204,350 research outputs found

    The Master SN curve approach : a hybrid multi-scale fatigue simulation of short fiber reinforced composites

    Get PDF
    Typical short fiber reinforced composites (SFRCs) components have a different statistical distribution of orientation of fibers at different points leading to different static and fatigue behavior at different locations across the component. To link component-scale calculations with this variability of fiber orientations, each element in the FE model is modeled as a Representative Volume Element (RVE); the static and fatigue properties must be calculated for each of these elements. While there are established methods to estimate the static properties, there are none for the fatigue properties. A hybrid (combination of micromechanics and tests) and multi-scale (damage in micro-scale linked to macroscale fatigue properties) method of predicting the SN curve for every point in a short fiber composite has been developed. This proposed method is based not only on tests but on a combination of manufacturing simulation, tests and multi-scale mechanics. An extensive test program was undertaken to study the fatigue behavior of short fiber composites and validate the concept of the Master SN curve (MSNC) approach. The MSNC approach is compared with two prevalent approaches strength based scaling and test based interpolation. The MSNC approach was found to be in a good agreement with the experimental results and was confirmed to be more accurate than the prevalent methods. (C) 2015 Elsevier Ltd. All rights reserved

    Increasing the Efficiency and Productivity in the Production of Low Voltage Switchboard Using Resource Constrained Project Scheduling

    Get PDF
    Purpose: This research was made with the aim to give a scheduling proposal for the assembly activity and the proposal to allocate those activities into available resources using the resource-constrained project scheduling. Design/methodology/approach: The research begins with the problem exposition in the existing system on the Assembly Department of panel manufacturer company. To overcome the problem, several scheduling alternatives are formulated to yield better productivity. The performance of proposed system using RCPS is assessed using simulation method. Considering the circumstance of demand rate, the scenarios chosen are based on the parameter such as product departure cycle time, resource utilization, product output, and number of resource required. Findings: The scheduling alternatives provides the better arrangement of work elements in the assembly activity, especially for the product that represent the highest demand rate. For further research, the paper gives encouragement so that the application of RCPS can be used broader in the manufacturing area. Research limitations/implications: Although the findings were addressed to improve the existing system on the Assembly Department, the practical application haven’t been undergone and the performance assessment only based on the simulation method. Practical implications: By implementing the proposed scheduling, the company will experience several benefits. First, the company could increase its productivity by better utilization of its resources. Second, based on the simulation result, the company could avoid the backorder option while dealing with the high demand rate, and even can fully maximize its resource utilization without adding more worker or apply the overtime policy. Finally, the proposed scheduling that converted into the work instruction could help the company to perform the knowledge transfer from the existing worker or resigned worker to the newly-hired worker. Originality/value: The outcome of the research could become the guidance for other companies which have similar assembly system to apply the same method. This is the best paper that represents the application of RCPS in the large-sized component assemblies, where the walking worker is responsible for carrying tasks to each unmoved unit.Peer Reviewe

    Recent Achievements in Numerical Simulation in Sheet Metal Forming Processes

    Get PDF
    Purpose of this paper: During the recent 10-15 years, Computer Aided Process Planning and Die Design evolved as one of the most important engineering tools in sheet metal forming, particularly in the automotive industry. This emerging role is strongly emphasized by the rapid development of Finite Element Modelling, as well. The purpose of this paper is to give a general overview about the recent achievements in this very important field of sheet metal forming and to introduce some special results in this development activity. Design/methodology/approach: Concerning the CAE activities in sheet metal forming, there are two main approaches: one of them may be regarded as knowledge based process planning, whilst the other as simulation based process planning. The author attempts to integrate these two separate developments in knowledge and simulation based approach by linking commercial CAD and FEM systems. Findings: Applying the above approach a more powerful and efficient process planning and die design solution can be achieved radically reducing the time and cost of product development cycle and improving product quality. Research limitations: Due to the different modelling approaches in CAD and FEM systems, the biggest challenge is to enhance the robustness of data exchange capabilities between various systems to provide an even more streamlined information flow. Practical implications: The proposed integrated solutions have great practical importance to improve the global competitiveness of sheet metal forming in the very important segment of industry. Originality/value: The concept described in this paper may have specific value both for process planning and die design engineers

    Integrated Process Simulation and Die Design in Sheet Metal Forming

    Get PDF
    During the recent 10-15 years, Computer Aided Process Planning and Die Design evolved as one of the most important engineering tools in sheet metal forming, particularly in the automotive industry. This emerging role is strongly emphasized by the rapid development of Finite Element Modelling, as well. The purpose of this paper is to give a general overview about the recent achievements in this very important field of sheet metal forming and to introduce some special results in this development activity. Therefore, in this paper, an integrated process simulation and die design system developed at the University of Miskolc, Department of Mechanical Engineering will be analysed. The proposed integrated solutions have great practical importance to improve the global competitiveness of sheet metal forming in the very important segment of industry. The concept described in this paper may have specific value both for process planning and die design engineers

    Numerical modelling and simulation in sheet metal forming

    Get PDF
    The application of numerical modelling and simulation in manufacturing technologies is looking back over about a 20–30 years history. In recent years, the role of modelling and simulation in engineering and in manufacturing industry has been continuously increasing. It is well known that during manufacturing processes simultaneous the effect of many different parameters can be observed. This is the reason why in former years, detailed analysis of manufacturing processes could have been done only by time-consuming and expensive trial-and-error methods. Due to the recent developments in the methods of modelling and simulation, as well as in computational facilities, modelling and simulation has become an everyday tool in engineering practice. Besides the aforementioned facts, the emerging role of modelling and simulation can also be explained by the growing globalisation and competition of the world market requiring shorter lead times and more cost effective solutions. In spite the enormous development of hardware and software facilities, the exclusive use of numerical modelling still seems to be very time- and cost consuming, and there is still often a high scepticism about the results among industrialists. Therefore, the purpose of this paper is to overview the present situation of numerical modelling and simulation in sheet metal forming, mainly from the viewpoint of scientific research and industrial applications

    Experimental investigation of iterative simulation-based scheduling in a dynamic and stochastic job shop

    Get PDF
    A vital component of modern manufacturing systems is the scheduling and control system, which determines companies' overall performance in their respective supply chains. This paper studies iterative simulation-based scheduling mechanisms for manufacturing systems that operate in dynamic and stochastic environments. Also assessed are the issues involved when these mechanisms are used to make higher-level scheduling decisions, such as dispatching rule selection, instead of generation of a full schedule. A typical simulation-based system is outlined and tested under various experimental conditions. Examined are the effects of stochastic events such as machine breakdowns and processing time variations on the system performance, and the effectiveness of the simulation-based approach from the control point of view is evaluated. Finally, different levels of two important factors (look-ahead window and scheduling period) are compared for the iterative approach. Computational results show that, although simulation-based scheduling proves effective when these parameters are properly set, the overall performance diminishes due to the dynamic and stochastic nature of the system, which degrades the multi-pass improvement capability of the simulation runs. Experimental results also support the initial expectation in that frequent updates to the higher-level schedule may not be necessary when these decisions are naturally "adaptive" to the unexpected system changes

    Human System Modelling For Labour Utilisation And Man-Machine Configuration At Cellular Manufacturing

    Get PDF
    Manufacturing complexity has become more challenging with increased in demand fluctuation, product customisation and shorter lead time expectation. It is becoming more crucial to measure manufacturing complexity to better recognise and control the various manufacturing components to achieve optimum manufacturing performance. Cellular manufacturing or group technology is a method used to manage manufacturing complexity based on clustering of different types of equipment to process parts. The organizational structure of cellular manufacturing will always need to be flexible for reconfiguration to address rapid changes in customer requirement especially in managing its dual constraints; human and machine. Very often, the human component is overlooked or overestimated due to poor understanding of the effects of human constraints and lack of study is linked to the difficulty to model human’s behaviour. The purpose of this study is to develop a human system model to fill the gap in the study of human constraints on cellular manufacturing’s performance. As such, a new human system framework focusing on the aspects of human dynamics and attributes was designed to be integrated with the predetermined time standards system in an expert system, eMOST. The new human system model was evaluated for applicability at the actual manufacturing environment through five case studies where accurate labour utilisation and man-machine configuration information were conceived. Thus, the newly defined approach was able to efficiently improve data capture, analysis and model human constraints. The human information from the model was integrated with other manufacturing resources using WITNESS simulation modelling tool focusing on the bottleneck area to further evaluate the dynamic impact of these components on the manufacturing performance. Simulation modelling experiments use has also proven advantageous to change manufacturing configurations and run alternative scenarios to improve the efficiency of the system in terms of the throughput, cycle time, operator utilisation and man-machine configuration. The findings of this study enabled the management to make good decisions to efficiently manage the human resource and better predictions to reconfigure and competently manage resources allocation

    A domain-specific design architecture for composite material design and aircraft part redesign

    Get PDF
    Advanced composites have been targeted as a 'leapfrog' technology that would provide a unique global competitive position for U.S. industry. Composites are unique in the requirements for an integrated approach to designing, manufacturing, and marketing of products developed utilizing the new materials of construction. Numerous studies extending across the entire economic spectrum of the United States from aerospace to military to durable goods have identified composites as a 'key' technology. In general there have been two approaches to composite construction: build models of a given composite materials, then determine characteristics of the material via numerical simulation and empirical testing; and experience-directed construction of fabrication plans for building composites with given properties. The first route sets a goal to capture basic understanding of a device (the composite) by use of a rigorous mathematical model; the second attempts to capture the expertise about the process of fabricating a composite (to date) at a surface level typically expressed in a rule based system. From an AI perspective, these two research lines are attacking distinctly different problems, and both tracks have current limitations. The mathematical modeling approach has yielded a wealth of data but a large number of simplifying assumptions are needed to make numerical simulation tractable. Likewise, although surface level expertise about how to build a particular composite may yield important results, recent trends in the KBS area are towards augmenting surface level problem solving with deeper level knowledge. Many of the relative advantages of composites, e.g., the strength:weight ratio, is most prominent when the entire component is designed as a unitary piece. The bottleneck in undertaking such unitary design lies in the difficulty of the re-design task. Designing the fabrication protocols for a complex-shaped, thick section composite are currently very difficult. It is in fact this difficulty that our research will address
    • …
    corecore