We develop a general theory of Markov chains realizable as random walks on
R-trivial monoids. It provides explicit and simple formulas for the
eigenvalues of the transition matrix, for multiplicities of the eigenvalues via
M\"obius inversion along a lattice, a condition for diagonalizability of the
transition matrix and some techniques for bounding the mixing time. In
addition, we discuss several examples, such as Toom-Tsetlin models, an exchange
walk for finite Coxeter groups, as well as examples previously studied by the
authors, such as nonabelian sandpile models and the promotion Markov chain on
posets. Many of these examples can be viewed as random walks on quotients of
free tree monoids, a new class of monoids whose combinatorics we develop.Comment: Dedicated to Stuart Margolis on the occasion of his sixtieth
birthday; 71 pages; final version to appear in IJA