12 research outputs found

    D 3. 3 Final performance results and consolidated view on the most promising multi -node/multi -antenna transmission technologies

    Full text link
    This document provides the most recent updates on the technical contributions and research challenges focused in WP3. Each Technology Component (TeC) has been evaluated under possible uniform assessment framework of WP3 which is based on the simulation guidelines of WP6. The performance assessment is supported by the simulation results which are in their mature and stable state. An update on the Most Promising Technology Approaches (MPTAs) and their associated TeCs is the main focus of this document. Based on the input of all the TeCs in WP3, a consolidated view of WP3 on the role of multinode/multi-antenna transmission technologies in 5G systems has also been provided. This consolidated view is further supported in this document by the presentation of the impact of MPTAs on METIS scenarios and the addressed METIS goals.Aziz, D.; Baracca, P.; De Carvalho, E.; Fantini, R.; Rajatheva, N.; Popovski, P.; Sørensen, JH.... (2015). D 3. 3 Final performance results and consolidated view on the most promising multi -node/multi -antenna transmission technologies. http://hdl.handle.net/10251/7675

    Adaptive implementation of turbo multi-user detection architecture

    Get PDF
    MULTI-access techniques have been adopted widely for communications in underwater acoustic channels, which present many challenges to the development of reliable and practical systems. In such an environment, the unpredictable and complex ocean conditions cause the acoustic waves to be affected by many factors such as limited bandwidth, large propagation losses, time variations and long latency, which limit the usefulness of such techniques. Additionally, multiple access interference (MAI) signals and poor estimation of the unknown channel parameters in the presence of limited training sequences are two of the major problems that degrade the performance of such technologies. In this thesis, two different single-element multi-access schemes, interleave division multiple access (IDMA) and code division multiple access (CDMA), employing decision feedback equalization (DFE) and soft Rake-based architectures, are proposed for multi-user underwater communication applications. By using either multiplexing pilots or continuous pilots, these adaptive turbo architectures with carrier phase tracking are jointly optimized based on the minimum mean square error (MMSE) criterion and adapted iteratively by exchanging soft information in terms of Log-Likelihood Ratio (LLR) estimates with the single-user’s channel decoders. The soft-Rake receivers utilize developed channel estimation and the detection is implemented using parallel interference cancellation (PIC) to remove MAI effects between users. These architectures are investigated and applied to simulated data and data obtained from realistic underwater communication trials using off-line processing of signals acquired during sea-trials in the North Sea. The results of different scenarios demonstrate the penalty in performance as the fading induces irreducible error rates that increase with channel delay spread and emphasize the benefits of using coherent direct adaptive receivers in such reverberant channels. The convergence behaviour of the detectors is evaluated using EXIT chart analyses and issues such as the adaptation parameters and their effects on the performance are also investigated. However, in some cases the receivers with partial knowledge of the interleavers’ patterns or codes can still achieve performance comparable to those with full knowledge. Furthermore, the thesis describes implementation issues of these algorithms using digital signal processors (DSPs), such as computational complexity and provides valuable guidelines for the design of real time underwater communication systems.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Adaptive implementation of turbo multi-user detection architecture

    Get PDF
    MULTI-access techniques have been adopted widely for communications in underwater acoustic channels, which present many challenges to the development of reliable and practical systems. In such an environment, the unpredictable and complex ocean conditions cause the acoustic waves to be affected by many factors such as limited bandwidth, large propagation losses, time variations and long latency, which limit the usefulness of such techniques. Additionally, multiple access interference (MAI) signals and poor estimation of the unknown channel parameters in the presence of limited training sequences are two of the major problems that degrade the performance of such technologies. In this thesis, two different single-element multi-access schemes, interleave division multiple access (IDMA) and code division multiple access (CDMA), employing decision feedback equalization (DFE) and soft Rake-based architectures, are proposed for multi-user underwater communication applications. By using either multiplexing pilots or continuous pilots, these adaptive turbo architectures with carrier phase tracking are jointly optimized based on the minimum mean square error (MMSE) criterion and adapted iteratively by exchanging soft information in terms of Log-Likelihood Ratio (LLR) estimates with the single-user’s channel decoders. The soft-Rake receivers utilize developed channel estimation and the detection is implemented using parallel interference cancellation (PIC) to remove MAI effects between users. These architectures are investigated and applied to simulated data and data obtained from realistic underwater communication trials using off-line processing of signals acquired during sea-trials in the North Sea. The results of different scenarios demonstrate the penalty in performance as the fading induces irreducible error rates that increase with channel delay spread and emphasize the benefits of using coherent direct adaptive receivers in such reverberant channels. The convergence behaviour of the detectors is evaluated using EXIT chart analyses and issues such as the adaptation parameters and their effects on the performance are also investigated. However, in some cases the receivers with partial knowledge of the interleavers’ patterns or codes can still achieve performance comparable to those with full knowledge. Furthermore, the thesis describes implementation issues of these algorithms using digital signal processors (DSPs), such as computational complexity and provides valuable guidelines for the design of real time underwater communication systems.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Self-concatenated coding for wireless communication systems

    No full text
    In this thesis, we have explored self-concatenated coding schemes that are designed for transmission over Additive White Gaussian Noise (AWGN) and uncorrelated Rayleigh fading channels. We designed both the symbol-based Self-ConcatenatedCodes considered using Trellis Coded Modulation (SECTCM) and bit-based Self- Concatenated Convolutional Codes (SECCC) using a Recursive Systematic Convolutional (RSC) encoder as constituent codes, respectively. The design of these codes was carried out with the aid of Extrinsic Information Transfer (EXIT) charts. The EXIT chart based design has been found an efficient tool in finding the decoding convergence threshold of the constituent codes. Additionally, in order to recover the information loss imposed by employing binary rather than non-binary schemes, a soft decision demapper was introduced in order to exchange extrinsic information withthe SECCC decoder. To analyse this information exchange 3D-EXIT chart analysis was invoked for visualizing the extrinsic information exchange between the proposed Iteratively Decoding aided SECCC and soft-decision demapper (SECCC-ID). Some of the proposed SECTCM, SECCC and SECCC-ID schemes perform within about 1 dB from the AWGN and Rayleigh fading channels’ capacity. A union bound analysis of SECCC codes was carried out to find the corresponding Bit Error Ratio (BER) floors. The union bound of SECCCs was derived for communications over both AWGN and uncorrelated Rayleigh fading channels, based on a novel interleaver concept.Application of SECCCs in both UltraWideBand (UWB) and state-of-the-art video-telephone schemes demonstrated its practical benefits.In order to further exploit the benefits of the low complexity design offered by SECCCs we explored their application in a distributed coding scheme designed for cooperative communications, where iterative detection is employed by exchanging extrinsic information between the decoders of SECCC and RSC at the destination. In the first transmission period of cooperation, the relay receives the potentially erroneous data and attempts to recover the information. The recovered information is then re-encoded at the relay using an RSC encoder. In the second transmission period this information is then retransmitted to the destination. The resultant symbols transmitted from the source and relay nodes can be viewed as the coded symbols of a three-component parallel-concatenated encoder. At the destination a Distributed Binary Self-Concatenated Coding scheme using Iterative Decoding (DSECCC-ID) was employed, where the two decoders (SECCC and RSC) exchange their extrinsic information. It was shown that the DSECCC-ID is a low-complexity scheme, yet capable of approaching the Discrete-input Continuous-output Memoryless Channels’s (DCMC) capacity.Finally, we considered coding schemes designed for two nodes communicating with each other with the aid of a relay node, where the relay receives information from the two nodes in the first transmission period. At the relay node we combine a powerful Superposition Coding (SPC) scheme with SECCC. It is assumed that decoding errors may be encountered at the relay node. The relay node then broadcasts this information in the second transmission period after re-encoding it, again, using a SECCC encoder. At the destination, the amalgamated block of Successive Interference Cancellation (SIC) scheme combined with SECCC then detects and decodes the signal either with or without the aid of a priori information. Our simulation results demonstrate that the proposed scheme is capable of reliably operating at a low BER for transmission over both AWGN and uncorrelated Rayleigh fading channels. We compare the proposed scheme’s performance to a direct transmission link between the two sources having the same throughput

    Fundamentals of bidirectional transmission over a single optical fibre

    Get PDF

    Adaptive Equalization and Capacity Analysis for Amplify-and-Forward Relays

    Get PDF
    Recent research has shown that multiple-input multiple-output (MIMO) systems provide high spectral efficiencies and error performance gains. However, the use of multiple antennas in mobile terminals may not be very practical. Certainly there is limited space and other implementation issues which make this a challenging problem. Therefore, to harness the diversity gains afforded by MIMO transmitter diversity techniques, while maintaining a minimal number of antennas on each handset, cooperative diversity techniques have been proposed. In addition, attention has also been given to combining wireless relaying systems with MIMO techniques to improve capacity, coverage, and obtain better diversity at the expense of increased node complexity. This thesis considers the design and analysis of cooperative diversity systems and MIMO amplify-and-forward relaying systems. In particular, we investigate adaptive time- and frequency-domain equalization techniques for cooperative diversity systems using space-time block codes (STBC). For MIMO relaying systems, we analyze the ergodic capacity of various systems and compare different amplify-and-forward methods in terms of system capacity performance. We propose a new block time-domain adaptive equalization structure for time reversal-space time block coding (TR-STBC) systems, which eliminates the separate decoder and also the need for explicit channel state information (CSI) estimation at the receiver. Our simulation results show that the time-domain adaptive block equalizer performs better than the frequency-domain counterpart but at the cost of increased complexity. Then, we extend this time-domain adaptive equalization scheme to distributed TR-STBC systems. We also develop a frequency-domain counterpart for the distributed systems. Our simulation results show that the adaptive algorithms work well for Protocols I and III proposed by Nabar et al. The time-domain adaptive algorithms perform better than the frequency-domain algorithms, and overall the Protocol I receivers outperform the Protocol III receivers. We also show that, if only the Protocol III receiver is used, it can be susceptible to noise amplification due to a weaker source-to-relay link compared to the relay-to-destination link. This problem can be mitigated by using the Protocol I receivers with some extra complexity but much superior diversity performance. We also present an ergodic capacity analysis of an amplify-and-forward (AF) MIMO two-hop system including the direct link and validate the analysis with simulations. We show that having the direct link improves the capacity due to diversity and quantify this improvement. We also present an ergodic capacity analysis of an AF MIMO two-hop, two relay system. Our results verify the capacity gain of relaying systems with two relays due to the extra diversity compared to a single relaying system. However, the results also show that when one of the source-to-relay links has a markedly higher SNR compared to the other, a single relay system has better capacity than a two relay system. Finally, we compare three types of relay amplification methods: a) average amplification, b) instantaneous channel amplification, and c) instantaneous power amplification. The instantaneous power amplification method has a higher mean capacity but with a higher variance. Also, it requires additional information at the destination and would create enormous overheads compared to the other methods. We also find that the instantaneous channel amplification method has almost no advantage in terms of the mean capacity but its capacity is less variable than the average amplification method. On the other hand, the average amplification method is simpler to implement as it does not require channel estimation at the relaying terminal

    Cooperative localisation in underwater robotic swarms for ocean bottom seismic imaging.

    Get PDF
    Spatial information must be collected alongside the data modality of interest in wide variety of sub-sea applications, such as deep sea exploration, environmental monitoring, geological and ecological research, and samples collection. Ocean-bottom seismic surveys are vital for oil and gas exploration, and for productivity enhancement of an existing production facility. Ocean-bottom seismic sensors are deployed on the seabed to acquire those surveys. Node deployment methods used in industry today are costly, time-consuming and unusable in deep oceans. This study proposes the autonomous deployment of ocean-bottom seismic nodes, implemented by a swarm of Autonomous Underwater Vehicles (AUVs). In autonomous deployment of ocean-bottom seismic nodes, a swarm of sensor-equipped AUVs are deployed to achieve ocean-bottom seismic imaging through collaboration and communication. However, the severely limited bandwidth of underwater acoustic communications and the high cost of maritime assets limit the number of AUVs that can be deployed for experiments. A holistic fuzzy-based localisation framework for large underwater robotic swarms (i.e. with hundreds of AUVs) to dynamically fuse multiple position estimates of an autonomous underwater vehicle is proposed. Simplicity, exibility and scalability are the main three advantages inherent in the proposed localisation framework, when compared to other traditional and commonly adopted underwater localisation methods, such as the Extended Kalman Filter. The proposed fuzzy-based localisation algorithm improves the entire swarm mean localisation error and standard deviation (by 16.53% and 35.17% respectively) at a swarm size of 150 AUVs when compared to the Extended Kalman Filter based localisation with round-robin scheduling. The proposed fuzzy based localisation method requires fuzzy rules and fuzzy set parameters tuning, if the deployment scenario is changed. Therefore a cooperative localisation scheme that relies on a scalar localisation confidence value is proposed. A swarm subset is navigationally aided by ultra-short baseline and a swarm subset (i.e. navigation beacons) is configured to broadcast navigation aids (i.e. range-only), once their confidence values are higher than a predetermined confidence threshold. The confidence value and navigation beacons subset size are two key parameters for the proposed algorithm, so that they are optimised using the evolutionary multi-objective optimisation algorithm NSGA-II to enhance its localisation performance. Confidence value-based localisation is proposed to control the cooperation dynamics among the swarm agents, in terms of aiding acoustic exteroceptive sensors. Given the error characteristics of a commercially available ultra-short baseline system and the covariance matrix of a trilaterated underwater vehicle position, dead reckoning navigation - aided by Extended Kalman Filter-based acoustic exteroceptive sensors - is performed and controlled by the vehicle's confidence value. The proposed confidence-based localisation algorithm has significantly improved the entire swarm mean localisation error when compared to the fuzzy-based and round-robin Extended Kalman Filter-based localisation methods (by 67.10% and 59.28% respectively, at a swarm size of 150 AUVs). The proposed fuzzy-based and confidence-based localisation algorithms for cooperative underwater robotic swarms are validated on a co-simulation platform. A physics-based co-simulation platform that considers an environment's hydrodynamics, industrial grade inertial measurement unit and underwater acoustic communications characteristics is implemented for validation and optimisation purposes

    Spatial diversity in MIMO communication systems with distributed or co-located antennas

    Get PDF
    The use of multiple antennas in wireless communication systems has gained much attention during the last decade. It was shown that such multiple-input multiple-output (MIMO) systems offer huge advantages over single-antenna systems. Typically, quite restrictive assumptions are made concerning the spacing of the individual antenna elements. On the one hand, it is typically assumed that the antenna elements at transmitter and receiver are co-located, i.e., they belong to some sort of antenna array. On the other hand, it is often assumed that the antenna spacings are sufficiently large, so as to justify the assumption of independent fading. In this thesis, the above assumptions are relaxed. In the first part, it is shown that MIMO systems with distributed antennas and MIMO systems with co-located antennas can be treated in a single, unifying framework. In the second part this fact is utilized, in order to develop appropriate transmit power allocation strategies for co-located and distributed MIMO systems. Finally, the third part focuses on specific synchronization problems that are of interest for distributed MIMO systems

    Advanced signal processing concepts for multi-dimensional communication systems

    Get PDF
    Die weit verbreitete Nutzung von mobilem Internet und intelligenten Anwendungen hat zu einem explosionsartigen Anstieg des mobilen Datenverkehrs geführt. Mit dem Aufstieg von intelligenten Häusern, intelligenten Gebäuden und intelligenten Städten wächst diese Nachfrage ständig, da zukünftige Kommunikationssysteme die Integration mehrerer Netzwerke erfordern, die verschiedene Sektoren, Domänen und Anwendungen bedienen, wie Multimedia, virtuelle oder erweiterte Realität, Machine-to-Machine (M2M) -Kommunikation / Internet of Things (IoT), Automobilanwendungen und vieles mehr. Daher werden die Kommunikationssysteme zukünftig nicht nur eine drahtlose Verbindung über Gbps bereitstellen müssen, sondern auch andere Anforderungen erfüllen müssen, wie z. B. eine niedrige Latenzzeit und eine massive Maschinentyp-Konnektivität, während die Dienstqualität sichergestellt wird. Ohne bedeutende technologische Fortschritte zur Erhöhung der Systemkapazität wird die bestehende Telekommunikationsinfrastruktur diese mehrdimensionalen Anforderungen nicht unterstützen können. Dies stellt eine wichtige Forderung nach geeigneten Wellenformen und Signalverarbeitungslösungen mit verbesserten spektralen Eigenschaften und erhöhter Flexibilität dar. Aus der Spektrumsperspektive werden zukünftige drahtlose Netzwerke erforderlich sein, um mehrere Funkbänder auszunutzen, wie zum Beispiel niedrigere Frequenzbänder (typischerweise mit Frequenzen unter 10 GHz), mm-Wellenbänder (einige hundert GHz höchstens) und THz-Bänder. Viele alternative Technologien wie Optical Wireless Communication (OWC), dynamische Funksysteme und zellulares Radar sollten ebenfalls untersucht werden, um ihr wahres Potenzial abzuschätzen. Insbesondere bietet OWC ein großes, aber noch nicht genutztes optisches Band im sichtbaren Spektrum, das Licht als Mittel zur Informationsübertragung nutzt. Daher können zukünftige Kommunikationssysteme als zusammengesetzte Hybridnetzwerke angesehen werden, die aus einer Anzahl von verschiedenen drahtlosen Netzwerken bestehen, die auf Funk und optischem Zugang basieren. Auf der anderen Seite ist es eine große Herausforderung, fortschrittliche Signalverarbeitungslösungen für mehrere Bereiche von Kommunikationssystemen zu entwickeln. Diese Arbeit trägt zu diesem Ziel bei, indem sie Methoden für die Suche nach effizienten algebraischen Lösungen für verschiedene Anwendungen der digitalen Mehrkanal-Signalverarbeitung demonstriert. Insbesondere tragen wir zu drei verschiedenen Anwendungsgebieten bei, d.h. Wellenformen, optischen drahtlosen Systemen und mehrdimensionaler Signalverarbeitung. Gegenwärtig ist das Cyclic Prefix Orthogonal Frequency Division Multiplexing (CP-OFDM) die weit verbreitete Multitragetechnik für die meisten Kommunikationssysteme. Um jedoch die CP-OFDM-Nachteile in Bezug auf eine schlechte spektrale Eingrenzung, Robustheit in hoch asynchronen Umgebungen und Unflexibilität der Parameterwahl zu überwinden, wurden viele alternative Wellenformen vorgeschlagen. Solche Mehrfachträgerwellenformen umfassen einen Filter bank Multicarrier (FBMC), ein Generalized Frequency Division Multiplexing (GFDM), einen Universal Filter Multicarrier (UFMC) und ein Unique Word Orthogonal Orthogonal Frequency Division Multiplexing (UW-OFDM). Diese neuen Luftschnittstellenschemata verwenden verschiedene Ansätze, um einige der inhärenten Mängel bei CP-OFDM zu überwinden. Einige dieser Wellenformen wurden gut untersucht, während andere sich noch in den Kinderschuhen befinden. Insbesondere die Integration von Multiple-Input-Multiple-Output (MIMO) -Konzepten mit UW-OFDM und UFMC befindet sich noch in einem frühen Forschungsstadium. Daher schlagen wir im ersten Teil dieser Arbeit neuartige lineare und sukzessive Interferenzunterdrückungstechniken für MIMO UW-OFDM-Systeme vor. Das Design dieser Techniken zielt darauf ab, Empfänger mit einer geringen Rechenkomplexität zu erhalten. Ein weiterer Schwerpunkt ist die Anwendbarkeit von Space-Time Block Codes (STBCs) auf UW-OFDM und UFMC-Wellenformen. Zu diesem Zweck stellen wir neue Techniken zusammen mit Detektionsverfahren vor. Wir vergleichen auch die Leistung dieser Wellenformen mit unseren vorgeschlagenen Techniken mit den anderen Wellenformen des Standes der Technik, die in der Literatur vorgeschlagen wurden. Wir zeigen, dass raumzeitblockierte UW-OFDM-Systeme mit den vorgeschlagenen Methoden nicht nur andere Wellenformen signifikant übertreffen, sondern auch zu Empfängern mit geringer Rechnerkomplexität führen. Der zweite Anwendungsbereich umfasst optische Systeme im sichtbaren Band (390-700 nm), die in Plastic Optical Fibers (POFs), Multimode-Fasern oder OWC-Systemen wie der Kommunikation über Visible Light Communication (VLC) verwendet werden können. VLC kann Lösungen für eine Reihe von Anwendungen anbieten, einschließlich drahtloser lokaler, persönlicher und Körperbereichsnetzwerke (WLAN, WPAN und WBANs), Innenlokalisierung und -navigation, Fahrzeugnetze, U-Bahn- und Unterwassernetze und bietet eine Reihe von Datenraten von wenigen Mbps zu 10 Gbps. VLC nutzt voll sichtbare Light Emitting Diodes (LEDs) für den doppelten Zweck der Beleuchtung und Datenkommunikation bei sehr hohen Geschwindigkeiten. Daher verwenden solche Systeme Intensitätsmodulation und Direct Detection (IM / DD), wodurch gefordert wird, dass das Sendesignal reellwertig und positiv sein sollte. Dies impliziert auch, dass die herkömmlichen Wellenformen, die für die Radio Frequency (RF) Kommunikation ausgelegt sind, nicht direkt verwendet werden können. Zum Beispiel muss eine hermetische Symmetrie auf das CP-OFDM angewendet werden, um ein reellwertiges Signal zu erhalten (oft als Discrete Multitone Transmission (DMT) bezeichnet), das im Gegenzug die Bandbreiteneffizienz verringert. Darüber hinaus begrenzt die LED / LED-Treiberkombination die elektrische Bandbreite. Alle diese Faktoren erfordern die Verwendung spektral effizienter Übertragungsverfahren zusammen mit robusten Entzerrungsschemata, um hohe Datenraten zu erzielen. Deshalb schlagen wir im zweiten Teil der Arbeit Übertragungsverfahren vor, die für solche optischen Systeme am besten geeignet sind. Insbesondere demonstrieren wir die Leistung der PAM-Blockübertragung mit Frequenzbereichsausgleich. Wir zeigen, dass dieses Schema nicht nur leistungsstärker ist, sondern auch alle modernen Verfahren wie CP-DMT-Schemata übertrifft. Wir schlagen auch neue UW-DMT-Schemata vor, die vom UW-OFDM-Konzept abgeleitet sind. Diese Schemata zeigen auch ein sehr überlegenes Bitfehlerverhältnis (BER) -Performance gegenüber den herkömmlichen CP-DMT-Schemata. Der dritte Anwendungsbereich konzentriert sich auf mehrdimensionale Signalverarbeitungstechniken. Bei der Verwendung von MIMO, STBCs, Mehrbenutzerverarbeitung und Mehrträgerwellenformen bei der drahtlosen Kommunikation ist das empfangene Signal mehrdimensional und kann eine multilineare Struktur aufweisen. In diesem Zusammenhang können Signalverarbeitungstechniken, die auf einem Tensor-Modell basieren, gleichzeitig von mehreren Formen von Diversität profitieren, um Mehrbenutzer-Signaltrennung / -entzerrung und Kanalschätzung durchzuführen. Dieser Vorteil ist eine direkte Konsequenz der Eigenschaft der wesentlichen Eindeutigkeit, die für matrixbasierte Ansätze nicht verfügbar ist. Tensor-Zerlegung wie die Higher Order Singular Value Decomposition (HOSVD) und die Canonical Polyadic Decomposition (CPD) werden weithin zur Durchführung dieser Aufgaben empfohlen. Die Leistung dieser Techniken wird oft mit zeitraubenden Monte-Carlo-Versuchen bewertet. Im letzten Teil der Arbeit führen wir eine Störungsanalyse erster Ordnung dieser Tensor-Zerlegungsmethoden durch. Insbesondere führen wir eine analytische Performanceanalyse des Semi-algebraischen Frameworks für approximative Canonical polyadic decompositions Simultaneous matrix diagonalizations (SECSI) durch. Das SECSI-Framework ist ein effizientes Werkzeug zur Berechnung der CPD eines rauscharmen Tensor mit niedrigem Rang. Darüber hinaus werden die erhaltenen analytischen Ausdrücke in Bezug auf die Momente zweiter Ordnung des Rauschens formuliert, so dass abgesehen von einem Mittelwert von Null keine Annahmen über die Rauschstatistik erforderlich sind. Wir zeigen, dass die abgeleiteten analytischen Ergebnisse eine ausgezeichnete Übereinstimmung mit den Monte-Carlo-Simulationen zeigen.The widespread use of mobile internet and smart applications has led to an explosive growth in mobile data traffic. With the rise of smart homes, smart buildings, and smart cities, this demand is ever growing since future communication systems will require the integration of multiple networks serving diverse sectors, domains and applications, such as multimedia, virtual or augmented reality, machine-to-machine (M2M) communication / the Internet of things (IoT), automotive applications, and many more. Therefore, in the future, the communication systems will not only be required to provide Gbps wireless connectivity but also fulfil other requirements such as low latency and massive machine type connectivity while ensuring the quality of service. Without significant technological advances to increase the system capacity, the existing telecommunications infrastructure will be unable to support these multi-dimensional requirements. This poses an important demand for suitable waveforms with improved spectral characteristics and signal processing solutions with an increased flexibility. Moreover, future wireless networks will be required to exploit several frequency bands, such as lower frequency bands (typically with frequencies below 10 GHz), mm-wave bands (few hundred GHz at the most), and THz bands. Many alternative technologies such as optical wireless communication (OWC), dynamic radio systems, and cellular radar should also be investigated to assess their true potential. Especially, OWC offers large but yet unexploited optical band in the visible spectrum that uses light as a means to carry information. Therefore, future communication systems can be seen as composite hybrid networks that consist of a number of different wireless networks based on radio and optical access. On the other hand, it poses a significant challenge to come up with advanced signal processing solutions in multiple areas of communication systems. This thesis contributes to this goal by demonstrating methods for finding efficient algebraic solutions to various applications of multi-channel digital signal processing. In particular, we contribute to three different scientific fields, i.e., waveforms, optical wireless systems, and multi-dimensional signal processing. Currently, cyclic prefix orthogonal frequency division multiplexing (CP-OFDM) is the widely adopted multicarrier technique for most of the communication systems. However, to overcome the CP-OFDM demerits in terms of poor spectral containment, poor robustness in highly asynchronous environments, and inflexibility of parameter choice, and many alternative waveforms have been proposed. Such multicarrier waveforms include filter bank multicarrier (FBMC), generalized frequency division multiplexing (GFDM), universal filter multicarrier (UFMC), and unique word orthogonal frequency division multiplexing (UW-OFDM). These new air interface schemes take different approaches to overcome some of the inherent deficiencies in CP-OFDM. Some of these waveforms have been well investigated while others are still in its infancy. Specifically, the integration of multiple-input multiple-output (MIMO) concepts with UW-OFDM and UFMC is still at an early stage of research. Therefore, in the first part of this thesis, we propose novel linear and successive interference cancellation techniques for MIMO UW-OFDM systems. The design of these techniques is aimed to result in receivers with a low computational complexity. Another focus area is the applicability of space-time block codes (STBCs) to UW-OFDM and UFMC waveforms. For this purpose, we present novel techniques along with detection procedures. We also compare the performance of these waveforms with our proposed techniques to the other state-of-the-art waveforms that has been proposed in the literature. We demonstrate that space-time block coded UW-OFDM systems with the proposed methods not only outperform other waveforms significantly but also results in receivers with a low computational complexity. The second application area comprises of optical systems in the visible band (390-700 nm) that can be utilized in plastic optical fibers (POFs), multimode fibers or OWC systems such as visible light communication (VLC). VLC can provide solutions for a number of applications including wireless local, personal, and body area networks (WLAN, WPAN, and WBANs), indoor localization and navigation, vehicular networks, underground and underwater networks, offering a range of data rates from a few Mbps to 10 Gbps. VLC takes full advantage of visible light emitting diodes (LEDs) for the dual purpose of illumination and data communications at very high speeds. Because of the incoherent nature of the LED sources, such systems employ intensity modulation and direct detection (IM/DD), thus demanding that the transmit signal should be real-valued and positive. This also implies that the conventional waveforms designed for the radio frequency (RF) communication cannot be directly used. For example, a Hermitian symmetry has to be applied to the CP-OFDM spectrum to obtain a real-valued signal (often referred to as discrete multitone transmission (DMT)) that in return reduces the bandwidth efficiency. Moreover, the LED/LED driver combination limits the electrical bandwidth. All these factors require the use of spectrally efficient transmission schemes along with robust equalization schemes to achieve high data rates. Therefore, in the second part of the thesis, we propose transmission schemes that are best suited for such optical systems. Specifically, we demonstrate the performance of PAM block transmission with frequency domain equalization. We show that this scheme is not only more power efficient but also outperforms all of the state-of-the-art schemes such as CP-DMT schemes. We also propose novel UW-DMT schemes that are derived from the UW-OFDM concept. These schemes also show a much superior bit error ratio (BER) performance over the conventional CP-DMT schemes. The third application area focuses on multi-dimensional signal processing techniques. With the use of MIMO, STBCs, multi-user processing, and multicarrier waveforms in wireless communications, the received signal is multidimensional in nature and may exhibit a multilinear structure. In this context, signal processing techniques based on a tensor model can simultaneously benefit from multiple forms of diversity to perform multi-user signal separation/equalization and channel estimation. This advantage is a direct consequence of the essential uniqueness property that is not available for matrix based approaches. Tensor decompositions such as the higher order singular value decomposition (HOSVD) and the canonical polyadic decomposition (CPD) are widely recommended for performing these tasks. The performance of these techniques is often evaluated using time consuming Monte-Carlo trials. In the last part of the thesis, we perform a first-order perturbation analysis of the truncated HOSVD and the Semi-algebraic framework for approximate Canonical polyadic decompositions via Simultaneous matrix diagonalizations (SECSI). The SECSI framework is an efficient tool for the computation of the approximate CPD of a low-rank noise corrupted tensor. Especially, the SECSI framework shows a much improved performance and comparatively low-complexity as compared to the conventional algorithms such as alternative least squares (ALS). Moreover, it also facilitates the implementation on a parallel hardware architecture. The obtained analytical expressions for both algorithms are formulated in terms of the second-order moments of the noise, such that apart from a zero-mean, no assumptions on the noise statistics are required. We demonstrate that the derived analytical results exhibit an excellent match to the Monte-Carlo simulations
    corecore