
0 
Journal of Manufacturing Systems 

M Vol. 2a/No. 4 
Q 2001 

Experimental Investigation of Iterative 
Simulation-Based Scheduling in a Dynamic and 
Stochastic Job Shop 
Erhan Kutanoglu, Dept. of Industrial Engineering, University of Arkansas, Fayetteville, Arkansas, USA 

lhsan Sabuncuoglu, Dept. of Industrial Engineering, Bilkent University, Ankara, Turkey 

Abstract 
A vital component of modern manufacturing systems is 

the scheduling and control system, which determines com- 
panies’ overall performance in their respective supply chains. 
This paper studies iterative simulation-based scheduling 
mechanisms for manufacturing systems that operate in 
dynamic and stochastic environments. Also assessed are 
the issues involved when these mechanisms are used to 
make higher-level scheduling decisions, such as dispatching 
rule selection, instead of generation of a full schedule. A typ- 
ical simulation-based system is outlined and tested under 
various experimental conditions. Examined are the effects of 
stochastic events such as machine breakdowns and pro- 
cessing time variations on the system performance, and the 
effectiveness of the simulation-based approach from the 
control point of view is evaluated. Finally, different levels of 
two important factors (look-ahead window and scheduling 
period) are compared for the iterative approach. 
Computational results show that, although simulation-based 
scheduling proves effective when these parameters are 
properly set, the overall performance diminishes due to the 
dynamic and stochastic nature of the system, which 
degrades the multi-pass improvement capability of the simu- 
lation runs. Experimental results also support the initial 
expectation in that frequent updates to the higher-level 
schedule may not be necessary when these decisions are 
naturally “adaptive” to the unexpected system changes. 

Keywords: Scheduling and Control, Simulation Methods 
and Models 

Introduction 
Effective production scheduling is becoming an 

increasingly important component of the supply 
chain environment that most companies face in 
today’s competitive markets. Discrete-event simula- 
tion is a decision support tool that has been pro- 
posed to achieve effective scheduling. During the 
last decade, a significant body of literature has accu- 
mulated in this area, mainly either proposing simu- 
lation-based scheduling schemes or testing existing 
schemes in different settings. Most studies in this 

area share two common characteristics: (1) They use 
static and deterministic environments where all jobs 
are available for scheduling and no uncertainty is 
considered. In these cases, simulation is used as a 
search heuristic for improved scheduling decisions. 
(2) Simulation is mostly used to assist with con- 
structing a complete schedule of all jobs rather than 
other types of scheduling decisions; however, a sim- 
ulation-based scheduling scheme might perform dif- 
ferently in a dynamic and stochastic environment 
and/or when the main scheduling decision is differ- 
ent from constructing an off-line static and complete 
schedule. The main goal in this paper is to investi- 
gate how simulation-based schemes perform under 
dynamic and stochastic conditions through a com- 
prehensive experimental study when simulation is 
used to identify scheduling policies rather than to 
generate a complete schedule. 

Two questions are addressed: (1) Are simulation- 
based schemes still effective in a dynamic and sto- 

chastic environment? It is already known that the 
performance of “optimization-based algorithms” 
used to generate schedules fine-tuned (or even opti- 
mal) with respect to deterministic assumptions dete- 
riorates quickly with the introduction of uncertainty 
(see Lawrence and Sewell 1997 for processing time 
uncertainty). This study will show if this is a valid 
conclusion for simulation-based methods, which are 
believed to be more flexible, adaptable, and realistic. 
(2) Is there a difference in the performance when 
simulation is used to make higher-level decisions? 
This study evaluates two simulation-based methods: 
(a) to select the best priority rule among candidates 
(rule selection), and (b) to fine-tune parameters of a 
heuristic (parameter tuning). From this perspective, 
simulation results will not generate a static complete 
schedule. One can interpret this as a mechanism to 
separate the higher-level (or more critical) policies 
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rather than making detailed decisions such as 
sequencing all jobs and determining start times for 
operations. 

A typical environment is explained where simula- 
tion-based schemes can be employed to address the 
above questions. In this environment, the scheduling 
and control activity is viewed as an intermediate 
component of a more global planning system in 
which decisions regarding production planning and 
master scheduling are made at a higher level. The 
scheduling and control level deals with the lower 
level, short-term decisions using the data provided 
by the higher levels. Specifically, it is assumed that 
a planning module provides a master schedule of 
upcoming jobs (called job release data). The time 
span of the job release data is called the forecast 
window. The scheduling module uses simulation 
runs to make (higher-level) scheduling decisions 
such as dynamic rule selection and parameter tun- 
ing. The length of the simulation runs is usually 
called the simulation window or look-ahead win- 
dow, which may or may not equal the forecast win- 
dow. The time interval between two successive 
points in time when the scheduling decisions are 
made is commonly called the schedzding period, 
which in turn determines the frequency of simula- 
tion activation. Simulation-based schemes are usual- 

ly used in a rolling-horizon basis; that is, if new 
four-week job release data are available every week, 
for instance, and decisions are made for 2 weeks 
using simulation, then only the first-week decisions 
are implemented, and at the beginning of the next 
week new decisions are made for the following four 
weeks using the fresh job release data (see Figure I). 

The details of an (iterative) simulation-based 
mechanism that has been used in past studies are 
outlined, and the implementation of two specific 
algorithms for this mechanism is explained. The 
alternative to simulation-based scheduling will be a 
well-studied and widely used approach: priority dis- 
patching. Only top-performing priority rules are 
considered for the problem, job shop scheduling 
with weighted tardiness objective, which is a surro- 
gate measure of customer service. These priority 
rules are dynamic and state-dependent and have 
inherent flexibility to utilize up-to-date information 
and accommodate changes. We expect to find some- 
what different results from previous findings in 
which fine-tuned static schedules obtained through 
simulation were compared against these myopic 
rules under static and deterministic conditions. The 
contention is that these rules will work well under 
highly dynamic and stochastic conditions as com- 
pared to simulation-based schemes; however, deteri- 
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oration of simulation-based schemes may not be so 
severe because they decide higher-level policies and 
leave the remaining decisions for later while the 
dynamics of the system take place. 

Literature Review 
First, the conceptual studies of simulation-based 

scheduling are summarized. An early study in this 
area is by Davis and Jones (1988) who decomposed 
scheduling problems into a hierarchical decision 
structure (planning, scheduling, and then control). 
They proposed a mechanism based on the simula- 
tion of each scheduling alternative (priority dis- 
patching rules, routing alternatives, etc). 
Harmonosky (1990) discussed the implementation 
issues such as modeling, interface to the physical 
system, saving the system status for evaluating alter- 
natives, and recovery at decision points. 
Harmonosky and Robohn (199 1) addressed issues 
such as the frequency of invoking the simulation 
mechanism, dealing with the simulation output, data 
acquisition, and interface problems. In her later 
work, Harmonosky (1993) analyzed two key issues: 
(1) the simulation run length and (2) the type of sim- 
ulation (deterministic versus stochastic due to 
machine breakdowns). In another study, 
Harmonosky and Robohn (1995) investigated the 
effects of different manufacturing systems on the 
computational time of simulation runs. The purpose 
in this paper, though, is not to address these issues; 
it is assumed that simulation is a viable approach 
from these perspectives. 

Because two decision types (rule selection and 
parameter tuning) are the focus, the review mainly 
concentrates on studies that investigated these areas. 
Most simulation-based methods use a simulation 
run for each priority rule in a set of candidate rules, 
and then select the best among them. An early study 
in this area is by Wu and Wysk (1988, 1989), whose 
experimental results showed that when simulation 
run length is accurately determined according to 
environmental conditions and objectives, then the 
approach is very effective. After observing the draw- 
backs of this study where the simulation window 
coincides with the constant scheduling period Ishii 
and Talavage (199 1) proposed variable-length, state- 
dependent scheduling intervals and simulation win- 
dows. The simulation experiments showed that using 
a scheduling interval defined based on the system 

transient state improves the performance over using 
a constant scheduling interval, which has a very 
unstable performance as compared to single-pass 
rules. The results also showed that the performance 
becomes poorer than for the single-pass algorithms 
if the scheduling intervals are not accurately deter- 
mined. After observing the advantages of switching 
rules in each time period Ishii and Talavage (1994) 
tested the idea of using a different rule on each 
machine in each period. Cho and Wysk (1993) 
developed a neural network model to generate alter- 
native dispatching rules based on the current system 
status, which are then evaluated by multi-pass simu- 
lation. Aytug, Koehler, and Snowdon (1994) also 
considered a rule-selection algorithm strengthened 
with a genetic algorithm-based machine learning 
scheme in a parallel machine setting with flow-time 
objective. Aytug et al. (1994) reviewed the relevant 
machine learning literature. It should be noted that 
the current study fills some research needs (testing 
in dynamic and stochastic job shops) identified by 
Aytug, Koehler, and Snowdon and Aytug et al. 

The second area where iterative simulation runs 
are used is what is called parameter tuning, where 
multiple simulation runs are conducted to tune para- 
meter(s) of an algorithm. An early study by 
Vepsalainen and Morton (1988) proposed an itera- 
tive approach called lead time iteration (LTI) that 
makes repeated simulation runs to find more consis- 
tent queue (waiting) time estimates that are used in 
priority index calculation. Kiran, Alptekin, and 
Kaplan (199 1) proposed afeedback heuristic, where 
a series of schedules is generated using job-based 
priorities that are smoothed at every iteration using 
the respective job’s contribution to the performance 
measure and the job’s priority in the previous itera- 
tion. Experiments conducted in static and dynamic 
flexible manufacturing environments showed that 
the iterative simulation mechanism can be very use- 
ful as compared with single-pass rules. 

Ovacik and Uzsoy (1994) presented several 
rolling horizon procedures to minimize maximum 
lateness on a single machine in the presence of 
sequence-dependent setup times. Although not sim- 
ulation-based the study is reviewed here because it 
addresses the issues of interactions between plan- 
ning horizon and forecast window. The study 
showed that when forecast window and planning 
horizon parameters are appropriately selected the 
proposed rolling horizon procedures outperform the 
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earliest due date rule. In a related study, Church and 
Uzsoy (1992) analyzed several rescheduling policies 
for dynamic single-machine and parallel-machine 
problems with the maximum lateness objective. 
Experimental results showed that periodic schedul- 
ing (that is, revising decisions every scheduling 
period) is very useful when the jobs arrive in batch- 
es periodically to the system and the scheduling 
period coincides with the batch interarrival time. In 
the case of dynamic and continuous arrivals, the 
benefit of extra scheduling diminishes rapidly. 

All studies reviewed so far assume a determinis- 
tic (no stochastic events other than dynamic job 
arrivals) shop environment. Although there are 
numerous studies that investigate reactive schedul- 
ing, rescheduling, and robustness under uncertainty, 
there are only a few simulation-based studies that 
consider stochastic shop conditions. Kim and Kim 
(1994) proposed a simulation-based, real-time 
scheduling mechanism that evaluates various dis- 
patching rules for a given job set and selects the best 
one for a given criterion. The best dispatching rule is 
used until the difference between the actual perfor- 
mance (under urgent job arrivals and machine 
breakdowns) and the estimated performance 
exceeds a given limit (called the performance limit); 
then, a new simulation is performed with the 
remaining operations, and a new rule is selected. 
Tayanithi, Manivannan, and Banks (1993a, 1993b) 
and Manivannan and Banks (1992) proposed an 
integrated scheduling and control system that com- 
bines simulation and knowledge-based concepts to 
perform an analysis of interruptions in the form of 
machine breakdowns and rush orders in a flexible 
manufacturing system. When a control decision can- 
not be obtained readily from the knowledge base, 
the alternative actions are evaluated using the simu- 
lation mechanism. 

From the reviewed literature, it is known that sta- 
tic complete schedules (simulation-based or opti- 
mization-based) that do not leave any room for 
dynamic adaptability perform poorly in the face of 
disruptions. To the best of our knowledge, there is no 
single study that (1) uses simulation-based approach 
to decide high-level policies in a dynamic and sto- 
chastic job shop environment, and (2) analyzes them 
using an extensive experimental study under com- 
mon conditions that test not only levels of stochastic 
disruptions (machine availability and processing 
time variation) but also investigate their interactions 
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with method-specific parameters such as look-ahead 
and scheduling windows. This study fills this void 
and even addresses several issues that were raised in 
previous studies as future research directions: job 
shops instead of single machines or flow shops, pro- 
cessing time variation, and machine availability 
(together), and so on. Finally, the study shows 
whether the believed flexibility of simulation-based 
systems would hold under dynamic and stochastic 
conditions or not. 

Iterative Simulation-Based Scheduling 
A dynamic job shop scheduling problem is con- 

sidered in which some information about future jobs 
is available for a certain period of time. The infor- 
mation on these soon-to-arrive jobs becomes avail- 
able periodically; that is, certain characteristics of 
jobs that will be released to the shop floor are 
known, say, every week. The planning module, 
shown by the “plant controller” in Figure 2 creates 
the job release data (or master schedule). The job 
release data consists of 

l job arrival times that will occur during the next 
forecast horizon; 

l job characteristics such as due dates, job 
weights, routing information (that is, number of 
operations, best estimates of processing times, 
machines that each job visits). 

A typical simulation-based decision support to 
handle this type of scheduling problem is shown in 
Figure 2. The plant controller lays out the job 
release data and the managerial objective(s) to the 
Parameter Selector (PS) and the Iterative 
Simulation Mechanism (EM). The current shop sta- 
tus is fed back to the ISM and Parameter Selector 
by the execution and control module, called the 
“shop controller” The parameter selector deter- 
mines the look-ahead (or simulation) window, the 
scheduling period (SP) or planning horizon, and 
other parameter values that are used in the ISM 
algorithm. This is done by examining the current 
shop status, the job release data, and the objectives 
(the study in a way provides additional insights for 
the PS to determine what might work in different 
conditions). The ISM activates the iterative sched- 
uling algorithm using the provided information. The 
ISM initializes each iteration (or simulation run) 
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Figure 2 
Schematic View of Simulation-based Iterative Scheduling System 

with the current system status, and same dynamic 
events are generated by using the job release data in 
each iteration. The objective(s) set by management 
serve as performance measure(s) in the simulation 
runs. The simulation run length (called the “simula- 
tion window”) is determined by the look-ahead 
window parameter provided by the PS. The sched- 
uling period defines the frequency of normal ISM 
invokes (regular scheduling period). Although the 
ISM can also be activated in case of unexpected 
events such as machine breakdowns, this option is 
left for a future study. 

It is implicitly assumed that the ISM consists of a 
somewhat detailed simulation model of the real sys- 
tem. The ISM uses this model to mimic the real-life 
system and evaluate the alternative scheduling poli- 
cies by running the model. From this perspective, 
the ISM is flexible in terms of the variety of policies 
that it can test. More specifically, the ISM can be 
employed for many decision types such as: 

l Best-rule selection 
l Priority update (or parameter tuning) 
l Constructing a complete schedule 
l Reactive scheduling and control policy determi- 

nation 

In the current ISM implementation, the first two 
of these decisions will be considered. A specific 
algorithm is implemented for each decision: 

l Multi-pass Rule Selection Algorithm 
l Lead Time Iteration Algorithm 

These algorithms are described in detail in the 
following subsections. 

Multi-pass Rule Selection Algorithm 
Many researchers have studied priority dispatch- 

ing rules for more than three decades. The major 
conclusion that can be drawn from these studies is 
that there is no single rule that yields the best per- 
formance in all conditions and that the perfor- 
mance of a rule is highly affected by the operating 
conditions and the managerial objective(s). 
Therefore, changing a dispatching rule over suc- 
cessive time periods based on the current system 
state, the performance measure, and the current 
information about the future events can improve 
overall performance over using a single rule for the 
entire planning horizon. One issue addressed in 
this study is to test the effectiveness of this vu/e 
switching approach as a high-level decision not 
only in dynamic but also in stochastic environ- 
ments. Some existing studies that consider similar 
approaches are reviewed in the previous section 
(Wu and Wysk 1988, 1989; Ishii and Talavage 
1991; Cho and Wysk 1993). 

In this specific implementation of this approach, 
there is a set of candidate rules, each of which can be 
applied in the shop for the given performance mea- 
sure (weighted tardiness in this case). The candidate 
rules can be determined by analyzing their past per- 
formances. At each decision point, a new series of 
simulation runs is performed using each of the can- 
didate priority rules in each run. At the end of each 
iteration, the performance measure is recorded for 
that rule, and the rule is selected that produces the 
best performance for the current look-ahead window. 
This rule is applied in the system until the next deci- 
sion point, which is defined by the new information 
arrival (job release data, see Figure 3). 

Because the weighted tardiness job shop problem 
is examined, the following specialized rules in the 
candidate set are considered: Apparent Tardiness 
Cost (ATC), Bottleneck Dynamics (BD), Cost OVER 
Time (COVERT), Modified Operation Due Date 
(MOD), and Weighted Shortest Processing Time 
(WSPT). Notation and definitions of the rules are 
given in Table 1. WSPT is selected because it yields 
good performance for tardiness measures in highly 
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Schematic View of Candidate Rule Set and Implementation of 

Rule Selection Algorithm 

loaded shop conditions. COVERT (Carrol 1965) and 
MOD (Baker and Kanet 1983) are two rules for min- 
imizing the unweighted tardiness. ATC is similar to 
COVERT, but it utilizes exponential cost function 
(urgency factor) instead of linear (Vepsalainen and 
Morton 1987). BD has been developed as an exten- 
sion of ATC, with the primary difference in the 
resource usage computation (Morton and Pentico 
1993). The resource usage in the denominator of the 
formula is calculated by summing the terms 
(resource price times operation processing times) 
over the remaining operations for the job under con- 
sideration. The resource price of a machine k at time 
t (l&(t)) is based on both the current jobs in the queue 
and the overall utilization, as shown below: 

Lx(f) 

where Lk(t) is the current queue length, U,,(t) is the 
urgency factor, (wu),, is the average delay cost, and 
pk is the average utilization of the machine. (For a 
broad discussion of the rules, including BD, refer to 
Kutanoglu and Sabuncuoglu 1999.) 

Lead Time Iteration 
Some priority rules such as ATC and BD involve 

parameters that need to be estimated or tuned. It is 
well known that the performance of these scheduling 
rules depends on the right setting of these parame- 
ters. Specifically, ATC and BD indices use waiting 

Table 1 
Priority Dispatching Rules in Candidate Rule Set for Multi-pass Rule 

Selection Algorithm (priorities are calculated for job i waiting for 
operationj at machine k at time t) 

Prioritv Rule Descrintion 

WSPT 
(Weighted Shortest wspTj = $ 
Processing Time) rl 

MOD 
(Modified 
Operation 
Due Date) 

COVERT 

ATC 

g?tt leneck 
Dynamics) I 4 - ,=t+iYq + P,U) - P, - t 

w,xexp -~ 
K~,vx 

%(t) = 

Nomenclature: 
Weight of job i 
Processing time of operation j of job i 

Arrival time of job i to the shop 

Due date of job i 

Number of operations of job i 

Estimated waiting time of job i for operation q 

Average operation processing time 
Resource price of machine k for operation q 

Constant coefficients 

time estimates. One traditional approach is to use a 
constant multiplier (lead time constant) times pro- 
cessing time as a waiting time estimate (Vepsalainen 
and Morton 1987). In general, single-pass versions 
of ATC and BD employ this approach. To further 
improve the performance, there are two alternatives: 

l Several alternative values for the lead time con- 
stant are evaluated, and the one which produces 
the best performance measure is selected. 

l Lead time iteration (LTI) estimates the waiting 
time of each individual operation iteratively 
using realized waiting times in simulation runs. 
Waiting time estimates that produce the best 
estimated performance are used in the imple- 
mentation of the rule. 
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In this study, the second approach is employed 
because it revises the individual waiting time esti- 
mates independently by using realized waiting times 
in previous iterations. Therefore, it is expected that 
it should perform at least as well as the first alterna- 
tive for the same number of simulation iterations. 
LTI starts with initial waiting time estimates set as in 
traditional estimation method, and smoothes the 
estimated and the actual waiting time estimations at 
the end of each iteration for the next iteration. The 
steps of the algorithm are as follows (for the original 
version of LTI, see Morton and Pentico 1993): 

Step 1. Set iteration number II at 1. Initialize esti- 
mates (used was three times the processing time, 
IVV( 1) = 3 X pu) for each job on hand and jobs 
that will arrive during the look-ahead window. 
Step 2. Perform a simulation using ATC (or BD). 
Step 3. Record the performance measure 
obtained and the actual waiting times (Qijcn)) for 
iteration n. 
Step 4. If a termination condition is satisfied, go 
to Step 7. 
Step 5. Compute the new estimates: 

where CY is a smoothing parameter between 0 and 1 
(0.5 is used in the experiments). 

l Step 6. Increase the iteration number n by 1, and 
go to Step 2. 

l Step 7. Report the best performance measure 
and corresponding waiting time estimates. Use 
the waiting time estimates in the actual imple- 
mentation of the rule. 

In the implementation of the algorithm, ATC is 
used because it requires less computation for priority 
calculation than BD. The smoothing process is used 
to prevent the estimates from changing drastically and 
to prevent possible oscillation. A typical termination 
rule is to set a limit on the number of iterations. An 
alternative is to terminate when there is no improve- 
ment in the performance for the last certain number of 
iterations. The procedure was set to stop either when 
the iteration number reaches 30 or when there is no 
improvement for 10 consecutive iterations. 

In the experimental study, when scheduling deci- 
sions are made at these decision points either by the 
rule selection algorithm or LTI, these decisions are 
implemented in another simulation run representing 
the actual system operation. If a certain rule is 
selected during the iterative simulation, then this 
rule is applied as a priority dispatching rule to select 
the job next to be processed on an available 
machine. When the decisions are made by LTI, then 
ATC is used with the best waiting time estimates. 
During the iterative simulation process, the mecha- 
nism uses the best available information. But during 
the implementation of the decisions, the actual 
progress of the operations on the shop floor might be 
quite different. Two types of events are considered 
that will affect the actual progress: (1) machine fail- 
ures and (2) processing time variations. Note that 
both events are tested simultaneously; that is, 
machines may unexpectedly fail and processing 
times may vary in the same experiment (except for 
the no-breakdown and no-variation cases). Hence in 
the study, also analyzed are the interactions between 
the parameters of the scheduling mechanism (that is, 
the scheduling period and look-ahead window) and 
these unexpected events that frequently occur in 
practice. 

The extensive experimental study is conducted to 
test the following conjectures: 

1. 

2. 

3. 

There is a strong interaction between method- 
specific factors and system conditions such as 
utilization and stochastic events. 
When a simulation-based mechanism is used to 
determine higher-level policies and these are 
implemented dynamically over time, there is not 
a great need to frequently update the policies; that 
is, short scheduling intervals may not pay off. 
Single-pass dispatching rules that are inherently 
dynamic and state-dependent will yield perfor- 
mances comparable (or superior) to simulation- 
based schemes as more uncertainties are present 
in the system. 

Computational Study 
The experiments consider a hypothetical reentrant 

job shop environment with the following characteris- 
tics: Jobs arrive continuously according to a Poisson 
process. The average utilization of the shop is deter- 
mined by calibrating the arrival rate of the jobs. The 
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arrival rate is adjusted to achieve approximately 70% 
utilization on the average at the low level, and 90% 
utilization at the high level. The jobs have a fixed 
number of operations selected from a discrete uni- 
form distribution from 1 to 10. The operations are 
randomly processed through 10 machines available 
in the shop. Job weights are drawn from 
Uniform[ 1,301. Due dates are assigned randomly 
over a full range of flow allowances, with an average 
of six times the mean job processing time. 

Two types of uncertainty are considered in the 
study: (1) processing time variation and (2) random 
machine breakdowns. Best estimates of processing 
times (that are assumed to be released by the plant 
controller, and that are used in simulation runs) are 
drawn from the uniform distribution between 1 and 
30, U[ 1,301. Actual processing times are determined 
using the best estimates as follows: 

Pk = (1 + V x u[ - 1.0, + 1.01) x pii 

where V, as an experimental factor, defines the level 
of processing time variation and pii and pii’ are the 
best estimate and actual processing time for opera- 
tion j of job i, respectively. In the current experi- 
mental study, Yis set either at 0.0 (that is, determin- 
istic case, no variation) or at 0.60. 

Machine breakdowns are modeled by using the 
busy time approach proposed in Law and Kelton 
(1991). With this approach, a random uptime is gen- 
erated for each machine from a “busy time distribu- 
tion.” The machine is considered “up” until its total 
accumulated busy time reaches the end of the gener- 
ated uptime. Then it fails for a random time drawn 
from a downtime distribution, after which an uptime 
is generated, Law and Kelton recommended that, in 
the absence of real data, busy time distribution is 
most likely to be a Gamma distribution with shape 
parameter (oh = 0.7) and scale parameter Bb to be 
specified according to the experimental conditions. 
They also stated that Gamma distribution with shape 
parameter ((xd = 1.4) is appropriate for the distribu- 
tion of downtimes. In this framework, the level of 
machine failure is measured by ejkiency (or avail- 
ability) level, which gives the long-run ratio of the 
machine busy time to the total busy and downtime. 
In fact, this ratio is modified to generate desired lev- 
els of the machine failure factor. In this way, the 
duration of each breakdown comes from 

Gamma(a, = 1.4,p, = daVg / 1.4) 

and busy time between two successive breaks is 
drawn from 

Gamma cxb = 0.7,f3, = d,, x 
0.7(Y- E) 

Here, d_. represents mean downtime and E repre- 
sents the efficiency level. (The former is denoted 
with D and the latter with E in the statistical analy- 
sis, see Table 2.) Three levels of efficiency are con- 
sidered. The first level corresponds to no failure 
case, in which the efficiency is 100%. In the other 
two levels, the machines are all fallible with average 
efficiency of 90% and 80%. Four levels of mean 
downtimes are defined. The first level represents the 
no-failure case with 0 mean downtime, which is only 
possible in the efficiency level of 100%. The other 
three levels of mean downtime are pavg, Spa%, and 

1 OPavg, where pavg is the overall average processing 
time (these three cases are only possible in efficien- 
cy levels of 80% or 90%). 

The system is simulated by using SIMAN simu- 
lation language with some additional C subroutines 
linked in a UNIX environment. Ten independent 
replications are used for output analysis. Each repli- 
cation is 1500 job-completions long. The system is 
initialized with 20 jobs to reach the desired system 
state faster. Common random numbers (CRN) are 
used as a variance reduction technique. 

By setting the simulation run length, the entire 
manufacturing horizon is also determined as 1500 
job completions. Two different forecast horizons are 
determined: 250 job arrivals and 100 job arrivals. In 
this case, the look-ahead window is set equal to the 
forecast horizon. The scheduling period that defines 
the decision points has three different levels with 
respect to the look-ahead window. At the first level, 
the scheduling period is equal to the forecasting 
horizon. In the other two cases, the scheduling peri- 
od is a portion of the forecasting horizon: about a 
quarter of the forecasting horizon and approximate- 
ly half of the forecasting horizon. Hence, the sched- 
uling period is equal to 65, 125, or 250 jobs for the 
case when the forecast horizon is 250, and it is equal 
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Table 2 
Experimental Factors and Their Levels 

Factor Number of Levels 

Rule (R) 5 

Utilization (U) 2 

Processing Time 
Variation (V) 2 

Efficiency (E) 3 

Mean Downtime (D) 4 

Look-ahead Window (F) 3 

Scheduling Period (P) 7 

Levels 

ATC, BD, COVERT, 

MOD, WSPT 

70%. 90% 

0 (low), 0.6 (high) 

80%, 90%, 100% 

0 (no down), Pa, 

5P#%> 1OP, 

100,250, 1500 

25, 50, 65, 100, 125, 

250, 1500 

to 25,50, or 100 jobs for the forecast horizon of 100. 
The case in which the forecast horizon is equal to 
the entire manufacturing horizon (1500 jobs) is used 
as a benchmark. In this case, it is assumed that all 
the information for a very long time period is avail- 
able for ISM. (The experimental factors and their 
levels are summarized in Table 2.) 

Experimental Results 
Results are analyzed in three subsections. First are 

briefly presented the results of single-pass versions 
of the rules in the candidate rule set. Then, the results 
are discussed of the iterative simulation-based sched- 
uling system with the rule-selection algorithm, and 
with the lead time iteration algorithm. 

Before presenting the results, it should be noted 
that detecting the effects of the downtimes and the 
length of the scheduling periods requires particular 
attention. For 100% efficiency level, there is no 
downtime (it is shown as 0), and for the other levels 
there are three values for the mean downtime. In 
addition, the scheduling periods with 25, 50, and 
100 jobs are defined according to the loo-job look- 
ahead window, while 65, 125, and 250-job schedul- 
ing periods are defined with respect to the 250-job 
window. Hence, the scheduling period factor is nest- 
ed in the look-ahead window (shown as P(F)), and 
the mean downtime factor is nested in efficiency 
(D(E)). The analysis of the results is performed by 
using SAS statistics package (SAS 1994). 

Single-pass Experiments 
Statistical tests (the analysis of variance, ANOVA, 

and Duncan tests) have been used to identify areas 

that need further investigation. The reader is cau- 
tioned that the ANOVA results are given for exposi- 
tory purposes due to CRN and the resulting lack of 
sampling independence. The ANOVA test for single- 
pass experiments is presented in Appendix A. The 
column “Pr gt F’ shows the significance level of the 
source. If the significance level of the analysis is 
taken as 0.05, the effects of the sources that yield 
probability smaller than 0.05 are statistically signif- 
icant. In this table, B represents the effect of block- 
ing due to the CRN implementation in simulation 
replications. According to the F-test, the main 
effects of all the factors are found to be significant. 
Also, all two-way interactions of rules, utilization, 
processing time variation, efficiency, and mean 
downtime are statistically significant. The three-way 
interaction of rules, utilization, and efficiency is 
effective on the weighted tardiness criterion. 

Duncan’s multiple range test is also applied for 
the main effects of the factors. Appendix B summa- 
rizes the Duncan’s test results. (In the table, the sig- 
nificance level is 0.05, the levels with the same let- 
ter are not statistically different, and N is the number 
of observations for the corresponding level.) 
Although the rules significantly affect the overall 
performance, the performances of ATC, BD, and 
COVERT are not statistically distinguishable. MOD 
is the worst, producing on average 47% higher 
weighted tardiness than those of the best rules. An 
increase in utilization adversely affects the system 
performance as in the case of processing time varia- 
tion. Lower efficiency levels significantly increase 
the weighted tardiness. 

Because the two-way interactions of the rules and 
other factors are significant, these interactions are 
further depicted in a table and several figures. Table 
3 summarizes the performances of the rules with 
respect to utilization (U), efficiency (E), and pro- 
cessing time variation (V). Performance measures 
for different downtime levels are averaged leading to 
30 observations (N = 30) in 80% and 90% efficien- 
cy levels. Note the high variability especially at the 
low efficiency levels. The performances of the first 
three rules are very close to each other’s in almost 
every factor combination. One side point is that 
WSPT gets closer to the best rules with increasing 
utilization and/or decreasing efficiency. MOD dete- 
riorates sharply as utilization increases as compared 
with the other rules. The effects of processing time 
variation are shown in Figure 4. In this case, the 
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Table 3 
Summary of Results from Single-pass Experiment. Each pair of values under each rule, respectively, represents average total weighted tardiness 
and standard deviation using corresponding priority rule under the conditions in each row: U: utilization, E: efficiency, V: processing time varia- 

tion. and N: number of exoeriments. When E is less than 100%. there are 30 observations due to three levels of mean downtime. 

Rule ATC 

u E V N 

70 100 0 10 
70 100 0.6 10 
70 90 0 30 

70 90 0.6 30 

70 80 0 30 

70 80 0.6 30 

90 100 0 10 
90 100 0.6 10 
90 90 0 30 

90 90 0.6 30 

90 80 0 30 

90 80 0.6 30 

BD COVERT MOD ’ 

Avg Dev I Avg Dev 
320 478 329 491 

356 531 360 538 
854 1276 859 1282 

4040 6054 3879 5763 
4190 6237 1 4243 6285 

3000 / 
A 

1 

15ooLL 
0 (LOW) 0.6 (High) 

Processing timevariation 

Figure 4 
Average Weighted Tardiness vs. Processing Time Variation 

(Single-pass) 

deterioration in the performance of the rules is 
almost in the same rate as the processing time vari- 
ation increases. The effects of efficiency and down- 
times are depicted in Figures 5 and 6. In general, 
MOD is very sensitive to the efficiency and down- 
times. It is also noted that the performance of WSPT 
is very close to the performances of ATC, BD, and 
COVERT at 80% efficiency, whereas it is worse than 
those rules at 90% efficiency. 

Results of Multi-pass Rule Selection Algorithm 
The ANOVA table for the multi-pass rule selection 

algorithm is presented in Appendix C. The main 
effects of all the factors except the scheduling period 

WSPT 

Avg Dev 

320 477 
356 531 

846 1256 
919 1365 
1916 2888 
2052 3076 _____ 
473 708 
544 815 
1543 2308 
1674 2478 
3923 5878 
425 1 6345 

Avis Dev Avg Dev 
335 501 384 574 
377 564 427 638 
1039 1559 951 1407 

1140 1697 1012 1493 
2534 3838 2111 3173 
2769 4159 2183 3264 

605 910 612 915 
706 1064 695 1040 

2305 3436 1688 2495 
245 1 3616 1831 2697 
6558 9765 4028 6009 
6764 968 4155 6158 

4500 
I 

4000 t 

2500 

500 t 

8O%(Low) 90%(Medium) 100% (High) 

Efficiency 
Figure 5 

Average Weighted Tardiness vs. Efficiency (Single-pass) 

01 
P 5P 1OP 

Mean duration of breakdown 

Figure 6 
Average Weighted Tardiness vs. Mean Duration of Breakdown 

(Single-pass, Efficiency = 90%) 
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are statistically significant. All two-way interactions 
of utilization, efficiency, downtime nested in efficien- 
cy, and look-ahead window are effective on the per- 
formance. A significant three-way interaction of uti- 
lization, efficiency, and look-ahead window is 
observed as well as a significant three-way interac- 
tion of utilization, downtime, and look-ahead win- 
dow. The results also indicate that the scheduling peri- 
od is effective only with downtime and efficiency. 

Appendix D summarizes the Duncan’s multiple 
range test for the multi-pass algorithm. The results 
support the findings of ANOVA for utilization, pro- 
cessing time variation, and efficiency. The Duncan 
grouping shows that the look-ahead of 100 jobs is 
significantly the worst among the tested look-ahead 
windows. The look-ahead windows with 250 and 
1500 jobs produce the lowest measures without any 
significant statistical difference between them. The 
effects of the look-ahead window are listed in Table 
4 along with scheduling period levels. It is observed 
that a look-ahead window set at 250 jobs with sched- 
uling periods of either 65 jobs or 250 jobs produces 
slightly better performance. 

Table 5 shows the selection percentages of each 
rule along with the average CPU time for one full 
replication of simulation. The results show that the 
selection percentages are highly dependent on the 
lengths of the look-ahead window and scheduling 
period. Although, ATC and COVERT are more and 
more selected for longer look-ahead windows, the 
other rules are alternatively selected in the shorter 
look-ahead windows. This shows that several rules 
can be preferred in the short term, although their 
long-term performances are dominated by others. 
The table also shows the effects of the look-ahead 
window and scheduling period on the simulation 
time. Especially the scheduling period affects the 
CPU time because it directly determines the fre- 
quency of the multi-pass algorithm executions. 

A summary of results is provided in Table 6 for 
selected combinations of look-ahead window (F) 
and scheduling period (F). It is observed that F = 
100 is inferior mainly due to its performance in low 
efficiency levels. The effect of utilization on the per- 
formance of the loo-job look-ahead window is 
depicted in Figure 7. This figure shows that a sched- 
uling period of 25 jobs is mostly affected by the uti- 
lization. The effects of efficiency and mean down- 
time are displayed in Figures 8 to 10. In higher effi- 
ciency levels or in short downtimes, the different 

Table 4 
Effects of Look-ahead Window and Scheduling Period on 
Weighted Tardiness (Multi-pass Rule Selection Algorithm) 

Scheduling Period 

2.5 
50 
100 

65 
125 
2.50 
1500 

Look-ahead Window .~~ 
100 
100 

100 
250 
250 
250 

1500 

Average 

2012.26 

2051.58 
2028.73 
1894.89 
1922.09 
1890.54 

1912.96 

Table 5 
Selection Percentages of Rules at each Decision Point and 

the Average CPU Time per Replication 

L-ahead Win. Sched. Per. ATC BD COVERT MOD WSPT CPU 

100 25 32.49 16.47 34.59 10.00 5.95 1520.08 
100 50 33.73 15.68 34.65 10.51 5.43 798.11 
100 100 32.25 16.50 35.86 8.59 6.79 444.32 
250 65 37.65 12.76 43.31 5.82 0.45 1256.92 
250 125 38.23 12.64 43.52 4.98 0.61 731.55 
250 250 38.57 11.57 43.57 5.71 0.57 416.12 
1500 1500 54.00 2.00 40.00 4.00 0.00 297.76 

Table 6 
Summary of Results for Multi-pass Rule Selection Algorithm 

uw 
C/E V N 

70 100 0 10 
70 100 0.6 10 
70 90 0 30 
70 90 0.6 30 
70 80 0 30 

(100,100) (250,250) (1500,150O) 

Avg Dev Avg Dev Avg Dev 
309 461 312 465 317 474 
360 537 356 531 356 532 
844 1258 862 1282 850 1269 
900 1337 919 1362 914 1356 
1976 2986 1938 2918 1964 2967 
2129 3207 2040 ?(I67 2147 $238 
461 690 460 688 468 699 
550 823 544 814 535 800 
1561 2339 1561 2317 1548 2301 
1668 2482 1649 2439 1684 2501 
4245 6473 3975 5918 3943 5896 
5051 7606 4144 6156 4245 6333 

70 -So -0.6 
90 100 b 

30~ 
10 

90 100 0.6 10 
90 90 0 30 
90 90 0.6 30 
90 80 0 30 
90 80 0.6 30 

look-ahead windows seem to produce very similar 
performances. This effect becomes stronger when 
the efficiency is high; however, at low efficiency 
levels or with long downtimes, longer look-ahead 
windows yield better performances. In summary, the 
length of the look-ahead window is effective on the 
performance, but the scheduling period is not very 
significant. That is, it is important to select a proper 
time period for the look-ahead window; if an appro- 
priate look-ahead window is selected then the 
scheduling period is not so important. 

Results of Lead Time Iteration Algorithm 
The ANOVA test for the lead time iteration algo- 

rithm is presented in Appendix E. The F-test shows 
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Figure 7 
Average Weighted Tardiness vs. Utilization 

(Multi-pass Rule Selection Algorithm) 

Figure 8 
Average Weighted Tardiness vs. Effhziency 

(Multi-pass Rule Selection Algorithm) 
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Figure IO 
Average Weighted Tardiness vs. Mean Duration of Breakdown Average Weighted Tardiness vs. Mean Duration of Breakdown 

(Multi-pass Rule Selection Algorithm, EfBciency=lO%) (Multi-pass Rule Selection Algorithm, Efficiency=90%) 

that only the main effects of utilization, variation, 
efficiency, and downtime are significant. The 
lengths of the look-ahead window and scheduling 
period do not have significant impact on the perfor- 
mance of the lead time iteration algorithm. Among 
the two and higher-level interactions, the interaction 
between utilization and efficiency and the interac- 
tion between utilization and downtime are found sig- 
nificant. The Duncan’s test supports these findings, 
as shown in Appendix E For the sake of brevity, a 
summary table for LTI is provided (see Table 7). 

There is no significant difference among the perfor- 
mances of the selected combinations of P and P. 

One can choose shorter look-ahead windows with 
equal scheduling periods to save computational 
effort. From the same table, the effects of utilization, 

4000 

3500 

- 

efficiency, and variation levels are observed. 
When compared with the single-pass algorithms, 

the multi-pass rule selection algorithm provides 
7.5% improvement on average over the single-pass 
rules. When the utilization is high or the processing 
time variation is low, multi-pass rule selection algo- 
rithm is even more advantageous. The lead time iter- 
ation algorithm produces lower weighted tardiness 
with an average improvement of 9.6% over the sin- 
gle-pass rules. When the LTI algorithm is compared 
with the multi-pass rule selection algorithm, it is 
seen that, on average, LTI dominates the latter; how- 
ever, the improvement rate over the rule selection 
algorithm changes with respect to the efficiency and 
processing time variation. Even in these cases, how- 
ever, the improvement does not seem to be signifi- 
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Table 7 
Summary of Results for Lead Time Iteration Algorithm 

(lOO, lOO) i 
~ U - - E ~ V - -  ~ N ~ A v g - - D e v [  

70 100 0 10 ] 300 448 
70 100 0.6 10 '  348 520 
70 9 0 30 839 1250 
70 
70 
70 

90 
90 
90 
90 
90 
90 

90 0.6 30 
80 0 30 
80 0.6 30 

lOO 6 10  
100 0.6 1 0  
90 0 301 
90 0.6 301 
80 0 3 0  
80 0.6 3 0  

941 1409 
1956 2952 
2073 3121 

443 662 i 
532 797 i 
1506 2241 
1682 24891 
4096 6184 i 
4293 6412, I 

(250,250) 1(1500,1500) 

Avg Dev!' Avg Dev 
299 447 307 459 
344 514 345 516 
838 1251 855 1278 
910 13511 911 1354 

2005 3032! 2001 3014 
2114 3180 2119 3182 

442 662'  452-676  
530 792 1 ! 537 803 
1548 2323 ' 1576 2358 
1738 2596[ 1731 2575 
4O85 6161[ 4050 6052 

I 

4237 6317 i 4356 6498 
I 

cant especially if the high variability due to process- 
ing time variations and machine failures is consid- 
ered. Hence, either can be implemented in the out- 
lined iterative simulation-based mechanism. 

The results of summary tables for alternative 
schemes are simultaneously analyzed (single-pass, 
multi-pass rule selection, lead time iteration, see 
Tables 3, 6, and 7). The differences observable over 
all observations may not be consistent with the more 
direct comparison of the best single-pass rule (say, 
ATC) and the best setting for multi-pass algorithms 
(F -- 250, P = 250). Although both multi-pass algo- 
rithms improve performance over single-pass rules 
on average, this is questionable if it is compared 
with the best among the single-pass rules, especial- 
ly in low efficiency levels and high processing time 
variation levels. This implies that multi-pass algo- 
rithms may not pay off the computational effort if 
the best rule to implement in the system is known. 
These results also show that a simulation-based 
scheduling mechanism is effective in more deter- 
ministic situations (E = 100 and V = 0). This can be 
attributed to the nature of the iterative algorithms 
because they search through the promising improve- 
ments over the existing alternatives; however, this 
positive effect of the search ability reduces in the 
dynamic and stochastic environment (that is, pro- 
cessing time variations and machine breakdowns 
seriously diminish the potential improvement 
expected from the iterative algorithms). 

Discussion and Conclusions 
This study has defined a scheduling environment 

where some information about future job arrivals 
(job release data) is available. A simulation-based 

scheduling mechanism is outlined. Two types of 
scheduling decisions were tested for effectiveness: 
(1) best-rule selection and (2) parameter tuning. 
Using the multi-pass rule selection algorithm for the 
first type and the lead time iteration method for the 
second, an extensive experimental study was con- 
ducted by creating both deterministic and stochastic 
environments (dynamic, however, in all cases). The 
effects of unexpected events such as machine fail- 
ures and processing time variation were investigat- 
ed. The experimental results repeatedly show the 
significant interactions among the method-specific 
factors and the system conditions, which supports 
the first conjecture. 

The priority rule is selected to implement during 
the next scheduling period in the rule selection algo- 
rithm, whereas improved waiting time estimates 
were sought in the lead time iteration method. 
Namely, higher-level policies are decided at the 
beginning of a scheduling period, and the selected 
policies are implemented dynamically over time. 
The remaining scheduling decisions such as deter- 
mining the start times of operations (or which job to 
start next) are determined in a dynamic manner dur- 
ing the implementation of the selected policies (a 
static a priori schedule is not actually generated, as 
opposed to the traditional approaches). When unex- 
pected events occur in the system, the dynamic 
nature of these algorithms results in decisions that 
are state-dependent as the system state changes. 
Hence, the algorithms that are dynamic and state- 
dependent in nature inherently develop their reac- 
tions to the events until the next decision point. In 
this sense, the results support our second conjecture 
that frequent updates of the higher-level policies 
(short scheduling periods) may not be necessary 
even in dynamic and stochastic conditions. This 
observation is especially true when the lead time 
iteration method is considered. If the algorithm 
implemented in ISM were not dynamic and robust, 
then the revision of the policies would be critical. 

In this case, the information for the next forecast 
horizon is utilized explicitly during the decision 
making process. It is assumed that the arrival times 
and other characteristics of the jobs are known with 
certainty at the beginning of scheduling period. The 
only stochastic events are machine failures and pro- 
cessing time variations; however, the results of the 
experiments have indicated that these two events do 
not necessitate frequent revision of the higher-level 
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policies. It is expected that if there are order cancel- 
lations, rush job arrivals, or operational changes in 
jobs, more frequent scheduling revisions with short- 
er scheduling periods would potentially improve the 
performance. This is left as a future study. 

The results also show that the multi-pass or itera- 
tive algorithm is better than single-pass algorithms 
(rules) on average, but not better than the best sin- 
gle-pass rule, especially in stochastic cases. This 
implies that one may just choose the overall best rule 
and not need to revise this decision for the entire 
horizon. This can be explained by the dynamic and 
state-dependent nature of the rules implemented in 
the study. Even if the rules are single-pass, they use 
the up-to-date information about shop status 
because they defer scheduling decisions until when 
they are needed. Hence, the rules have inherent 
adaptive/reactive elements such as changing the pri- 
orities of jobs, which make them rather robust for 
uncertain conditions. Additionally, the results show 
that fine tuning a parameter of a rule in a series of 
iterative simulations may not be a viable approach in 
a stochastic environment. The stochastic events may 
make the fine-tuned rule/parameter an inferior deci- 
sion for the implementation; that is, the pe~orm~ce 
of the rule/parameter that performed best under 
deterministic conditions may turn out to be a poor 
selection under stochastic events. These observa- 
tions provide evidence that support the third conjec- 
ture listed previously; however, a further investiga- 
tion is needed for other types of decisions that would 
be made by means of iterative simulation and for 
other types of stochastic events. 
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Appendix A 
Analysis of Variance for Weighted Tardiness (WT) 

(Single-pass Rules) 

Source 

Model 
B 
Error 
Source 
R 
U 
R*U 
V 
R*V 
u*v 
R*U*V 
E 
R*E 
U*E 
R*U*E 
V*E 
R*V*E 
U*V*E 
R*U*V*E 

D(E) 
R*D(E) 
U*D(E) 
R*U*D(E) 
V*D(E) 
R*V*D(E) 
U*V*D(E) 

DF Sum of Squares F Value 

148 4305218750.23 141.46 
9 78459689.45 42.40 

1251 257243013.65 
DF ANOVA SS 

4 176377062.06 

4 

4 

4 
2 
8 
2 
8 
2 
8 
2 
8 
4 

16 
4 

16 
4 

16 
4 

R*U*V*D(E) 16 1063808.71 

729224603.36 
66292561.20 

6162597.3 1 
217221.97 
500191.15 
130987.23 

1841908686.72 
88237797.50 

275704820.80 
33849156.53 

858029.21 
322360.01 

31222.69 
262709.14 

916468601.08 
18004682.52 
66818835.40 

2886616.38 
282567.87 
924265.08 
229676.86 

Pr_gt_F 

0.0001 
0.0001 

F Value PIXL!? 
214.44 0.000 1 

3546.30 0.0001 
80.60 0.000 1 
29.97 0.0001 

0.26 0.9011 
2.43 0.1191 
0.16 0.9588 

4478.70 0.0001 
53.64 0.000 1 

670.39 0.000 1 
20.58 0.0001 

2.09 0.1246 
0.20 0.9915 
0.08 0.9269 
0.16 0.9958 

1114.22 0.0001 
5.47 0.000 1 

81.24 0.0001 
0.88 0.5959 
0.34 0.8486 
0.28 0.9977 
0.28 0.8915 
0.32 0.9947 

Appendix B 
Duncan’s Multiple Range Test for Weighted Tardiness 
(Single-pass Rules) 
Factor: Rules (R) - 
Duncan Grouping Mean N R .~~ 

A ~ 2810.84-- ~~~ 280 MOD 

CB 1911.66 1999.84 2809 280 WSPT ATC 
C 1907.01 280 BD 
C 

Factor: Utilizatiofl 
Duncan Grouuine 

1895.07 280 COVERT 

Mean ?-Y Utilization 
1 ~._. i 2826.60 

B 1383.16 
Factor: Processing Time Variation (V) 
Duncan Grouping Mean 

A 2171.23 

700 90 
700 70 

N Variation 
700 0.6 

B 2038.53 700 0 
Factor: Efficiency (E) 
Duncan Grouping Mean N ~____. Efficiency 

A 3383.75 600 80 
B 1373.59 600 90 
C 462.12 200 100 

Appendix C 
Analysis of Variance for Weighted Tardiness (WT) 
(Multi-pass Rule Selection Algorithm) 
Source DF Sum of Squares F Value Pr gt F 

Model 204 5336807534.54 93.04 0.000 1 
B 
Error 
Source 
U 

175: 
DF 

1 
V 1 
u*v 1 
E 2 
U*E 2 
V*E 2 
U*V*E 2 
D(E) 
U*D(E) t 
V*D(E) 4 
U*V*D(E) 4 \ I 

F 2 

“,:; 
2 
2 

U*V*F 2 

g’,*F 
4 

V*E*F t 
U*V*E*F 4 
D*F(E) 
U*D*F(E) : 
V*D*F(E) 8 
;;F;*Diti(E) 8 

4 
U*P(F) 4 
V*P(F\ 4 

U*E*P(F) ! 
V*E*P(F) 
;:J(;yFP)(F) : 

U*D*P(E*F) :: 
V*D*P(E*F) 16 
U*V*D*P(F) 16 

128727548.77 
493474510.01 

ANOVA SS ___._ 
857480788.75 

9672458.36 
995615.25 

2353820883.82 
370356964.26 

1462751.85 
178918.97 

1362144691.42 
146419209.21 

1236815.98 
1863158.63 
7611557.59 
7214977.51 

98048.79 
16597.43 

11283954.31 
9492677.70 

153526.66 
42890.62 

12603550.76 
10231745.42 

1458950.07 
1014110.52 
382086.21 
363088.62 

1105326.33 
1151821.94 
250406.36 
529866.13 

1950854.5 1 
1587157.07 
9353208.53 
9186562.31 
7835016.21 
7529747.64 

50.87 0.0001 

F Value Pr gt F 
3049.56 0.0001 

34.40 0.0001 
3.54 0.0600 

4185.58 0.0001 
658.57 0.0001 

2.60 0.0745 
0.32 0.7275 

1211.09 0.0001 
130.18 0.0001 

1.10 0.3551 
1.66 0.1575 

13.53 0.000 1 
12.83 0.0001 
0.17 0.8400 
0.03 0.9709 

10.03 0.000 1 
8.44 0.0001 
0.14 0.9688 
0.04 0.9972 
5.60 0.0001 
4.55 0.0001 
0.65 0.737 1 
0.45 0.8906 
0.34 0.8513 
0.32 0.8628 
0.98 0.4157 
1.02 0.3934 
0.1 I 0.9988 
0.24 0.9843 
0.87 0.5435 
0.71 0.6869 
2.08 0.0072 
2.04 0.0086 
1.74 0.0338 
1.67 0.0452 
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Appendix D Appendix F 
Duncan’s Multiple Range Test for Weighted Tardiness 
(Multi-Dass Rule Selection Algorithm) 

Factor: Utilization (U) 
Duncan Grouping Mean N Utilization 

A 2620.44 980 90 
B 1297.58 980 70 

Factor: Processing Time VariatmF 
Duncan Grouping Mean N Variation -. 

A 2029.26 980 0.6 
B 1888.76 980 0 

~~ciency (E) 
Duncan Grouping Mean N Efficiency 

A 3184.70 840 80 

Duncan’s Multiple Range Test for Weighted Tardiness 
(Lead Time Iteration Aleorithml 

Factor: Utilization (U) 
Duncan Grouping Mean N Utilization 

A 2538.99 980 90 
B 1301.54 980 70 

Factor: ProcessingTime Variatiom 
Duncan Grouping --bean --~-~- Variation 

A 1986.44 980 0.6 
B 1854.09 980 0 

Factor: Efficiency (E) 
Duncan Grouping - ---i%an -~ -r Efficiency 

A 3091.71 840 80 
B 1254.09 840 90 
C 404.50 280 100 

Factor: Look-ahead Window (F) 
Duncan Grouping Mean --N- Look-ahead 

A 1944.24 280 1500 
A 1919.55 840 100 
A 1912.99 840 250 

1247.80 840 
C 415.60 280 100 

Factor: Look-ahead Window (F) 
Duncan Grouping Mean N Look-ahead 

A 2030.86- 840 100 
B 1912.96 280 1500 
B 1902.51 840 250 

Appendix E 
Analysis of Variance for Weighted Tardiness (WT) 
(Lead Time Iteration Algorithm) 
Source DF Sum of Sauares F Value Pr gt F 

0.0001 Model 204 4628127i53.47 126.82 
B 9 115808543.20 71.93 
Error 1755 313947140.33 

0.0001 

Source 
U 

DF 
1 

V 
u*v i 
E 2 
U*E 2 
V*E 
U*V*E z 
D(E) 4 
U*D(E) 4 
V*D(E) 4 

:*V*D(E) ; 
U*F 2 
V*F 
U*V*F : 
E*F 4 
U*E*F 4 
V*E*F 4 
U*V*E*F 4 
D*F(E) 8 

: 
IPJ;F;*D*F(E) 8 

4 

t 
LJJ;‘(F) 4 

U*E*P(F) 88 
V*E*P(F) 8 
;z;(T*;(F) 8 

U*D*P(E*F) t: 
V*D*P(E*F) 16 
U*V*D*P(F) 16 

ANOVA SS F Value Pr gt F 
750328450.97 4194.42 0.000 1 

8583 146.32 47.98 0.000 1 
557577.82 3.12 0.0777 

2168815600.28 6061.96 0.0001 
284637329.57 795.58 0.000 1 

641829.88 1.79 0.1666 
19358.52 0.05 0.9473 

1201889440.60 1679.67 0.0001 
91285489.58 127.57 0.000 1 

143597.84 0.20 0.9380 
324093.93 0.45 0.7700 
205876.14 0.58 0.5626 
156292.16 0.44 0.6461 
79285.56 0.22 0.8013 
95432.61 0.27 0.7659 

108445.48 0.15 0.9623 
238551.48 0.33 0.8556 
233195.59 0.33 0.8607 

91062.26 0.13 0.9726 
297038.63 0.21 0.9897 
193969.17 0.14 0.9976 
359362.95 0.25 0.9807 
152200.06 0.11 0.9990 
152083.15 0.21 0.9316 
148489.04 0.21 0.9343 

7866.53 0.01 0.9998 
42043.34 0.06 0.9936 

177688.44 0.12 0.9983 
244903.55 0.17 0.9947 
159002.95 0.11 0.9989 

11471.68 0.01 1.000 
458033.14 0.16 0.9999 
830654.05 0.29 0.9972 
391543.55 0.14 1 .ooo 
258803.44 0.09 1.000 
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