research

Tensor products and regularity properties of Cuntz semigroups

Abstract

The Cuntz semigroup of a C*-algebra is an important invariant in the structure and classification theory of C*-algebras. It captures more information than K-theory but is often more delicate to handle. We systematically study the lattice and category theoretic aspects of Cuntz semigroups. Given a C*-algebra AA, its (concrete) Cuntz semigroup Cu(A)Cu(A) is an object in the category CuCu of (abstract) Cuntz semigroups, as introduced by Coward, Elliott and Ivanescu. To clarify the distinction between concrete and abstract Cuntz semigroups, we will call the latter CuCu-semigroups. We establish the existence of tensor products in the category CuCu and study the basic properties of this construction. We show that CuCu is a symmetric, monoidal category and relate Cu(A⊗B)Cu(A\otimes B) with Cu(A)⊗CuCu(B)Cu(A)\otimes_{Cu}Cu(B) for certain classes of C*-algebras. As a main tool for our approach we introduce the category WW of pre-completed Cuntz semigroups. We show that CuCu is a full, reflective subcategory of WW. One can then easily deduce properties of CuCu from respective properties of WW, e.g. the existence of tensor products and inductive limits. The advantage is that constructions in WW are much easier since the objects are purely algebraic. We also develop a theory of CuCu-semirings and their semimodules. The Cuntz semigroup of a strongly self-absorbing C*-algebra has a natural product giving it the structure of a CuCu-semiring. We give explicit characterizations of CuCu-semimodules over such CuCu-semirings. For instance, we show that a CuCu-semigroup SS tensorially absorbs the CuCu-semiring of the Jiang-Su algebra if and only if SS is almost unperforated and almost divisible, thus establishing a semigroup version of the Toms-Winter conjecture.Comment: 195 pages; revised version; several proofs streamlined; some results corrected, in particular added 5.2.3-5.2.

    Similar works

    Full text

    thumbnail-image

    Available Versions