

## **Faculty of Manufacturing Engineering**

### HUMAN SYSTEM MODELLING FOR LABOUR UTILISATION AND MAN-MACHINE CONFIGURATION AT CELLULAR MANUFACTURING

Rohana binti Abdullah

**Doctor of Philosophy** 

2017

# HUMAN SYSTEM MODELLING FOR LABOUR UTILISATION AND MAN-MACHINE CONFIGURATION AT CELLULAR MANUFACTURING

**ROHANA BINTI ABDULLAH** 

A thesis submitted in fulfillment of the requirements for the degree of Doctor of Philosophy

**Faculty of Manufacturing Engineering** 

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2017

### DECLARATION

I declare that this thesis entitled "Human System Modelling for Labour Utilisation and Man-Machine Configuration at Cellular Manufacturing" is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

| Signature | : |  |
|-----------|---|--|
| Name      | : |  |
| Date      | : |  |



### APPROVAL

I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality for the award of Doctor of Philosophy.

| Signature            | : |  |
|----------------------|---|--|
| Supervisor's Name    | : |  |
| Date                 | : |  |
|                      |   |  |
|                      |   |  |
| Signature            | : |  |
| Co-Supervisor's Name | : |  |
| Date                 | : |  |



### DEDICATION

To my beloved parents, husband and children.



### ABSTRACT

Manufacturing complexity has become more challenging with increased in demand fluctuation, product customisation and shorter lead time expectation. It is becoming more crucial to measure manufacturing complexity to better recognise and control the various manufacturing components to achieve optimum manufacturing performance. Cellular manufacturing or group technology is a method used to manage manufacturing complexity based on clustering of different types of equipment to process parts. The organisational structure of cellular manufacturing will always need to be flexible for reconfiguration to address rapid changes in customer requirement especially in managing its dual constraints; human and machine. Very often, the human component is overlooked or overestimated due to poor understanding of the effects of human constraints and lack of study is linked to the difficulty to model human's behaviour. The purpose of this study is to develop a human system model to fill the gap in the study of human constraints on cellular manufacturing's performance. As such, a new human system framework focusing on the aspects of human dynamics and attributes was designed to be integrated with the predetermined time standards system in an expert system, eMOST. The new human system model was evaluated for applicability at the actual manufacturing environment through five case studies where accurate labour utilisation and man-machine configuration information were conceived. Thus, the newly defined approach was able to efficiently improve data capture, analysis and model human constraints. The human information from the model was integrated with other manufacturing resources using WITNESS simulation modelling tool focusing on the bottleneck area to further evaluate the dynamic impact of these components on the manufacturing performance. Simulation modelling experiments use has also proven advantageous to change manufacturing configurations and run alternative scenarios to improve the efficiency of the system in terms of the throughput, cycle time, operator utilisation and man-machine configuration. The findings of this study enabled the management to make good decisions to efficiently manage the human resource and better predictions to reconfigure and competently manage resources allocation.

i



#### ABSTRAK

Industri pembuatan menjadi lebih mencabar dengan peningkatan dalam ketidaktentuaan permintaan pelanggan, kepelbagaian produk dan jangkaan masa pengeluaran yang lebih pendek. Kepentingan untuk mengukur kerumitan pembuatan bertambah penting bagi lebih mengenali dan mengawal pelbagai komponen pembuatan untuk mencapai prestasi pembuatan optimum. Pembuatan selular atau teknologi kumpulan adalah satu kaedah yang digunakan untuk menguruskan kerumitan pembuatan berdasarkan pengelompokan jenis peralatan untuk memproses produk. Struktur organisasi pembuatan selular perlu sentiasa menjadi lebih fleksibel untuk dikonfigurasi semula bagi menangani perubahan pesat dalam keperluan pelanggan terutama dalam menguruskan kekangan dual; manusia dan mesin. Komponen manusia sering diabaikan atau dipandang remeh kerana kurang pemahaman mengenai kesan kekangan manusia dan kekurangan kajian dikaitkan dengan kesukaran untuk model tingkah laku manusia. Tujuan kajian ini adalah untuk membangunkan satu model sistem manusia untuk mengisi jurang dalam kajian kekangan manusia kepada prestasi pembuatan selular. Oleh itu, satu rangka kerja sistem manusia baru memberi tumpuan kepada aspek dinamik dan sifat-sifat manusia telah direka untuk disepadukan dengan sistem standard masa yang telah ditetapkan menggunakan sistem pakar, eMOST. Model sistem manusia baru ini telah dinilai kesesuaiannya di persekitaran pembuatan yang sebenar melalui lima kajian kes bagi menghasilkan maklumat mengenai penggunaan buruh dan konfigurasi manusia-mesin yang tepat. Oleh itu, pendekatan yang baru ditakrifkan ini dapat membantu dalam pengumpulan data, analisis dan kekangan manusia dengan cekap. Maklumat daripada model bersepadu ini berserta dengan data sumber pembuatan lain dapat digabungkan di dalam pemodelan simulasi WITNESS untuk menilai lebih lanjut kesan dinamik komponen manusia, mesin dan bahan ini terhadap prestasi pembuatan. Penggunaan kaedah model eksperimen simulasi juga sangat efektif bagi menukar konfigurasi pembuatan dan menjalankan senario alternatif untuk meningkatkan kecekapan sistem terutama dari aspek jumlah pengeluaran, masa, penggunaan manusia serta konfigurasi manusia dan mesin. Hasil kajian ini membolehkan pihak pengurusan membuat perancangan yang lebih berkesan dalam pengurusan sumber manusia dan membuat jangkaan lebih tepat dalam merangka konfigurasi sumber-sumber pembuatan dengan lebih kompeten.

#### ACKNOWLEDGEMENTS

My profound gratitude goes to Almighty Allah (SWT), the Great and the Most Beneficient, all praise and glory are to Him alone for endowing me the wisdom, knowledge, health, time, resources and opportunity to see this dream a reality. Special thank goes to my supervisor, Assoc. Prof. Dr Md Nizam Abdul Rahman for his valuable guidance, constructive comments and careful reading to shape this thesis into its final form. Sincere appreciation also goes to my co-supervisors, Assoc. Prof. Dr Rizal Salleh and Allahyarham Assoc. Prof. Dr Mohamed Khaled Omar for their advice and assistance. To the Ministry of Higher Education Malaysia and Universiti Teknikal Malaysia Melaka, thank you for the sponsorship opportunity. I am also indebted to my beloved colleagues and friends for their words of wisdom and encouragement during my lowest point in life when I lost my youngest child during this study. I would have long given up this dream if it weren't for all of you behind me cheering and lifting my spirit up. My heartfelt thanks to my ex-Industrial Engineers at ON Semiconductor, Jezzery and Sukri for the great teamwork we had especially on the manpower utilisation project that had merit us to win the Engineering Award. Our success was the motivation for this study. To my beloved family, I wouldn't persevere and be this strong without you as my inspiration; husband Mohamad Rosli Sukiman and children, Nur Athirah, Nur Addini and Adi Muzaffar. To Adik, Allahyarhamah Nur Ayuni, keep sending your prayers from Heaven. Deepest gratitude to my parents and siblings, I love all of you so much!

### **TABLE OF CONTENTS**

| i    |
|------|
| ii   |
|      |
| iii  |
|      |
| iv   |
| vii  |
|      |
| ix   |
| xii  |
|      |
| xiii |
| XV   |
| AV   |
|      |
|      |
|      |
| 1    |

### CHAPTER 1.

3.

**DECLARATION** APPROVAL **DEDICATION ABSTRACT** ABSTRAK

LIST OF TABLES **LIST OF FIGURES** LIST OF APPENDICES LIST OF ABBREVIATIONS LIST OF PUBLICATIONS

**ACKNOWLEDGEMENTS TABLE OF CONTENTS** 

| INT | RODUCTION               | 1  |
|-----|-------------------------|----|
| 1.1 | Background              | 1  |
| 1.2 | Problem statement       | 3  |
| 1.3 | Research objectives     | 5  |
| 1.4 | Research significance   | 6  |
| 1.5 | Scope of research       | 7  |
| 1.6 | Limitations of research | 9  |
| 1.7 | Research outline        | 10 |
| 1.8 | Structure of thesis     | 12 |
|     |                         |    |

#### 2. LITERATURE REVIEW

| LIT  | ERATURE REVIEW                                                  | 15 |
|------|-----------------------------------------------------------------|----|
| 2.1  | Manufacturing performance and productivity                      | 17 |
| 2.2  | Labour productivity                                             | 19 |
| 2.3  | Productivity loss and lean concept                              | 20 |
| 2.4  | The need to develop human system models                         | 23 |
| 2.5  | Review of human system theories, models and frameworks          | 25 |
| 2.6  | Constraint viewpoints in human systems modelling                | 37 |
| 2.7  | Human dynamics and attribute                                    | 41 |
| 2.8  | Integrated use of static and dynamic system modelling technique | 42 |
| 2.9  | CIMOSA integrated human system framework                        | 44 |
| 2.10 | The need for expert system in productivity management           | 46 |
| 2.11 | Work study in support of human systems modelling                | 48 |
|      | 2.11.1 M2M work study technique                                 | 54 |
| 2.12 | Dynamic modelling using simulation                              | 55 |
| 2.13 | Summary of literature review                                    | 60 |
| 2.14 | Difference between previous research works and this study       | 62 |
| RES  | SEARCH METHODOLOGY                                              | 65 |
| 3.1  | Types of research method used                                   | 65 |
|      | 3.1.1 Exploratory                                               | 65 |
|      | 3.1.2 Descriptive                                               | 66 |

3.1.3 Explanatory

66

|    |     | 3.1.4 Case study implementation                         | 67  |
|----|-----|---------------------------------------------------------|-----|
|    |     | 3.1.5 Research phases and methods                       | 68  |
|    | 3.2 | General research methodology flow                       | 69  |
|    | 3.3 | Phase one: conceptual human systems framework           | 70  |
|    |     | 3.3.1 M2M mathematical model                            | 71  |
|    |     | 3.3.2 M2M Microsoft Excel spreadsheet template          | 73  |
|    |     | 3.3.3 Maynard operational sequence technique (MOST)     | 78  |
|    | 3.4 | Phase two: development of HSM expert system             | 80  |
|    |     | 3.4.1 Expert system requirement gathering               | 82  |
|    |     | 3.4.2 eMOST expert system architecture                  | 82  |
|    | 3.5 | 1                                                       | 83  |
|    | 3.6 |                                                         | 85  |
|    |     | 3.6.1 Problem formulation                               | 88  |
|    |     | 3.6.2 Setting objective and overall project plan        | 88  |
|    |     | 3.6.3 Model conceptualization                           | 88  |
|    |     | 3.6.4 Verification and validation                       | 90  |
|    |     | 3.6.5 Simulation based experiment                       | 90  |
|    | 3.7 | Summary of research methodology                         | 93  |
| 4. | RES | SULTS                                                   | 95  |
|    | 4.1 | Phase one: conceptual human systems model framework     | 96  |
|    | 4.2 | Phase two: eMOST expert system development              | 99  |
|    |     | 4.2.1 Planning and analysis                             | 100 |
|    |     | 4.2.2 Design and prototyping                            | 107 |
|    |     | 4.2.3 System development                                | 109 |
|    | 4.3 | Phase three: HSM evaluation at actual production system | 114 |
|    |     | 4.3.1 Case study one: wafer saw operation               | 119 |
|    |     | 4.3.2 Case study two: die-bond operation                | 124 |
|    |     | 4.3.3 Case study three: wire-bond operation             | 129 |
|    |     | 4.3.4 Case study four: mold operation                   | 134 |
|    |     | 4.3.5 Case study five: final test operation             | 139 |
|    | 4.4 | Phase four: dynamic resource modelling using simulation | 143 |
|    |     | 4.4.1 Problem formulation                               | 144 |
|    |     | 4.4.2 Objective setting                                 | 145 |
|    |     | 4.4.3 Model conceptualization                           | 146 |
|    |     | 4.4.4 Data collection                                   | 147 |
|    |     | 4.4.5 Model verification and validation                 | 149 |
|    |     | 4.4.6 Simulation based experiment                       | 152 |
|    | 4.5 | Summary of results                                      | 157 |
| 5. | DIS | CUSSION                                                 | 160 |
|    | 5.1 | Human system conceptual model and enterprise system     | 161 |
|    | 5.2 | Case studies to evaluate the static enterprise model    | 164 |
|    | 5.3 | 6 61                                                    | 169 |
|    | 5.4 | Contribution to knowledge                               | 171 |
| 6. | CO  | NCLUSION AND FUTURE WORKS                               | 174 |
|    | 6.1 |                                                         | 175 |
|    | 6.2 | Research achievements                                   | 176 |
|    |     |                                                         |     |

| 6.3              | Critical review of research | 179        |
|------------------|-----------------------------|------------|
| 6.4              | Future works                | 180        |
| REFERE<br>APPEND |                             | 183<br>209 |

### LIST OF TABLES

| TABLE | TITLE                                                 | PAGE |
|-------|-------------------------------------------------------|------|
| 1.1   | Human system modelling phases                         | 11   |
| 2.1   | Mathematical approach in human modelling              | 29   |
| 2.2   | Theoretical frameworks on human factors and modelling | 33   |
| 2.3   | HSM categorised by human issues                       | 40   |
| 2.4   | Human competency level definition                     | 42   |
| 2.5   | Computerized PTS system                               | 53   |
| 2.6   | Difference between discrete and continuous models     | 56   |
| 2.7   | Features comparison of simulation software            | 59   |
| 3.1   | Research approach                                     | 68   |
| 3.2   | M2M template description                              | 77   |
| 3.3   | Man to machine (M2M) analysis example                 | 80   |
| 3.4   | Simulation experiment input parameter boundaries      | 93   |
| 4.1   | Expert system functional requirement                  | 103  |
| 4.2   | Software requirement for eMOST expert system          | 104  |
| 4.3   | Hardware requirement for expert system development    | 106  |
| 4.4   | Network requirement for expert system                 | 107  |
| 4.5   | Sequence diagram design of eMOST expert system        | 108  |
| 4.6   | eMOST expert system design summary                    | 111  |

| 4.7  | Description of the SO8 manufacturing process               | 117 |
|------|------------------------------------------------------------|-----|
| 4.8  | M2M wafer saw Microsoft Excel value                        | 123 |
| 4.9  | M2M die-bond Microsoft Excel value                         | 128 |
| 4.10 | M2M wire-bond Microsoft Excel value                        | 132 |
| 4.11 | Summary of die-bond process information                    | 148 |
| 4.12 | Operator activity summary information                      | 149 |
| 4.13 | Actual and simulation output comparison                    | 152 |
| 4.14 | Simulation experiment input parameter boundaries           | 153 |
| 4.15 | Information on the different models used in the experiment | 154 |
| 4.16 | Results of experiment one                                  | 155 |
| 4.17 | Results of experiment two                                  | 156 |
| 4.18 | Results of experiment three                                | 156 |
| 5.1  | Summary of case study results                              | 165 |
| 6.1  | Summary of research achievements                           | 177 |

### LIST OF FIGURES

| FIGURE | TITLE                                             | PAGE |
|--------|---------------------------------------------------|------|
| 2.1    | Global labour productivity level                  | 20   |
| 2.2    | The 16 kinds of loss                              | 22   |
| 2.3    | Approach in developing human system model         | 25   |
| 2.4    | Dynamic theory of personality                     | 27   |
| 2.5    | General framework for modelling human performance | 32   |
| 2.6    | Different types of human system viewpoints        | 38   |
| 2.7    | CIMOSA integrated human system model              | 45   |
| 2.8    | Productivity management process                   | 46   |
| 2.9    | Simulation modelling general steps                | 57   |
| 3.1    | Four-step case study implementation approach      | 67   |
| 3.2    | Four-phase approach to research implementation    | 70   |
| 3.3    | The M2M utilisation concept                       | 73   |
| 3.4    | M2M Microsoft Excel template                      | 76   |
| 3.5    | System development life cycle (SDLC)              | 81   |
| 3.6    | Initial expert system architecture design         | 83   |
| 3.7    | Simulation process steps                          | 87   |
| 3.8    | Simulation based experiment process flow          | 92   |
| 4.1    | Enterprise HSM conceptual framework               | 96   |

| 4.2  | Integrated static and dynamic human system model      | 99  |
|------|-------------------------------------------------------|-----|
| 4.3  | M2M Microsoft Excel design and analysis features      | 101 |
| 4.4  | User requirement activity diagram                     | 102 |
| 4.5  | The three-tier architecture model                     | 107 |
| 4.6  | Navigation design of expert system                    | 110 |
| 4.7  | SO8 manufacturing process flow                        | 116 |
| 4.8  | Existing SO8 equipment layout and operator allocation | 118 |
| 4.9  | Representation of wafer and die                       | 119 |
| 4.10 | Summary result of wafer saw operator activity         | 121 |
| 4.11 | eMOST wafer saw operator M2M values                   | 122 |
| 4.12 | Wafer saw operator utilisation                        | 124 |
| 4.13 | Example of a lead frame                               | 125 |
| 4.14 | Summary of die-bond operator activity                 | 126 |
| 4.15 | eMOST die-bond operator M2M values                    | 127 |
| 4.16 | Die-bond operator utilisation                         | 129 |
| 4.17 | Summary result of wire-bond operator activity         | 130 |
| 4.18 | eMOST wire-bond operator M2M values                   | 131 |
| 4.19 | Wire-bond operator utilisation                        | 132 |
| 4.20 | Set up new lot activities                             | 133 |
| 4.21 | Post lot tasks activities                             | 134 |
| 4.22 | Summary result of mold operator activity              | 136 |
| 4.23 | eMOST mold operator M2M values                        | 137 |
| 4.24 | Error in Microsoft Excel mold M2M value               | 138 |
| 4.25 | Mold operator utilisation                             | 139 |
| 4.26 | Summary result of final test operator activity        | 140 |

| 4.27 | eMOST final test operator M2M values                       | 141 |
|------|------------------------------------------------------------|-----|
| 4.28 | Microsoft Excel final test M2M values                      | 142 |
| 4.29 | Final test operator utilisation                            | 142 |
| 4.30 | Top three contributors to final test operator utilisation  | 143 |
| 4.31 | Production capacity analysis                               | 145 |
| 4.32 | Illustrative depiction of the simulation production system | 147 |
| 4.33 | Simulation base model result                               | 151 |
| 5.1  | Human loss category by process                             | 168 |

### LIST OF APPENDICES

| APPENDIX |                              | TITLE                           | PAGE |  |
|----------|------------------------------|---------------------------------|------|--|
| A        | Most index table             |                                 | 210  |  |
| В        | International labour organis | sation (ILO) standard allowance | 211  |  |
| C1       | Wafer saw eMOST data         |                                 | 212  |  |
| C2       | Die-bond eMOST data          |                                 | 216  |  |
| C3       | Wire-bond eMOST data         |                                 | 221  |  |
| C4       | Mold eMOST data              |                                 | 223  |  |
| C5       | Final test eMOST data        |                                 | 229  |  |
| D        | Product demand and ratio i   | nformation                      | 239  |  |
| E        | Product information by pro   | cess                            | 242  |  |



### LIST OF ABBREVIATIONS

| CCL     | - | competency class level                                         |
|---------|---|----------------------------------------------------------------|
| CIMOSA  | - | open system architecture for computer integrated manufacturing |
| СМ      | - | cellular manufacturing                                         |
| DES     | - | discrete event simulation                                      |
| DHM     | - | digital human model                                            |
| EM      | - | enterprise modelling                                           |
| ES      | - | expert system                                                  |
| ESPE-IP | - | bottleneck-centered simulation of personnel structure (German  |
|         |   | abbreviation)                                                  |
| JIT     | - | just in time                                                   |
| GT      | - | group technology                                               |
| HSM     | - | human system model                                             |
| HTML    | - | hypertext markup language                                      |
| IE      | - | industrial engineer                                            |
| ILO     | - | international labour organisation                              |
| MNC     | - | multi-national company                                         |
| MOST    | - | Maynard operational sequence technique                         |
| MSI     | - | manufacturing system institute                                 |
| MTA     | - | method and time analysis                                       |

| M2M  | - | man-to-machine model            |
|------|---|---------------------------------|
| MTS  | - | method and time analysis        |
| OEE  | - | overall equipment efficiency    |
| PDF  | - | personal, fatigue and delay     |
| PTS  | - | predetermined time standard     |
| SAT  | - | semiconductor assembly and test |
| SDLC | - | system development life cycle   |
| SM   | - | simulation modelling            |
| SOP  | - | standard operating procedure    |
| TMU  | - | time management unit            |
| TOC  | - | theory of constraints           |
| TPS  | - | Toyota production system        |
| TQM  | - | total quality management        |
| UPH  | - | units per-hour                  |
| WIP  | - | work in progress                |

### LIST OF PUBLICATIONS

#### JOURNALS

- Abdullah, R., Abd. Hashim, H., Abd. Rahman, M. N., and Salleh, M.R., 2016. Development of Enterprise Human System Modelling Framework in Support of Cellular Manufacturing Lean Operation. *Jurnal Teknologi*. In Press.
- Abdullah, R., Abd. Rahman, M. N., and Khalil, S. N., 2015. Human System Modelling Technique for Semiconductor Assembly and Test. *Journal of Applied Mechanics and Material*. 761. pp. 624-628.
- Abdullah, R., and Abd. Rahman, M. N., 2014. Work Study Architecture for Lean Waste Analysis to Achieve Optimum Man-Machine Configuration. *International Journal of Basic & Applied Science*. 14(1). pp.1-6.
- Abdullah, R., Abd. Rahman, M. N., and Khalil, S. N., 2014. Human System Modelling for Optimum Labour Utilisation and Man-Machine Configuration. *International Journal of Engineering & Technology*. 14(1). pp.75-79.
- Abdullah, R., Abd. Rahman, M. N., Halim, I., Omar, N., and Yusuf, Y., 2014. Lean Six Sigma Approach for Labour Productivity Improvement at Final Test Semiconductor Manufacturing. *Science International*. 26(5). pp.1817-1820.

#### PROCEEDINGS

- Abdullah, R., Abd. Hashim, H., Abd. Rahman, M. N., and Salleh, M.R., 2016. Development of Enterprise Human System Modelling Framework in Support of Cellular Manufacturing Lean Operation. *International Conference on Design and Concurrent Engineering (IDECON 2016)*. Langkawi, Malaysia, 19-20 September 2016. UTeM Publisher. In Press.
  - Abdullah, R., Omar, N., and Kamat, S. R., 2013. Work Study for Overall Process Efficiency at Manufacturing Company. *International Conference on Engineering Education (ICEE 2013)*. Madinah, Saudi Arabia, 22-25 December 2013. Federation of Engineering Institutions of Islamic Countries (FEIIC) Publisher.
  - Abd.Rahman, M. N., Abdullah, R., and Kamarudin, N., 2012. Work Study Techniques Evaluation At Back-End Semiconductor Manufacturing. *International Conference on Design and Concurrent Engineering (IDECON 2012)*. Melaka, Malaysia. 15-16 October 2012. UTeM Publisher.
  - Omar, M. K., Abdullah, R., and Abd Rahman, M. N., 2012. An Integrated Architecture for Lean Waste Analysis. *IEEE International Conference on Industrial Engineering and Engineering Management (IEEM 2012)*. Hong Kong, 10-13 December 2012. IEEE Publisher.
  - Omar, M. K., Abdullah, R., and Abd Rahman, M. N., 2012. Process and Labour Utilisation in the Electronic Industry: A Simulation Approach. *IEEE International Conference on Management of Innovation & Technology (ICMIT 2012).* Sanur, Bali, Indonesia, 11-13 June 2012. IEEE Publisher.

#### **CHAPTER 1**

#### **INTRODUCTION**

Chapter 1 explains the background information and the thesis organisation which aims to disclose the originality of this study. Descriptive information is given in the study: background, problem statement, objectives, significance, scope, limitations and thesis structure.

### 1.1 Background

Manufacturing companies strive to meet customer requirement in order to stay competitive in the global market. Listening to the 'voice-of-the-customers' has been the key focus in which companies sought to capture inputs from the customers or better known as gathering customer requirements. In a study of 270 businesses, Ulwick (2002) summarised the customer requirements into solution, specification, need, and benefits. The author further explained that this means providing a solution to the customers with the products they need based on the design specifications that consider aspects such as size, weight, colour, and shape to achieve their specific needs (durable, dependable, and strong) and benefits (long lasting and low cost).

The motivation to conduct this research originates from the author's twelve years working experience leading one of the multinational Company's (MNC) Industrial Engineering Department. Among the major project conducted was the manufacturing manpower productivity improvement due to the increase in manufacturing system complexity and continuous effort to pursue a reduction in cost and cycle time without affecting product quality and production agility. Various aspects contributed to the increase in manufacturing complexity such as high demand fluctuation, high product customization, globalised market demand, stiff cost competitiveness and shorter lead time expectation (Efthymiou et al., 2012). Therefore, the importance to measure the manufacturing complexity is crucial to better comprehend and control the various resources to achieve more efficient production systems (Efthymiou et al., 2014; Hon, 2005).

Over the years, the complex manufacturing issues were tackled through the introduction of various philosophies and methodologies. The Cellular Manufacturing (CM) is an example of a method being used to manage manufacturing complexity. The CM or also known as Group Technology (GT) was introduced based on the concept of clustering different types of equipment to process parts which have similar requirements (Canel et al., 2005; Huber and Hyer, 1985). This is contrary to the traditional type of job shop or batch manufacturing where identical equipment are grouped together resulting in high set-up frequency, reducing capacity and increasing queuing delays (Kannan and Ghosh, 1996).

There has been an increase in CM complexity due to the ever-changing environment and systems variations (Zhang, 2011). Moreover, the organisational structure which mainly comprises of human resources, equipment, material, and procedures will always need to be flexible for reconfiguration in the attempt to address the rapid changes in customer requirement. This is imperative to facilitate the need to meet customer delivery commitment timely and efficiently within all the related engineering and infrastructural support activities (Pandya et al., 1997).

The performance of the CM is determined by the two main components; human and machine or also known as the dual resource constraints (Cesaní and Steudel, 2005). Norman et al. (2002) included process and material in addition to human and equipment to

be the major considerations in optimising manufacturing performance. Human competencies are valued as intangible assets of all businesses and are required for nearly all operational activities that affect the manufacturing performance (Morey et al., 2001). Human is also the most flexible component compared to other manufacturing resources (Ajaefobi et al., 2010). Unfortunately, most literature focused is on the equipment and technological aspects thus, undervaluing the importance of human on the production system performance (Digiesi et al., 2009). Since the human element is the most difficult component to be measured (Allender, 2000), there arises the need to model human performance and its effect on the system design, performance, and cost. This author emphasised on the modelling human in the early stage of the design in order to evaluate the effectiveness of the system in terms of the performance and cost.

The success of a manufacturing system modelled at the early stage of the design can tremendously improve with the consideration of human aspects which were typically oversimplified previously. Baines and Kay (2002) stated that the capability of the manufacturing system models is greatly appreciated with the inclusion of human factors much earlier in the system. Thus, this research is set to answer the issue of designing a human system model that can be used in the cellular manufacturing environment to study human performance and to integrate human aspects together with equipment and material to in managing the CM complexity.

### **1.2 Problem statement**

Many studies have been conducted in the area of modelling and simulation focusing on the equipment and process in tackling the issues of the cellular manufacturing complexity. However, one of the greatest challenges in manufacturing is the human factor since the roles human plays are often complex and interdependent. Human resource