10 research outputs found

    A global reference database of crowdsourced cropland data collected using the Geo-Wiki platform

    Get PDF
    A global reference data set on cropland was collected through a crowdsourcing campaign using the Geo-Wiki crowdsourcing tool. The campaign lasted three weeks, with over 80 participants from around the world reviewing almost 36,000 sample units, focussing on cropland identification. For quality assessment purposes, two additional data sets are provided. The first is a control set of 1,793 sample locations validated by students trained in satellite image interpretation. This data set was used to assess the quality of the crowd as the campaign progressed. The second data set contains 60 expert validations for additional evaluation of the quality of the contributions. All data sets are split into two parts: the first part shows all areas classified as cropland and the second part shows cropland average per location and user. After further processing, the data presented here might be suitable to validate and compare medium and high resolution cropland maps generated using remote sensing. These could also be used to train classification algorithms for developing new maps of land cover and cropland extent

    A global reference database of crowdsourced cropland data collected using the Geo-Wiki platform

    Get PDF
    A global reference data set on cropland was collected through a crowdsourcing campaign using the Geo-Wiki crowdsourcing tool. The campaign lasted three weeks, with over 80 participants from around the world reviewing almost 36,000 sample units, focussing on cropland identification. For quality assessment purposes, two additional data sets are provided. The first is a control set of 1,793 sample locations validated by students trained in satellite image interpretation. This data set was used to assess the quality of the crowd as the campaign progressed. The second data set contains 60 expert validations for additional evaluation of the quality of the contributions. All data sets are split into two parts: the first part shows all areas classified as cropland and the second part shows cropland average per location and user. After further processing, the data presented here might be suitable to validate and compare medium and high resolution cropland maps generated using remote sensing. These could also be used to train classification algorithms for developing new maps of land cover and cropland extent

    Characterizing the Spatial and Temporal Availability of Very High Resolution Satellite Imagery in Google Earth and Microsoft Bing Maps as a Source of Reference Data

    Get PDF
    Very high resolution (VHR) satellite imagery from Google Earth and Microsoft Bing Maps is increasingly being used in a variety of applications from computer sciences to arts and humanities. In the field of remote sensing, one use of this imagery is to create reference data sets through visual interpretation, e.g., to complement existing training data or to aid in the validation of land-cover products. Through new applications such as Collect Earth, this imagery is also being used for monitoring purposes in the form of statistical surveys obtained through visual interpretation. However, little is known about where VHR satellite imagery exists globally or the dates of the imagery. Here we present a global overview of the spatial and temporal distribution of VHR satellite imagery in Google Earth and Microsoft Bing Maps. The results show an uneven availability globally, with biases in certain areas such as the USA, Europe and India, and with clear discontinuities at political borders. We also show that the availability of VHR imagery is currently not adequate for monitoring protected areas and deforestation, but is better suited for monitoring changes in cropland or urban areas using visual interpretation

    Towards a set of agrosystem-specific cropland mapping methods to address the global cropland diversity

    Get PDF
    Accurate cropland information is of paramount importance for crop monitoring. This study compares five existing cropland mapping methodologies over five contrasting Joint Experiment for Crop Assessment and Monitoring (JECAM) sites of medium to large average field size using the time series of 7-day 250 m Moderate Resolution Imaging Spectroradiometer (MODIS) mean composites (red and near-infrared channels). Different strategies were devised to assess the accuracy of the classification methods: confusion matrices and derived accuracy indicators with and without equalizing class proportions, assessing the pairwise difference error rates and accounting for the spatial resolution bias. The robustness of the accuracy with respect to a reduction of the quantity of calibration data available was also assessed by a bootstrap approach in which the amount of training data was systematically reduced. Methods reached overall accuracies ranging from 85% to 95%, which demonstrates the ability of 250 m imagery to resolve fields down to 20 ha. Despite significantly different error rates, the site effect was found to persistently dominate the method effect. This was confirmed even after removing the share of the classification due to the spatial resolution of the satellite data (from 10% to 30%). This underlines the effect of other agrosystems characteristics such as cloudiness, crop diversity, and calendar on the ability to perform accurately. All methods have potential for large area cropland mapping as they provided accurate results with 20% of the calibration data, e.g. 2% of the study area in Ukraine. To better address the global cropland diversity, results advocate movement towards a set of cropland classification methods that could be applied regionally according to their respective performance in specific landscapes.Instituto de Clima y AguaFil: Waldner, François. Université catholique de Louvain. Earth and Life Institute - Environment, Croix du Sud; BelgicaFil: De Abelleyra, Diego. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Clima y Agua; ArgentinaFil: Veron, Santiago Ramón. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Clima y Agua; Argentina. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Métodos Cuantitativos y Sistemas de Información; ArgentinaFil: Zhang, Miao. Chinese Academy of Science. Institute of Remote Sensing and Digital Earth; ChinaFil: Wu, Bingfang. Chinese Academy of Science. Institute of Remote Sensing and Digital Earth; ChinaFil: Plotnikov, Dmitry. Russian Academy of Sciences. Space Research Institute. Terrestrial Ecosystems Monitoring Laboratory; RusiaFil: Bartalev, Sergey. Russian Academy of Sciences. Space Research Institute. Terrestrial Ecosystems Monitoring Laboratory; RusiaFil: Lavreniuk, Mykola. Space Research Institute NAS and SSA. Department of Space Information Technologies; UcraniaFil: Skakun, Sergii. Space Research Institute NAS and SSA. Department of Space Information Technologies; Ucrania. University of Maryland. Department of Geographical Sciences; Estados UnidosFil: Kussul, Nataliia. Space Research Institute NAS and SSA. Department of Space Information Technologies; UcraniaFil: Le Maire, Guerric. UMR Eco&Sols, CIRAD; Francia. Empresa Brasileira de Pesquisa Agropecuária. Meio Ambiante; BrasilFil: Dupuy, Stéphane. Centre de Coopération Internationale en Recherche Agronomique pour le Développement. Territoires, Environnement, Télédétection et Information Spatiale; FranciaFil: Jarvis, Ian. Agriculture and Agri-Food Canada. Science and Technology Branch. Agri-Climate, Geomatics and Earth Observation; CanadáFil: Defourny, Pierre. Université Catholique de Louvain. Earth and Life Institute - Environment, Croix du Sud; Belgic

    Validation of Automatically Generated Global and Regional Cropland Data Sets: The Case of Tanzania

    Get PDF
    There is a need to validate existing global cropland maps since they are used for different purposes including agricultural monitoring and assessment. In this paper we validate three recent global products (ESA-CCI, GlobeLand30, FROM-GC) and one regional product (Tanzania Land Cover 2010 Scheme II) using a validation data set that was collected by students through the Geo-Wiki tool. The ultimate aim was to understand the usefulness of these products for agricultural monitoring. Data were collected wall-to-wall for Kilosa district and for a sample across Tanzania. The results show that the amount of and spatial extent of cropland in the different products differs considerably from 8% to 42% for Tanzania, with similar values for Kilosa district. The agreement of the validation data with the four different products varied between 36% and 54% and highlighted that cropland is overestimated by the ESA-CCI and underestimated by FROM-GC. The validation data were also analyzed for consistency between the student interpreters and also compared with a sample interpreted by five experts for quality assurance. Regarding consistency between the students, there was more than 80% agreement if one difference in cropland category was considered (e.g., between low and medium cropland) while most of the confusion with the experts was also within one category difference. In addition to the validation of current cropland products, the data set collected by the students also has potential value as a training set for improving future cropland products

    A Unified Cropland Layer at 250 m for Global Agriculture Monitoring

    No full text
    Accurate and timely information on the global cropland extent is critical for food security monitoring, water management and earth system modeling. Principally, it allows for analyzing satellite image time-series to assess the crop conditions and permits isolation of the agricultural component to focus on food security and impacts of various climatic scenarios. However, despite its critical importance, accurate information on the spatial extent, cropland mapping with remote sensing imagery remains a major challenge. Following an exhaustive identification and collection of existing land cover maps, a multi-criteria analysis was designed at the country level to evaluate the fitness of a cropland map with regards to four dimensions: its timeliness, its legend, its resolution adequacy and its confidence level. As a result, a Unified Cropland Layer that combines the fittest products into a 250 m global cropland map was assembled. With an evaluated accuracy ranging from 82% to 95%, the Unified Cropland Layer successfully improved the accuracy compared to single global products

    A unified cropland layer at 250 m for global agriculture monitoring

    Get PDF
    Accurate and timely information on the global cropland extent is critical for food security monitoring, water management and earth system modeling. Principally, it allows for analyzing satellite image time-series to assess the crop conditions and permits isolation of the agricultural component to focus on food security and impacts of various climatic scenarios. However, despite its critical importance, accurate information on the spatial extent, cropland mapping with remote sensing imagery remains a major challenge. Following an exhaustive identification and collection of existing land cover maps, a multi-criteria analysis was designed at the country level to evaluate the fitness of a cropland map with regards to four dimensions: its timeliness, its legend, its resolution adequacy and its confidence level. As a result, a Unified Cropland Layer that combines the fittest products into a 250 m global cropland map was assembled. With an evaluated accuracy ranging from 82% to 95%, the Unified Cropland Layer successfully improved the accuracy compared to single global products.Data Set: https://dx.doi.org/10.6084/m9.figshare.2066742 or http://maps.elie.ucl.ac.b
    corecore