2,882 research outputs found

    Leveraging Wireless Broadband to Improve Police Land Mobile Radio Programming: Estimating the Resource Impact

    Get PDF
    Despite rapid growth in criminological studies of police technology, examinations of police land mobile radios are absent in the literature. This is troubling given the central role mobile radios serve in police operations and their significant management costs. The present study seeks to fill this gap by introducing the functionality of wireless broadband radio programming. Current practice requires a police officer to physically drive to a radio programming location to manage their mobile radio. Wireless programming remedies this burdensome reality, thereby saving officer time and cost. Geospatial analyses are used to estimate distance saved associated with wireless programming. We then conduct a number of calculations to determine time and cost savings related to the observed differences between existing and wireless radio programming within the context of the North Carolina State Highway Patrol. Results suggest wireless radio programming can save significant personnel and financial resources. Implications are discussed

    On-Line Simulation of Urban Police Partrol and Dispatching

    Get PDF

    A taxonomy for emergency service station location problem

    Get PDF
    The emergency service station (ESS) location problem has been widely studied in the literature since 1970s. There has been a growing interest in the subject especially after 1990s. Various models with different objective functions and constraints have been proposed in the academic literature and efficient solution techniques have been developed to provide good solutions in reasonable times. However, there is not any study that systematically classifies different problem types and methodologies to address them. This paper presents a taxonomic framework for the ESS location problem using an operations research perspective. In this framework, we basically consider the type of the emergency, the objective function, constraints, model assumptions, modeling, and solution techniques. We also analyze a variety of papers related to the literature in order to demonstrate the effectiveness of the taxonomy and to get insights for possible research directions

    Analysing the police patrol routing problem : a review

    Get PDF
    Police patrol is a complex process. While on patrol, police officers must balance many intersecting responsibilities. Most notably, police must proactively patrol and prevent offenders from committing crimes but must also reactively respond to real-time incidents. Efficient patrol strategies are crucial to manage scarce police resources and minimize emergency response times. The objective of this review paper is to discuss solution methods that can be used to solve the so-called police patrol routing problem (PPRP). The starting point of the review is the existing literature on the dynamic vehicle routing problem (DVRP). A keyword search resulted in 30 articles that focus on the DVRP with a link to police. Although the articles refer to policing, there is no specific focus on the PPRP; hence, there is a knowledge gap. A diversity of approaches is put forward ranging from more convenient solution methods such as a (hybrid) Genetic Algorithm (GA), linear programming and routing policies, to more complex Markov Decision Processes and Online Stochastic Combinatorial Optimization. Given the objectives, characteristics, advantages and limitations, the (hybrid) GA, routing policies and local search seem the most valuable solution methods for solving the PPRP

    Multi-UAV Allocation Framework for predictive crime deterrence and data acquisition

    Get PDF
    The recent decline in the number of police and security force personnel has raised a serious security issue that could lead to reduced public safety and delayed response to crimes in urban areas. This may be alleviated in part by utilizing micro or small unmanned aerial vehicles (UAVs) and their high-mobility on-board sensors in conjunction with machine-learning techniques such as neural networks to offer better performance in predicting times and places that are high-risk and deterring crimes. The key to the success of such operation lies in the suitable placement of UAVs. This paper proposes a multi-UAV allocation framework for predictive crime deterrence and data acquisition that consists of the overarching methodology, a problem formulation, and an allocation method that work with a prediction model using a machine learning approach. In contrast to previous studies, our framework provides the most effective arrangement of UAVs for maximizing the chance to apprehend offenders whilst also acquiring data that will help improve the performance of subsequent crime prediction. This paper presents the system architecture assumed in this study, followed by a detailed description of the methodology, the formulation of the problem, and the UAV allocation method of the proposed framework. Our framework is tested using a real-world crime dataset to evaluate its performance with respect to the expected number of crimes deterred by the UAV patrol. Furthermore, to address the engineering practice of the proposed framework, we discuss the feasibility of the simulated deployment scenario in terms of energy consumption and the relationship between data analysis and crime prediction

    Application of automatic vehicle location in law enforcement: An introductory planning guide

    Get PDF
    A set of planning guidelines for the application of automatic vehicle location (AVL) to law enforcement is presented. Some essential characteristics and applications of AVL are outlined; systems in the operational or planning phases are discussed. Requirements analysis, system concept design, implementation planning, and performance and cost modeling are described and demonstrated with numerous examples. A detailed description of a typical law enforcement AVL system, and a list of vendor sources are given in appendixes

    Evaluating the Impacts of Accelerated Incident Clearance Tools and Strategies by Harnessing the Power of Microscopic Traffic Simulation

    Get PDF
    Traffic incidents cause Americans delay, waste fuel, cause injuries, and create toxic emissions. Transportation professionals have implemented a variety of tools to manage these impacts and researchers have studied their effectiveness, illustrating a wide range between different tools and locations. To improve this state of knowledge, this dissertation sought to 1) identify prominent and effective incident management strategies, 2) model six selected incident management strategies within five highway corridors in South Carolina, and 3) apply benefit-cost analysis to evaluate the impact of various combinations of these strategies. To meet these objectives, the author evaluated published literature of the selected strategies, administered a nationwide survey of these strategies, conducted traffic simulation, and performed benefit-cost analysis. The literature review guided the author to fill gaps in knowledge regarding the effectiveness and expense of identified strategies. The nationwide survey identified effective incident management tools, the extent of their adoption, and their common problems. The author then applied PARAMICS traffic simulation software to evaluate the impact of six tools at five sites on metropolitan interstates throughout South Carolina. Finally, benefit-cost analysis was used to evaluate the benefits against costs at each study site. The survey provided many insights into both the effectiveness and collaboration within and among traffic incident management agencies and guided the author in selecting tools for evaluation. While the simulation study found that as the severity and duration of incident increases, so does the potential benefit of incident management tools, the frequency of incidents also produces significant impact on annual benefits. The benefit-cost analysis indicated that while all the incident management tools evaluated provided more benefits than costs, freeway service patrols and traffic cameras produced the highest return for incidents of varying severity. It was also found more advantageous to select one expensive but efficient incident management technology, rather than engage in the incremental deployment of various systems that might provide redundant benefits. Departments of transportation across the United States see the need to manage incidents more efficiently, consequently this dissertation developed data and analysis to compare benefits with costs to aid decision makers in selecting tools and strategies for future incident management endeavors
    corecore