
BIROn - Birkbeck Institutional Research Online

Miyano, K. and Shinkuma, R. and Shiode, N. and Shiode, Shino and Sato,
T. and Oki, E. (2020) Multi-UAV Allocation Framework for predictive crime
deterrence and data acquisition. Internet of Things 11 (100205), ISSN 2542-
6605.

Downloaded from: http://eprints.bbk.ac.uk/id/eprint/31921/

Usage Guidelines:
Please refer to usage guidelines at https://eprints.bbk.ac.uk/policies.html or alternatively
contact lib-eprints@bbk.ac.uk.

http://eprints.bbk.ac.uk/id/eprint/31921/
https://eprints.bbk.ac.uk/policies.html
mailto:lib-eprints@bbk.ac.uk


Internet of Things 11 (2020) 100205 

Contents lists available at ScienceDirect 

Internet of Things 

journal homepage: www.elsevier.com/locate/iot 

Multi-UAV Allocation Framework for Predictive Crime 

Deterrence and Data Acquisition 

Kosei Miyano 

a , Ryoichi Shinkuma 

a , ∗, Narushige Shiode 

b , Shino Shiode 

c , 
Takehiro Sato 

a , Eiji Oki a 

a Graduate School of Informatics, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501, Japan 
b King’s College London, Bush House North East Wing, 40 Aldwych, WC2B 4BG, UK 
c Birkbeck, University of London, Malet St, Bloomsbury, London WC1E 7HX, UK 

a r t i c l e i n f o 

Article history: 

Received 24 February 2020 

Revised 27 March 2020 

Accepted 28 April 2020 

Available online 7 May 2020 

Keywords: 

unmanned aerial vehicle 

surveillance 

crime prediction 

crime deterrence 

sensor data acquisition 

machine learning 

a b s t r a c t 

The recent decline in the number of police and security force personnel has raised a seri- 

ous security issue that could lead to reduced public safety and delayed response to crimes 

in urban areas. This may be alleviated in part by utilizing micro or small unmanned aerial 

vehicles (UAVs) and their high-mobility on-board sensors in conjunction with machine- 

learning techniques such as neural networks to offer better performance in predicting 

times and places that are high-risk and deterring crimes. The key to the success of such 

operation lies in the suitable placement of UAVs. This paper proposes a multi-UAV allo- 

cation framework for predictive crime deterrence and data acquisition that consists of the 

overarching methodology, a problem formulation, and an allocation method that work with 

a prediction model using a machine learning approach. In contrast to previous studies, our 

framework provides the most effective arrangement of UAVs for maximizing the chance 

to apprehend offenders whilst also acquiring data that will help improve the performance 

of subsequent crime prediction. This paper presents the system architecture assumed in 

this study, followed by a detailed description of the methodology, the formulation of the 

problem, and the UAV allocation method of the proposed framework. Our framework is 

tested using a real-world crime dataset to evaluate its performance with respect to the 

expected number of crimes deterred by the UAV patrol. Furthermore, to address the en- 

gineering practice of the proposed framework, we discuss the feasibility of the simulated 

deployment scenario in terms of energy consumption and the relationship between data 

analysis and crime prediction. 

© 2020 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY license. 

( http://creativecommons.org/licenses/by/4.0/ ) 

1. introduction 

The shortage of police and security personnel is a serious problem around the world, as it leads to a lack of guardians 

and slower response times. In England and Wales, the number of police officers was roughly 120,0 0 0 in 2016, which is 

approximately 14% lower than in 2009 [1] . 
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To alleviate this situation, technology related to micro or small unmanned aerial vehicles (UAVs) and prediction tech- 

nology utilizing machine learning have shown promise. Since UAVs have high mobility and can be equipped with visual 

sensors, they can be used to cover areas that are short of personnel over a wide region [2–7] . Indeed, several studies have 

proposed the use of UAV policing systems as a viable solution in the fight against crime [8–10] . It was reported that such 

UAV policing systems work well for extensive crime deterrence, as they are not limited to crimes that occur outside of 

buildings [11] . Another report has suggested a solution for crime deterrence that works for all categories of crimes, though 

the solution did not use UAVs [12] . In general, when (human) police officers are patrolling outside near a building, crimes 

are less likely to occur both inside and outside of the building because criminals do not think they will be able to escape 

easily. We presume this hypothesis is applicable for UAV policing systems, which was demonstrated by the above Mexico 

police example [11] . 

In a similar vein, the development of machine learning technology enables crime to be predicted from a variety of crime- 

related data [13–15] . In the United States, several states (including California, Washington, South Carolina, Arizona, Ten- 

nessee, and Illinois) have adopted predictive policing programs [16] . In Japan, the Kanagawa Prefectural Police have started 

a trial deployment of predictive policing in anticipation of the Tokyo Olympics originally scheduled for 2020. Currently, 

several law enforcement agencies (Chicago Police, NYPD, and Boston Police) offer their crime-related data to the public via 

open data platforms such as Kaggle and the IBM Open Crime Data API [17,18] . By using crime prediction results, personnel 

can be deployed in areas where crime is likely to occur in advance. 

A research question in this paper is how UAVs instead of personal can be deployed effectively if crime prediction results 

are available. Running a crime prediction test in advance would allow us to deploy UAVs strategically in areas where crime 

is more likely to occur. The aim of this work is to study how to allocate UAVs in such a way that data is acquired and 

utilized for improving the next cycle of crime prediction while covering areas where crimes are currently likely to occur. No 

previous work has done this before, and it could potentially become a promising solution for crime deterrence in the future. 

This paper proposes a multi-UAV allocation framework for predictive crime deterrence and data acquisition that consists 

of the overarching methodology, a problem formulation, and an allocation method that work with a prediction model using 

a machine learning approach. Priority for the UAV deployment will be given to areas that maximize the chance of crime 

deterrence, as this will increase the probability of helping to apprehend offenders whilst also acquiring data that will help 

improve the performance of subsequent crime prediction. This paper presents the system architecture assumed in this study, 

followed by a detailed description of the methodology, the formulation of the problem, and the UAV allocation method of 

the proposed framework. It then presents a simulation study that assumes a scenario where the police force aims to deter 

crime by using our framework. Our objective at this stage of the study is to evaluate the effectiveness of our framework 

by cross-examining its performance with a real-world crime dataset. Furthermore, to address the engineering practice of 

the proposed framework, we discuss the feasibility of the simulation scenario in terms of energy consumption and the 

relationship between data analysis and crime prediction. 

The contributions of this paper are summarized as follows: 1) this paper proposes a multi-UAV allocation framework 

for predictive crime deterrence and data acquisition; 2) the proposed framework consists of the overarching methodology, 

a problem formulation, and an allocation method that work with a prediction model using a machine learning approach; 

3) the proposed framework provides the most effective arrangement of UAVs for maximizing the chance to apprehend of- 

fenders whilst also acquiring data that will help improve the performance of subsequent crime prediction; 4) this paper 

presents the system architecture assumed in this study, followed by a detailed description of the methodology, the formula- 

tion of the problem, and the UAV allocation method of the proposed framework; 5) the proposed framework is tested using 

a real-world crime dataset to evaluate its performance with respect to the expected number of crimes deterred by the UAV 

patrol; 6) to address the engineering practice of the proposed framework, this paper discusses the feasibility of the simu- 

lated deployment scenario in terms of energy consumption and the relationship between data analysis and crime prediction. 

These contributions will lead to the establishment of an ecosystem for public services including policing by leveraging the 

Internet-of-Things (IoT) technologies such as autonomous UAVs. 

The remainder of this paper is organized as below. In Section 2 of this paper, we discuss related work, including studies 

on flight autonomy, which is a technical requirement in our work. In Section 3 , we present the system architecture assumed 

in this study and discuss the details of the proposed framework. Section 4 provides the results of performance evaluations 

with a real-world crime dataset and discusses the feasibility of the simulation scenario we assume. Finally, conclusions and 

future work are given in Section 5 . 

2. Related work 

2.1. Crime data analysis 

Research effort s on crime dat a analysis are rife, with many studies aimed at helping law enforcement agencies to better 

understand the patterns of crime and to use that knowledge for reducing crime [19–21] . Increasing volumes and types of 

crime data are being released to the public, against which a number of different analytical methods have been presented. 

For example, spatiotemporal methods are effective for interpreting spatially and temporally tagged crime data. Duan 

et al. divided the urban area of New York City into disjoint regions and counted the number of crimes that occurred in each 

region every day [22] . They then applied deep convolutional neural networks (CNNs) to the data to predict the crime risk 
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Table 1 

Comparison with other existing works. -, +, and ++ indicate ‘not considered,’ ‘considered,’ and 

‘well considered,’ respectively. ML stands for machine learning. 

Item Kim Giyenko Ermacora Merwaday Karim Our 

2018 [2] 2016 [3] 2014 [8] 2015 [9] 2017 [37] work 

UAV + + - ++ - ++ 

allocation 

Prediction - - - - - ++ 

using ML 

Data impor- - - - - - ++ 

tance extraction 

Real dataset - - - - ++ ++ 

Simulation - - - + - ++ 

Experiment - - + - + - 

Energy analysis + - - - - ++ 

in each region on the following day. Wang et al. also applied CNNs to a spatiotemporal distribution of crimes to predict 

future crime distribution in the Los Angeles area [13] . Shiode and Shiode developed a micro-scale geo-surveillance method 

to accurately detect emerging clusters of a spatiotemporally significant concentration of crimes to improve the effectiveness 

of hotspot policing [23,24] . 

Computer vision (CV)-based methods are being developed for interpreting mobile and still images. Arietta et al. used 

a set of street-level images to first identify the visual elements in the images (e.g., fire escapes, high-density apartment 

windows, and broken store signs) and then predict the occurrence rate of various events such as violent crimes [25] . Beiji 

et al. applied semantic concept detection to video data for detecting and monitoring crime hotspots [26] . 

Multi-modal methods use a combination of crime data. Bogomolov et al. used human behavioral data derived from 

anonymized and aggregated mobile network activity and combined them with demographic data to predict crime hotspots 

in London [27] . Gerber et al. performed Twitter-specific linguistic analysis and statistical topic modeling on spatiotemporally 

tagged tweet data to predict the occurrence of crime [28] . Kang et al. presented a deep neural network (DNN)-based method 

and applied it to a series of online databases of crime statistics, demographic and meteorological data, and streetscapes in 

Chicago to predict crime occurrence [14] . 

Other methods including text and natural language processing (NLP) [29,30] , crime patterns and evidence-based methods 

[31–35] , and prisoner-based methods [36] have also been considered. 

Although these methods use various types of data, they do not consider how to collect such data using UAVs. Also, their 

main interest is typically the accuracy of results obtained from data analysis. This paper focuses on the allocation of UAVs 

for sensor data collection, while the performance of data analysis is outside its scope. 

2.2. UAV applications for crime prevention 

On the operational side of a UAV system, use of a mobile platform such as UAVs for surveillance is expected to increase 

security and reduce crime rates [2,3] . Ermacora et al. studied a high-level cloud platform that manages a number of UAVs 

to prevent crimes [8] . Merwaday et al. explored a new generation of broadband public safety communication (PSC) systems 

that use UAVs for public safety by preventing acts of crime and terrorism [9] . Karim et al. proposed a drone plane for 

monitoring and targeting street criminals [37] that uses real-time image processing techniques such as object detection and 

classification. 

Table 1 summarizes the comparison of our work with the existing works mentioned above. Merwaday and Güvenc con- 

sidered the optimization of multi-UAV allocation, though their objective was to maximize throughput of a UAV-aided wire- 

less network in the disaster-damaged situation [9] . Karim et al. used a real dataset of images in which a person is shooting 

or holding a gun to evaluate image classification for street crime detection [37] . Our work presents the problem formula- 

tion of multi-UAV allocation, prediction using machine learning, data importance extraction, simulation using a real dataset, 

and discussion of energy analysis, which clearly distinguishes it from the other existing works. Particularly, the proposed 

framework is ground-breaking because the existing works did not consider predictive policing using machine learning. 

2.3. Flight autonomy 

Flight autonomy is another technical requirement in our work. Kan et al. demonstrated autonomous flight of an UAV by 

using the global positioning system (GPS) [38] . Dinesh et al. also presented autonomous flight of a UAV using GPS. They 

highlighted surveillance for counter terrorism as a specific application [39] . Although both studies reported that their exper- 

iments were generally successful, these experiments were not large-scale in scope. On the industrial side, Workhorse Group 

developed delivery UAVs that autonomously fly from conventional delivery vehicles to destinations [40] . The autonomous 

flight technology of UAVs most recently developed by Bell Textron Inc. has enabled UAVs to fly 35 mi in 30 min for a flight 

mission [41] . These initiatives suggest that the flight autonomy of UAVs is already being commercialized and that the idea 

of autonomous flight will soon have even wider exposure in the industry. 
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Fig. 1. System architecture assumed in this study. Server performs 1) UAV allocation and 4) crime prediction. UAVs are used to 2) patrol areas and 3) 

collect visual and audio sensor data. 

3. Proposed framework 

3.1. System architecture 

Figure 1 shows the system architecture assumed in this study. It consists of a server, home positions, and UAVs with 

onboard visual and audio sensors. The server is the central operating entity in the system; it aggregates data acquired by 

UAVs, performs crime prediction, and allocates UAVs to patrol areas. The home positions are the initial positions of UAVs 

and work as their battery exchange points and the access point for communication between the server and UAVs. Each 

UAV is operated by a server, patrols the areas assigned to it, and returns to the home position for battery exchange and 

communication. 

Note that we do not assume UAVs need to detect crimes by themselves. The video processing consumes a lot of energy, 

and the onboard power of a UAV is typically insufficient to support such data processing. In addition, readers may think that 

UAVs should transmit collected data not only at the home position but also via long-range wireless networks on a real-time 

and online basis to prevent crimes before they are committed. However, as shown in Fig. 4 in Section 4 , the control cycle of 

the proposed framework can be six hours or longer to obtain the data correlation required for crime prediction. Therefore, 

it is reasonable to assume that UAVs go back to their home positions to upload their data to the server. 

The flow of the system comprises four steps: 1) UAV allocation, 2) patrol, 3) collection of visual and audio sensor data, 

and 4) crime prediction. 

3.1.1. UAV allocation 

To maximize the possibility that UAVs cover areas where crimes actually occur, the server allocates UAVs beforehand so 

that each one patrols blocks of high importance. Here, a block means the unit size of the area a UAV covers. 

3.1.2. Patrol 

Each UAV starts flying from the home position in accordance to the flight instructions from the server, patrols blocks on 

the basis of the allocation in step 1), and acquires audio and visual sensor data with onboard sensors. After a certain period 

of time, the UAV returns to the home position. 

3.1.3. Collection of visual and audio sensor data 

The server aggregates the visual and audio sensor data from UAVs for analysis as well as archiving. The data is sent via 

the home position. 

3.1.4. Crime prediction 

The server runs a forecast model using a machine learning technique to predict when and where crimes are likely to 

occur. The input data for the prediction model is information extracted from the audio and visual sensor data collected by 
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UAVs, and the output data is the expected number of a specific type of crime incident in each block within a certain period 

of time. 

The breakdown of the input data can be darkness, quietness, and the number of people in the area. In general, it is 

reported that areas with poor lighting, little activity, and few pedestrians are considered to have a higher risk of crime. We 

can expect that the visual and audio sensor data acquired by UAVs will contain those kinds of information useful for crime 

prediction. Note that this approach is one of the multi-modal methods introduced in Section 2 . 

3.2. Methodology 

The first technical challenge in this research is that there may be tradeoffs in the allocation of UAVs between areas suit- 

able for deterring crimes and those for acquiring data for crime prediction. If we focused solely on increasing the possibility 

that UAVs cover areas where crimes occur, from the myopic view, we would just allocate UAVs to areas where crimes are 

likely to occur, which may result in missed data that should be acquired for improving the accuracy of the next crime 

prediction. Therefore, the proposed framework considers both of these aspects, as described in detail in Section 3.3 . 

The second technical challenge is that we need to know beforehand in which areas UAVs can acquire data that will 

help improve the accuracy of the next crime prediction. This is obviously difficult because the accuracy of a prediction 

only becomes clear after crimes have actually transpired. We need an effective means to estimate the ‘importance’ of each 

data on crime prediction before the actual deployment. We introduce feature selection as a possible solution for this. It 

enables us to extract important data from the prediction model of machine learning and helps reduce redundancy of data 

for efficient computing. We apply this to our framework for assessing the importance of data and then determine the UAV 

allocation in accordance with the obtained importance score. 

Our framework introduces two metrics as the importance of each block. The first metric is how many crimes are covered 

by UAVs using the results of crime prediction, referred to as a “deterrent metric.” It is important to patrol blocks where 

the deterrent metric is large in order to allocate UAVs to areas where crimes are likely to occur. The second metric is how 

much the collected visual and audio sensor data contributes to improving the accuracy of the next prediction, referred to 

as an “acquisition metric.” To maintain high prediction accuracy continuously for a long period, not only blocks where the 

deterrent metric is large but also those where the acquisition metric is large must be covered to maximize the possibility 

that UAVs cover areas where crimes actually occur. 

3.3. Problem formulation 

This section discusses the problem formulation of allocating all UAVs (mentioned in Section 3.1.1 ). First, we define the 

control cycle of the system. It is assumed that a set of UAVs is allocated to blocks every control cycle and only one at most 

UAV is allocated to a block during a control cycle. It is also assumed that crimes at the next control cycle are predicted and 

the prediction is performed every control cycle. We consider the current control cycle i for the problem formulation. 

We here explain given parameters in the problem formulation. Let L denote a set of blocks. V denotes the number of 

available UAVs. N 

i 
l 

denotes the number of crimes that will occur in block l ∈ L at the current control cycle i , which is 

predicted at the previous control cycle i − 1 . The data acquired at i is used for prediction from subsequent control cycles 

m = i + 1 to m = i + p, where p is the number of control cycles dealt with as the input data length in machine learning. w 

is a weight that ranges from 0 to 1. 

Next, we explain decision variables in the problem formulation. r i 
l 

is a binary decision variable that is set to 1 if a UAV 

is allocated to block l ∈ L , and 0 otherwise. R i denotes a set of decision variables r i 
l 
, l ∈ L, i.e., R i = { r i 

l 
| l ∈ L } . We denote the 

probability that r m 

l 
= 1 and the number of predicted crimes in block l ∈ L at subsequent control cycles m = i + 1 to m = i + p

as P m 

l 
(R i ) and N 

m 

l 
(R i ) , respectively. Since r i 

l 
in block l ∈ L affects prediction results at subsequent control cycles m = i + 1 to 

m = i + p, P m 

l 
(R i ) and N 

m 

l 
(R i ) are decision variables dependent on r i 

l 
in block l ∈ L . 

The notations used in the problem formulation are summarized in Table 2 . 

The objective of the problem formulation in our framework is to maximize the number of crimes covered by UAVs at 

not only control cycle i but also control cycles m = i + 1 to m = i + p. It is enabled by considering data acquisition at control 

cycle i for crime prediction at subsequent control cycles m = i + 1 to m = i + p. 

The problem formulation is described below by using the above notations: 

max 
R i 

w 

∑ 

l∈ L 
r i l N 

i 
l + (1 − w ) 

i + p ∑ 

m = i +1 

∑ 

l∈ L 
P m 

l (R 

i ) N 

m 

l (R 

i ) (1) 

s . t . 
∑ 

l∈ L 
r i l ≤ V. (2) 

The first term of (1) represents the sum of the number of crimes covered by all UAVs at control cycle i and corresponds to 

the deterrent metric in Section 3.1.1 . The second term represents the sum of the number of crimes covered by all UAVs from 

control cycles m = i + 1 to m = i + p and corresponds to the acquisition metric in Section 3.1.1 . When w = 1 , (1) considers 

only the first term (deterrent metric), which means that UAVs are allocated to maximize the expected number of crimes 
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Table 2 

Notations used in problem formulation. 

Given parameters 

i Current control cycle. 

L Set of blocks. 

V Number of available UAVs. 

N i 
l 

Number of predicted crimes in block l ∈ L at control 

cycle i 

p Number of control cycles as input data length in machine 

learning. 

w Weight between 0 and 1 for deterrent and acquisition. 

Decision variables 

r i 
l 

Binary variable. It is set to 1 if UAV is allocated to 

block l ∈ L at i , and 0 otherwise. 

R i Set of r i 
l 
, l ∈ L, i.e., R i = { r i 

l 
| l ∈ L } . 

N m 
l 
(R i ) Number of predicted crimes in block l at subsequent 

control cycle m , which is a function of R i . 

P m 
l 

(R i ) Probability that r m 
l 

= 1 in block l at subsequent control 

cycle m , which is a function of R i . 

they cover at the current control cycle. When w = 0 , (1) considers only the second term (acquisition metric), which means 

that UAVs are allocated to acquire the most useful data for the prediction of crimes that will occur at the subsequent control 

cycles. Equation (2) indicates that the number of blocks to which UAVs are allocated does not exceed V. R i is determined 

such that the value weighting the two terms with w and 1 − w is maximized subject to the constraint in (2) . 

3.4. Allocation using feature selection 

N 

i 
l 

in the first term of (1) should contain some error because, in general, prediction is not always perfect. To consider this 

inaccuracy, we here redefine N 

i 
l 

as αi 
l 

ˆ N 

i 
l 
, in which 

ˆ N 

i 
l 

is the number of crimes predicted by the system in block l at control 

cycle i . αi 
l 

is the weight between 0 and 1 depending on the prediction accuracy and is given as 

αi 
l = 

1 

K 

K ∑ 

k =1 

(1 − D 

i −k 
l 

) , (3) 

where K denotes the number of past control cycles to consider. Equation (3) is the sliding window time average of (1 − D 

i −k 
l 

) 

over control cycles i − K to i − 1 [42] . D 

j 

l 
is defined as 

D 

j 

l 
= 

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎩ 

∣∣A 

j 

l 
− N 

j 

l 

∣∣
1 

| L | 
∑ 

l∈ L 
A 

j 

l 

(∣∣A 

j 

l 
− N 

j 

l 

∣∣ < 

1 

| L | 
∑ 

l∈ L 
A 

j 

l 

)

1 

(∣∣A 

j 

l 
− N 

j 

l 

∣∣ ≥ 1 

| L | 
∑ 

l∈ L 
A 

j 

l 

)
, (4) 

where A 

j 

l 
denotes the number of crimes actually recorded at block l at control cycle j . 

∣∣∣A 

j 

l 
− N 

j 

l 

∣∣∣ represents the prediction er- 

ror, while 1 
| L | 

∑ 

l∈ L A 

j 

l 
represents the average number of crimes over all the blocks. D 

j 

l 
becomes 0 when there is no prediction 

error. As 

∣∣∣A 

j 

l 
− N 

j 

l 

∣∣∣ becomes larger, D 

j 

l 
becomes closer to 1, and when 

∣∣∣A 

j 

l 
− N 

j 

l 

∣∣∣ ≥ 1 

| L | 
∑ 

l∈ L 
A 

j 

l 
, D 

j 

l 
becomes 1. Equation (4) is 

inspired by the definition of relative error [43] . 

Regarding the second term of (1) , P m 

l 
(R i ) and N 

m 

l 
(R i ) are hard to obtain at control cycle i ; they will become available at 

subsequent control cycle m after R i is determined. Therefore, in the proposed framework, the acquisition metric calculated 

from the feature selection method of machine learning [44–48] is used instead of the value of the second term of (1) . From 

the above, the problem formulation of actual allocation is given as 

max 
R i 

w 

∑ 

l∈ L 
r i l α

i 
l 

ˆ N 

i 
l 
+ (1 − w ) 

∑ 

l∈ L 
r i l I 

i 
l . (5) 

The purpose of feature selection is to select a subset of input variables that efficiently and effectively represents the ‘feature’ 

of the prediction model. In other words, feature selection works to estimate the importance of the input variables used in 

the prediction by calculating the contribution of variables to the prediction. In the proposed framework, input variables 

in the prediction model are for each block and each control cycle. Therefore, feature selection enables us to estimate the 

expected improvement in prediction performance by data to be acquired by UAVs in each block and each control cycle. In 



K. Miyano, R. Shinkuma and N. Shiode et al. / Internet of Things 11 (2020) 100205 7 

Fig. 2. Flowchart of UAV allocation in proposed framework. 

the evaluation performed in this paper, as we will show in Section 4.2 , we use long short-term memory (LSTM) as the 

machine learning for prediction and a perturbation method as the feature selection for importance estimation. 

Here, let us consider how we solve (5) . We first note that r i 
l 

commonly appears inside �l ∈ L in the first and second 

terms. Next, wαi 
l 

ˆ N 

i 
l 
+ (1 − w ) I i 

l 
for block l , which is defined here as the gain of block l, G l , is independent of every other 

block. Therefore, determining R i that maximizes (5) is equivalent to allocating UAVs from the top blocks with the largest 

G l . This is enabled by using an efficient sorting algorithm such as quicksort [49] , which is scalable against the increases of 

the number of blocks, | L |, and the number of UAVs. Thus, (5) enables us to solve the problem formulation in our framework 

given as (1) , which is one of the main contributions in this study. Finally, Figure 2 shows the flowchart of UAV allocation in 

the proposed framework. 

4. Evaluation 

We consider a simulation to evaluate the effectiveness of the proposed framework. To make our simulation as realistic 

as possible, we used a real dataset of crimes, a real geographical map, and the specifications of a real commercialized UAV. 

To extensively and solidly evaluate performance, we use multiple datasets in Sections 4.3 and 4.4 . In Section 4.5 , we discuss 

the real-world feasibility of the simulation scenario particularly in terms of the costs associated with the energy consump- 

tion. Although a real experiment would seem more beneficial than a simulation, in reality, the strict regulations concerning 

UAV usage in residential and commercial areas make it impossible to obtain extensive and solid results from a large-scale 

experiment about multi-UAV allocation for predictive policing. Considering this fact, a simulation study is beneficial at this 

stage as a driving force for relaxing such regulations by showing the effectiveness of multi-UAV allocation for predictive 

policing. 

The simulation evaluated the effectiveness of the proposed framework in terms of the expected number of crimes de- 

terred by UAV patrolling. A scenario in which the police aim for crime deterrence using the proposed framework in Fig. 1 is 

assumed. UAVs acquire the visual and audio sensor data to be used for crime prediction in all blocks for a certain period. 

Then, on the basis of the acquired predictive data, the server creates the prediction model and predicts the number of 
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Table 3 

Simulation parameters. 

Parameter Value 

Number of blocks 271 

Learning period Jan. 2015–July 2016 

Predicting period Aug. 2016–Dec. 2016 

Input data Number of minor offences over latest ten control cycles 

Output data Number of major offences at next control cycle 

Number of UAVs 150 

Number of past control cycles considered in αi 
l 

( N ) 3 

Time length ( �t ) 1, 6, 12, 24 hour(s) 

Flying speed of UAVs ( v ) 15 m/s 

Fig. 3. All 271 blocks in the City of Chicago [50] . 

crime incidents in each block. According to the result of this crime prediction, UAVs acquire the data in the blocks assigned 

to them and the data is then used for the next prediction. The subsequent flow is as described in Section 3.1 . 

4.1. Simulation parameters 

The parameters used in our simulation are listed in Table 3 . The flight paths of UAVs for each control cycle are deter- 

mined such that (5) is maximized. We denote the time interval of the control cycle as �t . Equation (5) is solved by a sorting 

algorithm. For our simulation, we used an open crime dataset available via Kaggle [17] , which is extracted from the Chicago 

Police Department’s Citizen Law Enforcement Analysis and Reporting System. This dataset records the type, location, and 

time of each recorded crime that occurred in the City of Chicago from January 2001 to January 2017. As shown in Fig. 3 , 

the City of Chicago consists of 271 blocks in total, which correspond to block l . Technically, the flight altitude and the field 

of view influence the size of the area covered by UAVs. Suppose that the direction of the sensor is vertical to the ground. 
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Fig. 4. Normalized cross correlation of numbers of major crimes with numbers of minor crimes in each block. 

Fig. 5. Total number of crimes covered by UAVs vs. weight. Against 7,857 cases of all crimes recorded, the total numbers of predicted crimes across all 

areas were 118,294, 7,066, 6,050, and 6,630 when �t = 1, 6, 12, and 24, respectively. 

If the flight altitude and the field of view (angle) are h and θ , the width of the area is h tan θ . In our evaluation, the size 

of each block covered by UAVs is determined by the dataset, as illustrated in Fig. 3 . Note that we assumed each UAV flies 

around within the block allocated to it at every time interval to ideally cover the entire range of the block. We used the 

criminal records from January 2015 to July 2016 to make the prediction model, while the criminal records from August 2016 

to December 2016 were predicted. 

We treated major offences of the dataset (burglary, sexual assault, homicide, and arson) as the output data in crime 

prediction and used minor offences (all others) as the input data. Although existing studies in criminology mainly point to 

the indicator theory whereby certain petty crimes tend to evolve into major offences, the overall relationship between minor 

and major offences has yet to be systematically studied. In this study, we assume there is a positive correlation between 

the two; i.e., places where a large volume of minor offence is observed are likely to also suffer from more frequent counts 

of major offences. We will demonstrate this by applying correlation analysis to empirical data. Figure 4 shows the result of 

the analysis. We dealt the list of the numbers of crimes in each block as vector data; the lists of the numbers of minor and 
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Fig. 6. Total number of crimes covered by UAVs vs. number of UAVs. Against 7,857 cases of all crimes recorded, the total numbers of predicted crimes 

across all areas were 118,294, 7,066, 6,050, and 6,630 when �t = 1, 6, 12, and 24, respectively. 

major crimes at blocks 1, 2, ���L are represented as X = (x 1 , x 2 , · · · x L ) and Y = (y 1 , y 2 , · · · y L ) , respectively, where L is the 

total number of blocks. Since this crime data is time series data, X and Y at time t can be represented as X ( t ) and Y ( t ). In 

Fig. 4 , as the time shift in the horizontal axis increases, we see the correlation of minor crimes with major crimes in the 

future. The vertical axis is normalized so that it becomes 1.0 when time shift is zero. As seen in this figure, there are strong 

correlations between minor and major crimes in each block when �t is 6, 12, and 24 hours. However, when �t is 1 hour, 

the cross correlation become negative for some shifted times. 

In the simulation, we assumed that the server is functional enough to detect minor offences that occurred in a block if a 

UAV acquires crime-related sensor data in that block. The integration of the information collected by our system and other 

policing systems such as 911 [51] may be used to ensure the detection of minor offences, which is a form of the multi- 

modal methods introduced in Section 2 . More concretely, on the basis of the number of minor offences over the latest ten 

control cycles, the server predicts the number of major offences at the next control cycle. The number of minor offences 

in blocks where UAVs acquire no data is assumed to be 0. We also assume that the time taken for prediction is negligible 

compared with �t . 

The metric we adopted in our evaluation is the number of crimes that occurred in the areas covered by UAVs; if it is 

large enough compared to the total number of crimes, UAVs are allocated for crime deterrence. However, we should consider 

the flying time of each UAV as temporal overhead when we calculate the number of crimes covered by UAVs. When K is 

one, each UAV flies back and forth between the home position and its allocated block for each control cycle. The number of 

covered crimes based on the data acquired by UAV u during T i is defined as 

N 

i,k 
l u 

× �t − 2( H u − L u ) / v 
�t 

, (6) 

where v denotes the average flying speed of UAV u and l u denotes the block assigned to it. H u and L u denote the home 

position of UAV u and the position of l u , respectively. Considering the realistic specifications of a recently commercialized 

UAV [52] , we set v to 15 m/s. There are 22 districts in the area, each of which has a police station. We assumed that the 

position of the police station corresponds to the home position and when each UAV flies to each block, it starts flying from 
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Fig. 7. Total number of crimes covered by UAVs vs. number of UAVs. �t was set to 12. 

Table 4 

Parameters of LSTM. 

Parameter Value 

Number of hidden units 100 

Activation function Linear 

Optimizer Adam 

Number of epochs 50 

Batch size 100 

Loss function Mean squared error 

Input time length 10 

the police station of the district that includes the block and returns there for �t . The position of each block is also assumed 

to be at the center of gravity of a polygon representing the block in Fig. 3 . 

4.2. Machine learning technique 

This section discusses the machine learning method and feature selection method used in the simulation. We used 

Python and its libraries for this implementation. We adopted LSTM as the machine learning method because it is known to 

be suitable for predicting time series data [53,54] . Table 4 lists the parameters of L STM. The L STM method uses the Keras 

[55] neural network library for its implementation. In our simulation, the model has 100 LSTM units as the first hidden 

layer, and they are fully connected to the dense layer. The output is activated by the linear function. The model is trained 
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Fig. 8. Cumulative distribution function of flying distance. 

by the Adam optimizer with 50 epochs and a batch size of 100. All other parameters were set to the default values of the 

library. The prediction model changes for each simulation. 

We used a perturbation method for the feature selection. This method evaluates the effect of small changes in each input 

on the neural network output [56] . The algorithm adjusts one of the input variables while keeping all the others unchanged. 

The acquisition metric, I i 
l 
, is calculated from the responses of the output variable against each change in the input variable. 

By using the root mean square error (RMSE), I i 
l 

is given as 

I i l = 

(
RM SE 

(
y, y pred 

)
− RM SE 

(
y, y ′ pred 

))
2 , (7) 

where y, y pred , and y ′ 
pred 

denote the number of actually recorded crimes, the original number of predicted crimes, and the 

number of crimes predicted from the input values changed by the perturb method, respectively. The physical dimensions of 

the first and second terms in (5) are identical, since I i 
l 

is defined using RMSE. In the simulation, we gave 50% increase to 

each input value one by one to measure I i 
l 

for all block l ∈ L and for all control cycles i . 

4.3. Results 

Figure 5 plots the total number of crimes covered by UAVs against the weight, w . As shown in Fig. 5 (a), (b), (c), and 

(d), �t was 1, 6, 12, and 24, respectively. The reason the horizontal axis is plotted logarithmically is that the first term 

in (5) becomes larger by 10 4 than the second term. The plots were obtained by averaging the results obtained from three 

trials. In (5) , as w becomes closer to 1, the server allocates UAVs with more emphasis on the deterrent metric than on the 

acquisition metric. In contrast, as w becomes closer to 0, the server allocates UAVs with more emphasis on the acquisition 

metric. 

The total number of crimes that actually occurred in the simulation was 7,857. If all input data for prediction is available, 

the predicted number of crimes was 118,294, 7,0 6 6, 6,050, and 6,630 when �t was 1, 6, 12, and 24, respectively. This 

suggests that, if �t is set too short (i.e., to 1), prediction is not accurate, which we can see from the results in Fig. 4 . 

As shown in Fig. 5 , the total number of crimes covered by UAVs significantly decreased when w is 1. This is because 

patrolling without considering the acquisition metric leads to a decrease in the prediction accuracy, and the number of 

crimes covered by UAVs eventually decreases. It is important to consider even the slightest acquisition metric because setting 

w to a value other than 1 increases the total number of crimes covered by UAVs. The results in Fig. 5 suggest that using our 

framework for operating the UAVs could help deter around 4,500 cases of crime, which is a sufficiently large portion of the 

7,857 cases of the total number of crimes. These results demonstrate the effectiveness of the UAV allocation considering not 

only the deterrent metric but also the acquisition metric. 

Figure 6 (a), (b), (c), and (d) plots the total number of crimes covered by UAVs against the number of UAVs with �t = 1, 

6, 12, and 24, respectively. We compared three types of allocation: the proposed framework, a conventional one, and upper 

bound. In the proposed framework, the server allocates UAVs considering both the deterrent metric and the acquisition 

metric. We examined the proposed framework with w = 10 −5 . In the conventional one, the server allocates UAVs using the 

deterrent metric without considering the acquisition metric at all, which corresponds to w = 1 in (5) . In the upper bound, 

the server allocates UAVs such that the number of crimes covered by UAVs is always the maximum in each control cycle, 

assuming that the number of crimes that will occur in all blocks in the future is ideally known beforehand; the total number 

of crimes covered by UAVs takes the upper limit value. 

As shown in Fig. 6 , with the upper bound, the total number of crimes covered by UAVs takes the maximum value even 

when the number of UAVs is small. On the other hand, as �t becomes larger, the total number of crimes covered by UAVs 

becomes smaller when the number of UAVs is as small as 10 or 30. This is because when UAVs fly frequentl y, like �t = 1 , 

they can cover many blocks with a small number of UAVs, while as �t increases, the number of blocks that cannot be 
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covered increases. In both the proposed framework and the conventional one, as the number of UAVs increases, the total 

number of crimes covered by UAVs monotonically increases. This is obviously because as the number of UAVs increases, 

the number of blocks that UAVs can patrol increases. Compared with the 7,857 crimes that actually occurred, the upper 

bound reached that number in most cases, and the proposed framework and the conventional one came close to it when 

the number of UAVs was close to 250. As shown in Fig. 6 (a)–(d), the proposed framework worked to increase the expected 

number of crimes deterred by UAV patrolling more than the conventional one, except in regions where the number of UAVs 

was extremely small or large. 

4.4. Other datasets 

Next, we show the results obtained using two additional datasets. The first one consists of minor and major offences 

as input and output data, the same as in the dataset used for obtaining the results in Figs. 5 and 6 , but the periods of 

the dataset for learning and prediction are Jan. 2014–July 2015 and Aug. 2015–Dec. 2015, respectively. The second one only 

considered crimes that usually occur outside of buildings, which include burglary, motor vehicle theft, robbery, and criminal 

trespass, and they are used as both input and output data. The learning and prediction periods are the same as the dataset 

used for obtaining the results in Figs. 5 and 6 . Using these datasets, we plot the total number of crimes covered by UAVs 

versus the number of UAVs in Fig. 7 (a) and (b). �t was set to 12. In these figures, we see basically the same trend as in 

Fig. 6 (c), in which the dataset in Table 3 was used and �t was set to 12; the proposed framework performed better and 

closer to the upper bound than the conventional method. Evaluating using the three datasets has made the superiority of 

the proposed framework convincing. 

4.5. Real-world feasibility of simulation scenario 

On the basis of our analysis thus far, this section explores the feasibility of the simulation scenario we assumed in 

the evaluation, which helps when considering the practical application of the proposed framework. The discussion revolves 

around two issues: energy consumption and the relationship between data analysis and crimes. 

To estimate the amount of energy consumed in each operation, we plot the cumulative distribution function of one-way 

flying distance between each block and its home position ( Fig. 8 ). As shown in the figure, 92.2 % of one-way flying distances 

were shorter than 5 km, while the longest distance was around 20 km. According to the specifications of a UAV recently 

commercialized by Bell Textron Inc. [41] , it is capable of flying autonomousl y and can cover a distance of approximately 56.3 

km in 30 min with a single battery charge. Once UAVs arrive at the block, they may stay at nearby stations pre-installed on 

buildings for surveillance to save energy. Those stations may be equipped with battery charging or replacement functions 

[57,58] . Given these parameters, we can safely assume that our simulation scenario is not far from reality with respect to 

energy consumption. 

Adaptive change of the behavior of criminals is another issue that requires consideration. Offenders might change their 

behavioral patterns (or commit new types of crimes never observed before) in response to the operation of UAVs, especially 

if the pattern of their deployment is informed by the predictive model to deter crime. This means that the prediction model 

may need to be updated to adapt to changes in the patterns of criminal behavior, which is a common issue across many 

types of predictive operations that use machine learning [59] . As discussed in our evaluation of the results, the proposed 

framework works well as long as there is a correlation between the input data and the output data used for prediction. In 

other words, the proposed framework should be used only when such correlation is clearly observed. Particularly, to apply 

the proposed framework to new types of crimes, input data correlated to those crimes needs to be discovered. During the 

period where the correlation between input and output for the prediction model is not confirmed, UAVs should be allocated 

with no prediction and in accordance with the cumulative crime counts from the past. As mentioned in Sect. 2 , performance 

testing of the data analysis stage itself, including correlation analysis, is outside the scope of this paper. Other researchers 

(e.g., Arietta et al. and Beiji et al.) have worked on the correlation analysis between crime-related visual data and crimes 

that actually occurred [25,26] . 

5. Conclusions and future work 

We have proposed a multi-UAV allocation framework that allocates UAVs to acquire data for improving the performance 

of subsequent crime prediction while maintaining the possibility that UAVs cover areas where crimes are likely to occur. 

Through a literature review, we have confirmed the novelty of the proposed framework; the existing works on UAV allo- 

cations did not consider predictive policing. Also, our work is clearly differentiated from the other by its contributions to 

the problem formulation of multi-UAV allocation, prediction using machine learning, data importance extraction, simulation 

using a real dataset, and discussion of energy analysis. A simulation study using a real dataset has demonstrated that the 

proposed framework works well in terms of the number of crimes covered by UAVs as long as there is a correlation be- 

tween the input data and the output data used for prediction like when �t = 6, 12, and 24. The results have also verified 

that the proposed framework performs more closely to the upper bound than the conventional method, which considers the 

deterrent metric only without any prediction. We have also demonstrated the robustness of the proposed framework in an 
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evaluation using multiple datasets. We have confirmed the realism of the simulation in terms of energy consumption from 

the analysis of the distribution of one-way flying distance of UAVs. 

Future research directions will be summarized as follows. Data acquired by visual and audio sensors in residential and 

commercial areas should be analyzed in the context of predictive policing. Correlation between information extracted from 

the data such as darkness, quietness, and the number of people and crime occurrence should be verified from an integrated 

analysis with the data provided by other policing systems such as 911 [51] . Communication and computing resources re- 

quired for the proposed framework should be also studied. To estimate energy consumption of the proposed framework 

more accurately than in this paper, an evaluation model that emulates the non-linear characteristics of energy consumption 

[60] for sensing and flying more realistically should be established through experimental measurement. 
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