458 research outputs found

    Design architectures of the CMOS power amplifier for 2.4 GHz ISM band applications: An overview

    Get PDF
    Power amplifiers (PAs) are among the most crucial functional blocks in the radio frequency (RF) frontend for reliable wireless communication. PAs amplify and boost the input signal to the required output power. The signal is amplified to make it sufficiently high for the transmitter to propagate the required distance to the receiver. Attempted advancements of PA have focused on attaining high-performance RF signals for transmitters. Such PAs are expected to require low power consumption while producing a relatively high output power with a high efficiency. However, current PA designs in nanometer and micrometer complementary metal–oxide semiconductor (CMOS) technology present inevitable drawbacks, such as oxide breakdown and hot electron effect. A well-defined architecture, including a linear and simple functional block synthesis, is critical in designing CMOS PA for various applications. This article describes the different state-of-the art design architectures of CMOS PA, including their circuit operations, and analyzes the performance of PAs for 2.4 GHz ISM (industrial, scientific, and medical) band applications

    CMOS Power Amplifiers for Wireless Communication Systems

    Get PDF

    Highly efficient linear CMOS power amplifiers for wireless communications

    Get PDF
    The rapidly expanding wireless market requires low cost, high integration and high performance of wireless communication systems. CMOS technology provides benefits of cost effectiveness and higher levels of integration. However, the design of highly efficient linear CMOS power amplifier that meets the requirement of advanced communication standards is a challenging task because of the inherent difficulties in CMOS technology. The objective of this research is to realize PAs for wireless communication systems that overcoming the drawbacks of CMOS process, and to develop design approaches that satisfying the demands of the industry. In this dissertation, a cascode bias technique is proposed for improving linearity and reliability of the multi-stage cascode CMOS PA. In addition, to achieve load variation immunity characteristic and to enhance matching and stability, a fully-integrated balanced PA is implemented in a 0.18-m CMOS process. A triple-mode balanced PA using switched quadrature coupler is also proposed, and this work saved a large amount of quiescent current and further improved the efficiency in the back-off power. For the low losses and a high quality factor of passive output combining, a transformer-based quadrature coupler was implemented using integrated passive device (IPD) process. Various practical approaches for linear CMOS PA are suggested with the verified results, and they demonstrate the potential PA design approach for WCDMA applications using a standard CMOS technology.PhDCommittee Chair: Kenney, J. Stevenson; Committee Member: Jongman Kim; Committee Member: Kohl, Paul A.; Committee Member: Kornegay, Kevin T.; Committee Member: Lee, Chang-H

    A Review of Watt-Level CMOS RF Power Amplifiers

    Full text link

    A digital polar transmitter for multi-band OFDM Ultra-WideBand

    No full text
    Linear power amplifiers used to implement the Ultra-Wideband standard must be backed off from optimum power efficiency to meet the standard specifications and the power efficiency suffers. The problem of low efficiency can be mitigated by polar modulation. Digital polar architectures have been employed on numerous wireless standards like GSM, EDGE, and WLAN, where the fractional bandwidths achieved are only about 1%, and the power levels achieved are often in the vicinity of 20 dBm. Can the architecture be employed on wireless standards with low-power and high fractional bandwidth requirements and yet achieve good power efficiency? To answer these question, this thesis studies the application of a digital polar transmitter architecture with parallel amplifier stages for UWB. The concept of the digital transmitter is motivated and inspired by three factors. First, unrelenting advances in the CMOS technology in deep-submicron process and the prevalence of low-cost Digital Signal processing have resulted in the realization of higher level of integration using digitally intensive approaches. Furthermore, the architecture is an evolution of polar modulation, which is known for high power efficiency in other wireless applications. Finally, the architecture is operated as a digital-to-analog converter which circumvents the use of converters in conventional transmitters. Modeling and simulation of the system architecture is performed on the Agilent Advanced Design System Ptolemy simulation platform. First, by studying the envelope signal, we found that envelope clipping results in a reduction in the peak-to-average power ratio which in turn improves the error vector magnitude performance (figure of merit for the study). In addition, we have demonstrated that a resolution of three bits suffices for the digital polar transmitter when envelope clipping is performed. Next, this thesis covers a theoretical derivation for the estimate of the error vector magnitude based on the resolution, quantization and phase noise errors. An analysis on the process variations - which result in gain and delay mismatches - for a digital transmitter architecture with four bits ensues. The above studies allow RF designers to estimate the number of bits required and the amount of distortion that can be tolerated in the system. Next, a study on the circuit implementation was conducted. A DPA that comprises 7 parallel RF amplifiers driven by a constant RF phase-modulated signal and 7 cascode transistors (individually connected in series with the bottom amplifiers) digitally controlled by a 3-bit digitized envelope signal to reconstruct the UWB signal at the output. Through the use of NFET models from the IBM 130-nm technology, our simulation reveals that our DPA is able to achieve an EVM of - 22 dB. The DPA simulations have been performed at 3.432 GHz centre frequency with a channel bandwidth of 528 MHz, which translates to a fractional bandwidth of 15.4%. Drain efficiencies of 13.2/19.5/21.0% have been obtained while delivering -1.9/2.5/5.5 dBm of output power and consuming 5/9/17 mW of power. In addition, we performed a yield analysis on the digital polar amplifier, based on unit-weighted and binary-weighted architecture, when gain variations are introduced in all the individual stages. The dynamic element matching method is also introduced for the unit-weighted digital polar transmitter. Monte Carlo simulations reveal that when the gain of the amplifiers are allowed to vary at a mean of 1 with a standard deviation of 0.2, the binary-weighted architecture obtained a yield of 79%, while the yields of the unit-weighted architectures are in the neighbourhood of 95%. Moreover, the dynamic element matching technique demonstrates an improvement in the yield by approximately 3%. Finally, a hardware implementation for this architecture based on software-defined arbitrary waveform generators is studied. In this section, we demonstrate that the error vector magnitude results obtained with a four-stage binary-weighted digital polar transmitter under ideal combining conditions fulfill the European Computer Manufacturers Association requirements. The proposed experimental setup, believed to be the first ever attempted, confirm the feasibility of a digital polar transmitter architecture for Ultra-Wideband. In addition, we propose a number of power combining techniques suitable for the hardware implementation. Spatial power combining, in particular, shows a high potential for the digital polar transmitter architecture. The above studies demonstrate the feasibility of the digital polar architecture with good power efficiency for a wideband wireless standard with low-power and high fractional bandwidth requirements

    A -5 dBm 400MHz OOK Transmitter for Wireless Medical Application

    Get PDF
    A 400 MHz high efficiency transmitter forwireless medical application is presented in this paper. Transmitter architecture with high-energy efficiencies isproposed to achieve high data rate with low powerconsumption. In the on-off keying transmitters, the oscillatorand power amplifier are turned off when the transmittersends 0 data. The proposed class-e power amplifier has highefficiency for low level output power. The proposed on-offkeying transmitter consumes 1.52 mw at -5 dBm output by 40Mbps data rate and energy consumption 38 pJ/bit. Theproposed transmitter has been designed in 0.18µm CMOStechnology

    System-Level Analysis for Integrated Power Amplifier Design in mmWave Consumer Wireless Communications

    Get PDF
    System-level specifications for the design of integrated power amplifiers in mmWave wireless communications are derived in the paper. To this aim emerging standards for consumer applications such as wireless ultra-high definition (UHD) multimedia streaming or Gbit wireless LAN are considered (WirelessHD, WiGig, ECMA387, IEEE.802.11.ad, IEEE802.15.3c and upcoming 5G). A power amplifier design in 65 nm CMOS Silicon on Insulator (SOI) technology, targeting a 9 GHz UWB window from 57 to 66 GHz, is also proposed. To increase the power delivered to the antenna up to 18 mW, being still in the limit of maximum 1 dB compression point, multiple PA cores have been combined through a Wilkinson power combiner, but other solutions can be also explored for a better power efficiency and linearity

    Power-efficient current-mode analog circuits for highly integrated ultra low power wireless transceivers

    Get PDF
    In this thesis, current-mode low-voltage and low-power techniques have been applied to implement novel analog circuits for zero-IF receiver backend design, focusing on amplification, filtering and detection stages. The structure of the thesis follows a bottom-up scheme: basic techniques at device level for low voltage low power operation are proposed in the first place, followed by novel circuit topologies at cell level, and finally the achievement of new designs at system level. At device level the main contribution of this work is the employment of Floating-Gate (FG) and Quasi-Floating-Gate (QFG) transistors in order to reduce the power consumption. New current-mode basic topologies are proposed at cell level: current mirrors and current conveyors. Different topologies for low-power or high performance operation are shown, being these circuits the base for the system level designs. At system level, novel current-mode amplification, filtering and detection stages using the former mentioned basic cells are proposed. The presented current-mode filter makes use of companding techniques to achieve high dynamic range and very low power consumption with for a very wide tuning range. The amplification stage avoids gain bandwidth product achieving a constant bandwidth for different gain configurations using a non-linear active feedback network, which also makes possible to tune the bandwidth. Finally, the proposed current zero-crossing detector represents a very power efficient mixed signal detector for phase modulations. All these designs contribute to the design of very low power compact Zero-IF wireless receivers. The proposed circuits have been fabricated using a 0.5μm double-poly n-well CMOS technology, and the corresponding measurement results are provided and analyzed to validate their operation. On top of that, theoretical analysis has been done to fully explore the potential of the resulting circuits and systems in the scenario of low-power low-voltage applications.Programa Oficial de Doctorado en Tecnologías de las Comunicaciones (RD 1393/2007)Komunikazioen Teknologietako Doktoretza Programa Ofiziala (ED 1393/2007

    Vidutinių dažnių 5G belaidžių tinklų galios stiprintuvų tyrimas

    Get PDF
    This dissertation addresses the problems of ensuring efficient radio fre-quency transmission for 5G wireless networks. Taking into account, that the next generation 5G wireless network structure will be heterogeneous, the device density and their mobility will increase and massive MIMO connectivity capability will be widespread, the main investigated problem is formulated – increasing the efficiency of portable mid-band 5G wireless network CMOS power amplifier with impedance matching networks. The dissertation consists of four parts including the introduction, 3 chapters, conclusions, references and 3 annexes. The investigated problem, importance and purpose of the thesis, the ob-ject of the research methodology, as well as the scientific novelty are de-fined in the introduction. Practical significance of the obtained results, defended state-ments and the structure of the dissertation are also included. The first chapter presents an extensive literature analysis. Latest ad-vances in the structure of the modern wireless network and the importance of the power amplifier in the radio frequency transmission chain are de-scribed in detail. The latter is followed by different power amplifier archi-tectures, parameters and their improvement techniques. Reported imped-ance matching network design methods are also discussed. Chapter 1 is concluded distinguishing the possible research vectors and defining the problems raised in this dissertation. The second chapter is focused around improving the accuracy of de-signing lumped impedance matching network. The proposed methodology of estimating lumped inductor and capacitor parasitic parameters is dis-cussed in detail provi-ding complete mathematical expressions, including a summary and conclusions. The third chapter presents simulation results for the designed radio fre-quency power amplifiers. Two variations of Doherty power amplifier archi-tectures are presented in the second part, covering the full step-by-step de-sign and simulation process. The latter chapter is concluded by comparing simulation and measurement results for all designed radio frequency power amplifiers. General conclusions are followed by an extensive list of references and a list of 5 publications by the author on the topic of the dissertation. 5 papers, focusing on the subject of the discussed dissertation, have been published: three papers are included in the Clarivate Analytics Web of Sci-ence database with a citation index, one paper is included in Clarivate Ana-lytics Web of Science database Conference Proceedings, and one paper has been published in unreferred international conference preceedings. The au-thor has also made 9 presentations at 9 scientific conferences at a national and international level.Dissertatio

    Design of an Ultra Low Power RFCMOS Transceiver for a Self-Powered IoT Node

    Get PDF
    In this thesis a transceiver characterized to consume ultra low power based in RFCMOS for a self-powered Internet of Things node is studied and designed. The transceiver consists in a simple Non-Coherent system, which means that the signal is picked up by the receiver based on energy detection, as a result it is one of the simplest existing transceivers once it does not need in the transmitter a complex pulse generator and certainly in the receiver as well. It is composed by an OOK modulator, a pulse generator that will determine the centre frequency and a driver amplifier connected to a 50W antenna for the transmitter. While in the receiver there is as first block a Low Noise Amplifier, a self-mixer that will prepare the signal for the integrator and a comparator working as a energy detector. The UWB transceiver will be able to operate with a centre frequency of 4.5 GHz and a bandwidth of at least 500 MHz. It is critical to notice that the system is consuming a value of 96 mW for the power and accomplishing the power spectrum density -43 dBm/MHz using an OOK modulation technique. The entire system was implemented with standard 130nm CMOS technology
    corecore