401 research outputs found

    ASURVEY ON CLUSTER BASED LOAD BALANCINGAPPROACHESFOR WIRELESSSENSOR NETWORK

    Get PDF
    Wireless sensor network (WSN) is becoming a very interesting field of research in recent days. It has wide area of research due to various issues caused by the hardware capabilities of sensing nodes such as memory, power, and computing capabilities. One of the major issues is to concentrate on the energy consumption of the sensing node which determines the lifetime of the network. One of such problem is called Hot-spot problem, in which the best channel to the sink are overloaded with traffic and thus causing the nodes to deplete their energy quicker than the energy of other nodes in the network. Clustering algorithms along with sink mobility widely support for equal distribution of the load in the network. In order to overcome this problem various load balancing algorithms are discussed for improving the lifetime of the network

    A modified energy efficient multi-hop routing protocol in wireless sensor networks

    Get PDF
    Energy efficient routing protocols in Wireless Sensor Networks (WSNs) is an important area of research due to energy limitations. It is therefore important to maximize the limited energy so as to increase the network lifetime of the WSN. In this paper, a modified energy efficient multi-hop routing protocol (mEEMRP) in a 200 m2 field is presented. This protocol is based on a technique that involves balancing load between communication management (CM) nodes during the multi-hop routing of aggregated data to the base station (BS), where the residual energy (RE) levels of CM nodes are considered as well as the distance between neighboring CM nodes. Simulation results showed that mEEMRP yielded a 1.77% improvement over energy efficient multi-hop routing protocol (EEMRP) in terms of network lifetime. More so, the proposed mEEMRP also improved the energy consumption and the number of packets received at the BS by 4.83% and 7.41%, respectively.Keywords: Routing protocol, Multi-hop routing, Network lifetime, mEEMRP, EEMR

    The importance of energy efficient in wireless sensor networks

    Get PDF
    Mobile Node-based routing is an efficient routing technique compared to traditional approaches. Due to this FERP majorly data isolation is provided for sensor nodes, and the network is more energy efficient. The Mobile data collector collects data from only Family heads and forwards to the cluster head. The Node level energy saving scheme is proposed in this work. The performance of this routing protocol is assessed based on Energy consumption, Throughput, Lifetime, Packet Delivery Ratio, Energy efficiency. Most of the Energy is saved due to the introducing of mobile nodes for data collection. Apart from this, we are reducing the load for mobile data collectors also. In general, mobile data collectors have high energy resources. But it is not possible in all terrains. This FERP gives better results in military and plateaus, and irregular terrains where multihop communication is complex. This work is further enhanced by Trust node based routing to improve the lifetime of the network

    Impact of node deployment and routing for protection of critical infrastructures

    Get PDF
    Recently, linear wireless sensor networks (LWSNs) have been eliciting increasing attention because of their suitability for applications such as the protection of critical infrastructures. Most of these applications require LWSN to remain operational for a longer period. However, the non-replenishable limited battery power of sensor nodes does not allow them to meet these expectations. Therefore, a shorter network lifetime is one of the most prominent barriers in large-scale deployment of LWSN. Unlike most existing studies, in this paper, we analyze the impact of node placement and clustering on LWSN network lifetime. First, we categorize and classify existing node placement and clustering schemes for LWSN and introduce various topologies for disparate applications. Then, we highlight the peculiarities of LWSN applications and discuss their unique characteristics. Several application domains of LWSN are described. We present three node placement strategies (i.e., linear sequential, linear parallel, and grid) and various deployment methods such as random, uniform, decreasing distance, and triangular. Extensive simulation experiments are conducted to analyze the performance of the three state-of-the-art routing protocols in the context of node deployment strategies and methods. The experimental results demonstrate that the node deployment strategies and methods significantly affect LWSN lifetime. © 2013 IEEE

    Hybrid Heterogeneous Routing Scheme for Improved Network Performance in WSNs for Animal Tracking

    Full text link
    Wireless Sensor Networks (WSNs) experiences several technical challenges such as limited energy, short transmission range, limited storage capacities, and limited computational capabilities. Moreover, the sensor nodes are deployed randomly and massively over an inaccessible or hostile region. Hence WSNs are vulnerable to adversaries and are usually operated in a dynamic and unreliable environment. Animal tracking using wireless sensors is one such application of WSN where power management plays a vital role. In this paper, an energy-efficient hybrid routing method is proposed that divides the whole network into smaller regions based on sensor location and chooses the routing scheme accordingly. The sensor network consists of a base station (BS) located at a distant place outside the network, and a relay node is placed inside the network for direct communications from nodes nearer to it. The nodes are further divided into two categories based on the supplied energy; such that the ones located far away from BS and relay have higher energy than the nodes nearer to them. The network performance of the proposed method is compared with protocols like LEACH, SEP, and SNRP, considering parameters like stability period, throughput and energy consumption. Simulation result shows that the proposed method outperforms other methods with better network performance

    A Differential Evolution-Based Routing Algorithm for Environmental Monitoring Wireless Sensor Networks

    Get PDF
    The traditional Low Energy Adaptive Cluster Hierarchy (LEACH) routing protocol is a clustering-based protocol. The uneven selection of cluster heads results in premature death of cluster heads and premature blind nodes inside the clusters, thus reducing the overall lifetime of the network. With a full consideration of information on energy and distance distribution of neighboring nodes inside the clusters, this paper proposes a new routing algorithm based on differential evolution (DE) to improve the LEACH routing protocol. To meet the requirements of monitoring applications in outdoor environments such as the meteorological, hydrological and wetland ecological environments, the proposed algorithm uses the simple and fast search features of DE to optimize the multi-objective selection of cluster heads and prevent blind nodes for improved energy efficiency and system stability. Simulation results show that the proposed new LEACH routing algorithm has better performance, effectively extends the working lifetime of the system, and improves the quality of the wireless sensor networks

    Fuzzy Election based Optimization Algorithm (FEBOA) And Energy Harvesting Possibilistic FUZZYC-Means (EHFPCM) Clustering for EH-WSN

    Get PDF
    Wireless Sensor Network (WSN) includes of many nodes by restricted energy resources. Energy efficiency and harvested energy are major important issues in the WSN. Studies recently conducted have demonstrated that clustering is an effective way to increase energy efficiency. Energy Harvesting- Wireless Sensor Network (EH-WSN) is a flexible strategy for even clustering and Cluster Head (CH) selection is helpful to maximize network constancy and energy efficiency. In this paper, Energy Harvesting Possibilistic Fuzzy C-Means (EHFPCM) clustering is introduced to improve harvested energy usage by maintaining the consistency, connectivity, and balancing of harvested energy consumption in EH-WSN. It is based on Data Transmission (DT) and Cluster Establishment (CE). During CE, PFCM clustering is introduced for cluster formation. PFCM clustering divides the network into clusters. Each area forms a group and chooses one or more CH based on the multi-criteria like energy, distance to neighbors, distance to the Base Station (BS), and network load. In a cluster, the Fuzzy Election Based Optimization Algorithm (FEBOA) selects the CH according to the multi-criteria. It desires to receive packets from Cluster Member (CM), aggregate the received packets, and subsequently forward it to DT. DT, every CM wakes up during its designated working time and transmits the data it has gathered to the CH in the cluster. Lastly, measures such as Residual Energy (RE), Packet Delivery Ratio (PDR), Packet Loss Ratio (PLR), energy consumption, and average delay for transmission are used to measure the results of routing protocols

    A Review of Cluster Head Selection Schemes in Wireless Sensor Network for Energy Efficient Routing Protocol

    Get PDF
    Energy management in Wireless Sensor Network (WSN) has attracted much concern due to the fact that the sensors are battery powered, and are usually deployed in hostile and inaccessible environments. With data transmission being the most energy consuming process in the network, several routing protocols based on clustering have been developed for energy efficient data transmission. The challenge of the clustering process in these protocols is the selection of Cluster Heads (CHs). This is due to the use of resource blind random generated number, high cost of network overhead, non-consideration of nodes’ residual energy, and/or location to ensure even distribution of CHs. This paper reviewed energy efficient cluster based routing protocols for WSN and proposed better approaches to mitigate these problems in order to improve network stability and lifetime

    Study of Energy Efficient Clustering Algorithms for Wireless Sensor Network

    Get PDF
    Energy utilization and network life time are key issues in design of routing protocols for Wireless sensor network. Many algorithms have been proposed for reducing energy consumption and to increase network life time of the WSN. Clustering algorithms have gained popularity in this field, because of their approach in cluster head selection and data aggregation. LEACH (distributed) is the first clustering routing protocol which is proven to be better compared to other such algorithms. TL-LEACH is one of the descendants of LEACH that saves better the energy consumption by building a two-level hierarchy. It uses random rotation of local cluster base stations to better distribute the energy load among the sensors in the network especially when the density of network is higher. As the clusters are adaptive in LEACH and TL-LEACH, poor clustering set-up during a round will affect overall performance. However, using a central control scheme for cluster set-up may produce better clusters by distributing the cluster head nodes throughout the network. LEACH-C is another modification to LEACH that realizes the above idea and provides better results through uniform distribution of cluster heads avoiding redundant creation of cluster heads in a small area. In our project, we propose a centralized multilevel scheme called CML-LEACH for energy efficient clustering that assumes random distribution of sensor nodes which are not mobile. The proposed scheme merges the idea of multilevel hierarchy, with that of the central control algorithm providing uniform distribution of cluster heads throughout the network, better distribution of load among the sensors and improved packet aggregation. This scheme reduces energy consumption and prolongs network life time significantly as compared to LEACH, TL-LEACH and LEACH-C. The simulation results show comparisons of our scheme with the existing LEACH, TL-LEACH and LEACH-C protocols against chosen performance metrics, using Omnet++
    corecore