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Abstract— Today´s factory involves more services and 

customisation. A paradigm shift is towards “Industry 4.0” (i4) 

aiming at realising mass customisation at a mass production cost. 

However, there is a lack of tools for customer informatics. This 

paper addresses this issue and develops a predictive analytics 

framework integrating big data analysis and business informatics, 

using Computational Intelligence (CI). In particular, a fuzzy c-

means is used for pattern recognition, as well as managing relevant 

big data for feeding potential customer needs and wants for 

improved productivity at the design stage for customised mass 

production. The selection of patterns from big data is performed 

using a genetic algorithm with fuzzy c-means, which helps with 

clustering and selection of optimal attributes. The case study 

shows that fuzzy c-means are able to assign new clusters with 

growing knowledge of customer needs and wants. The dataset has 

three types of entities: specification of various characteristics, 

assigned insurance risk rating, and normalised losses in use 

compared with other cars. The fuzzy c-means tool offers a number 

of features suitable for smart designs for an i4 environment. 

Keywords—Smart manufacturing, Industry 4.0, smart design, 

big data analytics, fuzzy clustering, genetic search. 

I. INTRODUCTION 

Historically industrial revolutions had led to a paradigm 
shift, starting with the steam-motor improvement in the 18th 
century, then mass production systems in the early 19th century 
because of electricity commercialization, and to the 
advancement of ICT and introduction of automation systems in 
the late 20th century. Innovation in manufacturing industry has 
been building innovative advances that revolutionised the way 
products were manufactured, services were given and business 
were made. Advances in ICT technologies have currently and 
repeatedly progressed in numerous fields, those include 
software and hardware; that might bring a revolution or 
evolution to manufacturing industry. For this revolution, smart 
manufacturing could have the driving force. Integration of 
various technologies can promote a strategic innovation of the 
existing industry through the convergence of technology, 
humans, and information. On the other hand, lean manufacturing 
targeted cost saving by focusing on waste elimination, this 
during 1980’s and 1990’s. In contrast, smart manufacturing 

represents a future growth engine that aims for sustainable 
growth through management and improvement of the major 
existing factors, like: quality, flexibility, productivity, and 
delivery based on technology convergence as well as numerous 
elements over societies, environment and humans [1].   

Recently i4 has been not much more than a concept [2]. The 
main idea of i4 is the combination of several technologies and 
concepts such as Smart Factory, CPS, industrial Internet of 
Things (IoT), and Internet of Services (IoS) interacting with one 
another to form a closed-loop production value chain [3]. 
Differing from other ambitious strategies like the Advanced 
Manufacturing Partnership in the US [3] and the 
“Manufacturing 2025” plan in China, is the benefit inside 
production line: variety vs productivity. Not many industries can 
produce individual goods in a completely automated fashion. 
For this to become a reality, not only the machines but 
occasionally even the parts themselves need to become   smart 
[4].  

The focus of this paper is to address the integration of several 
technologies in a closed-loop cycle such that information from 
existing inputs, can be retrieved to obtain better prediction for 
decision-making and customized the intelligent design of 
products. This framework is proposed under the i4 principles 
due to the capacity of integration with cloud computing, big data 
analytics, ICT, CPS, and business informatics inside 
manufacturing production systems. The aim of this research is 
to utilize fuzzy c-means and Genetic Algorithm (GA) selection 
for customized designs for smart manufacture, where prediction 
and selection of best attributes and customers’ needs and wants 
can be achieved. 

In Section II of this paper, challenges and trends of i4 are 
discussed, together with the issues surrounding mass 
customisation. In Section III, we tackle the issue of smart design 
for mass customisation and present a self-organizing tool for 
predicting customer needs and wants. We demonstrate the 
effectiveness of the proposed methodology through a case study 
in Section IV. Lastly, Section V draws conclusions with 
discussions on future work.  
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II. CUSTOMISATION FOR INDUSTRY 4.0

Coined in the late 80’s, the term mass-customized 

production has become a subject of research along with the 

proliferation of information throughout the IoT in the 21st 

century affecting business strategies and acquiring goods & 

services [5]. This implicates that mass customisation in 

manufacturing’s supply chain, material flow and information 

concerns, and connection between product types had a direct 

effect on customer satisfaction [6].  

Customized manufacturing describes a process for which 

all involved elements of the manufacturing system are designed 

in a certain way that enable high levels of product variety at 

mass production costs [5] - the reason why companies today are 

facing challenges as a result of customers’ increasing demand 

for individualized goods and services. With the development 

and introduction of CPS into the manufacturing process, 

manual adjustments and variations on product quality can be 

minimized by connecting the virtual part of the process through 

computer-aided design (CAD) and comparing the desired 

information to target optimal features. Finally, all the streamed 

data that intervene with the process helps to monitor the 

manufacturing process and apply changes if necessary. From 

here, the idea of having a closed loop to constantly retrieve 

information in the customized design and customer satisfaction 

results in more informed processes and leads to reliable 

decisions [7]. 

The next section describes how data and CPS can be 

integrated into a framework for manufacturing application. 

A. CPS and data analytics framework for smart 

manufacturing 

In recent years, the use of sensors and networked machines 

has increased tremendously, resulting in high volumes of data 

known as big data being generated [8]. In that way, CPS, which 

exploits the interconnectivity of machines, can be developed to 

manage big data to reach the goal of resilient, intelligent, and 

self-adaptable machines. Boost efficiency in production lines 

for meeting customers’ needs and wants is key in i4 principles, 

and since CPS are still in experimental stage, a proposed 

methodology and architecture described in [9] which consists 

of 2 main components: (1) the advanced connectivity that 

guarantees real-time data procurement from the physical world 

and information feedback from the digital space; and (2) 

intelligent data analytics, management, and computational 

capability that constructs the cyber space. Fig. 1presents the 

value creation when combining CPS from an earlier data 

acquisition, and analytics. 

From the above framework, the smart connection plays an 

important role, hence aqcuiring reliable and accurate data from 

machines including components and customers’ feedback 

telling the insides of the design that best approaches to their 

needs and wants. Here is where enterprise manufacturing 

systems interviene such as enterprise resource planning (ERP), 

manufacturing exectution system (MES), and supply chain 

management (SCM). Data is obtained from those types of 

systems that update information in real time and provide a 

reliable inside of the product, from there all that collected data 

can be transformed into action [9]. 

Fig. 1. Architecture for implementing CPS [9] 

i4 also describes the overlap of multiple technological 

developments that comprise products and processes. The 

purpose of this paper is to provide a robust methodology to find 

possible solutions to fill the missing gaps that big data offers to 

individualistic manufacture (customized production). The next 

section discusses the relation between smart products and 

machine learning for i4 environments. 

B. Smart products and product lifecycle for Industry 4.0 

Defined by [10], a smart product is an entity (software, 
tangible object, or service) made and designed for self-organized 
embedding (incorporation) into different (smart) environments 
in the direction of its lifecycle. The smart product provides 
boosted simplicity and openness through improved Product-to-
user & Product-to-product interaction by means of proactive 
behaviour, context-awareness, semantic self-description, 
Artificial Intelligence (AI) planning, multimodal natural 
interfaces, and machine learning. 

The interaction with their environment is what makes a 
product smart. Under the i4 principles, each product is tag with 
an identity for example, using Radio Frequency Identifiers 
(RFID).   This result in the increase in volume, variety and 
velocity of data creation, which poses a challenge for identifying 
best, attributes in smart product designs to detect exactly what 
customers really want as an individual product. Today with the 
IoT, data is collected constantly creating a continuous stream of 
data, leading to an evolve data that comprises videos, sounds and 
images that can trigger best design for products, better quality, 
meet customer needs and wants, and process operations [11].  

The digitalization of the value chain, how to optimize a 
process, and bring flexibility lead to a whole value chain fully 
integrated. Customers and suppliers are included in the 
innovation of the product, through social software [12]. Then 
cloud services connect to the networked product in the use 
phase. During its entire lifecycle the product stays connected and 
maintain data collection, here big data can be used to create a 
feedback loop into the production phase, using algorithms and 
models that are able to process data in an unprecedented 
velocity, volume and variety [13]. 

Creating smart products for i4 technologies also lead to 
determine the necessary base technologies, those can be named 



as follows: mobile computing, big data and Cloud Computing 
[11]. More than providing scalable compute capacity, i4 aims to 
provide services that can be accessed globally via the Internet, 
here lies the importance of cloud computing and mobile 
computing [14]. For this in [11] is proposed the framework 
depicted in Fig. 2. 

 

Fig. 2. Framework for smart product’s innovation [11] 

The management and analysis of data is key to this work. 
CPS will only implement mass production, but mass 
customisation needs to be designed beforehand, and it is often 
found that customer is not clear what their needs and wants are 
[15]. Eventually, how data is managed will lead to evolution for 
the innovation floor by this constant communication and linkage 
that IoT enables.  

Next section reviews the machine learning techniques 
together with Computational Intelligence (CI) for addressing 
prediction in customized production. 

 
C. Computational intelligence for customized production 

Discussed previously, the main components of the i4 or 
factory of the future vision are: CPS with the ability to connect 
everything through the IoT and IoS, in digitalized environment, 
comprising decentralized architectures and real-time capability 
to analyse huge quantities of data (big data analytics) in a 
modular way.  

In this context classical and novel Machine Learning and CI 
techniques, among which Artificial Neural Networks (ANN), 
which have been developed exactly to extract (hidden) 
information from data for pattern recognition, prediction issues, 
and classification find a natural field of application. Such 
techniques have a huge potential to provide a clear improvement 
of many transformation processes, as well as to services by 
providing reliable insides of what customers’ really need & 
want. 

Addressing prediction in larger datasets can be but one 
application of Machine Learning techniques, but first it’s 
necessary to understand the characteristics of the data in order 
to find the most suitable method according to data inputs [16]. 
A good understanding of the dataset is crucial to the choice and 
the eventual outcome of the analysis. Within the context of i4.0, 
there are two main sources of data: human-generated data and 
machine-generated data, both present huge challenges for data 
processing. Many of the algorithms developed so far are 

iterative, designed to learn continually and seek optimized 
outcomes. These algorithms iterate in milliseconds, enabling 
manufacturers to seek optimized outcomes in minutes versus 
months. 

Facing the era of the IoT in [17] is discussed the integration 
of machine learning databases, applications, and algorithms into 
cloud platforms and most of all automate process because of the 
feasibility of controlling high-complex process. An architecture 
is proposed by [17] and presented in Fig. 3. 

This presented framework englobes four key components: 
customer relationships, design & engineering, Manufacturing & 
supply Chain, and Service & Maintenance. The Enterprise 
business process are connected inside the cloud that retrieves 
information already processed from the industrial equipment. 
Here is used intelligence in the form of systems service agent. 
Then local technicians report events, status or alarms if 
necessary for remote experts to evaluate each event; in this 
process business intelligence takes part when accessing all the 
data that the platform Hadoop processed to generate prediction 
models. Finally a cloud-based machine learning platform 
facilitates the analysis and new knowledge is obtain, which 
experts as well need to verify the reliability of prediction 
obtained. 

 Machine learning can also be implemented inside Business 
Intelligence where  prediciton must be achieved, and also by 
using descriptive statistics that tell insights of customer 
relations.  In  [18] is  suggested the following  approaches for 
identifying customer relations: 

 Use linear models for data analysis, which regularly 

performed in simple ways, and since from linear statistics 

are implicit numerous assumptions about mutually 

independence between variables and normally distributed 

values, those can be helpful for initial stage of exploration.  

 Dealing with stochastic distributions, the hidden Markov 

models (HMM) [19] focus on the analysis of temporal 

sequences of separate (discrete) states. As well, those are 

used for creating predictions on time-stamped events.  

 When analysing customer satisfaction, the use of 

Bayesian networks are suggested in [20], which are based 

on a graphical model representing inputs as nodes with 

directed associations among them. Nevertheless, because 

those are developed for academic level and do not provide 

needed levels of intuition, automation, and integration into 

corporate environments; accessible Bayesian network 

software is not suitable, enabling this can create them 

accessible to business users. 

Discussed in [18], customers play a significant role in Smart 

Manufacturing environments, because of the improvement of 

customer-business relations and as well the responsiveness of 

business to take actions in real-time when needed based on 

customer lifecycle. Since this is not a trivial task that can be 

implemented overnight using existing business informatics 

models. Two main factors can be attributed to this[3]: (i) the 

lack of an automated closed-loop feedback system that can 

intelligently inform business processes to respond to changes in 

real-time based on the inputs (for example, data trends, user 

experience, etc.) received, and (ii) existing analytical tools 

cannot accurately capture and predict consumer patterns. 



 

Fig. 3. Architecture for IoT services proposed by Microsoft [17]

The use of digital models is a possible way forward for (i), 

a digital model able to achieve automation in a closed-loop.  

A solution for (ii) when analyzing business contained in 

data using intelligence should be considered as the use of 

gathered information into data finally into action. Intelligence 

in this sense comes from the expert knowledge that can also be 

integrated in the analysis process, the knowledge-based 

methods used for analysis, and the new knowledge created and 

communicated by the analysis process.  

The next section presents the used methodology for 

addressing prediction in customer relations, determining what 

customers’ needs and wants are, and selecting best attributes. 

 

III. METHODOLOGY AND APPROACHES  

With all the revised methods and tools from different 

research, it was determined to use machine learning as 

unsupervised learning. In specific, it was used fuzzy c-means 

for clustering and genetic algorithms for selection of best 

attributes once the fuzzy clustering finished classifying. 

Following the next sections, the fuzzy c-means is described, 

together with the Genetic Algorithm (GA) selection. After the 

tools used, a proposed framework is shown, which integrates 

the i4 principles for design and manufacture, data analytics, 

machine learning, Computer Automated Design (CAutoD), 

among others. With this, the closed-loop for automation can 

finally close the missing gap for determining customers’ needs 

and wants in order to achieve customized design and processes. 

A. Fuzzy c-means approach 

Cluster approaches can be applied to datasets that are 

qualitative (categorical), quantitative (numerical), or a mixture 

of both. Usually the data (inputs) are observations of some 

physical process. Each observation consists of 𝑛  measured 

variables (features), grouped into an 𝑛 − 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑎𝑙 column 

vector 𝑧𝑘 =  ⌊𝑧1𝑘, … , 𝑧𝑛𝑘⌋𝑇 , 𝑧𝑘  ∈  𝑅𝑛 [21]. 

𝑁 Observations set is denoted by 𝑍 =  {𝑧𝑘|𝑘 = 1,2, … 𝑁}, 

and is represented as a 𝑛 ×  𝑁 matrix: 

 𝑍 =  (

𝑧11 𝑧12  ⋯ 𝑧1𝑁

𝑧21 𝑧22   ⋯ 𝑧2𝑁

⋯ ⋯    ⋯ ⋯
𝑧𝑛1 𝑧𝑛2   ⋯ 𝑧𝑛𝑁

) 

Many clustering algorithms have been introduced and 

clustering techniques can be categorized depending on 

whether the subsets of the resulting classification are fuzzy or 

crisp (hard). Hard clustering methods are based on classical set 

theory and require that an object either does or does not belong 

to a cluster. Hard clustering means that the data is partitioned 

into a specified number of mutually exclusive subsets. Fuzzy 

clustering methods, however, allow the objects to belong to 

several clusters simultaneously with different degrees of 

membership [21]. Fuzzy clustering assigns membership 

degrees between 0 and 1 that indicates their partial 

membership. Vital for cluster analysis is cluster partition, as 

well for identification techniques that are based on fuzzy 

clustering.  

Most analytical fuzzy clustering algorithms are based on the 

optimization of the basic c-means objective function, or some 

modification of the objective function. The optimization of the 

c-means functional represents a nonlinear minimization 

problem, which can be solved by using a variety of methods 

including iterative minimization [22]. The most popular 

method is to use the simple Picard iteration through the first-

order conditions for stationary points, known as the FCM 

algorithm. Bezdek [23] has proven the convergence of the 

FCM algorithm. An optimal c partition is produced iteratively 

by minimizing the weighted within group sum of squared error 

objective function: 

  𝐽 =  ∑ ∑ (𝑢𝑖𝑗)
𝑚

𝑑2(𝑦𝑖 , 𝑐𝑗)𝑐
𝑗=1

𝑛
𝑖=1  

Where 𝑌 =  [𝑦1, 𝑦2, … , 𝑦𝑛] is the dataset in a d-dimensional 
vector space, 𝑛 is the number of data items, 𝑐 is the number of 



clusters, which is defined by the user. Where 2 ≤ 𝑐 ≤ 𝑛, 𝑢𝑖𝑗  is 

the degree of membership of 𝑦𝑖  in the 𝑗𝑡ℎ cluster, 𝑚  is a 
weighted exponent on each fuzzy membership, 𝑐𝑗  is the center 

of the cluster 𝑗, 𝑑2(𝑦𝑖 , 𝑐𝑗) is a square distance measure between 

object 𝑦𝑖  and cluster 𝑐𝑗. 

The following steps were used inside Matlab for the fuzzy 
c-means algorithm: 
1) Input  𝑐= centroid matrix, 𝑚= weighted exponent of 

fuzzy membership, ∈ = threshold value used as stopping 
criterion, 𝑌 =  [𝑦1, 𝑦2 , … , 𝑦𝑛]: data 

Output  𝑐 = update centroid matrix 

2) Randomly start the fuzzy partition matrix 𝑈 =  [𝑢𝑖𝑗
𝑘 ] 

3) Repeat 
4) Calculate the cluster centres with 𝑈𝑘: 

 𝑐𝑗 =  ∑ (𝑢𝑖𝑗
𝑘 )

𝑚
𝑦𝑖

𝑛
𝑖=1 ∑ (𝑢𝑖𝑗

𝑘 )
𝑚𝑛

𝑖=1⁄  

Update the membership matrix 𝑈𝑘+1 using: 

 𝑢𝑖𝑗
𝑘+1 =  1 ∑ (

𝑑𝑖𝑗

𝑑𝑘𝑗
)

2
(𝑚−1)𝑐

k=1⁄  

Where  

 𝑑𝑖𝑗 =  ‖𝑦𝑖 −  𝑐𝑗‖
2

  

Until 𝑚𝑎𝑥𝑖𝑗  ‖𝑢𝑖𝑗
𝑘 − 𝑢𝑖𝑗

𝑘+1‖ < ∈ 

5) Return 𝑐 

 

After that, the best attributes are selected using GA toolbox 

in Matlab. The process is described in Fig. 4. 

 

B. Framework for predicting potential customer needs and 

wants 

In Fig. 5 is depicted the framework proposed to solve 

several of the afore-mentioned challenges in i4. Based on i4 and 

Smart Manufacturing key objective, i.e. achieve self-

prediction, and self-configurable in order to manufacture 

products and provide services tailor-made at mass production 

rates. 

In the first block of the proposed framework, customer 

needs and wants are first captured and processed to extract key 

design characteristics. These information are then fed into a 

Computer Automated Design (CAutoD) engine [24] where the 

design requirements, features and performance objectives are 

mapped into ‘genotypes’ for further analyses. This process, 

which is commonly known as rapid virtual prototyping uses 

intelligent search algorithms such as the GA or Particle Swarm 

Optimization (PSO) to explore the design search space for 

optimal solutions. In the proposed framework, this process 

takes place over the Cloud and produces a set of an optimized 

virtual prototype at the end of the search. 

The second block of the closed loop in Fig. 5 shows the 

virtual prototype, which is obtained from the selection and 

design process in CAutoD Through the integration of CPS or 

Cyber-Physical Integration (CPI), the virtual prototype in the 

second block is transformed into a physical product, i.e. the 

Smart Product as shown in Fig. 5.  

The next part of the framework refers to Business 

Informatics and how the smart products are connected to the 

IoT.  Here is where big data comes in, through the performance 

of the product and the feedback from the customer, more 

features can be considered. This covers the necessary attributes 

for the product to be manufactured in optimal ways.  

 

 
Fig. 4. Genetic search framework using Matlab  

Following this, the response obtained from the customer is 

automatically fed back to the system for further analysis and to 

fine-tune the virtual prototype. It is necessary to perform the 

analysis. This analysis is related to prediction, by using node or 

dynamic analysis that can perform clustering, selection and 

detection of patterns and visualize it. After that, the fuzzy c-

means clustering completes the update of selected attributes by 

comparing the latest input to the existing cluster and tries to 

identify one cluster that is most similar to the input sample. 

Then several features are fed back into the cloud again.   

The analysis can result in two outcomes [3]: (i) Similar 

clusters found. If it is the case, this will be reflected as an 

existent attribute and the algorithm will update the existing 

cluster using information from the latest sample. (ii) Non-

similar clusters found. The algorithm will hold its operation 

with the current sample until it sees enough out-of-cluster 

samples.  

When the number of out-of-cluster samples exceeds a 

certain threshold, it means that there exists a new behaviour in 

the data that has not been modelled. The algorithm will then 

create a new cluster to represent the new behavior.  

The data that is presented in the following section is used to 

solve the clustering problem with a fuzzy c-means network 

designed using the machine learning toolbox in Matlab. Fuzzy 

c-means are widely used to produce a concise representation of 

a system's behaviour, by grouping n clusters with every data-

point in the dataset belonging to every cluster to a certain degree 

[22].  



 
Fig. 5. Industry 4.0 value chain with predictive customer needs and wants fed back for automated customisation [3]. 

IV. CASE STUDY 

Cluster analysis with fuzzy c-means was performed to the 

data set found in [25]. This data set consists of three types of 

entities: (a) the specification of an auto in terms of various 

characteristics, (b) its assigned insurance risk rating, (c) its 

normalized losses in use as compared to other cars. The second 

rating corresponds to the degree to which the auto is riskier than 

its price indicates. Cars are initially assigned a risk factor 

symbol associated with its price. Then, if it is more risky (or 

less), this symbol is adjusted by moving it up (or down) the 

scale. Actuaries call this process "symbolling". A value of +3 

indicates that the auto is risky, -3 that it is probably safer.  

The third factor is the relative average loss payment per 

insured vehicle year. This value is normalized for all autos 

within a particular size classification (two-door small, station 

wagons, sports/speciality, etc...), and represents the average 

loss per car per year. 

Database contents are shown in TABLE I.  

 
TABLE I.  AUTOMOBILE DATA 

 

Attribute Attribute 

Range 

Attribute Attribute Range 

symbolling -3, -2, -1, 0, 

1, 2, 3. 

curb-weight: Continuous from 

1488 to 4066. 

normalized

-losses: 

Continuous 

from 65 to 

256. 

engine-type: dohc, dohcv, l, 

ohc, ohcf, ohcv, 

rotor. 

make alfa-romero, 

audi, bmw, 

chevrolet, 

dodge, 

honda, 

isuzu, 

jaguar, 

mazda, 

mercedes-

benz, 

mercury, 

mitsubishi, 

nissan, 

peugot, 

plymouth, 

porsche, 

renault, 

saab, subaru, 

toyota, 

volkswagen, 

volvo 

num-of-

cylinders: 

Eight, five, four, 

six, three, twelve, 

two. 

fuel-type Diesel, gas. engine-size: Continuous from 

61 to 326. 

Aspiration Std, turbo. fuel-system: 1bbl, 2bbl, 4bbl, 

idi, mfi, mpfi, 

spdi, spfi. 

num-of-

doors 

Four, two. bore: Continuous from 

2.54 to 3.94. 

body-style Hardtop, 

wagon, 

sedan, 

hatchback, 

convertible. 

stroke: Continuous from 

2.07 to 4.17. 

drive-

wheels 

4wd, fwd, 

rwd. 

compression

-ratio: 

Continuous from 

7 to 23. 

engine-

location 

Front, rear. horsepower: Continuous from 

48 to 288. 

wheel-base Continuous 

from 86.6 

120.9. 

peak-rpm: Continuous from 

4150 to 6600. 

Length Continuous 

from 141.1 

to 208.1. 

city-mpg: Continuous from 

13 to 49. 

Width Continuous 

from 60.3 to 

72.3. 

highway-

mpg: 

Continuous from 

16 to 54. 

height Continuous 

from 47.8 to 

59.8. 

price: Continuous from 

5118 to 45400. 

This dataset comprises 205 instances, 26 attributes as shown 

in TABLE I.  

The results of the fuzzy c-means are shown in Fig. 6. Here, 

the partition of the 3 clusters can be noticed. The scatter plot 

shows the connections between all the instances. From here, 

Matlab function for fuzzy c-means update the cluster centres 

and membership grades of each data point, clusters are 

iteratively moved from the centre to the right location inside the 

dataset. The selected parameters for the fuzzy c-means were 3 

clusters, exponent =3, the maximum of iterations = 100, and 

minimum improvement= 1e-05. Since iterations are based on 

minimizing an objective function that represents the distance 

from any given data point to a cluster centre weighted by that 

data point's membership grade. Membership function plots 

obtained are presented in Fig. 7, here for each cluster shows 

when it reached the maximum of iterations, or when the 

objective function improvement between two consecutive 

iterations is less than the minimum amount of improvement 

specified. Once the clustering was done, it was processed the 

training data to obtain the attribute classification inside Matlab 

toolbox for machine learning, were it was as well embedded 

IoT / big data / cloud (predictive customer needs and wants) 

Smart Design Smart Manufacture               Smart Product Smart Service 



parallel routine for speeding up the whole process. Testing with 

several classifier algorithms, the results are presented in Fig. 8. 

 All those values colored in green show the corrected 

classified instances, based on the attribute that best reflected the 

desired selection: manufacturer or make. The red slots represent 

the incorrect instances. Here the manufacturer (make) was 

selected as the predictive variable in order to provide which of 

the observed brands are more attractive to customers based on 

all the considered variables. 

 
Fig. 6. Results of tested data. Fuzzy c-means with 3 clusters found 

 

 

 
Fig. 7. Membership function. From top to bottom: cluster 1, 2 

and 3 results. 

 
Fig. 8. Confusion matrix obtained for positive predictive 

values 

 
Fig. 9. Paralell coordinates plot for membership functions.  

For   this plot in Fig. 9 is inferred what type of attributes 

represent the most corrected classified instances to the 

predictive model. The selected response variable was the 

Manufacturer, and each colour represents the brand related to 



the predictors (fuel-type, number of doors, body style, engine 

locations, HP, etc.). For which the strongest relation is found 

with the engine location, number of cylinders and the HP 

variables. Moreover, once the attribute selection was performed 

using the GA selection, it was selected the following instances: 

num-of-doors, drive-wheels, height, engine-type, num-of-

cylinders. Those were performed with a crossover probability 

of 0.6, a max of generations of 20, mutation probability of 

0.033, initial population size of 20, and an initial seed. 

 

V. DISCUSSION AND CONCLUSION 

The use of fuzzy c-means to identify clustering, classify 
attributes and then select instances using GA search has 
delivered promising performance. It is found that visualization 
of results facilitates the analysis in real time. Identification of 
values for customers’ acquisition of a car based on categorical 
and numerical inputs can be achieved with fuzzy clustering. 

Through the development of a predictive tool for mining 
customers’ subconscious needs and wants, selection of best 
designs can thus be achieved in a smart way. The following 
features are summarised through the development of this work: 

1. In the case study, the results reveal that customer 

behaviour is based on 5 attributes (number-of-doors, 

drive-wheels, height, engine-type, number-of-cylinders). 

2. Fuzzy c-means has performed a good partition on the 

dataset and has identified 3 clusters for classification. 

3. A feedback design process is suitable for automation with 

CAutoD. 

4. Intelligent search within the design process allows needs 

and wants to be predictively covered, with virtual 

prototypes further tuneable by the customer. 

5. A CPS interconnected to the designed virtual prototypes 

would implement customisation efficiently. 

6. A smart product may be gauged with business informatics 

and reliable data constantly, which can be fed back to 

smart design with IoT in the loop of the i4 value chain. 

7. Since the “Internet of Everything (IoE)” facilitates 

connection through the cloud, it could make it faster to 

satisfy customer needs and wants. 

8. Customer-oriented decision by the manufacturer becomes 

easier to make, with customer-driven informatics, design 

and automation. 

9. Big data analytics help visualize the influence of product 

characteristics, clustering and interpretation of 

subconscious customer needs and wants. 

 

REFERENCES 

1. Kang, H.S., et al., Smart manufacturing: Past research, present findings, 
and future directions. International Journal of Precision Engineering and 

Manufacturing-Green Technology, 2016. 3(1): p. 111-128. 

2. Kull, H., Intelligent Manufacturing Technologies, in Mass Customization: 
Opportunities, Methods, and Challenges for Manufacturers. 2015, Apress: 

Berkeley, CA. p. 9-20. 

3. Flores Saldivar, A.A., et al. Self-organizing tool for smart design with 

predictive customer needs and wants to realize Industry 4.0. in World 

Congress on Computational Intelligence. 2016. Vancouver, Canada: IEEE. 

4. Kull, H., Introduction, in Mass Customization: Opportunities, Methods, 

and Challenges for Manufacturers. 2015, Apress: Berkeley, CA. p. 1-6. 

5. Möller, D.P.F., Digital Manufacturing/Industry 4.0, in Guide to Computing 

Fundamentals in Cyber-Physical Systems: Concepts, Design Methods, and 

Applications. 2016, Springer International Publishing: Cham. p. 307-375. 
6. Yang, B. and N. Burns, Implications of postponement for the supply chain. 

International Journal of Production Research, 2003. 41(9): p. 2075-2090. 

7. Flores Saldivar, A.A., et al. Identifying Smart Design Attributes for Industry 
4.0 Customization Using a Clustering Genetic Algorithm. in International 

Conference on Automation & Computing. 2016. University of Essex, 

Colchester city, UK: IEEE. 
8. Lee, J., et al., Recent advances and trends in predictive manufacturing 

systems in big data environment. Manufacturing Letters, 2013. 1(45): p. 38-

41. 
9. Lee, J., B. Bagheri, and H.-A. Kao, A Cyber-Physical Systems architecture 

for Industry 4.0-based manufacturing systems. Manufacturing Letters, 2015. 

3: p. 18-23. 
10. Mühlhäuser, M., Smart Products: An Introduction, in Constructing Ambient 

Intelligence: AmI 2007 Workshops Darmstadt, Germany, November 7-10, 

2007 Revised Papers, M. Mühlhäuser, A. Ferscha, and E. Aitenbichler, 
Editors. 2008, Springer Berlin Heidelberg: Berlin, Heidelberg. p. 158-164. 

11. Schmidt, R., et al., Industry 4.0 - Potentials for Creating Smart Products: 

Empirical Research Results, in Business Information Systems: 18th 
International Conference, BIS 2015, Poznań, Poland, June 24-26, 2015, 

Proceedings, W. Abramowicz, Editor. 2015, Springer International 

Publishing: Cham. p. 16-27. 
12. Nurcan, S. and R. Schmidt, Introduction to the First International Workshop 

on Business Process Management and Social Software (BPMS2 2008), in 
Business Process Management Workshops: BPM 2008 International 

Workshops, Milano, Italy, September 1-4, 2008. Revised Papers, D. Ardagna, 

M. Mecella, and J. Yang, Editors. 2009, Springer Berlin Heidelberg: Berlin, 
Heidelberg. p. 647-648. 

13. LaValle, S., et al., Big data, analytics and the path from insights to value., in 

MIT Sloan Management. 2011, MIT Sloan Management Review: North 

Hollywood, CA. p. 15. 

14. Schmidt, R., et al. Strategic Alignment of Cloud-Based Architectures for Big 

Data. in 2013 17th IEEE International Enterprise Distributed Object 
Computing Conference Workshops. 2013. 

15. Isaacson, W. The real leadership lessons of Steve Jobs. Harvard Business 

Review, 2012. 4, 92-102. 
16. Ji-Hyeong, H. and C. Su-Young. Consideration of manufacturing data to 

apply machine learning methods for predictive manufacturing. in 2016 

Eighth International Conference on Ubiquitous and Future Networks 
(ICUFN). 2016. 

17. Shewchuk, J., Enabling Manufacturing Transformation in a Connected 

World, in Microsoft Internet of Things. 2014, Microsoft Corporation: United 
States. p. 25. 

18. Nauck, D., et al., Predictive Customer Analytics and Real-Time Business 

Intelligence, in Service Chain Management, C. Voudouris, D. Lesaint, and 
G. Owusu, Editors. 2008, Springer Berlin Heidelberg. p. 205-214. 

19. Rabiner, L. and B.H. Juang, An introduction to hidden Markov models. ASSP 

Magazine, IEEE, 1986. 3(12): p. 4-16. 
20. Heckerman, D. and M.P. Wellman, Bayesian networks. Commun. ACM, 

1995. 38(13): p. 27-30. 

21. Ludwig, S.A., MapReduce-based fuzzy c-means clustering algorithm: 
implementation and scalability. International Journal of Machine Learning 

and Cybernetics, 2015. 6(6): p. 923-934. 

22. Bezdek, J.C., Pattern Recognition with Fuzzy Objective Function 
Algorithms. 1981: Kluwer Academic Publishers. 256. 

23. Bezdek, J.C., Objective Function Clustering, in Pattern Recognition with 

Fuzzy Objective Function Algorithms. 1981, Springer US: Boston, MA. p. 
43-93. 

24. Yun Li, K.H.A., Gregory C.Y. Chong, Wenyuan Feng, Kay Chen Tan, 

Hiroshi Kashiwagi, CAutoCSD-Evolutionary Search and Optimisation 
Enabled Computer Automated Control System Design. International Journal 

of Automation and Computing, 2004. 1(17): p. 76-88. 

25. Schlimmer, J.C., Automonile Data Set, W.s.A. Yearbook, Editor. 1985, UCI 

Machine Learning Repository: United States of America. 

 


