical problems. I also

had a secondary role in the development of the simulation. The organizers asked me to help

them with the transportation planning portion of the training (the fourth day). I helped to

introduce the problem, adapt the exercise materials to each training, and ultimately devel-

oped tools and techniques to improve the training. Most of these tools and techniques were

minor and were 'inserted' after the conclusion of the simulation: I debriefed participants

and developed materials for them to take home with them. Therefore they had no effect

on the course of the simulation itself. In the last two trainings that I observed, however,

I introduced an Excel-based tool to capture plans; this was described earlier. The teams

chose to utilize this tool in only one of the two trainings. During this training, I spent a

little more time providing technical support to the teams, showing them how to use the tool

and solving the one or two problems that arose. Through both of these roles - as Oxfam

and managing the transportation planning exercise - I was both participant and observer.
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However, it was generally clear to the teams when I was playing each role, because during

observation I wore a red ribbon which clearly marked me as observer.

The teams are told at the start of the training that anyone wearing a red ribbon is

"invisible", and should be ignored. It was common practice for one or two facilitators to

visit the teams' offices, wearing a red ribbon, to observe their progress or their meetings. I

wore a red ribbon and sat in as inconspicuous a place as possible. Meetings and discussions

could occur anywhere: in the prefabricated offices, in the large meeting tent, outside around

a table, in the kitchen area, during a smoking break, or even in the back of a Land Rover

when the wind was very strong. I tried to find a corner in which I would be less likely to

be noticed, preferably seated (though more often standing), and I took notes in a small

notebook. At first, the teams would be somewhat distracted by my presence and my note-

taking, but the distraction appeared to lessen over the course of the week.

My goal in taking notes or "jottings" during observation was twofold: to capture enough

details to jog my memory later (Emerson et al., 1995), and to capture as much as possible

in the language of the participants, verbatim where possible (Spradley, 1980). I also used

drawings and photographs to capture maps, diagrams drawn on flip charts, and other

graphical information. (It was not permitted to record the sessions. Moreover, recording

would not be very useful because the discussion happened in many different places, the

nonverbal action was very important, and it would be hard to follow on audio or even

video recordings.) I knew that I would have no time to write extensive field notes during

the simulation, because I wanted to spend as much time as possible observing the action.

Therefore, after each session of observation (when I went back for lunch, for example), I

looked through my jottings and added enough detail (by hand, in the margins) to clarify

what I had written and seen. Immediately after the end of the simulation, I wrote more

extensive field notes, using these extended jottings as a framework and filling in the details

from memory (Emerson et al., 1995).

In my notes, I tried to capture discussion in the language of the participants, and to

note other elements which might normally be tuned out or missed (Spradley, 1980). I also

tried to include concrete details rather than generalized descriptions (Emerson et al., 1995).

I focused on collecting data related to my broad research question, looking for behavior and

actions that might shed light on how the teams made decisions and solved problems.

In the time outside of my once daily meetings in the Oxfam role, I was able to observe
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the teams as they worked. The amount of time varied depending on the nature and duration

of their activities for the day, but on average I spent 8-10 hours with the teams each day. On

the day of the transportation planning exercise (the fourth day), which is the focus of this

study, I stayed with the teams from 7am until the dinner break around 8pm, sometimes with

an hour away for lunch. After the dinner and debrief (from the media interview exercise),

the teams return to work on the transportation planning exercise. In most trainings, I was

able to return around midnight to check on the progress of the teams.

The teams' days were filled mainly with scheduled meetings (with facilitators) and un-

scheduled work time. During the unscheduled work time, team members were usually

engaged in one of several activities: large team meetings, working with one or two others,

working alone in front of a computer, meeting with facilitators, eating, or taking a coffee or

smoking break. I could observe meetings and listen to the dialogue, I could see and record

maps and diagrams drawn, and I could peek at laptop screens to see what people were

working on. I kept my data collection unstructured, adapting it to the type of work that

was happening and what seemed the best way to record it.

As a single observer, I was only able to observe one meeting or discussion at a time.

During the days, there were often several meetings happening at one time. Most official

meetings - those with facilitators - were scheduled ahead of time and I could choose to

observe those most relevant to my study. The unofficial meetings - the discussions within

the teams - were less predictable, but I learned that the most interesting discussions tended

to happen when the entire team was together, after most of the scheduled meetings. I tried

to be present at these times. I moved between the two teams often, but I tried to capture

the whole of a discussion before moving to see the other team. I chose where to collect

data based on the activities I thought would be most illuminating for this study. After the

first training (first two cases), I had a much better idea when interesting activities would

happen, and I used this knowledge to prioritize my observations.

However, it is important to stress that the data are necessarily incomplete. While I

tried to observe most of the significant action, I was unable to see everything happening in

both teams at all times. My data show many things that happened, but they do not show

everything that happened. Nevertheless, much can be learned about teams' problem-solving

processes from the data I was able to collect.
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Documents

As mentioned earlier, I also collected documents produced by the teams during the sim-

ulation. A large number of documents are utilized within the simulation. The teams are

provided with information about the scenario in documents like assessment reports, opera-

tional plans, maps, tables, and spreadsheets, usually given by one of the facilitators in their

role as representative of another aid organization. These documents are part of the "script"

from the training, and are not produced by the teams themselves. Email is a primary form

of communication between teams and facilitators. Finally, as part of the scenario, the teams

are required to produce a number of documents, including situation reports, operational

plans, operating procedures, a transportation plan, and presentations for meetings.

I collected all emails and documents that were sent between teams and facilitators, and

many (though not all) internal team documents. Different types of documents are used in

different ways. Emails and other documents that are part of the training's "script" are used

mainly to fill in the story and show what information the teams had access to at any given

time. Those produced by the teams are used as an additional source of data, to confirm

the results of decisions, and to triangulate evidence from other sources.

Other sources

Two other types of data deserve mention. First, as noted above, interviews were not con-

ducted. Instead, participants were asked to describe their own thought processes during

the simulation. As part of the meetings with donors and the humanitarian community,

participants were asked to describe their "methodology" for transportation planning: how

they created the plan and why they made the decisions they made. This is not a different

source of data, because it is based on observation and documents, but it is treated as a

source for triangulating inferences about participants' thought processes.

A second source of information were the informal conversations I had in my role as a

facilitator of the training. There were many situations (such as over meals, during car rides,

or waiting for meetings) in which I chatted with other facilitators or with the participants.

I did not use these conversations as formal data, but they contributed to my own knowledge

and understanding. In particular, I learned much about the participants' and facilitators'

backgrounds and careers, and their opinions about the training's realism and usefulness.
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I also told many people about their research, and gained insight from their reactions and

ideas.

2.3.4 Data Analysis

The goal of data analysis is to build a process theory describing how humanitarian logis-

ticians manage transportation planning. Building theory is an inductive process, in which

the theory emerges from the data. The challenge is in "capturing the complexities of the

real world, and then making sense of it"; in other words, taking the variety of data available

and building from it a "structured understanding" of reality (Pettigrew, 1990). Most qual-

itative data analysis involves the development of conceptual categories or codes to organize

the data and begin developing theory. Methods stress constant comparison between data

and emerging theory (Glaser and Strauss, 1967; Corbin and Strauss, 2008), and sorting and

re-arranging data to create and strengthen insights (Miles and Huberman, 1984; Eisenhardt,

1989; Langley, 1999). Process-oriented methods focus attention on what happens over time,

so analysis often involves the development of narratives and orderings of events or incidents

(Langley, 1999). Any of these methods can be applied to each case within a multiple-case

research design, and supplemented by a set of techniques designed to search for cross-case

patterns (Eisenhardt, 1989). My process of data analysis was guided by these methods.

A second tradition of data analysis was developed within the problem-solving and

decision-making communities to deal with verbal protocols - subjects thinking aloud as

they solve a problem - and related forms of data. These techniques focus on coding the ver-

bal protocol data to describe the information-processing activities happening as a subject

accomplishes a task (Woods, 1993; Carroll and Johnson, 1990; Newell and Simon, 1972).

Problem behavior graphs can be created to show how subjects moved through a problem

space (Newell and Simon, 1972). On the surface, these methods appear different from the

more open, data-grounded approach described above, but they are closely related. Both

involve coding to develop conceptual categories that describe the behavior of the subject,

but one method assumes behavior fits an information-processing theoretical frame while the

other makes no such assumption. In this thesis, I draw on both sets of ideas.

I concentrated first on understanding each case in detail (Eisenhardt, 1989). To develop

an initial set of conceptual categories or codes, I began with the case I thought would provide

the richest set of data. In a process of open coding (without a pre-existing theoretical frame),
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I went through my field notes closely, noting in the margin what I thought was happening

in the data. By comparing these open codes with each other and with the data, I developed

an initial set of codes that captured how teams worked through the problem and what

elements of the problem they focused on. I continued to refine the codes through constant

comparison between data and concepts, and by using the codes to define event sequences

and chart team behavior. I added a second case to enrich the set of codes, following the same

process (beginning with open coding). For each case, I wrote a narrative (Pettigrew, 1990)

that described the team's behavior and progress toward solution, and I created graphics

and tables that described that behavior in other ways (e.g. categorized by type of activity

and time). With each of the remaining eight cases, I continued to refine the current set

of codes, and I wrote a narrative and created charts to describe each team's behavior. In

the process, I developed ideas and wrote memos to refine my understanding of each code

and the relationships between them. What emerged from this process was a set of codes

describing the teams' ways of thinking and ways of organizing work and data, and a second

set of codes describing the specific elements of the technical problem as they saw it.

The second phase of data analysis involved searching for patterns across cases (Eisen-

hardt, 1989). The aims were to refine the theory and to confirm that the theory from one

case (patterns of problem-solving behavior) were replicated in other cases (Yin, 2009). The

analysis was anchored around actions or procedures enacted by the teams. I used the codes

that emerged from the within-case analysis to divide the data and search for patterns within

sets of codes, noting similarities and differences in the actions of each team (Eisenhardt,

1989). For example, I looked at how all ten teams made decisions about allocating cargo to

vehicles and how they organized the set of cargo movement requests. I also tried to connect

each of these single-code-centric analyses to each other, looking for patterns of behavior on

a larger scale. For example, I looked at what activities preceded or were related to allo-

cating cargo to vehicle (such as choosing a destination for that vehicle). In this manner, I

identified three key processes enacted by the teams: understanding the problem, allocating

resources to locations, and dispatching cargo and vehicles.

I went back to the data to compare how each team enacted these macro-processes, using

process diagrams and charts to describe each team's behavior, and looking for similarities

and differences across the teams. Two important processes emerged as the focus during this

work. One was the process of understanding the problem, which appeared to be a process
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of sensemaking (as described in Section 2.2). The other was the process of "solving" the

problem: making the decisions that constitute the transportation plan, including both

dispatching cargo and vehicles and strategic decisions governing the allocation of resources.

To investigate the sensemaking process, I used the codes relevant to understanding the

problem to create "sensemaking maps" for each team, summarizing each coded incident

in the order in which they occurred, and I analyzed the patterns by which teams moved

through sensemaking incidents. To investigate the dispatching process, I returned to the

raw data with the decision-making codes in mind, and drew a flow chart diagram to describe

each team's decision-making process. Next, I compared the charts to one another, looking

for similarities and differences, until two archetypal processes emerged. I returned to the

data to check whether the patterns I found were confirmed by the data in each case. The

patterns found from these two processes, sensemaking and solving, are described in the

following sections.

2.4 Introduction to findings

I began by asking, broadly, how humanitarian logisticians handle transportation planning.

As data collection and analysis proceeded, two kinds of work emerged as important: sense-

making and solving. Therefore, they became the focal points for the continuing research.

Sensemaking is a process of understanding and framing the problem, while solving involves

making decisions that fix elements of the solution. Two main kinds of decisions are made

in the process of solving: strategic and dispatch decisions. Strategic decisions have a broad

scope, such as determining the major routes along which cargo will flow, or allocating ve-

hicles to bases. Dispatch decisions are specific allocations of cargo to vehicles and vehicles

to movements. These three kinds of work - sensemaking, strategic decision-making, and

dispatching - are intertwined as the teams progress through the problem. Sections 2.5 and

2.6 describe how the teams performed each of these activities, and how the activities relate

to one another. First, however, the problem faced by the teams is described in more detail.

Recall that the setting for this research was an in-depth simulated emergency. In the first

three days after the earthquake, teams of experienced logisticians had to gather information,

assess logistics requirements, and plan their operation, including locating warehouses and

bringing in vehicle fleets. On the fourth day, they must put this plan into action by planning
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a large number of requested cargo movements. At the same time, they are being interviewed,

one by one, by a reporter asking tough questions about why aid is not reaching people in

need. The team leaders are being called away to important meetings with angry government

officials. They are also preparing for two important meetings the following day: a meeting

with donors from whom they hope to secure funding for the operation, and a meeting with

their Logistics Cluster partners who are expecting to hear that their cargo has been moved

(or, if it has not been moved, why not). In short, there are a number of distractions from

their transportation planning task. More importantly, the true goals of their task are not

clear, as they may be worried about delivering cargo efficiently, moving cargo for important

partners, or showing donors that their work is essential. Furthermore, by this point in the

week, the teams are fully immersed in the simulation: they have learned that they cannot

rely on all the information they receive, have gotten very little sleep, and are under very

real pressure to provide results that will help the people of the fictional country in which

they are operating.

The transportation planning task is introduced on the morning of the fourth day. Teams

are told that they have "jumped in time": ten days have elapsed, cargo has started arriving,

and vehicles have been brought into the country. The teams are given a list of about

100 cargo movement requests (CMRs) that they have received from other agencies. They

have also secured a fleet of large 40-ton trucks, a fleet of small 10-ton trucks, and a fleet

of helicopters. The 40-ton trucks are available immediately, and the 10-ton trucks and

helicopters will arrive throughout the upcoming week. They are given information about

these vehicles, including their cargo capacities, the speed at which they travel, and the

roads and routes on which they can move. The transportation network is shown in Figure

2-1. The most affected regions are in the southern part of the country, around Mammoth

and Vail. Most of the cargo originates in Snow, and some comes from Jay as well. Many

destinations, especially those near Vail, are only accessible by helicopters, and Vail itself

can only be reached by 10-ton truck or helicopter.

Teams are asked to plan the movements of their trucks and cargo for a period of 7 days.

Tomorrow, they will be required to present their plan to both donors and the humanitarian

community; the former will wish to see progress in delivery of aid, and the latter will

be eager to know how quickly their goods will be delivered. This is the transportation

planning problem that forms the basis for this study: it focuses on how teams create the
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Figure 2-1: Transportation network in Snowland

transportation plan describing the movements of trucks and cargo for the next seven days.

2.5 Findings: Sensemaking

One of the first things teams must do when confronted with the transportation planning

problem is to understand it, to figure out what they must do. The following quote from my

field notes on Team G illustrates the activities of one team, observed as they were starting

to work together on the problem. (Quotation marks indicate direct quotes from a team

member; other text is directly quoted from my field notes, with the exception that team

names have been replaced with "the team" and the names of locations have been disguised.

Throughout the thesis, specific teams are occasionally referenced by a letter, such as Team

G. Each team was assigned a letter, in a random order, so that teams cannot be individually

identified.)

The team was discussing how to start, and how to get a handle on the

information. Everyone was making suggestions at once. "Let's see who started

in Vail and who started in Mammoth." ... "We should first focus maybe"

"Let's see what are the CMRs for each place." ... Someone suggested that they
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"filter per destination." Someone else said to filter "first per destination then

per priority." Several people have computers out and the word "filter" refers to

the Excel function. As they talk they are filtering and also printing some of the

filtered lists. "The priority should be from the priority list. First step is filtering

by places and we know... then we select the cargo according to the capacity we

have." ...

They start looking at the trucks. "We have 20 trucks... 800 tons available."

"So let's start by delivering to the field... because of warehouse space." ...

Someone says they should move it to Mammoth: "Mammoth is good because

that's where the beneficiaries will be." They start looking at specific CMRs.

Looking at one, someone says, "Ok so Stowe [one of the destinations] is by air...

so what is [by] 40-ton." This reminds them that much of their cargo must go by

air. "Oh yeah so we cannot make deliveries to the field except by helicopter."

They look at another destination. "Heavenly total is... we have 155 tons for

Heavenly."

This quote illustrates how one team, in a few minutes, started trying to understand the

problem. First, they looked at the list of CMRs they were given. They tried to figure out

where (at what towns) the goods were waiting to be picked up, where they needed to be

delivered, and what their priorities were (based on the type of item - shelter, health, water

and santitation, food, or other). This is an example of exploring the data they are given in

order to understand what they must accomplish. Next, they looked at the vehicles available,

and started thinking about how and where to move cargo first - focusing on delivering to

areas with many beneficiaries, or moving cargo out of congested warehouse space. This is an

example of stating goals or justifications for decisions. Finally, they began to think through

deliveries, by looking at a specific CMR, and realizing that it has to go by helicopter rather

than 40-ton truck. By the end of these few minutes, the team has some idea of how much

cargo they must move, and they are starting to understand how it will flow through the

network, but they do not have much idea of how to create their transport plan.

This quote suggests that sensemaking involves progression through related and unrelated

ideas, looking at available information, and thinking about what to do next, without any

clear organization to the process. Through analysis of many sensemaking episodes like this

one, across all 10 teams, I found some patterns in the elements of the problem that were
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"made sense of" by the teams, and in the mechanisms by which teams came to consider

them. The following paragraphs describe these common patterns, then advance a model of

the process of sensemaking and its interaction with solving.

2.5.1 Elements and outcomes of sensemaking: understanding

Sensemaking, as its name suggests, is a process of "making sense" of the problem, trying

to understand what must be done and how to go about doing it. Across all 10 teams it is

clear that there are certain elements of the problem that must be "made sense of." Through

the data analysis process, certain concepts (captured as codes) appeared again and again

across teams as part of their process of understanding what they had to do. Table 2.1 shows

these elements, along with the number of teams that were observed considering each one

and sample quotes to illustrate each element. (In this and all following tables, note that I

did not observe all the activities of every team. Therefore, my lack of observation of some

activity by some team does not mean that it did not occur.)

The elements shown in Table 2.1 represent the "outcomes" of sensemaking, suggesting

that it is a process of understanding the problem. Four main kinds of understanding seem

to be gained through sensemaking: the physical constraints of the problem, the challenges

which must be addressed, the goals or objectives to work towards, and an ongoing situational

knowledge of the current state and what tasks must be accomplished. These four kinds of

understanding are described in the paragraphs below, and noted in Table 2.1.

First and most clearly, teams become familiar with the physical constraints of the prob-

lem, by seeing how cargo flows through the network, what must be moved from where to

where, how much transportation capacity is available, and other more detailed constraints.

One of the most important realizations is that cargo flows through the network in multi-

modal paths, which means that much of the cargo originating in Snow must be transported

first by 40-ton truck to Mammoth, then switch to 10-ton truck to reach Vail, and finally

to helicopter to reach its final destination. The problem appears much easier before teams

realize they must plan transfers between modes. Another important element of physically

understanding the problem is organizing the cargo movement requests. For example, teams

that sum up cargo to move all over the network have a much different understanding of

the "demand" for transport than teams that simply add up cargo waiting at each origin,

without considering where it will go next. (As I will discuss later, these two different "pic-
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rIL&Te %Le. organu~el Largo Uy on1gin, ciesuinauon, itemn rnysicai constraints; bput cargo into inose teategoriesi - snen~er, treasInn, water du siamtuon, ano 100o1 on Ene
type, mode, route 10 Situational screen," "then split them where they are [now]... then where they are going."

Physical constraints;
Sum cargo from, to, on route, by mode 8 Situational "Heavenly total is we have 155 tons for Heavenly."

"I want [the list of cagcao t ation - one sheet for each location - so we can put
Physical constraints; it up [on the map] so we can see "Five locations, sorte yo d o then where it's

Make filtered/sorted lists to dispatch from (each origin) 6 Situational going."
Physical constraints;

Deal with individual CMRs 4 Situational "High-energy biscuit is considered a priorrty, right? I will put not as food I will put as health."

Describe transport corridors 8 Physical constraints "[The corridor goes from) Snow to Vail. The first leg is to Mammoth, then move it to 10-ton."
"Ok from Snow to Heavenly you have to go through Mammoth," meaning that Mammoth is a

Describe hubs S Physical constraints kind of hub for this shipment.
"We start on day 1. We have all our trucks In Snow." "One daythey can go to Jay." "No It will

Note time (on major routes, to reach,...) 8 Physical constraints take 1.5 days to go to Jay."
Note accessibility of destinations/roads by modes 6 Physical constraints "Write down from location to destination i type of truck we can use."
Se that cargo follows murti-mode paths (through hubs) 7 Physical constraints "We cannot send Snow to Vail with 40-tonners so you send to Mammoth."

"[Getting to] Okemo means that you [first] have to drop off at the hub Sugarloaf. So can you
put the hub in a column of the spreadsheet]?" ... "Someone needs to do that on all of the

Assign routes/hubs/modes to CMRs 7 Physical constraints CMRs."
Assign routes/hubs to destinations 4 Physical constraints "What destinations Is Mammoth [hub] going to serve?"

"If the helicopters are free, it's better to send the cargo to Killington and make the [airbridge]
Consider/decide on Kiilington airbridge 5 Physical constraints rotation."

"Let's agree on the [tracking] format that's compatible so we can merge [the road and air
Track movements (to merge, to report) 8 Situational teams' plans later."
Break down by mode 7 Physical constraints; "Can you separate surface transport and air transport?"
Creak down by location (or consider It) 3 Physical constraints; "We have responsibility for a hub - this is my hub, this is what's coming and going."
Realize planning must happen in order, by day, or link up "So you the helicopter team] plan for the first and on by m3 d then we [the road t.'m
carefully 6 Physical constraints will tell you what you have [received by road]."

"What isthe demand for transport -determined bygoods to ship at each hub [and transt
Fined cat for transport 4 Physical constraints times]?"
Find transport capacity (per destination, per origin, per "I think It's a multiplication of two numbers. You have the number of rotations and the
day) 7 Physical constraints capacity and like this you can have the tonnage [capacity] per day."

"At the end of every day we will calculate how much we have in the warehouse at each
Consider warehousing (can ignore it) 9 Physical constraints location."

otsider restrictions on helicopters: fly frorn bases,
capacity based on rotation length, muti-stop routes 7 Physical constraints "above 75 [km] [helicopters] can do half the rotations"
Consider loading time (ignore It) 3 Physical constraints

sider splitting CMRs, or using either weight or "You want to dispatch your shelter, WASH, and your NFIs by m3, and your food by MT."
volume to plan 6 Physical constraints "You may not be able to move the full CMR. The CMR may have [to be split Into] 2-3 legs."

"Today we can't move anything from M ammoth to Vail because we don't have 10T trucks."
See that It's difficult (due to time, capacity) to deliver to "We either accept that we're going to take a long time to deliver or.. we make a request for
Rocky/Vail 6 Challenge more helicopter capacity."
See that helicopters are idle first few days in VaSl
because no cargo is therefor them to transport 6 Challenge "Whve4 to move the materials to Vail In order to use the helicopters."
Worry about congestion in hubs 1 Challenge
See that there is not enough capacity (to transport all, of "The trucking capacity certainly over-meets the needs... but we don't have the air capaciit to
some mode, ...) 6 Challenge meet the needs."
Go*t

" We have one helicopter today - let's look at making the use of that helicopter for the highest
Use vehicles well, avoid idle vehicles 7 Goal priority cargo to make best use of it."

"We have to make sure we always have enough stuff in Mammoth and Vail to move stuff
Feed cargo to onward transport 6 Goal with the helicopters.. and secondary transport."

"So whenever we have a shipment we consider whether the item is a priority.. and the
Prioritize (by item type, destination, organization, .. ) 10 Goal geographic priority."

"the other way [P1 first] I was very worried that we would send a lot of shelter and there
Send mix of cargo types 4 Goal would be no room for anything else."
Send what is there / move lots 2 Goal "Our priority is to move as much cargo as we can move with those trucks."
Cost less Important (than speed) 3 Goal "Cost should be second priority. First we try to deliver the cargo."

Note there is (some, lots, none) - or check what there is - "If you look at Snow to Vail, you have a lot..."
going (from, to, on route) 4 Situational "bulky things from Jay."
Note there are vehicles available to task 6 Situational "Remember you've got one helicopter today"

Move lots (from, to 7 Situational "Today we have to focus on moving as much as possible from Snow to these locations"
Sen~d this (specific) cargo 3 Situational "Those blankets - let's try and move them today so we can show them we're working on ft."
Return to pick up cargo left behind 2 Situational "We'll have to leave a whole bunch of stuff in Snow and come back and get It."
Position vehicles at a base or on a route 8 Situational "But we have to bring the Jay trucks to Sugarloaf and then down [to reach Okemo]"
Given this situation, what next? 5 Situational "Ok where Is ft going?"
Use vehicle(s) 3 Situational "The 40-tonners have to go somewhere.. the 10-tonners have to go somewhere"

Table 2.1: Elements of sensemaking
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tures" of the cargo movement requests lead to different problem-solving strategies.) Thus,

sensemaking can lead to different understandings of the physical constraints, which provide

different perspectives and influence their general understanding of the problem.

A second kind of understanding gained through sensemaking is a sense of the challenges

to be overcome. One major challenge is that the transportation capacity is insufficient to

transport all the cargo. A second is that it is difficult to reach the most affected areas

around Vail, because cargo must be transported all the way around the mountains. As a

result, a third challenge arises, that the helicopters in Vail are initially idle because cargo

cannot reach them for several days. Logisticians consider this extremely undesirable because

it is a waste of very expensive transportation capacity. These challenges are distinct from

constraints, though they may be related to them. Vehicle capacity constraints dictate how

much cargo can be moved, but when the teams interpret this to mean they can only move

some of the cargo, they are recognizing a challenge. This challenge, in turn, may influence

them to think carefully about prioritization. While it is possible to create a transportation

plan without recognizing challenges, they can strongly influence teams' planning.

A third kind of understanding gained through sensemaking relates to the goals or objec-

tives of the problem. At the start of the transportation planning exercise, teams have only

a vague sense of what is important (transporting cargo to people who need it, defending

plans to stakeholders, and pitching them to donors), but as they work in the exercise they

formulate several possible goals. All teams discuss different ways to prioritize cargo: based

on the type of item, its destination, the organization shipping it, or other schemes. Many

teams also consider simply sending out as much cargo as possible, or addressing some of

the identified challenges, like keeping the helicopters busy. Some teams discussed whether

they should consider minimizing the cost of the operation, though most decided it was the

last priority. Identifying these many possible objectives is a crucial outcome of sensemak-

ing. However, identifying goals is only a first step: teams must then decide which of these

objectives they will use as they solve the problem. Goal-setting therefore includes both a

sensemaking outcome - understanding a goal - and a solving outcome - deciding on its

importance. In the discussions below, goal-setting is considered a "solving" activity, but it

actually resides in both categories.

A fourth kind of understanding gained through sensemaking is an ongoing sense of what

tasks must be accomplished in the current situation (meaning given the current state of the
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plan). For example, consider the situation before the team has planned any movements.

Many teams noticed (through organizing the CMRs) that there was a lot of cargo to move

from Snow, and that there were many vehicles in Snow. Often, their next step was to move

the cargo out of Snow on the available vehicles. This situational kind of understanding

is distinct from the two described above, in that it changes as the team plans movements

of cargo and vehicles. Later, after teams had planned some of the cargo movements, they

realized that in this new situation, they had to return to pick up cargo they had left behind.

This situational understanding includes seeing, given the currently planned movements,

what the situation is (there is a lot of cargo to move, there are vehicles available) and

noting tasks to be accomplished (pick up cargo left behind, use the vehicles). This kind of

understanding is one of the important links between sensemaking and solving, since it often

leads to the planning of specific cargo movements (to be discussed in more detail later).

Thus, sensemaking leads to an understanding of the physical constraints of the problem,

the challenges to be overcome, goals or objectives to aim for, and what to do or what can be

done in a given situation. This understanding emerges gradually over time, as sensemaking

and solving progress.

2.5.2 Sensemaking activities: exploring, understanding, and solving

Describing the elements of sensemaking shows us the results of the process, but does not

illuminate the activities that constitute it. How does sensemaking proceed? To answer this

question, I looked at the process by which each team came to understand the problem they

faced. I used the conceptual codes that emerged in data analysis to highlight the incidents

relevant to sensemaking, and I created a "sensemaking map" for each team that showed all

the incidents, in the order in which they occurred. Figure 2-2 is an example of one of these

maps, from Case F.

Examining the sensemaking maps across all cases suggested that there were three general

categories of incidents. One set of incidents showed teams gaining new understanding of the

problem; these corresponded with the outcomes of sensemaking described in Section 2.5.1.

A second set of incidents described exploratory actions, aimed at probing the problem

space. The third set of incidents described actions that embodied progress in solving, such

as setting a goal or determining a major route. The sensemaking map in Figure 2-2 shows

incidents in three columns, corresponding to these three categories of incidents.
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In the paragraphs below, the exploring and solving categories are described in more

detail (the understanding category, in the center column, was described in Section 2.5.1.)

As each category is discussed, it will become clear that incidents in one category often led to

incidents in another category. These interconnections will be the focus of the final section.

Exploring

The first set of incidents described actions in which, deliberately or not, teams explored

the problem. The most simple actions in this category involved noting things, such as the

vehicles available or the accessibility of roads. For example, someone noted the number

and types of vehicles by saying, "We have some 40-tonners first... 10-tonners and you

have helicopters. Three types of moving assets - resources." This team member was simply

verbalizing information given to them that morning. A related activity involved noticing the

situation, as opposed to simply noting information about the problem. For example, while

looking at the cargo waiting at each origin, someone noticed they had "bulky things from

Jay." On another team, someone looked at the cargo and realized, "there are [passenger]

vehicles in the cargo." Often, these noting and noticing incidents led to further action, such

as deciding not to prioritize vehicles as cargo, or trying to use available vehicles, so even

these simple activities were important components of sensemaking.

Beyond these simple activities of noting and noticing are somewhat more complex kinds

of exploratory actions. One involves the organization and manipulation of data, which I

have labeled picturing to emphasize the various perspectives that can be created. Teams

were given a long list of cargo movement requests (CMRs), and they struggled to sort, filter,

sum, and diagram it to understand what they must move where, by what mode of travel.

For example, someone said they need to "assess what we have to get to where - some data

sorting that has to be done." One team tried to accomplish this by listing the cargo in each

location: "We're gonna list down what [cargo] we have at each location. Then we look at

the [vehicles] we have at each location." They later tried to sort cargo by its mode of travel

- "Put a column for 40-ton [truck], put a column for 10-ton, put a column for helicopter"

- and then by the next major hub it was going to: "We've divided it into everything going

to Mammoth, everything going to Jay, and everything going to Sugarloaf." All the teams

created some version of these organized lists of cargo, using them to "calculate the tonnage

that you have [to move] per day," for "filling the CMRs per asset [onto vehicles]," and
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Thread # EXPLORING

note key data

1 1note priority of items

note operational constraints
note vehicles

2 Inote road accessibility

should: picture cargo to go on routes, by
mode
decide to make sense of problem
together
should: picture cargo to go, to figure out
what we have to do
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note operational constraints:
warehouses can be ignored

consider uncertainty in CMR arrivals

everyone tries to understand problem

3 1note types of vehicles
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goal: deliver most cargo
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goal: deliver cheaply
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Figure 2-2: Sensemaking map from Case F (first half). Sequential table of sensemaking
incidents. Outlined boxes with arrows indicate threads of related sensemaking activities;
dashed outlines show implicit rather than explicit understanding activities.
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Figure 2-2: Sensemaking map from Case F (second half). Sequential table of sensemaking
incidents. Outlined boxes with arrows indicate threads of related sensemaking activities;
dashed outlines show implicit rather than explicit understanding activities.
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generally to "know where all the [CMRs] are and where you have to move them." Such

pictures were central to the solving process as well as to sensemaking.

A third kind of exploration involved projecting forward through the next steps in the

problem. This is not simply thinking about what to do, but actually following some entity,

such as cargo or a vehicle, forward as it moves through the network. For example, looking

at how to move a CMR from its origin to its destination, someone said, "Ok from Snow to

Heavenly you have to go through Mammoth." Projecting the steps led the team to realize

they had to stop in Mammoth to switch transport modes. Another team projected forward

through steps to understand the time it took to reach destinations: "We start on day 1.

We have all our trucks in Snow." "One day they can go to Jay." "No it will take 1.5 days

to go to Jay." By projecting, the teams were able to understand the implications of a given

decision now on the situation a few days later. Thus they started to probe the problem

space and learn about the problem.

Solving

The activities in the "solving" column of the sensemaking maps involve decisions that fix

some aspect of the transportation plan. For example, teams might set a goal of prioritizing

the most affected locations, or decide to position helicopters in a particular base, or send

a truck to a new destination. The first of these examples is a goal-setting activity. Recall

that goal-setting includes aspects of both sensemaking (coming up with a possible goal) and

solving (deciding to work towards it), but in the sensemaking maps goal-setting is in the

"solving" column. Solving decisions are part of the sensemaking maps because, in many

cases, sensemaking leads directly to a solving decision, or solving activities lead directly to

sensemaking. In these cases, solving activities were included in the sensemaking map be-

cause they were the result of or the trigger for sensemaking activities. The presence of these

decisions in the sensemaking maps highlights the strong interactions between sensemaking

activities and solving activities. These interactions are the focus of the next section.

It is worth mentioning here that in this case, "solving" refers to the development of a

plan, rather than the implementation of it. A solving decision is one that fixes, at least

temporarily, some aspect of the plan: deciding to send a particular truck to a particular

location at a particular time, for example. In this paper, the actual sending of that truck,

in fulfillment of the plan, is not considered. The teams solving the problem use language
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that suggests implementation as well as planning, but in all cases decisions refer to plans.

2.5.3 The process and mechanisms of sensemaking

The preceding paragraphs described the kinds of activities involved in sensemaking. This

section steps back to consider the sensemaking process, looking to understand how the

activities of exploring, understanding, and solving are interrelated by examining how teams

proceeded through them. The sensemaking map in Figure 2-2 will serve as an example,

but similar analyses were conducted for all ten teams. (While there were differences in the

specific processes followed by each team, there was evidence of the same kinds of interactions

between activities.)

In the sensemaking map, individual incidents are shown in colored boxes, and many of

them are connected to other incidents. I will refer to these connected sets of incidents as

"threads". As is clear from the long quote at the beginning of this section, sensemaking is a

somewhat disorganized or random process: ideas often lead to other ideas, but just as often

they lead to nothing (observed) or arise from nothing (observed). My field notes reflect

this lack of organization, occasionally showing direct connection between ideas, sometimes

showing one idea that led to another a few minutes later, and often showing ideas that

did not seem to lead to anything at all. In creating the sensemaking maps, I noted all

incidents that seemed part of sensemaking, even if they did not clearly lead to anything.

I included arrows between incidents only when the field notes suggested that one incident

led to another, whether directly (clear, immediate progression from one idea to another)

or indirectly (one idea seemed to follow from another, even though separated somewhat in

the field notes). I label these connected incidents "threads." Note also that some boxes are

outlined in dashed lines. In these cases, the incident is implicit in the flow of work, but not

explicitly stated by any participant nor recorded in my field notes.

The first sensemaking thread in Figure 2-2 begins with an exploring activity: noting the

priority of items. Most of the CMRs are labeled as shelter, health, water and sanitation,

or food items, and given a priority number (1-4) accordingly. In the first incident in this

thread, one team member, looking at the list of CMRs, said, "On CMRs clear on priority - if

[there's] anything outside of that let's put those at the top." In fact, there are several CMRs

that are labeled "other" and have no priority number attached to them. The team tried to

decide what to do with those, saying, "we've got to make a value judgment," and decided
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they should be given last priority: "the four categories first, then the other." This is the

last incident in the first sensemaking thread. Thus, this thread shows how, from the initial

activity of noting the priority of CMRs, the team surfaced a challenge, or a dilemma in

this case, in which they needed to decide how to prioritize the "other" CMRs. In response

to the dilemma, they made a solving decision, giving a particular priority level to a set

of cargo movement requests. Thus, the thread progressed from exploring, to (implicitly)

understanding a challenge they must solve, to solving.

Different sensemaking threads progress through activities in different orders. Thread 4

in Figure 2-2 begins when a team member wants to know, "what do we have to do to get to

the point where we can say this cargo goes there?" This suggests that the team, or at least

this team member, has formulated a task of figuring out what goes where. In response,

the team begins picturing (re-organizing) the cargo to answer this question. In this case,

understanding a task the team must accomplish leads them to an exploring activity. Other

threads show solving activities that lead to understandings (e.g. 23), or even understandings

leading to other understandings (e.g. 18) or exploring leading to other exploring (e.g. 7).

Of course, solving activities often lead to other solving activities, but these progressions are

less relevant to sensemaking so they are not included in these maps. Generally, this map

suggests that Team F, at least, made sense of the problem by moving between exploring,

understanding, and solving activities.

Teams moved between these three types of activities unconsciously, without making

distinctions between them. There is no clear pattern to the order in which teams moved

between activities. However, on close examination, the understanding activity is often

central. Most threads involve an understanding activity, usually linked to exploring or

solving (or both). Those threads that do not explicitly involve an understanding activity

often do so implicitly. Take, for example, thread 3. It begins when one member of Team

F says, "We have some 40-tonners first... 10-tonners and you have helicopters. Three

types of moving assets - resources." I classified this as an exploring activity, noting the

vehicles available, but the second sentence shows that the team is also understanding the

implications: there are three different types of vehicles. The team next discusses breaking

down the problem by putting teams on these vehicles. Even though the team's conversation

only indicated exploring and solving activities, there is an implicit understanding activity

between them.
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One implication of this centrality of understanding is that a new or different understand-

ing of the problem leads the team to new or different actions. For example, consider thread

17. After realizing (a second time) that cargo followed a multi-modal path, they began

assigning such paths to each CMR, which, in turn, made it possible to find the amount

of cargo requiring transport on any given route. Understanding a physical constraint led

them to picture the cargo in a different way. Understanding can also lead to solving actions.

In thread 19, understanding the challenge of delayed deliveries led the team to a solving

action: requesting additional helicopter capacity.

If new understanding leads to new actions, what leads to new understanding? New

understanding can result from exploring or solving activities, or even from other under-

standing activities. In thread 10, exploring the problem by noting the availability of trucks

led the team to formulate a new task to use them; this is a simple example of exploring

leading to new understanding. In thread 23, the team's attempt to route trucks based on

waiting cargo led them to formulate a task of figuring out what cargo is in each location at

any given time; solving led to new understanding. In thread 17, understanding that cargo

follows multi-modal paths led the team to realize that they must plan movements to hubs

rather than final destinations; a new understanding led to another new understanding.

Ultimately, the evidence suggests that sensemaking is a cycle between understanding

and actions. Exploring and solving activities are actions that lead to new understanding,

which leads the team to new or different actions, which lead back to understanding. As

this cycle continues, the team's understanding of the problem changes and increases, and

they choose different actions accordingly. For example, in thread 3, just after Team F

considered breaking into teams for each mode (a solving action), they realized that they

needed to know which cargo had to be moved by each mode, giving them a new task to

add to their understanding of the problem. Previously, they had done some general sorting

of cargo based on locations and modes, but now they planned to re-sort the cargo (back to

exploring) to answer this more specific question. This sort of reframing is a common result

of new understanding gained by the teams, leading to new actions, as over time the team's

understanding of the problem evolves.

At this point, it is possible to describe a more general model of the process, depicted

in Figure 2-3. Exploring and solving actions lead to understanding, and progress in under-

standing in turn leads to more, sometimes different or more targeted, exploring and solving
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Figure 2-3: Model of sensemaking in humanitarian transportation planning

actions. In this way, teams make sense of the problem and begin to solve it at the same

time. As teams move between exploring, understanding, and solving activities, their under-

standing of the problem increases and changes. They begin to understand the problem's

structure and constraints, they identify the challenges which they must work to address, and

they notice the situation and formulate a set of tasks that guide their immediate actions.

2.5.4 Insights and implications of the sensemaking model

The word "sensemaking" has been used to describe the phenomenon studied here: how

teams came to understand the problem they were trying to solve. However, it has not yet

been demonstrated whether and how the process observed here relates to the concept of

"sensemaking" described in the literature. As discussed in Section 2.2, Weick (1995), Klein

et al. (2007) and others describe sensemaking as updating a frame by perceiving and gen-

erating cues; the frame directs what cues are perceived and how they are interpreted. The

frame also influences what actions are taken, which generate additional cues. In the hu-

manitarian transportation planners' process, the frame is equivalent to the "understanding"

generated through the sensemaking process (the central box in Figure 2-3). Exploring and

solving actions led to increased understanding, or an updated frame, which in turn directed

new action. The humanitarian logisticians' process fits neatly into existing sensemaking

theory.

These findings elaborate upon sensemaking theory by showing the mechanisms of sense-

making in humanitarian transportation planning. The frame consists of an understanding

of physical constraints, a sense~of the key challenges and goals to be addressed, and a set of
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tasks to accomplish. The actions that generate cues to update the frame are exploratory,

involving noting aspects of the problem, picturing or re-organizing problem data, and think-

ing forward step-by-step through possible actions. Solving actions can also trigger updates

to the frame. In the cases studied here, solving actions led to sensemaking when teams were

unsure what to do next or how to accomplish the next step. In humanitarian transporta-

tion planning, then, exploratory and solving actions update the frame by probing physical

constraints, surfacing challenges, and bringing to light new situations in which new tasks

can be formulated.

This study's elaboration of sensemaking's outcomes and mechanisms has additional

implications for understanding the interactions between sensemaking and solving. As dis-

cussed in Section 2.2, sensemaking and solving are typically studied separately. Few studies

have focused on problems in which both are required, and there is not much theory that

describes their interaction (Rudolph et al., 2009). My findings suggest that sensemaking

and solving are intertwined and inter-dependent, that sensemaking can be seen as a process

of formulating or simplifying a problem, that the formulation resulting from sensemaking

is oriented around tasks, and that goals emerge through a combination of sensemaking and

solving. Each of these implications is discussed in more detail below.

Sensemaking and solving are intertwined and inter-dependent

The model in Figure 2-3 emphasizes the intertwined nature of sensemaking and solving, and

illuminates the mechanisms by which they are connected. As described earlier, sensemaking

often leads to solving actions. The surfacing of a challenge may spark a solving action to

address it; understanding constraints makes clear how solving can proceed; and formulating

tasks directs immediate solving actions to accomplish the task. In the other direction,

solving actions also lead to sensemaking, especially when teams are stuck, in that they

wonder what to do next or need to find something out.

In all cases, teams moved fluidly and often between sensemaking and solving: the pro-

cesses were temporally intertwined. Evidence suggests they are also more fundamentally

intertwined and inter-dependent, in that sensemaking requires solving, and solving requires

sensemaking. It is clear that solving requires sensemaking: teams had no idea what to do

or how to do it when they were given the problem data, but they figured it out as they

gradually made sense of the problem. Sensemaking also depends on solving, though perhaps
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in a practical rather than a pure sense. It would, in theory, be possible to completely make

sense of the problem before beginning to solve it, but the teams' experience suggests that

it would be extremely difficult to do so in practice. Teams had difficulty understanding the

implications of early decisions on later situations; it was only through making some deci-

sions and progressing forward in the solution steps that they were able to surface challenges,

understand new situations, and formulate new tasks. Thus, sensemaking and solving are

not only temporally but also fundamentally intertwined: solving requires sensemaking to

provide an understanding of what to do and how to do it, and sensemaking requires solving

to surface challenges, situations, and tasks that are evident only in later planning stages.

Rudolph et al. (2009), in their study of clinicians diagnosing and treating an illness,

come to the same general conclusion: sensemaking and solving are "inputs to each other".

This study shows the same dynamic in a very different problem context, in which solving

is a series of moves rather than a choice between options, and sensemaking is understand-

ing the problem rather than cultivating multiple options. This study expands upon the

theory explaining interactions between sensemaking and solving by providing more general

descriptions of the components of the frame and how it both directs and is updated by solv-

ing. This expanded theory may be able to explain the observed behavior of planners and

schedulers in manufacturing facilities. Empirical studies suggest that schedulers monitor

problems by collecting information (Vernon, 2001; Jackson et al., 2004; McKay et al., 1995;

Webster, 2001), and deal with them using heuristics or rules (McKay et al., 1995; Webster,

2001; McKay and Wiers, 2001; Grant, 1986). The latter may be a solving process, surfacing

constraints and challenges, while the former may be a sensemaking process, which updates

the planner's understanding of challenges and needed tasks. The findings in this study

suggest more generally applicable mechanisms by which sensemaking and solving interact

in complex real-world problems.

Sensemaking is a process of understanding, formulating, and simplifying

In this study, sensemaking was a process of understanding the problem: what to do and how

to do it. In effect, it was an ongoing definition and redefinition of a problem formulation,

or what Newell and Simon (1972) define as a problem space. The formulation is critical,

because people or optimization models search for a solution within the space defined by

the formulation. Formulating and solving are typically portrayed as a sequence: first a
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formulation or problem space is conceived, then solving proceeds within that space (e.g.

Volkema, 1983). This study, in contrast, shows the formulation emerging over time as the

problem is solved.

The nature of the formulation can influence the success and speed with which a problem

can be solved. Simpler, more restrictive formulations can lead to faster and easier searches,

but may also exclude the best solutions. Such a dynamic may be at work in contexts, like

firefighting, where sensemaking consists of recognizing a problem (a simplistic formulation),

which leads to an immediate action (a short search) (Klein, 1993). In contrast, in operations

research, much effort is devoted to finding formulations that both speed search and retain

the optimal solutions (e.g. Armacost et al., 2002). These observations suggest one way

to interpret the sensemaking process observed in this study: as an ongoing simplification

of the problem formulation. The most un-simplified formulation would consist only of an

understanding of allowed moves - the physical constraints. In this study, the formulation

includes not only the physical constraints, but also challenges and situational tasks. What

is the function of these components? Tasks may function as subproblems that are simpler

to solve than the complete problem. Challenges may function as subgoals, directing or

constraining the search to moves which address those challenges. These two components of

the formulation suggest that sensemaking is a continuous process of not only understanding

but also simplifying and re-formulating the problem as solving progresses.

Sensemaking leads to a task-oriented formulation

If sensemaking is a process of formulating, it is particularly interesting that tasks are a

key part of that formulation. The other two elements - constraints and challenges - are

analogous to the constraints and objectives that make up the typical problem formulation,

but tasks are an unexpected component. Moreover, tasks are an important component,

perhaps central to progress in solving. In a given situation, teams identified a set of tasks,

solved them, then identified new tasks in the updated situation. Search was directed not

only by objectives but also by the set of tasks contained in the sensemaking frame, or

formulation, of each team.

Newell and Simon (1972), in their study of human problem solving, found evidence of

search directed by simplified "planning spaces" and sub-goals. Even in abstract problems,

like the symbolic and game-playing problems they studied, humans came up with simpler
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formulations to help them solve more complex problems. The same kind of simplification has

been observed in ill-defined real-world problems as well. Klein (1998) suggests experienced

decision-makers recognize solve-able sub-problems, and Moldoveanu (2009) suggests that

managers confronting strategic problems tend to choose simpler problem formulations as

approximations to the real problems. It makes sense that there is a tendency to simplify

in formulation, since it is well-established that humans tend to simplify in solving (Simon,

1956; Tversky and Kahneman, 1974). This study suggests that these simplifications in

formulation take the form of smaller tasks to be accomplished within the larger problem,

and moreover, that they emerge from an ongoing process of sensemaking intertwined with

solving.

Goals emerge through sensemaking and solving

Goal-setting is worth special mention here because of its importance in problem-solving

and the relative lack of research devoted to the process of setting goals. Goals have been

studied for their role in strategic decision-making (Eisenhardt and Zbaracki, 1992) and in

motivation (Latham and Locke, 1991), but this research emphasizes the importance of goals

without making clear the process by which they are set. In naturalistic decision-making,

a field devoted real-world decision-making processes, ill-defined goals were seen as one of

the defining characteristics of "naturalistic" problems (Lipshitz, 1993), but research has

since focused on how decision-makers use forward-directed reasoning (matching situations

to actions) rather than identifying and working toward goals (Lipshitz et al., 2001). My

findings suggest that, at least in this problem, both strategies were important: forward

reasoning strategies like exploring and solving informed sensemaking, but goals were also

identified and, as will be shown later, had a major impact on solving.

Moreover, this study of humanitarian transportation planners provides a glimpse into

the process of setting goals. In this multi-objective context, potential goals emerged through

sensemaking and solving. The sensemaking maps, such as that in Figure 2-2, suggest two

main pathways for the identification of potential goals. First, when teams saw something

challenging or undesirable, they thought of a goal to address it. For example, they saw

the undesirable situation of idle helicopters for a few days, and came up with a goal of

minimizing vehicle idleness. A second pathway was through what we might call a dilemma:

teams confronted a decision and needed a goal in order to decide. One team said, "if you
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have five items here, which is the most important?" Another team discussed various possible

prioritization schemes, then said, "We've got to make a value judgment," and pick a goal.

These two pathways - addressing challenges and dilemmas - suggest mechanisms by which

problem-solving goals emerge through sensemaking and its interaction with solving.

2.6 Findings: Solving

For this problem, solving means fixing aspects of the transportation plan. For example,

teams are solving when they decide that a particular truck will make a particular movement,

or that some number of trucks will be based in a location. The following quote from my

field notes provides an example of how solving proceeded in Team E.

I went back to the team. They were describing what they're working on.

"What we are doing is we are allocating different trucks to go in different di-

rections." Continuing, "We have 20 trucks arriving tomorrow morning." We

are sending "2 of them up north to Sugarloaf - because we have some cargo to

distribute - and 18 down south" to the areas around Mammoth and Vail. They

tally up the capacity of these trucks. "18 [trucks] times 25 [in 3] so we have a

capacity of [450] cubic meters" (because each 10-ton truck can carry 25 m3 ).

Someone is looking at specific CMRs. "We agreed we take the whole of this

shelter number 1 and shelter number 3." "Ah, it's all Federation [a humanitarian

organization] - someone will cry." They are talking among themselves as they

allocate CMRs to trucks. "Should I put IOM [cargo] now?" Someone says, "I

have done 11 trucks. All of these CMRs is in Sugarloaf." I think he means he's

moved them to Sugarloaf. ...

Someone suggests, "We should be moving more from Mammoth to Vail."

"So we need to keep the helicopter busy. Right now the helicopter is idle." He

is suggesting they move cargo to Vail for the helicopter to deliver.

Back on the 40-ton truck movement, someone gives the status. "Remember

the 40-ton trucks are gonna wake up tomorrow here [in Sugarloaf] and bring

their shipments down here [Jay] and here [Mammoth]."

In this quotation from my field notes, there are many kinds of solving decisions being

made (and some evidence of sensemaking, which was discussed in the previous section).
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In the first paragraph, the team is allocating trucks among two different areas, sending

two to the north and 18 to the south. In the second paragraph, they are loading specific

CMRs onto specific trucks. In this case, they have loaded two sets of shelter cargo, both

from one organization, and they are deciding what CMR to load next. Then, once a truck

movement is planned, they note its updated location. In the third paragraph, someone

raises a potential problem - that the helicopters are idle - and suggests they start trying

to send more cargo towards the helicopters. In the fourth paragraph, they note that they

need to plan next steps for the vehicles they've just loaded and moved.

There are two distinct categories of decisions evident in this quote and throughout my

field notes. Assignments of cargo to trucks and trucks to movements were called "dispatch"

decisions by many teams. Team E was making dispatch decisions when they were loading

shelter cargo onto trucks and moving them to Sugarloaf. However, their decision to send

18 trucks south and 2 trucks north was not a dispatch decision; it had a broader scope, in

that it was an allocation of resources rather than a specific movement of cargo and vehicles.

This is an example of a strategic decision. A different kind of strategic decision is evident

in the third paragraph, when someone suggests a goal of feeding cargo to the helicopters.

The teams did not, in general, make a strong distinction between strategic and dispatch

decisions. Indeed, it is evident from the quote above that these two kinds of decisions were

made whenever they came up, rather than in a specific order. Nevertheless, the distinction

is useful because the two kinds of decisions are made in different ways, as the following

analysis will show.

Strategic decisions included assignment of vehicles to bases or routes, the definition of

the main transportation corridors, and goals and policies to govern dispatching decisions.

Dispatch decisions included allocations of cargo to vehicles and vehicles to movements.

Teams must make hundreds of dispatch decisions in order to create a 7-day transportation

plan. Strategic decisions, on the other hand, are not strictly necessary; when they are

made, however, they often govern the way in which dispatch decisions are made. The

sections below elaborate upon each of these two types of decisions, and show how they are

made and how they relate to each other.
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"You see wnat tne volume is in various locations and then you can see what kind of fleet you need
Assign 10-ton trucks to: there."

Deliver from Sugarloaf to surrounding villages 3 "We will eventually have to send the 10-ton trucks to Sugarloaf."
Deliver from Mammoth to surrounding villages 8 "Is Mammoth gonna be our main access point?" "Yes, I think we need a lot of trucks [there]."
Transship from Mammoth to Vail 6 "Just instinct we do 18 here [in Mammoth]. We do 6 here [Mammoth to Vail]..."

Assign helicopters to: "You might have a helicopter that will be one day in Vail, one day In Mammoth..."
Deliver from Vail to surrounding villages 7 "Here [Vail] we will use the helicopters, and here we [Mammoth] we will use the trucks."
Deliver from Mammoth to surroudning villages 8 "It means that one helicopter will have to stay in Mammoth. It doesn't make any sense to move it."
Transship from Killington to Vail 2 "One helicopter will do rotations between Vail and Killington because the road is not accessible."

Consider airbridge from Killington to Vail 5 "Why don't we send from Killington to Vail [by helicopter]."
"Two ways: you do one truck all the way to do all the movements or you use your logistics hubs [and

Consider shuttle-style service from Snow 3 shuttle between them]."

Prioritize by item type - lexicographic 10 "Every time we hve a choice, we respect the priority [given by the government]"
Prioritize by item type - weighted mix 5 "Obviously, you can't send all shelter out, you gotta have a mix."
Prioritize by destination - lexicographic 5 "Geographical consideration into where the cargo goes... e.g. Rocky [province] is higher priority."
Prioritize by destination - weighted mix 1 "We can't completely leave out New [the low-priority location]."
Send something for each organization 6 "We tried to send something for everyone."
Send what is there, what will deliver most 3 "Do we fit what we have [available] or go for the most in need?"
Serve closer destinations first 2 "Do whatever's closest first."

Feed cargo to onward transport 6 "No no we have to move materials to Vail to get them to the helicopters."
,Avoid idle, empty vehicles 4 "1 have an MI-8 [helicopter] I have to use today my MI-8."

Table 2.2: Strategic decisions

2.6.1 Strategic decisions

Three types of strategic decisions emerged from the data analysis: assignment of vehicles

to bases or transport corridors, definition of the main transport corridors and service along

them, and policies to govern cargo loading and ve hi oe et. is section describes

the nature of each category of decision, how each of these strategic decisions were made, and

how they function in the larger problem-solving efforts of the team. Table 2.2 summarizes

the types of strategic decisions and shows how many teams were observed discussing each

one.

The data analysis process suggested the importance of these three types of decisions,

because they were part of the set of codes describing important elements of the problem.

To refine and test the three categories of strategic decisions, I compared and contrasted all

the data incidents that included each decision. This process resulted in descriptions of each

type of decision. Next, I looked to understand how each decision was made by examining

the common precedents or justifications for decisions in each of the data incidents of each

type. In this manner, I found what led to each type of decision.

Assignment of vehicles to bases or corridors

One of the ways in which teams organized the use of their vehicles was by assigning them

to a base or a corridor. An example was provided in the quote from Team E above, when
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the team discussed their fleet of 20 10-ton trucks, saying they would send "2 of them

up north to Sugarloaf - because we have some cargo to distribute - and 18 down south".

Across all 10 teams, only three different assignments are given to the 10-ton trucks in

this problem: deliveries from Sugarloaf to destination villages (the "north"), deliveries from

Mammoth to destination villages, and transshipment from Mammoth to Vail, the helicopter

base (the latter two assignments make up the "south" referred to by Team E). There are

also three possible assignments for the helicopter fleet: deliveries from Vail to destination

villages, deliveries from Mammoth to destination villages, and flights between Vail and the

hub Killington (an "airbridge" between the easily accessible Killington and the difficult-to-

access Vail). Table 2.2 summarizes these six possible assignments and shows the number of

teams observed considering each.

Note that these assignments are either to bases or to corridors. Vehicles may be based

at a hub to make deliveries to destinations surrounding that hub, or they may be assigned

to a specific corridor connecting two hubs. Teams did not make a distinction between these

two kinds of assignments. Some teams varied the assignments over time. For example, in

the first two days of operation, there was very little cargo in Vail for the helicopters to

deliver. Many teams either based the helicopters elsewhere for the first two days, or used

them to provide an airbridge to get cargo into Vail more quickly. After the first two days,

they often changed the assignments so that more helicopters were based in Vail to deliver

newly arrived cargo. Given the limited number of 10-ton trucks and helicopters available,

allocating vehicles among the various possible assignments had a major impact on cargo

delivery capacity.

How were these assignment decisions made? There were two components to the assign-

ment decisions. Teams had to come up with the potential assignment - the idea to base

helicopters at Mammoth, for example - and they had to decide how many vehicles to assign

to each. The idea of the assignment often came from a "task" in the sensemaking frame, or

from examining a "picture" of cargo that must be moved (see Section 2.5 for a discussion

of tasks and picturing). For example, once a team noticed that there was a lot to move

from Mammoth by helicopter (a task derived from picturing), they often decided to base

a few helicopters there (the assignment). In the example from Team E, the team justifies

allocation of two trucks to the north because they "have some cargo to distribute". In both

of these examples, seeing a task to deliver cargo led teams to assign some vehicles to it.
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Another common precedent for assignments was a "challenge", such as assigning helicopters

to the Vail-Killington airbridge to avoid having idle helicopters in Vail. Thus, the idea for

assignments came from tasks and challenges, two elements of the sensemaking frame.

The number of vehicles allocated to each assignment could sometimes be "instinct",

as one team put it, or sometimes was based on additional analysis. One team compared

helicopter capacity to the demand for transport in order to figure out how many vehicles

were needed at each assignment: "In 6 days we can only manage 30 rotations and we have

[cargo to fill] 26 in Mammoth already... before considering what is coming from Snow... it

means that one helicopter will have to stay in Mammoth. It doesn't make any sense to move

it." Note that this is an example of moving from solving activities back to sensemaking.

When confronted with the question of how to allocate vehicles among assignments, the

team conducted an "exploring" activity to figure out the demand for cargo. This type of

calculation could be considered a sensemaking or a solving activity, because it contributes

to both the team's understanding of the problem and its decision about vehicle assignments.

In this and other examples, the exploring activity was directed to understand the demand

for transport on each assignment - in this case, the total number of helicopter rotations

required. In other cases, teams based assignments on the total amount of cargo waiting at

a node, or the total amount of cargo requiring transport along a corridor. The number of

vehicles on each assignment may emerge from instinct or may be the result of additional

exploring, generally to find out the demand for transport on the assignment.

To summarize, assignments of vehicles to bases or corridors is sparked by two elements

of the sensemaking frame, tasks and challenges, that suggest the need for some vehicles to

be assigned to accomplish the task or address the challenge. Sometimes, after teams see

the need for an assignment, they conduct additional analysis or sensemaking to determine

the number of trucks to assign based on the demand for transport on the assignment.

Transportation corridors and service along them

Transportation corridors are the major routes along which cargo and vehicles move, which

may include multiple modes of travel. While most teams did not explicitly define corri-

dors, most of them did so implicitly, as part of the sensemaking process (see Table 2.1).

Transportation corridors are included in this section on solving because in some cases teams

made decisions about which transportation corridors to use, or how to provide service along
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them.

The key strategic decision in this category dealt with whether to include a transport

corridor from Snow to Vail using helicopters to provide an "airbridge" from Killington to

Vail. As one team put it, "If the helicopters are free, it's better to send the cargo to

Killington and make the rotation [to Vail]." When this idea was brought up, discussion

usually followed. One team's discussion started, "But you have doubled the cost," followed

by, "Sometimes time is more important than cost." Many teams decided it was worth the

cost of using helicopters to reach a city, Vail, that could also be reached, but much more

slowly, by truck. Other teams decided it was not: another team reported that they "decided

to make our whole pipeline [go by truck], even stuff going to Vail... instead of going through

Killington."

A second strategic decision in this category dealt with the nature of service along cor-

ridors. The main example of this was a "shuttle" service for the 40-ton trucks, considered

by a few teams. They considered sending only a few 40-ton trucks away per day, using this

"shuttle service because otherwise it takes forever to get back to Snow," as one team put

it. They anticipated the need to have capacity to send additional trucks out tomorrow, so

they did not want to send all trucks out today.

Both of these strategic decisions were inspired by challenges. In the first case, teams saw

the challenge of transporting cargo to the helicopter base Vail, and considered addressing

it by creating an "airbridge" transport corridor. In the second case, teams anticipated a

challenge of additional cargo requiring transport tomorrow, and considered addressing it by

adopting a shuttle service policy. As in the assignments decisions above, strategic decisions

were inspired by elements of the sensemaking frame.

Policies

I use the word "policy" to describe a phenomenon that was very common in my observations

of the teams: they articulated guidelines or decision rules to help them reach goals. The

complete set of observed policies is given in Table 2.2. Most policies dictated how some kind

of choice was to be made. For example, in choosing cargo, a policy might dictate choosing

shelter cargo before other types; in choosing which village to fly to, a policy might dictate

flying to closer villages before those farther away.

Many of the policies dealt with prioritization of deliveries. Prioritization was important
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because there was not enough transportation capacity to make all the requested deliveries.

All teams decided to prioritize deliveries based on the type of item, probably because this

policy was mandated by the government in the scenario. The government indicated that

shelter was most important, followed by health, water and sanitation (WASH), and food.

Many teams laid out what I call a lexicographic policy: "We try to load as much as possible

priority 1, then if there is some space" fill it with cargo of other types. A few teams instead

decided on what I call a "weighted mix" policy: "Obviously, you can't send all shelter out,

you gotta have a mix," something like 50% shelter, and smaller percentages of other types of

cargo. While all teams considered the type of item as a prioritization criterion, many teams

also considered the destination of the shipment, looking to serve more affected geographical

areas first. Usually, the two criteria were considered in combination: as one team put

it, "whenever we have a shipment, we consider whether the item is a priority.., and the

geographic priority." A third criterion was the humanitarian organization requesting the

delivery. In the quote from Team E on page 73, teams worried about delivering too much

cargo from a single organization. Many teams, like Team K, "tried to move something for

everyone."

Another set of prioritization policies are based on more operational concerns. In some

cases, teams worried that prioritizing based on item type or destination might limit the total

amount of cargo that could be delivered. Instead, someone said, "Our priority is to move

as much cargo as we can move with those trucks." Such a policy sometimes translated into

sending what was immediately available. A related policy was to serve closer destinations

first, enabling more cargo deliveries to be completed in a shorter period of time. Another

policy was based on the recognition that cargo had to be transported to forward bases

before it could be delivered by helicopters or small trucks. Many teams tried to prioritize

cargo that required onward transport; for example: "We need to fill up Mammoth slowly

slowly [sic] so that when we have the trucks [for onward transport] we can move." Finally,

most teams had an explicit or implicit policy to avoid having idle and empty vehicles,

meaning that they tried to make use of vehicles when they were free (for example, someone

said, "Yeah but today we already have the trucks let's use them") and tried to fill them

to capacity whenever they were moved (for example, they wanted "not to send them [the

trucks] empty to Sugarloaf").

Policies are particularly interesting because they represent the implementation of goals.
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Figure 2-4: Drivers and impact of strategic decision-making

Recall from Section 2.5.4 that goals emerged as part of the sensemaking process. When I

looked at the data to understand how policies were formulated, it was very clear that they

were formulated based on goals. Consider the policy of feeding cargo to onward transport.

On one team, someone said, "Remember that the helicopters in country you pay whether

you utilize them or not," and someone else added, "That's why we have to use them at

maximum." The team was articulating a goal to use the helicopters effectively. Next,

someone asked, "How much cargo do you need in order to keep the choppers busy?" The

team formulated a policy of feeding cargo to the helicopters in order to achieve the goal of

using the helicopters "at maximum." The same type of process was evident for all the other

policies. A goal of serving inaccessible and highly affected areas was translated into a policy

of prioritizing by destination; a goal to deliver as much cargo as possible was implemented

using a policy of sending what was available or serving closer destinations first. Operational

goals, developed through sensemaking, were translated into implementable policies.

Drivers and impact of strategic decision-making

Looking at all three types of strategic decisions, it appears that sensemaking drives strate-

gic decision-making. As shown in Figure 2-4, strategic decisions are made in response to

challenges, tasks, and goals, all of which are elements of understanding gained through

sensemaking (recall Figure 2-3). Strategic decisions are solving rather than sensemaking

activities because they represent choices, not understanding. Teams choose whether or not

to include the airbridge as a transport corridor; they choose to allocate vehicles to assign-

ments; and they define and choose one policy or another. Strategic decisions represent one
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of the direct links between sensemaking and solving.

In fact, most strategic decisions are not strictly necessary in order to solve the problem,

since a feasible plan can be created without a prioritization policy, vehicle assignments, or

specified service along transport corridors. What, then, is the function of strategic decisions?

As shown in Figure 2-4, they have various but related functions.

Assignments and corridors function as additional constraints, in that they restrict the

formulation or problem space beyond that defined through sensemaking. Deciding that a

helicopter will be based in Mammoth means that "the helicopter stays in Mammoth," as

someone said while dispatching helicopters. Policies, on the other hand, restrict not the

formulation but the decisions that can be made while searching it, by providing guiding

rules or heuristics for making choices, say, among cargo to be loaded. By restricting the

problem space and adding rules for searching within it, strategic decisions simplify the

solving process.

Some strategic decisions are also a way of working toward goals. It is clear that policies

represent a way of implementing goals, because they are rules for making choices that

satisfy goals. Assignments can also work toward goals, in that allocating a vehicle to an

assignment may push a goal forward. For example, one team discusses prioritizing deliveries

to important destinations: "There's a lot of things going to Sugarloaf but we could forget

about Sugarloaf if we want to," meaning they can assign all vehicles to other areas and

thereby ignore low-priority areas around Sugarloaf. On the other hand, assigning many

vehicles to the corridor from Mammoth to Vail might ensure that enough cargo could reach

the helicopters in Vail, thus reaching the goal of keeping helicopters busy. Thus, not only

policies but also assignments enable teams to work towards goals.

In sum, strategic decisions are driven by challenges, tasks, and goals, all of which emerge

from the sensemaking process. Strategic decisions enable simplification of the problem by

restricting the problem space and adding rules for searching within it, and they do so in a

way that pushes solutions toward goals.

2.6.2 Dispatch decisions

Dispatch decisions are the specific allocation of cargo to vehicles and vehicles to movements.

For example, a team might assign a CMR to a truck and assign that truck to leave Snow

on the morning of the first day heading towards Sugarloaf. The quote on page 73 provides
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some examples of dispatching, as someone says, "We agreed to take the whole of this shelter

[cargo]," then asks, "Should I put IOM [cargo] now?", and finally provides an update, "I

have done 11 trucks. All of these CMRs is in [have been moved to] Sugarloaf." He also

notes the next steps, saying, "Remember the 40-ton trucks are gonna wake up tomorrow

here [in Sugarloaf] and bring their shipments down here and here." This and other similar

quotes exemplify the types of decisions made: selecting cargo to load on trucks, deciding

where and when to move trucks, and tracking updated locations as the plan is created.

Note that teams spoke about their plans as if they were being implemented, saying the

trucks are in Sugarloaf rather than that they will be in Sugarloaf on day 2. I have adopted

this convention throughout this chapter, to match their language.

In data analysis, it was difficult to isolate incidents of data that dealt with particular

dispatch decisions (such as selecting cargo or choosing a destination) because dispatching is

an ongoing process. Instead, I tried to understand how dispatch decisions were connected

to each other, and more importantly, the process by which they were made. To do so, I

analyzed my field notes on two levels. First, I looked at all the data instances, across all

teams, that seemed to include dispatch decision-making, and for each one I noted what

kinds of decisions were being made and what seemed to precede and follow each decision. I

looked across all these mini-process diagrams and consolidated similar decisions, then tried

to connect them to each other. For example, I often saw cargo selection decisions preceded

by looking at a list of cargo waiting at a node, and followed by dispatching a vehicle on a

movement. I also saw dispatching a vehicle on a movement followed by updating locations.

This suggested a longer string of connections between these decision types. This resulted

in a handful of hypothesized dispatch decision-making processes.

Next, I took a step back to look at the decision-making processes of each team individ-

ually. I kept in mind the key results from the first analysis, namely the types of dispatch

decisions and their hypothesized connections to one another. I re-read the field notes for

each team from start to finish and diagrammed their dispatch decision-making processes,

loosely relying on the decision types I found in the first analysis step, but focusing primarily

on capturing faithfully the activities of each team.

The final step was to combine the decision-centric and the team-centric analyses. I

looked for patterns of decision-making that appeared in both, and came up with two

archetypal processes that captured the main flow of decisions in all teams, though each
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Figure 2-5: Archetypal dispatching processes: location-based and task-based

team showed individual variations on it. I went back to the data one last time to make

sure the archetypes fit the team data. This data analysis process resulted in the findings

described in the following sections.

Archetypal dispatching processes: location-based and task-based

The two archetypal dispatching processes are shown in Figure 2-5. Each consists of a series

of activities, some of which are decisions; a few activities are shared by both processes.

They are labeled "location-based" and "task-based" because of the central unit around

which plans are constructed. They are described in detail below, followed by a discussion of

whether and how the teams followed these two processes. Table 2.3 shows how many teams

followed each archetype and variations thereof.

Location-based archetype The location-based process plans around a single location

at a time. It is driven by a list or some other representation of the cargo and vehicles

available at a location. The field notes provide many examples of this activity, akin to the

"picturing" described as part of the sensemaking process. For example, one team wanted a

"snapshot of where we stand at the moment. In Snow, we have X..." Another team started

dispatching by saying, "Let's see what we have here." In another example, one team listed,

"at each hub, this is what we have, in order of priority." Next, someone said, they planned
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Location-based 6
List cargo waiting at location "At each hub, this is what we have, in order of priority."
Select cargo going forward "If there are 5 items here, what is the most important item?"

Task-based 6
Map cargo movement need "Biggest concentrations of cargo are in Snow and Mammoth."
Focus on a task "Today we have to focus on moving as much as possible from Snow to these locations."
Route vehicles "Let's have this truck [go] to Mammoth then it will make the rotation [back]."
Select cargo "I'm taking what is in Mammoth that I can take to Vail."

Activities in both heuristics 10
Fill vehicles and dispatch "So we have to fill it with other materials that from Mammoth go to Vail."
Update locations "All of these CMRs is in Sugarloaf... remember the 40-ton trucks are gonna wake up tomorrow

Breakdown,

Air and ground 4 "Can you separate surfacesd iair transport?"
3 vehicle types 3 "Three types of moving assets"
Location 1 "We have responsibility for a hub - this is my hub, this is what's coming and going."
Updating
Day by day 5 "Go day by day. Then we will know what is areving in each place each day..."

"On the third day you will have more stuff to move... so you plan for the first and second days and
Update on arrival 1 then we will tell you what you have."
Managing CMARs
Do not split CMRs 2 "It'll be easier to allocate a number of trucks to agencies even if there is some space left."

Table 2.3: Dispatch process activities and variations

to "move through as much as possible."

This latter quote shows how the list was used in the second activity in this process:

selecting cargo to load. When both vehicles and cargo were listed at a location, cargo was

selected from the list to load onto the vehicles. In another example, one person said, "How

should we lift it [the cargo]? Maximum priority. We don't have choices we just go." Given

the list of cargo, this team will simply go through it in priority order and load it onto the

available trucks. Implicit in this step, though not always mentioned by the teams, is the

selection of a destination for the vehicle. There is no sense in loading cargo that needs to

go in two different directions, so by choosing cargo to load, a destination - or at least the

next movement - is implicitly chosen. In this problem, in the first few planning days, much

of the cargo went in the same direction, so the choice of direction was not important; but

it became increasingly important as cargo moved closer to its final destination.

The next two activities are shared by both archetypes. The cargo selected in the last

step may or may not fill the vehicle being loaded. If it does not, teams often try to fill the

vehicle with cargo. For example, someone trying to fill a truck whose destination was already

set said, "So we have to fill it with other materials that from Mammoth go to Vail." Teams

were reluctant to leave empty space: one person lamented, "it could have taken something

else...", and another called attention to the problem, "Ah, we have an issue. It's not full."

Often, vehicles could be filled to capacity, though not necessarily with high-priority cargo,
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but in other cases they had to be sent partially filled if there was not a full load of cargo

going to the same destination.

The final step in the process, updating locations, called for noting or tracking the move-

ments that had been planned so far (this step is also common to both archetypes). In the

example from Team E, the planner said, "all of these CMRs is in Sugarloaf," and, "Re-

member the 40-ton trucks are gonna wake up tomorrow here [in Sugarloaf]." This is an

example of the crucial step of updating the locations of both cargo and vehicles. Most of the

time this updating activity fed back into the first activity in the process, the list of cargo

and vehicles at a location. For example, one team said, "We don't know how to follow the

total volume in each location," and worked on a tracking format that would enable them

to update their location-based lists. Another team was more explicit, noting, "On day 2

we got the same data, same equation: location, volume, priority, resources [vehicles]." The

location-based process, then, is a loop. After updating locations, i.e. creating a new list of

cargo and vehicles at each location, the process starts again, looking at either a different

location or a different time (there is little evidence of how they chose the next location on

which to focus, but they generally stepped forward incrementally in time).

One of the key features of this location-based process is the local perspective: only a

single location is considered at a time. Planners work from a list of cargo and vehicles

available in one city, or one node in the network, and send cargo out from it. This focus

on moving cargo from the location is another key feature. A discussion from one team

provides a good example; they were focusing on the location Snow, in which there are a

large number of 40-ton trucks and a lot of cargo. One person noted they had "20 trucks

in Snow... nearly all trucks in Snow need to move today." Someone asked, "Ok where is

it going?", and another answered, "Doesn't matter where it's going - today, they've got to

go." In this discussion, by focusing on Snow, they saw they could send a lot of cargo in the

general direction of the affected areas, without worrying about its ultimate destination. To

emphasize the point, someone later said that dispatch decisions are "driven by where the

40-tonners [trucks] are today, 10-tonners are tomorrow." This exemplifies the local point

of view, in that cargo is moved forward from the locations of vehicles. The implications of

the local perspective and the emphasis on pushing cargo forward will be explored later.
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Task-based archetype The task-based process centers around "tasks" rather than lo-

cations, and around a small set of tasks in particular. These tasks involve moving cargo

either on a path, from an origin, or to a destination. For example, Team G noted demand

on a path, saying, "Jay [to] Mammoth we have 350 [tons to move]." Another team focused

on the need for transport to a destination, noting, "Heavenly total is... we have 155 tons

for Heavenly." Yet another example focuses on moving cargo from a place, noting, "There's

only one CMR out of Vail." Teams described these tasks, then focused on a task around

which to make dispatching decisions. For example, one team said, "Today we have to focus

on moving as much as possible from Snow to these locations," choosing to focus on the task

of moving cargo out of Snow.

The task-based process is driven by what I call a map of cargo movement need, meaning

an understanding of the demand for transport within the network. As one team described

it, they wanted to "define the demand side of this - what do we need to do from where

to where?" The maps result from picturing activities, as described in Section 2.5.2. One

team described the implications of their 'map', saying, "We have [loads] in Snow... only

one [CMR] in Vail," then noted that the "biggest concentrations of cargo are in Snow

and Mammoth." The map of cargo movement need thus gave teams an indication of the

important tasks to accomplish (as described in Section 2.5.1 on sensemaking).

Once a focus task was selected, teams started planning vehicle routes to accomplish it.

For example, after Team G saw the demand on a path, "Jay [to] Mammoth we have 350

[tons to move]," they started thinking about how to plan vehicles to accomplish it: "Let's

have this truck to Mammoth then it will make the rotation." With vehicles routed, the next

step was to select cargo to load onto the vehicles. For example, someone looked for cargo

going on a vehicle's route, asking, "Can you tell us everything that needs to be moved from

Mammoth to Vail?" Selecting cargo happened in much the same way as described above

for the location-based algorithm, except that here the vehicle's route had been explicitly

chosen in advance, to satisfy some task.

The remaining tasks, filling vehicles with cargo and updating locations, are the same as

those described above as part of the location-based process. Like the location-based process,

the task-based dispatching process is also a loop. Updating locations leads to an updated

map of cargo movement need and the selection of a new task to focus on. Again, there is

little evidence of how teams looped, how often they chose new tasks, or how many tasks
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were considered at once.

One of the key features of this archetype is the centrality of tasks. Plans are driven

by the team's understanding of what must be done, derived through sensemaking; in fact,

the first two steps of the task-based process mirror parts of the sensemaking process. The

tasks that drive dispatching decisions are a subset of those described as resulting from

sensemaking, including only those that require moving cargo on a path, from an origin, or

to a destination. The focus on tasks makes this process flexible, in that in one iteration

through the process, cargo might be moved out of a congested origin, and in the next, it

might be moved along a high-demand path.

Another key feature of the task-based process is that it provides a somewhat global

perspective, especially in comparison to the location-based process described earlier. The

location-based process can be considered a more myopic special case of the task-based

process, in which all tasks are deliveries from a location. In the task-based process, instead

of focusing on a single location at a time, teams consider a global map of the need for cargo

movement, then pick some task within it on which to focus their planning.

Team processes The location-based and task-based processes are archetypes, in that

they describe idealized versions of two distinct patterns of behavior evident in my obser-

vations of human problem-solving. Each team had its own variations on these archetypal

processes, many of which are described in the next section. Many teams utilized aspects

of both archetypes, sometimes trying one and then switching to another, other times using

one for planning helicopters and the other for planning trucks. In a few cases, my observa-

tions do not provide enough evidence to characterize the team's behavior as following one

archetype or another. In general, however, these archetypes provide a useful characteriza-

tion of key patterns of behavior followed by many of the teams. Table 2.4 provides a brief

description of the dispatching behavior of each of the teams.

Variations on dispatching processes

Across all ten teams, there were several common variations on the two archetypal dispatch-

ing processes; this section describes these variations.
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Team A This team understood the way cargo moves through the network along There is not enough data to determine definitively whether they used a

multi-mode routes. When they realized the helicopters would be idle, location-based or task-based algorithm. There is evidence of thinking in

they decided to feed cargo to them and to use the Killington airbridge both these ways, so they probably used both strategies. They pictured
initially. Their initial dispatching was guided by this feeding task, a policy the cargo by origin and worked from these pictures, tracking CMR
of weighted mix prioritization, and a picture of cargo at origins. As they locations in the same spreadsheet. They discussed movements, then
dispatched, they moved helicopters in an ad-hoc manner among tasks of selected cargo, based on item type and feeding helicopters, then noted
Killington runs, Rocky deliveries, and Cal deliveries, attempting to use when they were free, stepping forward in time. They worked in separate
helicopter capacity well. The teams worked separately, with little teams for air and ground, with little communication between them.
updating between them until late in the day.

Team B This team pictured and organized the data by location, saw that vehicles Ground dispatching was not observed directly, because it started late,

were available, and started dispatching, in air and ground teams. As they but it appeared they used a combination of location-based and task-

dispatched, they learned more about the network and bottlenecks, and based, where the task-based is generally either individual CMRs or from

refined their plan for dispatching and the positioning of their vehicles. In origins. In addition, they assigned tasks to their 10T trucks. Air

the afternoon, they had a major discussion on prioritization and defined dispatching appeared entirely location-based, except for decisions about
clear policies. where to base the helicopters. They considered, but did not apparently

implement, an idea to draft a plan then fix it later if the prioritization
was not adequate.

Team C This team began by playing with the data, then saw how cargo moves There is not enough data to describe a dispatch process, but elements of

through the network along multi-modal routes. Then they were able to it are clear. They listed CMRs based on their origins and their routes, and

develop a sense of how much cargo had to be moved from origins and they assigned each a number/fraction of trucks. They probably worked
along routes. They realized how important the helicopter hub Vail was, around tasks, or at least routed trucks before selecting cargo. They did

and that it could not be reached for several days. As a result, they not appear to break down the problem by air and road.
decided on an alternative route that was faster but more expensive, and
they defined prioritization policies. Finally, after developing this sense of
the problem, they began dispatching, and as they worked, developed
tracking formats.

Team D This team explored the network, but I saw less clear organization of data This team relied on location-based dispatch. They filtered a list of cargo

until they started dispatching. Once they started, they tracked the waiting to be dispatched, selected (whole) CMRs to send forward, then

process on a wall chart, deciding to move whole CMRs and assign them determined the number of trucks needed to transport the CMRs,

whole numbers of trucks. As they worked, they figured out how to break assigned them, and updated locations. Then they looked at the next

down the problem by air and ground, discussed how to link it up again, CMR, location, or day.
stated a weighted mix prioritization policy, and later realized they
needed to feed cargo to the helicopters.

Team E This team pictured the network and allocated vehicles to tasks they saw This team used the location-based dispatching strategy. They kept lists
within it; they refined this allocation as they worked. They pictured the of cargo in each hub, in item type priority order, and hung them on the

cargo by listing items in each location and hung them on the map, then map. Then they took one down and dispatched from it, then moved on
used them to dispatch. They prioritized by item type, and considered to the next location, or next day. They updated locations and noted next

fairness to organizations, along with feeding the helicopters, time it needed to be moved. This was guided by an earlier allocation of
vehicles based on the global need for cargo transport.

Team F This team understood the network relatively quickly, and jumped into They used the location-based dispatching strategy. They listed the cargo

dispatching based on lists of cargo and vehicles in each location. They in each location, along with the vehicles, then loaded cargo going

broke down into teams for each of the 3 modes and developed ways of forward to its next destination. When it arrived, they updated the

communicating and tracking as they dispatched, eventually passing location information and handed it off to the team doing the next mode.

updated cargo locations among the teams by means of spreadsheets for
each location. As they dispatched, they noticed challenges and
formulated tasks: for example, limitations on capacity, idle vehicles, and
the need to deliver to other locations. They appeared not to worry
extensively about prioritization until very late.

Team G They pictured the CMRs and thought through the network, which led to This team appeared to use primarily task-based dispatching and the

formulation of goals and policies. The key picture was the cargo to go on variant in which the task is moving forward from a location. They had

each route, from which they started dispatching by routing trucks on the ability to check what cargo was waiting to go on routes or from

needed routes. They appeared to prioritize based on item type, locations, and this drove their routing of trucks. Interestingly, after a
organization, and reaching beneficiaries. draft plan was finished in the tool, they went back and looked at their

final plan, and modified it to even service out among organizations and
use all trucks.

Team H This team started dispatching from a cargo picture and a set of goals and This team used a variant of the location-based dispatch algorithm in

policies formulated early. They ended up breaking down the problem by which the team was broken down by location. Each location manager

assigning location managers and truck and cargo trackers. They later dispatched from a list of cargo and vehicles in each location, loaded

defined a more precise weighted mix prioritization policy. cargo according to policies, and gave the information to the transporter,
who handed it off to the next location manager. They moved forward by
day.

Team J This team came to a basic understanding of the network, and started The data are not completely clear but all incidents of observed work

dispatching quite early. Dispatching was guided by the need to use their suggest task-based dispatching, along with the variant where some tasks

capacity well by filling vehicles and using them when they were free. As involve moving cargo from a location. They used task-based dispatching
they worked, they formulated additional tasks, like feeding cargo to processes, which appeared to be driven by deliveries to places as well as
onward transport, and they developed tracking methods that from.
highlighted the status of vehicles and CMRs. They reported having
prioritized by area and item type.

Team K This team spent a lot of time in front of the map that showed the cargo They used a global map of cargo to go on routes, routed trucks to
to go on each route, attempting to route trucks to take it. They also accommodate the need, then assigned cargo and noted when trucks
stated policies of prioritization, and positioned vehicles, as they were free. They considered prioritization policies. My data show their
discussed the challenges by thinking forward in front of this map. early work, so they certainly started this way, but may not have finished

this way.

Table 2.4: Overview of teams' sensemaking and dispatching processes
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Breaking down the problem One of the most important variations on the dispatching

process was in how each team broke down the work and assigned a role to sub-teams or

individuals. Each (full) team had between 9 and 11 people, and only a day to complete a

transportation plan, so they were keen to divide responsibilities. Assigning roles had at least

two advantages. First, it simplified what each person had to manage, as someone noted,

saying, "probably don't need to go in this detail at this stage because it's probably going

to be the task of [someone]." Second, it enabled the team to take advantage of specialized

skills, as someone noted when suggesting that someone manage helicopters: "He's done

aviation before... helicopters get a bit tricky because you have to split their loads."

Initially, the best way to break down the problem was not clear, but as teams made sense

of the problem, they came up with different possibilities. One person suggested, "Can you

separate surface and air transport?", meaning separate teams would plan the movements

of trucks and helicopters. A similar alternative recognized that there were "three types of

moving assets", 40-ton trucks, 10-ton trucks, and helicopters, and put separate teams on

each. Almost all teams eventually settled on this set of roles, breaking down the problem by

mode, but before doing so, they voiced concerns. One team was afraid that "the helicopters

are going to see that it doesn't work then we have to go back." They were worried, and

rightfully so, that it would be difficult to make sure that cargo for the helicopters was

delivered on time by the ground planning team; more generally, the plans had to link up.

Nevertheless, most teams divided the problem in this way, and devised ways of tracking

and communicating to support it (described in the next section).

A few teams considered an alternative set of roles: dividing responsibility by location.

For example, one suggested "we have responsibility for a hub - this is my hub, this is what's

coming and going." In fact, this breakdown may represent many real supply chains, in which

a planner at each warehouse is responsible for receiving and sending cargo. However, only

one team was clearly seen to adopt this division of the problem.

Updating, tracking, and picturing Once the problem is broken down for multiple

planners, there is a clear need for updating each of the planning teams on what the other

team has moved. As one person said, "We will have a need to pass information," and

another person said, "they will need a clear idea where what is."

To facilitate updating, every team settled on the same basic way of moving through the
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problem: forward in time, one day at a time. For example, one person suggested to "go

day by day. Then we will know what is arriving in each place each day and what trucks are

available in each place each day and then you can dispatch." Within this forward-solving

framework, many teams updated each other at the end of each day. For example, someone

asked, "Now it's day 2. Where are the trucks?" Others recognized that they did not need

to update as frequently, because the helicopter team would not receive any new cargo until

several days later. As one road planner told a helicopter planner, "On the third day you

will have more stuff to move... so you plan for the first and second days and then we will

tell you what you have."

Having described when (in the planning horizon) updates are made, the next question

is how they are accomplished. Some teams simply asked or told their teammates what they

had moved. For example, someone asked for "whatever you've got in Jay on the 16th...

from this he will be able to dispatch when they are free." However, most teams eventually

developed a common tracking format, and used it to pass updates around; for example,

one person suggested, "Let's agree on the format that's compatible so we can merge [the

separate plans] later." Some teams passed around Excel documents containing updated

locations, while others kept a master tracking sheet. Tracking systems varied widely across

teams. Some teams tracked everything within the list of CMRs they were initially given.

Others developed their own format for a master sheet describing all movements. Still other

teams developed a location-based tracking system, in which lists of cargo and vehicles in

each location were maintained for each day, and updated when cargo or vehicles moved.

Recall that four teams were provided with a simple tracking tool that I developed; only two

teams chose to use this to track movements.

The picturing activities that drive the dispatching process (listing or mapping cargo

to be moved) also varied widely across teams. The type of picturing used by each team

depended on their tracking and updating formats and also on whether a team was using a

location-based or task-based dispatching process. For example, one team using a location-

based process printed out lists of cargo waiting at each location and hung them on the

map. They took down a location's list and acted as planners for that location, deciding

what cargo to send forward. Then they updated the master sheet with the new locations

and printed out a new set of lists to hang on the map. They described their process as

using a "piece of paper on each location with what is there," "because then you can sit and
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do your own decisions." Task-based processes generally depended on keeping a master list

of locations and filtering and querying that list to understand the next important tasks.

While picturing formats varied widely across teams, the goals and results of the activity

were essential and consistent ingredients in the dispatching process.

Managing cargo A minor but potentially important variant on dispatching processes

was in the rules, implicit or otherwise, for splitting CMRs. Many CMRs were too large to

fit on a single truck, while many were small enough to fit in trucks already carrying other

loads. Many teams simply attempted to fill trucks with cargo, without worrying about

whether the CMR fit in its entirety, thus splitting many CMRs. Some teams, on the other

hand, allocated a number of trucks to a given CMR rather than allocating CMRs to trucks.

In this manner, CMRs were never split. For example, while dispatching, someone said,

"CMR 3 will take 6 trucks. So share in into 6 10-ton trucks." This strategy could result in

wasted space, but one person said, "It'll be easier to allocate a number of trucks to agencies

even if there is some space left." The latter method may be easier to track, but the former

may enable the delivery of slightly more cargo, so this variation can impact the effectiveness

of the transport plan.

Impact of sensemaking and strategy on dispatching

In earlier parts of this chapter, sensemaking and strategic decision-making were described as

integral parts of making a transportation plan. The actual plan is the result of dispatching,

so it is worth asking how sensemaking and strategic decision-making impact the dispatch-

ing process. Most of the impacts have already been discussed. First, the understanding of

problem constraints that comes from sensemaking, along with additional constraints result-

ing from strategic decisions, constrain the problem space in which dispatch decisions are

made (see Sections 2.5.4 and 2.6.1). Second, the sensemaking activity of picturing leads

to sets of tasks that drive the task-based dispatching process. Third, picturing also sug-

gests different formats for tracking, which become the starting points for both task-based

and location-based dispatching processes. Sensemaking and strategic decision-making thus

impact dispatching by influencing tracking, directing search, and constraining the space of

possible decisions.

The last important impact of sensemaking and strategy on dispatching is to push toward
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solutions (transportation plans) that satisfy goals and meet challenges. Goals and challenges

are surfaced during sensemaking (see Section 2.5.1) and turned into implementable policies

during strategic decision-making (see Section 2.6.1). These policies are implemented during

dispatching. Policies impact nearly every step in both dispatching archetypal processes by

guiding decision-making.

Planners considered policies when they were selecting cargo to load on vehicles, in both

the location-based and task-based archetypes. One team described how they would select

cargo: "So whenever we have a shipment we consider whether the item is a priority... and

the geographic priority." This is a statement of a policy, and it is evident that most teams

followed this kind of a policy. For example, while selecting cargo to send, one person looked

through the waiting CMRs and selected those that were a priority. "Ok, let's do priority.

Ok? Blankets still priority? Yes. Hygiene kit? Let us see what else is there. Jerry can? Yes.

Plastic sheeting?" This is an example of prioritizing by item type. Teams also considered

the organization sending the cargo. For example, someone tried not to send too much

cargo from one organization, saying, "First rotation was UNICEF. The second... UNICEF.

The third probably cannot be UNICEF. But there is nothing else from here today." An

alternative policy dictated taking what was available; for example, someone asked, "What do

we have in Vail that we can take immediately?" Yet another policy dictated selecting cargo

that required onward transport by helicopter, and one team implemented it, choosing to

fill the helicopter base, Vail, rather than taking high-priority shelter cargo, in the following

discussion: "You're doing shelter again...," "No, I'm taking what is in Mammoth that I

can take to Vail...," "But there is WASH there," "but I am taking it to Vail." All of these

examples, along with many others, show that policies dictated the selection of cargo in each

of the dispatching processes.

Policies also influenced the selection of tasks in the second step of the task-based process.

One policy dictated feeding cargo to the helicopters. Someone therefore told the road

team, "Your [job is] to make sure to deliver in [the helicopter base] on time." Another

policy dictated sending the maximum amount of cargo. In support of that policy, someone

suggested focusing on the 40-ton movements, meaning the task of moving cargo from Snow

to Mammoth: "40-ton is your chief asset. Allows you most clearance [of cargo]," so "don't

[mess] around with your 40-tonners to accommodate your helicopters or 10-tonners." In

an attempt to implement a geographic prioritization policy, someone asked, "Can we start
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sending stuff already to the priority villages?". Clearly, the selection of tasks on which to

focus was influenced by policies.

Determining vehicle routes may or may not be constrained by the task selected in the

preceding step of the task-based process. If the task is to make deliveries on a path, of

course, the route is determined by the task. However, when the task is more broadly

defined, like delivering from Vail to surrounding villages, there is some flexibility in routing,

and thus it may be guided by policies. For example, in an implementation of a policy

to serve close helicopter destinations first, someone checked the distance to a proposed

destination, asking, "Where is Northstar - is it more or less than 75 [km]?" Thus, policies

can also influence the choice of vehicle routes.

Finally, policies influence how cargo is pictured. Unlike the selection of cargo, tasks, and

routes described above, cargo picturing is not a choice; rather, it influences later choices.

For example, policies influence picturing in that the lists of cargo, in the location-based

process, are often ordered by priority. One team said to create a list for each of the "5

locations, sorted by priority and then where it's going." If the list is ordered by priority,

the next activity, cargo selection, will probably also focus on higher-priority cargo. In

another example, one team wanted to make sure they used a geographic policy in addition

to other policies, so they amended their tracking format: "We can add a column... for

geographic priority." Policies thus have a more subtle influence on dispatching as well, in

their impact on the picturing that underlies the dispatching process.

Considering the impact on dispatching from sensemaking and strategic decision-making

provides a more complete picture of problem-solving in the humanitarian transportation

planning problem. There are two major ways in which dispatching is impacted. First, the

space of possible solutions (sets of dispatch decisions) is constrained by an understanding of

the physical elements of the problem, such as the transportation network and the transport

demand, and by strategic decisions that assign resources to particular tasks. Second, the

direction of search within the problem space - the specific decisions made within the dis-

patching process - is directed or guided by picturing, by tasks that result from picturing and

sensemaking, and, most importantly, by goals and policies formulated through sensemaking

and strategic decision-making.
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2.6.3 Insights and implications of the solving models

This model of problem-solving in humanitarian transportation planning supports existing

theories about how humans move through problems. Problem-solving is often conceived as

search through a space of possible moves toward a solution (Jonassen, 2000; Newell and

Simon, 1972). Human searches tend to be limited, looking for a good-enough rather than

optimal solution (Simon, 1956), using heuristics as a shortcut to a solution (Tversky and

Kahneman, 1974), or generating just a single possibility (Hale et al., 2006; Klein, 1993).

The dispatching processes found in this study represent heuristic search routines within a

problem space defined through sensemaking and further refined by strategic decisions.

The findings from this study on transportation planning illuminate how humans solve

problems in a particularly urgent and ill-defined context. They use greedy search strategies

directed by policies, and they simplify the problem space using assignments and tasks.

Each of these insights is explored in the paragraphs below. The general findings are depicted

conceptually in Figure 2-6. Teams had some understanding of the problem space of possible

solutions, which may be restricted or simplified based on strategic decisions which eliminate

some set of solutions (such as assigning a vehicle to a specific region). Their decisions

represent movement through that space of solutions. At each decision point, the teams saw

some space of possibilities for their next "move" (assigning a vehicle to a movement, or

cargo to a vehicle). In most cases, they considered only a subset of all possible moves: for

example, they might look only at one location at a time, or at moves that accomplish a

particular task. Within that space of possibilities, the selection of the move was guided by

policies, such as prioritization policies. The following paragraphs explain and expand upon

the concepts depicted in this conceptual diagram.

Greedy search directed by policies

The dispatching processes found in humanitarian transportation planners' behavior resem-

ble greedy search strategies. Greedy algorithms proceed by selecting the best choice at each

step. In each of the dispatching processes, the choices at each step are governed by policies

derived from goals, such as selecting cargo of the highest-priority item type. As a result,

the choices at each step are those that best fit the ultimate objective. Greedy search has

long been considered a model of human problem solving (e.g. Newell and Simon, 1972), so
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problem space of all possible
solutions eliminated solutions (given understanding
through simplification of problem from sensemaking)
(such as an assignment
of a vehicle to a location)

selected move

decision \(guided by policies)

point space of possibilities
seen or considered at
this decision point (e.g.
subproblem from a task)

Figure 2-6: Conceptual depiction of search process teams followed. At each decision point,
they saw some space of possibilities for their next move (assignment of vehicle and cargo

to a movement), and chose a move based on guiding policies. The search occurred within a

problem space defined and simplified through their understanding of the problem.
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it is not surprising that humanitarian logisticians used such a strategy. In greedy search,

however, the details are important. The specific choice of objectives or the formulation of

the problem can impact the quality of the resulting solution.

The two archetypes - location-based and task-based - represent different kinds of search

within the same space of possible solutions. In the location-based archetype, cargo is pushed

forward from wherever vehicles are available, and policies govern which cargo is pushed. The

selection of the objective thus impacts only the type of cargo moved, but has little influence

on where and when it is moved. Of course, movements may be directed through strategic

decisions, such as assigning vehicles to certain areas, but this is outside the pure dispatching

process. The task-based dispatching process, on the other hand, does more than simply

push cargo forward. It begins with a more global view of the need for cargo movement, and

continues by selecting a task from that global view; this choice is governed by some policy.

Subsequent choices of vehicle routes and cargo to send are also governed by policies. As

a result, this task-based process may have more flexibility to satisfy the demand for cargo

transport in accordance with the objectives of the problem.

Another interesting aspect of this model of human problem-solving is the use of policies

to govern each solution step. Many policies were formulated by teams, and each policy, if

used consistently in dispatching, could lead to different kinds of transportation plans. The

evidence from this study suggests that no single policy was used consistently by any team,

which makes sense in a multi-objective context like humanitarian aid. However, even if one

single policy were used, it is not clear how well the resulting transportation plan would

satisfy the objective on which that policy was based. Probably, there are better policies or

combinations of policies that would lead to better solutions. Nevertheless, using policies to

govern each search step probably insures a better result than a blind or less-informed search,

and such policies are certainly easier for humans to implement than complex calculations

about what choices have the best chance of meeting their multiple objectives. Thus, one

interesting insight from this study is that people transformed multiple goals into a set of

policies that could more easily direct search through a problem space.

A second insight from this study is the specific nature of the policies that direct search.

One of the weaknesses of greedy algorithms is their inability to "look ahead" to future

solution steps. Policies that dictate selecting high-priority cargo do not look ahead, but at

least one of the policies developed by the teams does look ahead to some extent: the policy
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to feed cargo to helicopters. By selecting cargo intended to keep the helicopters busy, teams

are thinking about future problem steps, and quite possibly ensuring that the long-term

plan delivers more cargo.

To sum up, humanitarian transportation planners use search strategies that resem-

ble greedy heuristics, consistent with existing theories of human problem-solving. Both

location-based and task-based dispatching processes exhibit greedy search strategies, but

the task-based process is more responsive to overall need for cargo movement while the

location-based process is more opportunistic about using vehicles. This greedy search is

guided by policies developed by teams based on objectives, which is a simple method of

implementing goal-directed search. The specific nature of those policies will impact the

quality of the resulting solution.

This discussion prompts us to ask which policies lead to better solutions, but the study

described in this chapter did not enable us to answer this question. It was practically

impossible to measure the success of each team's transportation plan, because they were

only required to report the results verbally within a meeting. As a result, teams delivered

plans with varying degrees of completeness and feasibility, whose quality could not be

measured. In addition, it would be difficult to claim that any given decision process was

the main contributor to a team's success in planning. There were too many confounding

factors that contributed to the quality of plans, such as leadership or team dynamics or

the use of a number of different decision-making processes or policies. As a result, teams'

plans were not analyzed for their quality, and the performance of decision processes and

policies was not examined within this study. Instead, Chapter 4 of this thesis uses models

to examine the performance of the decision-making methods found in this study.

Simplification through assignments and tasks

Simplification appears to be an important characteristic of the problem-solving models

derived from humanitarian transportation planning. In dispatch decision-making, planners

focused on one location at a time or one task at a time, thus working within a simplified

view of the problem. Strategic decisions, too, resulted in simpler formulations, especially

those assigning vehicles to bases or corridors.

Humans simplify in solving a wide variety of problems, and the simplifications take dif-

ferent forms. In search-oriented problems, humans make limited searches (Simon, 1956),

97



and in urgent problems, including crisis response, humans may search only as far as the

first option (Hale et al., 2006; Klein, 1993). In judgment under uncertainty, in inventory

management, and in many other problems, humans use different kinds of heuristics as short-

cuts (Tversky and Kahneman, 1974; Croson and Donohue, 2002; Schweitzer and Cachon,

2000) or miss important aspects of the problem (Sterman, 1989). There are also many

problem-specific models incorporating various kinds of simplifications (Jonassen, 2000; Lip-

shitz, 1993), such as heuristics specific to the traveling salesman problem (MacGregor and

Chu, 2011). Given this wide array of examples of simplification in human decision-making,

it is not surprising to find the same tendency here; what is interesting is the form those

simplifications take.

Tasks are one of the central concepts around which simplification occurred in transporta-

tion planning. In the task-based dispatching process, each iteration focused on a single task

rather than the entire problem, thus enabling decisions within a simpler sub-problem. How-

ever, by selecting those tasks from a global map of cargo movement demand, a more global

perspective is maintained. Recall that tasks were also a key element of the sensemaking

frame, and there they had a simplifying function as well (see Section 2.5.4). In this prob-

lem, it appears, simplification occurs through selecting a series of subproblems, conceived

as tasks, which are considered one after another in a greedy search strategy.

There is an element of simplification in strategic decision-making as well, most clearly

in the assignment of vehicles to bases or corridors. By giving a vehicle a particular assign-

ment, the problem space is reduced in an easily understood way. Such assignments do not

naturally arise from optimization algorithms, but human planners may make this kind of

simplification in order to make problems easier to solve. For example, human planners for

the UPS network made pickup and delivery routes the same, while an optimization model

improved it with an asymmetric solution (Armacost et al., 2002). There may be a com-

plicated relationship between vehicle assignments and the quality of the solution. As the

UPS example suggests, assignments reduce the solution space and may eliminate the best

possible solution. However, human problem solvers might not find that optimal solution

anyway; in these cases, vehicle assignments may limit the problem space in ways that also

eliminate some very bad solutions, thereby directing search toward pretty good, if not op-

timal, transportation plans. In this problem, assignments have a simplifying function, and

may also direct search toward better solutions.
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Simplification is thus a key element of human problem-solving in the humanitarian

transportation planning problem, as in many other problem-solving environments. In this

study, simplification centered around tasks and assignments. Assignments reduce the prob-

lem space by limiting the possible space of solutions, and they do so in a way that is easily

understood by planners. In fact, the the assignments usually allocate vehicles to tasks, such

as delivering from a base or along a busy corridor. Tasks, then, are central to the way

people conceive and solve the problem. Tasks can be easily understood, because they are

simple and intuitive to state. They are a product of sensemaking, and they play a central

role in assignments (strategic decision-making) and in dispatching. Tasks, then, represent a

simple construct around which the complex humanitarian transportation planning problem

can be conceived and simplified.

2.7 Conclusions

This chapter set out to accomplish two goals. The first goal was to precisely describe human

problem-solving in humanitarian transportation planning, in order to identify strengths

and weaknesses that could ultimately lead to better planning methods. The second goal

was to understand more generally how humans solve urgent problems that require serious

effort in both sensemaking and solving. Humanitarian transportation planning provided an

extreme case in which to learn how humans make sense of and solve complex problems in

ill-structured environments.

Towards the first goal, this research has provided a detailed description of human

problem-solving in a simulated but realistic transportation planning problem. Figure 2-

7 summarizes key aspects of the sensemaking and solving processes found in this chapter.

Planners made sense of the problem by moving (unconsciously) between exploring, under-

standing, and solving activities (as depicted earlier in Figure 2-3). Through this sense-

making process, problem-solvers surfaced challenges and goals, saw physical constraints

and flows, and accumulated a set of tasks or an idea of what to do. This frame, shown

in the top row of Figure 2-7, represented their understanding of the problem and guided

further sensemaking and solving. Thus, sensemaking appeared to be an ongoing process of

understanding, formulating, and simplifying the problem.

Solving was distinguished from sensemaking because it involved fixing aspects of the
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constraints tasks and situational goals and
understanding challenges

problem task dispatch vehicle policiesspace sub-problem decision process assignments

space of possibilities move selected
- seen or considered

' . -- - - - - . . . - - ' .dispatch decision

Figure 2-7: Summary of key findings. The sensemaking frame, depicted in the top row,
influences dispatch search processes, strategic decisions, guiding policies, and the problem

space and subproblems within which solving occurs (middle row). These elements in turn
influence the space of possible dispatch decisions seen or considered and the move (dispatch
decision) ultimately selected.

transportation plan. Solving occurred on two levels. Strategic decisions determined policies

and vehicle assignments. Dispatch decisions, involving the allocation of cargo to vehicles

and vehicles to movements, followed location-based or task-based heuristic processes: cargo

was loaded and vehicles routed either from a location or along a given task, then the process

was repeated at another location, for another task, or at another time. These two processes

were described earlier in Figure 2-5, and the sequence of decisions was depicted conceptually

in Figure 2-6.

Figure 2-7 highlights the specific mechanisms by which sensemaking influenced solv-

ing. Strategic decisions, including vehicle assignments and guiding policies, were driven

by elements of the sensemaking frame: goals and tasks. The dispatch decision processes

(location-based or task-based) were influenced by the situational understanding held by

each team. Constraints and tasks defined the problem space of possible solutions, or sub-

problems within it. These higher-level concepts are directly influenced by the sensemaking

frame, as shown in the second row in Figure 2-7.

The dispatch decisions that make up a transportation plan were made by repeatedly

choosing a move from within a space of possibilities (such as which cargo to load on a given

truck at a given time). The bottom row of Figure 2-7 depicts how these decisions were
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influenced by strategic decisions and, ultimately, sensemaking. The space of possibilities

seen or considered was influenced by the team's understanding of constraints (the problem

space), by the tasks they had in mind (and the resulting sub-problems they considered),

by the way they made dispatch decisions (location-by-location or task-by-task), and by

strategic decisions like vehicle assignments (which, in turn, were influenced by tasks and

goals). The selection of a specific move within that space of possibilities was governed

by policies derived from the goals and challenges that emerged from sensemaking. Thus,

dispatch decisions were guided by policies and made within a sub-problem influenced by

sensemaking and strategic decisions.

In assessing the strengths and weaknesses of human problem-solving on this task, it is

helpful to contrast the human approach with that of optimization models which, given a

formulation, can search the solution space for the best solution. One issue in building models

for this type of problem, which highlights a potential strength of human problem-solvers,

is that the formulation itself is not clear. An optimization formulation requires only an

understanding of the physical constraints, which in this problem are actually available at the

start of the problem, even though they are not well understood by the problem-solvers. (In

real humanitarian contexts, these constraints might be changing as infrastructure problems

arise and are solved, and humans might be able to predict the trajectory or understand the

implications of this dynamic. In this scenario, however, constraints were unchanging, so this

potential human advantage was not explored.) In addition to constraints, an optimization

model requires an objective, and the right objective was by no means clear for this problem,

as in most humanitarian contexts. A variety of objectives, or goals, are stated by the

teams, and they seem to consider most of them as they make their plans. There is not

enough understanding of the goals of humanitarian aid delivery to formulate an objective

that emulates those of the decision-makers in this problem. Moreover, goals appear to

depend quite strongly on the specific humanitarian context, so they may be difficult to

formulate ahead of time. Here, then, is a strength of human problem-solvers: their ability

to understand the goals and challenges of a given humanitarian context through sensemaking

and transform them into implementable policies to guide problem-solving.

There are also a number of potential weaknesses in human problem-solving processes,

which are especially evident in comparison with optimization approaches. Instead of search-

ing the entire problem space for the best solution, humans rely on a greedy search guided
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by policies. The quality of the resulting solution depends to a large extent on how well

the policies are able to guide the search. Some policies probably lead to better solutions

than others, and task-based dispatching may have more flexibility to reach better solu-

tions than location-based dispatching. Policies and search heuristics are therefore potential

weaknesses of human problem-solving approaches. With further analysis to develop bet-

ter policies and heuristics, training or decision support could enable better transportation

planning in practice. A second weakness is in the "picturing" activities that function both

as exploring activities in sensemaking and as the start of the dispatching processes. Teams

struggled to understand and manage data on what they needed to move and where they had

already moved it. Different pictures of data led to different understanding of what to do,

most strikingly evident in the difference between location-based and task-based dispatch-

ing, which are driven by fundamentally different pictures (lists at each location and a global

map of cargo movement demand, respectively). If different picturing formats drive better

or worse decision-making, as my findings suggest, this is a potential weaknesses of human

decision-making processes. Decision support systems, for tracking and understanding cargo

movement demand, might be developed to address this weakness.

A second goal of this research, beyond identifying ways to improve humanitarian trans-

portation planning, was to understand more generally how humans solve complex, ill-defined

problems in urgent environments. Sensemaking and solving would both be essential in such

a problem, thus providing an opportunity to understand how these processes interacted.

Humanitarian transportation planning was an extreme case of such a problem. It was

urgent, in that logisticians felt pressure from partner agencies, donors, and the media to

deliver aid to those in need; it was complex, in that the planning problem was a difficult

combinatorial search problem; and it was ill-defined, in that the problem formulation itself

was not clear. The formulation was unclear in part because of the difficulty of under-

standing the physical constraints of the problem, but perhaps more importantly because of

the dynamic, information-poor, and multi-objective environment of humanitarian response.

It turned out that the lack of clear objectives was a very important challenge in solving

this problem, but the dynamic environment and lack of information did not matter very

much, possibly because this particular problem scenario did not emphasize those aspects.

In this scenario, the main challenges were the complexity of the planning problem itself, the

difficulty of understanding the physical constraints of the problem, and multiple unclear ob-
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jectives. Translating these challenges into more general language, the solution consisted of

a complex series of moves, the allowed moves were not obvious, and it was unclear what the

objectives were and how to evaluate how well a solution satisfied an objective. With unclear

formulations and complex solutions, serious effort was required in both sensemaking and

solving. My study of humanitarian transportation planners suggests general characteristics

of human problem-solving in this type of problem.

As expected, sensemaking and solving are both essential, and they are intertwined and

inter-dependent activities. Sensemaking is a process of understanding, formulating, and

simplifying the problem space in which solving proceeds, including the definition of goals.

Solving involves two kinds of decisions: strategic decisions that further restrict the prob-

lem space and outline goal-based policies to guide search, and decisions about moves (here

called dispatch decisions) that are made through a greedy search directed by policies. More-

over, two important insights emerge from this model which deserve further attention: the

development and implementation of objectives and the centrality of tasks.

Goals or objectives are essential in successful problem-solving, but little is known about

how they are understood and implemented by human problem-solvers, especially when it

is unclear what the goals are and how to evaluate how well they are satisfied. My findings

show that goals are surfaced during sensemaking, through two main pathways. Goals are

formulated to address challenges or undesirable situations, or in response to dilemmas that

require a goal to decide. Multiple goals may form part of the team's understanding of

the problem. These goals are translated into implementable policies, and these rules direct

later decision-making by guiding it in the direction dictated by the goal. This type of policy

gets around the problem of evaluating how well a given solution satisfies a goal by simply

sending search in the right direction. This study of humanitarian transportation planners

thus offers a glimpse into the process of formulating and implementing goals in unclear,

multi-objective problems.

A second insight from this research is the centrality of tasks in human problem-solving.

I have used the word "task" loosely, defined by examples such as sending cargo from a

location or making deliveries in a region. Tasks are short-term pieces of work that can be

simply and intuitively described. They are sub-problems, a common concept in problem-

solving, but they are a specific kind of sub-problem that can be easily understood by human

problem-solvers, because they are intuitive and do not rely on complex constructions like

103



network diagrams. These simple tasks appear to be central to both sensemaking and solving.

Problems are understood in terms of a set of tasks, along with the other components of

the sensemaking frame. Tasks give problem-solvers a sense of what to do and appear to

drive problem-solving forward. If sensemaking is a process of formulating, the formulation

includes tasks as a central component. It is then not surprising that tasks are also central in

solving processes. Strategic decisions allocate vehicles to tasks, thereby further restricting

the formulation. Most importantly, one of the two archetypal dispatching processes centers

around tasks: solvers select an important task, work on it, then select another important

task. In essence, sensemaking leads to a set of tasks to accomplish, and solving attempts

to accomplish those tasks. As sensemaking and solving proceed, tasks are accomplished

and new tasks are formulated, eventually leading to a complete solution to the problem.

This study of transportation planning suggests that simple tasks may be a key driver of

intertwined sensemaking and solving in human problem-solving.

Through this study of humanitarian transportation planning, I have developed a gen-

eral model of human problem-solving in complex, ill-structured problems, highlighting how

sensemaking and solving are intertwined, the process of formulating and implementing goals,

and the centrality of simple tasks in both formulating and solving. I have also identified

specific strengths of human transportation planners, particularly their ability to formulate

goals, along with key weaknesses, including data management and the policies that govern

dispatch planning. By building upon the strengths and supporting the weaknesses of human

problem-solvers, humanitarian aid delivery can be improved in practice.
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Chapter 3

Using expert preferences to assess

trade-offs among multiple

objectives for humanitarian aid

delivery

3.1 Introduction

Recent disasters have highlighted the importance of logistics in emergency response. Supply

chain challenges hampered aid efforts in the South Asian tsunami (CNN, 2005), Hurricane

Katrina (Walsh, 2006), and the Haiti earthquake (BBC, 2010). Emergency response en-

tails many logistical challenges, including procurement of scarce supplies and services, stor-

age and transport of goods despite destroyed infrastructure, and reaching affected regions

through damaged or congested roads and airports. This paper addresses the transporta-

tion of humanitarian aid cargo to affected communities, under constrained resources and

high demand, and focuses on understanding the trade-offs among the multiple goals of aid

delivery.

Numerous scholars and practitioners have developed modeling approaches to support

and improve aid delivery (Caunhye et al., 2012; de la Torre et al., 2011). However, a key

problem with existing models is the lack of an appropriate objective. The maximization

of profit, the clear goal of commercial endeavors, is irrelevant for the non-profit entities
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that typically provide humanitarian aid. Humanitarian aid delivery models have, there-

fore, employed other objectives, often maximizing some measure of service. Many models

explore multi-objective formulations, making assumptions about penalty functions or ob-

jective weights to trade off conflicting goals. However, little empirical validation has been

provided for these measures.

Empirically-based objectives are difficult to define and use in operational decision-

making, even though humanitarian organizations have a common goal to alleviate human

suffering (de la Torre et al., 2011). For example, it is difficult to determine whether loading

more food, more shelter, or more medicine on a truck will have a greater impact on human

well-being. Should planners focus on delivering fewer supplies faster, reducing costs, or

delivering more cargo but with less speed? Balancing these goals and understanding how

each contributes to the alleviation of suffering is difficult, as is modeling such objectives

quantitatively so that optimization models can be utilized.

To address these challenges, modelers must operationalize humanitarian objectives in a

way that captures the key goals and assesses the relative importance of each. Toward this

end, we measure the preferences of experienced humanitarian logisticians, to learn how ex-

perts trade off the multiple goals of humanitarian aid delivery. We quantify the importance

of each objective and formulate a piece-wise linear utility function for humanitarian aid

delivery. The survey results and utility functions should enable the development of opti-

mization models that make better trade-offs among the multiple objectives of humanitarian

aid delivery.

3.1.1 Context: transportation planning for aid delivery

This chapter develops objective functions to guide the planning of transportation for hu-

manitarian aid delivery, although the issues considered herein are likely relevant for other

humanitarian logistics problems as well. In the literature, transportation planning for aid

delivery has been studied as a last-mile delivery problem and as a routing problem (see

De la Torre et al., 2011, for a review, which we do not repeat here). In practice, this

problem is encountered by numerous organizations, but we study it from the perspective

of a United Nations-managed organization called the Logistics Cluster. The Cluster often

provides transportation services to multiple aid organizations operating in the emergency

theater (e.g. UNICEF, International Medical Corps, Save the Children, and many others).
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The Cluster typically manages a fleet of vehicles that includes both trucks and helicopters.

Organizations submit requests to move cargo within the region: for example, from an in-

ternational airport to a set of villages in the affected area. Often, the Cluster receives

many more requests than they have the capacity to fulfill. Cluster logisticians must plan

the routes for the trucks and helicopters and determine which cargo to carry and how to

prioritize shipments.

The Cluster's challenge illustrates the complexity and importance of developing objec-

tives for aid delivery. Transportation decisions affect the amount and type of aid distributed,

the areas to which aid is provided, and the speed with which it arrives. Each of these out-

comes has some impact on human well-being. Objective functions should consider the

importance of the various consequences of transportation decisions, such as the types of

aid delivered and the spatial and temporal distribution of deliveries, alongside more tradi-

tional service- and cost-based criteria. This chapter seeks a way to measure and model the

importance of each of the multiple objectives of humanitarian aid delivery.

The Logistics Cluster provides an ideal context in which to study the operational objec-

tives of humanitarian aid delivery. Because the Cluster is an inter-agency group, it is more

representative of the humanitarian community than any single organization. The Cluster

has provided services many times and in many contexts (in 2011 alone, the Cluster provided

logistics services in 10 countries (Logistics Cluster, 2012)). A community of experienced

logisticians from multiple agencies are deployed by the Cluster where and when they are

needed. Thus, the Cluster has extensive experience and an inter-agency perspective on

humanitarian aid delivery, which makes it an excellent context in which to understand the

broader objectives of aid transportation planning. The objective functions developed in this

research should therefore be useful beyond the Cluster scenario in which they are built.

3.1.2 Approaches to modeling humanitarian objectives

Models of humanitarian aid delivery employ a variety of objectives in attempting to repre-

sent the goals of aid transportation (see de la Torre et al., 2011; Holguin-Veras et al., 2010,

for reviews). Many of these models make trade-offs between conflicting goals. Trade-offs are

manifested on both an operational level, in determining which communities to serve first

and what commodities to bring, and at a conceptual level, in considering conflicts among

goals like efficiency, effectiveness, and equity.
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At a conceptual level, humanitarian aid delivery (as with other public services) ex-

hibits conflicting goals of efficiency, effectiveness, and equity (Huang et al., 2012; Marsh

and Schilling, 1994; Savas, 1978). One or more of these goals is considered, explicitly or

not, in the objective functions of most aid delivery models. Efficiency objectives typically

minimize operations costs (Tzeng et al., 2007; Balcik et al., 2008) or travel times (Tzeng

et al., 2007; Lin et al., 2011; Huang et al., 2012; Campbell et al., 2008). Effectiveness objec-

tives maximize some measure of service, often the amount of demand satisfied (Lin et al.,

2011) and/or the speed with which demand is satisfied (Huang et al., 2012; Balcik et al.,

2008). Equity objectives encourage models to provide service equally to all recipients, by

minimizing the latest arrival time (Campbell et al., 2008), minimizing the sum of arrival

times (Campbell et al., 2008), maximizing the smallest demand satisfaction rate (Tzeng

et al., 2007), minimizing the disparity in demand satisfaction (Lin et al., 2011), or imposing

penalties on inequitable deliveries (Huang et al., 2012).

Some of these models explicitly consider trade-offs between efficiency, effectiveness, and

equity. By considering multiple objectives, studies have highlighted the cost, in terms of

one objective, of optimizing under another objective (Campbell et al., 2008; Huang et al.,

2012; Tzeng et al., 2007; Doerner et al., 2007). Some models generate multiple solutions for

decision-makers to choose among (Nolz et al., 2010; Tzeng et al., 2007; Doerner et al., 2007;

Viswanath and Peeta, 2003); in choosing, decision-makers implicitly weight the importance

of each objective. Other models explicitly weight the importance of each objective and

optimize accordingly (Lin et al., 2011; Nolz et al., 2010). However, to our knowledge, these

weights are based on assumptions about the relative importance of each objective, with

little empirical validation.

At the operational level, limited transportation resources necessitate prioritization of

deliveries among communities and commodities. In most cases, these trade-offs are mod-

eled using penalty functions, based on the deprivation cost of time without a commodity

(Holguin-Veras et al., 2010; Perez et al., 2010), late delivery to a location (Balcik et al.,

2008) and of particular commodities (Lin et al., 2011). Penalty functions are a useful way

to structure models that prioritize deliveries, but to date, the parameters of the penalty

functions have simply been assumed (with the important exception of a deprivation cost

for water, in Holguin-Veras et al. 2010).

A key problem, at both the conceptual and operational levels, is the lack of a way to
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value the trade-offs between conflicting goals and objectives. As described in the preceding

paragraphs, trade-offs have been incorporated into models by weighting multiple objectives

or incorporating penalty costs into a single objective, but these weights and penalty costs

have simply been assumed, rather than measured (again, except for the deprivation cost

for water, in Holguin-Veras et al. 2010). Assumed penalty functions and objective weights

enable the development of important insights. However, we should also attempt to measure

the appropriate penalty functions and deduce the weights that will lead models to make

better trade-offs between conflicting goals and objectives.

3.1.3 Approaches to valuing trade-offs

Our challenge is to define a multi-criteria measure of the quality or performance of humani-

tarian aid delivery plans, which values trade-offs between the criteria. This measure should

capture important trade-offs identified in practice and by existing models, including deliv-

eries of various commodities to various locations, and the importance of efficiency, equity,

and effectiveness. A natural form for such a measure is a multi-attribute utility function.

There are several possible approaches to defining such a function.

One approach is to measure aid delivery effectiveness based on the utility of those

receiving the aid - the beneficiaries. For this approach to work, it is necessary to find a

utility function that adequately represents the preferences of beneficiaries. Holguin-Veras

et al. (2010) and Perez et al. (2010) propose this approach, attempting to minimize the

suffering, as measured by the deprivation cost, incurred by people in need. The deprivation

costs (disutility functions) have proven difficult to measure, though this seems a promising

approach. In the related domain of healthcare, a preference measurement approach is used

to weigh the relative benefit of various health interventions, by comparing the number

of quality-adjusted life years (QALYs) each intervention provides (see Gold et al., 2002;

Morrow and Bryant, 1995; Dranove, 2003). To determine how much to adjust each year,

based on the quality of life, individuals' or communities' preferences for different health

states are measured and converted to weights, yielding a utility function for each individual

or community. Utility functions like these could be maximized in aid delivery models.

The challenge in applying approaches like QALYs or deprivation costs is that measuring

the preferences of beneficiaries of humanitarian aid is challenging for numerous reasons.

Beneficiaries in different emergencies have different preferences. There are so many possible
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locations and types of emergencies that it is impractical to measure preferences ahead of

time, and in the midst of an emergency, preference measurement is practically impossible.

The ability to gather beneficiary preferences would be valuable, but we leave this approach

to future research.

A second approach is to model the utility functions of humanitarian experts, whose job

it is to make the decisions on how to prioritize aid deliveries. Experienced aid workers

should have in mind the preferences of the beneficiaries in their own preferences. Moreover,

they may be better positioned than beneficiaries to determine some aspects of aid distri-

bution. For example, beneficiaries may not realize the importance of adequate sanitation

to prevent the spread of disease. Certainly such experts may also have other influences on

their preferences, such as the need to raise money from donors. Nevertheless, measuring

expert preferences seems the most direct route to a practical objective for humanitarian

aid.

In health care, a similar approach has been taken in the development of disability-

adjusted life years (DALYs). QALYs, which incorporate the health preferences of indi-

viduals or communities, were not suitable for allocating resources across diverse sets of

communities or populations. DALYs were developed for this purpose, by measuring the

preferences of a group of health experts (Gold et al., 2002; Jamison et al., 1993). In this

research, we work toward a similar measure for humanitarian aid, one that can be used

across communities to determine the best resource allocation decisions.

This research seeks to find a multi-attribute utility function that values trade-offs be-

tween key outcomes of humanitarian aid delivery, including conceptual measures of effi-

ciency, effectiveness, and equity, along with operational trade-offs like delivery of one com-

modity or another. Section 3.2 describes the selection and use of the conjoint analysis

method of measuring preferences. In Section 3.3, we apply conjoint analysis to the problem

of aid transportation planning, and we develop the performance criteria by which plans

will be judged. Section 3.4 details the survey design, and Section 3.5 discusses the results,

showing how experts assessed trade-offs among the performance criteria. Section 3.6 maps

the survey results to objective functions for humanitarian aid delivery models. Section 3.7

provides conclusions and directions for future work.
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3.2 Measuring Preferences with Conjoint Analysis

Our goal is to find a function that can quantitatively value aid delivery plans, by measuring

expert preferences across such plans. Utility functions are a natural method of capturing

expert preferences, and can be defined over a wide range of plan attributes. Later sections

consider which specific plan attributes to include in the analysis. In this section, we con-

sider multiple methods of measuring expert preferences, then describe the conjoint analysis

method, selected for this research, in more detail.

3.2.1 Selection of preference measurement method

Measuring preferences for aid delivery will require the estimation of a multi-attribute utility

function. There are several methods that could potentially be used to measure such a

function, including conjoint analysis, the analytic hierarchy process, and methods associated

with multi-attribute utility theory.

Multi-attribute utility theory supports complex decisions by measuring a decision-maker's

utility function in an in-depth interview, which looks for indifference points in tradeoffs

among the attributes of the potential decision outcomes (Keeney, 1977; Dranove, 2003).

The analytic hierarchy process (AHP) breaks decisions down into a series of pairwise com-

parisons, and calculates preference scores based on the decision-maker's evaluation of each

comparison (Forman and Gass, 2001; Meissner and Decker, 2009). Conjoint analysis uses a

survey, in which respondents rank or rate several possible decision outcomes, to estimate a

utility function over the attributes of the decision outcomes (Green and Srinivasan, 1978;

Green et al., 2001; Orme, 2006).

This research required a method that would take limited time from busy humanitar-

ian logisticians, that would ask intuitive questions with no need for pre-training, and that

would scale easily to multiple respondents. In these respects, conjoint analysis offers sev-

eral advantages over the other methods. The number of questions required to estimate a

utility function is smaller than in AHP, enabling shorter surveys. The survey questions

are intuitive, since they are asked to make choices between different alternatives, as they

would do in practice. In contrast, the interviews of multi-attribute utility analysis are much

more complex. Finally, conjoint analysis surveys scale naturally from single to multiple

respondents, whereas multi-attribute utility analysis would require an interview of each
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respondent. For these reasons, conjoint analysis was selected for this research.

It is important to note that conjoint analysis assumes linear, additive preferences, mean-

ing that nonlinear preferences cannot be captured. However, the method remains relatively

flexible in that it only restricts utility functions to be piece-wise linear, so nonlinear effects

can be approximated. Piece-wise linear functions are a first-order approximation to true

utility functions, but they capture important elements of human preferences, showing the

direction and magnitude of change in preferences as some quantity varies. The ranges of

values for which utility was estimated (discussed later) were chosen to lie in the middle of

the range rather than at its extreme points, to avoid areas where preferences were likely to

be nonlinear (for example, when all cargo is delivered, prioritization is unimportant). In

these middle-range values, linear preferences seem likely to provide a good approximation

to true preferences: delivering a little more cargo, a little faster, should provide a little more

utility. Furthermore, while a more flexible model might be desirable to represent preferences

accurately, models with nonlinear objectives are more difficult to solve. Piece-wise linear

objective functions represent a good balance between accuracy and implementability.

3.2.2 Introduction to conjoint analysis

Conjoint analysis is typically used to measure consumer preferences for products (Green

et al., 2001; Orme, 2006). Consumer preferences for a product are assumed to be a function

of the attributes of that product. A product is decomposed into a set of attributes (such as

weight), each with a set of levels (e.g. light and heavy). These attributes and levels can be

combined to create a number of potential product profiles (e.g. a light product at a cost

of $1, or a heavy product at a cost of $2). A consumer is given a survey asking him to

rank or select from among several product profiles. Based on his responses, it is possible to

estimate his "part-worth utilities", meaning how much each attribute-level contributed to

his preference for each product profile.

To estimate all of an individual's part-worths, the respondent would have to evaluate

all possible product profiles that can be created from combinations of attribute-levels for

the product. Conjoint analysis provides ways to reduce the number of evaluations required

to estimate useful part-worths. The product profiles are carefully selected based on the

same principles used in design of experiments. Questionnaire designs can be fixed, in which

the questions are selected ahead of time (Kuhfeld et al., 1994), or adaptive, in which the
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questions are selected in real time based on the answers already provided by the respondent

(Toubia et al., 2007; Sawtooth, 2009a).

Once the questionnaire is completed, the part-worths must be estimated, using one of

several possible estimation methods. Each question in the survey provides some informa-

tion about which product profiles are preferred over others. Statistical methods combine

information from all the questions and estimate how much each attribute-level contributed

to the total utility of the product profiles, based on the assumed utility model (described in

the next section). Multiple estimation methods can be used, but the most effective method

appears to be hierarchical Bayes estimation (Lenk et al., 1996; Sawtooth, 2009b).

There are multiple formats for the survey given to respondents. Respondents can be

given partial or full product profiles (only a few attributes or all the attributes). The task

they are asked to perform also differs. Sometimes respondents are asked to rank a set of

profiles in order of preference. In choice-based surveys, they are asked to choose which

product they would purchase among a set of profiles. In metric paired-comparison surveys,

they are shown two profiles and asked how much they prefer one to another.

Before describing the survey developed for this research, we first describe the assump-

tions underlying conjoint analysis methods.

Model and assumptions

There are many models for conjoint analysis that make different assumptions, but here we

provide an overview of the model used in this survey (for more details, see, e.g., Green and

Srinivasan, 1978; Abernethy et al., 2008; Grissom et al., 2006). Recall that a product is

decomposed into a set of attributes, each with a set of possible levels. A product profile,

then, is made up of levels for each of its attributes. A row vector x = (Xi, X2 , ...X) defines

the levels of attributes in a given profile.

The components of x are defined differently depending on the assumed model of prefer-

ence over each attribute. Green and Srinivasan (1978) describe three models of preference.

In the ideal vector model, the utility function over each attribute is linear, so that preference

for the attribute scales linearly as the level of the attribute increases. The second model

assumes an ideal point for each attribute, and preference decreases as we move away from

the ideal level. The third model, the part-worth function model, is the most flexible: it

assumes no specific form for the utility function over each attribute. The utility of several
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discrete levels of the attribute is found, and then linear interpolation can be used to create a

piece-wise linear utility function for the attribute. In this latter model, used in this research,

each of the components of x is a dummy variable indicating whether or not a particular

level is present in this profile. (For example, x1 = 1 if the profile is heavy and 0 if it is not

heavy, while X2 = 1 if the profile is light and 0 if it is not light. Similarly, X3 = 1 if the

profile costs $1 and 0 otherwise, while X4 = 1 if the profile costs $2 and 0 otherwise.)

Conjoint analysis typically assumes that consumer preferences for products are a linear,

additive function of the attributes of that product. The assumption of additive preferences

requires the attributes to be mutually preferentially independent. The preference for one

attribute, when all others are fixed, must not depend on the levels of the fixed attributes.

This assumption is taken into account in the design of conjoint surveys, by ensuring that

the attributes are independent. Under the assumption of linear, additive preferences, a

product's utility is U(x) = 1' wixi = x - w, where w = (Wi, W2, ... , wn) is the part-worth

vector. The part-worth vector is what we are trying to estimate: it represents the partial

utilities of each of the attribute-levels of the product.

3.3 Designing a Conjoint Survey for Aid Delivery

In this section, we consider the specific criteria to be included in our multi-criteria perfor-

mance measure, and the emergency context in which it will be derived. In addition, we

describe how these elements are integrated into the design of the conjoint survey, which will

measure the utility functions of experts.

3.3.1 Context: survey scenario

The conjoint analysis method is here used to measure preferences for aid delivery plans,

rather than consumer products. The survey asks respondents to select a preferred plan

from among several plan profiles. Which plan is preferred depends very much on the

disaster environment: the severity and scale of the emergency, the terrain, the climate, the

population, and many other variables. It was necessary to provide some of this information

in order to enable respondents to select among transportation plans. We tried to balance

this goal with the desire for generalizable results, by providing a scenario specific enough

to enable selection among plans, yet general enough to draw broader conclusions.

120



The scenario focuses on aid deliveries in the first week after a major earthquake. The

affected areas are cold and mountainous, and the earthquake has destroyed much of the

infrastructure. There is an order of priority for types of aid: shelter is first priority, health

second, water and sanitation third, and food fourth priority. There is also an order of

priority for locations: some locations (first priority) are in more urgent need than others

(second priority). No further information about the scenario is provided. Participants are

told to evaluate plans based on the limited information they have.

This scenario is relatively general (for aid delivery problems) because it provides a given

order of priority for item types and locations, rather than asking respondents to determine

the priorities based on the scenario. Therefore, it should generalize to other scenarios in

which priority item types and locations are well defined, which is common in emergency

response. However, it is specific to the first phase of a major emergency response. In later

phases, and in smaller emergencies, the goals of aid delivery might be different, or resources

might be valued differently. The same study design could be used to investigate other

response phases, but this investigation is specific to the first phase.

3.3.2 Performance criteria: survey attributes and levels

The selection of criteria to include in a multi-criteria performance metric is crucial to the

usefulness of the resulting function. Recall that our goal is to value trade-offs between

various objectives of humanitarian aid delivery. This section describes the considerations

involved in selecting objectives to include, then describes how they are operationalized

within the conjoint survey, in the design of the survey's attributes and levels.

In determining which objectives, or performance measures, to study, we considered per-

formance measures used in practice and in models, along with the requirements of conjoint

analysis surveys.

To find measures that match the objectives of expert humanitarian aid workers, we

looked for the most important characteristics by which experts evaluated the "goodness" of

different aid delivery plans. An extensive field research study helped to identify the informal

performance measures employed by expert humanitarian logisticians (see Chapter 2 of this

thesis). Through a grounded theory analysis of observations of 10 expert teams creating

aid delivery plans, we distilled five key performance metrics by which people evaluated

their evolving plans: the total cargo delivered, the total delivered of each type of item
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(shelter, health, water and sanitation, and food), the total delivered to high- and low-

priority locations, the speed of delivery, and the cost of the operation.

Next we consider the usefulness of these five measures of performance: do they capture

the important trade-offs identified in practice and in past modeling efforts? Because they

are derived from practice, we believe they do capture trade-offs that matter to expert

logisticians. Moreover, they include most of the objectives utilized in past humanitarian

aid delivery models (see Section 3.1.2). Therefore, valuing trade-offs among these measures

should provide useful objective weights for future modeling efforts. Finally, these measures

will enable us to explore trade-offs between efficiency, effectiveness, and equity. Instead of

formulating one objective specifically designed to measure each of these three goals, the five

practice-derived metrics unpack each goal into some of its component measures. Efficiency

is measured by cost, effectiveness by the total cargo delivered and the speed of delivery, and

equity by the prioritization of deliveries across locations. We believe this is a more useful

approach, because we can measure finer-grained trades among the component measures and

still gain some intuition about the relative importance of efficiency, effectiveness, and equity.

Note, however, that the measure we map to equity does not correspond directly to equity

measures used in past models (Marsh and Schilling, 1994; Huang et al., 2012; Lin et al.,

2011; Campbell et al., 2008), which typically focus on equalizing distribution of services

rather than prioritizing deliveries across locations. We chose to use the measure found in

practice rather than introduce model-based constructs into the survey. Furthermore, as we

will describe in the following paragraphs, we use the issue of prioritization to probe the

importance of equitable distribution.

To satisfy the assumptions of conjoint analysis, the performance measures must be in-

dependent, with a limited number (3, in this survey) of mutually exclusive levels that span

the range of possibilities to be studied (Sawtooth, 2011). In some cases, measures that

were conducive to use as objective functions in optimization models were not appropriate

for conjoint analysis nor intuitive to decision-makers. For example, in optimization models,

a useful way to measure prioritization by item type is to measure the fraction of satisfied

demand for each type of item. However, this measure proved non-intuitive to survey re-

spondents and it was not independent of the total cargo delivered (over all item types)

and therefore unsuitable for conjoint analysis. Instead, we measure the fraction of capacity

allocated to each type of item, which leads to a nonlinear objective function. We strove
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to choose measures both intuitive to decision-makers and appropriate for conjoint analysis,

but occasionally the analytical tractability of the measures was less than desired (this issues

is addressed further in Section 3.6).

In conjoint analysis, respondents evaluate profiles described in terms of several attributes,

each of which can take on one of several levels. In our survey, the profiles are aid delivery

plans, and the attributes are the performance measures by which they are evaluated, i.e.,

the objectives whose trade-offs we wish to investigate. The levels are discrete values of

these performance metrics. The following paragraphs describe the transformation of the

five metrics identified earlier into measures both intuitive to humanitarian logisticians and

appropriate for conjoint analysis. The complete set of attributes and levels is provided in

Table 3.1. In the survey, each attribute description included a "[?]" button which, when

clicked, accessed a more extensive description of the attribute-level (provided in Appendix

A.1).

Total cargo delivered The total cargo delivered was simply described as the percent

of requested cargo that was delivered during one week. The next step was to select three

discrete levels that span the range of possibilities, i.e. from 0% to 100%. We feared that, in

the survey, levels of 0% or 100% would provide skewed data, because 0% might be simply

unacceptable to respondents (generating no data), while 100% would render useless the

prioritization attributes (prioritization is irrelevant if all the cargo is delivered). Therefore,

levels were chosen towards the middle of the range, with a high level of 80%, a middle level

of 60%, and a low level of 40%.

Prioritization by item type and by location The two prioritization metrics - by

item type and by location - were more difficult to describe. One way to show how a plan

prioritized item types was to list the amount of each item type delivered, but this seemed

cumbersome. Instead, three "prioritization schemes" were developed. One level would

be a lexicographic prioritization scheme, which sends all priority-1 cargo first, then all

priority-2 cargo, and so on. The opposite extreme would be an evenly mixed prioritization

scheme, which attempted to deliver the same amounts of all cargo types. Between these two

extremes, a "weighted mix" scheme would deliver all four types of items, but more of the

higher-priority types. In order to ensure that the prioritization attributes were independent

123



1. Total cargo delivered

(a) Deliver 80% of cargo requested for this week

(b) Deliver 60% of cargo requested for this week

(c) Deliver 40% of cargo requested for this week

2. Prioritization by item type

(a) Priority-i (shelter) items first: Load vehicles with Priority-i items before any
other cargo.

(b) More high-priority items: Load vehicles with a mix of items, but more of the
higher-priority types.

(c) Even mix of items: Load vehicles with an even mix of item types.

3. Prioritization by location

(a) Priority-i locations first: Send vehicles to high-priority locations before serving
other locations.

(b) More high-priority locations: Send vehicles to all locations but send more to the
high-priority locations.

(c) Even mix of locations: Send vehicles to all locations in equal proportions.

4. Speed of delivery

(a) 1-3 days: Complete most deliveries in 1-3 days.

(b) 2-6 days: Complete most deliveries in 2-6 days.

(c) 4-7 days: Complete most deliveries in 4-7 days.

5. Cost

(a) $0.5 million cost for this week

(b) $2.0 million cost for this week

(c) $3.5 million cost for this week

Table 3.1: Attributes and levels
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of the total deliveries, they were described not in terms of the total cargo they delivered

of each item type or to each location, but instead based on how vehicles were loaded with

cargo (item prioritization) and dispatched to destinations (location prioritization). This

description also proved more intuitive to humanitarian logisticians.

Speed of delivery Speed of delivery was also challenging to describe in a compact man-

ner, because deliveries are made throughout the week. Two clear options were to state an

average delivery time or give a range of days in which most deliveries occurred. The latter

was selected because it was more intuitive for respondents. The 'fast' level concentrated

deliveries in the first 1-3 days, the 'slow' level concentrated deliveries in the last 4-7 days,

and the in-between level spread them throughout the week.

Cost Finally, the cost was easily described as the operational cost for one week of oper-

ation, in dollars. The selection of the three levels was more challenging, because costs can

vary widely for different kinds of responses by different organizations. The range of costs

was centered on the estimated cost for a one-week response in the scenario upon which

the questions are based. This estimated cost includes a large number of trucks and several

helicopters. Then, the high and low levels were designed around this center, roughly cor-

responding to a response with many more helicopters (high) and one with no helicopters

(low). Humanitarian experts confirmed that these cost levels made sense for this scenario.

The five attributes were carefully designed to be as independent as possible, in order to

satisfy the assumptions of conjoint analysis. Independence requires that the preference for

one measure, when all others are fixed, does not depend on the values of the fixed measures.

The five attributes can take any value no matter the values of the other measures, and the

value of one attribute does not provide any information about the values of the other

levels. For example, prioritization by item type was described in terms of the amount of

cargo loaded on each truck, which does not affect the total amount of cargo delivered,

how quickly it was delivered, where it was sent, nor how much the truck movement cost.

Of course, in any given instance of the problem, some combinations of these attributes

woudl be infeasible. For example, in some networks, delivering to high-priority locations

might require much longer trips, and as a result less cargo could be delivered. However,

in this survey, no such specifics were provided, and respondents were told that all these
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combinations were feasible.

The choice to provide three levels for each attribute was made because it seemed the

minimum number required to understand the general structure of respondent preferences.

It is desirable to have a small number of levels because it reduces the number of required

questions and enables better estimation of the more limited number of parameters. It is

also desirable to have the same number of levels across all performance measures, because

attributes may artificially appear more important if they have more levels than other at-

tributes (Orme, 2006; Sawtooth, 2011). At least three levels were required to distinguish

whether there were differences in how much people cared about going from a low to a

medium, and from a medium to a high, level of an attribute; moreover, three levels were

easy for people to consider. These concerns drove the choice to use three levels for each

attribute.

3.4 Research Design

This section describes the design of the survey: the sample of respondents, the survey format

and question design, and the estimation method.

3.4.1 Sample

Because the survey's purpose is to develop an aid performance metric based on expert

preferences among delivery plans, it was necessary to find a sample of respondents who

qualify as "experts". Such people should have in mind the preferences of the beneficiaries

and understand the implications of different decisions (such as the importance of sanitation

in preventing disease). It is difficult to determine whether people meet these criteria, so we

sought humanitarian logisticians with significant field experience. It was hoped that people

with field experience would have learned the implications of aid delivery decisions, would

have worked with beneficiaries, and would be reasonably good at their jobs.

There is a small community of expert humanitarian logisticians, many of whom are

posted in remote parts of the world. Instead of attempting a broad, representative sample

of this community, whose members would be hard to define, we chose to survey two specific

groups of logisticians brought together for training (see Table 3.2).

Group 1 consisted of the facilitators at a logistics response training run by a major

126



Respondents Avg. Yrs. Exp. Description

Group 1 18 11.7 Logistics response training facilitators

Group 2 12 8.3 Humanitarian logistics masters students

Table 3.2: Groups of respondents

humanitarian aid organization. The 18 facilitators all had extensive experience in human-

itarian logistics (average of 11.7 years), and they came from many different humanitarian

organizations, mainly large international aid agencies. Group 2 consisted of students in a

humanitarian logistics masters program. The 12 respondents had an average 8.3 years of

experience in humanitarian logistics, and came from various aid organizations, both large

and small.

Group 1, in particular, is representative of the expert community who currently make

aid delivery decisions, because the training at which the survey was administered is directed

at people who will fill this role in future emergencies. Group 2, on the other hand, spans

a more diverse set of agencies who may have different opinions about the best ways to

distribute aid.

In both cases, the survey was introduced to the entire group. They were requested to

complete the survey online within the next few days. They had the opportunity to ask

questions, but only a few clarifying questions were asked. The survey was completed by

nearly all facilitators in Group 1, and all students in Group 2.

3.4.2 Selection of conjoint method and survey format

There are many possible questionnaire formats, which offer different advantages and disad-

vantages. One of the key differences is the way profiles are described: in terms of all the

attributes (full profile) or only a subset of the attributes (partial profile). Another differ-

ence is whether respondents are asked to rank profiles, rate how much they prefer one to

another (metric paired-comparison), or select a favorite from among a set of possible profiles

(choice-based). Some questionnaire designs are fixed, meaning the questions are determined

ahead of time, while others are adaptive, meaning the questions are determined in real time,

based on the respondent's previous answers, to elicit the most possible information. Finally,

each questionnaire format has advantages and disadvantages in the part-worths that can
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be estimated from it.

Some of the most commonly used formats are adaptive conjoint analysis (ACA), choice-

based conjoint (CBC), and adaptive choice-based conjoint (ACBC). ACA asks respon-

dents to choose among two partial profiles, rating how much they prefer one to another.

Both choice-based methods provide full-profile options and respondents select among them.

Choice-based methods are popular because they are intuitive for respondents, asking them

to make choices among products as they would in real purchase decisions. However, each

question offers less information than in metric paired-comparison questions (as in ACA),

in which respondents indicate how much one profile is preferred to the other. As a result,

it is more difficult to estimate individual-level preferences from choice-based surveys than

from other formats like ACA. However, recent developments in estimation methods make

it possible to do so, and innovations in questionnaire design, like adaptive methods, make

it possible to elicit more information from each respondent.

In this research, the questionnaire format was selected to meet several criteria. First,

it was important that the questions be very clear, because the "products" to be evaluated

are quite complex. Respondents probably have not encountered this type of choice before.

While they might have created transportation plans, they probably have never evaluated

several possible plans in terms of their attributes (whereas in surveys about computer pur-

chases, for example, most respondents have probably selected a computer based on its speed,

memory, brand, etc.). Because of the complexity of the choices, full-profile descriptions were

desired, in order to ensure that the trade-offs were clear. Choice-based methods also seemed

to offer a more intuitive question format.

A second concern was that the questionnaire be engaging and of manageable length,

because the target group of respondents were likely very busy, and were not obligated to

complete the questionnaire. Adaptive methods allow shorter questionnaires, because they

collect more information from each question. The adaptive choice-based conjoint (ACBC)

approach, in particular, appears to offer a more engaging format, keeping respondents

interested despite slightly longer questionnaires (Sawtooth, 2009a). These initial criteria all

pointed to ACBC as the best approach. However, choice-based methods generally are weaker

in estimating individual-level preferences. Still, hierarchical Bayes estimation methods have

enabled the estimation of individual-level preferences in ACBC surveys, even with small

sample sizes (Sawtooth, 2009c). For these reasons, ACBC was selected for this research. We
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Survey section No. questions

Request consent
Introduction and example question 1
Build-your-own ideal plan 1
Introduction to screening questions -
Screening questions (6) and optional unacceptable rule (1) 6-7
Introduction to choice tasks

Choice tasks (max 9) and holdout questions (2) (max) 11
Demographic questions (5) and feedback 6

Table 3.3: Survey overview

use the Adaptive Choice-Based Conjoint (ACBC) format provided by Sawtooth Software,

one of the most commonly used software packages for administering conjoint surveys.

3.4.3 Survey structure and question design

Table 3.3 provides an overview of the structure of this survey, along with the number of

questions in each section. Each of the survey sections is described in more detail in the

paragraphs below.

Adaptive CBC questionnaires, as implemented in the Sawtooth software package, have

three main sections. First, there is a "build-your-own" section, with only one question that

asks the respondent to select his most preferred level for each attribute. It also serves as

a useful introduction to all the attributes and levels the respondent will see later in the

survey.

Second, there is a "screening" section, in which the respondent evaluates individual

profiles as either acceptable or unacceptable. In this survey, 6 screening tasks are included,

with 3 profiles per task. This is less than the recommended number (Sawtooth, 2011), but

the change enabled a shorter survey with (we expected) little loss because the screening

questions seemed less likely to provide useful data. Screening questions make sense in

purchase decisions, in which one might choose not to buy a product. However, in the

case of aid transportation planning, any plan is better than none, so few plans should be

deemed unacceptable. After a few screening questions, one "unacceptable rule" question

was included. The software scans recent answers for any attribute levels the respondent

may consider unacceptable, and asks him to confirm that any one such level is indeed
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unacceptable.

The third section consists of choice tasks, in which the respondent is shown three profiles

and asked to choose among them. The respondent answers a series of such questions,

adapted by the software to extract the maximum amount of information. The number of

choice tasks can vary depending on the respondent's answers. In this survey, a maximum

of 18 profiles can be evaluated, resulting in a maximum of 9 required choice tasks (as

recommended by Sawtooth, 2011).

In addition to these three main sections, the survey also contains a request for consent

to participate in research, introductory pages for each section, a few demographic questions,

and an opportunity to provide feedback. In total, the respondent answers a maximum of

20 choice or acceptability questions and 6 short demographic/feedback questions.

Question design for choice and screening tasks

Question design involves selecting the sets of profiles the respondent sees in each of the

screening and choice tasks. The adaptive software designs questions as respondents proceed

through the questionnaire. In Sawtooth's ACBC method (Sawtooth, 2009a), questions are

designed by varying attributes around the respondent's ideal profile, which they selected in

the first section of the survey. The algorithm randomly selects the number of attributes to

vary (within a range set by the user, in this case between 2 and 3) and which attributes to

substitute.

There are two main goals in question design: to ensure the respondent sees each level

enough times to gather preference data on it, and to maximize statistical efficiency (i.e.

gather the most useful data for understanding all of the respondent's preferences). The

question selection algorithm works to ensure greater level balance (the former goal) by

increasing the probability that a level will be selected when it has been included relatively

fewer times already. The latter goal of statistical efficiency is generally achieved (in other

methods) by choosing orthogonal designs in which each attribute is varied independently.

However, in adaptive CBC, attributes are instead varied around the respondent's ideal

design. While this results in a less statistically efficient design, it enables collection of

better data because respondents are more engaged in evaluating product concepts close to

those they prefer (Sawtooth, 2009a).

The number of questions (discussed earlier and shown in Table 3.3) and the question
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design parameters control the data gained from the survey. This survey's design attempted

to limit the number of questions while still gathering enough data to estimate preferences

at the individual level, with a relatively small sample size. In order to ensure that these

parameters generated good surveys, several tests were performed. The authors filled out

a number of surveys, each with different types of preferences, then analyzed the data to

ensure that it revealed the intended preferences. In the process of analysis, we verified that

the estimation procedure converged. In a second test, the survey designs were examined to

ensure that each attribute level appeared at least 3 times, as recommended by Sawtooth

(2011).

Holdout questions

A series of holdout questions are included within the conjoint survey. Holdout questions

are identical to choice task questions, but they are not utilized in preference estimation.

Instead, they are used for model validation: we can measure how well the estimated model

predicts respondent preferences, as evidenced by their choices in the holdout tasks. The

"hit rate" is the number of correctly predicted choices divided by the total sample size. In

addition to holdout tasks, it is common to repeat one of the holdout choices in order to

measure the test-retest reliability of each respondent.

Two holdout tasks were included in the survey. Each holdout task was designed so that

the options have unequal utility; otherwise, a random predictor would have the same hit

rates as the estimated utility function (Johnson and Orme, 2010). It is difficult to know

when designing the survey which options will be preferred by respondents, so instead, each

option was designed to be preferred by respondents with particular (and different) kinds of

preferences.

The first holdout task was repeated to provide a measure of test-retest reliability. In

order to keep the survey as short as possible, this question was first introduced as an example

question during the introduction to the survey, then repeated later during the choice tasks

section. The example question was a two-choice rather than a three-choice question (for

simplicity), so the choice task included the same two choices, along with a dominated choice

(for respondents with rational preferences). This test-retest design is not ideal, because it

contains only two choices and because it appears so early in the survey, but it does enable

a rough estimate of test-retest reliability without adding additional questions to the survey.
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Introductory materials and question text

The question text and introductory materials were designed carefully to ensure that respon-

dents understood the tasks they were being asked to complete. The text was intended to

be as brief and as clear as possible, so that respondents would understand the questions

and instructions, yet would not be burdened with unnecessary information. The text used

to describe the attributes and levels was described in Section 3.3.2. The remaining survey

text can be found in Appendix A.2.

Several versions of the survey were pilot-tested with small groups of respondents. Re-

spondents provided detailed feedback to the researcher on points of confusion, length of

the survey, and any other reactions. They were also questioned by the researcher to ensure

their understanding of the questions matched the intended meaning. The survey was re-

vised after each set of feedback and tested again, until respondents reported no confusion

and a manageable survey length. Pilot test respondents included both university colleagues

and humanitarian logisticians.

3.4.4 Estimation method

After the survey has been completed by respondents, their part-worth utilities can be esti-

mated. This study utilizes the hierarchical Bayes (HB) estimation method, which appears

to be the most effective estimation method available (Sawtooth, 2009b). The method esti-

mates individual part-worth utilities by borrowing information from all respondents, thus

enabling more accuracy with fewer questions (Lenk et al., 1996). In this section, we de-

scribe the estimation method as implemented by Sawtooth Software. Our intention here

is to provide enough details to understand the intuition of the algorithm, but additional

information can be found in Sawtooth (2009b) and Allenby and Rossi (2006).

The goal is to estimate the part-worths of all individuals, given the data from each

individual's survey responses. The algorithm works on two levels, incorporating both the

distribution of part-worths over all the respondents and the choices made by each individual

during the survey. In the higher level, we assume the individual part-worths are distributed

normally. In the lower level, we assume a logit model describes the choices made by in-

dividuals. The parameters of both models (all individuals' part-worths along with their

distribution) are estimated iteratively by drawing estimates of each parameter in turn, and
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converging toward the most probable set of parameters.

This study uses the algorithm implemented by Sawtooth Software (Sawtooth, 2009b).

Analysis of the estimation process showed that the algorithm converged. The algorithm

produced estimates of both average and individual part-worth utilities.

3.5 Survey Results and Discussion

The results of conjoint analysis surveys are part-worth utilities: the amount of utility con-

tributed by each attribute-level to the overall utility of a profile (aid delivery plan). Put

another way, the overall utility of a plan is the sum of the part-worth utilities of each of its

attribute-levels. Figures 3-1 and 3-2 show the average part-worths for Group 1 and Group

2, respectively, with individual utilities for each respondent in gray behind the averages.

Part-worth utilities are estimated only for the three discrete levels of each attribute, but

these graphs include lines connecting the levels, to aid in reading the graph. Utilities were

estimated for each individual separately, along with a group average. The average is not

meant to represent a group utility function; rather, it is simply a useful way to summarize

the individual preferences of these groups of experts.

Utilities can be compared within an attribute (delivering 80% is better than delivering

60%, which is much better than delivering 40%), but they cannot be compared across

attributes (delivering 80% may or may not be preferred to plans costing $0.5 million).

Utilities are interval scaled data, with no natural zero point, and here they are arbitrarily

scaled so that they sum to zero for each attribute.

It is possible to compare utilities across attributes by considering how much the attribute

could contribute to the utility of a plan. The size of the difference in utility between two

levels of an attribute indicates how much utility can be gained by "moving up" one level.

Intuitively, those attributes that cover a larger range of utility are more important. For

example, it is clear in Figure 3-1 that total cargo delivery is much more important than

cost, because total delivery has a range of about 175 "utils", while cost has a range of less

than 50 utils. While this method of comparing across attributes is intuitive, note that it

depends on the specific levels selected for each attribute. An attribute will appear to have

more importance if its levels cover a larger range: for example, 40% to 80% should have

a larger jump in utility than 50% to 70%. As a result, comparisons across attributes are
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Attribute Preferred Level Att. Range Avg. Importance

Group 1 Group 2

Total cargo delivered 80% (highest) 40% - 80% 0.33 0.24
Prioritization by item type Weighted mix P1 first - Even mix 0.21 0.18
Prioritization by location Weighted mix P1 first - Even mix 0.17 0.21
Speed of delivery 1-3 days (fastest) 1-3 days - 4-7 days 0.18 0.15
Cost $0.5 million $0.5 m. - $3.5 m. 0.10 0.21

Table 3.4: Average attribute importances

only valid for the

a study, an effort

these comparisons

among each group

the sum of ranges

150

ranges of levels chosen in each study. (When designing attributes for

is made to cover the entire range of possible values, in order to make

more intuitive.) Table 3.4 lists the average importances of each attribute

of respondents (the "importance" is the range of an attribute divided by

over all attributes).
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Figure 3-1: Group 1 average (black) and individual (gray) part-worth utilities

The results from Group 1 are shown in Figure 3-1. We focus first on utilities for different

levels within the same attribute. As expected, Group 1 respondents, on average, prefer to

deliver larger total quantities, with 80% and 60% both much preferred to 40%. They prefer

faster speeds of delivery, and lower costs, with $3.5 million slightly less preferred and the

other two levels roughly equivalent. Less intuitively, in both prioritization attributes, the

"weighted mix" prioritization schemes are preferred to either extreme (priority-i first, or

even mix). One might not expect a decision-maker to send low-priority items before all
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high-priority items are delivered. However, respondents explained that they preferred to

send a weighted mix of cargo because people need more than one type of aid to survive:

someone who receives shelter but no sanitation may be safe from exposure but not from

disease. In prioritizing across communities, people wanted to send more aid to those in

more urgent need, but reasoned that a sending a little aid to the lower-priority communities

might be much better than nothing.

Comparing across attributes, the most important concern was increasing the total quan-

tity delivered, especially jumping from 40% to 60%. The least important concern was the

cost, with $3.5 million only slightly lower in utility than the other cost levels. This is con-

sistent with comments from respondents that, in the wake of a major emergency, cost was

unimportant because donors would provide whatever funding was needed. There is little

difference in importance between the two prioritization attributes and the speed of delivery,

though prioritization by item type does appear slightly more important than prioritization

by location.

150

0

-100

Figure 3-2: Group 2 average (black) and individual (gray) part-worth utilities

The results from Group 2 are shown in Figure 3-2. Within attributes, the order of the

levels is the same as for Group 1. Group 2 prefers to deliver more total cargo, and also

prefers the "weighted mix" prioritization schemes. The two faster speeds of delivery have

roughly the same utility, with the slowest option less preferred. Similarly, the two lower

cost levels have roughly the same utility, with the $3.5 million level much less preferred.
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Across attributes, there is less difference in importance than in Group 1. Speed of

delivery appears least important, along with prioritization by item type, because they span

the smallest ranges of utilities. The more important attributes are total deliveries (especially

the jump from 40% up to 60%), prioritization by location, and cost (especially avoiding costs

of $3.5 million).

Group 2 provides an interesting contrast to Group 1. Group 2 included more participants

from smaller aid organizations, which may account for some of the most striking differences:

the higher importance of cost for Group 2, and the importance of prioritizing by location.

Discussions with members of Group 2 suggested that the highest cost, $3.5 million, was an

extraordinarily high logistics cost for their smaller organizations. On the other hand, many

Group 1 respondents came from larger organizations and remembered spending $3.5 million

per week in recent emergency responses. It makes sense that cost would be more important

to smaller aid organizations who cannot count on the same level of donor support, and who

are unaccustomed to the large volumes of cargo commonly handled by larger organizations.

Group 2 also appeared to place more importance on prioritization by location. Respondents

commented that larger organizations tended to focus on moving large amounts of cargo,

while smaller organizations paid more attention to which cargo and where it was needed

(though moving less cargo overall).

We have considered only the averages so far, but there is also important information in

the variation around the average utilities. The variation around the average utility values

can be seen in both the individual utility estimates (shown in gray in each figure) and in

the standard deviations around each utility estimate. Table 3.8 provides the average utility

values and standard deviations for both groups.

The individual utilities suggest that some patterns of preference are less consistent across

individuals. In particular, there appears to be more variation in the prioritization and cost

attributes, while the total delivery and speed attributes show more consistent patterns, with

a few individual exceptions. This variation could be interpreted in at least two ways: either

there is more real variation in preferences across individuals, or these attributes are more

confusing and respondents interpreted them differently, or even incorrectly. Some individu-

als exhibited what we might consider irrational preferences. However, this variability may

also be attributable to real preferences. Some respondents mentioned they would prefer a

more expensive plan because they would have the option to scale it down or redirect funds,
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whereas a cheaper plan left little flexibility. Respondents also mentioned they might prefer

slower deliveries so that those handing out aid at the final destination would have the ca-

pacity to distribute it. It is worth considering both the averages and some of the important

exceptions in drawing conclusions about aid delivery preferences.

These results also shed some light on the conceptual trade-off between efficiency, ef-

fectiveness, and equity. The five measures in this paper represent components of each of

these three goals (see Section 3.3.2). Across both groups, the most important objective

was to deliver aid cargo, suggesting that effectiveness is the most important of the three

goals. Speed of delivery, often used in optimization models as a measure of effectiveness,

was only somewhat important, suggesting that the amount of cargo delivered is a better

proxy measure for effectiveness (though both measures matter). For Group 1, cost was the

least important, suggesting that efficiency is a secondary goal. Prioritization of deliveries

by location, one measure of equity, was less important than total cargo delivery but more

important than cost. Group 2 provides an interesting contrast, in that effectiveness, cost,

and equity appear to be valued similarly. For the group of Logistics Cluster decision-makers

(Group 1), it is clear that effectiveness is the primary concern, followed by equity, and last

by efficiency.

3.5.1 Assessing validity with holdout questions

One measure of the validity of the estimated preference models is their ability to predict

choices made by respondents. Holdout questions were included in the survey, as described

in Section 3.4.3, so it is possible to measure how well the estimated utility functions predict

respondent choices on the holdout questions. Recall that holdout questions are identical to

the other choice tasks but are not utilized in preference estimation.

The estimated preference model predicts that the respondent will choose the option

with the highest utility. The "hit rate" is the number of correctly predicted holdout choices

divided by the total sample size. The hit rate obtained from a conjoint survey can be

assessed in comparison with the hit rate that would be obtained with random selection of

choices. For example, for three-choice tasks, random selection would provide a 33% chance

of correctly predicting respondent choices. Hopefully, the hit rate from an estimated model

would be higher than 33%.

Table 3.5 shows the test-retest reliability, hit rates, and minimum expected hit rates for
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Group 1 Group 2

Test-Retest Reliability 0.89 0.50

H1 Hit Rate 0.89 0.67
Hi Min. (Random) Hit Rate 0.50 0.50

H2 Hit Rate 0.53 0.42
H2 Min. (Random) Hit Rate 0.33 0.33

Table 3.5: Hit rates and test-retest reliability

Groups 1 and 2. Before considering the results, it is important to note a few complications

due to the design of the holdout questions. The test-retest reliability was measured on a

two-choice question, based on the agreement in response between the two-choice example

and the first holdout question. The first holdout question, Hi, was essentially a two-option

question, because the third option was designed to be dominated for most respondents.

As a result, the two holdout questions have different minimum expected hit rates, because

random choice yields different rates depending on the number of questions.

Based on the test-retest reliability, it appears that Group 1 was much more reliable than

Group 2. The hit rates for Group 2 are correspondingly lower than those for Group 1. In

Group 1, the estimated model predicted correct choices on H1 89% of the time (where a

random model would have managed 50%), and on H2 53% of the time (where a random

model would have managed 33%). Clearly, the estimated model is much better than random

choice, and therefore has some value in characterizing respondent preferences. In Group 2,

the estimated model predicted choices on H1 67% of the time, and on H2 42% of the time,

again performing better than random choice but not as well as the models for Group 1.

While the hit rates show that the models capture some elements of respondent prefer-

ences, they are not perfect predictors of choices. There may be several reasons for this.

First, the test-retest reliability shows that some respondents had inconsistent preferences,

making prediction difficult. Second, the holdout questions appeared relatively early in the

survey, while respondents were getting used to the questions and clarifying their own pref-

erences. Third, the limited number of questions in the survey created a smaller dataset that

limited the accuracy of models.
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3.6 Mapping Survey Results to Objective Functions

Based on the results of the conjoint survey, it is possible to develop objective functions that

value the importance of each of the five attributes in the conjoint survey. In this section, we

develop two different forms of objective functions. First, we use the part-worth utilities to

develop a piecewise linear utility function over each of the five attributes, which estimates

the value of any given aid delivery plan. This requires mapping the survey attribute levels

to a performance metric that can be calculated based on any aid delivery plan. Second, we

develop a different form of objective function, using the attribute importances as weights in

a weighted-sum objective function. These two objective functions represent different ways

of interpreting the findings of the conjoint survey.

3.6.1 A utility function over five attributes

In this section, we develop a piecewise linear utility function that can be used as an objective

function in optimizing aid delivery plans. We seek a function of the form:

U(x) = ui(x 1 ) + U2 (X2 ) + U3(x3) + u4(X4) + u5 (X5 ) (3.1)

Each ui is a utility function over attribute i, and each xi is the value of a performance

metric that represents attribute i. Each of the attributes in the survey is equated to a

performance metric x that can be calculated based on a given aid delivery plan. The

survey data enable estimation of ui (xi). Each attribute-level maps to a discrete value of the

performance metric xi. The survey results provide a corresponding utility value ui(xi) for

each attribute level. Interpolating between and extrapolating beyond these points defines

a piecewise linear utility function ui(xi).

Table 3.6 shows the complete set of attributes and their corresponding performance

metrics, which were developed to match the attribute descriptions in the survey. (The

remainder of this section describes the mapping of attributes and levels to performance

metrics.) The right-most column in Table 3.8 shows the value of the performance metric

corresponding to each attribute-level. (The survey respondents had access to expanded

definitions of each attribute, beyond those listed in Table 3.1. These expanded definitions,

provided in Appendix A.1, provide the details necessary to associate each attribute-level

with a value of the performance metric.)
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Attribute Performance Metric xi

total delivered
Total cargo deliveredtoareusd total requested

wtd. "shortfall Manhattan distance"
Prioritization by item type from r = [P1id. P2d. P3d. P4 d. i] tottld.'7 total d.'I total d.'7 total d.

the ideal mix i = [0.5, 0.3, 0.15, 0.05].

wtd. "shortfall Manhattan distance"

Prioritization by location from s = [ i1 d-., P2 d. ] to the ideal mix
s = [0.7, 0.3].

Speed of delivery average day of delivery

Cost operations cost

Table 3.6: Attributes with associated performance metrics

Figure 3-3 shows the estimated utility functions ui(xi) for each attribute, based on the

Group 1 results. (We work only with the Group 1 average results, for simplicity.) In most

cases, the slopes of the lines have an intuitive interpretation, representing the value gained

per additional fraction of cargo delivered, or lost per additional day to deliver or increase

in cost. Table 3.7 provides the slopes and intercepts for each utility function.

Total cargo delivered The first attribute, total cargo delivered, is measured by the total

cargo delivered divided by the total cargo requested for delivery. This is a straightforward

interpretation of the attribute levels, which state that some percent of requested cargo was

delivered. These attribute levels, in turn, are easily equated with a discrete value of the

performance metric, equal to the percentage delivered (see the first rows of Table 3.8). The

survey results provide a utility value for each of these attribute levels, thus giving the utility

of three discrete values of the performance metric. These are plotted in Figure 3-3a, along

with lines interpolated between the points and extrapolated beyond them over the domain

of the performance metric.

The lines in Figure 3-3a represent a piecewise linear utility function estimated based on

each pair of points. The utility ui is a function of the fraction x1 of requested deliveries

completed: ui(xi) = mix1 + bi. The slope mi and intercept bi can be found based on each

pair of points; in this function, the parameters will be different for xi < 0.6 and xi > 0.6.
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Attribute and Model Domain Intercept Slope Interpretation of slope
bi = fmi =

Total delivered xi < 0.6 -322 571 Value per additional 1% of
u1 = mix + b1  0.6 < xi -138 264 cargo delivered (of all cargo

requested)

Prioritization by item type c2 < 0 49 -1.395 Value per 1-unit increase in

U2 = m2X2 + b2  0 < c 2  49 -0.795 shortfall Manhattan distance

Prioritization by location c 3 < 0 27.6 -0.94 Value per additional 1% of

U3 = m 3 x 3 + b3  0 < c3  27.6 -0.33 capacity allocated to
high-priority locations

Speed of delivery x4 < 3.9 161 -43 Loss in value per additional

U4 = m4x4 + b4  3.9 < X4 136 -37 (average) day to deliver

Cost X5 < $2 mil 14 -3 Loss in value per additional

U5 = m 5 X 5 + b5  $2 mil < x 5  49 -20 $1 million in cost

Table 3.7: Slopes and intercepts for estimated utility functions.

Table 3.7 gives the slopes and intercepts for this (and other) utility functions. The slope

has an intuitive interpretation: it represents the value gained per additional 1% of cargo

delivered (of all cargo requested).

Prioritization by item type The second attribute describes the allocation of deliveries

among different types of items, each of which has a different priority. The attribute levels

describe prioritization in terms of the percent of vehicle space allocated to each type of

item (specific percentage values were given in the expanded definitions of the attributes,

shown in Appendix A.1). This is measured by dividing the amount delivered of each type

of item by the total delivered over all priority levels, resulting in a four-dimensional vector,

r _ P1 delivered P2 d. P3 d. P4 d.
total delivered I total d.' total d. ' total d.

Because the survey gave only three utility values for three instances of this vector, it

is not possible to estimate linear coefficients describing the utility of delivering each of the

four types of cargo. Instead, we map the four-dimensional vector onto a one-dimensional

scale. We take the Manhattan distance between a given point r and a reference point f-,

which we choose as the most preferred prioritization level, f- = [0.5,0.3,0.15,0.05]. However,

we do not want to penalize solutions for delivering more than the ideal amount of cargo,
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Figure 3-3: Utility functions for each attribute. Black points are measured by the conjoint
survey, black lines are interpolated, and dotted lines extrapolated from the measured points.
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Deliver 80%
Deliver 60%
Deliver 40%

Priority-1 items first
More high-priority items
Even mix of items

Priority-i locations first
More high-priority locations
Even mix of locations

1-3 days
2-6 days
4-7 days

$0.5 million
$2.0 million
$3.5 million

Group
Avg. Util.

73.3
20.4

-93.7

2.2
49.2

-51.4

12.4
27.6

-40.0

45.2
-6.1

-39.1

12.9
8.8

-21.7

Table 3.8: Average part-worth utilities with
of attribute performance metric xi.

1
SD

30.8
17.5
33.9

30.4
26.8
25.6

34.9
26.8
24.1

21.6
15.7
23.8

22.7
13.5
21.1

Group
Avg. Util.

32.5
22.8

-55.3

4.4
30.2

-34.6

4.8
45.3

-50.1

14.4
20.3

-34.7

22.3
26.1

-48.4

2
SD

36.5
34.8
47.4

38.1
18.1
36.9

28.9
29.3
32.0

24.3
21.5
34.3

37.2
50.2
30.0

Value of xi

[1.00
[0.50
[0.25

0.8
0.6
0.4

0.00 0.00
0.30 0.15
0.25 0.25

[0.9, 0.1]
[0.7, 0.3]
[0.5, 0.5]

2.7
3.9
4.8

0.5
2.0
3.5

0.00]
0.05]
0.25]

standard deviations, with corresponding values

so only the negative portion of the Manhattan distance is counted, resulting in a "shortfall

Manhattan distance". Moreover, it is more important to deliver high-priority cargo than

low-priority cargo, so the "shortfall Manhattan distance" is weighted accordingly, again

using the vector f. Let r, be component p of r. Then, the item type prioritization measure

is X2 = Eip max[0, fp - rp].

The scale X2 captures the distance from the ideal mix of item type deliveries, but it does

not capture the "direction" of the difference. People preferred lexicographic prioritization

to evenly distributed deliveries, so it is necessary to determine whether r delivers more

high-priority item types (closer to lexicographic) or fewer than the ideal point. To do so,

we use a weighted difference c2 = f - (r - f): when c2 > 0, r is closer to lexicographic;

otherwise, it is closer to even or it delivers more low-priority item types.

The utility function u 2 (x 2 ) is plotted in Figure 3-3b; the sign of c2 determines whether

a given point lies on the upper (toward lexicographic) or lower (toward even) line. The

three points measured in the survey are shown as black circles. A piecewise linear utility

function was extrapolated from each pair of measured points. Several sample points along
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the extrapolated lines are shown as gray diamonds, to provide a sense of how this scale

maps to various possible values of the prioritization vector r.

Prioritization by location The third attribute describes the allocation of deliveries

among different locations, just as the second attribute described the allocation of deliv-

eries among types of items. The attribute levels describe prioritization in terms of the

percent of vehicles allocated to high- and low-priority locations (specific percentage val-

ues were given in the expanded definitions of the attributes, shown in Appendix A.1).

Again, this is measured by dividing the amount delivered to each location by the to-

tal amount delivered over all priority levels, resulting in a two-dimensional vector s =
[delivered to P1 locations delivered to P2 locations. . The metric is analogous to that described above

total delivered I total delivered

for item prioritization, and it measures the weighted "shortfall Manhattan distance" from a

given point s to the ideal point s: X3 = EP sp max[0, sp - sp]. Again, the weighted difference

C3= sA (s - s) distinguishes between points closer to lexicographic (c3 > 0) or closer to even

(c3 < 0).

The utility function U3(X3) is plotted in Figure 3-3c. The sign of C3 determines whether

a point lies on the upper (toward lexicographic) or lower (toward even) line.

Speed of delivery The fourth attribute, the speed of delivery, is measured by the average

day of delivery for all delivered cargo. The average day of delivery can be calculated by

summing the amount of cargo delivered on each day multiplied by the day, then dividing

the quantity by the total cargo delivered. The expanded definitions of each attribute (see

Appendix A.1) state explicit percentages of cargo delivered in each date range, so the

average day of delivery can be calculated for each attribute level (see Table 3.8). The

survey provides part-worth utilities for each of these attribute levels. The resulting utility

function for speed of delivery is plotted in Figure 3-3d, and the slopes and intercepts are

given in Table 3.7. The slope represents the loss in value for delivering one day later (on

average).

Cost The fifth attribute, the cost, is simply the operational cost of a plan. The attribute

levels map directly to this metric. The utility function for cost is plotted in Figure 3-3e,

and the slopes and intercepts are given in Table 3.7. The slope represents the change in

value for each additional $1 million in cost.
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The performance metrics in Table 3.6 were developed to provide the "best fit" with the

conjoint survey questions. As mentioned earlier, we privileged the design of a useful survey

over the design of attributes that mapped to convenient objective functions. This led to

several performance metrics that are nonlinear: the "total delivered" is a decision variable,

and it appears in the denominator of several metrics (both priority metrics and the speed

of delivery).

It is often more convenient to have linear objectives. The maximum possible amount of

cargo that can be delivered can be substituted for the actual cargo delivered. This substi-

tution does not yield exactly the same measure, but is an equally reasonable interpretation

of the survey questions. This quantity can be obtained by first solving a maximum flow

problem, then using the result as the denominator in those utility functions that require

the total cargo delivered.

3.6.2 A weighted-sum objective based on attribute importances

This section develops a simpler interpretation of the conjoint survey findings. Recall from

Section 3.5 that the importance of attributes can be compared by considering how much the

attribute could contribute to the utility of a plan, i.e. the difference in utility between the

highest and lowest levels of the attribute. The "importance" of an attribute is this difference

divided by the sum of the differences between high and low utilities of all attributes. Note,

however, that the importance of an attribute depends on the levels selected in the conjoint

survey; if its levels cover a larger range, it will have a larger difference in utilities and appear

more important. Nevertheless, importances are a useful way to compare how each attribute

contributes to plan utility. Table 3.4 lists the average importances of each attribute among

each group of respondents.

To develop a weighted-sum objective function, we simply interpret the attribute impor-

tances as weights in a weighted-sum objective function. We seek a function of the form:

U(y) = W1y1 + W2y2 + W3y3 + W4y4 + w5y5 (3.2)

Each wi is the importance of attribute i, listed in Table 3.4. Each yi, like xi in the previous

section, is a metric that can be calculated based on a given aid delivery plan. Here, however,

each yi is a linear function such that maximizing yi increases the "goodness" of attribute i
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(whereas each xi represented the value of attribute i). In addition, each yi must be scaled

so that its range is the same as the other yi functions (e.g. from 0 to 1). For example,

y1 total reeed has a range from 0 to 1, and its maximization improves the total amount

of cargo delivered. Similarly, y5 might be defined as the negative operations cost divided

by its maximum value, so that its maximization reduces the cost and it ranges from 0 to 1.

This interpretation of the conjoint findings is more flexible, yet less precise, than the util-

ity function developed earlier. Attribute importances can be interpreted more broadly than

part-worth utilities, which are tied to specific levels of attributes. In this interpretation,

each yi can be defined as needed in the specific problem being studied, and the importances

can be used as weights for each of these objective functions, in a multi-objective optimiza-

tion problem. For future modeling efforts, the results of this survey, and particularly the

importance weights for each attribute (Table 3.4), can be used to value trade-offs between

efficiency, effectiveness, and equity.

3.7 Discussion and conclusions

The purpose of this study was to develop an objective function that convincingly repre-

sented the objectives of humanitarian aid. In particular, we sought to value the trade-offs

between multiple objectives of aid delivery, to enable the development of penalty functions

or objective weights that better model the real objectives of humanitarian aid. Measuring

the preferences of expert humanitarian logisticians seemed the most direct route to deter-

mining the importance of humanitarian objectives. Five performance criteria were selected,

based on the ways experts evaluated plans, and because they enable us to explore impor-

tant trade-offs such as weighing the importance of efficiency, effectiveness, and equity, or

the prioritization of different commodities. A conjoint analysis survey was developed and

used to estimate the preferences of two groups of experts over these five attributes of aid

delivery plans. The survey results quantify the ways experts traded off five objectives of

aid delivery. In addition, we map the survey results to two forms of objective functions, a

piecewise linear utility function and a weighted-sum objective function. The results of this

paper should enable the development of optimization models that make better trade-offs

between multiple objectives of humanitarian aid.

One important contribution of this chapter is in identifying important characteristics of
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average expert preferences across the five attributes considered here. Delivering aid is the

most important objective, but the other attributes contribute significantly to the utility of

plans, and therefore should not be left out of the objective function. Cost is not very impor-

tant, unless it is extremely high, and even then it is less important than most other elements

of a plan. This is an important insight, especially for modelers accustomed to working in the

commercial sector with cost-based objectives. A "weighted mix" prioritization scheme is

preferred to both lexicographic prioritization and even distribution, which was by no means

clear from the start, since priority statements seem to suggest lexicographic prioritization

while humanitarian missions often state a goal of equitably distributing aid. These insights

point to the most important concerns of humanitarian aid delivery planners.

In addition to identifying preference patterns that were consistent across respondents,

we have also identified preference patterns that differed among respondents. Cost, while less

important than most other concerns, appeared to be more important to respondents from

smaller organizations (Group 2). Other respondents described counter-intuitive preferences:

some preferred later deliveries in order to spread them over time, and some preferred higher

costs to generate more flexible resources. These preference patterns seem to apply in specific

situations, and are important to understand alongside the average patterns.

Future work must address which of the estimated utility functions - group-level aver-

ages, or even the 30 individual part-worth utilities - represents the "right" objective for

any given emergency response. Specific organizations, or particular operational constraints,

might lead to a preference for one plan or another. Nevertheless, the Group 1 average util-

ity function found in this paper represents the preferences of a group of experts specifically

tasked with managing aid deliveries in emergency response, while the Group 2 results pro-

vide a contrasting example of the preferences of a different set of logisticians. Quantifying

how these experts value trade-offs between multiple objectives is an important step forward.

Future work should also seek to clarify the conditions under which these various prefer-

ences apply, and develop families of objective functions suited to different types of prefer-

ences or specific situations. This work might also be extended by surveying humanitarian

experts who design programs, in addition to logisticians. Our preference-derived utility

functions might be compared with those based on explicit models of human suffering, or on

the preferences of beneficiaries. Finally, it would be extremely useful, though challenging,

to measure beneficiary preferences. Combining beneficiary and expert preferences might
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enable even better design of humanitarian interventions through a deeper understanding of

the goals and opinions of those we seek to serve.

Developing a set of metrics that both met the requirements of conjoint survey tech-

niques (readily understandable by humanitarian logisticians and independent) and led to

well-formulated objective functions was a challenging goal for this work. Our approach

privileged the design of the survey over the form of the resulting objective functions. The

mapping of survey attributes to objective functions suggested in this paper is reasonable,

but requires approximations; other interpretations might be developed as well. However,

given our current lack of knowledge of the right penalty functions or weights for multi-

objective problems, the results of this survey should prove useful in future modeling efforts.

The implications of using these objective functions to develop transportation plans will be

explored in future work.

A utility-based planning approach is likely to be most useful in the first week or two of

an emergency, in which there is limited information on needs and priorities. As information

becomes available, it may be possible to develop approaches that take into account more

specific understanding of needs. For example, one community might urgently require water,

even though in general it is low priority; or, if information on individual beneficiaries were

available, it might be possible to track urgent medical needs of specific patients. The utility

function developed in this paper measures performance in the aggregate, and is intended for

use when this type of specific information is unavailable. Future work could explore ways

to integrate aggregate and specific information.

The utility functions developed in this chapter are an important step forward. We have

developed a framework for valuing trade-offs between objectives of humanitarian aid, in-

cluding the identification of five key attributes of aid delivery plans. We have estimated

part-worth utilities that represent the preferences of expert humanitarian logisticians, and

mapped them to objective functions for use in transportation planning models. Finally,

we have discovered some important characteristics of expert preferences across five key

attributes of aid delivery plans, learning how they trade off aspects of efficiency, effective-

ness, and equity. With these insights, it is possible to develop more appropriate objective

functions for the optimization of humanitarian aid delivery.
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Chapter 4

Modeling and evaluating human

decision-making approaches for

humanitarian transportation

planning

4.1 Introduction

Humanitarian supply chains are generally managed by people, with very few decision sup-

port tools. Without decision support, humans may struggle to manage the complexity in

some logistics problems, such as the transportation planning problem studied in this thesis.

On the other hand, decision support tools may require time and information to set up, both

of which are in short supply in the first week after an emergency. To improve transportation

planning in humanitarian supply chains, it is necessary to find the right balance between

the complexity of decision support and the flexibility of human planners. In this chapter,

we compare models of human decision-making processes to an optimization approach, to

identify specific strengths and weaknesses of human planning approaches. Optimization

approaches may create better plans, but we investigate how much could be gained with op-

timization compared with simpler decision support tools that could be implemented quickly

and easily in the field. The ultimate goal is to find the best ways to improve transporta-

tion planning, whether by developing complex optimization-based planning approaches or
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simpler decision tools that correct specific weaknesses in human planning approaches.

In an ethnographic study, discussed in Chapter 2, we described the decision-making

processes of teams of experienced humanitarian logisticians as they planned aid deliveries

after a (simulated) emergency. We found that human decision-making resembles a greedy

search process, guided by decision rules in the form of policies that prioritize deliveries of

high-priority items or to high-priority locations. In greedy search, the search space and the

policies that guide search have a major influence on the quality of the resulting solution.

Our observations suggested that the teams struggled to solve this complex problem in

the short time available, and many teams' plans were incomplete at the end of the day.

Unfortunately, we could not evaluate the effectiveness of the specific decision processes and

policies employed by the teams, based on the ethnographic study. The quality of each

team's plan was influenced by too many confounding factors, including the mix of policies

and decision processes employed, the dynamics of the team, and the computer skills of

the team members. Moreover, because most teams used multiple types of policies and

processes, either together or one after another, we could not sort out the effectiveness of

each individual policy or process.

In this chapter, we attempt to understand the effectiveness of the human decision-making

approaches discovered in the ethnographic study by developing algorithms that model the

human processes and policies. The human decision-making approaches have an algorithmic

character, and we develop heuristics based on their approaches. The processes found in

the ethnographic study are not precise enough to describe every aspect of a computable

heuristic, so additional assumptions are made in line with the researcher's experience in the

ethnographic study. These models are not intended to replicate human behavior: as Chapter

2 showed, humans tried many strategies, started over, made mistakes, and generally moved

through the problem in an unorganized manner. In contrast, these heuristics represent pure

implementations of the decision-making processes observed within this unorganized human

behavior, and their solutions show what would have happened had a team stuck to a single

process and policy throughout their work. Models derived from human behavior perform

better than humans themselves, in part because humans exhibit much more variation in their

implementation (Bowman, 1963). By studying these pure versions of human approaches,

we can identify their strengths and weaknesses.

The heuristic models are evaluated against one another and in comparison with a mixed-
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integer linear programming optimization approach. The optimization approach provides a

useful standard against which to compare the models of human behavior, enabling us to

identify the "gap" between the heuristic solutions and the best possible solution. It is not

our goal to develop heuristics that minimize this gap, but rather to understand how well or

poorly the human approaches perform and how much can be gained by using optimization.

Note, however, that these performance evaluations are made in the "model world" described

by the problem formulation, for which the optimized solution is (by definition) the best

possible solution (Taylor and Iwanek, 1980). In reality, the optimized solutions (or heuristic

solutions) may perform more poorly as the situation changes, but we do not consider these

dynamics in this chapter. Instead, we use the "model world" to understand the fundamental

strengths and weaknesses of different decision-making approaches.

In order to assess the performance of heuristic solutions and to guide the optimization

approach, we require a performance measure that can convincingly evaluate the effectiveness

of various transportation plans. Chapter 3 of this thesis developed a utility function, based

on the preferences of expert humanitarian logisticians, that evaluates the utility of plans

based on five key attributes: the total cargo delivered, prioritization of types of items,

prioritization of destinations, speed of delivery, and cost. This utility function is employed

as the objective in our optimization model and as a performance measure for the heuristic

models.

Heuristics may perform well or poorly in different problems, depending on the specific

cargo deliveries requested, network structure, and many other problem elements. In this

chapter, heuristics are evaluated on two small stylized problems, each with several vari-

ations, in order to gain intuition about the heuristics' performance on specific, relevant

problems, and show how performance changes as key problem dimensions are varied. In

addition, the heuristics are evaluated on the full problem solved by the teams in the ethno-

graphic study, which we call the "Snowland" scenario, to investigate heuristic performance

on a realistic example of the type of problem these heuristics are trying to solve.

The remainder of this chapter is organized as follows. First, the remainder of this intro-

duction provides a generic description of the transportation planning problem we study in

this chapter. Please refer to Chapter 2 for a richer description of the problem faced by the

teams in the ethnographic study. Section 4.2 reviews relevant literature, including studies

of human behavior in operations management and existing models of humanitarian trans-
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portation planning. Section 4.3 develops the mixed-integer linear programming optimization

model, and Section 4.4 describes the heuristic models of human decision-making processes.

Section 4.5 describes the test problems and the strategy for evaluating the heuristics, and

Section 4.6 provides the results of those evaluations. We conclude in Section 4.7.

4.1.1 The humanitarian transportation planning problem

We study the problem of planning shipments of cargo from various origins to various desti-

nations, using a fleet of ground and air transportation assets. This section provides a brief

description of this problem; a richer description was provided in Chapter 2 of this thesis.

The problem arises when the Logistics Cluster provides common transportation services

to its partner organizations. The partners submit Cargo Movement Requests (CMRs), re-

questing that their cargo be moved from an origin to a destination. The Cluster manages

a fleet of trucks and helicopters, and must plan shipments to satisfy the demand for trans-

portation. In practice, based on observations of teams solving this problem, the objective

is not always clear. The goal is to deliver all the cargo as quickly as possible. However,

demand for transport generally outstrips supply, so the prioritization of deliveries is im-

portant. Cargo is prioritized according to its type (e.g., shelter, health, water, food), its

destination, or operational considerations such as utilization of vehicles.

The Cluster's fleet may contain vehicles of various types, each with capacities (weight

and volume) and capabilities to travel on certain routes. They must operate within a

network of road and air routes, each of which may be accessible only to certain types of

vehicles. The problem is to allocate these vehicles to deliver a set of cargo movement requests

from their respective origins to their respective destinations, where the cargo movement

requests each contain different types of items with different weight and volume. In addition,

the problem requires linking deliveries within a multi-modal network: many commodities

must travel on multiple types of vehicles (e.g. first by truck, then by helicopter) to reach

their destinations.

While this thesis focuses on the problem faced by the Logistics Cluster, other large

humanitarian organizations face similar problems in managing fleets of vehicles and priori-

tizing deliveries, so this model should be useful beyond the specific context of the Logistics

Cluster.
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4.2 Literature Review

Two distinct sets of literature are relevant to this study. The first set of literature provides an

understanding of how humans solve operational problems. The second focuses on building

mathematical models to solve problems similar to the transportation planning problem.

Each of these literatures is reviewed below.

4.2.1 Behavioral operations literature

Operations management problems have been studied extensively using mathematical mod-

els, but much less attention has been directed toward understanding how these problems

are conceived and solved by humans. In other fields, such as psychology and economics,

human decision-making is often compared to "rational" models of decision-making, which

depend on mathematical models to determine the right choice. Researchers have shown

that human behavior rarely matches such rational models, due at least in part to human

cognitive limitations (Simon, 1955). People use reasoning heuristics to make judgments

under uncertainty, which create problematic biases (Tversky and Kahneman, 1974; Kahne-

man et al., 1982). Even when mathematical models are based on the behavior of humans,

the models perform better than humans. Expert judgments about uncertain outcomes,

such as predictions of student performance based on application materials, are consistently

inferior to linear regression models, even when the regression coefficients are randomly as-

signed (Hastie and Dawes, 2001). Humans are good at identifying the cues that matter to

a prediction, but models are better at making the prediction based on the cues. In part,

humans fail because they are sensitive to variation, while models do not have this weakness

(Bowman, 1963). In general, research has shown that humans make worse decisions than

rational models on a wide variety of problems, for a wide variety of reasons.

Most of the recent literature on human behavior in operations management settings

(see Bendoly et al., 2006, for a review) focuses on inventory problems, including newsven-

dor models (Schweitzer and Cachon, 2000; Ben-Zion et al., 2008; Bolton and Katok, 2008),

multi-period inventory models (Sterman, 1989; Croson and Donohue, 2002), and design of

supply contracts (Kalkanci et al., 2011). Most of the effort is directed toward understanding

when and why humans make poor decisions, and designing interventions to correct them.

These efforts have yielded some general understanding of human failures in inventory prob-
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lems. People tend to rely on simple rules or simple reasoning strategies (Schweitzer and

Cachon, 2000; Sterman, 1989; Kalkanci et al., 2011; Moxnes, 1998). Anchoring and adjust-

ment heuristics, in particular, are found in newsvendor (Schweitzer and Cachon, 2000) and

multiperiod inventory (Sterman, 1989) problems. Evidence is also found for certain biases

such as the gambler's fallacy and learning from small samples (Bolton and Katok, 2008),

and bias toward the mean and influence from results in the previous round (Ben-Zion et al.,

2008). More complex problems seem to require a larger reliance on simple rules (Kalkanci

et al., 2011). Complex problems also inhibit learning, in part because people misinterpret

the causes of poor results because they do not understand the problem structure and the

performance feedback they receive (Sterman, 1989; Moxnes, 1998). They may use a sim-

ple rule that would be better suited to a less complex but similar version of the problem

(Moxnes, 1998). Interventions to support better learning or counteract the biases have met

with limited success (Ben-Zion et al., 2008; Bolton and Katok, 2008; Croson and Donohue,

2002).

Many of the findings in this literature are very problem-specific. In the newsvendor

problem, for example, Schweitzer and Cachon (2000) find that people make newsvendor

decisions by attempting to reduce inventory error (rather than profit loss), combined with

anchoring and insufficient adjustment. Ben-Zion et al. (2008) and Bolton and Katok (2008)

replicate these results, and find evidence of slow learning - progress toward but not to

the optimal solution - over many rounds of solving the problem. They also find a series

of biases that decline as learning occurs: the gambler's fallacy and learning from small

samples (Bolton and Katok, 2008), and bias toward the mean and influence from results

in the previous round (Ben-Zion et al., 2008). In the multiperiod inventory problem of the

beer game, Sterman (1989) finds evidence of anchoring and adjustment from the desired

inventory level. The key dynamic that contributes to failures in inventory management

(the bullwhip effect) is the failure to account for delays and products in the supply line.

People do not see this as the reason for their poor performance, and therefore do not learn.

Croson and Donohue (2002) review later literature on the beer game, which experiments

with various interventions intended to counteract these tendencies that produce the bullwhip

effect. In contracting, Kalkanci et al. (2011) shows that people use simple rules to determine

complex contracts, and that these lead to solutions which are no better than those of simple

contracts. Finally, in a very complex bioresource management problem, Moxnes (1998)
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shows that even experts do not understand the dynamics and feedback structure of the

problem, and use greedy rules that would work well in a simpler problem but lead to poor

results in this one. The human weaknesses highlighted in this literature are usually specific

to the dynamics of a particular problem situation; as a result, the interventions to correct

these human weaknesses are also problem-specific.

The literature on human decision-making in inventory management shows that humans

fail to make rational decisions for a variety of reasons, and these reasons are often specific

to the decision being made. The transportation planning problem is quite different from

the inventory models discussed thus far, so humans probably have different problem-specific

heuristics. A solution requires not just one decision, such as an order quantity, but a long

series of vehicle dispatch decisions that must be linked in a feasible manner. Many of the

heuristics identified in inventory problems, such as anchoring and adjustment, would not be

relevant; instead, we expect to find different kinds of heuristics in search-oriented problems

like this one.

This type of search-oriented problem has been studied in an older literature that asks

whether humans or algorithms are better at solving particular problems. Because most

of this work was performed in the seventies and eighties, and algorithms have progressed

significantly since then, some of the findings may no longer be valid. Researchers ran

experiments that pitted humans, often with decision support tools, against state of the art

algorithms (generally heuristics), and compared the speed and quality of their solutions.

Studies conflict as to whether humans or heuristic algorithms are better problem-solvers,

and as might be expected, this depends on the heuristic. This literature has included

problems of similar complexity to the transportation planning problem, including routing

problems (Krolak et al., 1972; Hill, 1982) and facility network design problems (Robinson

and Swink, 1995; Swink and Robinson, 1997; Taylor and Iwanek, 1980). A few studies

investigate what characteristics make problems easier or harder for humans to solve (Swink

and Robinson, 1997; Taylor and Iwanek, 1980). My work updates this literature by taking

a more in-depth look at when and how human solutions differ from optimized solutions, in

a particularly complex routing problem.

The traveling salesman problem has been studied more recently. Humans are surpris-

ingly good at solving traveling salesman problems when they are represented visually: they

find solutions less than 15% worse than optimal with performance degrading only linearly

159



with increasing problem size. Various heuristic mechanisms have been proposed to explain

this performance, including clustering, avoiding crossed arcs, and utilizing the convex hull

(MacGregor and Chu, 2011), but again these are specific to visually represented traveling

salesman problems, and do not apply to our multi-modal, multi-vehicle routing problem.

In general, study of human behavior in solving operations problems has yielded the

general insight that humans make worse decisions than models. This applies to models

that are mathematically derived and models derived from human behavior (Bowman, 1963;

Hastie and Dawes, 2001). However, the reasons for poor human decision-making are very

problem-specific. The decision-making literature has not focused problems similar to the

humanitarian transportation planning problem (or indeed multi-modal planning problems

in general), so the specific weaknesses in human decision-making remain unclear. Under-

standing how humans make decisions is an important first step toward supporting better

decision-making. This paper studies looks to identify specific weaknesses (or strengths) in

human decision-making on a particularly complex transportation planning problem.

4.2.2 Humanitarian transportation planning literature

There is an extensive literature on mathematical models for transportation planning prob-

lems outside the humanitarian context, many of which are similar to the problem studied

here. The most relevant set of models outside the humanitarian context deal with service

network design for freight transportation, in which cargo from multiple clients is consoli-

dated onto vehicles (Crainic, 2000; Crainic and Kim, 2007; Wieberneit, 2008). This type

of problem arises in industries such as less-than-truckload carriers (Farvolden and Powell,

1994; Powell and Sheffi, 1983; Powell, 1986; Powell and Sheffi, 1989) and postal or express

package services (Armacost et al., 2002; Griinert and Sebastian, 2000; Kim et al., 1999).

Each such carrier operates a network of hubs and a fleet of vehicles, and must determine

how and when both vehicles and cargo move within this network.

The problem can be written as a mixed-integer linear program, but the size of the

problem prohibits this approach from being useful in most realistic problem instances.

The primary challenge addressed by the literature is managing the scale of the problem.

Researchers have introduced heuristic methods or reformulations, but these are generally

very specific to the structure of the problem and difficult to transfer to other, similar

problems. None of the models in the literature are directly applicable, though some of the
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formulations were useful in developing a mixed-integer linear programming formulation of

the transportation planning problem. In particular, Crainic (2000) distinguishes between

models that solve for a frequency of service (Armacost et al., 2002; Powell and Sheffi,

1983; Powell, 1986) and models that solve for a specific schedule (Farvolden and Powell,

1994; Griinert and Sebastian, 2000; Kim et al., 1999). This work follows the latter type of

formulation, which utilizes a time-space network to model time explicitly.

In recent years, increasing attention been paid to logistics problems in the humanitarian

context. Studying humanitarian logistics requires an understanding of the unique context of

humanitarian action. To that end, a number of overview papers identified the key challenges

faced in humanitarian logistics, described the activities and actors in humanitarian supply

chains, and compared them to commercial supply chains with a view toward cross-learning

(Long and Wood, 1995; Beamon, 2004; Van Wassenhove, 2006; Kovacs and Spens, 2007;

Tatham and Kovacs, 2007; Thomas and Kopczak, 2006; Tomasini and Van Wassenhove,

2009; Apte, 2009; Ergun et al., 2010). The key challenges stem from the specific context of

humanitarian logistics, including operating conditions, uncertainty in needs, coordination,

performance measurement, information technology, and last mile transportation (Kovacs

and Spens, 2007; Van Wassenhove, 2006; Beamon, 2004; Gustavsson, 2003; Ergun et al.,

2010). Several papers identify distinct phases of the relief supply chain, along the lines

of those delineated by Kovacs and Spens (2007): a pre-disaster preparation phase and a

post-disaster immediate response phase transitioning later to reconstruction. Some au-

thors provide descriptions of specific emergencies from which they derive key challenges

and lessons learned (Larson et al., 2006; Van Wassenhove, 2006; Holguin-Veras et al., 2007;

Russell, 2005). A broad range of papers describe problems and solutions in humanitarian

logistics from a practice orientation, either identifying issues across organizations or citing

specific organizational or disaster contexts (Chaikin, 2003; Chomilier et al., 2003; Fenton,

2003; Gustavsson, 2003; Kaatrud et al., 2003; Molinaro and Blanchet, 2003). These contex-

tual analyses of humanitarian logistics identify a broad range of challenges, some of which

are amenable to modeling while others present issues better addressed by organizational or

information technology solutions.

Modeling is particularly suited to addressing problems in meeting uncertain needs and

planning inventory and transportation. Caunhye et al. (2012), in their review of optimiza-

tion models in humanitarian logistics, identify the main problems studied in the recent

161



literature: facility location in advance of a disaster, often combined with inventory pre-

positioning or distribution; and relief distribution after a disaster, considering resource

allocation, commodity flow, or (more commonly) both. De la Torre et al. (2011) review

models that specifically address transportation and routing for relief distribution, and Altay

and Green (2006) review older literature on disaster response. Both recent reviews provide

useful summaries and discussions of the humanitarian logistics modeling literature, which

we also summarize in the following paragraphs.

One set of models examines inventory management, facility location, and other resource

positioning problems. One well-studied problem is inventory pre-positioning, in which in-

ventory is allocated in the pre-disaster phase in anticipation of future emergency responses

(Akkihal, 2006; Duran et al., 2011; Mete and Zabinsky, 2010; Rawls and Turnquist, 2010;

Zhu et al., 2008). While inventory management before a disaster has been examined by a

number of researchers, only a few have looked at inventory management after a disaster or

in long-term humanitarian operations (Beamon and Kotleba, 2006a,b). Beyond inventory,

a few models study the positioning of a wider range of resources, such as warehouses, ca-

pacity, fleet, and points of distribution (Salmer6n and Apte, 2010; Pedraza Martinez et al.,

2010; Jaller and Holguin-Veras, 2011).

More relevant to this research are those models that examine the routing of vehicles in

the post-disaster context. An extensive review is provided by de la Torre et al. (2011), so

it is not repeated here. Instead, the characteristics of these models are summarized, and

those most relevant are identified. Many variations on transportation planning problems

for humanitarian aid delivery have been studied by operations researchers. Most are based

on vehicle routing formulations (e.g. Balcik et al., 2008; Huang et al., 2012; Campbell et al.,

2008; Lin et al., 2011; Doerner et al., 2007; De Angelis et al., 2007) and network flow

formulations (e.g. Haghani and Oh, 1996; Perez et al., 2010; Yi and Ozdamar, 2007; Yi

and Kumar, 2007). Others combine routing decisions with other types of decisions, such as

resource allocation or facility location (Barbarosoglu et al., 2002; Ukkusuri and Yushimito,

2008; Tzeng et al., 2007). Most models are deterministic, but some include stochasticity

(Mete and Zabinsky, 2010; Van Hentenryck et al., 2010; Shen et al., 2009a,b).

This paper employs a multi-commodity, multi-modal network flow formulation over mul-

tiple time periods, which models the flow of both vehicles and cargo throughout the network.

Similar formulations have been employed previously, but with different objective functions
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and other variations. Clark et al. (2007) explore various formulations and show how the be-

havior of the solutions changes with different elements. Among other conclusions, they show

that in general the cheapest and closest areas are served first, that including prioritization

of deliveries improves the equity of solutions, and that limited truck capacity affects how air

transportation is utilized. Their objective function privileges the minimization of unsatisfied

demand over other components of the objective function. Haghani and Oh (1996) minimize

cost plus time until demand is satisfied. They explore two solution algorithms, but pro-

vide little discussion of the solutions. Ozdamar et al. (2004) minimize unsatisfied demand,

and discuss a re-planning model to update solutions as information changes. The solution

methodology is based on Lagrangian relaxation. Yi and Ozdamar (2007) add evacuation of

wounded and health center service levels to the problem, again minimizing unmet demand

along with unserved wounded. The results for an Istanbul earthquake scenario show that

the model balances service rates of medical facilities, incorporating delays in delivering com-

modities, but occasionally neglects affected people in remote areas. Yi and Kumar (2007)

solve a similar problem using ant colony optimization. Perez et al. (2010) formulate an

interesting objective function based on deprivation costs, which increase with time as de-

mand remains unsatisfied. They incorporate this objective into multi-commodity network

flow formulations, noting how the objective makes them challenging to solve. Holguin-Veras

et al. (2010) provide small example problems to illustrate how the deprivation cost objective

helps to ensure equity in service among different locations, resulting in reduced deprivation

costs compared to simpler objectives.

Our goal is not to develop new formulations or solution methods, but to explore the

implications of the new objective function developed in Chapter 3 (and to examine hu-

man decision approaches in comparison with proven optimization approaches). The models

mentioned in the preceding paragraphs employ a wide variety of different objectives, across

categories of efficiency, equity, and effectiveness. Efficiency objectives typically minimize op-

erations costs (Tzeng et al., 2007; Balcik et al., 2008) or travel times (Tzeng et al., 2007; Lin

et al., 2011; Huang et al., 2012; Campbell et al., 2008). Effectiveness objectives maximize

some measure of service, often either the amount of demand satisfied (Lin et al., 2011), the

speed with which demand is satisfied, or both (Huang et al., 2012; Balcik et al., 2008). Eq-

uity objectives encourage models to provide service equally to all recipients, by minimizing

the latest arrival time (Campbell et al., 2008), minimizing the sum of arrival times (Camp-
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bell et al., 2008), maximizing the smallest demand satisfaction rate (Tzeng et al., 2007),

minimizing the disparity in demand satisfaction (Lin et al., 2011), or imposing penalties on

inequitable deliveries (Huang et al., 2012). Chapter 3 of this thesis developed an objective

function that trades off multiple objectives based on measured preferences of humanitarian

logisticians; it goes beyond the models described above by using empirical measurements to

determine the trade-off between multiple objectives. This chapter explores the implications

of using such an objective function in a transportation planning optimization problem. (See

Chapter 3 for further discussion of objectives in the humanitarian modeling literature.)

4.3 Optimization formulation

In this section, we develop a mixed-integer linear programming formulation of the human-

itarian transportation planning problem described in the introduction. The formulation

models the flow of both vehicles and cargo through the network.

4.3.1 Structure, Data, and Decision Variables

We are given a set R of cargo movement requests {ri, r2, ... , r }, each of which has a quantity

of cargo to be transported Qr, an origin 0 r, a destination Dr, and an available time Tr,

meaning the cargo is available at the beginning of period Tr at the location Or. Each request

contains a single type of commodity, so each request also has a unit weight W, and a unit

volume Vr. Each type of commodity is given an item priority level Pr based on the type of

cargo, and a destination priority level P based on its final destination.
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R = {ri, ... , set of cargo movement requests

Qr quantity of cargo in request r

Or origin of request r

Dr destination of request r

Tr time at which request r becomes available at its origin

Wr unit weight of cargo in request r

Vr unit volume of cargo in request r

Pr priority of type of item in request r

Pil priority of destination i

Time is discretized, and each period is equal to some fraction of a work day. We assume

no work overnight, so one period represents the last part of one work day and the next

represents the first part of the next work day. It is necessary for modeling purposes to

know which periods occur just after an "overnight", so we define the set D of periods that

represent the morning of a new day. We assume that all travel times are integer multiples

of a single period, and all cargo and vehicle arrivals and departures occur at the beginning

of a period. We plan transportation over a horizon of Nt periods.

Nt number of periods in planning horizon

D set of periods that represent the morning of a new day

There is a set of possible modes m E M of transportation: for example, one set includes

40-ton trucks ml, 10-ton trucks m2, and helicopters m3. Each mode m describes a single

vehicle type, so each mode has a weight capacity per vehicle CW and a volume capacity

per vehicle CV. Each vehicle also has a cost Fm, in dollars per ton-km for road vehicles

and in dollars per rotation for helicopters. The number of vehicles of type m initially at
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each node i is given by Z7n. Let N, represent the total number of vehicles available over all

modes over time (this quantity is defined because we use it later as a number greater than

or equal to the number of vehicles available in the scenario).

Vehicles can become available (i.e. be added to the scenario) at any period t throughout

the planning horizon. The number of vehicles of type m that are newly available in period

t is given by T. All vehicles of type m become available at a single node Om, but can

subsequently make unrestricted movements.

Because helicopters and trucks have different restrictions, it is necessary to note which

modes are helicopters. Therefore, the set MH is defined as the set of helicopter transport

modes.

M = {mi, ... ,mn set of possible transportation modes

MH set of helicopter transport modes

CW weight capacity per vehicle of type m

CV volume capacity per vehicle of type m

Fm cost per ton-km or rotation for vehicles of type m

Z7" number of vehicles of type m initially at location i

Nv total number of vehicles available over all types

Om arrival location for vehicles of type m

Ti number of vehicles of type m arriving in period t

We use the type of network shown in Figure 4-1. In this example, the nodes P (for the

major arrival port), A, and B represent the hubs within the network, s is a source node, s'

is a sink node, and the remaining nodes represent final destination points. All the nodes

labeled D represent final destinations, some of which are reachable by truck or by helicopter

only, some in short flights and some in long flights. Any network of this type can be used

within this formulation.

Let M be the set of nodes in the network, and let NAf be the set of nodes representing

physical locations, i.e. all the nodes except the source s and the sink s'. Storage is available
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Figure 4-1: Network

at some nodes; let the storage capacity at node i be given by Ci. Some nodes serve as

helicopter bases; let Bi be 1 if they do and zero otherwise. (Truck bases are unnecessary

because fuel is available everywhere.) Deliveries to some nodes are prioritized over others,

so let Pj' be the priority of delivering to node i. Let A be the set of arcs in the network,

and let A, be the set of arcs representing physical movement, i.e. all the arcs except those

to and from the source s and the sink s'.

Each arc representing physical movement, i.e. each (i, j) E Ap, can be traveled by some

subset of all the types of vehicles (e.g. helicopter, 40T truck, or lOT truck). AT describes

which routes can be traveled by which modes, and is equal to 1 if arc (i, j) can be traveled

by vehicles of type m, and 0 otherwise. Each such arc also has a time to traverse LT, which

is an integer number of periods. The source and sink arcs, (i, j) E A\Ap, have no capacity

limits and require no 'vehicles'; they take no time to traverse, i.e. LT = 0. All arcs also

have a distance used to calculate the cost, which differs based on the mode used to traverse

it; this "billable distance" is given by E'.
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A

AN,

Ci

Bi

Pi

A

A,

AT

LT

E? 1

set of nodes, including source and sink nodes

set of nodes representing physical locations

storage capacity at node i

indicates whether node i is a helicopter base (1) or not (0)

priority of delivering to node i

set of arcs in the network, including source and sink arcs

set of arcs representing physical movement

1 if arc (i, j) can be traveled by vehicles of type m, and 0 otherwise

time to traverse arc (i, j) by vehicles of type m

"billable" distance for mode m to traverse arc (i, j)

Four sets of decision variables are defined. The variables r m,t represent the movement

of cargo through the network, and the variables y''t represent the movement of vehicles (and

therefore transport capacity) through the network. The variables w ' and z" " represent

the inventory of cargo and vehicles, respectively, at each node in the network.

Z 'm,t quantity of request r leaving by mode m on arc (i, j) E A at the beginning of

period t {1, ... , N}

w = quantity of request r available in inventory at location i E N, at the beginning of

period t E {0, ... , Nt}, where t = 0 represents the initial conditions

yt = number of vehicles of type m leaving on arc (i, j) E A at the beginning of

period t E { 1, ... , Nt}, y M' E {0, 1, 2, ...Nv}

z = number of vehicles of type m available at location i C N, at the beginning of

period t E {0,...,Nt}, z "' E {0, 1, 2, ...N}
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with r E R, the set of requests for transport, and m c M, the set of possible modes of

transportation. While the vehicles are represented by integer variables, note that zrm,t is

continuous, so requests can be split.

Note that for cargo and vehicle movements, Z4 mt and ym't respectively, t is defined over

t E {1, 2, ..., Nt} periods; but for the cargo and vehicle inventory, w"' and z"' respectively,

t is defined over t E {0, 1, 2, ..., Nt} periods, where t = 0 represents the initial conditions.

4.3.2 Objectives

Multiple objectives are employed in order to balance the multiple goals of aid delivery. In

Chapter 3, we found utility functions over five measures of the performance of humanitarian

aid delivery plans: the total cargo delivered, the prioritization of deliveries by cargo type,

the prioritization of deliveries by location, the speed of delivery, and the operations cost. In

this section, we develop an objective function based on the utility functions found earlier. In

each case, we first develop a performance measure for each of the five objectives, fi, f2, ... , fs,

that can be calculated based on any given set of variables describing a plan. The utility

contributed by each objective is then ui (fi), where the ui are piecewise linear functions.

The utility of a given plan is the sum of the utilities of each of the five objectives:

U = ui(fi) + U2 (f 2 ) + U3 (f 3 ) + u 4 (fa) + u5 (fA) (4.1)

Many of the utility functions depend on the amount of cargo delivered (in total, of various

priority types, etc.), but "amount" can be measured in various ways. In this formulation,

we use metric tons, but alternatives could include cubic meters or number of items. It would

be useful to define a measure that corresponds to the number of people assisted rather than

the physical attributes of the cargo, but such a measure has not been defined for the many

varieties of cargo transported by the Logistics Cluster.

Total Cargo Delivered First, we measure the total amount of cargo delivered divided

by the amount of cargo requested. Let the total metric tons of cargo delivered be given by

R:

R= > rm'Wr (4.2)(is,, W
(i,s')EA,r,m,t
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Then the fraction of requested cargo delivered is given by

fi=- (4.3)S

where S is the total tons of cargo requested:

S = QrWr (4.4)
r

Based on the utilities estimated from the survey described in Chapter 3, the utility

function for total cargo delivered is:

Ui(fi) = 571fi - 322, fi < 0.6 (4.5)
264fi - 138, fi > 0.6

Prioritization by cargo type The second objective measures the prioritization of de-

liveries by cargo type. Let the tons of items of priority p delivered be given by R,

R3 r=m t W (4.6)
r:Pr=p,(i,s')EA,m,t

and Rmax be an estimate of the maximum possible deliveries (such an estimate may be

obvious from the problem formulation, or it may be obtained by solving a maximum flow

problem). The vector r describes the fraction of deliveries allocated to each of the four

types of items:

R1  R 2  R 3  R 4r=[m, , ,ma ) (4.7)
Rmax mmax

To create a one-dimensional measure of prioritization by item type, we take the Manhattan

distance from r to the point - = [0.5,0.3,0.15,0.05], the most preferred prioritization vector.

This preferred vector corresponds to allocating 50% of deliveries to priority-1 items, 30% of

deliveries to priority-2 items, 15% of items to priority-3 items, and 5% of items to priority-4

items. However, there should be no penalty for delivering more than the ideal amount,

only for delivering less. Therefore, a "shortfall Manhattan distance" is employed, in which

only the shortfall from r to r is counted, so each component of the distance is given by

max[0, rp - ry]. It is more important to deliver the higher-priority cargo, so the distance is
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weighted by f-, resulting in the second performance measure:

f2 = L ip max[0, p - rp] (4.8)

P

The utility function found in the survey has different slopes for deviations from the ideal

vector f, depending on whether the deviation is toward the "lexicographic prioritization"

vector [1, 0, 0, 0] or toward the "even mix" vector [0.25, 0.25, 0.25, 0.25]. The function c2 is

used to distinguish between deviations from f in each of these directions:

C2 = S (r, - p) (4.9)
p

When c2 > 0, the deviation is lexicographic, and when c2 < 0, the deviation is towards

an even mix or deliveries of lower-priority items. The function measures the difference

between the actual (rp) and ideal (ip) deliveries of each priority p, which will be positive for

over-deliveries and negative for under-deliveries. The differences are summed, but weighted

by i, so that deliveries of more important priorities count more heavily. Thus, when c2 is

negative, the higher priority items are under-delivered, meaning the prioritization vector

is deviating from the ideal in the "even mix" direction. When c2 is positive, the higher

priority items are over-delivered, meaning the prioritization vector is deviating from the

ideal in the "lexicographic" direction.

Estimating a piecewise linear utility function from the survey results, as described in

Chapter 3, results in the utility function

U2(f2) = 0.79546f2 + 49, c2 > 0 (4.10)
-1.39509f2 + 49, c2 < 0

Prioritization by destination The third objective measures the prioritization of deliv-

eries by the priority of their destinations. The structure of the objective function is the

same as that of the prioritization of deliveries by item type, described above. Here, let the

number of deliveries to destinations of priority p' be given by R',

R, = r,m,t W, (4.11)

(i,s') EA:Pi'=p',r,m,t
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The vector s describes the fraction of deliveries allocated to each of the two destination

priority-levels

s=K[ , (4.12)
Rmax Rmax

The ideal point in this case is s = [0.7, 0.3], and again a "shortfall Manhattan distance" is

used to measure deviations from the ideal point, resulting in the performance measure

f3 = 1 9p' max[0, s,' - sp,] (4.13)

As before, a cutoff function c3 determines whether the deviation from s is in the lexico-

graphic or even direction:

c3 = p (SP/ - sp') (4.14)

and the utility function, based on the estimated utilities from the survey, is

u 3 (f 3 ) = -0.331f3 + 27.6, C3 > 0 (4.15)
-0.9428f3 + 27.6, c3 < 0

Speed of delivery The fourth objective measures the speed of delivery. The fourth

performance measure is the average day of delivery of cargo, which is measured here by the

following function:

f - Z(i,s')eA,r,m,t tz Wr + tfinal max[0, Rmax - R] (4.16)

T max

where R is the total amount of cargo delivered and T the number of time periods per

day. It is computed by finding the average (by weight) time period of delivery, which is

converted to a value in days by dividing by the number of time periods per day. The first

term of the numerator is the average time of delivery of cargo by weight, and the second

term of the numerator ensures that if the maximum possible cargo is not delivered, the

shortfall is counted as delivered in the last time period. This ensures that the performance

measure cannot be increased simply by delivering less total cargo (and also results in slightly
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optimistic performance measure, since undelivered cargo would in reality be delivered later

than the last time period).

The utility function estimated based on survey responses was extremely close to a line,

so a least squares estimate of the line is used in the utility function:

u4 (f 4 ) = -40f4 + 153 (4.17)

Operations cost The final performance measure is the operations cost. The cost struc-

tures are different for helicopters and for road vehicles. The first term is for road vehicles,

where the cost depends on the weight of the cargo on the truck. The second term is for

helicopters, where cost is incurred whether or not the vehicle is loaded.

fX=',mtWrFmE" + y'tFmEmn (4.18)
mEM\MH ,(ij)6A,r,t mcMH,(ij)EA,t

The utility function estimated from the survey responses gives U5, below, where cost is

in units of millions of dollars.

us(f5 ) -3f5 + 14, f5 <2 (4.19)

-20f5 + 49, f5 > 2

4.3.3 Constraints

Flow and inventory balance constraints are included for cargo,

w -+ z z r ,t Vi E Ap, r, t > 1 (4.20)

mj:(j,i)EA,L7 <t j: (ij) EA, m

where LT is the time to traverse arc (i, j) by mode m. The first term represents the

inventory at node i, and the second and third terms represent cargo entering and leaving

(respectively), at the beginning of each time period t. Similar flow and inventory balance

constraints are included for vehicles:
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z.' + y- y mt'=z"'It

j:(j,i)EA,LT<t j: (ij) EA

Vi EAp, m t >1

Capacity constraints for both inventory and flow can be included. Cargo capacity on

each arc is restricted according to the vehicle capacity available on that arc, according to

both the weight and volume of the vehicles and cargo:

Z x'T' t  Vr < ym 't -
I'd Yi3 j

r

V (i, j) Ap :i, j = s, s', m, t > 1

V (i, j) c Ap : i, j = s,s',m t >1

where Wr and Vr are the unit weight and volume of each request r, and CT and C. are

the weight and volume capacity of each vehicle of type m, respectively.

Only certain types of vehicles can travel on each arc. Let AT equal 1 if type m vehicles

can travel on arc (i, j), and 0 otherwise. Then,

y'r < Am - N23j 23i V (i, j) c A, m, t > 1

ensures that the number of vehicles of type m traveling on arc (i, j) is zero when such

vehicles cannot travel on this arc, and unrestricted otherwise (because Nv is the maximum

number of vehicles in the scenario; this could be written by mode but is presented this way

for simplicity).

The next set of constraints govern the arrival and delivery of each request,
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X r,m 0
s,J,

xrt Qr

x3 = Qr

xrm

7Z ,sxr5
m ,<Qr

m,t

V (s,j) cA : j # Or, r,m,t> 1

V (s, Or) E A, r, m, t:# Tr, 1

V (s, Or) E A, r, m, t = Tr

V (i, s') c A: i # Dr, r, m, t >1

V (Dr, s') E A, r

where constraints (4.25), (4.26), and (4.27) ensure cargo is available only at its origin

Or starting at the start of the period during which it arrives Tr, and constraint (4.28)

ensures that cargo can be "delivered" only from its destination node Dr. Recall that the

objective maximizes cargo delivery to destinations, but this constraint can ensure that

certain amounts of specific requests are delivered. Finally, constraint (4.29) ensures that no

more than the total amount of the request can be delivered.

In a similar manner, the addition and removal of vehicles throughout the planning

horizon is restricted:

m t 0

YSOJ

mt =
yis'

V (s,j) E A: j # Om, m, t > 1

V (s, Om) E A, m, t > 1

V (i, s') E A, m, t

(4.30)

(4.31)

(4.32)

where constraint (4.30) ensures vehicles can only be added at their mode's origin Om, and

constraint (4.31) sets the number that are added at each time period to Tm. Constraint

(4.32) ensures that vehicles do not leave the network through the sink node.

We set the initial conditions for both the cargo and vehicle inventories:

W n,t 0 z
-

w ~ ' = 0

zT "'=Z

Vi Ep, r,t = 0

Vi E Ap, m,t = 0

(4.33)

(4.34)
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Several additional constraints are included to model specific requirements for helicopters.

First, helicopters must refuel after every "rotation". Therefore, helicopters can only make

out-and-back trips from a helicopter base. To enforce this restriction, we require that every

helicopter trip either begin or end (or both) at a node that is a helicopter base. Bi is 1 if

node i is a helicopter base and zero otherwise, so constraint (4.35) requires that for every

arc from i to j, either the arc is not used by a helicopter, or one of the nodes i or j is a

helicopter base, or both nodes are helicopter bases.

(yr'")(Bi + Bj - 1)(Bi + Bj - 2) = 0 V (ij) E Ap, m E M H, t (4-35)

Finally, all decision variables are positive:

f'r,r W r,t y,t z "'t > 0 V i, j,r, m, t (4.36)13) I Y2j I - J

The optimization model was implemented in IBM ILOG CPLEX Optimization Studio

12.2. The test problems and results will be described below.

4.4 Models of human approaches

This section develops models of the human approaches identified in Chapter 2 of this thesis.

First, we describe the development of a format or framework for describing and evaluating

transportation plans. Second, we describe heuristic models of several human approaches.

4.4.1 An Excel-based tool for describing and evaluating plans

In the optimization model described above, the decision variables provide a format in which

to concisely describe the output of the optimization: a transportation plan. However, this

format is not complete enough to give to a transporter, because it lacks assignment of

cargo to specific vehicles, along with other details of interest to real planners. In order

to implement the human approaches observed in Chapter 2, we needed to develop a more

complete format for transportation plans that was more intuitively intelligible to humans.

Such a format was developed within Microsoft Excel, because it is the only piece of software
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guaranteed to be available to transportation planners in the field. This Excel application

can be used as a simple decision support tool for planning in the field; various versions of

it were tested as tracking tools in the Logistics Response Team (LRT) training described in

Chapter 2, and in classroom exercises.

To describe and evaluate plans, the Excel-based tool represents problem data and solu-

tions, evaluates the feasibility of a given plan, and computes a set of performance metrics.

A series of macros, written in Visual Basic for Applications, enable this functionality. The

problem data, the solutions, and the performance metrics can be easily inspected and edited

by the user.

The tool consists of a set of worksheets that form a relational database describing

the problem data, a set of input sheets enabling users to manually enter a plan, output

sheets that describe the input plan and show its performance metrics, and VBA macro

routines that perform all calculations. The problem data must be entered into the tool first;

problem data include vehicles and their characteristics, sites, routes between sites, and cargo

movement requests. Input sheets enable users to describe a transportation plan by noting

each movement of a vehicle and the cargo it carries. Once movements are entered, the

feasibility of the plan can be checked, and messages inform the user exactly where problems

occur. Once a feasible plan has been created, the plan can be viewed in the output sheets in

various formats and evaluated according to a pre-defined set of metrics. Three plan views

provide different perspectives on the input transportation plan. The vehicle view shows all

movements of all vehicles, including the cargo they carry. The CMR view shows all cargo

movement requests, along with all movements made by any cargo belonging to the CMR.

The site view shows all sites and their inventory at a given time. The metrics sheet calculates

a series of performance metrics, including the total amount and percent of cargo delivered,

broken down by item type priority, destination priority, and requesting organization; the

speed of delivery; the cost; and the efficiency in terms of vehicle utilization.

This tool was provided to logisticians participating in the LRT training, and also tested

in two classroom exercises. Even without any ability to automatically generate plans, it

turned out to be useful as a "tracking" tool for maintaining an understanding of the evolving

plan as it was input by hand. As people decided on the dispatch of each individual truck,

it was helpful to use the plan views to determine where vehicles would become available,

and when cargo would arrive at a given location. The plan was difficult to track by hand,
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because there were many vehicles moving through a complex network and because many

of the cargo movement requests had to be split into several loads, each of which moved on

several different modes of transport. The tool enabled planners to track their evolving plan

as they created it.

Ultimately, such a tool would be more useful if it could also suggest plans to the user.

Within the Excel-based tool, it is possible to add routines that generate plans or that

import plans captured in other formats. The models of human approaches, described below,

were developed and implemented as VBA macros within this planning tool. In addition,

we developed a routine to read in the output of the CPLEX optimization, so that plans

generated by the optimizer can be viewed more intuitively and scored in the same way as

the human approaches.

4.4.2 Modeling human approaches: heuristics and policies

Chapter 2 of this thesis described an ethnographic study of 10 teams of humanitarian

logisticians as they created transportation plans, solving the problem described in this

chapter. Six teams had no access to decision support, and two teams had access to the

planning tool described in the previous section, which could track a manually input plan,

but could not generate any elements of the plan. As a result, all teams had to make planning

decisions "by hand", meaning that they had to decide every movement of every vehicle: at

what time it would leave, where it would go, and what cargo it would carry.

My study showed there were two archetypal decision processes followed by many teams:

the location-based and task-based decision processes described in Chapter 2. In both pro-

cesses, teams progressed forward in time, first planning the first day, then the second, and

so on. In the location-based process, teams focused on a particular location, or node in the

network, at the "current" time, meaning the time to which they had planned so far. Within

the vehicles and cargo available at that node, they chose cargo to load and a destination to

move to, generally sending cargo forward towards its destination. After dispatching (plan-

ning movements) for all the vehicles available at that node, they looked at a different node.

In this manner, they progressed forward through a plan, making decisions locally at each

node and each point in time.

In the task-based process, teams also progressed forward in time; however, the focal unit

was not a node but a "task", which here we use to mean moving cargo out of an origin or
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along a path. For example, teams focused on moving cargo out of the congested port city,

or moving cargo along a bottleneck road through the mountains. Before making planning

decisions, teams roughly mapped out the need for cargo movement along these tasks, then

focused their attention on one task or another, moving vehicles to accomplish that task until

movements for all vehicles were planned. Then they moved on to the next time that vehicles

became available. Occasionally they re-mapped the need for cargo movement among tasks,

or formulated new tasks to address needs. As in the location-based decision process, they

stepped through the plan by moving forward in time, but they made decisions based on

the need for movement along tasks (from origins or along paths) rather than at each node

individually.

A third important element of these two decision processes was how each individual

dispatch decision was made. As described in Chapter 2, teams made each decision based

on a series of rules or policies describing how to prioritize cargo based on its item type,

its destination, or other characteristics. For example, some teams decided to send mostly

priority-1 shelter cargo, but also some priority-2 health, priority-3 water and sanitation,

and a small amount of priority-4 food. Some teams decided to serve the closest helicopter

destinations first, to maximize their capacity. The policies were based on goals formulated

by the teams, such as delivering more high-priority cargo, or using helicopters efficiently.

Clearly, the location-based and task-based decision processes are not algorithms, be-

cause there were many variations in how they were carried out. However, they do have

an algorithmic character. They show people stepping through the plan over time, making

the same kinds of decisions over and over. The processes resemble greedy search heuristics,

and the policies resemble rules that guide search in the direction of goals. The policies,

therefore, probably have a strong impact on the quality of the resulting solution (the trans-

portation plan), but it was impossible to determine which policies are better or worse based

on the ethnographic study. To understand the effectiveness of the human decision processes

and policies, this section develops models of the decision processes, which can be evaluated

against one another and against solutions from the optimization model described in the

previous section.

Models cannot replicate the exact processes employed by humans. Instead, they repre-

sent an idealized version of those processes, so we can evaluate how effective they would be

if implemented consistently. That is the goal of this section. We develop models of the two
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archetypal decision processes, location-based and task-based, documenting the assumptions

necessary to build a heuristic model of each. In addition, we develop variations around these

two processes that implement various policies that governed each decision in the process.

Table 4.1 shows all the modeled decision processes and policies. It also includes a summary

of what was observed in the ethnographic study, and the additional assumptions required to

model the process or policy. The following paragraphs describe the models in more detail,

and pseudocode is provided in Appendix B.

4.4.3 Location-based decision process

To model the location-based decision process, described above and in Table 4.1, a heuristic

algorithm replicates the teams' pattern of stepping forward in time, and focusing on each

location in turn. The algorithm moves through the nodes one by one, and at each node,

finds the available vehicles and waiting cargo. For each vehicle, it sets a destination for the

vehicle, as determined by the cargo selection policy, and loads cargo onto the vehicle, again

determined by the cargo selection policy. If there are vehicles but no waiting cargo, the

vehicles are moved toward the node with the most waiting cargo. A distinguishing feature

of this algorithm is that vehicle movements are only planned one step ahead, meaning

movements go only to the adjacent nodes. This represents the behavior of teams in planning

movements forward only one step at a time. The algorithm's steps are summarized below.

(When a step is governed by a policy, the policy is noted in parentheses; see Table 4.1 and

the following sections for definitions of these policies.)

e For each CMR, find a shortest or cheapest path to its destination (determined by

airbridge policy)

" At each time step, for each node,

" For each vehicle available at the selected node,

- Select an adjacent node as the destination for the vehicle: the node with the

most cargo waiting to go through it (of type indicated by the cargo selection

policy)

- Fill the vehicle with CMRs going through the selected destination (in order

determined by cargo selection policy)

" If there is no waiting cargo, move the vehicle toward the node with the most waiting
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Location-based Teams stepped through the plan over time. I ney I ne model assumes tne plan IS traCKeo aaequaxely. i assumes
focused on one location at a time, choosing from the teams move through time sequentially, planning
cargo at that location to load onto vehicles at that movements for vehicles as soon as they become available.

location. The selection of cargo determined the When a truck has no cargo to move, it is moved towards the

destination of the vehicle. After planning one location, most waiting cargo. Movements are only planned one step
teams focused on another location, or the next time ahead, meaning to an adjacent node. Paths for each cargo
at which vehicles became available. Many teams movement request are determined at the beginning, and
assigned paths to cargo before they planned their follow the least-expensive path or the shortest path
movements. (determined by a policy).

Task-based Teams stepped thorugh the plan over time. They The model assumes the plan is tracked adequately. It assumes
focused on one task at a time, meaning an origin or a the teams move through time sequentially, and plan
path. They roughly understood the need for cargo movemetns for vehicles when they become available. The
movement in each task, and focused on those that model calculates the need for cargo movement on a defined
had more urgent needs. For a focus task, they routed set of tasks at every new time period. Tasks are selected based
vehicles and loaded cargo. After planning one task, on the calculated need (according to a policy). Vehicles are

they looked at another task, or the next time high allocatoed to tasks either proportionally to need or to the
vehicles became available. Many teams assigned neediest first. The model focuses on one task, then another,
paths to cargo before they planned their movements. until all available vehicles have been planned, then moves to

the next time when vehicles are available.

Prioritize by item type, Teams selected cargo to load by looking at the priority Given a choice of destinations, vehicles move to the Selecting Selecting

lexicographic of the type of item. They loaded all priority-1 cargo destination to which the most high-priority cargo is going. In destination for destination for
before any priority-2 cargo, all priority-2 cargo before selecting cargo to load, higher-priority is loaded first. vehicle and cargo vehicle (in origin
any priority-3 cargo, etc, within a given location or to load tasks) and cargo to
task. load

Prioritize by item type, Teams selected cargo to load by looking at the priority Given a choice of destinations, vehicles move to the Selecting Selecting

weighted mix of the type of Item. They attempted to load more high- destination to which the most high-priority cargo is going. In destination for destination for

priority and t oe onsie lower-priority items as selecting cargo to load, the model attempts to send 50% vehicle and cargo vehicle (in origin
well. priority-1, 30% toyhiot-priority esinaios, and % riority-4. to load tasks) and cargo to

load

Prioritize by destination, Teams considered the priority of destinations, usually Given a choice of destinations, vehicles move to the Selecting Selecting
lexicographic by province, two of which were considered high- destination to which the most high-priority cargo is going. In destination for destination for

priority and two others considered lower-priority. selecting cargo to load, cargo going to high-priortty vehicle and cargo vehicle (in origin
They loaded cargo for high-priority destinations destinations is loaded first. to load tasks) and cargo to
before that for lower-priority destinations. load

Prioritize by destination, Teams considered the priority of destinations, usually Given a choice of destinations, vehicles move to the Selecting Selecting
weighted mix by province, two of which were considered high- destination to which the most high-priority cargo is going. In destination for destination for

priority and two others considered lower-priority. selecting cargo to load, the model attempts to send 70% cargo vehicle and cargo vehicle (in origin

They loaded more cargo for high-priority destinations, going to high-priority destinations, and 30% cargo going to low- to load tasks) and cargo to
but also sent some cargo to lower-priority priority destinations. load
destinations.

Prioritize cargo with Teams often mentioned the goal of delivering as much The model Implements this by prioritizing cargo with the Selecting Selecting

shortest path to destination and as quickly as possible, sometimes manifested as shortest remaining distance to reach its destination. In destination for destination for

delivering what's there or what will get to its selecting cargo to load, cargo with the shortest paths are vehicle and cargo vehicle (in origin

destination most quickly. loaded first. Given a choice of destinations, the destination is to load tasks) and cargo to

determined by the path of the cargo with the shortest load

remaining distance to its destination.

Prioritize cargo headed to a Teams selected shipments that were needed in order The model requires that "bottleneck" nodes, to which cargo Selecting Selecting

particular "bottleneck" node to fill onward transport: helicopters and small trucks. should be moved for onward transport, are defined ahead of destination for destination for

In choosing cargo or tasks to focus on, they chose time.Given a choice of destinations, vehicles move to the vehicle and cargo vehicle (in origin

those that had to go by 10T or helicopter transport. destination to which the most "bottleneck" cargo is going. in to load tasks) and cargo to

selecting cargo to load, "bottleneck" cargo is selected until the load

required amount has been sent to the bottleneck each day.

Select task with most total Teams described tasks in terms of the amount of Tasks are selected In order of the most total cargo that needs Selecting the next

need cargo that needed to move along it. to move through the task. task on which to

focus

Select task with most need Teams described tasks in terms of the amount of high- Tasks are selected in order of the most high-priority cargo that Selecting the next

for high-priority item types priority types of cargo that needed to move along It. needs to move through the task. task on which to
focus

Select task with most need Teams described tasks in terms of the priority of Tasks are selected in order of the most cargo going to high- Selecting the next

for high-priority reaching certain destinations. priority destinations that needs to move through the task. task on which to

destinations focus

Taok vhicle WMction

Allocate vehicles to tasks in Teams often decided how many vehicles to allocate The model allocates vehicles in proportion to the total need Determining the

proportion to need across different tasks by looking at how much cargo (either total, or based on priority) at all tasks for a given time number of vehicles

needed to be moved along each task. period, to allocate to each
task

Allocate vehicles to selected Some teams worked on one task before looking at the The model allocates enough vehicles to satisfy the total need at Determining the

task before others need on any others, allocating vehicles to the first each selected task before any others. number of vehicles

one without thinking about the others. to allocate to each

task

Use an airbridge for earty Most teams discussed whether to use an "airbridge", The model implements this Idea by assigning a certain amount Assigning paths to Assigning paths to

cargo, then move to less using helicopters to fly over the mountains in the first of cargo to move along the shortest path to its destination, cargo movement cargo movement

expensive modes few days rather than slowly trucking goods the long rather than the least-expensive path. The shortest path requests requests

way around the mountains. employs the helicopter airbridge, while the longer, cheaper

path employs trucks. The amount of cargo to be assigned a

shortest path, and the type of cargo (e.g. high item priority or
destination priority), is defined ahead of time.

Table 4.1: Decision processes and guiding policies
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cargo (of type indicated by the cargo selection policy)

4.4.4 Task-based decision process

To model the task-based decision process, described above and in Table 4.1, a heuristic

algorithm replicates the teams' pattern of stepping forward in time, and focusing in turn

on various tasks. The tasks are not defined by the algorithm but rather must be defined

individually for each problem instance. The model is implemented this way because teams

did not have a systematic way of defining tasks; rather, task definition was part of the

sensemaking process, which is difficult to describe algorithmically (this is left to future

research). In these models, tasks are defined for each test problem based on my observations

of the teams and the tasks they defined. Tasks are defined as either moving cargo from

an origin or along a path, and a type of vehicle is associated with each task (e.g. small

trucks, helicopters, etc.) The algorithm computes the need for cargo movement along all

tasks at each time step, then selects a task according to the task selection policy, and

allocates vehicles to it according to the vehicle allocation policy. For each allocated vehicle,

it routes the vehicle to the task's origin. If the task is to move cargo along a path, the

vehicle's destination is routed to move along that path, but if the task is to move cargo

from an origin, the vehicle's destination is set according to the cargo selection policy. The

vehicle is filled with cargo, again according to the cargo selection policy. After all allocated

vehicles have been planned, another task is selected, until all vehicles have been planned.

The algorithm's steps are summarized below.

" For each CMR, find a shortest or cheapest path to its destination (determined by

airbridge policy)

" At each time step,

" Select a task: the task with the most need for cargo movement (of type indicated by

the task selection policy)

e Allocate vehicles to the task from all vehicles available at this time, either propor-

tionally or to satisfy this task's need (determined by the vehicle-to-task allocation

policy)

" For each vehicle allocated to the task,

- Route the vehicle to the task's origin
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- If the task is a path, route the vehicle along the path; if the task is an origin,

select a node as the destination: the node with the most cargo waiting to go to

it (of type indicated by the cargo selection policy)

- Fill the vehicle with CMRs going through the selected destination (in order

determined by cargo selection policy)

e If there are still vehicles available at this time, select another task

4.4.5 Cargo selection policies

Cargo selection policies govern two major decisions in both the location-based and task-

based processes: (1) the selection of a destination for each vehicle and (2) the selection of

cargo to load on each vehicle. In general, these policies assign a priority level to each set

of cargo, and guide decisions such that more cargo of this priority level is delivered. The

destination is chosen as the node to which the most high-priority cargo needs to go, and

cargo is loaded in priority order (though there are variations in how this is implemented).

Each policy defines the priority of cargo loads differently, either based on the type of cargo,

its destination, the distance to its destination, or whether it must pass through a bottleneck

in the network. Another variation is in whether cargo is loaded strictly in priority order, or

whether an attempt is made to send a "weighted mix", with more high-priority cargo but

some lower-priority cargo. Each policy is described briefly below, and pseudocode is given

in Appendix B (note that the policy-related pseudocode is embedded within the routines

for the location-based and task-based processes).

Prioritization by item type The item type policies prioritize cargo according to the

type of item. In this scenario, and in practice, the priority of each item type is defined

exogenously (e.g. by the host government of the response or the United Nations Office for

the Coordination of Humanitarian Affairs). In the Snowland scenario and the others in this

thesis, shelter is first-priority, health goods second, water and sanitation equipment third,

and food fourth. In determining the destination of a vehicle, the item type prioritization

policies select the node with the largest amount of highest-priority cargo waiting to move

through it. In loading cargo onto vehicles, there are two variations. In the lexicographic

variation, cargo is loaded strictly in priority order; within a given priority level, the cargo

is loaded in the order of the list of requests (i.e. in the order requests were received). In
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the weighted mix variation, the model attempts to allocate, on each truck, the following

amount of capacity: 50% shelter, 30% health, 15% water and sanitation, and 5% food (many

requests may be split across multiple trucks). (The "amount" of cargo can be defined in

various ways, such as the number of items, the weight, or the volume. The teams in the

training most often used weight, so weight is used here.)

Prioritization by destination The destination policies prioritize cargo according to the

urgency of need at its destination. In practice, these priority levels may or may not be clearly

defined (again, for example, by the host government). In the Snowland scenario, location

priorities were not defined or sorted into classes, but nearly all the teams considered two

provinces high-priority and two provinces low-priority. This model assigns each load of cargo

to be high-priority or low-priority depending on its final destination. In determining the

destination of a vehicle, there are two variations of the destination prioritization policy. The

lexicographic policy simply selects the destination node with the largest amount of highest-

priority (by destination, not item type) cargo waiting to move through it. The weighted

mix policy selects the first 70% of the vehicles at this node (by capacity, rounded up to the

next whole vehicle), and sets its destinations based on the amount of high-priority cargo.

The remaining 30% of vehicles at this node (by capacity, rounded down to the next whole

vehicle) choose destinations based on the largest amount of low-priority cargo. In loading

cargo onto vehicles, the model attempts to load high-priority cargo onto those vehicles sent

to high-priority destinations, and low-priority cargo on those vehicles sent to low-priority

destinations.

Prioritization by fastest delivery The fastest-delivery policy prioritizes cargo based

on how quickly it can be delivered. Instead of assigning a priority level to each load of

cargo, the loads are sorted based on the distance from their current locations to their final

destinations. In determining the destination of a vehicle, it is set to deliver the first load

on the list, the one with the shortest distance to final destination. In loading cargo onto

the vehicle, cargo is loaded in order from the list, so that cargo with the shortest remaining

distance is loaded first.

Feed bottleneck nodes This policy assigns a priority-level to cargo based on whether it

must pass through a pre-defined "bottleneck" node, and the priority-level of that bottleneck
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node. The policy represents an important dynamic in the observed teams' decision-making:

feeding cargo to a helicopter base in order to ensure that the helicopters would never be idle

waiting for cargo. The model requires that the bottleneck node(s), such as the helicopter

base in the scenario, be defined ahead of time; if multiple nodes are defined, each has a

priority level. Cargo is then assigned a priority based on the bottleneck node through which

it must pass; cargo that does not go through a bottleneck node is assigned the lowest priority.

The policy prioritizes cargo in order of its assigned bottleneck priority, until an assigned

amount has been sent toward that node for each day (e.g. the daily capacity of helicopters

from the helicopter base). In determining vehicle destinations and in loading cargo, the

model attempts to send the assigned amount toward each bottleneck node, progressing

through them in priority order.

4.4.6 Task selection and vehicle-to-task allocation policies

Task selection policies are used only in the task-based decision process. They govern which

task is selected, from among all tasks at each time step. Tasks are always selected based

on the "need" for movement of cargo along a task. There are two types of tasks: origin

tasks and path tasks. For origin tasks, the need for cargo movement is simply the amount

of cargo waiting at the origin node, at the current time. For path tasks, the need for cargo

movement is the amount of cargo waiting at the path's origin with next steps along the

path, at the current time. In the total need policy, all loads are counted in the calculation of

needs. In the item type policy, only loads of the highest-priority item types (remaining) are

counted, while in the destination policy, only loads going to highest-priority destinations

are counted. As a result, each of these policies selects tasks in order of the need along each

task, where need is either in total, or only of the highest-priority loads.

Vehicle-to-task allocation policies are also used only in the task-based decision process.

They govern the way in which vehicles are allocated among tasks at a given time. In the

proportional policy, vehicles are allocated proportionally to the need for each task at this

time (again, need is calculated according to the task selection policy), but rounding up to

whole vehicles favors the earlier-selected tasks over the later. The other vehicle allocation

policy is first-come-first-served, in which vehicles are allocated to the first-selected task until

all the need is satisfied, then to any other tasks if additional vehicles are available.
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4.4.7 Network policies

The airbridge policy governs how CMRs are assigned paths at the start of both the location-

based and task-based algorithm. It represents an important behavior observed in the teams:

the decision of whether or not to use helicopters to move cargo quickly into remote locations

rather than sending it the long way around by truck. The trade-off they discussed was the

expense of using helicopters compared to the speed of delivery; their default mode was

clearly to send cargo by truck wherever possible. To model this dynamic, the airbridge

policy specifies a certain amount of cargo to be assigned a shortest path to its destination,

while all remaining cargo is assigned a least-expensive path to its destination. At the start

of the algorithm, the complete list of CMRs is sorted in order of priority, according to the

cargo selection policy (meaning it is sorted by item type priority, or destination priority,

etc.). Starting at the top of the list, CMRs are assigned shortest paths until the total

amount of cargo assigned reaches the amount specified in the policy; all remaining CMRs

are assigned least-expensive paths.

4.5 Assessing the performance of human approaches

To assess the performance of human approaches, we compare the models of human ap-

proaches to each other and to solutions from the mixed-integer program developed earlier.

Solutions can be compared in terms of various metrics. Here, the key metric is the utility

of the solution (transportation plan), based on the utility function developed in Chapter

3. This utility function is the objective in the optimization model (see Section 4.3.2), and

utilities are computed for the solutions to the heuristic models as well. Solutions are also

compared in terms of the amount of cargo delivered (again, cargo weight is used for the

amount of cargo, following the teams' behavior), broken down by item type and destination

priority. These are the key metrics by which teams of humanitarian logisticians evaluated

transportation plans, and they are adopted here to assess the performance of plan-generating

heuristics.

The effectiveness of heuristics may be influenced by the specific structure of the prob-

lem. A two-part strategy is employed to evaluate performance on various types of problems.

First, heuristics are evaluated on two small stylized problems, each with several variations.

The goal is to gain intuition about the effectiveness of each heuristic on specific types of
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problems, and how performance changes as key problem dimensions are varied. These styl-

ized problems are based on important characteristics of the Snowland network, and each

problem is designed to probe the effectiveness of the heuristic in managing problems with

that particular characteristic. We use stylized problems based on real problem character-

istics because our goal is to test performance on problems relevant to disaster response.

Second, the heuristics are evaluated on the full Snowland problem solved by the teams in

the training exercise, to test the performance of the heuristics on realistically scaled prob-

lems. The problem is too large to be solved to optimality by the mixed-integer model, so

some simplifications are made to obtain an approximate optimal solution for comparison

with the heuristic solutions. The following sections describe the test problems in more

detail.

4.5.1 Stylized problems

The stylized problems are intended to be simple, in order to probe the effectiveness of

heuristics under specific problem situations and to make it easier to understand the ad-

vantages and drawbacks of each heuristic. Each problem includes a port node P, and all

the inventory is initially located there. There are two final destination nodes, each with a

different destination priority. There are 8 cargo movement requests, 4 to each destination

node, each of which is of a different item type priority. There are two types of vehicles,

trucks and helicopters, each with a fixed volume and weight capacity. In each case, 4-day

plans are created.

A key challenge, in practice and in modeling, is to determine the right metric by which

to measure the amount of cargo delivered. Should we seek to maximize the weight delivered,

or the volume, or the number of items? In reality, the goal is to maximize the number of

people to which assistance is provided, but there are no estimates of the number of people

assisted per pound or cubic meter of cargo. (One might estimate this for certain items, but

doing so across item categories, such as shelter, would be more difficult, and is left to future

research.) The teams in the simulation training spoke primarily of maximizing weight, so

we follow their lead here. However, in these stylized problems, it is useful to think of the

weight as corresponding to the number of people helped. The volume of each type of cargo

is varied in some instances, to change the difficulty of delivering priority cargo, but the goal

remains to deliver the most weight, or to help the most people.
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"Feed Onward Transport" This problem models a system in which cargo must be "fed"

to a node for onward transport by some other mode of transportation. In the Snowland

scenario, many teams worried about sending cargo by road to the helicopter base for onward

transport by helicopter. This problem is a simple representation of that challenge. The

stylized problem is described in Figure 4-2. Cargo is at node P initially, and must be

transported to either E or F. F is easily reached by truck, but E can only be reached by

moving cargo to D by truck, then by helicopter to E.

One variation on this problem looked at high- and low-capacity scenarios, with either

four trucks and four helicopters or two trucks and two helicopters. A second variation

changed the difficulty of delivering priority cargo. In the easy variation, the easily reached

node F was a high-priority destination, and all cargo types had the same volume. In the

difficult variation, the hard-to-reach node E was the high-priority location. Moreover, the

higher-priority item types had larger volume, making it harder to deliver the same amount

(weight) of cargo.
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Figure 4-2: The "Feed Onward Transport" instance: deliver cargo for onward transport by
helicopter.

"Airbridge" This problem models the trade-off between using helicopters to reach oth-

erwise inaccessible areas or to provide speedy deliveries to areas that can be reached by

road, but more slowly. In the Snowland scenario, many teams considered using helicopters
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to provide such an airbridge in the first few days, before cargo could reach the mountainous

areas by road. This problem, described in Figure 4-3, is a simple representation of that

challenge. Again, cargo is initially at node P, and must be moved to E and F. F is only

accessible by helicopter, while E is accessible by road, but trucks require an entire day to

reach it, while helicopters can deliver much more quickly. The same high- and low-capacity

scenarios, and easy and difficult prioritization cases, can be created for this problem.

Y2 day

A

Y day

1/8 day

1/8 day **

DP-2 (Difficult Case)
DP-1 (Easy Case)

To H 128

IP-1 32

IP-2 32

1IP-332
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truck
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truck
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1 $10,000 / rotation
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I.........

CARGO
starting at P
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IP-2 1 31

IP-3 1 2

Easy Case:

wt Vol

IP-1 1 2.5

IP-2 1 2.5

IP-3 11 2.5

IP-4 11 2.5

Figure 4-3:
locations

The "Airbridge" instance: use helicopters as an airbridge or to deliver to other

4.5.2 Realistic problem: Snowland scenario

While the stylized instances are useful for highlighting specific problem characteristics, it is

important to test the effectiveness of heuristics on a problem of realistic size and complexity.

A natural choice here is the Snowland scenario from which these heuristics were developed.

In a sense, using this Snowland problem gives the heuristics the "best shot" at showing their

effectiveness, because the heuristics were derived from human behavior in solving exactly

this problem. The claim that the Snowland scenario is "realistic" requires some justification.

It was developed by a group of very experienced humanitarian logisticians, many with 10-20

years of field experience. They intended to depict the real complexities of operations they
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had experienced, in order to challenge the training participants with a realistic scenario. In

particular, it was developed to be somewhat similar to the Pakistan earthquake in 2005. The

Snowland scenario includes many realistic complexities and challenges, which are described

below.

"Snowland" The Snowland instance is the same problem solved by the teams in the

LRT simulation. Figure 4-4 summarizes the problem. The road network contains good

roads accessible to large (40-ton) trucks, bad roads accessible to small (10-ton) trucks, and

areas accessible only by helicopter. Cargo enters mainly through the hubs P, H, and A, with

small starting inventories at B and D; it must be delivered to hubs and small destinations

throughout the network. The amount of cargo destined for each destination is shown, along

with its breakdown by item type priority. The double-walled nodes in Figure 4-4 actually

include a number of different destinations, but they are depicted as one node in the diagram

for clarity. Some of the destinations are priority 1, and some are priority 2. There are five

types of vehicles: 40-ton trucks, 10-ton trucks, and three types of helicopters with slightly

different weight capacities. Helicopters have "infinite" volume capacity because loads can

be slung beneath them. The vehicles start in different locations, and many do not arrive

until several days into the planning period.

The fundamental structure of the problem was the same for all 10 teams in the LRT sim-

ulation, but the specific number of requests and number of vehicles available were changed

occasionally over the course of the 5 trainings. In the earlier trainings, there were fewer

vehicles, and in later trainings, there were more vehicles, so that a greater percentage of

the cargo could be delivered. Here, we use two versions of the Snowland formulation, cor-

responding to these two cases. In both cases, there is plenty of 40-ton truck capacity, but

the helicopter and 10-ton capacity is very limited.

This Snowland scenario contains many complexities and challenges. Most cargo must

be moved by large truck, then by small truck, then by helicopter. The majority of the cargo

can only be delivered by helicopter, and helicopters are in short supply. Cargo enters the

country through two different entry points. Some areas are particularly remote, while others

are easily accessible. Many of the cargo movement requests are too large to be transported

in one load, and must be split across multiple vehicles and sent at different times. There are

trade-offs between using helicopters only for deliveries to inaccessible areas, or allocating
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some to provide an airbridge to get cargo quickly from P, the largest entry point through

C to the neediest areas around B. It is difficult to reach the helicopter base at B by road,

so large quantities of cargo must be transported through the bad road from A to B to

ensure that the helicopters are never idle waiting for cargo. According to the humanitarian

logisticians who have designed, facilitated, and participated in the LRT training, these

challenges and complexities make for a realistic transportation planning problem.

To Node: total (MT)

P1, P2, P3, P4, other

To DD: 231 truck 1 (40-ton)

177,10,954,,0,0 2truck 2 (10-ton)
138, 18, 9, 240, 6

D, 1 A.. helicopter

P initial inventory I
D --- - -- - - -

P-2 2 dayr- - - - - - - - - - - - - -

vol. capacity: 60
wt. capacity: 40

To B2: 127 p x 20 (20) startatP,day 1

P-2 127,0,0,0,0 N . vol. capacity: 25 I
, ,,,tu 2 wt. capacity: 10 I

* x 35( start at H, day 2 (4) I
-~~ I 35 (10)

* 1 . C [ vol. capacity: n/a I
P-1 1 dy P-1 i wt. capacity: 3

To A: 604 A 1aI B 1 (1) start at B, day 1
To B3: 75

370,1, 6, 200, 27 * 43, 8, 13, 0,11 vol. capacity: n/a
,\h 2 wt. capacity: 4

1 x2(5) start at B, day 2

Al I
(D I

P P-1 P I vol. capacity: n/a

To~~~ heli 39 oB:7 wt. capacity: 5
To A1: 393 To A2: 125 To B: 78 start at B, day 3

383,0,9,0,1 7 54,0,4,20,0 x

Figure 4-4: The "Snowland" problem: Cargo enters mainly through P, H, and A, to be

transported to hubs and to destinations in the interior. There are two versions of this in-

stance, with different numbers of vehicles; the mid-capacity version is shown in parentheses.

"Snowland Simplified" The Snowland problem described above leads to very large

problems. Because it models every movement of every helicopter, a relatively large number

of time periods per day are required to ensure each helicopter can make several flights per

day. Therefore, it is difficult to solve problems with more than two-day time horizons, or

16 periods. However, cargo in this scenario can take more than three days to reach its final
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destination, so it was important to study problems with longer time horizons. Therefore, we

developed a simplified version of the Snowland scenario that can be solved by an optimizer

for longer time horizons.

With a few simplifications, we develop a formulation that approximates the optimal

solution but enables larger problems to be solved. The key change is to reduce the number

of time periods. In the Snowland scenario, and in many realistic scenarios, road trips take

no less than half a day, so road vehicles alone should require no more than two periods per

day. For helicopters, we simply lump all the flights (per day) into one flight, and multiply

their capacity by the number of flights they can make per day. For example, if a helicopter

can make four rotations per day, we multiply its capacity by four and modify its flight times

so that it can make only one flight per day. (Costs are also updated accordingly.) In this

manner, we can reduce the number of periods per day to two.

With this change, however, the helicopters can only reach one location rather than four

different locations in a day. Therefore, we aggregate the demand to one node that stands in

for an entire set of villages. The set can be defined by a region (e.g. a province in Snowland,

such as Rocky), or by villages of a certain priority in a region. The resulting instance

provides a conservative approximation of the optimal solution to the original problem,

because it is easier to deliver more cargo when villages are aggregated into single nodes.

The simplified problem instance is shown in Figure 4-5.

Testing on 2-day instances suggests that this formulation provides a reasonable, con-

servative approximation to the optimal solution. The original problem yielded an optimal

solution (maximizing total deliveries) of 1174 MT, while the reformulated problem yielded

a solution of 1185 MT.

4.5.3 Test Cases

In order to understand the performance of heuristics under different problem conditions, we

test several cases of each stylized problem. As described earlier, the capacity (the number of

vehicles) and the difficulty of delivering priority cargo may be varied. A third dimension of

variation is whether an airbridge is used. The optimizer always has the option of employing

an airbridge, but in the heuristic models, an airbridge must be explicitly included. Table 4.2

shows the combinations of these variations tested for each problem. In the "Feed Onward

Transport" problem, the difficulty and capacity were varied, but the airbridge option was
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P-1

To B,: 78

54,0,4,20,0

To Di: 231

177, 0, 54, 0, 0

Figure 4-5: The "Snowland simplified" problem: Compared with the original, this prob-
lem has a reduced number of time periods and aggregated destination nodes. To reduce
the number of time periods arc lengths were increased and vehicle capacities changed to
compensate. Changes are highlighted in red.

not relevant. In the "Airbridge" problem, the high-capacity scenario was uninteresting, so

the other two dimensions were varied while the capacity remained low. In the "Snowland"

problem, the difficulty was irrelevant because the requests were defined in the scenario. The

two capacity levels correspond to the vehicles provided to teams in the first few trainings

(low capacity) and in the last few trainings (high capacity). Again, the airbridge is explicitly

included for the heuristic models in two of the four cases.

A second element of the test cases is the set of specific heuristics and policies tested in

each case. For simplicity, all problem instances were run with the same set of heuristics

and policies. These sixteen combinations of decision process heuristics with various types

of policies are provided in Table 4.3. The location-based decision process is run with each

of the six cargo selection policies. Ten combinations of policies are used with the task-based
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10

Ne

0

0~0

Easy Low
Easy High
Difficult Low
Difficult High

(a) "Feed Onward Transport"

4&

Easy No Low
Easy Yes Low
Difficult No Low
Difficult Yes Low

(b) "Airbridge" Problem

Low No
Low Yes
High No
High Yes

(c) "Snowland" Problem

Table 4.2: Problems and cases of each problem

decision process. Run 7 is a baseline set of item prioritization policies, and runs 8, 9, and

10 each vary one policy at a time from this baseline. Similarly, run 11 is a baseline set

of destination prioritization policies, and runs 12, 13, and 14 each vary one policy at a

time from this baseline. Finally, runs 15 and 16 represent "crosses", combinations of item

prioritization and destination prioritization policies.

1 Location-based Item priority, lexicographic
2 Location-based Item priority, weighted mix
3 Location-based Destination priority, lexicographic
4 Location-based Destination priority, weighted mix
5 Location-based Shortest path to destination
6 Location-based Feed to bottleneck
7 Task-based Item priority, lexicographic Most need for high-priority item types Proportional
8 Task-based Item priority, weighted mix Most need for high-priority item types Proportional
9 Task-based Item priority, lexicographic Most total need Proportional

10 Task-based Item priority, lexicographic Most need for high-priority item types First come first served
11 Task-based Destination priority, lexicographic Most need for high-priority destinations Proportional
12 Task-based Destination priority, weighted mix Most need for high-priority destinations Proportional
13 Task-based Destination priority, lexicographic Most total need Proportional
14 Task-based Destination priority, lexicographic Most need for high-priority destinations First come first served
15 Task-based Item priority, lexicographic Most need for high-priority destinations Proportional
16 Task-based Destination priority, lexicographic Most need for high-priority item types Proportional

Table 4.3: Combinations of decision process heuristics and policies run for each problem
instance

4.6 Results and Discussion

In this section, we analyze the results for the test cases described above on all three problems.

We first examine each case and each problem in detail, then discuss results across cases and
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across problems.

4.6.1 "Feed Onward Transport" Stylized Problem

A description of the "Feed Onward Transport" problem was given in Figure 4-2. We study

four cases, shown in Table 4.2. Results are reported for all four cases and discussed below.

For each case, sixteen combinations of heuristics and policies are tested; these sixteen "runs"

are described in Table 4.3. There is one important point to note. The policies may specify

that cargo be loaded in order of priority by type, for example, but they do not specify the

order in which to load cargo of the same item type. In such cases, cargo is loaded in the

order listed in the database, which might be the order in which requests were received. In

this problem, cargo requests were listed in the database in the following order: all cargo

for F was listed before cargo for E, and lower-priority item types were listed before higher-

priority item types. For example, priority-4 items for F were first, followed by priority-3

items for F, etc. This order was chosen in order to emphasize the potential weaknesses in

heuristics that do not pay attention to each kind of priority, because if item priority is not

considered, the lowest-priority items are loaded first.

Low-Capacity, Easy Prioritization Case Figure 4-6 summarizes the results for this

case. Recall that the low-capacity case has only two trucks and two helicopters, and requests

delivery of equal amounts of all four types of items to each of two destination nodes. The

closer destination node is high-priority, and all item types have the same volume (see Figure

4-2 for details). With these parameters, the maximum possible amount of cargo to deliver

is 102.4 MT.

The first graph in Figure 4-6 shows the total utility of each "run" of the heuristic

model (see Table 4.3 for descriptions of the specific policies in each run), along with the

utility of the optimizer's solution (maximizing the sum of all component utilities) and

the utilities obtained from the optimizer when maximizing each component of the utility

function individually. The individual components of utility are highlighted in different colors

within the stacked bar corresponding to each run, and the total utility value is shown. The

next two graphs show the total metric tons delivered, broken down by item type priority

and by destination type priority, respectively, and the final graph shows the average day

of delivery. The table provides, for each run, the values for metric tons delivered in total
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and broken down by item type and destination priority. The table also provides the gap

(difference) between the utility component value and the maximum value of that utility

component, obtained by an optimizer maximizing that component individually. The gap

in total utility is the gap between the total utility of the run and the utility obtained by

an optimizer maximizing the sum of all five utility components. (These utilities have been

scaled so that all utilities are positive numbers.) The top lines of the table indicate the

policies used in each run, but refer to Table 4.3 for details.

We first consider the optimized utility: it delivers an ideal mix of item types to an ideal

mix of locations, and delivers the maximum possible amount of cargo (102.4 MT in this

case). The gap shows that deliveries are only a little slower than the maximum possible

value, but all other components are as high as they can be.

Next, we consider the location-based heuristics (runs 1-6). Nearly all policies deliver the

maximum amount of cargo, so the difference in utility comes from the other components

of the utility function. The best-performing policies are those that consider the item type

priority, and the weighted mix policy is best of these, delivering the ideal mix of item types.

The destination policies deliver only to priority-I destinations, even the weighted mix policy,

in this case because there are only two trucks: in each time period, the algorithm tries to

allocate 70% of capacity to high-priority destinations, rounding up to the nearest whole

truck, so they always go to high-priority destinations. These destination policies perform

worse than the item type policies because, in this case, the additional utility from paying

attention to item type prioritization outweighs the additional utility from paying attention

to destination prioritization. In this case, the shortest path policy is equivalent to the

destination prioritization policies, because cargo with the shortest path also happens to be

going to the high-priority location. The feed policy performs poorly, in this case, because it

forces cargo to go to the helicopter base, which in this case is a lower-priority destination.

Clearly, a policy of maximizing the usage of the helicopters may not always lead to the best

plans, especially when the helicopters are serving low-priority destinations. (Given their

expense, however, it is unlikely they would be used in low-priority locations in practice.)

The task-based heuristics are divided into three sub-sets: those that prioritize by item

(runs 7-10), those that prioritize by destination (runs 11-14), and "cross" policies that com-

bine item and destination prioritization decisions (again, refer to Table 4.3 for details on

the policies used in each run). Recall that in the former two sub-sets, the first run may
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Location-based Task-based opt
Item Destination Other Item Prioritization Destination Prioritization Crossed

Lexic Wtd Lexic Wtd Short Feed Base Wtd ITotNeed FCFS Base I Wtd ITotNeed FCFS I I
Run#: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Opt

UL1: Total Delivered 0.0 0.0 0.0 0.0 0.0 28.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
U2: Item PrIorltization 10.2 - 156.3 156.3 156.3 189.3 10.2 - 10.2 10.2 156.3 156.3 242.9 156.3 67.0 242.9 -

Gap: U3: Destination Priorlitization 65.0 65.0 12.7 12.7 12.7 234.0 65.0 65.0 65.0 65.0 12.7 12.7 65.0 12.7 12.7 118.1 -
U4:Speed 6.9 6.9 - - - 21.9 6.9 6.9 6.9 11.3 - - 6.9 - - 29.8 2.5
U: Sum of utilities 79.8 69.7 166.3 166.3 166.3 471.8 79.8 69.7 79.8 84.2 166.3 166.3 312.5 166.3 77.0 388.6 -
Total delivered 102.4 102.4 102.4 102.4 102.4 89.6 102.4 102.4 102.4 102.4 102.4 102.4 102.4 102.4 102.4 102.4 102.4
Priority Iltems 64 51.2 6.4 6.4 6.4 0 64 51.2 64 64 6.4 6.4 0 6.4 32 0 51.2

Metric Tons Priority 2 Items 38.4 30.72 32 32 32 25.6 38.4 30.72 38.4 38.4 32 32 0 32 32 0 30.72
Delivered Priority 3 Items 0 15.36 32 32 32 32 0 15.36 0 0 32 32 38.4 32 32 38.4 15.36

Priority 4 items 0 5.12 32 32 32 32 0 5.12 0 0 32 32 64 32 6.4 64 5.12
Priority 1 Destinations 51.2 51.2 102.4 102.4 102.4 0 51.2 51.2 51.2 51.2 102.4 102.4 51.2 102.4 102.4 51.2 76.8
Priority 2 Destinations 51.2 51.2 0 0 0 89.6 51.2 51.2 51.2 51.2 0 0 51.2 0 0 51.2 25.6

1200 --- ------ ---- -- - - - - - - - - - - - - - + - - - - - - - -- - -- - -
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Figure 4-6: Results for "Feed Onward Transport" problem: low-capacity, easy case
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be considered a "baseline", and the remaining three runs vary one factor at a time. As we

might expect, the item prioritization policies perform well, with the weighted mix policy

performing slightly better by delivering a better mix of item types (and in both cases, they

are identical to their location-based counterparts). Selecting tasks based on the total need

rather than the need for priority-1 items only (run 9) makes no difference in performance.

The first-come-first-serve vehicle allocation policy makes deliveries slightly slower, probably

because it allocates vehicles to the long-distance deliveries slightly more often. The task-

based heuristics emphasizing destination prioritization perform slightly worse, overall, than

the item prioritization policies, consistent with the results in the location-based heuristics.

The only policy that makes a major difference is selecting tasks based on the most need

overall rather than the most need for high-priority destinations: in this case, it delivers

to both destinations because they have equivalent need, and delivers largely low-priority

item types, resulting in much worse performance in utility. Of the two "cross" policies, the

heuristic that selects policies based on item type and tasks based on destination performs

well (run 15), because it pays attention to the destination priority in selecting the task to

focus on, and to item priority in deciding which types of items to send. The opposite com-

bination is not effective: it selects tasks based on item-priority needs, which are equivalent

across both destinations, so it sends vehicles to both high- and low-priority destinations

in equal proportions. In loading cargo, however, the destination is already set, so paying

attention to the destination-priority in loading cargo makes no difference.

To summarize, across all runs, the best-performing policies are those that select cargo

based on its item type priority, and attempt to send a weighted mix of cargo. The gain

in utility from paying attention to item type (and not destination) outweighs the gain in

utility from paying attention to destination (and not item type). We speculate that an even

better policy would be a "cross" policy equivalent to that of run 15, except selecting cargo

using a weighted mix item type prioritization policy; such a policy would pay attention to

destination in deciding what task to focus on, then look at item type when loading cargo.

While the use of different policies clearly affects the heuristic performance, there is little

difference between the location-based and task-based processes. In this case, at least, the

decision process has little effect on the performance.
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Low-Capacity, Difficult Prioritization Case Figure 4-7 summarizes the results for

this case. Recall that the "difficult prioritization" case is different from the easy case in that

the high-priority node is the farther node, and the volume of higher-priority items is greater

than that of lower-priority items, making them more difficult to deliver in large quantities.

See Figure 4-2 for details. With these parameters, the maximum possible amount of cargo

to deliver is 149.3 MT.

First, consider the optimized utility compared with the individually maximized utilities:

none of the utility components are at their maximum possible values, suggesting that the

optimizer made trade-offs between components in maximizing the overall utility. The gap

in U2, the item prioritization utility, is larger than the rest, suggesting this was one of the

main sacrifices made in the optimal solution. In this "difficult prioritization" case, priority-I

items take up much more space in the vehicles (because they have larger volume), meaning

that if many priority-1 items are delivered, the total weight delivered is much less overall.

In this problem, it appears, the gain in u2 from delivering a better mix of item types is

outweighed by the gain in ui from delivering more weight overall. Indeed, the optimized

solution delivers no priority-1 cargo at all. This begs a question: is this utility function

truly representative of logisticians' preferences? It is unlikely that, when faced with this

trade-off, planners would choose to deliver no priority-1 cargo. However, in this particular

problem instance, it is much more difficult to deliver high-priority cargo, which is unlikely

to be true in practice. Still, the case highlights a potential weakness in the utility function's

performance in extreme cases.

Consider next the location-based heuristics (runs 1-6). The best-performing policies

are those that deliver the most cargo overall. Again, because the item type prioritization

policies deliver more high-priority items, which take up more space, less cargo can be

delivered overall. The destination-prioritization policies perform better, because they do a

better job prioritizing by destination and deliver fewer high-priority items (enabling more

total deliveries). The shortest-path policy delivers a lot of cargo but only to the low-priority

destination, resulting in a lower utility overall. The feed policy again performs relatively

well, but only because it is equivalent to the destination policies.

Within the task-based heuristics, those that emphasize prioritization by item priority

(runs 7-10) perform worse, again because they deliver less cargo overall. Those emphasizing

destination priority (runs 11-14) perform better, again because they deliver more overall and
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Location-based Task-based OptItem Destination Other Item Prioritization Destination Prioritization Crossed
Lexic Wtd LexicI Wtd Short Feed Base Wtd TotNeed FCFS Base Wtd TotNeed FCFS

Run#: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Opt
U1: Total Delivered 190.3 133.2 101.1 101.1 83.3 101.1 190.3 133.2 190.3 190.3 101.1 101.1 0.0 101.1 190.3 0.0 19.0
U2: Item Prioritization - 24.2 70.2 70.2 51.0 70.2 - 24.2 - - 70.2 70.2 104.6 70.2 30.6 104.6 80.0

Gap: U3: Destination Prioritization 163.1 121.7 31.1 31.1 223.1 31.1 163.1 121.7 163.1 163.1 31.1 31.1 54.1 31.1 121.7 54.1 5.7
U4:Speed 61.5 49.0 34.2 34.2 19.3 34.2 61.5 49.0 61.5 63.4 34.2 34.2 2.2 34.2 66.6 2.2 9.7
U: Sum of utilities 300.3 213.5 122.3 122.3 261.6 122.3 300.3 213.5 300.3 302.1 122.3 122.3 46.2 122.3 294.9 46.2 -
Total delivered 64 89.6 104 104 112 104 64 89.6 64 64 104 104 149.3333 104 64 149.3333 140.83
Priority 1 items 64 32 8 8 16 8 64 32 64 64 8 8 0 8 32 0 0

Metric Priority 2 Items 0 25.6 32 32 32 32 0 25.6 0 0 32 32 21.33333 32 32 21.33333 38.46
Tons Priority 3 Items 0 19.2 32 32 32 32 0 19.2 0 0 32 32 64 32 0 64 38.37

Delivered: Priority4ltems 0 12.8 32 32 32 32 0 12.8 0 0 32 32 64 32 0 64 64
Priority 1 Destinations 32 44.8 104 104 0 104 32 44.8 32 32 104 104 74.66667 104 64 74.66667 96.04
Priority 2 Destinations 32 44.8 0 0 112 0 32 44.8 32 32 0 0 74.66667 0 0 74.66667 44.79
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do a better job prioritizing by destination. The "cross" runs perform quite differently from

one another. Selecting tasks based on destination and cargo by item type (run 15) results

in fewer deliveries overall, like the item type prioritization policies. Selecting tasks based

on item types and cargo by destination is equivalent to run 13. These two runs perform

best out of all the heuristics because they allow the delivery of the lowest-priority items

first, maximizing the total deliveries overall. Note, however, that the optimized solution

does not deliver the maximum amount, but rather increases deliveries of priority-2 items,

trading off some ui for U2.

Overall, in this case, the best-performing policies are those that deliver the most cargo,

in this case delivering very little of the high-priority item types because they take up the

most capacity. The gain in utility from delivering more cargo overall outweighs the loss

in utility from delivering lower-priority items. The policies that deliver the most cargo

are those that prioritize by destination rather than item type. Recall that in the easy

case described previously, the item type prioritization policies performed better than the

destination prioritization policies. However, in the easy case, all heuristics delivered roughly

the same amount of cargo overall, only trading off deliveries of various item types and to

various destinations. In the difficult case, the trade-off is between delivering more high-

priority items or delivering more cargo overall, and given the utility function, it is better

to deliver more overall. Thus, destination policies perform better than item policies mainly

because of poor performance of item policies rather than good performance of destination

policies.

High-Capacity, Easy Prioritization Case Figure 4-8 summarizes the results for this

case. Recall that the high-capacity case includes four trucks and four helicopters, twice as

many as in the low-capacity case. See Figure 4-2 for details. With these parameters, the

maximum possible amount of cargo to deliver is 204.8 MT.

Rather than going through these results in detail, we compare them with those of the

low-capacity, easy prioritization case, to determine whether the increase in capacity changes

the performance of the heuristics. One obvious difference is that more priority-1 cargo is

delivered by all heuristics, simply because more cargo is delivered overall. The performance

of each heuristic, however, is similar in character to that observed in the low-capacity case.

The item prioritization policies perform slightly better than those based on destination, in
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Location-based Task-based I Opt
Item Destination Other Item Prioritization Destination Prioritization Crossed

LexicI Wtd Lexic Wtd ShortI Feed Base iWtd ITotNeed FCFS I Base I Wtd TotNeedI FCFS I I
Run#. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Opt

Ul: Total Delivered 0.0 0.0 26.4 13.2 26.4 0.0 0.0 0.0 0.0 0.0 52.8 52.8 0.0 52.8 52.8 0.0 0.0
U2: Item Prioritization 13.1 13.1 94.7 94.7 94.7 82.5 13.1 13.1 13.1 13.1 95.5 95.5 94.7 95.5 54.6 89.7 0.0

Gap: U3: Destination Prioritization 57.6 57.6 29.3 21.0 29.3 96.2 57.6 57.6 57.6 57.6 45.8 45.8 57.6 45.8 45.8 43.1 -
U4: Speed 9.5 9.5 8.4 7.5 8.4 15.3 9.5 9.5 9.5 13.5 13.5 13.5 9.5 13.5 13.5 3.3 0.0
U: Sum of utilities 80.4 80.4 158.5 136.3 158.5 194.3 80.4 80A 80.4 84.4 207.2 207.2 162.0 207.2 166.4 136.3
Total delivered 204.8 204.8 179.2 192 179.2 204.8 204.8 204.8 204.8 204.8 153.6 153.6 204.8 153.6 153.6 204.8 204.8
Priority 1 items 64 64 32 32 32 32 64 64 64 64 32 32 12.8 32 57.6 12.8 63.99

Metric Priority 2 Items 64 64 32 32 32 44.8 64 64 64 64 32 32 64 32 32 64 64.01
Tons Priority 3 items 64 64 51.2 64 51.2 64 64 64 64 64 32 32 64 32 32 64 44.81

Delivered: Priority 4 Items 12.8 12.8 64 64 64 64 12.8 12.8 12.8 12.8 57.6 57.6 64 57.6 32 64 31.99
Priority 1 Destinations 102.4 102.4 128 128 128 76.8 102.4 102.4 102A 102.4 128 128 102.4 126 128 102.4 128
Priority 2 Destinations 102.4 102.4 51.2 64 51.2 128 102.4 102.4 102.4 102.4 25.6 25.6 102.4 25.6 25.6 102.4 76.8
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both the location-based and task-based heuristics. It appears, based on these two cases,

that the relative performance of the heuristics does not change when capacity is increased.

High-Capacity, Difficult Prioritization Case Figure 4-9 summarizes the results for

this case. Recall that the high-capacity case includes four trucks and four helicopters, twice

as many as in the low-capacity case, and that the difficult case makes it much harder to

deliver higher-priority cargo, and assigns the farther node as a first-priority destination. See

Figure 4-2 for details. With these parameters, the maximum possible amount of cargo to

deliver is 224 MT.

Again, rather than going through these results in detail, they are compared with those of

the low-capacity, difficult prioritization case, to determine whether the increase in capacity

changes the performance of the heuristic. The conclusions are similar to those above for the

easy prioritization case. The increase in capacity increases the amount of cargo delivered,

enabling more delivery priority-1 items. However, the relative performance of the heuristics

changes very little. The destination prioritization policies still perform better than the item

prioritization policies, because they deliver more overall. The differences in performance

between these heuristics are less pronounced, however, because all the heuristics are able

to deliver at least three types of cargo, meaning the total weight delivered is more similar

across heuristics. As we saw with the two easy cases, increasing the capacity from two

trucks to four does not affect the relative performance of the heuristics in the difficult case.

Summary and Discussion The goal in studying these four cases of the "Feed Onward

Transport" problem was to gain insights into how the set of heuristics and policies perform

on this specific kind of network, when making high-priority deliveries is either harder (or

not) than making low-priority deliveries, and when capacity is low or high.

None of the heuristics or policies perform as well as the optimization model, as might

be expected, but in some cases the gap is small. However, in larger problems, the gap

may increase. Interestingly, the 'feed' policy, which was designed based on this type of

network, does not perform particularly well on this problem. However, the feed policy

is more effective when the helicopters are a severely limited resource and a bottleneck to

priority deliveries. In this simple problem, that was not the case.

There are no clear differences in performance between the location-based and task-based
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Location-based Task-based Opt
Item Destination Other item Prioritization Destination Prioritization Crossed

Lexic | Wtd Lexic Wtd Short | Feed Base | Wtd | TotNeed | FCFS Base I Wtd I TotNeed I FCFS |
Run #: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Opt

U1: Total Delivered 66.1 46.3 0.1 0.1 22.0 0.1 66.1 46.3 66.1 66.1 22.0 22.0 0.1 22.0 66.1 0.1 15.7
U2: item Prioritization 0.0 9.7 48.5 48.5 68.9 48.5 0.0 9.7 0.0 0.0 68.9 68.9 48.5 68.9 28.9 48.5 24.2

Gap: U3: Destination Prioritization 72.5 58.0 0.1 0.1 80.5 0.1 72.5 58.0 72.5 72.5 0.1 0.1 24.2 0.1 22.8 24.2 -
U4:Speed 48.9 35.8 19.7 7.5 14.9 11.4 48.9 35.8 48.9 51.4 30.2 30.2 2.1 30.2 49.3 2.1 15.8
U: Sum of utilities 131.5 93.8 12.7 0.4 129.9 4.3 131.5 93.8 131.5 134.0 65.6 65.6 18.9 65.6 111.3 18.9 -
Total delivered 160 179.2 224 224 202.6667 224 160 179.2 160 160 202.6667 202.6667 224 202.6667 160 224 208.85
Priorityltems 64 64 32 32 32 32 64 64 64 64 32 32 32 32 64 32 47.2

Metric Priority 2 Items 64 51.2 64 64 42.66667 64 64 51.2 64 64 42.66667 42.66667 64 42.66667 32 64 64.05
Tons Priority 3 Items 32 38.4 64 64 64 64 32 38.4 32 32 64 64 64 64 32 64 33.6

Delivered: Priority4items 0 25.6 64 64 64 64 0 25.6 0 0 64 64 64 64 32 64 64
Priority 1 Destinations 80 89.6 128 128 74.66667 128 80 89.6 s0 80 128 128 112 128 128 112 128.04
Priority 2 Destinations 80 89.6 96 96 128 96 80 89.6 80 80 74.66667 74.66667 112 74.66667 32 112 80.81
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heuristic structure. The differences in performance across runs are due to the use of different

policies for cargo selection, task selection, and vehicle allocation. There is a clear distinction

between the performance of item type policies and destination policies. Item type prioriti-

zation policies performed better in the easy cases, because they enabled delivery of the right

mix of items, without doing very poorly on prioritization by destination. In the difficult

cases, the destination prioritization policies performed better, largely because the item type

policies delivered large amounts of high-volume cargo that limited the total amount of cargo

that could be delivered. There is also a distinction between the lexicographic and weighted

mix policies, which is especially evident in the item prioritization policies: the weighted

mix policies perform better than their lexicographic equivalents. Very little performance

difference seems to be driven by the speed of delivery. In the easy cases, in particular, the

speed of delivery is similar across all heuristics. In the difficult cases, the item prioritiza-

tion policies are a little slower than the destination prioritization policies, adding to their

relatively poor performance in these cases.

4.6.2 "Airbridge" Stylized Problem

A description of this problem was given in Figure 4-3. In this section, we look at four

instances of this problem, shown in Table 4.2. For each case, sixteen combinations of

heuristics and policies are tested; these sixteen "runs" were described in Table 4.3. As

in the previous problem, note that cargo is loaded in the order in which it is listed in

the database unless otherwise specified. As before, cargo was listed with all cargo for F

before cargo for E, and with lower-priority item types before higher-priority item types, to

emphasize the potential weaknesses in heuristics that do not pay attention to priority.

Easy Prioritization, No Airbridge Case Figure 4-10 summarizes the results for this

case. This is a low-capacity case, with only two trucks and two helicopters, and equal

amounts of all four types of items are requested to be delivered to each of the two destination

nodes. It is 'easy' because all item types have the same volume and the closer destination

node (F) is high priority. See Figure 4-3 for details. With these parameters, the maximum

possible amount of cargo to deliver is 166.4 MT.

This case is labeled "No Airbridge" because the heuristics do not employ the airbridge

option. Recall that the heuristics assign paths to cargo at the start of the algorithm, and
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an airbridge policy controls how much cargo (if any) is sent via shortest paths rather than

least-cost paths. In this case, the policy was set so that no cargo was sent via shortest

paths, meaning the airbridge from P to E was not used by any of the heuristics in this case.

The optimized solution has the maximum utility across all models, nearly as much as

the utility obtained by maximizing each component individually. The solution provides a

good mix of item types and delivers effectively to both destinations.

Among the location-based heuristics, those that prioritize by item type perform better

than those that prioritize by destination, because they send a better mix of item types

and are equally good at prioritizing by destination. However, all the heuristics do equally

well at prioritizing by destination because there are no choices to be made: the helicopters

always fly to F and the trucks always move to E because no cargo is routed along the

airbridge. The same pattern appears in the task-based heuristics: those that select cargo

by item type priority do better than those that do not. The first-come-first-served vehicle

allocation policy (runs 10 and 14) makes no difference in performance, nor does selecting

tasks based on the total need (runs 9 and 13). Interestingly, in the item type prioritization

policies, using a weighted mix rather than lexicographic policy actually reduces the utility

slightly; this is different from the behavior seen in the "Feed Onward Transport" problem.

In general, however, these results show that item type prioritization policies perform better

than destination prioritization policies, largely because the network structure forces the

same destination prioritization on all of them. While none of the heuristic solutions reach

the utility of the optimized solution, some are quite close, with gaps of only a few units

of utility. However, the structure of this problem makes it easy for the heuristics to reach

good solutions.

Easy Prioritization, Airbridge Case Figure 4-11 summarizes the results for this case.

It is the same as the above case except that the heuristics may use the airbridge option.

The amount of cargo using the airbridge must be pre-defined. Here, about 32 m3 are routed

through the airbrige. This amount was chosen because it is the equivalent of one day of

work for one helicopter. Larger amounts could be tested as well, but this case is sufficient

to see the effect of including the airbridge on the heuristics' performance. At the start

of the algorithm, the cargo requests are sorted by their priority level (as specified by the

prioritization policy), and the first 32 m 3 of cargo movement requests headed to E are

206



Location-based Task-based Opt
Item Destination Other Item Prioritization Destination Prioritization Crossed

Lexic I Wtd Lexic Wtd Short Feed Base I Wtd I TotNeed FCFS I Base I Wtd TotNeed FCFS I
Run#: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Opt

U1: Total Delivered 13.2 13.2 13.2 13.2 13.2 13.2 13.2 13.2 13.2 13.2 13.2 13.2 13.2 13.2 13.2 13.2 -
U2: Item Prioritization 0.6 17.2 146.9 146.9 146.9 146.9 0.6 17.2 0.6 0.6 146.9 146.9 146.9 146.9 0.6 146.9 0.2

Gap: U3: Destination Prioritization 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
U4: Speed 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.1

U: Sum of utilities 10.6 27.2 156.9 156.9 156.9 156.9 10.6 27.2 10.6 10.6 156.9 156.9 156.9 156.9 10.6 156.9 -

Total delivered 153.6 153.6 153.6 153.6 153.6 153.6 153.6 153.6 153.6 153.6 153.6 153.6 153.6 153.6 153.6 153.6 166.4

Priority 1 Items 64 57.6 6.4 6.4 6.4 6.4 64 57.6 64 64 6.4 6.4 6.4 6.4 64 6.4 64
Metric Priority2 Items 51.2 47.36 32 32 32 32 51.2 47.36 51.2 51.2 32 32 32 32 51.2 32 57.6
Tons Priority 3 Items 32 39.68 51.2 51.2 51.2 51.2 32 39.68 32 32 51.2 51.2 51.2 51.2 32 51.2 25.6

Delivered: Priority 4 Items 6.4 8.96 64 64 64 64 6.4 8.96 6.4 6.4 64 64 64 64 6.4 64 19.2

Priority 1 Destinations 102.4 102.4 102.4 102.4 102.4 102.4 102.4 102.4 102.4 102.4 102.4 102.4 102.4 102.4 102.4 102.4 102.4

Priority2 Destinations 51.2 51.2 51.2 51.2 5L2 51.2 51.2 51.2 51.2 51.2 51.2 51.2 51.2 51.2 51.2 51.2 64
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routed via the shortest path, which in this case is from P to E by helicopter. (The route

applies to an entire request, so if the first request has more than 32 m3 of cargo in it, the

entire request is assigned a shortest path.) The remaining cargo movement requests are

routed via the least-cost path, which is by road from P through D to E. The heuristic then

proceeds in the normal manner, meaning it may send none or all of the airbridge cargo, so

up to 32 m3 may be sent via airbridge.

The optimized solution is the same in this case as in the previous case because the

airbridge parameter applies only to the heuristics; the optimizer determines how much

cargo to send on each route. In this problem, it does not send any cargo via the airbridge.

There is no reason to use it because the high-priority destination is F, which is accessible

only by helicopter. Use of the airbridge would take helicopter flights away from F, and

the gain in utility from delivering more speedily to E is not worth the loss in utility from

delivering less to F. With these results, we expect the heuristics to perform less well with

the airbridge option, because it forces certain cargo movement requests to be moved via the

airbridge.

Comparing the performance of the heuristics in this case to that in the previous case

(with no airbridge) shows that the airbridge decreases the performance of some of the

heuristics. In particular, the item type prioritization policies perform less well on prioritizing

by destination. This is because they deliver cargo in order of item type priority, and many

of those high-priority items were assigned to the airbridge path. They would otherwise be

delivered by truck, but because they were assigned this path, they are delivered by air,

taking helicopter capacity away from the high-priority node F that is accessible only via

helicopter.

This case makes clear that an airbridge does not always enable better solutions; in this

case, forcing the use of an airbridge actually makes them worse, because it takes resources

away from more important uses of the helicopters. However, we might expect the airbridge

to be useful in the difficult case, in which the priority of E, the node reached by the airbridge,

is higher.

Difficult Prioritization, No Airbridge Case Figure 4-12 summarizes the results for

this case. No airbridge routes are included in the heuristic models, and the problem pa-

rameters make it more difficult to deliver higher-priority cargo. Node E, the more difficult-
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Location-based Task-based Opt
Item Destination Other Item Prioritization Destination Prioritization Crossed

Lexic Wtd Lexic Wtd Short IFeed Base Wtd TotNeed FCFS Base I Wtd ITotNeedI FCFS I I
RunI: 1 2 3 4 5 6 7 S 9 10 11 12 13 14 15 16 Opt

UL1: Total Delivered 13.2 13.2 13.2 13.2 13.2 13.2 13.2 20.1 13.2 13.2 13.2 13.2 13.2 13.2 13.2 13.2 -

U2: Item Prioritlization 2.0 16.3 123.8 144.2 146.9 153.8 2.0 0.7 63.1 2.0 123.8 123.8 130.7 123.8 69.3 123.8 0.2

Gap: U3: Destination Prioritization 65.0 91.0 0.0 26.0 0.0 6.5 65.0 71.5 6.5 65.0 0.0 0.0 6.5 0.0 0.0 0.0 0.0

U4: Speed 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.1

U: Sum of utilities 76.9 117.2 133.8 180.1 156.9 170.2 76.9 89.4 79.6 76.9 133.8 133.8 147.1 133.8 79.2 133.8 -

Total delivered 153.6 153.6 153.6 153.6 153.6 153.6 153.6 150.4 153.6 153.6 153.6 153.6 153.6 153.6 153.6 153.6 166.4

Priority 1 Items 64 56.96 6.4 0 6.4 3.2 64 64 35.2 64 6.4 6.4 3.2 6.4 32 6.4 64

Metric Priority 2 Items 64 49.28 51.2 44.8 32 32 64 53.76 64 64 51.2 51.2 51.2 51.2 64 51.2 57.6

Tons Priority 3 Items 25.6 39.68 64 64 51.2 54.4 25.6 26.72 51.2 25.6 64 64 64 64 51.2 64 25.6

Delivered: Priority 4 items 0 7.68 32 44.8 64 64 0 5.92 3.2 0 32 32 35.2 32 6.4 32 19.2

Priority 1 Destinations 70.4 57.6 102.4 89.6 102.4 99.2 70.4 67.2 99.2 70.4 102.4 102.4 99.2 102.4 102.4 102.4 102.4

Priority 2 Destinations 83.2 96 51.2 64 51.2 54.4 83.2 83.2 54.4 83.2 51.2 51.2 54.4 51.2 51.2 51.2 64
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to-reach node, is the high-priority node. In this case, we expect the airbridge to be more

useful. In this difficult case, the maximum amount of cargo that can be delivered is 200

MT.

The optimized solution is not as good as the sum of the individually maximized compo-

nent utilities, mainly because it sacrifices prioritizing by item type in order to deliver more

cargo overall. In this difficult prioritization case, delivering higher-priority items takes up

more space (higher-priority items have larger volume), thus reducing the total capacity

for delivery. As a consequence, the optimized solution delivers less high-priority items be-

cause the utility function values overall deliveries more than good prioritization. A second

consequence is that the policies that prioritize by item type deliver less overall and have

lower utilities than the other policies. The same dynamics were found in the "Feed Onward

Transport" difficult case.

An additional weakness of the heuristics is in prioritizing by destination. The optimized

utility delivers to a good mix of destinations, with more cargo going to the high-priority

node E than to the low-priority node F. However, without the use of the airbridge, the

mix of destinations to which cargo is delivered is pre-determined because the helicopters

can only fly to F and the trucks can only reach E. The destination prioritization policies

do better than the item prioritization policies only because they are not forced to deliver

large amounts of high-priority cargo, not because they make better destination decisions.

The airbridge, however, should alleviate this effect somewhat.

Difficult Prioritization, Airbridge Case Figure 4-13 summarizes the results for this

case. The highest-priority (defined according to the invoked policy) 32 m 3 of cargo are

assigned to move via the airbridge, and the remaining cargo are assigned to lowest-cost

paths.

The optimized solution is the same as that of the previous case, because the enabling

of the airbridge applies only to the heuristics. The optimizer chooses exactly how much

cargo to send via the airbridge. The optimized solution includes 20 flights between P and

E, transporting 160 m 3 of cargo, much more than the 32 m3 used here. Clearly, using the

airbridge only until cargo can reach the remote destination, as the teams did, is not the

best solution. Given the inadequacy of the amount of cargo routed via airbridge, we might

expect only minor improvements in the heuristic solution. Indeed, examining the results of
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Location-based Task-based Opt

Item Destination Other Item Prioritization Destination Prioritization Crossed

Lexic I Wtd Lexic I Wtd Short I Feed Base Wtd I TotNeed I FCFS Base I Wtd |TotNeed I FCFS

Run #: 1 2 3 4 5 6 7 a 9 10 11 12 13 14 15 16 Opt

Ul: Total Delivered 140.4 90.5 13.7 13.7 13.7 13.7 140.4 90.5 140.4 140.4 13.7 13.7 13.7 13.7 140.4 13.7 12.3

U2: Item Prioritization 14.5 27.5 79.5 79.5 79.5 79.5 14.5 27.5 14.5 14.5 79.5 79.5 79.5 79.5 14.5 79.5 53.7

Gap: U3: Destination Prioritization 162.3 140.6 90.2 90.2 90.2 90.2 162.3 140.6 162.3 162.3 90.2 90.2 90.2 90.2 162.3 90.2 0.0

U4: Speed 51.8 38.8 2.5 2.5 2.5 2.5 51.8 38.8 51.8 51.8 2.5 2.5 2.5 2.5 51.8 2.5 4.2

U: Sum of utilities 298.7 227.2 115.6 115.6 115.6 115.6 298.7 227.2 298.7 298.7 115.6 115.6 115.6 115.6 298.7 115.6 -

Total delivered 112 134.4 186.6667 186.6667 186.6667 186.6667 112 134.4 112 112 186.6667 186.6667 186.6667 186.6667 112 186.6667 188.03

Priority 1 items 64 48 16 16 16 16 64 48 64 64 16 16 16 16 64 16 32

Metric Priority 2 Items 32 38.4 42.66667 42.66667 42.66667 42.66667 32 38.4 32 32 42.66667 42.66667 42.66667 42.66667 32 42.66667 40.03

Tons Priority 3 Items 16 28.8 64 64 64 64 16 28.8 16 16 64 64 64 64 16 64 52

Delivered: Priority4ltems 0 19.2 64 64 64 64 0 19.2 0 0 64 64 64 64 0 64 64

Priority 1 Destinations 32 44.8 74.66667 74.66667 74.66667 74.66667 32 44.8 32 32 74.66667 74.66667 74.66667 74.66667 32 74.66667 128.03

Priority 2 Destinations 80 89.6 112 112 112 112 80 89.6 80 80 112 112 112 112 80 112 60
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Figure 4-12: Results for "Airbridge" problem: difficult case with no airbridge (in heuristics)
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Location-based Task-based Opt
Item Destination Other Item Prioritization Destination Prioritization Crossed

Lexuc Wtd LexSc Wtd Short Feed Base Wtd Totyeed FCFS Base Wtd TotNeed FCFS
Rntu 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Opt

U1: Total Delivered 140.4 71.7 11.0 11.0 13.7 8.9 140.4 95.8 104.8 140.4 11.0 11.0 17.2 11.0 140.4 35.8 12.3
U2: ftem Prioritlization 14.5 40.5 82.3 82.3 79.5 85.9 14.5 27.2 34.1 14.5 82.3 82.3 78.8 82.3 14.5 68.0 53.7

Gap: U3: Destination Prioritization 101.4 67.2 72.1 72.1 90.2 58.6 101.4 93.5 135.2 101.4 72.1 72.1 85.7 72.1 101.4 126.2 0.0
U4:Speed 48.9 36.2 0.0 0.0 2.5 2.1 48.9 40.2 46.5 48.9 0.0 0.0 11.9 0.0 48.9 13.2 4.3
U:Sumofutilities 234.9 145.2 95.1 95.1 115.6 85.2 234.9 186.3 250.3 234.9 95.1 95.1 123.1 95.1 234.9 172.9 -
Total delivered 112.0 142.8 189.3 189.3 186.7 191.3 112.0 132.0 128.0 112.0 189.3 189.3 183.3 189.3 112.0 165.3 188.0
Priority 1 Items 64.0 35.6 8.0 8.0 16.0 2.0 64.0 43.0 32.0 64.0 8.0 8.0 10.0 8.0 64.0 16.0 32.0

Metric Priority2 items 32.0 46.4 53.3 53.3 42.7 61.3 32.0 48.8 64.0 32.0 53.3 53.3 53.3 53.3 32.0 53.3 40.0
Tons Priority 3 items 16.0 41.6 64.0 64.0 64.0 64.0 16.0 25.4 32.0 16.0 64.0 64.0 64.0 64.0 16.0 64.0 52.0

Delivered: Priority4 items - 19.2 64.0 64.0 64.0 64.0 - 14.8 - - 64.0 64.0 56.0 64.0 - 32.0 64.0
Priority 1 Destinations 80.0 92.4 85.3 85.3 74.7 93.3 80.0 73.2 4.0 80.0 85.3 85.3 77.3 85.3 80.0 53.3 128.0
Priority 2 Destinations 32.0 50.4 104.0 104.0 112.0 98.0 32.0 58.8 80.0 32.0 104.0 104.0 106.0 104.0 32.0 112.0 60.0

N US: Cost
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Figure 4-13: Results for "Airbridge" problem: difficult case with 32 m3 via airbridge (in heuristics)
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this case in comparison with the previous case (same difficulty but with no airbridge) shows

that there were minor improvements in performance on prioritization by destination, but

few other changes.

Summary and Discussion The main conclusion from the "Airbridge" case is that choos-

ing whether or not to utilize an airbridge, and deciding how much cargo to send along it,

can have a major influence on the performance of the heuristics. The airbridge was not

useful in the easy case, but was quite useful in the difficult case. The optimizer was able to

discover this and find the right amount of cargo to send via the airbridge, but the heuristics

do not have this capability. The heuristics require the pre-definition of paths for cargo,

which models the behavior of humanitarian logisticians, so the amount of cargo to send

via airbridge is determined ahead of time. In these cases, 32 m 3 of cargo were assigned to

go via airbridge. The amount was chosen based on the observed behavior of humanitarian

logisticians: they often chose to use an airbridge only until cargo started arriving by road,

and also chose not to use all their vehicles for the airbridge. The 32 m 3 policy was chosen

because it is the the capacity of one of the two helicopters in one day of work (and cargo

started arriving by truck on the second day). The results show that this amount was too

high in the easy case and too low in the difficult case. Performance changed in the expected

direction, but only slight increases (or decreases) in performance were observed. We con-

clude that the choice of whether and how much to utilize an airbridge is important, and

should not be left to simple heuristics like that used by the humanitarian logisticians (and

modeled here in a deliberately naive manner). When an airbridge opportunity is present

in a network, the optimization model is able to utilize it effectively, but the heuristics (as

defined here) are unable to do so without an additional heuristic to determine the best way

to use it.

4.6.3 "Snowland" Problem

The previous two stylized problems were intended to provide some intuition on how well

different combinations of heuristics and policies performed under different circumstances.

With this problem, it will be more difficult to understand the reasons heuristics perform

well or poorly, but it will provide a better indication of the capabilities of heuristics on a

problem of realistic size and complexity. It is particularly appropriate to test heuristics on
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this "Snowland" problem because it is based on the problem the teams solved in the LRT

training, on whose behavior these heuristics are modeled. If they perform well, it would

suggest that humans may be reasonably good at solving realistic problems. If the heuristics

perform poorly, identifying their weaknesses will enable the development of training and

tools to enhance humans' abilities to solve this type of problem.

Two versions of the "Snowland" problem were described earlier: the exact problem

solved by the LRT teams, and a slightly simplified version that can be solved by the opti-

mizer for 6-day instances. We study the latter version here, because we wish to compare

the heuristic performance to that of the optimizer on a 6-day plan. Planning only 1 or 2

days ahead is a much simpler problem, and our goal is to test the performance of heuristics

in a more complex environment. A summary of the problem was provided in Figure 4-5.

Mid-Capacity Case Figure 4-14 summarizes the results for the mid-capacity case. The

maximum amount that can be delivered is 1,886 MT, which is about 93% of the total.

(Most of the heuristics, and all of the human teams, were unable to deliver this amount of

cargo.)

The optimized solution is quite close to the individually maximized utilities, suggesting

it does about as well as possible for this problem. The mix of destinations is about equal to

the ideal mix (70% of deliveries to high-priority destinations). The mix of item types does

not appear to be close to the ideal mix (50% to priority-1 items, 30% to priority-2, 15% to

priority-3, and 5% to priority-4). However, the cargo movement requests in this problem

were not evenly divided among item types, but contained many more requests for delivery

of priority-1 and priority-4 items than the other two types; this mix of cargo types is the

best that can be achieved in this problem (and is therefore the right mix in this particular

problem context).

Comparing the optimized solution to solutions from all the heuristics shows the su-

periority of the optimization approach. In total utility scores, some of the heuristics are

close to the optimal solution, but closer inspection reveals weaknesses in their solutions.

The optimized solution delivers more cargo overall, more priority-1 items, at least as many

priority-2 items, more priority-3 items, more priority-4 items, and more cargo to priority-1

destinations than any of the heuristics, so it is better on nearly all dimensions of the utility

function.
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Location-based I Task-based OptItem Destination Other Item Prioritization Destination Prioritization Crossed
Leic I Wtd Lexki W Short Feed I Base Wtd ITotNeed FCFS Base Wtd ITotNeed FCFSI

Run1: 1 2 3 4 S 6 7 8 9 10 11 12 13 14 15 16 Opt
Ul: Total Delivered 42.3 37.3 11.6 41.0 19.0 46.5 49.6 54.7 49.3 57.0 57.0 47.7 54.9 57.0 50.9 54.9 1.1
U2: Item Prioritization 7.7 4.8 2.0 6.8 2.1 14.5 7.9 5.2 7.9 7.9 31.2 17.5 26.4 31.2 7.9 26.4 0.1

Gap: U3: Destination Prioritization 49.2 45.7 27.1 62.3 37.4 54.5 60.6 68.7 62.1 64.7 60.6 48.6 63.1 60.6 56.2 63.1 3.4
U4:Speed 32.5 24.7 25.4 12.5 3.2 12.7 63.6 62.7 63.5 63.1 58.4 47.9 59.2 58.1 63.1 59.2 0.3
U: Sum of utilities 126.7 107.6 61.2 117.5 56.9 123.2 176.8 186.5 177.8 187.8 202.4 156.7 198.6 202.0 173.2 198.6
Total delivered 1,484.3 1,522.8 1,721.8 1,494.6 1,664.5 1,451.5 1,427.4 1,387.9 1,430.4 1,370.2 1,370.0 1,442.5 1,387.0 1,370.0 1,417.4 1,387.0 1,803.3
Priority 1 Items 1,005.6 1,000.6 1,106.5 971.6 1,051.6 894.2 1,043.1 997.9 1,053.1 979.0 799.8 872.3 831.6 799.8 1,026.2 831.6 1,149.5

Metric Priority 2 Items 18.8 26.7 26.7 23.8 18.8 26.7 18.8 26.7 18.8 18.8 25.5 25.5 18.8 25.5 18.8 18.8 26.7
Tons Priority 3 Items 19.9 55.4 104.9 26.2 118.1 47.0 16.1 47.8 16.1 16.1 69.2 69.2 61.9 69.2 16.1 61.9 136.9

Delivered: Priority4 Items 440.0 440.0 440.0 440.0 440.0 440.0 317.5 283.7 310.6 324.5 440.0 440.0 440.0 440.0 324.5 440.0 443.1
Priority 1 Destinations 985.3 990.4 1,079.9 883.8 1,022.6 958.0 916.7 866.9 899.7 919.6 959.4 1,022.7 922.3 959.4 966.8 922.3 1,212.7
Priority 2 Destinations 499.1 532.4 641.9 610.7 641.9 493.5 510.7 521.0 530.7 450.6 410.6 419.8 464.7 410.6 450.6 464.7 590.6
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Figure 4-14: Results for "Snowland" problem: mid-capacity case



Across the location-based heuristics, the two best are the shortest-path policy (run 5),

which prioritizes cargo with the shortest distance to its final destination, and the lexi-

cographic destination-prioritization policy. The former, the shortest-path policy, is weak

because it tends to ignore certain high-priority destinations (this is much more obvious on

close inspection of the results than in the summaries provided here). The latter, the lexico-

graphic destination policy, is more promising because it performs reasonably well on most

dimensions, with the largest utility gaps in destination-prioritization and in speed. The

location-based heuristics with item type prioritization policies generate mediocre solutions;

they are particularly weak in the total amount delivered and in destination prioritization.

While the lexicographic destination policy is one of the best, the weighted mix desti-

nation policy does not perform very well, delivering less cargo to priority destinations and

fewer priority items. Probably, the weighted mix policy does less well because it sacrifices

some deliveries to high-priority destinations for low-priority destinations, and the lexico-

graphic policy does well because there are enough easy-to-reach low-priority destinations

(such as D) to satisfy the 30% target in the utility function.

The shortest-path policy (run 5) performs quite well, but closer inspection of the solution

shows that it delivers almost nothing to the areas around B. By delivering large amounts

of cargo to the areas around A, it reaches a high total for cargo delivered to high-priority

locations, but this uneven distribution of deliveries is a weakness. The "feed" policy (run

6) is the worst of the location-based heuristics. This policy aimed to feed cargo to A to

ensure that enough cargo was available to be shipped onward to B, keeping the helicopters

busy. Many of the teams in the LRT training were very concerned with sending enough

cargo to the helicopters, but this heuristic does not appear to be very effective. Either it

was not actually important to keep the helicopters busy, or the other heuristics happen to

keep them busy anyway; the latter is more likely.

The task-based heuristics generate worse solutions than any of the location-based heuris-

tics. Solutions 7 through 16 deliver much less cargo overall, and exhibit worse mixes of item

types and locations. The tasks defined in the algorithm were based on the tasks formu-

lated by teams observed in the LRT training: delivering from A to B, delivering from P,

delivering from A, delivering from B, and delivering from D. The heuristics look at the

needs across these tasks and allocate vehicles proportionally to the needs. In this problem,

it seems, this general strategy fails. One possible reason is that changing a vehicle from
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one task to another requires it to make a journey from the first task to the second. For

example, if a vehicle was working on the task delivering from A, and then was reallocated to

delivering from D, it would be required to move from A to D. The heuristic is reasonably

intelligent about these decisions: it selects the nearest vehicle to allocate to each task, and it

tries to load cargo onto vehicles even when they are transitioning from one task to another.

Nevertheless, such journeys may be less productive in terms of utility. A second possible

reason is that allocating vehicles in proportion to task needs may not be the right strategy.

Some tasks are perhaps less important than others, despite having high needs. However,

this possibility is rendered less likely because the first-come-first-served policy (runs 10 and

14) shows no improvement over the proportional policy. It is much more likely that the

task-based policies are simply less efficient in making use of the available vehicles than the

location-based policies.

Mid-Capacity Case, with Airbridge The same Snowland problem was solved again

with the airbridge policy in place for all heuristics: approximately 28 MT of high-priority

cargo was routed from P to B via C, rather than all the way around through D, H,

and A. Again, the amount of cargo to route through the airbridge was chosen based on

the ways in which the observed teams made this decision: they allocated half of their

helicopter capacity for days 1 and 2 to fly between B and C, while the other half made

deliveries from B. After days 1 and 2, the teams never used the helicopters as an airbridge,

reasoning that by then cargo had started to arrive by road. The results are not shown

because they show little difference from those without an airbridge. However, the optimized

solution does make use of the airbridge option, sending four large truckloads for cargo

(about 52 tons) to C for onward transport by helicopter. These deliveries occurred after

the first two days, suggesting they were not intended to increase the speed of delivery but

rather to increase capacity. The optimizer was probably attempting to quickly increase the

total amount of cargo delivered in the last few days of the scenario. As we found in the

stylized "Airbridge" problem, it appears that people do not make good decisions about the

utilization of airbridges.

High-Capacity Case A second Snowland instance was solved with a different configura-

tion of vehicles that resulted in a higher capacity. The main difference is that a much larger
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number of small (10-ton) trucks were made a available, and they were made available sev-

eral days earlier. In theory, this should result in a large increase in capacity. However, the

capacity of the scenario previously discussed is already fairly high, and the additional trucks

appear to enable only a small number of additional deliveries, probably to low-priority but

hard-to-reach locations.

Figure 4-15 summarizes the results for this case. The optimizer is able to deliver almost

all the cargo. In some ways, this case is less interesting because prioritization decisions

are not important when all the cargo can be delivered. However, none of the heuristics

are able to deliver all the cargo. They are able to deliver more cargo than in the low-

capacity case, and as a result the performance is more similar across heuristics and policies.

The difference between the location-based and task-based heuristics are less clear, as are

the differences between policies, though they are not qualitatively different from what was

found in the lower-capacity case. The difference between the optimized solution and those

of the heuristics, especially in the total amount of cargo delivered, is clear.

Summary and Discussion The goal in testing heuristics on the Snowland problem was

to understand how well they perform on a particular problem of realistic size and complexity.

This particular problem should show the heuristics to best advantage, because the heuristics

are based on the behavior of people solving exactly this problem.

The results suggest that location-based heuristics are superior to task-based heuristics,

because they use vehicles more efficiently. We originally expected that task-based heuristics

would be superior because they consider the need for cargo movement "globally", across the

entire network, rather than "locally", only at the individual nodes. We reasoned that they

should be able to get closer to a global optimum. However, the low-capacity case showed

that the task-based heuristics were universally weaker than the location-based heuristics.

Location-based heuristics are very good at making efficient use of vehicles, because as

soon as they are available, they are tasked again, doing something useful (i.e. policy-

directed) wherever they happen to be. We can speculate that efficient use of vehicles is

more important than allocating vehicles in line with global needs.

There is less distinction between the performance of policies that prioritize by item type

and those that prioritize by destination. In this problem, prioritizing by destination led

to slightly superior performance, but this is probably because there was more "room for
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Location-based Task-based Opt
Item Destination Other Item Prioritization Destination Prioritization Crossed

LexicI Wtd Lexic Wtd Short I Feed Base I Wtd I TotNeed I FCFS IBase IWtd ITotNeed I FCFS I I
Run 0: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Opt

U1: Total Delivered 22.9 25.9 23.8 27.3 30.3 33.0 40.1 40.1 37.2 37.0 35.8 35.5 38.9 32.2 49.8 42.8 0.0
U2: Item Prioritization 2.2 0.3 0.7 1.0 2.0 1.0 3A 1.6 1.7 2.3 0.7 0.7 0.7 0.7 4.5 0.7 0.0

Gap: U3: Destination Priorltization 24.5 28.3 19.9 36.1 40.5 34.3 42.2 37.6 27.8 19.3 36A 27.0 41.3 19.8 28.3 43.0 0.2
U4:Speed 31.8 26.3 22.8 15.0 10.0 19. 58A 57.6 56.5 60.5 53.1 40.6 51.8 56.2 62.9 52.3 1.5
U:Sum of utilities 79.8 79.2 65.6 77.6 81.1 86.0 142.5 135.3 121.6 117.4 124.1 102.0 131.1 107.0 143.9 136.9 -

Total delivered 1,858.1 1,834.9 1,851.2 1,824.3 1,800.6 1,780.0 1,724.7 1,724.6 1,747.5 1,748.8 1,758.5 1,760.6 1,733.8 1,786.2 1,649.6 1,703.8 2,040.0
Priority 1 Items 1,277.6 1,227.3 1,212.7 1,193.3 1,187.8 1,149.1 1,153.0 1,120.6 1,147.4 1,259.0 1,131.0 1,187.5 1,106.3 1,227.6 1,202.3 1,106.3 1,366.7

Metric Priority 2 Items 18.8 26.7 26.7 26.7 18.8 26.7 26.2 26.7 26.2 26.2 26.7 26.7 26.7 26.7 26.2 26.7 26.7
Tons Priority 3 Items 113.9 133.2 126.9 120.6 118.1 120.6 75.6 109.9 109.0 97.4 126.9 126.9 126.9 126.5 55.0 126.9 139.6

Delivered: Priority4 items 440.0 440.0 440.0 440.0 440.0 440.0 438.0 435.5 430.1 332.8 428.5 374.0 428.5 360.0 332.8 398.5 460.0
Priority 1 Destinations 1,128.1 1,105.4 1,155.9 1,058.3 1,031.8 1,069.2 1,021.4 1,049.3 1,108.2 1,177.3 1,056.7 1,113.1 1,026.7 1,156.7 1,156.2 1,016.7 1,275.1
Priority 2 Destinations 729.9 729.5 695.3 765.9 768.9 710.9 703.3 675.3 639.3 571.4 701.7 647A 707.1 629.5 493.4 687.1 764.9
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Figure 4-15: Results for "Snowland" problem: high-capacity case
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improvement" by paying attention to destination priority than by paying attention to item

type priority; the mix of item types was already naturally close to the ideal mix. This is

not a particularly satisfying conclusion, because it suggests that there is no clear conclusion

to be drawn: the performance of various policies depends on the specific structure of the

problem. We will come back to this observation later.

Comparing the heuristics to the optimal solution highlights the superiority of the opti-

mized solution: it performs better than the heuristics on nearly all dimensions. It is tempt-

ing to conclude that optimization is simply a superior method and, despite the complexity,

should be adopted in humanitarian transportation planning. Still, it is worth translating

those gaps into real terms. In the more interesting low-capacity case, the optimized solution

delivers on average 256 MT more than the heuristics, but the best heuristic comes within

81 MT of the optimized total deliveries. In this problem, that 81 MT might be 2,000 rolls

of plastic sheeting for shelter, or 10,000 hygiene kits and 2,500 squatting plates for latrines,

or 15,000 high energy biscuits. Comparing in terms of utility, the best heuristic solutions

achieve only 57 utils less than the optimized solution, equivalent to delivering 10% more

of the requested cargo, or delivering 1.2 days faster on average. It is worth the effort to

develop better planning methods even to reduce small optimality gaps, when delivering

essential cargo. On the other hand, the heuristics are not as bad as might be expected

from short-sighted, greedy-style search. The prioritization policies are reasonably good at

steering the greedy search toward good solutions, as measured by the utility function. Com-

bining policies and tweaking the heuristics is likely to yield an even better set of policies

that could be implemented by human planners or simple decision support tools. Both of

these solutions are more likely to be adopted and have an immediate impact on practice.

4.6.4 Discussion

By studying the three problems discussed in this section - two stylized problems and a

realistic problem - we hoped to gain intuition about the strengths and weaknesses of the

heuristics and policies described in this chapter, in comparison with a mixed-integer opti-

mization approach. Across cases, there is no clear best-performing heuristic or policy. The

optimized solution is always superior (as we would expect), but the gaps between optimized

solutions and those of the better-performing heuristics are not very large in any of the cases.

Across three problems and several instances of each, no clear "winner" emerged among
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the combinations of heuristics and policies tested in this chapter. We attempted to distin-

guish between prioritizing by item type or destination, between policies that make lexico-

graphic prioritization choices or attempt to send a weighted mix, and between the structure

of location-based and task-based decision processes. On the latter point, the low-capacity

Snowland problem suggests that location-based processes are superior, probably because

they make more efficient use of available vehicles than do the task-based processes, despite

the more global perspective inherent in the task-based processes. Distinguishing between

item type and destination prioritization policies is difficult: destination policies performed

better in the Snowland case, but the item type policies performed better in the easy styl-

ized problems. Probably, destination prioritization is more important in complex networks

in which there are many choices about where to send trucks, and in which later ability

to deliver depends on earlier choices. The stylized networks were too simple to exhibit

this dynamic. In reality, though, the distinction is not worth making, and policies should

utilize both prioritization criteria. It was difficult for human decision-makers to manage

so many kinds of criteria in their decision-making, but decision support tools could assist.

Between lexicographic and weighted mix modes of prioritization, the results conflict. While

the lexicographic policies actually performed somewhat better in the Snowland case than

their weighted mix counterparts, we speculate that this is an artifact of the difficulty in

delivering higher-priority cargo in this case: taking any capacity from high-priority loca-

tions decreased the utility of the resulting solution. In general, though, and as we saw in

the stylized problems, a weighted mix mode of prioritization seems more likely to lead to a

better mix of priority deliveries in the final solution.

The results thus suggest that location-based heuristics are superior to task-based heuris-

tics, that both item type and destination prioritization are important, and that weighted

mix prioritization is slightly better than lexicographic. However, when one policy performed

better than another, the difference could often be traced to some specific element of the

problem structure. For example, in the airbridge problem, prioritizing by destination was

unimportant because each mode of transport could only serve one destination. In the diffi-

cult cases, item prioritization policies delivered less overall cargo because high-priority items

took up more space. Feed policies may only be useful when there is a very important bottle-

neck in the network. While these issues are specific to the small set of problems discussed in

this chapter, such issues are part of reality as well. It would be best to find a heuristic that
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is robust to these types of issues, performing relatively well in a variety of situations. The

evidence from this study suggests that building on these "human heuristics" in ways that

combine policies of prioritization by item type and destination might lead to more robust

heuristics.

The success of each of the policies is driven in part by the utility function with which

we evaluated them. For example, the item type prioritization policy performed poorly in

the difficult cases because the utility function valued the total amount of cargo delivered

more than the delivery of high-priority items. We developed this utility function based on

the preferences of experienced humanitarian logisticians, as described in Chapter 3, but

it is worth remembering that different conclusions might be reached with different utility

functions. In addition, the utility function measures performance in the aggregate, looking

at the total amount of cargo delivered to priority-1 locations, for example. However, it

does not measure how evenly deliveries were spread among all the priority-1 locations, so

high-utility solutions could be obtained by greedily serving the closest places first. Future

work should look at modifications to this utility function to counteract this effect.

We have thus far said little about speed of delivery and operations cost; most of the

discussion has centered around the other three elements of the utility function (total cargo

delivered, prioritization by item type, and prioritization by destination). The operations

cost is nearly constant across all solutions, so it does not contribute to differences in per-

formance. Cost is the same across solutions because all solutions use all available vehicles

each day. The speed of delivery, on the other hand, does vary across solutions. In some

cases, those that deliver very slowly also seem to be weak in other areas. However, speed is

an important contributor to the success of the shortest-path heuristic, which delivers more

and faster by greedily serving closer destinations first. Still, the three other components of

the utility function seem to drive performance more strongly, especially the total amount

of cargo delivered.

We also tested a decision-making heuristic outside of the formal models developed in

this chapter: the use of an airbridge. Teams decided up-front how much cargo to send via an

airbridge, usually allocating half their helicopter capacity for the first few days until cargo

could arrive by other modes. Both the stylized airbridge cases and the realistic Snowland

cases showed they need to pay more attention to this decision.

A general weakness of the heuristics, compared with the optimization model, is their
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inability to make trade-offs between the multiple goals in our utility function. In the difficult

cases of the stylized problems, for example, the optimized solution sacrifices deliveries of

priority-1 items in order to deliver more cargo overall. In both the Snowland problem and

the stylized airbridge problem, the optimized solution moves capacity from one set of arcs

to another (the airbridge), sacrificing one set of deliveries to gain capacity in another part

of the network. The optimizer is able to "see" that the trade-off is worth it in terms of

utility. The heuristics, on the other hand, can only work toward the goals defined by its

prioritization policies.

Nevertheless, despite this key weakness, the heuristics are able to create plans that

deliver a reasonable amount of cargo. In the Snowland low-capacity case, for example,

they deliver on average 75% of the cargo delivered by the optimizer, and the best heuristic

delivers 95% of that delivered by the optimizer. This performance is surprisingly good,

considering the simplicity of the greedy search strategies employed by humans.

4.7 Conclusions

In this chapter, we attempted to understand the effectiveness of the human decision-making

approaches observed in our ethnographic study of humanitarian transportation planners.

We created heuristics based on their approaches, modeling two decision processes (location-

based and task-based), along with various combinations of policies or decision rules dictating

how to prioritize the routing and loading of vehicles. In testing these heuristics against an

optimization approach, we found that optimized solutions generally perform better (as we

expected). However, many of the heuristics find solutions that deliver only a little less

cargo, especially those that utilize the location-based decision process. No overwhelming

weaknesses were identified in the policies; instead, we found that policies prioritizing by item

type or destination both work well in different cases, suggesting that some combination of

these policies might be more robust across problems.

The goal in evaluating heuristics was to find ways to improve transportation planning in

practice, so we should consider how these insights from the model world translate to reality.

The heuristic models developed in this chapter were not intended to realistically repre-

sent the disaster situation nor human behavior. We modeled a deterministic, unchanging

transportation planning problem (since our field study showed humans considering such a
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problem), exploring the performance of heuristics in the absence of the dynamics and uncer-

tainty that characterize disaster response. In a more realistic problem setting, re-planning

would be required to account for changes in the situation. We modeled pure versions of

decision processes observed within the messy complexity of human behavior, in order to

understand the effectiveness of their processes and policies. In reality, humans generally

perform worse than pure implementations of their own decision processes (Bowman, 1963),

in part because humans do not implement them consistently. The same is true in this

scenario: the teams in our ethnographic study came up with much worse plans than those

created by the heuristics developed in this chapter (we could not evaluate their solutions

against one another, but we did obtain some data on their solutions which support this

statement). The teams probably struggled not only with implementing a decision process,

but with creating it, determining priorities, managing information, and simply understand-

ing the problem.

This chapter has shown that human decision processes can be reasonably effective if

implemented consistently. Therefore, training that reinforces planners' existing intuitive

approaches could help to improve transportation planning in practice, especially if combined

with the development of more robust decision policies. On the other hand, a clear weakness

of the model heuristics was their lack of ability to make trade-offs between goals. Policies

direct search 'blindly' toward one goal (or multiple goals) without, for example, considering

the sacrifice of priority items to reach priority destinations. In problems where such trade-

offs enable much better solutions, heuristics show a serious weakness.

Improving transportation planning in practice may require a balance between strategies

that find the very best plans, such as optimization, and those that are practical to implement

in the field. Optimization approaches can be complex to set up and to implement, and re-

deploying such tools in each emergency might be cumbersome. Moreover, it is unclear that

optimized solutions continue to perform well as the environment (or problem) changes in

an emergency response (this question is left to future research). Our results show that

optimized solutions do perform better than heuristics based on human behavior, so there

may be justification for creating optimization-based tools.

On the other hand, our results show that planners' intuitive approaches also generate

pretty good transportation plans, when implemented consistently. Their success suggests a

more straightforward and easily implemented approach to improving transportation plan-
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ning in practice. Training and decision support tools could be developed to reinforce plan-

ners' intuitive approaches, help them to manage information, and suggest policies or rules

to assist in each decision. The location-based decision process, which was more effective

than the task-based process, would make it easier to implement such a system, because it

requires no central planner. The same process and decision rules could be taught or pro-

vided to planners in each city within a large transportation network. Future work should

seek the best set of decision rules, either robust across problems or specific to easily identi-

fiable features of problems, to be used in such a system. We are currently building on this

chapter's results to develop tools and systems for the Logistics Cluster, and we hope that

our work will enable better transportation planning in future emergencies.
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Chapter 5

Conclusions

One of the goals of this thesis was to develop ways to improve transportation planning in

humanitarian supply chains. A common route to improving supply chain planning is to

develop mathematical models that solve for the best possible plans, but the humanitarian

context presents particular challenges for this approach. In emergency response, information

is scarce and unreliable, the situation changes rapidly, and there are multiple, conflicting

goals. In short, the problem formulation itself is not clear, making it challenging to build

models that create useful plans. Nevertheless, modeling approaches may enable the gen-

eration of better transportation plans, given appropriate formulations. This thesis aimed

to understand how human decision-makers formulated and solved humanitarian planning

problems, and to identify the strengths and weaknesses of their problem-solving approaches.

With this knowledge, improvements to transportation planning could be developed based

on the best mix of modeling and human approaches.

Each of the three main chapters in the thesis looked at human approaches to transporta-

tion planning from a different perspective. Chapter 2 described an ethnographic study of

humanitarian transportation planners in a realistic field setting, which focused on the human

processes of sensemaking and solving. I found that sensemaking leads to an understanding

of the problem similar to a formulation, and that solving resembles a greedy search process

guided by decision rules or policies that direct the search toward goals. Chapter 3 used

a conjoint analysis survey to quantify the goals of human planners in a utility function

that can be used as a performance measure or objective function in mathematical mod-

els. The results show that humanitarian logisticians are most concerned with delivering as
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much cargo as possible and prioritizing deliveries of priority items to priority destinations.

Chapter 4 used heuristics and optimization to investigate the effectiveness of the human

decision processes found in Chapter 2, with respect to the performance measure developed

in Chapter 3. The results show that optimization approaches lead to superior solutions, in

part because they can balance multiple objectives simultaneously, but that human decision

processes could be nearly as good if implemented consistently with appropriate decision

rules. Each of these chapters contains its own discussion of conclusions, which are not

repeated here.

Instead, I step back to consider the implications of the three chapters taken together.

First, what are the strengths and weaknesses of human planning approaches? One human

strength is their ability to work without a pre-defined problem formulation, making sense of

the problem as they begin to solve it. This process of sensemaking may also be a weakness:

the process may not always lead to the best formulation in which to search for transportation

plans. Another weakness is the greedy search process, which does not necessarily find the

best possible transportation plan. However, the location-based decision process described

in Chapter 2 (in which dispatch decisions are made at each location independently), if

implemented consistently and with good decision rules, can achieve good transportation

plans in many types of problems.

These findings suggest that transportation planning could be improved through two pos-

sible routes. Developing optimization-based decision support tools would lead to the best

possible plans, if models could be formulated that capture enough of the context to create

plans that work well in reality. A simpler approach is to develop training and basic decision

support tools that enable humans to consistently follow their own intuitive heuristics. (An

example of such an approach was provided at the conclusion of Chapter 4; it involves im-

plementing consistent decision rules across multiple locations making independent dispatch

decisions.) The former approach might lead to the best transportation plans, but the latter

approach is faster and easier to implement, so both are worth pursuing.

The thesis also suggests better ways to model humanitarian transportation planning

problems. What should be included in a problem formulation, if a model is to generate plans

that will be useful in reality? My key finding is that the objective is essential. Humanitarian

logisticians spent much of their time deciding how to prioritize aid deliveries, essentially

sorting out the right objectives. Models that simply maximize deliveries or minimize cost
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do not create plans in line with the goals of humanitarian logisticians. By maximizing a

sum of utilities over several objectives, plans can be created that meet the most important

objectives of humanitarian supply chains. This type of model is an important step toward

optimization-based decision support tools that could be useful in the field.

Beyond improvements to humanitarian transportation planning, this research contributes

to the broader discussion about the benefits of rational and non-rational problem-solving.

The decision-making literature includes many studies that show both the drawbacks and

benefits of human reasoning shortcuts. Similarly, the field of operations management pro-

vides many examples of rational mathematical models that have led to improved perfor-

mance, and many that have failed. There has been little investigation of the conditions in

which nor the reasons why such models succeed or fail. This research begins to address this

gap, by highlighting the differences in the ways humans and models perceive problems.

Humans perceive problems through sensemaking: exploring the problem to determine

constraints, identifying challenges to address and tasks to complete, and teasing out objec-

tives by confronting dilemmas. Model formulations are developed by humans, of course,

but usually they are not the same people who operate the systems. If a model formula-

tion is missing important elements of the problem, the solutions may not make sense to

the system operators, and the model will fail to be useful in reality. This thesis found,

for example, that the objective function was critically important. A model that minimized

cost or maximized overall deliveries would not produce plans acceptable to humanitarian

logisticians concerned with prioritization. Proving that a model finds optimal solutions,

within its own "model world," is not sufficient to ensure its value in practice unless the for-

mulation is consistent with reality. On the other hand, human problem solvers are myopic,

considering one decision at a time without searching for trade-offs that might lead to much

better transportation plans. Humans may fail to appreciate the potential of mathematical

models if their solutions do not make sense within their understanding of the problem. In

this thesis, for example, planners did not consider using helicopters as an airbridge after the

first few days, because they saw airbridges only as a method of speeding up deliveries to

locations that could not yet be reached by road. The optimization models used airbridges

to increase capacity in later planning days, a solution the humanitarian logisticians might

have rejected as wasting expensive helicopter capacity. Here, again, a model would fail to

be useful, but in this case the failure may lie with the humans rather than the model.
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These observations suggest that if human and modeling approaches do not align, it

may be for one of two reasons: model formulations may be missing important elements, or

models may find non-intuitive solutions. Both issues lead to model solutions that do not

make sense to humans, and thus to 'rational' models that are not implemented in reality.

Because of the different ways in which models and humans perceive and solve problems,

what is 'rational' in one approach may seem irrational in the other. This thesis, by showing

when and why human and modeling approaches conflict, suggests that there is not a clear

division between rational and irrational problem-solving in ill-defined, real-world problems.

This thesis makes several contributions, many of which were detailed within the three

main chapters and are not repeated here. Looking across chapters, the thesis adds to our

understanding of how and how well humans solve operational problems in ill-defined, real-

world environments, based on the extreme case of humanitarian transportation planning.

It probes the usefulness of mathematical models in this challenging setting and shows when

and why optimization models are and are not useful in this context. By investigating human

and modeling approaches to transportation planning, this thesis paves the way for building

better models and supporting better human decision-making. In support of better models, I

developed a performance metric based on expert preferences over multiple objectives (and a

process for creating additional such performance metrics for other situations), and I showed

how its use as an objective function leads to better transportation plans. In support of

better human decision-making, I evaluated the strengths and weaknesses of human reasoning

approaches, and I identified specific areas where training and decision support could enable

humans to make better decisions. The insights from this thesis not only enable better

models and better human decision-making, but also suggest ways to combine the strengths

of models and humans to improve transportation planning for humanitarian response.

Future Work

This thesis explored the strengths and weaknesses of human decision-making in humani-

tarian transportation planning. Future work should build upon this knowledge to support

better human decision-making and build better models for humanitarian transportation

planning. In addition, future work should investigate whether, in other ill-defined, complex

problems, humans understand and solve problems the same way they do in humanitarian

transportation planning.The following paragraphs provide specific suggestions for future
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work that builds on each of the main chapters of this thesis.

In Chapter 2, I developed models of human sensemaking and solving processes based on

ten similar cases of humanitarian transportation planning. Future work should explore how

these decision-making processes vary in different scenarios and different kinds of problems.

One of the findings was that people simplify problems by understanding them in terms

of intuitive tasks. Future studies could investigate whether transportation planners at

commercial logistics companies also think of their work in such terms, to determine whether

the models transfer to similar problem structures in different contexts. To investigate

whether the models are applicable to different problem structures, future studies could

investigate sensemaking and solving in engineering design problems or software debugging,

for example. Qualitative studies could be supplemented by experimental studies in more

controlled environments, to test the effects found in the qualitative studies, or to investigate

whether specific interventions can alleviate some of the weaknesses in human decision-

making processes.

A second direction for future work is to use the same methods employed in Chapter 1 to

study another important dynamic in human decision-making. In humanitarian transporta-

tion planning, people focused on the problem's objectives, and their choice of objectives

(and their implementation of objectives in decision policies) was the main driver in their

decision-making process. I plan to study another problem in which I expect uncertainty,

rather than objectives, to be the main driver of decision-making: a supply chain design prob-

lem in the humanitarian context. The investigation should show how humans incorporate

uncertainty in their decisions.

In Chapter 3, I developed a performance measure for humanitarian aid delivery plans,

based on the preferences of a group of expert humanitarian logisticians. This utility function

represents a first step in developing empirically-based objectives for aid delivery models.

The relatively small group of respondents represent the real decision-makers in the Logistics

Cluster, so their utility functions are a good place to start, but future work could examine

the preferences of decision-makers in other organizations, or people who fill roles other than

logistics. In addition, utility functions could be developed for a wider variety of disaster

scenarios. This work focused on the first week after a major emergency. Priorities would

likely change as the urgency of life-saving aid diminished.

The survey in this thesis measured the utility of five objectives identified in the ethno-
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graphic study, but different sets of objectives could be explored. In particular, it would be

useful to explore the relative utility of measures like the effectiveness, equity, and efficiency

objectives utilized in previous humanitarian aid delivery models. Also, this survey showed

that people prefer a weighted mix mode of prioritization, but did not explore what kind

of mix people prefer the most. Future work should measure the utility of multiple mixes

of deliveries in order to determine the right 'ideal point'. Finally, the same objective mea-

surement methodology could be extended to other fields, looking at how people trade off

objectives of profit and sustainability, for example.

In Chapter 4, I tested heuristics derived from human decision-making processes against

an optimization model, on a small set of test problems. Drawing general conclusions is

difficult in part because there is no set of standard test problems for aid delivery trans-

portation planning. I plan to develop a set of test problems, including several stylized

instances representing prototypical challenges in disaster response transportation and a few

large instances based on real past disasters. It would also be useful to the heuristics and

optimization models on problems that change over time, to determine how robust they are

to specific kinds of disruptions and changes.

The next step is to develop decision support tools that build on the insights from this

thesis. Future work should explore the best combination of decision policies, so that people

can be trained to use them in dispatch decision-making. Additional kinds of training and

decision support should be developed, spanning the range from optimization models that

come up with the best plans to simple decision support tools that can be used easily in

practice. Combining such tools with the strengths of human intuition should lead to better

humanitarian aid delivery in future emergencies.

238



Appendix A

Conjoint analysis survey attributes

and questions

A.1 Detailed Attribute Descriptions

In each survey question, the respondent can click the "[?]" to access a more detailed

definition of each attribute-level. This appendix presents the text of these definitions.

1. Total Deliveries

(a) Deliver 80% of cargo requested for this week

It is impossible to deliver all of the cargo requested for delivery this week:

only 80% of it is delivered by the end of the week.

(b) Deliver 60% of cargo requested for this week

It is impossible to deliver all of the cargo requested for delivery this week:

only 60% of it is delivered by the end of the week.

(c) Deliver 40% of cargo requested for this week

It is impossible to deliver all of the cargo requested for delivery this week:

only 40% of it is delivered by the end of the week.

2. Item Type Prioritization

(a) Priority-1 (shelter) items first: Load vehicles with Priority-1 items before any

other cargo.
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Priority-1 (shelter) cargo is always loaded onto vehicles before Priority-2

cargo. Similarly, Priority-2 (health) is loaded before Priority-3 (water

and sanitation), which is loaded before Priority-4 (food).

As a result, at the beginning of the response, most people will re-

ceive only Priority-i (shelter) items, then a little later they will receive

Priority-2 (health) items, then Priority-3 (water and sanitation) items,

and finally Priority-4 (food) items.

(b) More high-priority items: Load vehicles with a mix of items, but more of the

higher-priority types.

Each truck carries a mix of items, but more of those types with higher

priorities. As long as there is enough of each item type available to be

shipped, each truck is loaded with about:

* 50% Priority-1 (shelter) cargo

* 30% Priority-2 (health) cargo

* 15% Priority-3 (water and sanitation) cargo

* 5% Priority-4 (food) cargo

As a result, at the beginning of the response, most communities will

receive some of the higher-priority item types, and little of the lower-

priority item types.

(c) Even mix of items: Load vehicles with an even mix of item types.

Each vehicle is loaded with all four types of items, in equal proportions.

As long as there is enough of each item type available to be shipped, each

truck carries about:

* 25% Priority-1 (shelter) cargo

* 25% Priority-2 (health) cargo

* 25% Priority-3 (water and sanitation) cargo

* 25% Priority-4 (food) cargo

As a result, most communities will receive about the same amount of

each type of item.

3. Location Prioritization
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(a) Priority-i locations first: Send vehicles to high-priority locations before serving

other locations.

Cargo is sent to the high-priority locations before any other areas, until

most of their needs have been served. As long as there is enough cargo

for the high-priority areas, the available vehicles are divided as follows:

* 90% of the available vehicles serve high-priority locations

* 10% of the available vehicles serve low-priority locations

As a result, at the beginning of the response, high-priority locations will

receive much more of their needed cargo, while low-priority locations will

receive only a little.

(b) More high-priority locations: Send vehicles to all locations but send more to the

high-priority locations.

More cargo goes to the high-priority locations than the other locations,

until most of their needs have been served. As long as there is enough

cargo for the high-priority areas, the available vehicles are divided as

follows:

* 70% of the available vehicles serve high-priority locations

* 30% of the available vehicles serve low-priority locations

As a result, at the beginning of the response, high-priority locations will

receive more of their needed cargo, while low-priority locations will re-

ceive less.

(c) Even mix of locations: Send vehicles to all locations in equal proportions.

Cargo is delivered to both high-priority and low-priority locations in equal

proportions. As long as there is enough cargo for each location, the

available vehicles are divided as follows:

* 50% of the available vehicles serve high-priority locations

* 50% of the available vehicles serve low-priority locations

As a result, at the beginning of the response, high-priority locations and

low-priority locations receive about the same amount of cargo.

4. Speed of Delivery
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(a) 1-3 days: Complete most deliveries in 1-3 days.

Most (80%) of the deliveries this week are completed by day 3. The rest

(20%) take between 4 and 7 days to deliver.

(b) 2-6 days: Complete most deliveries in 2-6 days.

Most (90%) of the deliveries this week are completed in days 2 through

6. No deliveries are made on day 1, and only a few (10%) are made on

day 7.

(c) 4-7 days: Complete most deliveries in 4-7 days.

Most (80%) of the deliveries this week are completed on days 4 through

7. Only a few (20%) are delivered in the first 3 days.

5. Cost

(a) $0.5 million cost for this week

The operation costs $0.5 million for the first week, as part of a three-

month operation that costs $6 million.

(b) $2.0 million cost for this week

The operation costs $2.0 million for the first week, as part of a three-

month operation that costs $24 million.

(c) $3.5 million cost for this week

The operation costs $3.5 million for the first week, as part of a three-

month operation that costs $42 million.

A.2 Survey text and questions

In this appendix, the full text of the survey is presented. Table 3.3 presented a general

overview of the survey structure. This appendix shows details on those questions not

addressed in the paper. Text in italics is survey text.

Survey introduction

This survey will explore what aspects of aid delivery plans are most important to you. We

will ask you to evaluate different aid delivery plans, based on several characteristics.
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Here's an example. [Figure A-i shows the example question.]

Example: Which plan do you prefer?

Total Deliveries Deliver 60% of cargo
requested for this week 121

tem Type Prioritization Priority-1 (shelter) Items
first Load vehicles with
Pnontv-1 items before any

Location Prioritization

Speed of Delivery

Cost

other cargo 1?

Priority-i locations first
Send vehicles to high-
priority locations before
serving other locations 121

1-3 days Complete most
deliveries in 1-3 days 121

$3.5 million cost for this
week [?]

Deliver 60% of cargo
requested for this week 1

Even mix of items Load
vehicles with an even mix of
item types ?]

Even mix of locations
Send vehicles to all
locations in equal
proportions 1

2-6 days Complete most
deliveries in 2-6 days 1

$2.0 million cost for this
week L21

[Show introduction}

Figure A-1: Example question; forms part of survey introduction.

All the plans in the survey describe the first week of a major emergency response. An

earthquake occurred in a cold, mountainous area, destroying much of the existing infrastruc-

ture. We will ask you to evaluate aid delivery plans in this context. Normally, you might

have more information about needs, but please try to evaluate the plans based on the limited

information provided here.

Each plan you will see in this survey is described like those above, with the same set of

five characteristics:

1. Total Deliveries: Operational constraints limit the total amount of cargo that can be

delivered. Each plan delivers some percentage of the total cargo that was requested for

delivery during this week (the first week of the response).

2. Item Type Prioritization: There is an order of priority for item types. Some types of

aid are more urgently needed than others, and the following prioritization applies:

e Priority-1: shelter (because the climate is harsh and shelters are destroyed)

e Priority-2: health (because existing systems are crippled)
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" Priority-3: water and sanitation (because many systems are damaged and IDP

camps are forming)

" Priority-4: food (because livelihoods are damaged and food stocks limited)

The plan's item type prioritization determines which types of items reach communities

this week, and the amount they receive of each type.

3. Location Prioritization: There is an order of priority for locations. Some locations

(or communities) are in more urgent need than others. There are two levels of prior-

itization:

" Priority-1 locations have larger affected populations and more damage

" Priority-2 locations have smaller affected populations but are still damaged

The plan's location prioritization determines which communities receive aid this week,

and how much cargo they receive.

4. Speed of Delivery: The speed of cargo deliveries can vary, depending on the challenges

of access.

5. Cost: Each plan includes a cost, representing the cost of operations for the first week

of the response. (You will be able to see this text at any time during the survey by

clicking the "[Show introduction]" link below each question.)

Which plan do you prefer? Please answer the example question above.

Click the right arrow to continue.

Build-your-own plan question

Figure A-2 shows the build-your-own plan question, which appears at the start of the survey.

Introduction to screening questions

Thank you for indicating your ideal aid delivery plan. Unfortunately, it is not always possible

to implement the ideal plan. We want to understand the kinds of trade-offs you are willing

to make, and which aspects of performance are most and least important to you.
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To begin, please tell us about your Ideal aid deivery plan. For each characteristic, select your preferred level
If you want more information about each level of performance, cick the 1 for a definition (It wil open a new window)

Characterisic Select Your Preference

Total D e Dever 40% of cargo requested for this week 121

Dever 60% of cargo requested for this week 12

Dever 60% of cargo requested for thIs week {?.

Nem Type PdoIlon

Location Priontzation

Speed of Dekvy

cost

Ishow irodctio

Pr W . ($Ote r MMns rst Load velhtes wi PrOirly-1 Sins before MWother
cago

More holgisphiotti Mn: Load VenItles unh a WA of Wis, but msore 9W hher-
pdofratyes M

Even mtxo'tMs: Load vehicles wih an eventd of lan types. 

Priorty-I locaions first Send vehicles to high-prIorIty locations before serving other
locations (21

More high-priority locations Send vehicles to all locations but send more to the high-
priorny locations. L2j

Even mix of locations: Send vehicles to all locations In equal proportions 2]

1-3 days: Complele most delivles in 1-3 days {2J

24 days: Complete most devedes in 24 days.7

4-7 days: Complete most develesin 4-7 days

s.o mnilion cost for this week .21

$2.0 milon cost for this week 121

$3.1 mition cost for this week [21

Figure A-2: Build-your-own ideal plan question

You will be shown a series of different plans, and asked whether or not they are acceptable

to you. Of course, better plans are preferable, but not always feasible. Here we want to

know which plans are truly unacceptable - meaning that you would not defend these plans

to donors.

Sample screening question

Figure A-3 shows a sample screening question. Six such questions were asked in the survey.
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Here are a few aid de6lvery plans. For each one, indicate whether It is a possiblitty or not.

(1 0(6)

I Total Deliveries

Item Type Prioritization

Location Prioriltizatlon

Speed of Delvery

Cost

Deaver 60% of cargo requested
for this week 2j

Even mix of Items Load vehicles
with an even mix of item types. U7

Even mix of locations: Send
vehicles to aN locations in equal
proportions [7J

1-3 days: Complete most deliveries
in 1-3 days U?

$0.6 million cost for this week U?

Acceptable

lUnacceptable would not
defend to a donor

Delver4%ofcagoeqessdW
for oflt eek a

Prilorit4-1 (W~ltr 110n1s0first
Load vehicles wPrio y-1 SOms
before any oier cargo. M

fWri c4icmons frst Send
vehies to hl girtrori locations
beMr servin other locaosm M

24 day: Coaplete most delveles
In 2-6 days. L

. illon cost for ts Weelt 1

QAcceptable
Q Uncceptale: would not

defend to a donor

DelIver 0% of cargo requested
for this week U?

Priority-1 (shelter) Items first:
Load vehicles with Prioity-1 items
before any other cargo, M

Priority-1 locations first Send
vehicles to high-priority locations
before serving other locations. 12

4-7 days Complete most deliveries
in 4-7 days {j2

$0.5 minion cost for this week L?]

Q Acceptable

Q Unacceptable would not
defend to a donor

[Show mntroduction

Figure A-3: Sample screening question

Unacceptable rule question

Figure A-4 shows the "unacceptable rule" question. This question is shown to respondents

after four screening question, only if their answer patterns suggest that they consider one or

more attribute-levels unacceptable (and only those attribute-levels are provided as options

within the question).

I seems that you have avoided plans with certain characteristics shown below Would any of these be totally unacceptable? If so mark
the one feature that Is most unacceptable

$3.5 miIon cost for this week L?I

Priority-1 (shelter) Items first Load vehicles with Pnority-1 items before any other cargo 7

Deiver 40% of cargo requested for this week U7]

4-7 days Complete most deliveries In 4-7 days L?]

Priority-1 locations first Send vehicles to high-priority locations before serving other locations ?

None of these Is totaiy unacceptable

Figure A-4: Unacceptable rule question
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Introduction to choice tasks

Thank you for indicating what kinds of plans you would find acceptable. In the next section,

we'll examine these acceptable plans again. In order to understand the trade-offs between

different plans, we'll ask you to choose which of several plans you prefer.

Holdout questions

As an example of choice tasks, both holdout questions are provided here (they are identical

to the other choice tasks). Figure A-5 shows the first holdout question and Figure A-6 the

second.

Am'tong these three, which is the best option? (Wev grayed out any features that are the same, so you can just focus on the
differences.)

Total Deliveries

Item Type Priortization

Location Prioritization

Speed of Delivery

Cost

IShow introductioni

Deliver 60% of cargo requested
for this week [?]

Priority-1 (shelter) items first
Load vehicles with Priority-1
tems before any other cargo 21

Priority-1 locations first Send
vehicles to high-priority locations
before serving other locations
[2]

1-3 days Complete most
delivenes in 1-3 days [2]

$3.5 million cost for this week

Deliver 60% of cargo requested Deliver 40% of cargo requested
for this week U[? for this week [21

Even mix of Items Load
vehicles with an even mix of item
types [?1

Even mix of locations Send
vehicles to all locations in equal
proportions [2

24 days: Complete most
deliveries in 2-6 days [?7

$2.0 million cost for this week
[U1

Priority-1 (shelter) items first
Load vehicles with Priority-1
items before any other cargo [?J

More high-priority locations.
Send vehicles to all locations but
sends more to the high-priority
locations [2]

14 days Complete most
deliveries in 1-3 days [?

$3.5 millon cost for this week

Figure A-5: Holdout question 1 (the third choice is designed to be dominated by the other
two)

Demographic questions

Figure A-7 shows the demographic questions asked at the end of the survey.
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Among these three, which is the best option? (We've grayed out any features that are the same, so you can just focus on the
differences.)

Total Delivertes Deliver 80% of cargo requested Deliver 80% of cargo requested Deliver 60% of cargo requested
for this week 21 for this week[? for this week [21

Item Type Pnorinization

Location Prioritization

Speed of Delivery

Cost

IShow inroductionj

More high-priority Items
Load vehicles with a mix of
items, but more of the higher-
priority types 1?2

More high-priorIty locations.
Send vehicles to all locations but
send more to the high-pdortty
locations 17j

24 days Complete most
deliveries In 2-6 days [?

$2.0 million cost for this week
121

Even mix of items Load
vehicles with an even mix of iem
types [?M

Even mix of locations: Send
vehicles to all locations in equal
proportions [j

1-3 days Complete most
delvenes in 1-3 days MJ

$3.5 million cost for this week
21

k___I___

More high-priorIty items
Load vehicles with a mix of
items, but more of the higher-
prorty types 121

More high-priority locations
Send vehicles to at locations but
send more to the high-priority
locations 1j

14 days Complete most
deliveries in 1-3 days 1?1

$0.5 million cost for this week
121

Figure A-6: Holdout question 2
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You are almost done! On this page, we ask for some information about you, and then the survey will be complete.

Have you ever been a participant in an LRT Training? Itf so which one? (Please give the approximate dales or some other identifying
information )

Yes Please specify which LRT and whch team (if you remember): |

No, I have not been a participant, but I have been a faciltator

y No I have never altended an LRT

Please select the type of work you most commonly perform

j Humanitarian Logistics

.jOther Humariltarian Work F
Commercial or Military Logistics

OtherI

How many years have you worked in humanitanan aid if any? (Please enter '0" if you have never worked in humanitarian aid)

Does your current organization typicaly focus on response, development or both?

Response

Development

Both response and development

Not Applicable

Which of the folowing areas does your current organization typically focus on? (Many organizations do at types of aid when needed, but
please indicate If yours has a specialty)

Li Non-food Rems

Q Food

U Water and sanitation

SHealth

U Sheter

L_) Other

Lj Not Applcable

Figure A-7: Demographics questions
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Appendix B

Pseudocode for heuristic models of

human decision-making processes

Pseudocode is presented on the following pages for both the location-based and task-based

heuristics, with all policy variations.
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Pseudocode for location-based heuristic, page 1

* Begin location-based heuristic (Heuristic-local)
o Set the paths for each CMR: (SetCmrPaths)

- Sort the list of CMRs by:
* item priority, if an item-priority policy
* destination priority, if a destination-priority policy
* item or destination priority if indicated in the airbridge policy
- database order otherwise

- For each CMR in the sorted list
e If we have not yet sent enough cargo via shortest paths (as defined in the path policy),

assign the CMR a shortest path; otherwise, assign a cheapest path. To do so,
e Find the shortest path on a network whose arc lengths are either the distances or the

estimated cost to travel, where the estimated cost is the distance multiplied by the
average cost for all transport assets (defined in the database) that have access to this
arc. (GetDijkstraShortestPath)

o For each time step
= Find the location, at the start of this period, of all CMRs and all vehicles
- Remove from the list any CMRs that have already reached their destinations
- Process all assignments (ProcessAssignments)

* For each assignment defined by the user that is starting at this time period, and for
each vehicle that needs to be assigned to it,
o Find the vehicle, of the right type and not already assigned, whose last planned

location is closest to any of the nodes in the assignment network
o Assign the asset to the assignment: (AssignAsset)

- Find the shortest path from the asset's last location to any of the nodes in the
assignment

- Route the asset (assign legs) along the shortest path
= Assign the asset to only move within the subnetwork defined by the

assignment (this does not affect the movement of the asset to the assignment
network, defined previously)

o If there are no vehicles of the right type that are not already assigned, do not
assign any vehicles (and do not throw an error)

- For each assignment defined by the user that is ending in this time period,
o Unassign all vehicles: remove the restriction that they travel within the

subnetwork defined by the assignment
" If this time period is the beginning of a new day, reset the running (daily) total sent

towards the feed-to-node, for the feed-to policy
- For each node that has transport assets

SendCargoForwardLocal
o For the destination weighted mix policy, find the total capacity of all assets at this

node
o For the organization policy, create two parallel arrays to note the organization

names and how much cargo has been sent toward each, and initialize the latter to
zeros

o For each asset at this node,
- For the destination weighted policy, update a running total of the cumulative

capacity of the assets looped through with the capacity of this asset
" If there is cargo waiting at this node,
- Sort the list of loads by:

* item type priority, if an item type policy
* destination priority, if a destination policy
* shortest remaining path for each load, if a shortest policy
* bottleneck node, if a bottleneck policy
- FIFO, if a FIFO or organization policy
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Pseudocode for location-based heuristic, page 2

- For the destination-weighted policy, determine which destination-priority to
look for with this asset:

Assign it to p1 destination cargo if the cumulative capacity (its capacity plus
that of the others looped before this) falls in the range defined for p1 cargo,
rounded up to the nearest multiple of this asset's capacity (to ensure that if
there is only one asset, it goes to p1). The same for the other destination
priorities.

- If the asset is not already routed beyond the current time (which may happen
with assignments or re-routings),

- SetVehicleDestinationBasedOnCmr
- For each waiting load,

o If the asset can travel to the load's next stop (in its accessible or its
assigned network),

o If FIFO or shortest policy, select this load and exit the loop (this is the
first in the sorted list that meets requirements)

o If item type or destination or feed-to policy, add this CMR to a running
total of the amount waiting to go to each adjacent node, of each priority,
and select the load if it represents the largest such running total (but
keep looping through the loads)

o If organization policy, look up how much cargo has been sent for this
load's organization, and select this load if it is the least-served
organization found so far (but keep looping through the loads)

- If FIFO, item type, destination-lexic, organization, or shortest, set the
destination based on the selected load:

- If a destination weighted policy, try to set the destination to that with the
most cargo of the destination-priority this asset is looking for, but if there
isn't any, set it to the one selected above:

- If a feed-to policy, try to set the destination from a load going to the top-
ranked feed-to-node that can be reached within the time horizon, but if
we've already sent enough cargo to it, then the next-ranked feed-to-node,
etc. If all feed-to-nodes are adequately served, then to the next load without
a feed-to-node, and if there are none of those, then back to the top-ranked
feed-to-node.

- Set the vehicle destination by adding a leg to the asset going from the
current node to the adjacent node that the selected load must reach next,
and return the leg.

- If there were no loads at this node, return Nothing.
- If the destination could not be set based on a CMR, i.e. if there were no loads

waiting there, SetDestinationForEmptyAsset (defined below) and skip to next
asset

- If item type weighted policy, call LoadVehicleWithCmrs repeatedly, looking for
the right amount of each priority-level

- For all other policies,
- LoadVehicleWithCmrs

- If item type weighted policy, initialize a running total of the volume or
weight we want to fill this time

e While there are loads waiting here,
o If item type weighted policy, call SelectWaitingCmrLoadWithNextNode

looking for the right type of priority (and if it isn't found, call it again
later just looking for the highest-priority cargo)

o If destination weighted policy, call SelectWaitingCmrLoadWithNextNode
looking for the right type of destination-priority (and if it isn't found, call
it again later just looking for the highest-priority cargo)

253



Pseudocode for location-based heuristic, page 3

o If organization policy,
SelectWaitingCMRLoadWithLeastServedOrganization
" Select the waiting load with the least-served organization that is

going in the same direction as the asset
o If feed-to policy, SelectWaitingCmrLoadWithUnfilledFeedToNode

" Select the waiting load for the highest-ranked feed-to-node that has
not yet been fed enough and that is going in the same direction as the
asset.

" If there are no CMRs that meet this criteria, then call
SelectWaitingCmrLoadWithNextNode to see if there are any CMRs at
all going in the same direction as the asset.

o For all policies, if we did not already select a load,
SelectWaitingCmrLoadWithNextNode:
" Select the first in the ordered list of CMRs that is going in the same

direction as the asset and, if passed an item priority, that has the
item priority we're looking for.

o If item type weighted policy, calculate the number of items to fill the
desired weight or volume, and update the remaining volume or weight
to fill

o For all other policies, GetNumltemsThatFit/nAsset: Calculate the number
of items from the selected load that will fit in the remaining capacity of
the asset, and limit it by the amount available here

o If the truck is full, so that no items can be loaded, exit the asset loop.
o If organization policy, update the amount sent to each organization with

the amount to be loaded here
o Add a new load to the asset's leg, and add the amount of items calculated

above.
o Subtract the amount loaded from the amount waiting
o Update the running total sent to each feed-to node, for the feed-to policy
o If there are no items left from this load, remove it from the list of waiting

loads
- (Loop to the next waiting load)

" If there was no cargo waiting at this node, and if the asset has not already been
routed somewhere else,

" SetDestinationForEmptyAsset
- Get the updated locations of all loads, and remove those that are delivered
e If item type priority, destination priority, or feed-to policy, find the node

with the largest amount of highest-priority cargo
e If FIFO, organization, or shortest policy, find the node with the largest

amount of cargo
e Set the asset's destination to the adjacent node along the path toward the

selected node: add a leg to the asset going to that node.
* If no loads were waiting, don't set any destination.
- Skip to the next asset

o (Loop to next asset)
" (Loop to next node)

o Write results to sheets
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* Heuristictask
o SetCmrPaths [same as in location-based algorithm]

- Sort the list of CMRs by:
- item priority, if an item-priority policy
- destination priority, if a dest-priority policy
- item or destination priority if indicated in the path policy
* FIFO order otherwise

- For each CMR in the sorted list
- If we have not yet sent enough cargo via shortest paths (as defined in the path policy),

assign the CMR a shortest path; otherwise, assign a cheapest path. To do so,
e GetDijkstraShortestPath on a network whose arc lengths are either the distances or

the estimated cost to travel, where the estimated cost is the distance multiplied by the
average cost for all transport assets (defined in the database) that have access to this
arc.

o BuildTasks
- Define a collection of tasks, including first the set of user-defined tasks and then a set of

auto-generated tasks for every origin and every vehicle type. The user-defined tasks are
always chosen first, but the presence of the others ensures that we can always deliver
everything.

o For each time period,
- Find the location, at the start of this period, of all CMRs and all vehicles, but subtract any

inventory already slated to leave in the future (and not added to its arrival location if it

has not yet arrived there)
- Remove from the list any CMRs that have already reached their destinations
- ProcessAssignments

e For each assignment defined by the user that is starting at this time period, and for
each vehicle that needs to be assigned to it,
o Find the vehicle, of the right type and not already assigned, whose last planned

location is closest to any of the nodes in the assignment network
o AssignAsset to the assignment

- Find the shortest path from the asset's last location to any of the nodes in the
assignment

- Route the asset (assign legs) along the shortest path
- Assign the asset to only move within the subnetwork defined by the

assignment (this does not affect the movement of the asset to the assignment
network, defined previously)

o If there are no vehicles of the right type that are not already assigned, do not
assign any vehicles (and do not throw an error)

e For each assignment defined by the user that is ending in this time period,
o Unassign all vehicles: remove the restriction that they travel within the

subnetwork defined by the assignment
- If this time period is the beginning of a new day, reset the running (daily) total sent

towards the feed-to-node, for the feed-to policy
- Make a local copy of the tasks collection to modify in this time period
- Do while there are still tasks in this period's list of tasks

e Make a list of all the assets that are currently available for tasking, meaning moves are
not planned for them beyond the current time

- If there are no assets available, go to the next time period
e For each task in this period's list of tasks, calculate the needs...

o Clear the needs stored in this task
o For each load at the task's origin node

- If the load is waiting for this task,
e Add the load amount to the total needs for this task
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e If item priority or destination priority policy, add the load amount to the
needs for this task separated by priority level

- If feed-to policy, and if the load is for a feed-to-node, and if we have not yet
sent enough towards its feed-to-node, add the load amount to the needs for
this task separated by rank of feed-to-node

- If shortest path policy, add this load amount to the sum of path lengths
(numerator of average) and add 1 to the total number of loads
(denominator of average)

o Next load
e Next task
e Remove any tasks that have zero needs from the list of tasks for this period
e If there are no tasks remaining in the list of tasks for this period, go to the next time

period
e Select a task by some policy...

o If most-need policy, select the task with the largest total amount of cargo waiting
for it

o If item priority, destination priority, or feed-to-node policy, select the task with the
highest priority level, then within that level, the task with the greatest need (ties
go to the task higher in the list)

o If shortest path policy, select the task with the shortest average path length across
loads

o For defined task order or if we did not select a task earlier, select the first task in
the list.

- Remove from the list of assets any assets that are the wrong type for the selected task
- If there are no appropriate assets for this task, remove this task from the list and

continue to the next task
* Sort the collection of assets by the projected arrival time at the task's origin node,

from shortest to longest
e Sort the list of loads at the task's origin node based on policies...

o If item type policy, sort loads by item type priority
o If destination policy, sort loads by destination priority, and also find the total

capacity of all the assets here (to be used later)
o If organization policy, set up arrays to track for each organization the number of

CMRs that were sent (note that this is inside the task loop, so it resets for the next
task. Could potentially put it outside to even out across time step or entire thing)

o If shortest delivery policy, sort loads by length of path remaining for each load,
shortest to longest

o If feed-to-node policy, sort in order of rank of feed-to-node
e Decide how many vehicles to allocate to this task:

o If proportional policy, find the total need for tasks with this vehicle type among all
user-defined tasks (or auto-defined, if the selected task is auto-defined), and find
the fraction of the total need made up by this task's need. Allocate the same
fraction of the available vehicles to this task, rounded up to the nearest whole
vehicle.

o If first-come-first-served policy, allocate just enough vehicles to satisfy all the need
(not just the priority need) of this task, rounded down so we don't allocate non-full
trucks (except in the case of auto-defined tasks, allocate all available trucks).

e For each vehicle appropriate for the task, until the max number of vehicle assigned to
this task,
o Route the asset on a shortest path to the task's origin, by adding legs from its last

location to the origin node, starting at the current time
o Look for loads going along the path just added, from the asset's location to the

task's origin, and LoadVehicle WithCmrs
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o If destination-weighted policy, determine which destination-priority to look for
with this asset:
- Assign it to pl destination cargo if the cumulative capacity (its capacity plus

that of the others looped before this) falls in the range defined for p1 cargo,
rounded up to the nearest multiple of this asset's capacity (to ensure that if
there is only one asset, it goes to p1). The same for the other destination
priorities.

o Route the vehicle to a destination:
- If it's a "Path" type task, then assign legs for a path from the task origin along

the task path to the task destination
- If it's an "Origin" type task, then assign legs for a path the same way as in the

location-based algorithm, except this time consider not just adjacent nodes but
all nodes accessible to this asset.

" SetVehicleDestinationBasedOnCmr [same as in location-based algorithm
except we look at all accessible destinations not just adjacent nodes]
- For each waiting load,

o If the asset can travel to the load's farthest stop in its accessible or its
assigned network,

o If FIFO or shortest policy, select this load and exit the loop (this is the
first in the sorted list that meets requirements)

o If item type or destination or feed-to policy, add this CMR to a running
total of the amount waiting to go to each adjacent node, of each priority,
and select the load if it represents the largest such running total (but
keep looping through the loads)

o If organization policy, look up how much cargo has been sent for this
load's organization, and select this load if it is the least-served
organization found so far (but keep looping through the loads)

- If FIFO, item type, destination-lexic, organization, or shortest, set the
destination based on the selected load:

e If a destination weighted policy, try to set the destination to that with the
most cargo of the destination-priority this asset is looking for, but if there
isn't any, set it to the one selected above:

- If a feed-to policy, try to set the destination from a load going to the top-
ranked feed-to-node, but if we've already sent enough cargo to it, then the
next-ranked feed-to-node, etc. If all feed-to-nodes are adequately served,
then to the next load without a feed-to-node, and if there are none of those,
then back to the top-ranked feed-to-node:

- Set the vehicle destination by adding a leg to the asset going from the
current node to the adjacent node that the selected load must reach next,
and return the leg.

- If there were no loads at this node, return Nothing.
- Load the first leg of the vehicle's new path with cargo...
- If item type weighted policy, call LoadVehicleWithCmrs repeatedly, looking for

the right amount of each priority-level
- For all other policies,
- LoadVehicleWithCmrs

- If item type weighted policy, initialize a running total of the volume or
weight we want to fill this time

- While there are loads waiting here,
o If item type weighted policy, call SelectWaitingCmrLoadWithNextNode

looking for the right type of priority (and if it isn't found, call it again
later just looking for the highest-priority cargo)
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o If destination weighted policy, call SelectWaitingCmrLoadWithNextNode
looking for the right type of destination-priority (and if it isn't found, call
it again later just looking for the highest-priority cargo)

o If organization policy,
SelectWaitingCMRLoadWithLeastServedOrganization
- Select the waiting load with the least-served organization that is

going in the same direction as the asset
o If feed-to policy, SelectWaitingCmrLoadWithUnfilledFeedToNode

- Select the waiting load for the highest-ranked feed-to-node that has
not yet been fed enough and that is going in the same direction as the
asset.

- If there are no CMRs that meet this criteria, then call
SelectWaitingCmrLoadWithNextNode to see if there are any CMRs at
all going in the same direction as the asset.

o For all policies, if we did not already select a load,
SelectWaitingCmrLoadWithNextNode:
- Select the first in the ordered list of CMRs that is going in the same

direction as the asset and, if passed an item priority, that has the
item priority we're looking for.

o If item type weighted policy, calculate the number of items to fill the
desired weight or volume, and update the remaining volume or weight
to fill

o For all other policies, GetNumltemsThatFitnAsset: Calculate the number
of items from the selected load that will fit in the remaining capacity of
the asset, and limit it by the amount available here

o If organization policy, update the amount sent to each organization with
the amount to be loaded here

o Add a new load to the asset's leg, and add the amount of items calculated
above.

o Subtract the amount loaded from the amount waiting
o Update the running total sent to each feed-to node, for the feed-to policy
o If there are no items left from this load, remove it from the list of waiting

loads
(Loop to the next waiting load)

o Copy the loads from the first leg, just loaded, to any subsequent legs in the asset's
new path

e (Loop to the next vehicle for this task)
* Remove this task (because we've now gotten through all the assets allowed for it, or

there is no remaining cargo for it)
- (Loop to the next task)

o (Loop to the next time period)
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