218 research outputs found

    FVF-Based Low-Dropout Voltage Regulator with Fast Charging/Discharging Paths for Fast Line and Load Regulation

    Get PDF
    A new internally compensated low drop-out voltage regulator based on the cascoded flipped voltage follower is presented in this paper. Adaptive biasing current and fast charging/discharging paths have been added to rapidly charge and discharge the parasitic capacitance of the pass transistor gate, thus improving the transient response. The proposed regulator was designed with standard 65-nm CMOS technology. Measurements show load and line regulations of 433.80 μV/mA and 5.61 mV/V, respectively. Furthermore, the output voltage spikes are kept under 76 mV for 0.1 mA to 100 mA load variations and 0.9 V to 1.2 V line variations with rise and fall times of 1 μs. The total current consumption is 17.88 μA (for a 0.9 V supply voltage).Ministerio de Economía y Competitividad TEC2015-71072-C3-3-RConsejería de Economía, Innovación y Ciencia. Junta de Andalucía P12-TIC-186

    Full On-chip low dropout voltage regulator with an enhanced transient response for low power systems

    Get PDF
    A full on chip low Dropout Voltage Regulator (LDO) with fast transient response and small capacitor compensation circuit is proposed. The novel technique is implemented to detect the variation voltage at the output of LDO and enable the proposed fast detector amplifier (FDA) to improve load transient response of 50mA load step. The large external capacitor used in Conventional LDO Regulators is removed allowing for greater power system integration for system-on-chip (SoC) applications. The 1.6-V Full On-Chip LDO voltage regulator with a power supply of 1.8 V was designed and simulated in the 0.18µm CMOS technology, consuming only 14 µA of ground current with a fast settling-time LNR(Line Regulation) and LOR(Load regulation) of 928ns and 883ns respectively while the rise and fall times in LNR and LOR is 500ns

    Design of a Low Power External Capacitor-Less Low-Dropout Regulator with Gain-Compensated Error Amplifier

    Get PDF
    This thesis introduces a gain-compensated external capacitor-less low-dropout voltage regulator with total 5.7 uA quiescent current at all load conditions. The two-stage gain-compensated error amplifier is implemented with a cross-couple pair negative resistor to make the LDO achieve higher gain (> 50 dB) with very low bias current (< 1.3 uA). The LDO can achieve 52 dB loop gain at no load condition, 64 dB at 1 mA and 54 dB at 100 mA load. During transients (0 A to 100 mA) the undershoot is optimized to 98.6 mV with 100 ns rising and falling time through a differentiator circuit to boost the LDO’s transient response. The phase margin of the proposed LDO is 55◦ at 1 mA and 79.27◦ at max load (100 mA). Figure of merit (FOM) of this work is 2.79 fs which is very small

    Ultra-low Quiescent Current NMOS Low Dropout Regulator With Fast Transient response for Always-On Internet-of-Things Applications

    Get PDF
    abstract: The increased adoption of Internet-of-Things (IoT) for various applications like smart home, industrial automation, connected vehicles, medical instrumentation, etc. has resulted in a large scale distributed network of sensors, accompanied by their power supply regulator modules, control and data transfer circuitry. Depending on the application, the sensor location can be virtually anywhere and therefore they are typically powered by a localized battery. To ensure long battery-life without replacement, the power consumption of the sensor nodes, the supply regulator and, control and data transmission unit, needs to be very low. Reduction in power consumption in the sensor, control and data transmission is typically done by duty-cycled operation such that they are on periodically only for short bursts of time or turn on only based on a trigger event and are otherwise powered down. These approaches reduce their power consumption significantly and therefore the overall system power is dominated by the consumption in the always-on supply regulator. Besides having low power consumption, supply regulators for such IoT systems also need to have fast transient response to load current changes during a duty-cycled operation. Supply regulation using low quiescent current low dropout (LDO) regulators helps in extending the battery life of such power aware always-on applications with very long standby time. To serve as a supply regulator for such applications, a 1.24 µA quiescent current NMOS low dropout (LDO) is presented in this dissertation. This LDO uses a hybrid bias current generator (HBCG) to boost its bias current and improve the transient response. A scalable bias-current error amplifier with an on-demand buffer drives the NMOS pass device. The error amplifier is powered with an integrated dynamic frequency charge pump to ensure low dropout voltage. A low-power relaxation oscillator (LPRO) generates the charge pump clocks. Switched-capacitor pole tracking (SCPT) compensation scheme is proposed to ensure stability up to maximum load current of 150 mA for a low-ESR output capacitor range of 1 - 47µF. Designed in a 0.25 µm CMOS process, the LDO has an output voltage range of 1V – 3V, a dropout voltage of 240 mV, and a core area of 0.11 mm2.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201

    An external capacitor-less low-dropout voltage regulator using a transconductance amplifier

    Get PDF
    This paper presents an external capacitor-less NMOS low-dropout (LDO) voltage regulator integrated with a standard CSMC 0.6 μm BiCMOS technology. Over a -55 ∘C to +125 ∘C temperature range, the fabricated LDO provides a stable and considerable amount of 3 A output current over wide ranges of output capacitance COUT (from zero to hundreds of μF ) and effective-series-resistance (ESR) (from tens of milliohms to several ohms). A low dropout voltage of 200 mV has been realised by accurate modelling. Operating with an input voltage ranging from 2.2 V to 5.5 V provides a scalable output voltage from 0.8 V to 3.6 V. When the load current jumps from 100 mA to 3 A within 3 μs, the output voltage overshoot remains as low as 50 mV without output capacitance, COUT. The system bandwidth is about 2 MHz, and hardly changes with load altering to ensure system stability. To improve the load transient response and driving capacity of the NMOS power transistor, a buffer with high input impedance and low output impedance is applied between the transconductance amplifier and the NMOS power transistor. The total area of fabricated LDO voltage regulator chip including pads is 2.1 mm×2.2 mm

    CMOS Design of Reconfigurable SoC Systems for Impedance Sensor Devices

    Get PDF
    La rápida evolución en el campo de los sensores inteligentes, junto con los avances en las tecnologías de la computación y la comunicación, está revolucionando la forma en que recopilamos y analizamos datos del mundo físico para tomar decisiones, facilitando nuevas soluciones que desempeñan tareas que antes eran inconcebibles de lograr.La inclusión en un mismo dado de silicio de todos los elementos necesarios para un proceso de monitorización y actuación ha sido posible gracias a los avances en micro (y nano) electrónica. Al mismo tiempo, la evolución de las tecnologías de procesamiento y micromecanizado de superficies de silicio y otros materiales complementarios ha dado lugar al desarrollo de sensores integrados compatibles con CMOS, lo que permite la implementación de matrices de sensores de alta densidad. Así, la combinación de un sistema de adquisición basado en sensores on-Chip, junto con un microprocesador como núcleo digital donde se puede ejecutar la digitalización de señales, el procesamiento y la comunicación de datos proporciona características adicionales como reducción del coste, compacidad, portabilidad, alimentación por batería, facilidad de uso e intercambio inteligente de datos, aumentando su potencial número de aplicaciones.Esta tesis pretende profundizar en el diseño de un sistema portátil de medición de espectroscopía de impedancia de baja potencia operado por batería, basado en tecnologías microelectrónicas CMOS, que pueda integrarse con el sensor, proporcionando una implementación paralelizable sin incrementar significativamente el tamaño o el consumo, pero manteniendo las principales características de fiabilidad y sensibilidad de un instrumento de laboratorio. Esto requiere el diseño tanto de la etapa de gestión de la energía como de las diferentes celdas que conforman la interfaz, que habrán de satisfacer los requisitos de un alto rendimiento a la par que las exigentes restricciones de tamaño mínimo y bajo consumo requeridas en la monitorización portátil, características que son aún más críticas al considerar la tendencia actual hacia matrices de sensores.A nivel de celdas, se proponen diferentes circuitos en un proceso CMOS de 180 nm: un regulador de baja caída de voltaje como unidad de gestión de energía, que proporciona una alimentación de 1.8 V estable, de bajo ruido, precisa e independiente de la carga para todo el sistema; amplificadores de instrumentación con una aproximación completamente diferencial, que incluyen una etapa de entrada de voltaje/corriente configurable, ganancia programable y ancho de banda ajustable, tanto en la frecuencia de corte baja como alta; un multiplicador para conformar la demodulación dual, que está embebido en el amplificador para optimizar consumo y área; y filtros pasa baja totalmente integrados, que actúan como extractores de magnitud de DC, con frecuencias de corte ajustables desde sub-Hz hasta cientos de Hz.<br /

    A fully on-chip LDO voltage regulator with 37 dB PSRR at 1 MHz for remotely powered biomedical implants

    Get PDF
    This article presents a fully on-chip low-power LDO voltage regulator dedicated to remotely powered wireless cortical implants. This regulator is stable over the full range of alternating load current and provides fast load regulation achieved by applying a time-domain design methodology. Moreover, a new compensation technique is proposed and implemented to improve PSRR beyond the performance levels which can be obtained using the standard cascode compensation technique. Measurement results show that the regulator has a load regulation of 0.175 V/A, a line regulation of 0.024%, and a PSRR of 37 dB at 1MHz power carrier frequency. The output of the regulator settles within 10-bit accuracy of the nominal voltage (1.8 V) within 1.6μs, at full load transition. The total ground current including the bandgap reference circuit is 28μA and the active chip area measures 290μm×360μm in a 0.18μm CMOS technolog

    Design of a Low Power External Capacitor-Less Low-Dropout Regulator with Gain-Compensated Error Amplifier

    Get PDF
    This thesis introduces a gain-compensated external capacitor-less low-dropout voltage regulator with total 5.7 uA quiescent current at all load conditions. The two-stage gain-compensated error amplifier is implemented with a cross-couple pair negative resistor to make the LDO achieve higher gain (> 50 dB) with very low bias current (< 1.3 uA). The LDO can achieve 52 dB loop gain at no load condition, 64 dB at 1 mA and 54 dB at 100 mA load. During transients (0 A to 100 mA) the undershoot is optimized to 98.6 mV with 100 ns rising and falling time through a differentiator circuit to boost the LDO’s transient response. The phase margin of the proposed LDO is 55◦ at 1 mA and 79.27◦ at max load (100 mA). Figure of merit (FOM) of this work is 2.79 fs which is very small
    • …
    corecore