50,739 research outputs found

    Sustainability ranking of desalination plants using Mamdani Fuzzy Logic Inference Systems

    Get PDF
    As water desalination continues to expand globally, desalination plants are continually under pressure to meet the requirements of sustainable development. However, the majority of desalination sustainability research has focused on new desalination projects, with limited research on sustainability performance of existing desalination plants. This is particularly important while considering countries with limited resources for freshwater such as the United Arab Emirates (UAE) as it is heavily reliant on existing desalination infrastructure. In this regard, the current research deals with the sustainability analysis of desalination processes using a generic sustainability ranking framework based on Mamdani Fuzzy Logic Inference Systems. The fuzzy-based models were validated using data from two typical desalination plants in the UAE. The promising results obtained from the fuzzy ranking framework suggest this more in-depth sustainability analysis should be beneficial due to its flexibility and adaptability in meeting the requirements of desalination sustainability

    Attribute Identification and Predictive Customisation Using Fuzzy Clustering and Genetic Search for Industry 4.0 Environments

    Get PDF
    Today´s factory involves more services and customisation. A paradigm shift is towards “Industry 4.0” (i4) aiming at realising mass customisation at a mass production cost. However, there is a lack of tools for customer informatics. This paper addresses this issue and develops a predictive analytics framework integrating big data analysis and business informatics, using Computational Intelligence (CI). In particular, a fuzzy c-means is used for pattern recognition, as well as managing relevant big data for feeding potential customer needs and wants for improved productivity at the design stage for customised mass production. The selection of patterns from big data is performed using a genetic algorithm with fuzzy c-means, which helps with clustering and selection of optimal attributes. The case study shows that fuzzy c-means are able to assign new clusters with growing knowledge of customer needs and wants. The dataset has three types of entities: specification of various characteristics, assigned insurance risk rating, and normalised losses in use compared with other cars. The fuzzy c-means tool offers a number of features suitable for smart designs for an i4 environment

    Characterizing urban landscapes using fuzzy sets

    Get PDF
    Characterizing urban landscapes is important given the present and future projections of global population that favor urban growth. The definition of “urban” on a thematic map has proven to be problematic since urban areas are heterogeneous in terms of land use and land cover. Further, certain urban classes are inherently imprecise due to the difficulty in integrating various social and environmental inputs into a precise definition. Social components often include demographic patterns, transportation, building type and density while ecological components include soils, elevation, hydrology, climate, vegetation and tree cover. In this paper, we adopt a coupled human and natural system (CHANS) integrated scientific framework for characterizing urban landscapes. We implement the framework by adopting a fuzzy sets concept of “urban characterization” since fuzzy sets relate to classes of object with imprecise boundaries in which membership is a matter of degree. For dynamic mapping applications, user-defined classification schemes involving rules combining different social and ecological inputs can lead to a degree of quantification in class labeling varying from “highly urban” to “least urban”. A socio-economic perspective of urban may include threshold values for population and road network density while a more ecological perspective of urban may utilize the ratio of natural versus built area and percent forest cover. Threshold values are defined to derive the fuzzy rules of membership, in each case, and various combinations of rules offer a greater flexibility to characterize the many facets of the urban landscape. We illustrate the flexibility and utility of this fuzzy inference approach called the Fuzzy Urban Index for the Boston Metro region with five inputs and eighteen rules. The resulting classification map shows levels of fuzzy membership ranging from highly urban to least urban or rural in the Boston study region. We validate our approach using two experts assessing accuracy of the resulting fuzzy urban map. We discuss how our approach can be applied in other urban contexts with newly emerging descriptors of urban sustainability, urban ecology and urban metabolism.This research was partially supported by "Boston University Initiative on Cities Early Stage Urban Research Awards 2015-16" (Gopal & Phillips) and the Frederick S. Pardee Center for the Study of the Longer-Range Future at Boston University. We thank the anonymous reviewers for their careful reading of our manuscript and their many insightful comments and suggestions. (Boston University Initiative on Cities Early Stage Urban Research Awards; Frederick S. Pardee Center for the Study of the Longer-Range Future at Boston University)https://doi.org/10.1016/j.compenvurbsys.2016.02.002Published versio

    Shipbuilding 4.0 Index Approaching Supply Chain

    Get PDF
    The shipbuilding industry shows a special interest in adapting to the changes proposed by the industry 4.0. This article bets on the development of an index that indicates the current situation considering that supply chain is a key factor in any type of change, and at the same time it serves as a control tool in the implementation of improvements. The proposed indices provide a first definition of the paradigm or paradigms that best fit the supply chain in order to improve its sustainability and a second definition, regarding the key enabling technologies for Industry 4.0. The values obtained put shipbuilding on the road to industry 4.0 while suggesting categorized planning of technologies

    Robust Multi-Objective Sustainable Reverse Supply Chain Planning: An Application in the Steel Industry

    Get PDF
    In the design of the supply chain, the use of the returned products and their recycling in the production and consumption network is called reverse logistics. The proposed model aims to optimize the flow of materials in the supply chain network (SCN), and determine the amount and location of facilities and the planning of transportation in conditions of demand uncertainty. Thus, maximizing the total profit of operation, minimizing adverse environmental effects, and maximizing customer and supplier service levels have been considered as the main objectives. Accordingly, finding symmetry (balance) among the profit of operation, the environmental effects and customer and supplier service levels is considered in this research. To deal with the uncertainty of the model, scenario-based robust planning is employed alongside a meta-heuristic algorithm (NSGA-II) to solve the model with actual data from a case study of the steel industry in Iran. The results obtained from the model, solving and validating, compared with actual data indicated that the model could optimize the objectives seamlessly and determine the amount and location of the necessary facilities for the steel industry more appropriately.This article belongs to the Special Issue Uncertain Multi-Criteria Optimization Problem

    Greening the design brief

    Get PDF
    Front End Innovation is a hot research topic, but there is still little research done on its relationship to design for sustainability. This paper explores the challenges of integrating environmental sustainability in this early stages of an innovation process and the design brief. The study is based on a content analysis of 35 design briefs from Belgian SMEs and multinationals, and a practitioners session with representatives from 14 Belgian companies. This results indicate a limited uptake of sustainability in Belgian design briefs. Furthermore, it argues that the use of certain strategies, such as front-loading, pushing sustainability upstream in the briefing process and sustainability opportunity identification in the front end, could help in greening the design brief

    Resilience Assignment Framework using System Dynamics and Fuzzy Logic.

    Get PDF
    This paper is concerned with the development of a conceptual framework that measures the resilience of the transport network under climate change related events. However, the conceptual framework could be adapted and quantified to suit each disruption’s unique impacts. The proposed resilience framework evaluates the changes in transport network performance in multi-stage processes; pre, during and after the disruption. The framework will be of use to decision makers in understanding the dynamic nature of resilience under various events. Furthermore, it could be used as an evaluation tool to gauge transport network performance and highlight weaknesses in the network. In this paper, the system dynamics approach and fuzzy logic theory are integrated and employed to study three characteristics of network resilience. The proposed methodology has been selected to overcome two dominant problems in transport modelling, namely complexity and uncertainty. The system dynamics approach is intended to overcome the double counting effect of extreme events on various resilience characteristics because of its ability to model the feedback process and time delay. On the other hand, fuzzy logic is used to model the relationships among different variables that are difficult to express in numerical form such as redundancy and mobility

    Employing dynamic fuzzy membership functions to assess environmental performance in the supplier selection process

    Get PDF
    The proposed system illustrates that logic fuzzy can be used to aid management in assessing a supplier's environmental performance in the supplier selection process. A user-centred hierarchical system employing scalable fuzzy membership functions implement human priorities in the supplier selection process, with particular focus on a supplier's environmental performance. Traditionally, when evaluating supplier performance, companies have considered criteria such as price, quality, flexibility, etc. These criteria are of varying importance to individual companies pertaining to their own specific objectives. However, with environmental pressures increasing, many companies have begun to give more attention to environmental issues and, in particular, to their suppliers’ environmental performance. The framework presented here was developed to introduce efficiently environmental criteria into the existing supplier selection process and to reflect on its relevant importance to individual companies. The system presented attempts to simulate the human preference given to particular supplier selection criteria with particular focus on environmental issues when considering supplier selection. The system considers environmental data from multiple aspects of a suppliers business, and based on the relevant impact this will have on a Buying Organization, a decision is reached on the suitability of the supplier. This enables a particular supplier's strengths and weaknesses to be considered as well as considering their significance and relevance to the Buying OrganizationPeer reviewe

    Optimization of the supplier selection process in prefabrication using BIM

    Get PDF
    Prefabrication offers substantial benefits including reduction in construction waste, material waste, energy use, labor demands, and delivery time, and an improvement in project constructability and cost certainty. As the material cost accounts for nearly 70% of the total cost of the prefabrication project, to select a suitable material supplier plays an important role in such a project. The purpose of this study is to present a method for supporting supplier selection of a prefabrication project. The proposed method consists of three parts. First, a list of assessment criteria was established to evaluate the suitability of supplier alternatives. Second, Building Information Modelling (BIM) was adopted to provide sufficient information about the project requirements and suppliers’ profiles, which facilitates the storage and sharing of information. Finally, the Analytic Hierarchy Process (AHP) was used to rank the importance of the assessment criteria and obtain the score of supplier alternatives. The suppliers were ranked based on the total scores. To illustrate how to use the proposed method, it was applied to a real prefabrication project. The proposed method facilitates the supplier selection process by providing sufficient information in an effective way and by improving the understanding of the project requirements
    corecore