1,284 research outputs found

    Markov chains, R\mathscr R-trivial monoids and representation theory

    Full text link
    We develop a general theory of Markov chains realizable as random walks on R\mathscr R-trivial monoids. It provides explicit and simple formulas for the eigenvalues of the transition matrix, for multiplicities of the eigenvalues via M\"obius inversion along a lattice, a condition for diagonalizability of the transition matrix and some techniques for bounding the mixing time. In addition, we discuss several examples, such as Toom-Tsetlin models, an exchange walk for finite Coxeter groups, as well as examples previously studied by the authors, such as nonabelian sandpile models and the promotion Markov chain on posets. Many of these examples can be viewed as random walks on quotients of free tree monoids, a new class of monoids whose combinatorics we develop.Comment: Dedicated to Stuart Margolis on the occasion of his sixtieth birthday; 71 pages; final version to appear in IJA

    The omega-inequality problem for concatenation hierarchies of star-free languages

    Get PDF
    The problem considered in this paper is whether an inequality of omega-terms is valid in a given level of a concatenation hierarchy of star-free languages. The main result shows that this problem is decidable for all (integer and half) levels of the Straubing-Th\'erien hierarchy

    On the representation theory of finite J-trivial monoids

    Full text link
    In 1979, Norton showed that the representation theory of the 0-Hecke algebra admits a rich combinatorial description. Her constructions rely heavily on some triangularity property of the product, but do not use explicitly that the 0-Hecke algebra is a monoid algebra. The thesis of this paper is that considering the general setting of monoids admitting such a triangularity, namely J-trivial monoids, sheds further light on the topic. This is a step to use representation theory to automatically extract combinatorial structures from (monoid) algebras, often in the form of posets and lattices, both from a theoretical and computational point of view, and with an implementation in Sage. Motivated by ongoing work on related monoids associated to Coxeter systems, and building on well-known results in the semi-group community (such as the description of the simple modules or the radical), we describe how most of the data associated to the representation theory (Cartan matrix, quiver) of the algebra of any J-trivial monoid M can be expressed combinatorially by counting appropriate elements in M itself. As a consequence, this data does not depend on the ground field and can be calculated in O(n^2), if not O(nm), where n=|M| and m is the number of generators. Along the way, we construct a triangular decomposition of the identity into orthogonal idempotents, using the usual M\"obius inversion formula in the semi-simple quotient (a lattice), followed by an algorithmic lifting step. Applying our results to the 0-Hecke algebra (in all finite types), we recover previously known results and additionally provide an explicit labeling of the edges of the quiver. We further explore special classes of J-trivial monoids, and in particular monoids of order preserving regressive functions on a poset, generalizing known results on the monoids of nondecreasing parking functions.Comment: 41 pages; 4 figures; added Section 3.7.4 in version 2; incorporated comments by referee in version

    A Geometric Approach to the Problem of Unique Decomposition of Processes

    Full text link
    This paper proposes a geometric solution to the problem of prime decomposability of concurrent processes first explored by R. Milner and F. Moller in [MM93]. Concurrent programs are given a geometric semantics using cubical areas, for which a unique factorization theorem is proved. An effective factorization method which is correct and complete with respect to the geometric semantics is derived from the factorization theorem. This algorithm is implemented in the static analyzer ALCOOL.Comment: 15 page

    Uniform and Bernoulli measures on the boundary of trace monoids

    Full text link
    Trace monoids and heaps of pieces appear in various contexts in combinatorics. They also constitute a model used in computer science to describe the executions of asynchronous systems. The design of a natural probabilistic layer on top of the model has been a long standing challenge. The difficulty comes from the presence of commuting pieces and from the absence of a global clock. In this paper, we introduce and study the class of Bernoulli probability measures that we claim to be the simplest adequate probability measures on infinite traces. For this, we strongly rely on the theory of trace combinatorics with the M\"obius polynomial in the key role. These new measures provide a theoretical foundation for the probabilistic study of concurrent systems.Comment: 34 pages, 5 figures, 27 reference

    Tensor products and regularity properties of Cuntz semigroups

    Full text link
    The Cuntz semigroup of a C*-algebra is an important invariant in the structure and classification theory of C*-algebras. It captures more information than K-theory but is often more delicate to handle. We systematically study the lattice and category theoretic aspects of Cuntz semigroups. Given a C*-algebra AA, its (concrete) Cuntz semigroup Cu(A)Cu(A) is an object in the category CuCu of (abstract) Cuntz semigroups, as introduced by Coward, Elliott and Ivanescu. To clarify the distinction between concrete and abstract Cuntz semigroups, we will call the latter CuCu-semigroups. We establish the existence of tensor products in the category CuCu and study the basic properties of this construction. We show that CuCu is a symmetric, monoidal category and relate Cu(AB)Cu(A\otimes B) with Cu(A)CuCu(B)Cu(A)\otimes_{Cu}Cu(B) for certain classes of C*-algebras. As a main tool for our approach we introduce the category WW of pre-completed Cuntz semigroups. We show that CuCu is a full, reflective subcategory of WW. One can then easily deduce properties of CuCu from respective properties of WW, e.g. the existence of tensor products and inductive limits. The advantage is that constructions in WW are much easier since the objects are purely algebraic. We also develop a theory of CuCu-semirings and their semimodules. The Cuntz semigroup of a strongly self-absorbing C*-algebra has a natural product giving it the structure of a CuCu-semiring. We give explicit characterizations of CuCu-semimodules over such CuCu-semirings. For instance, we show that a CuCu-semigroup SS tensorially absorbs the CuCu-semiring of the Jiang-Su algebra if and only if SS is almost unperforated and almost divisible, thus establishing a semigroup version of the Toms-Winter conjecture.Comment: 195 pages; revised version; several proofs streamlined; some results corrected, in particular added 5.2.3-5.2.

    Cohomology of idempotent braidings, with applications to factorizable monoids

    Get PDF
    We develop new methods for computing the Hochschild (co)homology of monoids which can be presented as the structure monoids of idempotent set-theoretic solutions to the Yang--Baxter equation. These include free and symmetric monoids; factorizable monoids, for which we find a generalization of the K{\"u}nneth formula for direct products; and plactic monoids. Our key result is an identification of the (co)homologies in question with those of the underlying YBE solutions, via the explicit quantum symmetrizer map. This partially answers questions of Farinati--Garc{\'i}a-Galofre and Dilian Yang. We also obtain new structural results on the (co)homology of general YBE solutions
    corecore