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Abstract

Natural and man-created disasters, such as hurricanes, earthquakes, tsunamis, accidents and terrorist attacks, require 
evacuation and assistance routes. Evacuation routes are mostly based on the capacities of the road network. However, in extreme 
cases, such as earthquakes, road network infrastructure may adversely be affected, and may not supply their required capacities. If 
for various situations, the potential damage for critical roads can be identified in advance, it is possible to develop an evacuation 
model, that can be used in various situations.
This paper focuses on the development of a model for the design of an optimal evacuation network which simultaneously minimizes
retrofit costs of critical links (bridges, tunnels, etc.) and evacuation time. The model considers infrastructures' vulnerability (as a
stochastic function which is dependent on the event location and magnitude), road network, transportation demand and evacuation 
areas. Furthermore, the model evaluates the benefits of managed evacuation (system optimum) when compared to unmanaged 
evacuation (user equilibrium).
The paper presents a mathematic model for the presented problem. However, since an optimal solution cannot be found within a 
reasonable timeframe, a heuristic model is presented as well. This heuristic model is based on evolutionary algorithms, which also 
provides a mechanism for solving the problem as a multi-objective stochastic problem.
Using a real-world data, the algorithm is evaluated and compared to the unmanaged evacuation conditions. The results clearly 
demonstrate the advantages of managed evacuation, as the average travel time can be reduced by 5% to 30%.
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1. Introduction

Natural and man-created disasters, such as hurricanes, earthquakes, tsunamis, accidents and terrorist attacks, 
require evacuation and assistance routes. As of today, most research on emergency response operations focuses on 
evacuation problems from the perspective of transportation modelling such as network design and traffic assignment. 
In that context, transport networks are lifelines which support essential services, and need to be preserved in their 
functionality in case of disruptions caused by events which originate within (e.g. traffic accidents and technical 
failures) or outside the transport system (e.g. debris-flows, floods, earthquakes, storms, etc.). 

Although evacuation is a stochastic process, most current evacuation models treat the problem in a deterministic 
way, while some of the models incorporate distribution laws to treat the randomness of human actions and decision 
inputs (Cuesta, Abreu, & Alvear, 2016). Evacuation routes are mostly based on the capacities of the roads network. 
However, in extreme cases, such as earthquakes, roads network infrastructure may have adversely affected, and may 
not supply their required capacities. If this can be identified in advance, it is possible to develop an evacuation model 
that can be used to recommend the construction of new road segments, retrofit and improve critical links, locate shelter 
locations, etc.

While disasters, such as earthquakes, cannot be predicted, it is possible to plan evacuation routes in advance, and 
provide the information to the population.

This paper focuses on the development of a model for the design of an optimal “in advance” evacuation network 
which simultaneously minimizes retrofitting critical links costs and evacuation time. The model takes into 
consideration the infrastructures vulnerability associated with the retrofitting road segment (as a stochastic function 
which is dependent on the event location and magnitude), road network potential structure, transportation demand, 
and evacuation areas' capacities. Also, in order to investigate evacuation when it is possible to control the flow 
(advanced notice evacuation and the availability of rescue teams or not (sudden onset disaster), the model evaluates 
the benefits of managed evacuation (system optimum) when compared to unmanaged evacuation (user equilibrium).

Furthermore, a chance constraint is used to provide the decision maker the means to assess the solution based on 
different risk levels. Due to the overall complexity of the model (multi-objective and stochastic), an optimal solution 
cannot be found within a reasonable timeframe and therefore a heuristic algorithm has to be developed and used.

2. Literature Review

Evacuation model planning usually refer to network design and traffic assignment (Chilà, Musolino, Polimeni, 
Rindone, Russo, & Vitetta, 2016; Heydar, Yu, Liu, & Petering, 2016; Zimmerman, Brodesky & Karp, 2007).

There are several different decisions that should be considered while developing an evacuation models (Cuesta et 
al., 2016): (1) Selection of Evacuation Routes. Usually more than one escape route is required for the same group of 
people in order to manage the possible evacuation routes. (2) Introduction of delay times that act as a mechanism for 
avoiding possible congestion and bottleneck problems in overlapping routes, by delaying evacuation movement of a 
group of people. (3) By dividing the evacuation route into several parts, it is possible to control the speed of evacuation 
when the available safe egress time of each piece of a route is known.

The effectiveness of an evacuation operation is dependent on various factors, such as: (1) The availability of 
resources, such as transit vehicles, volunteers and medical staff that should be optimally allocated. (2) The risk of 
exposure to disaster impact, which is proportional to the waiting time at pickup locations, and therefore a common 
objective in this case is minimizing evacuation time. (3) The vulnerability of different locations within the evacuation 
zone and their proximity to disaster sites. Ignoring any of these characteristics can reduce the performance of the 
evacuation system (Dhingra & Roy, 2015).

While the evacuation network model presented in this paper takes into consideration infrastructures vulnerability, 
according to Reggiani, Nijkamp, and Lanzi (2015), the vulnerability concept still lacks a consensus definition, and it 
depends on the application context (El-Rashidy & Grant-Muller, 2014; Mattsson & Jenelius, 2015). The authors of 
this paper, in past works (Hadas et al., 2015), adopted the risk theory framework to represent degraded scenarios as a 
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list of “triplets”, each consisting of a description of the scenario (characteristics of the event), the probability of that 
scenario occurring, and the impact of the scenario on the network, included the resistance of the infrastructure against 
the event (Erath, Birdsall, Axhausen, & Hajdin, 2010; Jenelius, Petersen, & Mattsson, 2006; Jenelius & Mattsson, 
2015). Infrastructures vulnerability assessment can be performed with different approaches, depending on the type of 
events and the infrastructures considered in the analysis. For example in seismic events, fragility curves can assess 
the seismic vulnerability of bridges (Carturan, Pellegrino, Rossi, Gastaldi, & Modena, 2013; Zanini, Pellegrino, 
Morbin, & Modena, 2013), since they take into account the uncertainties of variables and apply probabilistic 
distributions to describe the properties of the materials composing the structures in question. Similarly, interactions 
between road networks and damaged buildings can be included, for short- and long-term conditions (e.g., (Goretti & 
Sarli, 2006)). In damaged road network link and node characteristics are updated according to the functionality 
variation produced by events. Capacity and speed reduction were commonly introduced for damaged links, such as 
bridges (Shinozuka, Zhou, Banerjee, & Murachi, 2015; Zhou, Banerjee, & Shinozuka, 2010), or for links affected by 
building damages (Goretti & Sarli, 2006; Zanini, Faleschini, Zampieri,  Pellegrino, Gecchele, Gastaldi & Rossi, 2017).

As concern travel demand, post-event demand changes may be modelled with travel demand models which take in 
account specific analysis conditions and effects of supply changes. In evacuation conditions, travel demand modelling 
is fundamental for evacuation planning to mitigate the effects of events (such as earthquakes) (Najafi, Eshghi, & de 
Leeuw, 2014; Yi & Özdamar, 2007), given their stochasticity (Chang, Elnashai, & Spencer Jr, 2012; Giuliano & 
Golob, 1998). Disaster Operation Management review by Galindo and Batta (2013) and evacuation transportation 
modelling review by Murray-Tuite and Wolshon (2013) highlighted the variety of assumptions and methods adopted 
for evacuation models. For evacuation after earthquakes, travel demand variation was estimated according to the 
reduction of available surfaces of buildings (Ye, Wang, Huang, Xu, & Chen, 2012), considering dead and injured 
people after building damages (Gao, Yang, & Sun, 2012).

3. Mathematical Model

There are several evacuation models in the literature, which can be extended. The proposed evacuation model is 
based on the one developed by Hadas and Laor (2013) and Hadas et al. (2015), with the extension of multi-objectives 
and stochastic capacities. Let 𝐺𝐺𝐺𝐺(𝑁𝑁𝑁𝑁,𝐴𝐴𝐴𝐴) be a graph, with 𝑁𝑁𝑁𝑁 nodes and 𝐴𝐴𝐴𝐴 arcs, when 𝑂𝑂𝑂𝑂 ⊂ 𝑁𝑁𝑁𝑁 is the origin set (residential 
areas), and 𝐷𝐷𝐷𝐷 ⊂ 𝑁𝑁𝑁𝑁 is the destination candidate set (evacuation areas or shelters), such that 𝑂𝑂𝑂𝑂 ∩ 𝐷𝐷𝐷𝐷 = ∅. Also let 
{(𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗)} ∈ 𝐴𝐴𝐴𝐴 arc candidate set, with 𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗 ∈ [1, … ,𝑁𝑁𝑁𝑁]. Each arc is associated with 𝐾𝐾𝐾𝐾 alternatives, each is different in 
capacity and retrofit cost, such that the retrofit cost of alternative 𝑘𝑘𝑘𝑘 = 1 is zero, and is higher than zero for all other 
alternatives, also, the capacity of alternative 𝑘𝑘𝑘𝑘 > 1 is higher than the capacity of alternative 𝑘𝑘𝑘𝑘 = 1. It should be noted 
that the capacities of the arcs are the capacities available for evacuation. Let 𝐴𝐴𝐴𝐴𝑐𝑐𝑐𝑐 ⊂ 𝐴𝐴𝐴𝐴 be a subset of all critical arcs, 
for which 𝐾𝐾𝐾𝐾 > 1. For all arcs 𝑎𝑎𝑎𝑎 ∈ 𝐴𝐴𝐴𝐴, which are not critical, meaning 𝑎𝑎𝑎𝑎 ∉ 𝐴𝐴𝐴𝐴𝑐𝑐𝑐𝑐, 𝐾𝐾𝐾𝐾 = 1.

𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 � �𝐶𝐶𝐶𝐶𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ∙ 𝑥𝑥𝑥𝑥𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑘𝑘𝑘𝑘∈𝐾𝐾𝐾𝐾(𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗)∈𝐴𝐴𝐴𝐴

+ �𝐶𝐶𝐶𝐶𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖 ∙ 𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖
𝑖𝑖𝑖𝑖∈𝐷𝐷𝐷𝐷
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�� � �𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

𝑗𝑗𝑗𝑗∈𝐾𝐾𝐾𝐾𝑖𝑖𝑖𝑖:(𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗)∈𝐴𝐴𝐴𝐴𝑜𝑜𝑜𝑜∈𝐷𝐷𝐷𝐷𝑜𝑜𝑜𝑜∈𝑂𝑂𝑂𝑂

= �� � �𝑓𝑓𝑓𝑓𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

𝑗𝑗𝑗𝑗∈𝐾𝐾𝐾𝐾𝑗𝑗𝑗𝑗:(𝑗𝑗𝑗𝑗,𝑗𝑗𝑗𝑗)∈𝐴𝐴𝐴𝐴𝑜𝑜𝑜𝑜∈𝐷𝐷𝐷𝐷𝑜𝑜𝑜𝑜∈𝑂𝑂𝑂𝑂

     ∀𝑗𝑗𝑗𝑗 ∈ 𝑂𝑂𝑂𝑂 ∪ 𝐷𝐷𝐷𝐷 (12)

𝑇𝑇𝑇𝑇(𝑈𝑈𝑈𝑈𝑀𝑀𝑀𝑀1, … ,𝑈𝑈𝑈𝑈𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖) > 0 (13)

𝑃𝑃𝑃𝑃 �max �0,�𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖 ∙ 𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖
𝑖𝑖𝑖𝑖∈𝐷𝐷𝐷𝐷

−�� � �𝑓𝑓𝑓𝑓𝑜𝑜𝑜𝑜𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

𝑗𝑗𝑗𝑗∈𝐾𝐾𝐾𝐾𝑖𝑖𝑖𝑖:(𝑜𝑜𝑜𝑜,𝑖𝑖𝑖𝑖)∈𝐴𝐴𝐴𝐴𝑜𝑜𝑜𝑜∈𝐷𝐷𝐷𝐷𝑜𝑜𝑜𝑜∈𝑂𝑂𝑂𝑂

� ≤ 𝐹𝐹𝐹𝐹∗� ≥ 𝛼𝛼𝛼𝛼 (14)

Since the problem approached in our study is stochastic, objectives (1), (2) and (3) represent the construction costs
(retrofit costs, and shelters’ construction costs), the expected number of non-evacuees in a given time and the expected 
evacuation time respectively, when 𝐶𝐶𝐶𝐶𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 is the retrofit cost of alternative 𝑘𝑘𝑘𝑘 for arc (𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗), 𝐶𝐶𝐶𝐶𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖 is the construction cost 
of node 𝑖𝑖𝑖𝑖, 𝑥𝑥𝑥𝑥𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 and 𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖 are decision variables, 𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 is s a feasible flow from source 𝑜𝑜𝑜𝑜 ∈ 𝑂𝑂𝑂𝑂 to the sink 𝑑𝑑𝑑𝑑 ∈ 𝐷𝐷𝐷𝐷 along arc 
(𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗) using alternative 𝑘𝑘𝑘𝑘. 𝑈𝑈𝑈𝑈𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖 is the capacity distribution function of node 𝑖𝑖𝑖𝑖, and 𝑇𝑇𝑇𝑇 is the expected evacuation time. 

Constraints (4) and (5) define binary decision variables. Constraints (6) and (7) restrict demand to facility capacity, 
when 𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖 is the quantity of demand allocated to node 𝑖𝑖𝑖𝑖 (positive value – demand, negative value – supply), constraint 
(8) defines transshipment nodes and constraint (9) enforce that total demand is equals to the total supply.

Constraints (10) and (11) defines arcs’ capacity over time, while constraint (12) defines conservation of flow. 
Constraint (13) enforces positive evacuation time. 

Finally, a chance constraint (14) is also added to the model. The chance constraint is added to ensure that for every 
solution found, the number of non-evacuees will hold in 𝛼𝛼𝛼𝛼 percent of the cases. Meaning, that for 𝛼𝛼𝛼𝛼 percent of the 
cases, for example 𝛼𝛼𝛼𝛼 = 0.85 (85%), the number of non-evacuees will be less or equal to 𝐹𝐹𝐹𝐹∗.

The model assumes that flow is managed, meaning that the flow is controlled and directed, by the rescue teams. 
This is in contrast to unmanaged flow, in which route selection is based on user-equilibrium. Such an assumption can 
hold when evacuation is considered to be performed with sufficient time to evacuate. Hence the need to optimize 
decision variable T.

The following properties of the model, (1) multi-objective problem, (2) integer variables, and (3) integral flow, 
increase its complexity, such that an optimal solution cannot be found within a reasonable timeframe. Therefore, in 
order to decrease complexity, a stochastic multi-objective heuristic has to be developed and used.

There are several methods for solving multi-objective optimization problems, among them are genetic algorithms 
(such as the VEGA, MOGA, NPGA, and NSGA methods, which are non-elitism multi-objective genetic algorithms, 
in which the best solutions of the current population are not preserved when the next generation is created, and PAES, 
SPEA2, PDE, NSGA-II and MOPSO methods, which are example elitism multi-objective genetic algorithm, which 
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list of “triplets”, each consisting of a description of the scenario (characteristics of the event), the probability of that 
scenario occurring, and the impact of the scenario on the network, included the resistance of the infrastructure against 
the event (Erath, Birdsall, Axhausen, & Hajdin, 2010; Jenelius, Petersen, & Mattsson, 2006; Jenelius & Mattsson, 
2015). Infrastructures vulnerability assessment can be performed with different approaches, depending on the type of 
events and the infrastructures considered in the analysis. For example in seismic events, fragility curves can assess 
the seismic vulnerability of bridges (Carturan, Pellegrino, Rossi, Gastaldi, & Modena, 2013; Zanini, Pellegrino, 
Morbin, & Modena, 2013), since they take into account the uncertainties of variables and apply probabilistic 
distributions to describe the properties of the materials composing the structures in question. Similarly, interactions 
between road networks and damaged buildings can be included, for short- and long-term conditions (e.g., (Goretti & 
Sarli, 2006)). In damaged road network link and node characteristics are updated according to the functionality 
variation produced by events. Capacity and speed reduction were commonly introduced for damaged links, such as 
bridges (Shinozuka, Zhou, Banerjee, & Murachi, 2015; Zhou, Banerjee, & Shinozuka, 2010), or for links affected by 
building damages (Goretti & Sarli, 2006; Zanini, Faleschini, Zampieri,  Pellegrino, Gecchele, Gastaldi & Rossi, 2017).

As concern travel demand, post-event demand changes may be modelled with travel demand models which take in 
account specific analysis conditions and effects of supply changes. In evacuation conditions, travel demand modelling 
is fundamental for evacuation planning to mitigate the effects of events (such as earthquakes) (Najafi, Eshghi, & de 
Leeuw, 2014; Yi & Özdamar, 2007), given their stochasticity (Chang, Elnashai, & Spencer Jr, 2012; Giuliano & 
Golob, 1998). Disaster Operation Management review by Galindo and Batta (2013) and evacuation transportation 
modelling review by Murray-Tuite and Wolshon (2013) highlighted the variety of assumptions and methods adopted 
for evacuation models. For evacuation after earthquakes, travel demand variation was estimated according to the 
reduction of available surfaces of buildings (Ye, Wang, Huang, Xu, & Chen, 2012), considering dead and injured 
people after building damages (Gao, Yang, & Sun, 2012).

3. Mathematical Model

There are several evacuation models in the literature, which can be extended. The proposed evacuation model is 
based on the one developed by Hadas and Laor (2013) and Hadas et al. (2015), with the extension of multi-objectives 
and stochastic capacities. Let 𝐺𝐺𝐺𝐺(𝑁𝑁𝑁𝑁,𝐴𝐴𝐴𝐴) be a graph, with 𝑁𝑁𝑁𝑁 nodes and 𝐴𝐴𝐴𝐴 arcs, when 𝑂𝑂𝑂𝑂 ⊂ 𝑁𝑁𝑁𝑁 is the origin set (residential 
areas), and 𝐷𝐷𝐷𝐷 ⊂ 𝑁𝑁𝑁𝑁 is the destination candidate set (evacuation areas or shelters), such that 𝑂𝑂𝑂𝑂 ∩ 𝐷𝐷𝐷𝐷 = ∅. Also let 
{(𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗)} ∈ 𝐴𝐴𝐴𝐴 arc candidate set, with 𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗 ∈ [1, … ,𝑁𝑁𝑁𝑁]. Each arc is associated with 𝐾𝐾𝐾𝐾 alternatives, each is different in 
capacity and retrofit cost, such that the retrofit cost of alternative 𝑘𝑘𝑘𝑘 = 1 is zero, and is higher than zero for all other 
alternatives, also, the capacity of alternative 𝑘𝑘𝑘𝑘 > 1 is higher than the capacity of alternative 𝑘𝑘𝑘𝑘 = 1. It should be noted 
that the capacities of the arcs are the capacities available for evacuation. Let 𝐴𝐴𝐴𝐴𝑐𝑐𝑐𝑐 ⊂ 𝐴𝐴𝐴𝐴 be a subset of all critical arcs, 
for which 𝐾𝐾𝐾𝐾 > 1. For all arcs 𝑎𝑎𝑎𝑎 ∈ 𝐴𝐴𝐴𝐴, which are not critical, meaning 𝑎𝑎𝑎𝑎 ∉ 𝐴𝐴𝐴𝐴𝑐𝑐𝑐𝑐, 𝐾𝐾𝐾𝐾 = 1.

𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 � �𝐶𝐶𝐶𝐶𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ∙ 𝑥𝑥𝑥𝑥𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑘𝑘𝑘𝑘∈𝐾𝐾𝐾𝐾(𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗)∈𝐴𝐴𝐴𝐴

+ �𝐶𝐶𝐶𝐶𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖 ∙ 𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖
𝑖𝑖𝑖𝑖∈𝐷𝐷𝐷𝐷

 (1)

𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝔼𝔼𝔼𝔼�max �0,�𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖 ∙ 𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖
𝑖𝑖𝑖𝑖∈𝐷𝐷𝐷𝐷

−�� � �𝑓𝑓𝑓𝑓𝑜𝑜𝑜𝑜𝑖𝑖𝑖𝑖𝑘𝑘𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

𝑘𝑘𝑘𝑘∈𝐾𝐾𝐾𝐾𝑖𝑖𝑖𝑖:(𝑜𝑜𝑜𝑜,𝑖𝑖𝑖𝑖)∈𝐴𝐴𝐴𝐴𝑜𝑜𝑜𝑜∈𝐷𝐷𝐷𝐷𝑜𝑜𝑜𝑜∈𝑂𝑂𝑂𝑂

�� (2)

𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝔼𝔼𝔼𝔼 �𝑇𝑇𝑇𝑇�𝑈𝑈𝑈𝑈𝑛𝑛𝑛𝑛1 , … ,𝑈𝑈𝑈𝑈𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖�� (3)

Subject to

𝑥𝑥𝑥𝑥𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ∈ {0,1}    ∀(𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗) ∈ 𝐴𝐴𝐴𝐴, 𝑘𝑘𝑘𝑘 ∈ 𝐾𝐾𝐾𝐾 (4)

𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖 ∈ {0,1}    ∀𝑖𝑖𝑖𝑖 ∈ 𝑁𝑁𝑁𝑁 (5)
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0 ≤ 𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖 ≤ 𝑈𝑈𝑈𝑈𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖 ∙ 𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖     ∀𝑖𝑖𝑖𝑖 ∈ 𝑂𝑂𝑂𝑂 (6)

0 ≤ −𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖 ≤ 𝑈𝑈𝑈𝑈𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖 ∙ 𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖      ∀𝑖𝑖𝑖𝑖 ∈ 𝐷𝐷𝐷𝐷 (7)

𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖 = 0    ∀𝑖𝑖𝑖𝑖 ∉ 𝑂𝑂𝑂𝑂 ∪ 𝐷𝐷𝐷𝐷 (8)

�𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖
𝑖𝑖𝑖𝑖∈𝑂𝑂𝑂𝑂

+ �𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖 = 0
𝑖𝑖𝑖𝑖∈𝐷𝐷𝐷𝐷

 (9)

���𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

𝑗𝑗𝑗𝑗∈𝐾𝐾𝐾𝐾𝑜𝑜𝑜𝑜∈𝐷𝐷𝐷𝐷𝑜𝑜𝑜𝑜∈𝑂𝑂𝑂𝑂

≤ 𝑈𝑈𝑈𝑈𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ∙ 𝑥𝑥𝑥𝑥𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ∙ 𝑇𝑇𝑇𝑇     ∀(𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗) ∈ 𝐴𝐴𝐴𝐴 (10)

𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 ≥ 0, 𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 ∈ ℤ     ∀(𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗) ∈ 𝐴𝐴𝐴𝐴, 𝑜𝑜𝑜𝑜 ∈ 𝑂𝑂𝑂𝑂,𝑑𝑑𝑑𝑑 ∈ 𝐷𝐷𝐷𝐷, 𝑘𝑘𝑘𝑘 ∈ 𝑘𝑘𝑘𝑘 (11)

�� � �𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

𝑗𝑗𝑗𝑗∈𝐾𝐾𝐾𝐾𝑖𝑖𝑖𝑖:(𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗)∈𝐴𝐴𝐴𝐴𝑜𝑜𝑜𝑜∈𝐷𝐷𝐷𝐷𝑜𝑜𝑜𝑜∈𝑂𝑂𝑂𝑂

= �� � �𝑓𝑓𝑓𝑓𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

𝑗𝑗𝑗𝑗∈𝐾𝐾𝐾𝐾𝑗𝑗𝑗𝑗:(𝑗𝑗𝑗𝑗,𝑗𝑗𝑗𝑗)∈𝐴𝐴𝐴𝐴𝑜𝑜𝑜𝑜∈𝐷𝐷𝐷𝐷𝑜𝑜𝑜𝑜∈𝑂𝑂𝑂𝑂

     ∀𝑗𝑗𝑗𝑗 ∈ 𝑂𝑂𝑂𝑂 ∪ 𝐷𝐷𝐷𝐷 (12)

𝑇𝑇𝑇𝑇(𝑈𝑈𝑈𝑈𝑀𝑀𝑀𝑀1, … ,𝑈𝑈𝑈𝑈𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖) > 0 (13)

𝑃𝑃𝑃𝑃 �max �0,�𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖 ∙ 𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖
𝑖𝑖𝑖𝑖∈𝐷𝐷𝐷𝐷

−�� � �𝑓𝑓𝑓𝑓𝑜𝑜𝑜𝑜𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

𝑗𝑗𝑗𝑗∈𝐾𝐾𝐾𝐾𝑖𝑖𝑖𝑖:(𝑜𝑜𝑜𝑜,𝑖𝑖𝑖𝑖)∈𝐴𝐴𝐴𝐴𝑜𝑜𝑜𝑜∈𝐷𝐷𝐷𝐷𝑜𝑜𝑜𝑜∈𝑂𝑂𝑂𝑂

� ≤ 𝐹𝐹𝐹𝐹∗� ≥ 𝛼𝛼𝛼𝛼 (14)

Since the problem approached in our study is stochastic, objectives (1), (2) and (3) represent the construction costs
(retrofit costs, and shelters’ construction costs), the expected number of non-evacuees in a given time and the expected 
evacuation time respectively, when 𝐶𝐶𝐶𝐶𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 is the retrofit cost of alternative 𝑘𝑘𝑘𝑘 for arc (𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗), 𝐶𝐶𝐶𝐶𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖 is the construction cost 
of node 𝑖𝑖𝑖𝑖, 𝑥𝑥𝑥𝑥𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 and 𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖 are decision variables, 𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 is s a feasible flow from source 𝑜𝑜𝑜𝑜 ∈ 𝑂𝑂𝑂𝑂 to the sink 𝑑𝑑𝑑𝑑 ∈ 𝐷𝐷𝐷𝐷 along arc 
(𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗) using alternative 𝑘𝑘𝑘𝑘. 𝑈𝑈𝑈𝑈𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖 is the capacity distribution function of node 𝑖𝑖𝑖𝑖, and 𝑇𝑇𝑇𝑇 is the expected evacuation time. 

Constraints (4) and (5) define binary decision variables. Constraints (6) and (7) restrict demand to facility capacity, 
when 𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖 is the quantity of demand allocated to node 𝑖𝑖𝑖𝑖 (positive value – demand, negative value – supply), constraint 
(8) defines transshipment nodes and constraint (9) enforce that total demand is equals to the total supply.

Constraints (10) and (11) defines arcs’ capacity over time, while constraint (12) defines conservation of flow. 
Constraint (13) enforces positive evacuation time. 

Finally, a chance constraint (14) is also added to the model. The chance constraint is added to ensure that for every 
solution found, the number of non-evacuees will hold in 𝛼𝛼𝛼𝛼 percent of the cases. Meaning, that for 𝛼𝛼𝛼𝛼 percent of the 
cases, for example 𝛼𝛼𝛼𝛼 = 0.85 (85%), the number of non-evacuees will be less or equal to 𝐹𝐹𝐹𝐹∗.

The model assumes that flow is managed, meaning that the flow is controlled and directed, by the rescue teams. 
This is in contrast to unmanaged flow, in which route selection is based on user-equilibrium. Such an assumption can 
hold when evacuation is considered to be performed with sufficient time to evacuate. Hence the need to optimize 
decision variable T.

The following properties of the model, (1) multi-objective problem, (2) integer variables, and (3) integral flow, 
increase its complexity, such that an optimal solution cannot be found within a reasonable timeframe. Therefore, in 
order to decrease complexity, a stochastic multi-objective heuristic has to be developed and used.

There are several methods for solving multi-objective optimization problems, among them are genetic algorithms 
(such as the VEGA, MOGA, NPGA, and NSGA methods, which are non-elitism multi-objective genetic algorithms, 
in which the best solutions of the current population are not preserved when the next generation is created, and PAES, 
SPEA2, PDE, NSGA-II and MOPSO methods, which are example elitism multi-objective genetic algorithm, which 
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preserve the best individuals from generation to generation. In this way, the system never loses the best individuals 
found during the optimization process (Coello, Lamont, & Van Veldhuizen, 2007)).

Genetic algorithms can also be used for solving stochastic optimization problems. For a stochastic optimization 
problem, the fitness function, used in each iteration for the selection process and creation of the new generation, 
literally expresses the fitness of the individual, and therefore is fluctuated, according to the stochastic distribution-
functions for the stochastic variables. Eventually, the frequencies of individuals associated with solutions are 
investigated through all generations. Therefore, it is expected that the higher the expected value is, the higher the 
individual frequency through all generations is (Yoshitomi, Ikenoue, Takeba, & Tomita, 2000).

In order to simplify the algorithm’s implementation, MOEA framework (Hadka, 2016) has been used. The MOEA 
Framework is a free, open source, Java library for developing and experimenting with multi-objective evolutionary 
algorithms and other general-purpose optimization algorithms. The MPEA framework provided several algorithms 
out-of-the-box, including VEGA, NSGA-II, NSGA-III, 𝜖𝜖𝜖𝜖-MOEA, SPEA2 and others. The results presented next in 
this paper were obtained using the NSGA-II algorithm.

4. Experimental Results

In order to assess the model and validate its advantages, a real-world case study was conducted. The analysis is 
focused on an urban area, the Municipality of Conegliano, a town of 40,000 inhabitants located in the northern part 
of the province of Treviso, North-Eastern Italy; this area was chosen for its significant seismic hazard. In this test area 
there are 51 bridges of various typologies: single span, multi span, concrete, steel, and masonry bridges, straight or 
skewed (Hadas et al., 2015). Figure 1 presents the road network components, including critical links (bridges) and 
shelters locations (attraction sites).

Figure 1 – Conegliano road network (Hadas et al., 2015)

Previous studies (Nahum & Hadas, 2017; Nahum, Hadas, Rossi, Gastaldi, & Gecchele, 2016) show that for 
networks with stochastic arcs, for each network there is a high difference in the results obtained as the variance in 
stochastics arc increases. This difference increases as the problem increases in size (larger networks with a higher 
number of stochastics arcs). The use of chance constraint, results with a solution in which the number of non-evacuees
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is higher compared to the number of non-evacuees obtained for the same solution based on the average flow, meaning 
that in order to construct a network having a given cost and an evacuation time, it is necessary to consider the number 
of non-evacuees 𝐹𝐹𝐹𝐹∗, such that in 𝛼𝛼𝛼𝛼 percent of the cases the obtained number of non-evacuees will be equal or lower
than 𝐹𝐹𝐹𝐹∗, which is higher than the average number of non-evacuees. This guaranties that in 𝛼𝛼𝛼𝛼 percent of the cases the 
evacuation time will be held (and even may be shorter).

Table 1 summarizes the results obtained for two different earthquake scenarios, SCE04 and SCE12, with low and high 
impact, respectively. The former considered the effects of collapsed bridges on link functionality (capacity decrease) 
while in the latter the effects of built environment were also assessed (we take into account road obstructions caused 
by the collapse of jutting buildings). The higher the impact, the decreased capacity of the road segments. Furthermore, 
for each scenario, two variations were analysed, in which critical arcs have stochastic properties with both small and 
large variance (denoted as “large” and “small”). Each one of the solutions of the Pareto front was evaluated 100 times, 
therefore, for each solution it is possible to determine the number of non-evacuees, 𝐹𝐹𝐹𝐹∗, that in 𝛼𝛼𝛼𝛼 percent of the cases 
the obtained number of non-evacuees will be equal or higher than 𝐹𝐹𝐹𝐹∗ (the chance constraint). For each network, the 
average running time (in seconds) is given as well as the size of the Pareto front obtained, the cost of the solution, the 
number of non-evacuees, for 𝛼𝛼𝛼𝛼 = 0.95, 𝛼𝛼𝛼𝛼 = 0.9, 𝛼𝛼𝛼𝛼 = 0.85, including the average number of non-evacuees - 𝛼𝛼𝛼𝛼 =
0.50, and the evacuation time. 

Table 1 – Algorithm Results for Various Possible Networks in which 70% of the Arcs are Stochastics with Large Variance

Problem # Run Time 
(sec.)

Size of Pareto 
Front Cost

Number of Non-Evacuees Evacuation 
Time𝛼𝛼𝛼𝛼 = 0.95 𝛼𝛼𝛼𝛼 = 0.9 𝛼𝛼𝛼𝛼 = 0.85 𝛼𝛼𝛼𝛼 = 0.5

SCE04-
11_11

Morning 
large

744.279 4

0 17 17 17 17 60

39178 2157 2127 2115 2115 30

0 2445 2385 2355 2325 30

20698 2159 2159 2159 2159 30

SCE04-
11_11

Morning 
small

674.012 4

0 17 17 17 17 60

0 2385 2355 2355 2355 30

39178 2127 2115 2115 2115 30

20698 2159 2159 2159 2159 30

SCE12-
19_16

Morning 
large

694.112 4

0 187 187 187 187 60

0 1685 1655 1655 1649 30

42480 1647 1565 1545 1545 30

24000 1677 1619 1619 1619 30

SCE12-
19_16

Morning 
small

736.518 4

0 187 187 187 187 60

42480 1647 1587 1557 1545 30

0 1685 1655 1647 1625 30

24000 1647 1617 1589 1589 30

In order to assess the advantages of managed evacuation, a user-equilibrium traffic assignment was performed. The 
assignment was based on the system optimal Origin-Destination (OD) matrix, as it is assumed that each vehicle was 
pre-assigned to a shelter. Furthermore, BPR delay function was calibrated and used for each road segment. Both 
deterministic and stochastic user-equilibrium (UE) were performed. Two measures were used, a) Vehicles Hour 
Traveled (VHT) [hours] – the total flow multiplied by travel time based on the delay function, over all road segments. 
b) Average travel time [minutes] – the average travel time per vehicle, obtained by dividing the VHT by the total flow. 
The system optimum VHT was obtained based on the optimal flow per road segment and the corresponding delay 
function. Table 2 summarizes the results for the above-mentioned problems. It is evident that employing managed 
evacuation will result with faster evacuation, as the average travel time to the shelters is 5% to 30% shorter.



 Oren E. Nahum  et al. / Transportation Research Procedia 27 (2017) 728–735 733
Author name / Transportation Research Procedia 00 (2017) 000–000 5

preserve the best individuals from generation to generation. In this way, the system never loses the best individuals 
found during the optimization process (Coello, Lamont, & Van Veldhuizen, 2007)).

Genetic algorithms can also be used for solving stochastic optimization problems. For a stochastic optimization 
problem, the fitness function, used in each iteration for the selection process and creation of the new generation, 
literally expresses the fitness of the individual, and therefore is fluctuated, according to the stochastic distribution-
functions for the stochastic variables. Eventually, the frequencies of individuals associated with solutions are 
investigated through all generations. Therefore, it is expected that the higher the expected value is, the higher the 
individual frequency through all generations is (Yoshitomi, Ikenoue, Takeba, & Tomita, 2000).

In order to simplify the algorithm’s implementation, MOEA framework (Hadka, 2016) has been used. The MOEA 
Framework is a free, open source, Java library for developing and experimenting with multi-objective evolutionary 
algorithms and other general-purpose optimization algorithms. The MPEA framework provided several algorithms 
out-of-the-box, including VEGA, NSGA-II, NSGA-III, 𝜖𝜖𝜖𝜖-MOEA, SPEA2 and others. The results presented next in 
this paper were obtained using the NSGA-II algorithm.

4. Experimental Results

In order to assess the model and validate its advantages, a real-world case study was conducted. The analysis is 
focused on an urban area, the Municipality of Conegliano, a town of 40,000 inhabitants located in the northern part 
of the province of Treviso, North-Eastern Italy; this area was chosen for its significant seismic hazard. In this test area 
there are 51 bridges of various typologies: single span, multi span, concrete, steel, and masonry bridges, straight or 
skewed (Hadas et al., 2015). Figure 1 presents the road network components, including critical links (bridges) and 
shelters locations (attraction sites).

Figure 1 – Conegliano road network (Hadas et al., 2015)

Previous studies (Nahum & Hadas, 2017; Nahum, Hadas, Rossi, Gastaldi, & Gecchele, 2016) show that for 
networks with stochastic arcs, for each network there is a high difference in the results obtained as the variance in 
stochastics arc increases. This difference increases as the problem increases in size (larger networks with a higher 
number of stochastics arcs). The use of chance constraint, results with a solution in which the number of non-evacuees
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is higher compared to the number of non-evacuees obtained for the same solution based on the average flow, meaning 
that in order to construct a network having a given cost and an evacuation time, it is necessary to consider the number 
of non-evacuees 𝐹𝐹𝐹𝐹∗, such that in 𝛼𝛼𝛼𝛼 percent of the cases the obtained number of non-evacuees will be equal or lower
than 𝐹𝐹𝐹𝐹∗, which is higher than the average number of non-evacuees. This guaranties that in 𝛼𝛼𝛼𝛼 percent of the cases the 
evacuation time will be held (and even may be shorter).

Table 1 summarizes the results obtained for two different earthquake scenarios, SCE04 and SCE12, with low and high 
impact, respectively. The former considered the effects of collapsed bridges on link functionality (capacity decrease) 
while in the latter the effects of built environment were also assessed (we take into account road obstructions caused 
by the collapse of jutting buildings). The higher the impact, the decreased capacity of the road segments. Furthermore, 
for each scenario, two variations were analysed, in which critical arcs have stochastic properties with both small and 
large variance (denoted as “large” and “small”). Each one of the solutions of the Pareto front was evaluated 100 times, 
therefore, for each solution it is possible to determine the number of non-evacuees, 𝐹𝐹𝐹𝐹∗, that in 𝛼𝛼𝛼𝛼 percent of the cases 
the obtained number of non-evacuees will be equal or higher than 𝐹𝐹𝐹𝐹∗ (the chance constraint). For each network, the 
average running time (in seconds) is given as well as the size of the Pareto front obtained, the cost of the solution, the 
number of non-evacuees, for 𝛼𝛼𝛼𝛼 = 0.95, 𝛼𝛼𝛼𝛼 = 0.9, 𝛼𝛼𝛼𝛼 = 0.85, including the average number of non-evacuees - 𝛼𝛼𝛼𝛼 =
0.50, and the evacuation time. 

Table 1 – Algorithm Results for Various Possible Networks in which 70% of the Arcs are Stochastics with Large Variance

Problem # Run Time 
(sec.)

Size of Pareto 
Front Cost

Number of Non-Evacuees Evacuation 
Time𝛼𝛼𝛼𝛼 = 0.95 𝛼𝛼𝛼𝛼 = 0.9 𝛼𝛼𝛼𝛼 = 0.85 𝛼𝛼𝛼𝛼 = 0.5

SCE04-
11_11

Morning 
large

744.279 4

0 17 17 17 17 60

39178 2157 2127 2115 2115 30

0 2445 2385 2355 2325 30

20698 2159 2159 2159 2159 30

SCE04-
11_11

Morning 
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0 17 17 17 17 60

0 2385 2355 2355 2355 30

39178 2127 2115 2115 2115 30

20698 2159 2159 2159 2159 30
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Morning 
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0 187 187 187 187 60
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736.518 4

0 187 187 187 187 60

42480 1647 1587 1557 1545 30
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In order to assess the advantages of managed evacuation, a user-equilibrium traffic assignment was performed. The 
assignment was based on the system optimal Origin-Destination (OD) matrix, as it is assumed that each vehicle was 
pre-assigned to a shelter. Furthermore, BPR delay function was calibrated and used for each road segment. Both 
deterministic and stochastic user-equilibrium (UE) were performed. Two measures were used, a) Vehicles Hour 
Traveled (VHT) [hours] – the total flow multiplied by travel time based on the delay function, over all road segments. 
b) Average travel time [minutes] – the average travel time per vehicle, obtained by dividing the VHT by the total flow. 
The system optimum VHT was obtained based on the optimal flow per road segment and the corresponding delay 
function. Table 2 summarizes the results for the above-mentioned problems. It is evident that employing managed 
evacuation will result with faster evacuation, as the average travel time to the shelters is 5% to 30% shorter.
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Table 2 – Evacuation performance comparison between system optimum and user equilibrium

System Optimum Deterministic UE Stochastic UE

Problem # Evacuation 
time

Total 
Flow VHT

Average 
Travel 
Time

VHT
Average
Travel 
Time

VHT
Average 
Travel 
Time

SCE04-11_11 
Morning large 30 9279 779 5.04 911 5.89 916 5.92

SCE04-11_11 
Morning small 30 9232 832 5.41 882 5.73 890 5.78

SCE12-19_16 
Morning large 30 9873 1092 6.64 1629 9.90 1629 9.90

SCE12-19_16 
Morning small 30 9834 1169 7.13 1570 9.58 1577 9.62

The main disadvantage of managed evacuation is the need to dispatch rescue teams to all intersections in order to 
control the flow according to the optimal paths. Such a task is extremely difficult for medium to large networks, as it 
might not be practical to dispatch several hundreds of teams. For that it is possible to integrate the traffic assignment 
model within the optimization, with an additional objective functions aimed at 1) minimizing the number of rescue 
teams, and 2) minimizing the VHT difference between system optimum and user-equilibrium.

Nonetheless, based on the VHT comparison it is easy to identify the intersections with the highest total in- and out 
bound VHT difference (VHTD) between the system optimum and user-equilibrium, as can be formulate 
mathematically as follow:

𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖 = �max{0,𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 − 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗𝑆𝑆𝑆𝑆𝑂𝑂𝑂𝑂} + �𝑀𝑀𝑀𝑀𝑎𝑎𝑎𝑎𝑥𝑥𝑥𝑥�0,𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑇𝑇𝑇𝑇𝑗𝑗𝑗𝑗𝑖𝑖𝑖𝑖𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 − 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑇𝑇𝑇𝑇𝑗𝑗𝑗𝑗𝑖𝑖𝑖𝑖𝑆𝑆𝑆𝑆𝑂𝑂𝑂𝑂�
𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗

 (15)

Where 𝒊𝒊𝒊𝒊 and 𝒋𝒋𝒋𝒋 are nodes, 𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝒊𝒊𝒊𝒊𝒋𝒋𝒋𝒋𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒 𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝒊𝒊𝒊𝒊𝒋𝒋𝒋𝒋𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔, the vehicle hour traveled between nodes 𝒊𝒊𝒊𝒊 and 𝒋𝒋𝒋𝒋, for system optimum (SO) 
or user-equilibrium (UE).

This procedure was used to valuate problem number 1, and out of 260 intersections, 10 contributes to 50% of the total 
VHTD, 20 to 65% and 30 for 75%. Meaning the it is possible to identify the critical intersections for which the in-
and out-bound flows will be much higher than planned, and to assess which intersections should be managed. It should 
be noted, that in real world situations, when the evacuation network is not managed, the supply-demand system 
evolves through feasible states, that could not be internally equilibrated. Dynamic traffic assignment is able to simulate 
the changing of the system state over the time, but in this paper user equilibrium was chosen for comparisons reasons 
only.

5. Conclusions

This paper presents a multi-objective, stochastic model for planning managed evacuation with optimal allocation 
of retrofit budget for critical infrastructure, minimizing the evacuation time and the number of non-evacuees. The 
chance constrained modeling provides the decision maker to perform the analysis based on a predefined confidence 
level. Furthermore, it was shown that if the evacuation is managed, average travel time is reduced by 5% to 30% when 
compared to unmanaged evacuation. However, in real emergencies managing the entire evacuation network is 
difficult, if not impossible to achieve. Yet, it is possible to manage some of the nodes. In this case, it is possible that 
by choosing and managing certain nodes, the travel time will be decreased. A possible future work is developing an 
optimization algorithm that for a given evacuation network it simultaneously minimizes the number of managed and 
the average travel time.
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Table 2 – Evacuation performance comparison between system optimum and user equilibrium

System Optimum Deterministic UE Stochastic UE

Problem # Evacuation 
time

Total 
Flow VHT

Average 
Travel 
Time

VHT
Average
Travel 
Time

VHT
Average 
Travel 
Time

SCE04-11_11 
Morning large 30 9279 779 5.04 911 5.89 916 5.92

SCE04-11_11 
Morning small 30 9232 832 5.41 882 5.73 890 5.78

SCE12-19_16 
Morning large 30 9873 1092 6.64 1629 9.90 1629 9.90

SCE12-19_16 
Morning small 30 9834 1169 7.13 1570 9.58 1577 9.62

The main disadvantage of managed evacuation is the need to dispatch rescue teams to all intersections in order to 
control the flow according to the optimal paths. Such a task is extremely difficult for medium to large networks, as it 
might not be practical to dispatch several hundreds of teams. For that it is possible to integrate the traffic assignment 
model within the optimization, with an additional objective functions aimed at 1) minimizing the number of rescue 
teams, and 2) minimizing the VHT difference between system optimum and user-equilibrium.

Nonetheless, based on the VHT comparison it is easy to identify the intersections with the highest total in- and out 
bound VHT difference (VHTD) between the system optimum and user-equilibrium, as can be formulate 
mathematically as follow:

𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖 = �max{0,𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 − 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗𝑆𝑆𝑆𝑆𝑂𝑂𝑂𝑂} + �𝑀𝑀𝑀𝑀𝑎𝑎𝑎𝑎𝑥𝑥𝑥𝑥�0,𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑇𝑇𝑇𝑇𝑗𝑗𝑗𝑗𝑖𝑖𝑖𝑖𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 − 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑇𝑇𝑇𝑇𝑗𝑗𝑗𝑗𝑖𝑖𝑖𝑖𝑆𝑆𝑆𝑆𝑂𝑂𝑂𝑂�
𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗

 (15)

Where 𝒊𝒊𝒊𝒊 and 𝒋𝒋𝒋𝒋 are nodes, 𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝒊𝒊𝒊𝒊𝒋𝒋𝒋𝒋𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒 𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝒊𝒊𝒊𝒊𝒋𝒋𝒋𝒋𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔, the vehicle hour traveled between nodes 𝒊𝒊𝒊𝒊 and 𝒋𝒋𝒋𝒋, for system optimum (SO) 
or user-equilibrium (UE).

This procedure was used to valuate problem number 1, and out of 260 intersections, 10 contributes to 50% of the total 
VHTD, 20 to 65% and 30 for 75%. Meaning the it is possible to identify the critical intersections for which the in-
and out-bound flows will be much higher than planned, and to assess which intersections should be managed. It should 
be noted, that in real world situations, when the evacuation network is not managed, the supply-demand system 
evolves through feasible states, that could not be internally equilibrated. Dynamic traffic assignment is able to simulate 
the changing of the system state over the time, but in this paper user equilibrium was chosen for comparisons reasons 
only.

5. Conclusions

This paper presents a multi-objective, stochastic model for planning managed evacuation with optimal allocation 
of retrofit budget for critical infrastructure, minimizing the evacuation time and the number of non-evacuees. The 
chance constrained modeling provides the decision maker to perform the analysis based on a predefined confidence 
level. Furthermore, it was shown that if the evacuation is managed, average travel time is reduced by 5% to 30% when 
compared to unmanaged evacuation. However, in real emergencies managing the entire evacuation network is 
difficult, if not impossible to achieve. Yet, it is possible to manage some of the nodes. In this case, it is possible that 
by choosing and managing certain nodes, the travel time will be decreased. A possible future work is developing an 
optimization algorithm that for a given evacuation network it simultaneously minimizes the number of managed and 
the average travel time.
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