429 research outputs found

    Morphing Switched-Capacitor Converters with Variable Conversion Ratio

    Get PDF
    High-voltage-gain and wide-input-range dc-dc converters are widely used in various electronics and industrial products such as portable devices, telecommunication, automotive, and aerospace systems. The two-stage converter is a widely adopted architecture for such applications, and it is proven to have a higher efficiency as compared with that of the single-stage converter. This paper presents a modular-cell-based morphing switched-capacitor (SC) converter for application as a front-end converter of the two-stage converter. The conversion ratio of this converter is flexible and variable and can be freely extended by increasing more SC modules. The varying conversion ratio is achieved through the morphing of the converter's structure corresponding to the amplitude of the input voltage. This converter is light and compact, and is highly efficient over a very wide range of input voltage and load conditions. Experimental work on a 25-W, 6-30-V input, 3.5-8.5-V output prototype, is performed. For a single SC module, the efficiency over the entire input voltage range is higher than 98%. Applied into the two-stage converter, the overall efficiency achievable over the entire operating range is 80% including the driver's loss

    A Comprehensive Review of DC-DC Converters for EV Applications

    Get PDF
    DC-DC converters in Electric vehicles (EVs) have the role of interfacing power sources to the DC-link and the DC-link to the required voltage levels for usage of different systems in EVs like DC drive, electric traction, entertainment, safety and etc. Improvement of gain and performance in these converters has a huge impact on the overall performance and future of EVs. So, different configurations have been suggested by many researches. In this paper, bidirectional DC-DC converters (BDCs) are divided into four categories as isolated-soft, isolated-hard, non-isolated-soft and non-isolated-hard depending on the isolation and type of switching. Moreover, the control strategies, comparative factors, selection for a specific application and recent trends are reviewed completely. As a matter of fact, over than 200 papers have been categorized and considered to help the researchers who work on BDCs for EV application

    A study of high-frequency-fed AC-DC converter with different DC-DC topologies

    Get PDF
    In this paper, the operation of high-frequency-fed AC-DC converters with different types of DC-DC topologies is presented. Based on the commonly used DC-DC converter topologies, the possibilities of new converter structure are investigated. Using buck and ZETA topologies as examples, the output voltage gain, output load range and switch stress of the converters are analytically studied. Both converter implementation examples will be given and experimentally demonstrated. © IEEE.published_or_final_versio

    Design and Analysis of a Non-Isolated High Gain Step-Up Cuk Converter

    Get PDF
    Renewable energy sources, such as solar energy, are desired for both economic and ecological issues. These renewable energy sources are plentiful in nature and have a terrific capability for power generation. The only drawback of solar energy, which is one of the best forms of energy sources, is that the output has a low voltage and needs to be stepped up in order to be inserted into the DC grid or an inverter for AC applications. To overcome this drawback, a high gain DC-DC power converter is required in this kind of system. These power converters are needed for a better regulation capability with a small density volume, lightweight, high efficiency, and low cost. In this dissertation, different topologies of a non-isolated high gain step-up Cuk converter based on switched-inductor (SL) and switched-capacitor (SC) techniques for renewable energy applications, such as photovoltaic and fuel cell, are proposed. These kinds of Cuk converters provide a negative-to-positive step-up DC-DC voltage conversion. The proposed Cuk converters increase the voltage boost ability significantly using the SL and SC techniques compared with the conventional Cuk and boost converters. Then, a maximum power point tracking (MPPT) technique is employed in the proposed Cuk converter to get the maximum power point (MPP) from the PV panel. The proposed Cuk converters are derived from the conventional Cuk converter by replacing the single inductor at the input, output sides, or both by a SL and the transferring energy capacitor by a SC. The main advantages of the proposed Cuk converters are achieving a high voltage conversion ratio and reducing the voltage stress across the main switch. Therefore, a switch with a lower voltage rating and thus a lower RDS-ON can be used, and that will lead to a higher efficiency. For example, the third topology of the proposed Cuk converter has the ability to boost the input voltage up to 13 times when D=0.75, D is the duty cycle. The voltage gain and the voltage stress across the main switch in all topologies have been compared with conventional converters and other Cuk converters used different techniques. The proposed topologies avoid using a transformer, coupled inductors, or an extreme duty cycle leading to less volume, loss, and cost. The proposed Cuk converters are analyzed in continuous conduction mode (CCM), and they have been designed for 12V input supply voltage, 50kHz switching frequency, and 75% duty cycle. A detailed theoretical analysis of the CCM is represented, and all the equations have been derived and matched with the results. The proposed Cuk converters have been simulated in MATLAB/Simulink and the results are discussed

    Survey of DC-DC Non-Isolated Topologies for Unidirectional Power Flow in Fuel Cell Vehicles

    Get PDF
    The automobile companies are focusing on recent technologies such as growing Hydrogen (H2) and Fuel Cell (FC) Vehicular Power Train (VPT) to improve the Tank-To-Wheel (TTW) efficiency. Benefits, the lower cost, `Eco\u27 friendly, zero-emission and high-power capacity, etc. In the power train of fuel cell vehicles, the DC-DC power converters play a vital role to boost the fuel cell stack voltage. Hence, satisfy the demand of the motor and transmission in the vehicles. Several DC-DC converter topologies have proposed for various vehicular applications like fuel cell, battery, and renewable energy fed hybrid vehicles etc. Most cases, the DC-DC power converters are viable and cost-effective solutions for FC-VPT with reduced size and increased efficiency. This article describes the state-of-the-art in unidirectional non-isolated DC-DC Multistage Power Converter (MPC) topologies for FC-VPT application. The paper presented the comprehensive review, comparison of different topologies and stated the suitability for different vehicular applications. This article also discusses the DC-DC MPC applications more specific to the power train of a small vehicle to large vehicles (bus, trucks etc.). Further, the advantages and disadvantages pointed out with the prominent features for converters. Finally, the classification of the DC-DC converters, its challenges, and applications for FC technology is presented in the review article as state-of-the-art in research

    Analysis of a new family of DC-DC converters with input-parallel output-series structure

    Get PDF
    There is an increasing trend of development and installation of switching power supplies due to their highly efficient power conversion, fast power control and high quality power conditioning for applications such as renewable energy integration and energy storage management systems. In most of these applications, high voltage conversion ratio is required. However, basic switching converters have limited voltage conversion ratio. There has been much research into development of high gain power converters. While most of the reported topologies focus on high gain and high efficiency, in this thesis, the input and output ripple currents and reliability are also considered to derive a new converter structure suitable for high step-up voltage conversion applications. High ripple currents and voltages at the input and output of dc-dc converters are not desirable because they may affect the operation of the dc source or the load. A number of converters operating in an interleaved manner can reduce these ripples. This thesis proposes a dc/dc switching converter structure which is capable of reducing the ripple problem through interleaved action, in addition to high gain and high efficiency voltage conversion. The thesis analyses the proposed converter structure through a dual buck-boost converter topology. The structure allows different converter topologies and combinations of them for different applications to be configured. The study begins with a motivation and a literature review of dc/dc converters. The new family of high step-up converters is introduced with an interleaved buck-boost as an example, followed by small-signal analysis. Experimental verifications, conclusions and future work are discussed

    Analysis of a new family of DC-DC converters with input-parallel output-series structure

    Get PDF
    There is an increasing trend of development and installation of switching power supplies due to their highly efficient power conversion, fast power control and high quality power conditioning for applications such as renewable energy integration and energy storage management systems. In most of these applications, high voltage conversion ratio is required. However, basic switching converters have limited voltage conversion ratio. There has been much research into development of high gain power converters. While most of the reported topologies focus on high gain and high efficiency, in this thesis, the input and output ripple currents and reliability are also considered to derive a new converter structure suitable for high step-up voltage conversion applications. High ripple currents and voltages at the input and output of dc-dc converters are not desirable because they may affect the operation of the dc source or the load. A number of converters operating in an interleaved manner can reduce these ripples. This thesis proposes a dc/dc switching converter structure which is capable of reducing the ripple problem through interleaved action, in addition to high gain and high efficiency voltage conversion. The thesis analyses the proposed converter structure through a dual buck-boost converter topology. The structure allows different converter topologies and combinations of them for different applications to be configured. The study begins with a motivation and a literature review of dc/dc converters. The new family of high step-up converters is introduced with an interleaved buck-boost as an example, followed by small-signal analysis. Experimental verifications, conclusions and future work are discussed

    A common ground switched-quasi-Z-source bidirectional DC-DC converter with wide-voltage-gain range for EVs with hybrid energy sources

    Get PDF
    A common ground switched-quasi-Z-source bidirectional DC-DC converter is proposed for electric vehicles (EVs) with hybrid energy sources. The proposed converter is based on the traditional two-level quasi-Z-source bidirectional DC-DC converter, changing the position of the main power switch. It has the advantages of a wide voltage gain range, a lower voltage stress across the power switches, and an absolute common ground. The operating principle, the voltage and current stresses on the power switches, the comparisons with the other converters, the small signal analysis and the controller design are presented in this paper. Finally, a 300W prototype with Uhigh=240V and Ulow=40~120V is developed, and the experimental results validate the performance and the feasibility of the proposed converter

    Parameter estimation and control design of solar maximum power point tracking

    Get PDF
    Parameters evaluation, design, and intelligent control of the solar photovoltaic model are presented in this work. The parameters of zeta converters such as a rating of an inductor, capacitor, and switches for a particular load are evaluated its values to compare the trade of the existing model and promoted to research in the proposed area. The zeta converter is pulsed through intelligent controller-based maximum power point tracking (intelligent-MPPT). The intelligent controller is a fuzzy logic controller (FLC) which extracts maximum power from the solar panel using the zeta converter. The performance of evaluated parameters based on the solar system and zeta converter is seen by an intelligent control algorithm. Moreover, evaluated parameters of solar photovoltaic (PV) and zeta converter can be examined the performance of fuzzy based intelligent MPPT under transient and steady-state conditions with different solar insolation. The brushless direct current motor-based water pump is used as the direct control (DC) load of the proposed model. The proposed model can enhance the research and assist to develop a new configuration of the present system
    • …
    corecore