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Abstract

The widespread use of mobile internet and smart applications has led to an explosive growth in mobile

data traffic. With the rise of smart homes, smart buildings, and smart cities, this demand is ever

growing since future communication systems will require the integration of multiple networks serving

diverse sectors, domains and applications, such as multimedia, virtual or augmented reality, machine-

to-machine (M2M) communication / the Internet of things (IoT), automotive applications, and many

more. Therefore, in the future, the communication systems will not only be required to provide Gbps

wireless connectivity but also fulfill other requirements such as low latency and massive machine type

connectivity while ensuring the quality of service. Without significant technological advances to increase

the system capacity, the existing telecommunications infrastructure will be unable to support these

multi-dimensional requirements. This poses an important demand for suitable waveforms with improved

spectral characteristics and signal processing solutions with an increased flexibility. Moreover, future

wireless networks will be required to exploit several frequency bands, such as lower frequency bands

(typically with frequencies below 10 GHz), mm-wave bands (few hundred GHz at the most), and THz

bands. Many alternative technologies such as optical wireless communication (OWC), dynamic radio

systems, and cellular radar should also be investigated to assess their true potential. Especially, OWC

offers a large but as yet unexploited optical band in the visible spectrum that uses light as a means to

carry information. Therefore, future communication systems can be seen as composite hybrid networks

that consist of a number of different wireless networks based on radio and optical access. On the other

hand, it poses a significant challenge to come up with advanced signal processing solutions in multiple

areas of communication systems. This thesis contributes to this goal by demonstrating methods for

finding efficient algebraic solutions to various applications of multi-channel digital signal processing. In

particular, we contribute to three different scientific fields, i.e., waveforms, optical wireless systems, and

multi-dimensional signal processing.

Currently, cyclic prefix orthogonal frequency division multiplexing (CP-OFDM) is the widely adopted

multicarrier technique for most of the communication systems. However, to overcome the CP-OFDM

demerits in terms of poor spectral containment, poor robustness in highly asynchronous environments,

and inflexibility of parameter choice, many alternative waveforms have been proposed. Such multi-

carrier waveforms include filter bank multicarrier (FBMC), generalized frequency division multiplexing

(GFDM), universal filter multicarrier (UFMC), and unique word orthogonal frequency division multi-

plexing (UW-OFDM). These new air interface schemes take different approaches to overcome some of

the inherent deficiencies in CP-OFDM. Some of these waveforms have been well investigated while others

are still in its infancy. Specifically, the integration of multiple-input multiple-output (MIMO) concepts

with UW-OFDM and UFMC is still at an early stage of research.

Therefore, in the first part of this thesis, we propose novel linear and successive interference cancel-

lation techniques for MIMO UW-OFDM systems. The design of these techniques is aimed to result in

receivers with a low computational complexity. Another focus area is the applicability of space-time

block codes (STBCs) to UW-OFDM and UFMC waveforms. For this purpose, we present novel tech-
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Abstract

niques along with detection procedures. We also compare the performance of these waveforms with

our proposed techniques to the other state-of-the-art waveforms that has been proposed in the liter-

ature. We demonstrate that space-time block coded UW-OFDM systems with the proposed methods

not only outperform other waveforms significantly but also result in receivers with a low computational

complexity.

The second application area comprises of optical systems in the visible band (390-700 nm) that can

be utilized in plastic optical fibers (POFs), multimode fibers or OWC systems such as visible light

communication (VLC). VLC can provide solutions for a number of applications including wireless local,

personal, and body area networks (WLAN, WPAN, and WBANs), indoor localization and navigation,

vehicular networks, underground and underwater networks, offering a range of data rates from a few

Mbps to 10 Gbps. VLC takes full advantage of visible light emitting diodes (LEDs) for the dual purpose

of illumination and data communications at very high speeds. Because of the incoherent nature of the

LED sources, such systems employ intensity modulation and direct detection (IM/DD), thus demanding

that the transmit signal should be real-valued and positive. This also implies that the conventional

waveforms designed for the radio frequency (RF) communication cannot be directly used. For example,

a Hermitian symmetry has to be applied to the CP-OFDM spectrum to obtain a real-valued signal (often

referred to as discrete multitone transmission (DMT)) that in return reduces the bandwidth efficiency.

Moreover, the LED/LED driver combination limits the electrical bandwidth. All these factors require

the use of spectrally efficient transmission schemes along with robust equalization schemes to achieve

high data rates. Therefore, in the second part of the thesis, we propose transmission schemes that

are best suited for such optical systems. Specifically, we demonstrate the performance of PAM block

transmission with frequency domain equalization. We show that this scheme is not only more power

efficient but also outperforms all of the state-of-the-art schemes such as CP-DMT schemes. We also

propose novel UW-DMT schemes that are derived from the UW-OFDM concept. These schemes also

show a superior bit error ratio (BER) performance over the conventional CP-DMT schemes.

The third application area focuses on multi-dimensional signal processing techniques. With the use

of MIMO, STBCs, multi-user processing, and multicarrier waveforms in wireless communications, the

received signal is multidimensional in nature and may exhibit a multilinear structure. In this context,

signal processing techniques based on a tensor model can simultaneously benefit from multiple forms

of diversity to perform multi-user signal separation/equalization and channel estimation. This advan-

tage is a direct consequence of the essential uniqueness property that is not available for matrix based

approaches. Tensor decompositions such as the higher order singular value decomposition (HOSVD)

and the canonical polyadic decomposition (CPD) are widely recommended for performing these tasks.

The performance of these techniques is often evaluated using time consuming Monte-Carlo trials. In the

last part of the thesis, we perform a first-order perturbation analysis of the truncated HOSVD and the

SEmi-algebraic framework for approximate Canonical polyadic decompositions via SImultaneous matrix

diagonalizations (SECSI). The SECSI framework is an efficient tool for the computation of the approxi-

mate CPD of a low-rank noise corrupted tensor. Especially, the SECSI framework shows a significantly

improved performance and comparatively low-complexity as compared to the conventional algorithms

such as alternative least squares (ALS). Moreover, it also facilitates the implementation on a parallel

hardware architecture. The obtained analytical expressions for both algorithms are formulated in terms
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of the second-order moments of the noise, such that apart from a zero-mean, no assumptions on the noise

statistics are required. We demonstrate that the derived analytical results exhibit an excellent match to

the Monte-Carlo simulations.
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Zusammenfassung

Die zunehmende Nutzung des mobilem Internets und die wachsende Verbreitung intelligenter Anwen-

dungen hat zu einem explosionsartigen Anstieg des mobilen Datenverkehrs geführt. Mit der Einführung

intelligenter Häuser, intelligenter Gebäude und dem Heranwachsen intelligenter Städte wird der mobile

Datenverkehr immer weiter steigen. Zukünftige Kommunikationssysteme erfordern dabei die Integration

verschiedenartiger Netzwerke, welche unterschiedliche Sektoren, Domänen und Anwendungen bedienen,

wie beispielsweise Multimedia, virtuelle oder erweiterte Realität, Maschine-zu-Maschine (M2M) -Kom-

munikation, Internet of Things (IoT), Automobilanwendungen und vieles mehr. Daher werden Kommu-

nikationssysteme zukünftig nicht nur drahtlose Gbps-Verbindungen bereitstellen müssen, sondern auch

andere Anforderungen wie niedrige Latenzzeiten oder eine massive Maschinentyp-Konnektivität erfüllen

müssen, während die Dienstqualität sichergestellt wird. Ohne bedeutende technologische Fortschritte zur

Erhöhung der Systemkapazität wird die bestehende Telekommunikationsinfrastruktur diese vielfältigen

Anforderungen nicht unterstützen können. Damit stellt sich einerseits die Frage nach Wellenformen mit

verbesserten spektralen Eigenschaften und andererseits nach Signalverarbeitungslösungen mit erhöhter

Flexibilität. Zudem werden zukünftige drahtlose Netzwerke mehrere Frequenzbänder nutzen und dabei

auch den mm-Wellen- und THz-Bereich unterstützen müssen. Viele alternative Ansätze wie Optical Wire-

less Communication (OWC), dynamische Funksysteme oder zellulares Radar sollten ebenfalls untersucht

werden, um ihr tatsächliches Potenzial abzuschätzen. Insbesondere bietet die OWC auf der Basis sicht-

baren Lichts die Möglichkeit, einen sehr großen zusätzlichen Spektralbereich zu nutzen. Hierbei wird die

Beleuchtung mit der Kommunikation kombiniert. Zukünftige Kommunikationssysteme können demnach

als Hybridnetzwerke angesehen werden, welche aus verschiedenen drahtlosen Netzwerken bestehen. Es ist

eine große Herausforderung, fortschrittliche Signalverarbeitungslösungen für solch heterogene Systeme

zu entwickeln. Die vorliegende Arbeit soll zu dieser Entwicklung beitragen, indem effiziente algebraische

Lösungen für verschiedene Anwendungen der digitalen Mehrkanal-Signalverarbeitung entwickelt und

evaluiert werden. Konkrete wird zu drei verschiedenen Forschungsgebieten beigetragen: Wellenformen,

OWC und mehrdimensionale Signalverarbeitung.

Gegenwärtig ist das orthogonale Frequenzmultiplexverfahren OFDM (Orthogonal Frequency Divisi-

on Multiplexing) auf der Basis eines zyklischen Präfix (CP, Cyclic Prefix) die am weitesten verbreitete

Mehrträgertechnik für Kommunikationssysteme. Um jedoch die Nachteile des CP-OFDM-Verfahrens —

schlechte spektrale Begrenzung sowie geringe Flexibilität bei der Parameterwahl — zu überwinden und

die Robustheit in hoch asynchronen Umgebungen zu erhöhen, wurden viele alternative Wellenformen

vorgeschlagen. Zu solchen Mehrträgertechniken gehören FBMC (Filter Bank Multicarrier), GFDM (Ge-

neralized Frequency Division Multiplexing), UFMC (Universal Filter Multicarrier) und OFDM auf der

Basis des Unique Words (UW-OFDM). Diese neuen Verfahren für die Luftschnittstelle verwenden ver-

schiedene Ansätze, um einige der inhärenten Mängel des CP-OFDM zu vermeiden. Einige dieser Ansätze

wurden in der Vergangenheit intensiv untersucht, andere sind noch im Anfangsstadium der Entwicklung.

Insbesondere befindet sich die Integration von Multiple-Input-Multiple-Output (MIMO) -Konzepten mit

UW-OFDM oder UFMC noch in einem frühen Forschungsstadium.
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Zusammenfassung

Daher schlagen wir im ersten Teil dieser Arbeit neuartige lineare und sukzessive Interferenzunter-

drückungsverfahren für MIMO UW-OFDM-Systeme vor. Die neuen Techniken zielen unter anderem auf

Empfänger mit geringer Rechenkomplexität ab. Ein weiterer Schwerpunkt im ersten Teil dieser Arbeit

ist die Anwendbarkeit von Space-Time Block Codes (STBCs) in Verbindung mit den UW-OFDM- und

UFMC-Wellenformen. Zu diesem Zweck stellen wir die neuen Techniken und Wellenformen in Verbin-

dung mit geeigneten Detektionsverfahren vor und vergleichen ihr Potential mit dem der Wellenformen,

die bisher in der Literatur diskutiert wurden. Wir zeigen, dass die neuartigen Raum- und Zeit- blockko-

dierten UW-OFDM-Ansätze die bisher vorgeschlagenen Methoden in ihrer Leistungsfähigkeit nicht nur

signifikant übertreffen, sondern auch zu Empfängern mit geringer Rechenkomplexität führen.

Der zweite in der vorliegenden Arbeit adressierte Forschungsbereich umfasst optische Systeme, die

mit Wellenlängen im sichtbaren Bereich (390-700 nm) arbeiten. Dazu gehören neben — drahtlosen —

VLC-Systemen (VLC: Visible Light Communication) auch drahtgebundene optische Systeme auf der

Basis von Multimode-Fasern. VLC kann Lösungen für eine Reihe von Anwendungen bieten. Das bein-

haltet WBANs, WPANs und WLANs (Wireless Body Area Networks, Wireless Personal Area Networks,

Wireless Local Area Networks), die Lokalisierung und -navigation im Gebäudeinneren, Fahrzeugnetze,

U-Bahn-Kommunikationsnetze und sogar die Unterwasserkommunikation. Die Datenraten können dabei

zwischen von wenigen Mbps bis zu etwa 10 Gbps reichen. VLC nutzt die Tatsache, sich sich LED-Lampen

(LED: Light Emitting Diode) nicht nur für den Zweck der Beleuchtung, sondern auch für die hochbitra-

tige Datenkommunikation einsetzen lassen. Aufgrund der inkohärenten Natur von LED-Licht basieren

solche Systeme auf Intensitätsmodulation und Direktempfang (IM/DD: Intensity Modulation / Direct

Detection), was impliziert, dass das Signal zur Modulation des Diodenstroms reellwertig und positiv sein

muss. Das bedeutet aber auch, dass die herkömmlichen Wellenformen, die für die Radio Frequency (RF)

-Kommunikation mit Modulation auf Feldebene ausgelegt sind, nicht direkt verwendet werden können.

Zum Beispiel muss das CP-OFDM-Spektrum eine hermitesche Symmetrie aufweisen, damit ein reellwer-

tiges, d.h. eindimensionales Zeitsignal erhalten wird. In diesem Zusammenhang wird häufig von Discrete

Multitone Transmission (DMT) gesprochen. Gegenüber Systemen mit Modulation auf Feldebene und der

Möglichkeit einer Quadrature-Upconversion eines komplexen, d.h. zweidimensionalen Signals, halbiert

sich so die Bandbreiteeffizienz. Darüber hinaus begrenzt die LED / LED-Treiberkombination die mögli-

che elektrische Modulationsbandbreite. Alle diese Faktoren erfordern die Verwendung spektral effizienter

Übertragungsverfahren zusammen mit robusten Entzerrungsschemata, damit hohe Datenraten erreicht

werden können. Deshalb schlagen wir im zweiten Teil der Arbeit Übertragungsverfahren vor, die für

solche optischen Systeme am besten geeignet sind. Insbesondere demonstrieren wir die Leistungsfähig-

keit der PAM-Blockübertragung mit Frequenzbereichsentzerrung. Wir zeigen, dass dieses Verfahren am

leistungsstärksten ist und auch modernen Techniken wie CP-DMT übertrifft. Wir schlagen zudem neue

UW-DMT-Verfahren vor, die vom UW-OFDM-Konzept abgeleitet sind und zeigen, dass diese herkömm-

lichen CP-DMT-Techniken überlegen sind.

Der dritte Teil der Arbeit konzentriert sich auf mehrdimensionale Signalverarbeitungstechniken. Bei

der Verwendung von MIMO, STBCs, Mehrbenutzerverarbeitung und Mehrträgerwellenformen zur draht-

losen Kommunikation ist das empfangene Signal mehrdimensional und kann eine multilineare Struktur

aufweisen. In diesem Zusammenhang können Signalverarbeitungstechniken, die auf einem Tensor-Modell

basieren, gleichzeitig von mehreren Formen von Diversität profitieren, um Mehrbenutzer-Signaltrennung
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/ -entzerrung und Kanalschätzung durchzuführen. Dieser Vorteil ist eine direkte Konsequenz der Ei-

genschaft der wesentlichen Eindeutigkeit, die für Matrix-basierende Ansätze nicht verfügbar ist. Eine

Tensor-Zerlegung wie die HOSVD (Higher Order Singular Value Decomposition) und die CPD (Canoni-

cal Polyadic Decomposition) werden weithin zur Durchführung dieser Aufgaben empfohlen. Die Leistung

dieser Techniken wird oft mit zeitraubenden Monte-Carlo-Versuchen bewertet. Im letzten Teil der Arbeit

führen wir für diese Tensor-Zerlegungsmethoden eine Störungsanalyse erster Ordnung durch. Insbeson-

dere führen wir eine analytische Leistungsfähigkeitsanalyse des SECSI (SEmialgebraischen Frameworks

für approximative Canonical polyadic decompositions via SImultaneous matrix diagonalizations) durch.

Das SECSI-Framework ist ein effizientes Werkzeug zur Berechnung der CPD eines verrauschten Tensors

mit niedrigem Rang. Darüber hinaus werden die erhaltenen analytischen Ausdrücke in Bezug auf die

Momente zweiter Ordnung des Rauschens formuliert, so dass, abgesehen von einem verschwindenden

Erwartungswert, keine weiteren Annahmen bzgl. der Rauschstatistik erforderlich sind. Wir zeigen, dass

die abgeleiteten analytischen Ergebnisse eine ausgezeichnete Übereinstimmung mit den Monte-Carlo-

Simulationen aufweisen.
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1. Introduction and scope of the thesis

Signals play a vital role in our daily life. They convey information about the state or behavior of a

physical system such as sound, images, and biological measurements. A signal is typically a function of

independent variables such as time, distance, position, temperature, and pressure. Signals may have to

be transformed in order to carry out some specific tasks such as to amplify or filter out embedded infor-

mation, to detect patterns, to prepare the signal to survive a transmission channel, to undo distortions

contributed by a transmission channel, and to find information encoded in a different domain. This is

achieved by employing signal processing techniques that use some methods to measure, characterize,

model, and simulate signals. Especially, signals in digital form provide us with a very convenient ab-

stract representation which is both simple and powerful. Therefore, digital signal processing techniques

are used in a variety of application fields such as communication systems, consumer electronics, mu-

sic, medical diagnostics, geophysics, astronomy, experimental physics, aviation, control systems, pattern

recognition, and many more.

Digital signal processing techniques have played the most important role in the development of modern

communication systems. Specifically, they have reshaped modern wireless communications starting from

the second generation (2G) cellular systems to the current fourth generation (4G) cellular systems.

Each generation has a development cycle of about ten years and is defined by an air interface and

a corresponding standout signal processing technology, i.e., time division multiple access (TDMA) for

2G, code division multiple access (CDMA) for 3G, and orthogonal frequency division multiple access

(OFDMA) for 4G, that represents the most important advancement in that generation. However, the

number of devices that require digital signal processing techniques has grown manifold over the recent

years. The computing prowess of these devices can range from simple, e.g., wireless sensors, to mid-

range, e.g., laptops and smart phones, to very complicated, e.g., medical resonance imaging machines

and systems for industrial control. The large number of these devices and their respective capabilities,

such as computing power and smart functions, pose a challenge as well as an opportunity for further

developments in the field of digital signal processing. The large number of devices also provides an

unprecedented amount of data, computing power, and the opportunity for inter-device collaboration to

help us tackle problems that were considered intractable before.

The challenges are manifold. The growing number of devices is putting an enormous demand on the

capabilities of network providers to guarantee high data rates for future communication systems. This

has led to an increased focus on the development of new signal processing techniques for different air

interfaces, especially for fifth Generation (5G) cellular systems. These techniques are expected to meet

requirements such as low latency transmissions for long and short data bursts, fast switching between

uplink and downlink for time division duplex systems, and handling high data rates that require a wide

bandwidth. Moreover, new spatial domain signal processing techniques such as multiple-input multiple-

output (MIMO) concepts, beamforming techniques, and antenna diversity schemes have to be developed

for these new air interface proposals.

With the ever growing popularity of data heavy wireless communications, the demand for RF spectrum

1



1. Introduction and scope of the thesis

Figure 1.1.: Visible light spectrum (marked with a yellow circle)

is outstripping supply. This has led researchers to explore more and more innovative solutions for 5G

wireless communication systems and beyond. One such solution could consider wireless communications

in the visible optical band, as shown in Fig. 1.1. Such a utilization of the optical band of the electromag-

netic spectrum for wireless transmissions opens doors of opportunities in areas as yet largely unexplored.

It is estimated that more than 70 % of the wireless traffic takes place in an indoor environment, i.e.,

home, office, etc. In that case, optical wireless technologies such as visible light communication (VLC)

can be a suitable alternative. In many aspects, optical wireless technology is still in its infancy and calls

for consolidated efforts to harness its enormous potential.

The amount of new devices, the widespread use of multi-sensor technology, and the emergence of big

data sets also create new problems in the areas of computational complexity, security, energy consump-

tion, and privacy. Moreover, these factors also result in an increased dimensionality of the data sets.

For example, in a multicarrier transmission system with multiple transmit and receive antennas, the

received signal is multi-dimensional in nature, i.e., time, frequency, as well as space at the transmitter

and the receiver side. In most of the cases, the multi-dimensional data is reformatted as a matrix and

resorted to signal processing approaches developed for classical matrix (two-way) analysis. However,

the rigid assumptions inherent in matrix analysis are not always a good match for multi-dimensional

(tensor) data. It is only through higher-order tensor decompositions that we can handle data and extract

more information from it. Therefore, tensor decomposition techniques are gaining a lot of popularity

and importance for wireless communication systems.

In order to address these multi-dimensional issues related to modern communication systems, we focus

on three different application areas. We devise not only new methods for these application fields but

also show how existing algebraic solutions can be applied by simple algebraic modifications. To enhance

the overall structure of the thesis, we present each application area in a separate part of the thesis which

can be read independently of the other. In the following sections, we provide a brief motivation for the

different parts and also briefly describe some of the preliminary definitions and multi-linear concepts

that would be helpful in understanding the rest of the thesis. We also provide a detailed introduction

at the beginning of each part/chapter separately.

2



1.1. Part I: MIMO Concepts for UW-OFDM Systems

1.1. Part I: MIMO Concepts for UW-OFDM Systems

The principle concept of orthogonal frequency division multiplexing (OFDM) stems from the mid 1960s

that is based on the multicarrier modulation techniques used in the high frequency military radio [Cha66,

Sal67]. The idea of using a discrete Fourier transform (DFT) for the implementation of the generation

and reception of OFDM signals was introduced in [WE71]. It eliminated the requirement for banks

of analog subcarrier oscillators, thus presenting an opportunity for an easy implementation of OFDM,

especially with the use of fast Fourier transform (FFT), which is an efficient implementation of the DFT.

Moreover, in OFDM, a time domain guard interval or a cyclic prefix (CP) is inserted between OFDM

symbols (blocks) to avoid intersymbol interference (ISI). Therefore, in the literature, it is also referred

as CP-OFDM. Countless efforts have been put into investigating CP-OFDM and, as a consequence, a

vast amount of knowledge is available on this topic [Hir81, BDH99, WCLM99, LWS02, SPSH04]. The

intriguing features of coded CP-OFDM include a great robustness against multi-path fading, an efficient

implementation, and the capability of turning the frequency selective channel into parallel flat fading

subchannels such that sophisticated receiver designs are avoided. Consequently, CP-OFDM has been

adopted in a variety of wired and wireless communication standards and products. Prominent examples

include dynamic subscriber line (DSL), power line communication (PLC), most of the IEEE 802.11

specifications (802.11), long term evolution (LTE) downlink, terrestrial digital video broadcasting (DVB-

T), and terrestrial integrated services digital broadcasting (ISDB-T). Nevertheless, CP-OFDM has also

many shortcomings. For example, CP-OFDM signals require a high linearity of the output power

amplifiers due to their high peak to average power ratio (PAPR). As a result, the power amplifier

efficiency is low, increasing the user equipment (UE) battery power consumption. CP-OFDM signals

also suffer from high out-of-band (OOB) leakage due to the use of a rectangular pulse in the time domain.

Moreover, the insertion of a CP reduces the spectral efficiency of CP-OFDM systems. Furthermore, CP-

OFDM is sensitive to synchronization errors. It is thus not an efficient multicarrier modulation scheme

for communication scenarios where perfect synchronization is hardly guaranteed, e.g., the uplink of

multi-user MIMO systems.

Although widely deployed in various state-of-the-art communication standards, these issues with CP-

OFDM give rise to the trend of the development of new advanced multicarrier modulation schemes

such as unique word orthogonal frequency division multiplexing (UW-OFDM) [HHH10b, OH10], filter

bank multicarrier (FBMC) [Bel10b, PNCZ+16], generalized frequency division multiplex (GFDM)

[MMG+14,NCE+17], and universal filter multicarrier (UFMC) [SWC14]. These new waveforms aim at

solving some of these issues by adopting different approaches. Still, CP-OFDM and many newly proposed

block based transmission techniques require the insertion of guard intervals to eliminate ISI. Typically, a

guard interval length of up to 25 % of the transmit symbol duration is inserted which is a rather wasteful

consumer of transmit time. This reduces the bandwidth efficiency significantly and also wastes transmit

energy, an aspect which gets more dominant for battery-driven devices. UW-OFDM is one of the novel

variants of CP-OFDM signaling that aim at utilizing this guard interval in an efficient manner. It may

act as a promising candidate for future wireless, wireline, and optical communication systems [HHH10b,

HHOH14]. For example, approaches based on UW-OFDM are currently part of on-going standardization

discussions for 5G millimeter wave systems [IKN+15]. In UW-OFDM, the time domain guard interval is
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filled with an arbitrary deterministic sequence, the so-called ”unique word” (UW), instead of a random

CP. This sequence provides the same advantages as a CP (no intersymbol interference and diagonalization

of the channel matrix), but can additionally be designed to optimally meet the synchronization and

channel estimation tasks, as known from the single carrier systems [CSBM06, WMP+03]. To fill the

time domain guard interval, zeros are generated at the output of the inverse discrete Fourier transform

(IDFT). Then, the UW is added in the time domain. Ensuring such time domain properties entails the

introduction of a certain redundancy in the frequency domain. This redundancy is added with the help

of a code generator matrix and can be exploited beneficially to enhance the range, reliability, capacity

or battery life span. In this sense, UW-OFDM transforms the usually disregarded guard interval into a

multi-purpose sequence, thus tackling the well-known inefficiency problem of guard intervals in current

communication systems. Since the guard interval in UW-OFDM is a part of the DFT interval, varying

the length of the UW and therefore the guard interval length to different channel conditions will not

impact the DFT length and thus keeps the relevant processing chain structures untouched. Hence, UW-

OFDM allows supporting a wide range of communication scenarios (different channel conditions, lower

OOB emissions, etc.,) while still ensuring high efficiency. Moreover, the generation of the UW within

the DFT interval introduces correlations in the frequency domain which can beneficially be exploited

by the receiver to improve the bit error ratio (BER) performance. The simulation results investigated

for single-input single-output (SISO) systems show that UW-OFDM has a superior BER performance

over CP-OFDM [HOH11, Oni13]. Moreover, it is also shown that the design of the code generator

matrix is not unique and different code generator matrices yield different BER performances [HHH12].

Another advantage of UW-OFDM over CP-OFDM is the superior spectral containment of the generated

waveform [HHH12, RSK13]. Specifically, the desired sidelobe suppression can be achieved by designing

the code generator matrix without the need for any extra processing [RKS14], which is in contrast to

most of the sidelobe suppression methods proposed for the CP-OFDM system.

Multiple-input multiple-output (MIMO) systems have become an integral part of modern wireless

communication systems due to their inherent advantages such as array gain, interference reduction, and

diversity gain. MIMO systems can exploit not only the transmit and receive multi-antenna benefits

simultaneously but they also offer something new compared to traditional antenna array systems, i.e.,

a spatial multiplexing gain. However, a compromise between diversity and multiplexing has to be made

since it is not possible to exploit both maximum diversity gain and maximum multiplexing gain at the

same time [ZT03]. One of the reasons for the popularity of CP-OFDM is its easy integration with MIMO

technology. A lot of research has been carried out in this regard for CP-OFDM [LWS02,SPSH04]. But

to date, a limited research has been carried out for the integration of MIMO systems with some newly

proposed waveforms. For example, so far UW-OFDM has been investigated from various aspects for

SISO systems only [OH10, HHH12, RSK13, HHOH14]. In the first part of the thesis, we expand these

investigations to MIMO UW-OFDM systems.

1.1.1. Major Contributions

In the literature, all the investigations regarding UW-OFDM have been carried out for SISO systems only.

Therefore, almost all of the presented techniques/results for the integration of MIMO to UW-OFDM
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are novel. The major contributions of this part are as follows:

• Design of low-complexity linear and non-linear detection schemes for MIMO UW-OFDM systems

We start this part of the thesis by discussing detection schemes for MIMO UW-OFDM systems

in Chapter 2. In UW-OFDM, the generation of a UW within the DFT interval introduces re-

dundancy in the frequency domain. This redundancy is added with the help of a code generator

matrix and introduces correlation in the frequency domain. For SISO systems, it has been shown

in [HOH11,Oni13] that sophisticated receivers are required to beneficially exploit this correlation.

This results in a superior BER performance of UW-OFDM over CP-OFDM, but at the expense

of higher computational complexity. We expand these investigations to MIMO systems by first

presenting a joint detection method which is a direct extension of the SISO model. This method

results in a much better BER performance for MIMO UW-OFDM systems over MIMO CP-OFDM

systems, but also suffers from a much higher computational complexity. Alternatively, we present

another approach, namely a two step detection method, which has the same BER performance

as joint detection but has a much lower computational complexity. We also present successive in-

terference cancellation (SIC) based non-linear detection schemes for MIMO UW-OFDM systems.

UW-OFDM systems with the SIC schemes outperform the UW-OFDM with the linear detection

schemes significantly but also have a very high computational complexity, thus making it unsuit-

able for practical implementations. Therefore, we propose a hybrid detection scheme where a

combination of linear subcarrier-wise detection is performed in the first step and SIC based code

generator demodulation is performed in the second step. This hybrid scheme has a lower complex-

ity and shows a better BER performance than the linear detection schemes but worse than the

SIC schemes. Thus it offers a trade-off between performance and computational complexity.

• Design of techniques to integrate space-time block codes to MIMO UW-OFDM systems

When channel state information (CSI) is not available at the transmitter, space-time block codes

(STBCs) are widely recommended for MIMO systems to achieve the maximum diversity gain. In

space-time block coding, the information is coded across transmit antennas and time slots in a

way that the receiver can reliably extract the information and exploit spatial diversity. Today,

STBCs form an integral part of modern wireless communication standards such as LTE, LTE-A,

and WLAN and are expected to be a part of future wireless communication systems. Therefore, in

Chapter 3, we discuss space-time block coded UW-OFDM systems. In the last couple of decades,

many space-time block coding techniques have been presented in the literature. Specifically, or-

thogonal STBCs (OSTBCs) are the most frequently used technique due to the implementation of

simple linear decoding at the receiver. The main focus of this chapter is to devise methods to

apply existing OSTBCs to MIMO UW-OFDM systems. In this regard, we propose two methods,

namely a frequency domain space-time block code and a time-reversal space-time code (TR-STC).

Frequency domain space-time block coding techniques are the extension of the orthogonal space-

frequency block codes (SFBCs) that are used for CP-OFDM. We show that this approach results

in much more complex receivers and a simple linear receiver as of SFBCs in CP-OFDM is not

possible. However, when TR-STCs are used, a simple linear decoding technique such as maximum
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ration combing (MRC) can be employed while achieving the similar performance.

• Design of space-time block coded UFMC systems and performance comparison of 5G air interface

proposals

We further continue the discussion from Chapter 3 to other newly proposed waveforms in Chapter

4. Currently, a lot of effort is being carried out to integrate space-time block coding for FBMC

and GFDM [ZL13,MMF14,MMG+15]. However, a limited knowledge is available in the literature

for MIMO UFMC systems. Therefore, we first investigate space-time block coded UFMC systems.

In contrast to CP-OFDM, where only DFT filtering is applied at the transmitter, an additional

filtering is used in UFMC to suppress OOB emissions [SWC14]. Therefore, the transceiver chain

of UFMC is different from the conventional CP-OFDM transceiver. Especially at the receiver,

different types of receive filtering methods such as matched filtering, zero forcing (ZF), minimum

mean square error (MMSE) filtering, and FFT based filtering can be employed. In this work, we

show that the integration of the available STBC methods to UFMC is possible, but it strongly

depends on the type of receive filtering methods employed. In the literature, the performance

of these new waveforms is only compared with CP-OFDM which is often misleading. A fair

comparison of these waveforms is particularly important to facilitate the selection of a waveform

for any particular requirement. Therefore, after proposing the methods to employ STBCs for

UFMC, we compare the performance of space-time block coded UFMC, UW-OFDM, FBMC, and

GFDM systems. The results show that space-time block coded UW-OFDM systems not only

result in a superior BER performance as compared to competing schemes, but also have a receiver

architecture with a lower complexity.

1.2. Part II: Transmission Strategies for Optical Systems with Intensity

Modulation and Direct Detection

In this part, we focus on the transmission schemes for optical systems that employ intensity modulation

(IM) and direct detection (DD). The most widely used examples of such systems are plastic optical

fibers (POFs), multimode fibers, and wireless optical transmission such as visible light communication

(VLC). VLC is an attractive choice in many application scenarios, where either the RF communication

has the spectrum congestion problem, i.e., indoor wireless communication and car to car or car to

infrastructure communication, or RF communication does not work, i.e., underwater communication.

VLC is based on smart lighting that integrates the functions of illumination, communications, and

even positioning [EMH09, ASN13, PFHM15]. It becomes possible since the light emitting diode (LED)

lighting sources, which have become a standard in illumination, can be modulated with several tens

of MHz bandwidth. Specifically, in an indoor environment a wireless link can greatly benefit from the

high signal-to-noise ratio offered by the LEDs (that are used to illuminate the room) instead of using a

high power RF based outdoor base station to provide services. Therefore, VLC is often considered as

a WiFi complement and the term LiFi is used to describe such networks [HYWC16]. In comparison to

the RF counterparts, VLC enjoys superior features such as ultra-high optical bandwidth, robustness to

electromagnetic interference, a high degree of spatial confinement bringing virtually unlimited frequency
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(or wavelength) reuse, and inherent physical security [BST+14, TVH15]. Similarly, POFs are popular

Figure 1.2.: An illustration of indoor VLC system.

low-cost solutions for short-distance applications in digital car networks, industrial networks, and home

networks as well as appliances. Specifically, POF has been used in automotive networking systems

since 1998 after the successful introduction of the media oriented systems transport (MOST) standard

[MOS10,Grz11]. POFs are manufactured from low-cost plastics, i.e., polymethyl methacrylate (PMMA),

commonly known as acrylic or polystyrene, whereas the traditional glass fiber optic are constructed from

tiny strands of glass that are bundled together inside an application-specific sheath. In general, POFs use

a large core step-index fiber with a typical diameter of 1 mm. This large size makes it easy to couple lot

of light from sources, and the connectors do not need to have a high precision. Therefore, in comparison

with glass fibers, POFs offer easy and cost-efficient processing since the fiber and the associated optical

links, connectors, and installations are all inexpensive. Moreover, POFs are more flexible for plug

interconnections. The main advantage of using glass fibers is their low attenuation, which is below

0.5 dB/km in the infrared range [Kei08]. This makes them ideal for long distance communications. In

contrast to the glass fiber, POFs provide acceptable attenuation only in the visible spectrum from 450 nm

up to 750 nm, where the minimum attenuation is about 85 dB/km at approximately 570 nm [ZKZD02].

Thus, light emitting diodes (LEDs) or laser diodes can be used as a source. Due to this relatively low

attenuation in the visible band, POFs can be efficiently used only for short distance communication, i.e.,

up to 100 m.

To achieve high data rates, these optical systems have to use advanced transmission techniques which

offer robustness against dispersion in the time domain. This is due to the fact that both POF and

VLC systems generally employ low cost LEDs as a source which have limited temporal and spatial
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coherence. For POFs, the multipath propagation channel causes bandwidth limitations as it acts as a

low pass filter for transmitted signals. Therefore, the multipath dispersion in POFs increases with the

fiber length [PHH13]. Although a VLC system may also suffer from multipath dispersion when a wide

field-of-view (FOV) detector is used instead of an imaging or angle diversity receiver [KB97], in general

the primary source of this dispersion is the high-power LED itself unless a micro-LED is used. The

LED output signal, if considered from the field perspective, appears like broadband noise, i.e., a random

signal. Therefore, intensity modulation needs to be used and the optical channel is consequently modeled

with respect to the instantaneous optical power/intensity. The corresponding signals are baseband

signals and not passband signals, and pulse-amplitude modulation (PAM) and on-off keying (OOK)

relying on baseband pulses are obvious ways for modulation. It is also possible to modulate the LED

intensity by means of biased or half-wave rectified sinusoidal electrical signals. In this case, we use the

terminologies single or multiple subcarrier modulation as in [KB97, CK96] but not the single-carrier or

multi-carrier modulation as suggested in many other publications, e.g., [HYWC16] 1. Two important

examples of multiple subcarrier modulation schemes, which have been investigated intensively for these

optical systems, are DC-biased discrete multi-tone transmission (DC-DMT) and asymmetrically clipped

DMT (AC-DMT), where AC-DMT uses half-wave rectifying pulses [CK96,AS08]. DMT refers to the real-

valued version of the CP-OFDM scheme. This clearly distinguishes such multiple subcarrier schemes

from coherent OFDM approaches with a complex-valued IDFT output signal that is used for a two-

dimensional field modulation of an optical carrier. Since subcarrier channel gains are mainly determined

by deterministic low-pass transfer functions of the LEDs, in general optical transmission with IM and

DD does not suffer from channel frequency selectivity at optical frequencies. In order to compensate the

increasing loss at higher subcarrier frequencies, DMT is often combined with bit-loading when channel

state information (CSI) is available at the transmitter [WCHG14].

Note that one of the advantages of CP-OFDM in RF communication is its simple per-subcarrier signal

processing, which is a consequence of the diagonalization of a circulant matrix using the DFT. This

simple frequency domain equalization (FDE) can also be achieved by using CP or UW based PAM block

transmission. The insertion of a CP ensures that the received symbol appears as a cyclic signal within the

DFT window. Compared to DMT, PAM block transmission offers two significant advantages. Firstly,

the necessity of a real-valued IDFT output at the DMT transmitter annuls the bandwidth advantage

compared to baseband PAM [WH12]. This is due to the fact that the necessity of a real-valued IFFT

output imposes that the FFT-spectrum must have a complex conjugated symmetry. As a result, at

least half of the complex subcarriers are basically redundant, since they are just required to ensure a

real-valued time domain signal. For the same modulation order, this reduces the bandwidth efficiency

of the DMT schemes compared to CP-OFDM with field modulation by a factor of two for DC-Biased

DMT and by a factor of 4 for AC-DMT. Secondly, a DMT signal has a large peak-to-average power ratio

(PAPR) and thus it requires a correspondingly large dynamic range of the LED driver. In contrast,

the PAM transmission based on rectangular pulses exhibits only a few discrete amplitude levels, which

are equal to the modulation order, and the optical PAPR is only 3 dB if the non-return-to-zero (NRZ)

format is used [WCH16a]. In particular, since typical LED light devices consist of multiple LEDs, the

1Unlike in RF communications, where single or multiple high-frequency sinusoidal carriers are used for up-conversion, coher-
ent optical carriers do not exist for LEDs. Hence, the terms ’single-carrier’ and ’multi-carrier’ can cause misunderstandings.
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M different power levels of such a multilevel PAM signal can be realized by simply switching different

LEDs in one LED device on and off, which is the most energy efficient way of LED driving. Most of

the existing literature on optical systems with IM/DD use or recommend DMT schemes. Their main

motivation for the use of DMT schemes comes from the success of CP-OFDM in RF communications.

However, all the above mentioned factors motivate us to investigate alternative transmission strategies

that are best suited to achieve high data rates for optical systems with IM/DD.

1.2.1. Major Contributions

The major contributions of this part are as follows:

• Investigation of block transmission with frequency domain equalization for optical systems with

intensity modulation and direct detection

In Chapter 5, we mainly focus on block transmission schemes that can be combined with frequency

domain equalization. We investigate the performance of these schemes for both VLC and POF

systems. Specifically, we show that PAM block transmission combined with FDE is a very good

alternative to DMT schemes. We contribute in this chapter from various aspects. We investigate

the performance of PAM block transmission combined with a non-return-to-zero (NRZ) or a return-

to-zero (RZ) transmit filter and also with symbol-spaced or fractionally-spaced linear FDE for

POF and VLC systems. VLC systems require DC-balanced schemes to avoid the flickering of

light. PAM does not provide a DC-balance. Therefore we propose line coding techniques for PAM

transmission. We also propose novel single subcarrier (SSC) modulation schemes. We further show

that the existing SSC schemes in the literature can be combined with block transmission and FDE.

Finally, we propose bit-loading techniques for DMT schemes and do a comprehensive comparison

of these schemes.

• Non-linear equalization and precoding techniques for PAM transmission

The dispersive nature of the optical channel in these systems results in pre-cursor and post-cursor

inter symbol interference (ISI). Although linear FDE can fully compensate for ISI but it suffers from

noise enhancement. Therefore, non-linear equalization and precoding techniques such as decision

feedback equalization (DFE) and Tomlinson-Harashima precoding (THP) are attractive choices to

achieve a better performance. However, this better performance comes at the expense of a higher

computational complexity. In Chapter 6, we discuss the performance of PAM transmission with

different transceiver concepts and compare it with the other transmission schemes. Specifically,

a low computationally complex transceiver architecture for PAM block transmission is proposed

where a linear FDE along with a time domain feedback equalizer is employed. This scheme has

the same performance as the DFE and THP, but requires a much lower computational complexity.

• Design of novel unique word DMT schemes that are derived from UW-OFDM

The conventional DMT schemes that satisfy the non-negativity constraint include AC-DMT, DC-

biased DMT, and PAM DMT. These schemes have been thoroughly investigated in the litera-

ture [AS08, EMH09, WH12]. In Part 1, it has been shown that UW-OFDM shows a superior bit
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error ratio (BER) performance over CP-OFDM especially for highly frequency selective channels.

In Chapter 7, we propose novel unique word DMT (UW-DMT) schemes that use complex-valued

and real-valued modulation formats. The concept of these UW-DMT schemes is derived from UW-

OFDM. But it differs from UW-OFDM because of two reasons. Firstly, a Hermitian symmetry has

to be enforced in the frequency domain to obtain a real-valued signal that imposes an additional

constraint on the design of the code generator matrix. Secondly, we need to derive new approaches

to design the code generator matrix while keeping this additional constraint (non-negativity con-

straint) in mind. Hence, the code generator matrices derived for UW-OFDM cannot be used.

Therefore, we derive new code generator matrix designs for these schemes. Moreover, the design

of the code generator is different for real-valued and complex-valued constellation formats. The

results show that these schemes outperform the conventional CP-DMT schemes.

1.3. Part III: Analytical Performance Analysis of Multi-linear (tensor)

Algebraic Concepts

Tensors, which are multi-dimensional generalizations of matrices, are adopted in diverse branches of sci-

ence such as image processing [KB09,Cic13,DLS+15], signal processing for telecommunications [dAFM07,

dLC07], array signal processing [SGB00, RHDG14], psychometrics [Tuc64, CC70], quantum chemistry

[SBG05], arithmetic complexity [Kru77,BCS10], and biomedical signal processing [MHH+06,VdLV+07,

WRH+09]. Tensors provide a useful representation of multi-dimensional data and enables us to exploit

the rich multi-dimensional structure that often results in a benefit such as improved estimation accuracy

or lower complexity. Specifically tensor decompositions that decompose data tensors in factor matrices

are very attractive from a signal processing and data analysis point of view. The popularity is due to

the fact they take into account spatial, temporal, and spectral information. Moreover, they provide links

among various data and extracted factors or hidden components with physical or physiological meaning

and interpretations. In most of the above mentioned applications, we would like to estimate the factor

matrices that have some physical meaning. The decomposition of a tensor into a sum of rank-one terms

allows to solve this problem, provided that the decomposition can be shown to be essentially unique. The

main difficulty stems from the fact that actual tensors may not exactly satisfy the expected model due to

additive noise, so that the problem is eventually an approximation rather than an exact decomposition.

Although there exist many models for tensor decompositions, but the most basic and widely used ones

are the higher-order singular value decomposition (HOSVD) and the canonical polyadic decomposition

(CPD). The HOSVD decomposes a tensor into a core tensor and unitary factor matrices. The core

tensor itself satisfies the so-called all-orthogonality condition, i.e., all of its unfoldings are row-orthogonal

matrices. In many applications, low-rank approximations are required to suppress the additive noise

of a low-rank desired signal component from a noisy observation. However, the HOSVD does not

provide the best low-rank approximation in some norm as the truncated SVD provides the best low-rank

approximation in the Frobenius norm for matrices [GVL13]. There exist many algorithms [dLdMV00a]

that provide a good low-rank approximation, but are not optimal. Still, the truncated HOSVD is

asymptotically optimal in the high signal to noise ratio (SNR) [dLdMV00a] and thus can be used as a
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starting point for any algorithm such as higher order orthogonal iterations (HOOI) which computes the

best approximation.

Another widely adopted tensor decomposition method is the CPD, also referred as canonical decom-

position (CANDECOMP) or parallel factor (PARAFAC) analysis. It allows to decompose a tensor into

a sum of rank-one components. The biggest advantage of the CPD comes from the fact that the factor

matrices are essentially unique under mild conditions, which makes it very useful, also in cases when

no or only very limited a priori information is available. Therefore, the CPD has been recognized as a

basic tool for signal separation and data analysis, with many concrete applications in telecommunication,

array processing, and machine learning [CMdL+15,CJ10,SdLF+17]. The CPD can be viewed as another

extension of the matrix SVD to higher orders, with the difference that the factor matrices are generally

non-orthogonal and the core tensor is an identity tensor.

In most of the data driven applications, we only have a noise corrupted version of the low-rank

noiseless tensor. The main goal in such applications is to compute the approximate CPD of this noisy

tensor. To solve CPD problems, iterative alternating least squares (ALS) methods are widely em-

ployed [CC70, Har70]. However, these methods are not efficient since they may require a large number

of iterations to converge and are not guaranteed to reach the global optimum. Therefore, these meth-

ods are computationally expensive. Alternatively, semi-algebraic solutions such as the Semi-Algebraic

canonicaL decomposiTion (SALT) [LA11] and the SEmi-algebraic Canonical polyadic decomposition

via SImultaneous matrix diagonalizationn (SECSI) [RH13] have been proposed in the literature. By

exploiting the structure of the tensor, the SECSI framework identifies the whole set of joint eigenvalue

decompositions (JEVDs) (also called simultaneous matrix diagonalizations (SMDs)) [RH13]. Solving

all of the JEVD problems yields several estimates of the factor matrices. In the final step of the SECSI

framework, an appropriate solution is selected that results in a more robust algorithm with an improved

performance. Moreover, in contrast to ALS, the SECSI framework facilitates the implementation on a

parallel hardware architecture.

1.3.1. Major Contributions

In this part of the thesis, we focus on deriving analytical expressions for the first-order perturbation

analysis of the truncated HOSVD and the SECSI framework that is used to compute the approximate

CPD of a noise corrupted low-rank tensor. The results of a perturbation analysis for these decompositions

are of major importance when analyzing the tensor based algorithms that use these decompositions.

Moreover, a perturbation analysis of these decompositions allows us to simulate the behavior of these

algorithms, in different scenarios, without the need of computationally expensive Monte-Carlo trials.

To the best of our knowledge, there exists no such analytical assessments in the literature. The main

contributions of this part are as follows:

• First-order perturbation analysis of the truncated HOSVD

The HOSVD was first introduced in [dLdMV00b], as the generalization of the SVD for the multli-

linear case. Later, the truncated HOSVD was investigated in [dLdMV00a] as an alternative for

low-rank approximation. In that work, it has been shown that the truncated HOSVD is not the

optimal low-rank approximation in the multi-dimensional case. However, iterative algorithms such
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as the HOOI [dLdMV00a] can be used to obtain a better approximation. But the improvement

in terms of reconstruction error from using the HOOI algorithm instead of the truncated HOSVD

is only marginal in the low SNR regime and negligible for high SNRs [Roe12]. A perturbation

analysis of the truncated HOSVD as low-rank approximation of a tensor was presented in [dL04].

But the results are shown in terms of a known noise tensor and no closed-form mean square error

(MSE) expressions in term of the noise statistics are derived. In Chapter 8, we present a first-order

perturbation analysis of the truncated HOSVD where we derive closed-form MSE expressions in

terms of the noise statistics. We evaluate the performance of our analytical results not only on

computer generated data but also on some images. The simulation results show an excellent match

between the derived expressions and the empirical results.

• First-order perturbation analysis of the SECSI framework for the approximate CPD

The SECSI framework performs three distinct steps to compute the approximate CPD of a noisy

low-rank tensor. In the first step, the truncated HOSVD is used to suppress the noise. In the

second step, the whole set of JEVDs is constructed from the truncated core tensor that results

in several estimates of the factor matrices. Finally, the best factor matrices are selected from

these estimates by using an appropriate selection strategy as presented in [RH13]. Depending

on the chosen strategy, a performance complexity trade-off can be obtained. To compute a first-

order perturbation analysis of the SECSI framework, we need a perturbation analysis for each of

the steps. We have performed a first-order perturbation analysis of the JEVD algorithms which

are based on the indirect least squares (LS) cost function in [BCW+17]. The indirect LS cost

function based JEVD algorithms are generally employed in the SECSI framework. Using the

results presented in Chapter 8 and in [BCW+17] (also summarized in Appendix D.1), we perform

a first-order perturbation analysis of the SECSI framework for the approximate CPD of a noisy

low-rank 3-way tensor in Chapter 9. In this work, apart from zero-mean and finite second order

moments, no assumptions about the noise are required. In the 3-way case, we can construct

up to 6 JEVD problems in the SECSI framework that result in multiple estimates for each factor

matrices (one factor matrix estimate from each JEVD). In [RH13], an exhaustive search based best

matching scheme and also heuristic selection schemes with a reduced computational complexity

are proposed to select the final matrix estimates. In Chapter 9, we propose a new selection scheme

that is based on the performance analysis results. We show that this new scheme outperforms the

existing schemes especially at high SNR values.

1.4. Preliminary Definitions and Concepts

In this section, we define the notation and some necessary fundamental concepts which are used in

this thesis. We summarize these properties/definitions in a compact and systematic form so that the

following chapters can be easily understood without the need to search these properties/concepts in

various references. We first define the general notation that is used in the thesis. We also review some of

the matrix properties/concepts that already exist in the literature and are used in the rest of the thesis.

Since in Part 3 of this thesis we focus on the first-order perturbation analysis of tensor based algorithms,
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we review some of the basic algebraic tools for tensors and also state some useful tensor properties.

1.4.1. Notation and Matrix-Properties

We use the formulations a, a, A, and A for a scalar, column vector, matrix, and tensor variables

respectively. Furthermore, A(i, j, k) will be the element (i, j, k) of a tensor A. The same applies for

A(i, j) and a(i) in the matrix and vector cases, respectively. The superscripts −1, +, ∗, T, H denote the

matrix inverse, Moore-Penrose pseudo inverse, conjugate, transposition, and conjugate transposition,

respectively. Also, we will use the notation E{·}, tr[·], ⊗, ‖ · ‖F, ‖ · ‖2 for the expectation, trace,

Kronecker product, Frobenius norm, and 2-norm operators. Some of the Kronecker product related

properties that are used in this thesis are summarized as

(A⊗B)H = AH ⊗BH (1.1)

(A⊗B)+ = A+ ⊗B+ (1.2)

‖A⊗B‖F = ‖A‖F · ‖B‖F (1.3)

(A⊗B) · (C ⊗D) = (A ·C)⊗ (B ·D), (1.4)

where A ∈ CN×M , B ∈ CP×Q, C ∈ CM×R, and D ∈ CQ×R.

For a matrix A = [a1,a2, . . . ,aM ] ∈ CN×M , where a1,a2, . . . ,aM are its columns, the operator vec{·}
denotes the vectorization operation that is defined as

vec{A}T = [aT
1 ,a

T
2 , . . . ,a

T
M ].

This operator has the following properties

vec{A ·X ·B} = (BT ⊗A) · vec{X} (1.5)

vec{A ·B} = (I ⊗A) · vec{B} = (BT ⊗ I) · vec{A} (1.6)

where A, X, B are matrices with the corresponding dimensions. Moreover, we define the unvec{·}
operator that stands for the inverse operation of vec{·}. In this work, we also use the trace operator

which has the following properties

tr(A ·B) = tr(B ·A) = vec(AT)T · vec{B} (1.7)

tr(A ·B ·C ·D) = tr(B ·C ·D ·A) = tr(C ·D ·A ·B) = tr(D ·A ·B ·C) (1.8)

tr(A⊗B) = tr(A) · tr(B) (1.9)

tr(A ·B ·C) = vec(AT)T · (I ⊗B) · vec(C) (1.10)

tr(B ·X ·BH) = vec(B)H · (XT ⊗ I) · vec(B) (1.11)

where A ∈ CN×M and B ∈ CM×N .

Moreover, we define the diagonalization operator diag(·) as in Matlab. Note that, when this operator

is applied to a vector, the output is a diagonal matrix, and when applied to a matrix, the output is a
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1. Introduction and scope of the thesis

column vector. Therefore, for the sake of clarity, we use the notation Diag(·) when applying this operator

to a vector, and diag(·) when applying it to a matrix. Furthermore we define the operators Ddiag(·) and

Off(·) as

Ddiag(X) = Diag(diag(X))∈ CN×N

Off(X) = X −Diag(diag(X))∈ CN×N ,

where X is a square matrix matrix of size N ×N . Note that the Ddiag(·) operator sets to zero all the

off-diagonal elements of X, while the Off(·) operator sets to zero the diagonal elements of X.

Finally, we frequently use the following property

(Y + ∆Y )−1 = Y −1 − Y −1 ·∆Y · Y −1 +O(∆2) , (1.12)

where Y is a square invertible matrix and ∆Y is a square matrix as well as a first-order term. This

property can be proven by making use of a theorem that was introduced by Carl Newman in 1877 [Neu77].

According to this theorem

(Id + ∆X)−1 = Id −∆X + (∆X)2 − (∆X)3 + · · · ,

for any ∆X ∈ Cd×d with Frobenius norm smaller than one. Since, Y is invertible we can reformulate

(Y + ∆Y )−1 as Y −1 · (Id + ∆Y ·Y −1)−1. By using the above theorem, we get the following expression

(Y + ∆Y )−1 = Y −1 · (Id + ∆Y · Y −1)−1

= Y −1 ·
(
Id −

(
∆Y · Y −1

)
+
(
∆Y · Y −1

)2 −
(
∆Y · Y −1

)3
+ · · ·

)

= Y −1 ·
(
Id −

(
∆Y · Y −1

)
+O(∆2)

)

= Y −1 − Y −1 ·∆Y · Y −1 +O(∆2) ,

which proves this relation.

1.4.2. Tensor Algebra - Definitions and Properties

In many signal processing applications, the term tensor is used synonymously with the term multi-way

array. In this case, an R-D tensor which is defined by a collection of numbers referenced by R indices.

Therefore, up to R = 2 tensors are no different from matrices. However, for R > 2 new operations are

needed.

Let A ∈ CM1×M2×···×MR be an R-D tensor or R-way array, where Mr is the size along the r-th

dimension for r = 1, 2, · · · , R. The r-mode vectors of a tensor are the vectors we obtain if the r-th

index is varied and all other indices are kept fixed. They represent the generalization of row vectors and

column vectors of matrices. Moreover, an Mr × M
Mr

matrix containing all r-mode vectors as its column

is called the r-mode unfolding of A where M =
∏R
r=1Mr. The ordering of the columns in the r-mode

unfolding defines how to arrange the remaining R−1 indices. There exist many choices for this ordering

but two of the most popular choices are

14
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1. Reverse cyclical: This way of unfolding was introduced in [dLdMV00b] and has become the stan-

dard practice in the community. In this ordering, we first vary the (r − 1)th index, then the

(r − 2)th, and continue up to the 1st, then we start over with the Rth index, the (R−1)th, and

continue up to the (r+ 1)th index. An r-mode unfolding achieved in this way is denoted as [A](r).

As an example, the r-mode vectors of a three-way tensor X ∈ C4×5×3 are shown in Fig. 1.3.

2. Forward column ordering: In this ordering of the columns of the r-mode unfolding, we always start

with the first index and keep increasing to the Rth by leaving out the rth index. It is, for instance,

the column ordering that we get by using the ”permute” and ”reshape” commands in MATLAB.

Figure 1.3.: Graphical representation, from [HC15], of the reverse cyclical unfoldings of a X ∈ C4×5×3

tensor.

The r-mode product of a tensor A with a matrix B ∈ CN×Mr (i.e., A×r B) is defined as

C = A×r B ⇐⇒ [C](r) = B · [A](r),

where C is a tensor with the corresponding dimensions. This can be interpreted as an r-linear transforma-

tion, i.e., a transformation which is linear in the r-th mode which can be expressed via the multiplication

of all r-mode vectors by a matrix B from the left. Moreover, the r-mode product also has the property:

if C = A×1 X
(1) ×2 X

(2) ×3 · · · ×R X(R), then

[C](r) = X(r) · [A](r) ·
(
X(r+1) ⊗X(r+2) ⊗ · · ·X(R) ⊗X(1) ⊗X(2) ⊗ · · · ⊗X(r−1)

)T
, (1.13)
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1. Introduction and scope of the thesis

where X(r),∀r = 1, 2, . . . , R are matrices with the corresponding dimensions. Moreover, the order of

the matrices in the Kronecker product is a direct consequence of the reverse cyclical column ordering

that was chosen for the r-mode unfolding. Similarly, r-mode products and r-mode unfoldings satisfy the

following properties.

A×r X(r) ×p X(p) = A×p X(p) ×r X(r) where r 6= p (1.14)

A×r X(r) ×r Y (r) = A×r (Y (r) ·X(r)), (1.15)

where r, p ∈ {1, 2, · · · , R} and the dimensions of tensors and matrices are A ∈ CM1×M2×···×MR , X(r) ∈
CNr×Mr , and Y (r) ∈ CPr×Nr . Furthermore, for the sake of notational simplicity, we define the following

short-hand notation for multiple Kronecker and r-mode products as

R⊗

r=1

X(r) = X1 ⊗X(2) ⊗ · · · ⊗X(R)

A
R×r
r=1

X(r) = A×1 X
(1) ×2 X

(2) ×3 · · · ×R X(R)

A
R×r
r=1
r 6=j

X(r) = A×1 X
(1) ×2 · · · ×j−1 X

(j−1) ×j+1 X
(j+1) ×j+2 · · · ×R X(R) .

Eq. (1.13) suggests that the r-mode multiplication can be easily transformed into a matrix multiplication

via the r-mode unfolding. However, the vectorized versions of different unfoldings contain the same

elements in a different order. The correct ordering can be restored by defining permutation matrices.

For every tensor A ∈ CM1×M2×···×MR , there exists a unique set of permutation matrices P
(r)
M1,M2···MR

∀r =

1, 2, · · · , R such that

vec{A} = P
(r)
M1,M2···MR

· vec{[A](r)}. (1.16)

The space spanned by the r-mode vectors is termed as r-space of A, whereas the dimension of this

vector space refers to the r-rank of A (the rank of the r-mode unfolding). Note that in general, the

r-ranks (also referred to as the multilinear ranks) of a tensor A can all be different. Since a matrix

of rank r can be constructed as a sum of r rank-one matrices, in the same manner, a tensor of rank

r can be constructed as a sum of r rank-one tensors. Therefore, tensor rank refers to the smallest

possible r such that a tensor can be written as a sum of r rank-one tensors. More importantly, the

tensor rank is not directly related to the r-rank, it only provides an upper bound, i.e., rank(A) ≥
r-rank(A), ∀r = 1, 2, · · · , R.

Lastly, the higher order norm ‖ · ‖H of a tensor is defined as

‖A‖H = ‖[A](r)‖F = ‖vec{[A](r)}‖2 ∀r = 1, 2, . . . , R,

which is nothing else but a higher-order extension of the Frobenius norm. Therefore, like the Frobenius

norm of a matrix, it is defined as the square-root of the sum of the squared magnitude of all its elements.
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Part I.

MIMO Concepts for UW-OFDM Systems
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In this part of the thesis we focus on MIMO concepts for UW-OFDM. UW-OFDM is a relatively

new signaling concept which has been introduced in 2010. So far, this signaling concept has been

well investigated in the literature only for single-input single-output (SISO) systems. One attractive

method for satisfying the growing demand for higher data rates while ensuring the quality of service is

to employ additional antennas at the transmitter and/or at the receiver side and/or at the relays. By

using more antennas, we can extract the benefits of the MIMO channels and increase the throughput

of the transmission. Therefore, the aim of this part is to investigate MIMO concepts for UW-OFDM

systems.

In UW-OFDM, a code generator matrix is used at the transmitter to generate zero unique words at

the output of the IDFT. This code generator matrix is known both at the transmitter and the receiver.

So far it has been shown for SISO systems that if this code generator matrix is efficiently utilized at

the receiver in the estimation process, UW-OFDM shows a superior bit error ratio performance over

CP-OFDM. Therefore, in Chapter 2, we expand these investigations to MIMO systems and propose

novel linear and non-linear detection schemes for MIMO UW-OFDM systems where the knowledge of

the code generator matrix is efficiently used in the estimation process. Major parts of this chapter have

been published in two conference papers [CZHH16,CZHH17b].

If channel knowledge is not available at the transmitter, space-time block codes (STBCs) can be used to

extract the diversity of the fading channel. Therefore, Chapter 3 is devoted to the applicability of STBCs

to UW-OFDM systems. Various types of STBCs have been well investigated in the literature. The main

aim of this chapter is to present transceiver designs to apply existing STBCs to UW-OFDM systems.

For this purpose, we develop two novel approaches for UW-OFDM systems, namely a frequency domain

space-time block code and a time-reversal space-time code (TR-STC). The former one is an extension

of the traditional space-frequency block codes for CP-OFDM systems to UW-OFDM systems while the

latter one exploits the frame structure of the UW-OFDM symbols to achieve a low complexity decoder.

We also develop suitable detection procedures for these approaches. The results of this chapter have

been published in [CZHH17a].

5th Generation (5G) cellular systems are expected to meet requirements such as low latency trans-

missions for long and short data bursts, fast switching between uplink and downlink for time division

duplex systems, and handling high data rate wide bandwidth signals. Therefore, many new air inter-

faces such as filter bank multicarrier (FBMC), universal filtered multicarrier (UFMC), and generalized

frequency division multiplex (GFDM) have been proposed to meet these requirements. MIMO systems

are expected to be an integral part of 5G systems. Hence, these waveforms need to be well investigated

for MIMO systems. In Chapter 4, we focus on space-time block coded UFMC systems. We propose two

different approaches to apply STBCs to UFMC systems. The performance of these 5G air proposals

is often not compared between each other. Therefore, to facilitate the air interface selection for future

cellular systems, we compare the performance of 5G air interface proposals with STBCs using LTE-A

parameters. We also compare their performance with UW-OFDM. Parts of this chapter has already

been published in the conference paper [CNA+16].
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2. Detection Schemes for MIMO UW-OFDM Systems

This chapter is devoted to the detection schemes for MIMO UW-OFDM systems. We introduce the UW-

OFDM signaling concept in Section 2.2. A brief overview of the procedures to derive the code generator

matrix is also discussed. Then, the linear detection procedures for MIMO UW-OFDM are presented

in Section 2.3 where two detection approaches are proposed. Similar to CP-OFDM, a subcarrier wise

detection is also possible for UW-OFDM. But in addition an efficient code generator demodulator is

required to take advantage of the correlation introduced in the data symbols. Then in the second part of

the chapter, we present non-linear equalization techniques in Section 2.4. Moreover, we discuss different

successive interference cancellation (SIC) schemes for UW-OFDM. These SIC schemes outperform the

linear detection schemes significantly, but have a higher computational complexity. Therefore, a novel

hybrid detection scheme is presented in Section 2.4.3. In this scheme, linear detection is employed in the

first step and a SIC based code generator demodulation is performed in the second step. The compu-

tational complexity of the proposed linear and non-linear detection schemes is analyzed in Section 2.5.

The simulation results are presented in Section 2.6. Finally, the contributions are summarized at the

end in Section 2.7.

2.1. Introduction

Orthogonal frequency division multiplexing (OFDM) is a popular transmission approach in modern

communication systems due to its robustness against frequency selective environments, its simple im-

plementation, and its bandwidth efficiency. A cyclic prefix (CP) is inserted periodically in OFDM.

Therefore, within the receivers correlation interval, the linear convolution with the channel impulse re-

sponse appears as a cyclic convolution. It enables a fast Fourier transform (FFT) based processing of the

received signal such that only a simple one tap equalization is needed on each subcarrier in the frequency

domain. Since the CP is data dependent and varies from symbol to symbol, it cannot be utilized for any

other purposes.

Many alternative concepts have been introduced in RF communication where the conventional CP

is replaced by a fixed data independent sequence which still maintains the cyclicity. A well discussed

scheme is known symbol padding (KSP) OFDM [CM01]. Recently a new OFDM signaling concept,

called unique word (UW) OFDM, has been introduced in [HHH10b, OH10,HHOH14] which is different

from CP- or KSP-OFDM. Unlike the CP and KSP cases, the UW forms a part of the DFT-interval as

shown in Fig. 2.1. Hence, the most important difference between UW- and KSP-OFDM is the fact that

the UW is part of the DFT interval, whereas the known symbol (KS) in KSP is not. As a result of

the insertion of the UW in the DFT interval, redundancy is introduced in the frequency domain, which

can advantageously be exploited by the receiver to improve the bit error ratio (BER) performance.

This redundancy is added in the frequency domain with the help of a code generator matrix. It has

been shown in [OH10, HHH10a, HHH10b, HHOH14] that UW-OFDM has a superior BER performance

over classical CP-OFDM in frequency selective environments. Moreover, whereas the CP is a random
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sequence, the UW or the KS is deterministic. Since the KS and the UW are deterministic, the UW

or KS can optimally be designed for particular needs such as synchronization and/or system parameter

estimation purposes at the receiver side.

(a) Data structure using CPs

(c) Data structure using UWs

CP1 CP1 CP2 CP3CP2

UW UW UW

TDFT TDFT

TDFT TDFT

Data Data

Data Data

KSData DataKSKS

(b) Data structure using KSP

Figure 2.1.: Transmit structure using (a) a CP, (b) a KS or (c) a UW.

In the initial concept described in [HHH10b,OH10], it was suggested to generate UW-OFDM symbols

by appropriately loading so-called redundant subcarriers. It turned out that the energy contribution

of the redundant subcarriers has a significant impact on the UW-OFDM performance. Moreover, the

choice of their positions has a significant influence on the redundant energy. Therefore, in [HHOH14],

the authors proposed a heuristic method to calculate the optimum or near optimum redundant sub-

carrier positions. However, even with the best choice, this so called systematic approach suffers from

a high energy contribution of the redundant subcarriers. Hence, in [HHH12], the authors introduced

a non-systematic approach where the idea of the dedicated redundant subcarriers is abandoned, and

the redundancy is distributed across all subcarriers. The results show that UW-OFDM based on the

non-systematic approach not only outperforms the systematic UW-OFDM but also the conventional CP-

OFDM [HHH12]. This improved performance is achieved by exploiting the redundancy in the receiver

design [Oni13].

One of the reasons for the popularity of CP-OFDM is its simple and low complex frequency domain

equalization where usually a single-tap equalization is applied on each subcarrier. Since the code gener-

ator matrix in UW-OFDM introduces correlation between the subcarriers, more sophisticated detection

schemes are required for UW-OFDM. Various linear and non-linear detection schemes have been studied

for UW-OFDM in [Oni13, HOH11]. These detection procedures have been well investigated for single-

input single-output (SISO) systems. In wireless communication systems multiple-input multiple-output

(MIMO), techniques are widely used to improve the overall spectral and energy efficiency by exploiting

the multiple antennas. Therefore, MIMO is an integral part of many modern communication standards

such as WLAN, LTE, LTE-A, etc. In this work, we extend our investigations of UW-OFDM to MIMO

systems. To achieve an improved performance for UW-OFDM, the code generator matrix has to be

efficiently used in the receiver design. Therefore, the conventional detection schemes for CP-OFDM
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MIMO systems need to be modified for UW-OFDM systems. The main contribution of this work is to

propose detection schemes for MIMO UW-OFDM.

After introducing the UW-OFDM signaling scheme, we propose linear detection schemes in the first

part of this chapter in Section 2.3. For this purpose, we propose two approaches where we take advantage

of the correlation among the data symbols in the frequency domain introduced by the code generator

matrix. In the first approach, we present a model to employ joint detection which is a direct extension

of the SISO model in [HOH11], but requires a high computational complexity. In the second approach,

we propose a two step procedure where a subcarrier-wise equalization is performed in the first step and

in the second step, a code generator demodulator matrix is employed. This approach has the same

BER performance as joint detection but a very low computational complexity as compared to the joint

detection approach.

In general, the performance of the nonlinear detection schemes is much better than that of linear detec-

tion schemes but at the cost of a higher computational complexity. However, the successive interference

cancellation (SIC) method offers improved performance without increasing the complexity significantly.

It consists of a bank of linear receivers, each of which detects one of the parallel data streams, with

the detected signal components successively canceled from the received signal at each stage. Therefore,

in the second part of this chapter, the investigation are extended to SIC detection schemes for MIMO

UW-OFDM systems. Zero-forcing and QR decomposition based SIC detection schemes are investigated

for UW-OFDM. These schemes are based on the linear model that is presented for the joint detection

scheme in Section 2.3.1. The MIMO UW-OFDM system employing these SIC schemes results in a sig-

nificantly superior BER performance but suffers from a higher computational complexity. As compared

to the linear two step detection scheme, a hybrid detection scheme is proposed where a combination of

subcarrier-wise linear detection is performed in the first step and QR-SIC demodulation is performed in

the second step. It offers a trade-off between performance and computational complexity. The perfor-

mance of this scheme is better than the linear scheme but worse than the SIC schemes.

2.2. The Unique Word OFDM Signaling Scheme

In the following, we briefly review the UW-OFDM symbol generation concept [HHH10b,OH10,HHOH14].

Let xu ∈ CNu×1 be a unique word of length Nu which shall be generated at the tail of a time domain

UW-OFDM symbol. In [OH10, HHH10b], it has been suggested to generate a UW-OFDM symbol

x =
[
xTd 0

]T
with a zero-UW in a first step as shown in Fig. 2.2, and to add the desired UW in the time

domain in a second step:

x′ =

[
xd

0

]
+

[
0

xu

]
=

[
xd

xu

]
∈ CN×1. (2.1)

The UW-OFDM symbol x with a zero UW is obtained by introducing redundancy in the frequency

domain. This is achieved by defining codewords with the help of an appropriate complex-valued code

generator matrix G ∈ CNm×Nd with Nm = Nd + Nr where Nr is the number of additionally required

(redundant) subcarriers and Nr = Nu .
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(a) UW-OFDM symbol generation using systematic method

(b) UW-OFDM symbol generation using non-systematic method

Figure 2.2.: UW-OFDM symbol generation using systematic and non-systematic methods

Let s ∈ CNd×1 represent the complex data symbols in the frequency domain for Nd data subcarriers.

In the UW-OFDM symbol generation, the data symbols s are first fed to the code generator matrix

G. Then the resulting coded symbols are mapped to the corresponding data subcarriers by a mapping

matrix B ∈ {0, 1}N×Nm , which consists of zero rows at the positions of the zero subcarriers and elsewhere

unit row vectors. Thereafter, the resulting frequency domain signal is modulated on the subcarriers using

the IDFT to obtain the time domain samples x, as given by

x = F−1
N BGs =

[
xd

0

]
. (2.2)

In order to obtain a zero word UW in the time domain, a valid code generator matrix has to fulfill the

following constraints

F−1
N BG =

[
∗
0

]
, (2.3)

where FN is the N -point DFT matrix with its elements [FN ]k,l = 1√
N
e−j

2π
N
kl for k, l = 0, 1, 2, . . . , N − 1.

Note that the UW-OFDM symbol construction can also be interpreted as a codeword generation

process, with the codeword c defined by c = Gs, as shown in Fig. 2.2b. Similar to block codes, two types

of code generator matrices, namely systematic Gsys and non-systematic GNsys generator matrices, are
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defined [HHH12]. In the systematic approach, the UW-OFDM symbols are generated by appropriately

loading so-called redundant subcarriers. The energy contribution of the redundant subcarriers plays an

important role on its performance. The positions of the redundant subcarriers are chosen such that the

redundant energy becomes as small as possible [HHOH14]. Even with the best position of the redundant

subcarrier symbols, the mean power of the redundant subcarrier symbols is still considerably higher

than that of the data symbols. Therefore, in the non-systematic approach, the idea of the dedicated

subcarriers is abandoned, and the redundancy is distributed over all the subcarriers. The two code

generator matrices GSys and GNsys can be chosen as

GSys = P

[
I

T

]
; GNsys = A

[
I

T

]
. (2.4)

The matrix P ∈ {0, 1}Nm×Nm is a permutation matrix [Ste13b, HHH10b] which is designed for the

optimal position of the redundant subcarriers and A ∈ RNm×Nm is an arbitrary non-singular matrix.

Note that the matrices P and A can be selected freely and thus offer the degree of freedom for optimizing

G towards certain cost functions (e.g., minimizing the trace of the error covariance matrix [HHH12],

maximizing the minimum Euclidean distance at the transmitter or receiver [Ste14] or minimizing the

out of band (OOB) radiation [RNSK14]). Once the matrices P and A are chosen, the matrix T can

be derived uniquely from the condition (2.2). In contrast to CP-OFDM, where precoding is required to

achieve full diversity, it is shown in [Ste13b] that UW-OFDM offers full diversity as long as the matrices

P and A have full rank.

Note that these G matrices are designed for UW-OFDM SISO systems, but the same matrices can also

be utilized for MIMO systems. The choice of the G matrix plays an important role with respect to the

performance of UW-OFDM, and different G matrices yield different BER-performances [HHH12]. It has

also been shown in [HHH12] that the G matrices based on the non-systematic approach show a better

performance over flat and frequency selective SISO channels. This is due the fact that the systematic

approach suffers from the high contribution of the energy of the redundant subcarriers whereas the

redundancy is distributed over all subcarriers in the non-systematic approach. Therefore, in this work,

we have used G matrices based on the non-systematic approach. In the following, we briefly discuss the

design of these code generator matrices that are used in this work.

The constraint in Eq. (2.2) has to be fulfilled for any code matrix to obtain a valid UW-OFDM symbol.

Let U =
[
F−1
N B

]
last Nr rows

be the Nr × Nm matrix containing the Nr last rows of F−1
N B. Then the

constraint in (2.2) can be reformulated as

UG = 0, (2.5)

which implies that the columns of G must be in the null space of the matrix U . One solution can

be a matrix that contains an orthonormal basis of the null space. This can be achieved by computing

the singular value decomposition (SVD) of U . In this work, we denote the code matrix as G′ which is

computed in this way.

In [HHH12], it is suggested to derive optimum code generator matrices by minimizing the trace of the

error covariance matrices of the best linear unbiased estimator (BLUE) and the linear minimum mean

square error (LMMSE) estimator in the AWGN channel for a fixed signal-to-noise ratio (SNR). These
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(a) Transceiver architecture with joint detection
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Figure 2.3.: Transceiver architecture with linear detection schemes for MIMO UW-OFDM

cost functions are given as

JBLUE =
σ2
d

cNd
tr
{
ĞHĞ

}
tr
{

(ĞHĞ)−1
}

(2.6)

JLMMSE = σ2
dtr






 cNd

tr
{
ĞHĞ

}ĞHĞ + INd



−1
 , (2.7)

where c = Es/N0 is the SNR, Es is the mean energy of the individual QAM data symbols, N0 is the

noise spectral density, σ2
d is the data variance, and Ğ is an arbitrary code generator. The optimization

problems are

ĞBLUE = argmin{JBLUE} s.t. F−1
N BG =

[
∗
0

]
(2.8)

ĞLMMSE = argmin{JLMMSE} s.t. F−1
N BG =

[
∗
0

]
. (2.9)

It is also shown in [HHH12] that these optimization problems can be converted to unconstrained prob-

lems which can numerically be solved, e.g., by using the steepest descent method. Moreover, different

initializations to solve these problems result in different code generator matrices for the same prob-

lem [HHH12]. Thus, the solution of these optimization problems are not unique, but all solutions fulfill

GHG = α2INd with α denoting all the identical singular values and INd is the identity matrix. In this

work, we use a generator matrix G′′ which has been obtained by a random initialization and by solving

the optimization problem defined in Eq. (2.9) for a fixed SNR.
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2.3. Linear Detection Schemes

The introduction of redundancy during the UW-OFDM symbol generation can be exploited at the

receiver to get better estimates of the data vectors. This has been well investigated for SISO systems

in [Oni13], where it has been shown that more sophisticated linear estimators, which are based on joint

detection, are required to exploit the benefits of this redundancy. This is in contrast to CP-OFDM where

a single-tap estimator is usually employed. In the following, two approaches for MIMO UW-OFDM are

developed, as shown in Fig. 2.3. In the first scheme, it is shown that the same linear estimators obtained

for SISO systems can be employed for MIMO UW-OFDM by using joint detection. But they suffer

from a high computation complexity. In the second scheme, it is shown that a subcarrier-wise detection

is also possible where the redundancy in the frequency domain is advantageously exploited by using

an LMMSE based code generator demodulator. A MIMO system with MT transmit antennas and MR

receive antennas is considered where S ∈ CNd×MT contains the Nd×MT data symbols to be transmitted

from MT transmit antennas. The data symbols are assumed to be zero-mean i.i.d. with variance σ2
s .

The time domain signal is given by

X = FH
N BGS ∈ CN×MT (2.10)

2.3.1. Approach 1 (Joint Detection)

The data received by the ith receive antenna in the frequency domain after subtracting the UW and

removing the zero carriers is given by

yi =

MT∑

j=1

BTFNHi,jF
H
N BGsj + ni

=

MT∑

j=1

Ĥi,jGsj + ni ∀ i = 1, . . . ,MR (2.11)

where Hi,j is the circulant channel convolution matrix containing the channel impulse response, Ĥi,j =

BTFNHi,jF
H
N B ∈ CNm×Nm is a diagonal matrix containing the channel frequency response from the jth

transmit antenna to the ith receive antenna on its main diagonal. The data received over all antennas

can be written as

y =




y1

...

yMR


 =




Ĥ1,1 · · · Ĥ1,MT

...
. . .

...

ĤMR,1 · · · ĤMR,MT


 (IMT

⊗G)




s1

...

sMT


+




n1

...

nMR


 . (2.12)

Note that the same model can be applied to CP-OFDM where G is an identity matrix for CP-OFDM.

We can rewrite the above equation as

y = HeffGeffs̃ + n ∈ C(Nm ·MR)×1, (2.13)
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2. Detection Schemes for MIMO UW-OFDM Systems

where Heff ∈ C(Nm ·MR)×(Nm·MT ) contains the overall channel frequency response as shown in Eq. (2.12),

Geff = IMT
⊗ G ∈ C(Nm .MT )×(Nd·MT ) is the modified code generator matrix with a block diagonal

structure, and s̃ ∈ C(Nd ·MT )×1 contains the transmitted data symbols and is related to S in Eq. (2.10)

via s̃ = vec(S). The noise is assumed to be i.i.d. zero-mean circularly symmetric complex Gaussian

(ZMCSCG) distributed with variance σ2
n. The optimum linear estimators such as BLUE or LMMSE

can be used to estimate the data symbols by extending the SISO solution in [HOH11]. These equalizer

weight matrices are calculated as

EBLUE =
(
GH

effH
H
effHeffGeff

)−1
GH

effH
H
eff,

EMMSE =

(
GH

effH
H
effHeffGeff +

σ2
n

σ2
d

I(Nd·MT )

)−1

GH
effH

H
eff,

with E ∈ C(Nd ·MT )×(Nm·MR), I(Nd·MT ) is the identity matrix of size Nd · MT × Nd · MT , σ2
n is the

variance of the noise samples, and σ2
d is the variance of the data symbols. Note that the computational

complexity increases significantly with an increased number of transmit antennas since a square matrix

of size Nd ·MT has to be inverted. The estimated data symbols are then obtained from

Ŝ = unvec(Ey) ∈ CNd×MT . (2.14)

2.3.2. Approach 2 (Subcarrier-wise Detection)

The simplicity of CP-OFDM comes from per subcarrier operations where each data subcarrier is treated

as a single narrowband carrier in the frequency domain. Since the G matrix introduces correlation

between the data symbols by adding redundancy, it is difficult to relate the actual data symbols to the

output of the G matrix. Therefore, a two step detection procedure for UW-OFDM is proposed where in

the first step, similar to CP-OFDM, a subcarrier-wise linear estimator can be employed. In the second

step, a code generator demodulator is used as shown in Fig. 2.3b.

After taking the DFT, subtracting the UW, and removing the zero carriers, the received signal on the

lth subcarrier is given as

yl = HlS
T [GT ]l + nl ∈ CMR×1, l = 1, ..., Nm (2.15)

where Hl ∈ CMR×MT is the channel matrix of the lth subcarrier in the frequency domain and [GT ]l is

the lth column of the matrix GT . Moreover, the noise is assumed to be i.i.d. ZMCSCG distributed with

variance σ2
n. Let cl = ST [GT ]l ∈ CMT×1 represent the transmit signal on lth subcarrier, then

yl = Hlcl + nl ∈ CMR×1. (2.16)

2.3.2.1. Linear Detectors

We first equalize the channel on the lth subcarrier by performing,

ĉl = Elyl ∈ CMT×1, (2.17)
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2.3. Linear Detection Schemes

where El ∈ CMT×MR contains the equalizer filter weights and can be calculated using the zero forcing

(ZF) or the LMMSE criterion.

2.3.2.1.1. ZF Detector The goal is to find ĉl such that the reconstruction error is minimized,

minimize ‖ yl −Hlĉl ‖2, (2.18)

We get the same solution as in CP-OFDM which is given by

El,ZF = (HH
l Hl)

−1HH
l . (2.19)

2.3.2.1.2. LMMSE Detector Since ZF receivers are known for their noise amplification at low SNRs, a

linear MMSE estimator can be employed which avoids this problem. The filter weights using the MMSE

criterion are calculated for the following unconstrained problem

minimize E
{
‖ Elyl − cl ‖2

}
, (2.20)

where E is the expectation operator. This leads to the solution

El,MMSE = RclclH
H
l (HlRclclH

H
l + Rnlnl)

−1, (2.21)

where Rnlnl is the noise covariance matrix and Rclcl is given as

Rclcl = E
{
clcl

H
}

= E
{

(ST [GT ]l)(S
T [GT ]l)

H
}

= E{(([GT ]Tl ⊗ IMT
)vec(ST ))(([GT ]Tl ⊗ IMT

)vec(ST ))H}
= ([GT ]Tl ⊗ IMT

)E
{

vec(ST )vec(ST )H
}

([GT ]Tl ⊗ IMT
)H

= σ2
d([G

T ]Tl ⊗ IMT
)IMTNd([G

T ]Tl ⊗ IMT
)H

= σ2
d([G

T ]Tl [GT ]∗l )⊗ IMT

= σ2
d ‖ [GT ]l ‖22 IMT

= σ2
dβlIMT

,

where βl is the norm of the lth row of the G matrix and can be precalculated. By inserting these values

and by applying the matrix inversion lemma [Kay93], it can be easily shown that

El,MMSE = (HH
l Hl + σ2

n/(σ
2
dβl)IMT

)−1HH
l . (2.22)

2.3.2.2. Code Generator Demodulator Matrix

In the second step, all equalized symbols are jointly multiplied by a code generator demodulator matrix

to get the estimated data symbols

Ŝ = WĈ ∈ CNd×MT , (2.23)
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2. Detection Schemes for MIMO UW-OFDM Systems

where Ĉ = [ĉ1, ..., ĉNm ]T ∈ CNm×MT i.e., rows of Ĉ are the estimates obtained from Eq. (2.17), and W

is the code generator demodulator matrix. Various type of demodulator matrices are defined below.

2.3.2.2.1. Matched Filter based Demodulator A matched filter based demodulator offers the simplest

solution since the used code generator matrices fulfill the property GHG = INd . Therefore, a matched

filter based demodulator is given by

WMF = GH . (2.24)

2.3.2.2.2. LMMSE based Demodulator A subcarrier-wise estimation does not take full advantage of

the correlation introduced by the G matrix if detection is used in conjunction with a matched filter

based demodulator. Assuming that the propagation channel is perfectly equalized (ElHl = IMT
), which

is exactly true if Eq. (2.19) is used and approximately true if Eq. (2.22) is used, Ĉ in Eq. (2.23) can be

written as

Ĉ = GS + N̂ , (2.25)

where

N̂ =




nT1 E
T
1

...

nTNmE
T
Nm


 (2.26)

Note that the noise at the output of the equalizer is not white anymore. It depends upon the equalizer

weights and differs for all transmit layers. Ideally, a demodulator matrix for each of the transmit

layer is required for optimal demodulation but it also increases the overall complexity of the system

because an inverse of a large matrix has to be calculated for each transmit layer. Therefore, in the

following we present two solutions for the LMMSE based demodulator. In the first solution, we calculate

the demodulation matrix for each transmit layer while in the second solution, we present a combined

demodulation matrix for all of the layers.

Solution 1 - Per Transmit Antenna Demodulation: We can rewrite Eq. (2.25) for the received

coded symbols ĉj ∈ CNm×1 for each jth transmit layer as

[ĉ1 · · · ĉMT
] = G · [s1 · · · sMT

] + [n̂1 · · · n̂MT
]. (2.27)

Let eTl,j = El(j, :) ∈ C1×MR be the equalizer weights for the jth transmit layer. Then the noise is

n̂j =




nT1 e1,j

...

nTNmeNm,j


 . (2.28)

Now we stack the matrices again to vectors such that

vec(Ĉ) =




ĉ1

...

ĉMT


 = (IMT

⊗G) ·




s1

...

sMT


+




n̂1

...

n̂MT


 . (2.29)
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The covariance matrix of this long noise vector has the form

Rn̂n̂ =




R11 · · · R1MT

...
. . .

...

RMT 1 · · · RMTMT


 , (2.30)

where all individual sub-matrices are diagonal. The autocovariance matrices on the diagonal of Rn̂n̂ are

given as

[Rj,j ]l,l = E
[
(nTl el,j)(n

T
l el,j)

H
]

= E
[
(nTl el,j)(e

H
l,jn

∗
l )
]

= E
[
(eHl,jn

∗
l )(n

T
l el,j)

]

= σ2
ne

H
l,jel,j .

The non-diagonal covariance matrices are given as [R1,j ]l,l = 0, since noise is assumed to be uncorrelated,

therefore, E
[
nTl,1n

∗
l,j

]
= 0. The LMMSE estimator follows to




ŝ1

...

ŝMT


 = σ2

d

(
IMT

⊗GH
)
·
(
σ2
d (IMT

⊗G) ·
(
IMT

⊗GH
)

+ Rn̂n̂

)−1




ĉ1

...

ĉMT




= σ2
d

(
IMT

⊗GH
)
·
(
σ2
d

(
IMT

⊗GGH
)

+ Rn̂n̂

)−1




ĉ1

...

ĉMT




= σ2
d




GH · · · 0
...

. . .
...

0 · · · GH


 ·




(σ2
dGGH + R11)−1 · · · 0

...
. . .

...

0 · · · (σ2
dGGH + RMTMT

)−1







ĉ1

...

ĉMT


 .

We can now separate the solutions for the jth transmit layer

ŝj = σ2
dG

H(σ2
dGGH + Rjj)

−1ĉj = Wj ĉj , (2.31)

where Rjj ∈ RNm×Nm is a diagonal matrix and contains σ2
ne

H
l,jel,j ∀ l = 1, . . . , Nm for the jth transmit

antenna on its diagonal.

Solution 2 - Combined Demodulation: In this section, we present an alternative approach to

derive a combined LMMSE demodulation matrix for all transmit layers. The LMMSE based optimiza-

tion problem to calculate the demodulator filter weights for the equalized data symbols (as defined by

Eq. (2.25)) can be written as

minimize E
{
‖WĈ − S ‖2F

}
. (2.32)
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2. Detection Schemes for MIMO UW-OFDM Systems

Using the orthogonality principle [Say03]

E
{

(WĈ − S)ĈH
}

= 0

E
{
WĈĈH − SĈH

}
= 0

E
{
WĈĈH

}
− E

{
SĈH

}
= 0

E
{
W (GS + N̂)(GS + N̂)H

}
− E

{
S(GS + N̂)H

}
= 0

Assuming that the signal and the noise are uncorrelated

W (GGHσ2
d + E

{
N̂N̂H

}
)− σ2

dG
H = 0

W (GGHσ2
d + E

{
N̂N̂H

}
) = σ2

dG
H (2.33)

Using the noise definition in Eq. (2.26), we write

N̂N̂H =




nT1 E
T
1 E
∗
1n
∗
1 · · · nT1 E

T
1 E
∗
Nm

n∗Nm
...

. . .
...

nTNmE
T
Nm

E∗1n
∗
1 · · · nTNmE

T
Nm

E∗Nmn
∗
Nm


 (2.34)

Since the noise is uncorrelated, therefore, E
[
nTmn

∗
l

]
= 0 for m 6= l and m, l = 1, · · · , Nm. The expected

value of the diagonal elements is

E
{
nTl E

T
l E
∗
l n
∗
l

}
= E

{
tr(nTl E

T
l E
∗
l n
∗
l )
}

= E
{

tr(ET
l E
∗
l n
∗
ln

T
l )
}

= tr(ET
l E
∗
l E
{
n∗ln

T
l

}
)

= tr(ET
l E
∗
l σ

2
nIMR

)

= σ2
ntr(ET

l E
∗
l )

Therefore, E
{
N̂N̂H

}
= σ2

nZ where Z ∈ RNm×Nm is a diagonal matrix and contains [Z]l,l = tr(ET
l E
∗
l )

∀ l = 1, . . . , Nm on its diagonal. Note that the equalizer weights El are already calculated in the first

step. We can now further simplify Eq. (2.33) as

W (GGHσ2
d + σ2

nZ) = σ2
dG

H

W (GGH +
σ2
n

σ2
d

Z) = GH

W = GH(GGH +
σ2
n

σ2
d

Z)−1
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2.3. Linear Detection Schemes

Finally, the data symbols at the kth subcarrier can also be represented as

Ŝ(k, :) = W (k, :)Ĉ k = 1, ..., Nd, (2.35)

where Ŝ(k, :) and W (k, :) denotes the k-th row of Ŝ and W , respectively.

2.3.3. Performance Evaluation
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Figure 2.4.: UW-OFDM with two step detection procedure and employing LMMSE demodulation

In this section, the performance of both linear detection approaches is evaluated for UW-OFDM.

Moreover, the performance of UW-OFDM with CP-OFDM is also compared. To this end, the IEEE

802.11n parameters for a 40 MHz bandwidth are used, as shown in Table 2.1. The symbol duration of

UW-OFDM is 3.2 µs while CP-OFDM has a duration of 4 µs. This is due to the fact that the guard

interval in UW-OFDM is a part of the FFT interval. Moreover, the IEEE 802.11n channel model B

is used for the simulations. A perfect synchronization and channel state information at the receiver is

assumed in this work.

First, we compare the performance of UW-OFDM with the two step approach using both solutions

for the LMMSE demodulator, as shown in Fig. 2.4. The results show that the suboptimal LMMSE

combined demodulation approach has a similar performance as the per transmit antenna demodulation

approach for both generator matrices. Note that the combined demodulator has much less complexity as

an inverse of a matrix of size Nm ×Nm has to be calculated only one time. This is really important for
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2. Detection Schemes for MIMO UW-OFDM Systems

CP-OFDM UW-OFDM

Modulation Scheme QPSK

Bandwidth 40 MHz

MT 2

MR 2

Data Carriers (Nd) 108 82

FFT length (N) 128

CP/UW duration 800 ns

DFT Period 3.2 µs

Total Symbol Period 4 µs 3.2 µs

Channel IEEE 802.11n Channel B

Table 2.1.: Simulation parameters

higher order MIMO systems when the number of spatial streams is high. In this case, the demodulation

matrix is calculated only once which reduces the overall complexity of the system significantly. In

the following, we show results for UW-OFDM with an LMMSE code generator demodulator using the

combined demodulation approach solution 2.

The performance of both linear detection approaches for two code generator matrices (G′,G′′) is

compared as shown in Fig. 2.5a. The results are shown with LMMSE equalization. Moreover, this

LMMSE equalization is combined with a matched filter or an LMMSE based combined code generator

demodulator for approach 2. Since the correlation is efficiently exploited in joint detection, it provides the

best performance at the cost of a higher computational complexity. A subcarrier-wise detection does not

match the performance of joint detection, if the equalization is performed in conjunction with a matched

filter based demodulator. But when it is combined with an LMMSE based code generator demodulator,

it practically matches the performance of joint detection. This is due to the fact that a matched filter

based demodulator does not exploit the statistics of the noise at the output of the equalizer which is not

white any more. Clearly a subcarrier-wise detection using an LMMSE based demodulator is a better

option than the joint detection because of its lower complexity. However, it has a higher complexity

compared to CP-OFDM because we have to calculate an Nm ×Nm code generator demodulator matrix

inverse (e.g., once per burst in WLAN systems) and have to apply W for every UW-OFDM symbol.

Furthermore, we also observe that the two G matrices yield different results where UW-OFDM with G′′

outperforms the G′ matrix. Note that G′′ has been optimized for the LMMSE cost function assuming

an AWGN channel while G′ has been calculated by computing the SVD of U . Although both generator

matrices form an orthonormal basis of the null space of U , this does not necessarily mean that they

perform equally well in frequency selective environments. However, they should perform equally well in

AWGN environments. In Fig. 2.5b, we show the results for different combinations of equalization and

code generator demodulation techniques for the G′′ matrix using approach 2. The results show that

when a ZF estimator is employed in conjunction with a matched filter, it has the worst performance

but it still matches the performance of CP-OFDM. We get a performance enhancement if we use an

LMMSE estimator even with a matched filter based demodulator. The best performance is achieved

when an LMMSE based demodulator is used. Clearly, UW-OFDM with the G′′ matrix and an LMMSE

based demodulator outperforms CP-OFDM significantly. This is also in line with [Ste13a] where it has
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(a) Comparison of both approaches using MMSE equalization
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(b) Different combinations of equalizer and demodulator for subcarrier wise detection

Figure 2.5.: Performance comparison of MIMO UW-OFDM with linear detection schemes. The
combination of a subcarrier-wise detection and an MMSE based code generator demodulation
achieves a similar performance of joint detection but with reduce complexity.

been shown analytically for a SISO system that UW-OFDM achieves the maximum diversity order if

rank(BG) = Nd while CP-OFDM requires precoding to achieve the maximum diversity. Note that there

is no performance difference between ZF or LMMSE estimators if they are used in conjunction with an
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2. Detection Schemes for MIMO UW-OFDM Systems

LMMSE based demodulator.

2.4. Successive Interference Cancellation Schemes

In the last section, we have focused only on linear detection schemes for MIMO UW-OFDM. It is well

known in the literature that linear estimators do not fully eliminate the interference which is caused by

the multiple-antenna systems or by the multiple-users. Therefore, interference cancellation schemes are

recommended to be used in rich scattering environments to exploit the capacity advantage of multiple

antenna systems but at the cost of higher complexity [MV13]. The successive interference cancellation

(SIC) method represents the most effective interference cancellation based reception technique in terms

of BER performance and provides some system robustness. SIC detection schemes based on the ZF

or the MMSE criteria are widely discussed schemes [MV13]. These detection schemes require multiple

calculations of pseudo-inverses which is a computationally expensive task. This complexity is reduced

by using the QR decomposition of the channel and successive decoding of the symbols [HT10]. These

SIC detection schemes have been well investigated for CP-OFDM [MV13]. The goal of this section is

to expand our investigations to SIC detection schemes for MIMO UW-OFDM systems. Specifically, we

propose a hybrid detection scheme with a low complexity where a combination of linear detection and

non-linear demodulation is applied.

2.4.1. ZF based successive interference cancellation (ZF-SIC) Detection

In [Oni13], a ZF-SIC was presented for SISO UW-OFDM systems. We employ the same procedure for

MIMO where we use the linear model in Eq. (2.13). According to this model,

y = HeffGeff︸ ︷︷ ︸
M

s̃ + n ∈ C(Nm .MR)×1

= m0s0 + m1s1 + · · ·+ m(Nd·Mt)−1s(Nd·Mt)−1 + n,

where M = HeffGeff ∈ C(Nm ·MR)×(Nd·MT ) and mk is the kth column of M . The impact of the symbol

decision is subtracted from the received signal iteratively. Such an iterative equalizer outperforms the

linear equalization schemes but it has a very high computational complexity. Specifically for UW-

OFDM, this complexity is much higher than for CP-OFDM since we have to consider the M matrix

which has large dimensions, whereas in CP-OFDM the matrix dimensions are significantly smaller since

a subcarrier wise detection is carried out.

2.4.2. QR decomposition based successive interference cancellation (QR-SIC) Detection

It has been shown in the literature [Kim14,WBKK03] that the ZF-SIC can be restated with the help of

a QR decomposition of the effective channel matrix M , given as

M = QR̄ = Q

[
R

0

]
, (2.36)
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where Q ∈ C(Nm ·MR)×(Nm·MR) is a unitary matrix and R̄ contains an upper triangular matrix R ∈
C(Nd ·MT )×(Nd·MT ) and a zero matrix 0 ∈ R(Nr ·MT )×(Nd·MT ). Multiplying the received signal y with QH ,

the resulting signal is

s̄ = QHy = R̄s̃ + n̄, (2.37)

where n̄ = QHn. As Q is a unitary matrix, the statistical properties of n and n̄ are the same. In the next

step, a symbol wise detection is carried out. Since R has an upper triangular structure, the interference

from other transmit layers and also from data symbols can be removed in a sequential manner. Various

methods for the QR decomposition have been proposed in the literature. In this work, we employ a

Gram-Schmidt based QR decomposition [Gan80].
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Figure 2.6.: Receiver architecture using hybrid detection

2.4.3. Hybrid Detection

In Section 2.3.2, it is shown that a two step linear detection procedure has a significantly less compu-

tational complexity than joint detection. In this procedure, a subcarrier-wise detection is performed in

the first step while in the second step an LMMSE based code generator demodulator is used to achieve

a similar performance as achieved by joint detection. In this section, we propose a new strategy where

a QR decomposition based code generator demodulation is employed, as shown in Fig. 2.6.

After taking the DFT, subtracting the UW, and removing the zero carriers, the received signal on the

lth subcarrier is given as

yl = Hlcl + nl ∈ CMR×1, l = 1, ..., Nm (2.38)

where Hl ∈ CMR×MT is the channel matrix of the lth subcarrier in the frequency domain and cl =

ST [GT ]l ∈ CMT×1 represents the transmit signal on the lth subcarrier. Here [GT ]l is the lth column of

the matrix GT .

In the first step, we apply linear equalization on each subcarrier. The output of the equalizer is given

by

ĉl = Elyl ∈ CMT×1, (2.39)

where El ∈ CMT×MR contains the equalizer filter weights and can be calculated using the zero forc-
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ing (ZF) or the MMSE criterion. These equalizer weights are calculated according to Eq. (2.19) and

Eq. (2.22).

In Section 2.3, it is also shown that when a linear code generator demodulation matrix based on the

LMMSE criterion is applied in the second step, this provides a similar performance as joint detection.

Here, a QR-SIC based code generator demodulation is applied in the second step on the equalized

symbols for each transmit antenna layer. Assuming that the propagation channel is perfectly equalized

(ElHl = IMT
), which is exactly true if Eq. (2.19) is used and approximately true if Eq. (2.22) is used,

the equalized symbols for the jth transmit antenna layer are given as

ĉj = Gsj + n̂j , (2.40)

where Ĉ = [ĉ1, ..., ĉNm ]T ∈ CNm×MT , ĉj is the jth column of Ĉ, and

n̂j = [E1(j, :)n1, ...,ENm(j, :)nNm ]T ∈ CNm×1

is the noise at the output of the detector. Here El(j, :) denotes the jth row of the matrix El. Since

the output noise is not white, we need to carry out a denoising step. To this end, the noise covariance

matrix for each transmit layer is

E
{
n̂jn̂

H
j

}
= σ2

nZj ,

where Zj ∈ RNm×Nm is a diagonal matrix and contains El(j, :)[El(j, :)]
H ∀ l = 1, . . . , Nm on its

diagonal. The equalized symbols ĉj are first pre-multiplied by Z
− 1

2
j which results in

c̄ = Z
− 1

2
j ĉj = Z

− 1
2

j Gsj + Z
− 1

2
j n̂j . (2.41)

Then we compute the QR-decomposition of Z
− 1

2
j G as

Z
− 1

2
j G = QR̄, (2.42)

where Q ∈ CNm×Nm is a unitary matrix and R̄ =

[
R

0

]
∈ CNm×Nd with R ∈ CNd×Nd being an upper

triangular matrix. The denoised signal c̄ = Z
− 1

2
j ĉj is filtered with QH , as given by

QH c̄ = R̄Sj + n̄, (2.43)

where n̄ = QHZ
− 1

2
j n̂j . Since Q is a unitary matrix, the variance of the noise term remains unaffected.

Then we start the sequential decoding and remove the interference from other symbols sequentially. Due

to the upper triangular structure of R, the estimated signals on the MT layers are free from interference.
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2.5. Complexity Analysis

In this section we perform a computational complexity analysis of the proposed linear and non-linear

detection schemes for UW-OFDM. Let A ∈ Cm×n be a complex matrix, then a QR decomposition of

A has an approximate complexity of mn2 flops [GVL13]. The inverse of a square matrix A (m = n)

has an approximate complexity of n3 flops [GVL13]. In this work, we use these definitions to calculate

the approximate number of complex multiplications required by each detection scheme as summarized

in Table 2.3.

As seen from Table 2.3, the linear and non-linear detection schemes, which are based on joint detection

(utilize Heff and Geff in the detection procedure), have the highest computational complexity. The two

step approach using linear estimators and a linear code generator demodulation matrix reduces the

complexity significantly. The proposed hybrid detection scheme has a slightly lower complexity than

the linear two step detection approach. This is true if the channel is time varying. But in practice,

the channel is assumed to be constant during the coherence time (for a burst of data in WLAN or for

one subframe in LTE-A). Therefore, the coefficients of the linear filters are calculated once for this time

while the hybrid detection scheme requires an additional N2
m + Nd(Nd−1)

2 flops for each symbol during

the coherence time of the channel.

2.6. Simulation Results

In this section, we investigate the performance of UW-OFDM in terms of the BER using the proposed

detection schemes. We also compare it with CP-OFDM. We have used LTE-A parameters for a 3 MHz

bandwidth in our simulations, as described in Table 2.2. The 3GPP channel models Extended Pedestrian

A (EPA) and Extended Vehicular A (EVA) are used for the simulations. The EPA channel model has a

much lower frequency selectivity than the EVA channel model. All the simulation results are averaged

over 10,000 channel realizations.

CP-OFDM UW-OFDM

Modulation Scheme QPSK

Bandwidth 3 MHz

Data Carriers (Nd) 180 162

Redundant Carriers (Nr) 18

FFT length (N) 256

CP/UW duration 4.69 µs

Channel EPA and EVA

MIMO Configuration
MR ×MT

2× 2, 4× 4

Table 2.2.: Simulation parameters
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2.7. Conclusion

We have chosen two scenarios to show the performance of UW-OFDM with linear and non-linear

detection schemes. In the first scenario, we have a 2 × 2 MIMO system and low frequency selectivity

(EPA). We refer to this scenario as “mild scenario”. In the second scenario, we have more interference

from the antennas (4 × 4 MIMO) and very high frequency selectivity (EVA). We refer to this scenario

as “harsh scenario”.

The results show that UW-OFDM with QR-SIC outperforms the linear equalization schemes sig-

nificantly in both scenarios, as shown in Fig. 2.7. It is also interesting to observe that the proposed

hybrid scheme outperforms the linear equalization significantly. The performance of the hybrid scheme

is slightly worse than QR-SIC since we still employ linear equalization in the first step. The performance

of UW-OFDM differs for both scenarios and we observe huge gains for UW-OFDM with linear and

non-linear detection schemes over CP-OFDM in the harsh scenario. However, in the mild scenario the

performance difference between UW-OFDM and CP-OFDM is reduced and we observe only a slight gain

for UW-OFDM with linear equalization in the high SNRs regime. But still, UW-OFDM with hybrid

detection has a considerable gain. Moreover, even UW-OFDM with linear equalization outperforms

CP-OFDM with QR-SIC at high SNRs in both scenarios. Furthermore, the gain achieved by successive

interference cancellation is not significant for CP-OFDM as compared to UW-OFDM.

2.7. Conclusion

In the UW-OFDM signaling concept, redundancy is introduced in the frequency domain at the trans-

mitter to generate a valid UW-OFDM symbol. It has been shown in the literature for SISO systems that

this redundancy can be exploited by a clever estimator design. Specifically, the SISO receiver based on

the joint detection exploits this redundancy in an efficient manner [Oni13]. Therefore, after introducing

the UW-OFDM signaling concept, two linear detection schemes for MIMO UW-OFDM are proposed in

the first part of this chapter. In the first approach, the joint detection based design for SISO systems is

extended to a MIMO UW-OFDM system. Although this approach outperforms CP-OFDM significantly,

it has a significantly higher computational complexity since a square matrix of size Nd ·MT ×Nd ·MT

has to be inverted. Hence, an alternative scheme is proposed where the detection is performed in two

steps. In the first step a subcarrier-wise equalization is performed while in the subsequent step a matched

filter or LMMSE based code generator demodulator is employed. The results show that subcarrier-wise

detection with an LMMSE based demodulator practically matches the performance of joint detection

but with a considerably reduced computational complexity. It has also been shown that a combined

demodulation matrix results practically in the same performance as of per antenna demodulation. This

in return further reduces the computational complexity of two step approach.

In the second part of this chapter, the performance of UW-OFDM with SIC receivers has been inves-

tigated. Specifically a new hybrid detection scheme is proposed where a linear equalization is performed

in the first step and a SIC code generator demodulation is used in the second step. Moreover, the

complexity analysis of the linear and SIC detection schemes is also performed where it has been shown

that the proposed hybrid scheme has a significantly lower complexity than the SIC receiver. UW-OFDM

with SIC receivers shows a high performance gain in terms of the BER but at the cost of a much higher

computational complexity. Note that UW-OFDM with the proposed hybrid equalization provides a
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(a) 2× 2 MIMO and EPA channel model
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(b) 4× 4 MIMO and EVA channel model

Figure 2.7.: Comparison of different detection schemes. UW-OFDM performance improves in high
frequency selective environments. Moreover, UW-OFDM with SIC detection outperforms
UW-OFDM with linear receivers and CP-OFDM significantly. The proposed hybrid equalizer
provides a trade-off between performance and complexity.

trade-off between performance and computational complexity. It shows a better BER performance than
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2.7. Conclusion

the linear detection schemes but the BER is slightly worse than for SIC receivers.
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3. Space-Time Block Codes for UW-OFDM Systems

Orthogonal space-time block codes (OSTBCs) are widely used in modern communication systems when

no channel state information (CSI) is available at the transmitter. One of the main reasons for the pop-

ularity of OSTBCs is the availability of low complexity optimal detection algorithms such as maximum

ratio combining (MRC) at the receiver. The application of these STBCs to CP-OFDM is straight-

forward, since the detection is performed on each subcarrier separately. However, this is different for

UW-OFDM since the code generator matrix introduces correlation among the data symbols which need

to be efficiently utilized at the receiver to get a better performance. So far, UW-OFDM has been well

investigated from various points of view for single-input single-output (SISO) systems, where it was

shown that a joint detection fully exploits this correlation. In the previous chapters, it has been shown

that a subcarrier-wise detection is also possible for MIMO UW-OFDM. It has also been shown that a

similar performance to that of joint detection can be achieved if equalization combined with an MMSE

based code generator demodulation is performed.

The main goal of this chapter is to present techniques to use existing OSTBCs for UW-OFDM systems.

For this purpose, we propose two approaches to apply STBCs to UW-OFDM. In the first approach,

we exploit STBCs in the frequency domain which is an extension of space-frequency block codes for

CP-OFDM. But for UW-OFDM, this approach has a much higher decoding complexity since detection

based on maximum ratio combining (MRC) is not feasible. Alternatively, in the second approach, we use

STBCs in the time domain with a slight modification of the conventional UW-OFDM frame structure.

We show that this approach results in a decoding procedure with a very low complexity. Moreover, a

matched filter (MF) based demodulation can also be applied. In case of CP-OFDM, different types of

STBCs have been investigated and recommended for different MIMO dimensions [LW00, LXG02]. In

this chapter, we have chosen Alamouti based OSTBCs as an example. Other higher-order STBCs such

as Tarokh STBCs [TJC99] and quasi orthogonal STBCs [Jaf01] can also be utilized for UW-OFDM, but

the application and detection procedures will not change significantly.

The organization of the remaining chapter is as follows. In Section 3.1, STBCs for UW-OFDM are

presented. We discuss two approaches to implement STBCs for UW-OFDM. We also propose appropriate

detection schemes for these approaches. Section 3.2 shows the simulation results and quantifies the system

performance in terms of the BER. The performance is also compared with CP-OFDM. The chapter is

summarized at the end in Section 3.3.

3.1. Space-Time Block Codes

In this section, we investigate space-time block codes for UW-OFDM and propose new transceiver

architectures for UW-OFDM with STBCs. We discuss two approaches for realizing OSTBCs in UW-

OFDM. For the sake of simplicity, we consider Alamouti based STBCs, but the same approaches can be

applied to higher MIMO dimensions. The conventional Alamouti STBCs were designed for flat fading

channels and the encoding rule was applied to two consecutive symbols instead of applying it to blocks
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3.1. Space-Time Block Codes

Figure 3.1.: Space-time encoder in the frequency domain

of data. Later on, in [BP00], Alamouti-based space-frequency coding was proposed for CP-OFDM. Here

we propose two approaches to apply Alamouti-based STBCs to UW-OFDM systems and design the

corresponding receiver.

3.1.1. Space-time encoder in the frequency domain

We consider a system with MT = 2 antennas at the transmitter and MR receive antennas. In the first

approach, we use space-time encoding in the frequency domain, as shown in Fig. 3.1. The modulated

data symbols d1 ∈ CNd×1 and d2 ∈ CNd×1 are processed by the space-time encoder to produce signals

s1 and s2 for two transmit antennas in two successive time frames as shown in Table 3.1. The two data

vectors at the output of the space-time encoder are independently multiplied with the code generator

matrix. Then after applying the IFFT and adding the UW, they are transmitted by the two antennas.

Antenna 1 Antenna 2

Time frame 1 s1,1 = d1 s1,2 = d2

Time frame 2 s2,1 = −d∗2 s2,2 = d∗1

Table 3.1.: STBC encoder for MT = 2 with d1, d2 ∈ CNd×1

The received signal at the jth receive antenna for the time frames (t = 1, 2) is given by

yt,j =

MT∑

i=1

Hj,iF
−1
N (BGst,i + x̃u) + v, (3.1)

where Hj,i is the channel convolutional matrix containing the channel impulse response from the ith

transmit antenna to the jth receive antenna, x̃u ∈ CN×1 is the corresponding UW in the frequency

domain, v is a zero-mean Gaussian noise vector and the subscript (.)t,j represents the time frames and

the transmit antennas, respectively. After applying the FFT at the receiver and removing the UW, the

received signal at the jth receive antenna in the frequency domain during the tth time frame is given by

ỹt,j =

MT∑

i=1

H̃j,iGst,i + ṽ ∈ CNm×1, (3.2)
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where the diagonal matrix H̃j,i = BTFNHj,iF
−1
N B ∈ CNm×Nm contains the channel frequency response

on its main diagonal and ṽ = BTFNv is the zero-mean Gaussian noise vector in the frequency domain.

After taking the conjugate of the received signal in the second time frame, the combined signal for the

two time frames in the frequency domain can be written as




ỹ1,1

...

ỹ1,MR

ỹ∗2,1
...

ỹ∗2,MR




= HeffGeff

[
d1

d2

]
+




ṽ1,1

...

ṽ1,MR

ṽ∗2,1
...

ṽ∗2,MR




∈ C2·MR·Nm×1, (3.3)

where Geff is the concatenation of two block diagonal matrices and

Geff =

[
IMT

⊗G

IMT
⊗G∗

]
∈ C2·MT ·Nm×MT ·Nm (3.4)

Heff =




H̃1,1 H̃1,2 0 0
...

...
...

...

H̃MR,1 H̃MR,2 0 0

0 0 H̃∗1,2 −H̃∗1,1
...

...
...

...

0 0 H̃∗MR,1
−H̃∗MR,2




∈ C2·MR·Nm×4·Nm .

The channel transfer functions (CTFs) H̃j,i ∈ CNm×Nm are still the diagonal matrices with the channel

from the ith transmit antenna to the jth receive antenna on the main diagonal. To facilitate a subcarrier-

wise operation at the receiver, an equivalent representation of Eq. (3.3) can be written as




z1

z2

...

zNm




= H ′effG
′
eff

[
d1

d2

]
+




v̂1

v̂2

...

v̂Nm



, (3.5)

where zl = [ỹ1,1,l · · · ỹ1,MR,l ỹ∗2,1,l · · · ỹ∗2,MR,l
]T and v̂l = [ṽ1,1,l · · · ṽ1,MR,l ṽ∗2,1,l · · · ṽ∗2,MR,l

]T are the com-

bined received signal and noise vectors for the two time frames and for the lth subcarrier, respectively.

Here ỹt,j,l and ṽt,j,l denote the lth component of the vectors defined in Eq. (3.2). Moreover, H ′eff and
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G′eff are given as

H ′eff =




H ′1 0 · · · 0

0 H ′2 · · · 0
...

...
. . .

...

0 0 · · · H ′Nm



∈ C2·MR·Nm×4·Nm

G′eff =




IMT
⊗ [GT ]T1

IMT
⊗ [GT ]H1

...

IMT
⊗ [GT ]TNm

IMT
⊗ [GT ]HNm



∈ C2·MT ·Nm×MT ·Nd ,

where [GT ]l is the lth column of the matrix GT , and H ′eff is a block diagonal matrix containing the Nm

subcarrier-wise effective CTFs. These effective CTFs for the lth subcarrier are given as

H ′l =




h̃1,1,l h̃1,2,l 0 0
...

...
...

...

h̃MR,1,l h̃MR,2,l 0 0

0 0 h̃∗1,2,l −h̃∗1,1,l
...

...
...

...

0 0 h̃∗MR,2,l
−h̃∗MR,1,l




∀ l = 1, . . . , Nm

3.1.1.1. Detection Procedure

Clearly, H ′l is a non-orthogonal matrix, therefore the MRC scheme is not feasible. We can use a two step

subcarrier-wise detection procedure or a joint detection scheme as discussed in the previous chapter.

Two Step Detection: Since H ′l is a non-orthogonal matrix so a subcarrier-wise ZF detection or

MMSE detection scheme can be utilized in the first step. The equalized symbols on the lth subcarrier

are

bl = Elzl ∈ C2·MT×1 , (3.6)

where the equalizer weights can be derived using EZF ∈ C2MT×2MR in Eq. (2.19) or EMMSE ∈ C2MT×2MR

in Eq. (2.22) by replacing Hl with H ′l . Note that we already have a higher dimension of equalizer weights

than for conventional CP-OFDM, thus having a higher computational complexity. In the second step,

an LMMSE based code generator demodulation is applied to estimate the data symbols

d̂ = ŴMMSEb̄ ∈ CMT ·Nd×1 , (3.7)
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where ŴMMSE is the MMSE based code generator demodulator matrix and

b̄ =




b1

b2

...

bNm



∈ C2·MT ·Nm×1.

The LMMSE based code generator demodulator ŴMMSE is given by

ŴMMSE = G′Heff

(
G′effG

′H
eff +

σ2
n

σ2
d

Z

)−1

∈ CMT ·Nd×2·MT ·Nm . (3.8)

Joint Detection: Note that the two step approach for the space-time encoder in the frequency domain

requires a very high computational complexity at the receiver because of two reason. Firstly, the effective

channel matrix on each subcarrier H ′l has a relatively large dimension. Secondly, the LMMSE based

code generator demodulation requires a large dimension inversion in Eq. (3.8) that involve the effective

code generator modulation matrix G′eff (the effective inversion of a matrix size 2 ·MT ·Nm×2 ·MT ·Nm).

Alternatively, joint detection can be applied where the equalizer weights are given as

EBLUE =
(
GH

effH
H
effHeffGeff

)−1
GH

effH
H
eff (3.9)

ELMMSE =

(
GH

effH
H
effHeffGeff +

σ2
n

σ2
d

I(MT ·Nm)

)−1

GH
effH

H
eff. (3.10)

Note that the model represented in Eq. (3.5) is the equivalent representation of the model represented

in Eq. (3.3). Therefore, a joint detection scheme can also be applied to the model in Eq. (3.5). In this

case, Geff and Heff in Eq. (3.9) and Eq. (3.10) are replaced by G′eff and H ′eff. Clearly, for the space-

time encoder in the frequency domain, joint detection is the best choice due to its lower computational

complexity since it requires only one inversion (the effective inversion of a matrix size MT ·Nd×MT ·Nd).

3.1.2. Space-time encoder in the time domain

The application of a conventional Alamouti based space-time encoder for UW-OFDM in the frequency

domain results in a non-orthogonal equivalent channel matrix which is a disadvantage, because it in-

creases the decoding complexity. An alternative strategy is the implementation of a space-time en-

coder in the time domain just after the IDFT operation. Such an encoding strategy is also referred to

as time-reversal space-time coding (TR-STC). An Alamouti based TR-STC scheme was proposed for

single-carrier block transmission with frequency domain equalization in [AD01]. This TR-STC scheme

can also be implemented for UW-OFDM with a slight modification of the UW-OFDM frame structure.

In this approach, the time domain samples x1 and x2 at the output of the IDFT are first encoded by

the space-time encoder according to Table 3.2 for n = 0, 1, ..., N −1, as shown in Fig. 3.2. Then a UW is

added in the time domain signal. To correctly apply this TR-STC scheme, we propose to generate a zero

UW at the start of the time domain signal instead of generating it at the end. This can be accomplished

by designing a G matrix which fulfills the constraint F−1
N BG = [0 ∗]T instead of the conventional
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Figure 3.2.: Space-time encoder in the time domain

TDFT TDFT

UW UW UW

(a) Conventional UW-OFDM frame structure (also with STBC in the frequency
domain)

UW UW UW UW UW

TDFT TDFT TDFT TDFT

(b) UW-OFDM frame structure with TR-STC

Figure 3.3.: Different frame structures for UW-OFDM

constraints F−1
N BG = [∗ 0]T . Moreover, we propose to generate Nu/2 + 1 zeros instead of Nu zeros,

Antenna 1 Antenna 2

Time frame 1 x1,1[n] = x1[n] x1,2[n] = x2[n]
Time frame 2 x2,1[n] = −x∗2[(−n)N ] x2,2[n] = x∗1[(−n)N ]

Table 3.2.: TR-STC for UW-OFDM as illustrated in Fig. 3.4

thus requiring only Nr/2 + 1 redundant subcarriers instead of Nr. Additionally, a UW of length Nu

needs to be inserted in between two encoded symbols to ensure cyclicity. The conventional and this

modified frame structures are shown in Fig. 3.3a and Fig. 3.3b, respectively. To illustrate it further, we

also show the block formats for two frames in Fig. 3.4. The extra addition of a UW in between two

symbols is roughly compensated by the reduction of the redundancy in the frequency domain. Note that

the length of the UW in this scheme is still the same as in the conventional UW-OFDM or when STBCs

are applied in the frequency domain as shown in Fig. 3.3. The combined signal in the frequency domain

after removing the UW can be written as




ẑ1

ẑ2

...

ẑNm




= H ′′effG
′′
eff

[
d1

d2

]
+




v̂1

v̂2

...

v̂Nm



, (3.11)
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UW x1(1)−x∗
2(N − 1)−x∗

2(1) −x∗
2(0) x1(N − 1) x1(0)

Block of size NBlock of size N

Time Frame 2 Time Frame 1

UW x2(1)x∗
1(N − 1)x∗

1(1) x∗
1(0) x2(N − 1) x2(0)

Block of size NBlock of size N

Time Frame 2 Time Frame 1

UW

UW

Antenna 1

Antenna 2

Figure 3.4.: Block formats of TR-STC for UW-OFDM in the time domain

where ẑl = [ỹ1,1,l · · · ỹ1,MR,l ỹ∗2,1,l · · · ỹ∗2,MR,l
]T is the equivalent received signal for two time frames on

the lth subcarrier, G′′eff = IMT
⊗G ∈ CMT ·Nm×MT ·Nm , and H ′′eff ∈ C2·MR·Nm×MT ·Nm is a block diagonal

matrix with the Nm subcarrier-wise combined CTFs (H ′′l ) on its main block diagonal. The combined

frequency response at the lth subcarrier is given as

H ′′l =




h̃1,1,l h̃1,2,l

...
...

h̃MR,1,l h̃MR,2,l

h̃∗1,2,l −h̃∗1,1,l
...

...

h̃∗MR,2,l
−h̃∗MR,1,l




∈ C2·MR×MT ∀ l = 1, . . . , Nm (3.12)

3.1.2.1. Receiver Design

A better estimate of the data symbols can be achieved if the redundancy introduced during the UW-

OFDM symbol generation is well exploited at the receiver. Similar to the space-time encoder in the

frequency domain, a two step detection procedure or a joint detection can be employed. But in this

case, the two step approach has a smaller computational complexity since the effective channel matrix

is orthogonal and also has a smaller dimension. Alternatively, we can apply a joint detection receiver by

using H ′′eff and G′′eff in Eq. (3.9) or Eq. (3.10). But this approach is computationally more expensive.

In the two step approach, we first remove the fading impact of the channel on the lth subcarrier by

multiplying the combined received signal ẑl, as defined in Eq. (3.11), containing two time frames on the

lth subcarrier with an equalizer,

ĉl = Elẑl ∈ CMT×1, (3.13)

where El ∈ CMT×2·MR are the equalizer weights. Since H ′′l is an orthogonal matrix, the low-complexity

MRC method can be used. Hence

El =
[H ′′l ]H

‖ Ĥ ′′l ‖2F
,
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where

Ĥ ′′l =




h̃1,1,l h̃1,2,l

...
...

h̃MR,1,l h̃l,MR,2,l


 .

In the second step, all equalized symbols are jointly multiplied by a code generator demodulator matrix

to get the estimated data symbols

D̂ = WĈ, (3.14)

where Ĉ = [ĉ1, ..., ĉNm ]T ∈ CNm×MT , and W ∈ CNd×Nm is the code generator demodulator matrix which

can be a MF based demodulator or an MMSE based demodulator

WMF = GH (3.15)

WMMSE = GH(GGH + σ2
n/σ

2
dZ)−1, (3.16)

where Z ∈ RNm×Nm is a diagonal matrix with [Z]l,l = tr(ElE
H
l ) ∀ l = 1, . . . , Nm on its main diagonal.

Note that the matrices El ∀ l = 1, . . . , Nm are already calculated in the first step.

CP-OFDM UW-OFDM

Modulation Scheme QPSK

Bandwidth 3 MHz

Data Carriers (Nd) 180 162, 171

Redundant Carriers (Nr) 18, 9

FFT length (N) 256

CP/UW duration 4.69 µs

Channel Extended Vehicular A (EVA)

MIMO Configuration
MR ×MT

2×2

Table 3.3.: Simulation parameters

3.2. Simulation Results

In this section, we evaluate the performance of the proposed space-time block coded UW-OFDM system.

To this end, we use the LTE parameters in Table 3.3. We assume that the whole bandwidth is allocated

to a single user and no channel coding is applied. Moreover, the 3GPP channel model EVA is used for

the simulations. All the simulation results are averaged over 10,000 channel realizations.

First we compare the performance of the proposed frequency domain STBC approach, denoted as

”freq domain”, and the time domain STBC approach, denoted as ”TR-STC” with different detection

schemes in Fig. 3.5a. The frequency domain STBC yields a slightly better performance as compared

to TR-STC (approximately 0.2 dB at high Eb/N0) when a joint detection based on the BLUE or

MMSE criterion is applied. The two-step detection scheme also yields similar results as those of the

joint detection for both schemes, when a subcarrier-wise equalization is performed in the first step
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(a) Different detection schemes for both approaches using G′′
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(b) Performance comparison of UW-OFDM with STBCs

Figure 3.5.: Performance comparison of 2× 2 MIMO with Alamouti based STBCs

and an LMMSE based demodulator is used in the second step. Note that we have applied MRC based

detection for UW-OFDM with TR-STC while MMSE based detection for UW-OFDM with STBCs in the

frequency domain. However, the results are different when a MF demodulator is used in the second step.

Furthermore, it is noteworthy that an MRC based detection combined with a MF based demodulation
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3.3. Conclusion

shows the same performance as the joint detection for UW-OFDM with TR-STC. This is due to that

fact that the received combined CTF on each subcarrier is orthogonal. This can be verified analytically

from Eq. (3.9) which reduces to

EBLUE =
(
GH

effH
H
effHeffGeff

)−1
GH

effH
H
eff

=
(
GH

effIGeff

)−1
GH

effH
H
eff

= GH
effH

H
eff

This is true when HH
effHeff = I (the effective channel is orthogonal) and GH

effGeff = I (true for non-

systematic code generator matrices). However, when the channel matrix is non-orthogonal e.g., when

STBCs are applied in the frequency domain, a MF based demodulation is not feasible.

In Fig. 3.5b, we compare the performance of CP-OFDM with UW-OFDM using two code generator

matrices (G′,G′′). The simulation results show that the design of the code generator matrix plays an

important role on the performance of UW-OFDM, where UW-OFDM with G′′ outperforms UW-OFDM

with G′. Note that G′′ is optimized using an MMSE criterion in an AWGN channel while G′ is using the

SVD of U , as defined in Eq. (2.5). Moreover, UW-OFDM with both code generator matrices outperforms

CP-OFDM. But the obtained gain is significant for UW-OFDM with G′′. Clearly UW-OFDM combined

with TR-STC is a better and lower complexity choice for applying STBCs, since the effective channel

matrix is orthogonal and therefore a subcarrier-wise detection based on MRC can be applied. Moreover,

we can also use a MF based demodulation in this case.

3.3. Conclusion

In this chapter, we have proposed two approaches to apply OSTBCs to UW-OFDM. We have also

proposed different detection procedures for these approaches. In the first approach, we exploit STBCs in

the frequency domain which is an extension of space-frequency block codes for CP-OFDM. This results

in a non-orthogonal effective channel matrix for UW-OFDM. Therefore, this approach has a much higher

decoding complexity since detection based on MRC is not feasible. In the second approach, we use STBCs

in the time domain. A slight modification of the conventional UW-OFDM frame structure is required to

correctly use this approach. We have shown that just like CP-OFDM, a lower complexity MRC based

detection can be used for UW-OFDM when time reversal based space-time coding is utilized. Moreover,

we can also employ a MF based demodulation in the second step if the combined channel matrix is

orthogonal. This combination has a slightly higher computational complexity as CP-OFDM where the

additional complexity lies only in the multiplication by GH . But the performance of UW-OFDM with

STBCs is far better than for CP-OFDM.
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4. Performance Comparison of Space-Time Block Codes for

Different 5G Air Interface Proposals

Several new multicarrier transmission techniques such as filter bank multicarrier (FBMC), universal

filtered multicarrier (UFMC), and generalized frequency division multiplexing (GFDM) have been pro-

posed as an alternative to CP-OFDM for future wireless communication systems. Since MIMO will be

an integral part of the 5th Generation (5G) cellular systems, the performance of these new schemes

needs to be investigated for MIMO systems. Space-time block codes are widely used in MIMO systems

because of their ability to achieve full diversity and the simple linear processing at the receiver. In the

previous chapter, we have proposed two approaches to apply OSTBCs to UW-OFDM. In this chapter,

we evaluate the performance of UW-OFDM against these competing technologies for future systems.

Specifically, we propose two methods for using STBCs in UFMC. We start by describing the system

model of UFMC, GFDM, and FBMC in Section 4.2. Two methods to apply STBCs to UFMC are pre-

sented in Section 4.3. Moreover, we also give an overview of STBCs for GFDM and FBMC. Section 4.4

shows the simulation results and quantifies the system performance in terms of the bit error rate using

LTE-A parameters. The chapter is summarized at the end in Section 4.5.

4.1. Introduction

5G cellular communication systems are expected to support many application scenarios such as the

tactile Internet, machine-type communications (MTC), Internet of things (IoT), and many more, on top

of providing data rates of a few Gigabits/s wireless connectivity. At present, CP-OFDM is the standard

waveform for the 4th generation (4G) of cellular communication systems. CP-OFDM is a widely adopted

solution mainly because of its robustness against multipath channels and its easy implementation. It

is based on the FFT algorithm where the complete frequency band is digitally filtered as a whole. But

CP-OFDM is not spectrum efficient due to its utilization of a guard band and a CP to avoid inter-carrier

interference (ICI) and inter-symbol interference (ISI). Additionally, CP-OFDM suffers from high out-of-

band (OOB) emissions which pose a challenge for opportunistic and dynamic spectrum access [Hos09].

A solution to these problems was provided by FBMC where the filtering functionality is applied on a

per subcarrier basis instead of applying it on the complete frequency band [Bel10b]. Any filter design

with low OOB emission can be chosen. The subcarrier filters are very narrow in frequency and thus

require long filter lengths. This causes the overlapping of symbols in time and hence a CP is not required.

However, the requirement of a long filter length for FBMC makes it unsuited for communication in short

uplink bursts, as required in many potential 5G application scenarios. CP-OFDM and FBMC may be

seen as the two extreme cases of a more general modulation paradigm where filtering is either applied

on a complete band or on a per subcarrier basis. Therefore, in [SWC14], a new multicarrier waveform

called universal filtered multicarrier (UFMC) was proposed which is a generalization of CP-OFDM and

FBMC. Here, the filtering is applied on groups of subcarriers which allows for a significant reduction in
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Figure 4.1.: Generation of UFMC and GFDM modulation waveform

the filter length as compared to FBMC.

MIMO systems with multiple antenna elements at both link ends are an efficient solution for modern

wireless communications systems to provide high data rates by exploiting the spatial domain under the

constraints of limited bandwidth and transmit power. Space-time block coding is a MIMO transmit

strategy which exploits transmit diversity to obtain a high reliability when no channel state information

(CSI) is available at the transmitter. It uses both spatial and temporal diversity by transmitting multiple

copies of the data that results in significant gains. Therefore, STBCs are an integral part of many modern

wireless communication standards, i.e., WLAN, LTE. In this chapter, we investigate the performance

of UFMC for MIMO systems while employing STBCs. Specifically we propose two techniques to apply
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OSTBCs to the UFMC waveform. As an example, we have shown these techniques for Alamouti STBCs,

but other STBCs can also be applied by employing the same technique. Moreover, the performance of

these different 5G air interfaces is compared with each other. Specifically, in this chapter, we compare

the performance of space-time block coded UW-OFDM systems with space-time block coded CP-OFDM,

UFMC, GFDM, and FBMC systems.

4.2. System model

4.2.1. Universal Filtered Multicarrier

In UFMC, as shown in Fig. 4.1a, the overall K data subcarriers are grouped in B sub-bands where each

sub-band comprises ni subcarriers such that K =
B∑
i=1

ni. Each sub-band operation may be referred to

as a UFMC sub-module. The ith UFMC sub-module for i = 1, ..., B takes the complex data symbols

si ∈ Cni×1 as input. The vector si includes ni complex-valued data symbols in baseband. Then an

N point IDFT is applied on each sub-band to obtain the time domain signal. Afterwards, additional

filtering is applied on each sub-band. For the choice of the filter characteristics many alternatives are

available in the literature. For instance, a Dolph-Chebyshev filter maximizes the side lobe attenuation

for a given main lobe width and is recommended for UFMC [SWC14]. Therefore, we have applied

a Dolph-Chebyshev filter with Nf coefficients and side-lobe attenuation parameter αSLA [Dol46]. The

output for each UFMC module is then added together to form the transmit vector x, given as,

x =
B∑

i=1

xi =
B∑

i=1

FiVisi ∈ CNufmc×1, (4.1)

where Nufmc = N + Nf − 1, Vi ∈ CN×ni is the submatrix of IDFT matrix which includes the relevant

columns of the inverse Fourier matrix according to the respective sub-band position within the overall

available frequency range. The matrix Fi ∈ CNufmc×N is a Toeplitz matrix composed of the Dolph-

Chebyshev filter impulse response which executes the linear convolution. The transmit signal x ∈
CNufmc×1 can be rewritten using the following definitions:

F = [F1,F2, · · · ,FB] ∈ CNufmc×(B·N)

V = blkdiag(V1,V2, · · · ,VB) ∈ C(B·N)×K

s = [sT1 , s
T
2 , · · · , sTB]T ∈ CK×1,

resulting in

x = Ts ∈ CNufmc×1, (4.2)

where T = FV ∈ CNufmc×K is the UFMC modulation matrix. This enables column wise stacking of filter

matrices, generating a block-diagonal IDFT matrix (indicated by the ”blkdiag” operator) and stacking

of all data symbols into one column, respectively.

UFMC does not essentially require a CP but it can still be used to further improve the robustness
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against ISI. Assuming that the perfect time and frequency synchronization is accomplished and perfect

channel state information is available at the receiver, the received signals y for the single-input single-

output (SISO) system is

y = Hx + v ∈ C(Nufmc+Nch−1)×1, (4.3)

where H is the channel convolution matrix (as shown in Appendix B), Nch is the length of the channel

impulse response, and v is the zero-mean, circularly symmetric complex additive white Gaussian noise.

The channel estimation and equalization for UFMC is as simple as for CP-OFDM. Both processes can

be performed in the frequency domain [SWC14]. The equalized symbols in the frequency domain are

given as

ỹeq = Eỹ ∈ CNufmc×1, (4.4)

where ỹ = FNufmc
y denotes the received symbols in the frequency domain after taking the DFT (denoted

by Fufmc) and E ∈ CNufmc×Nufmc denotes the equalizer coefficients which can be calculated using the ZF

or the MMSE criterion, i.e.,

EZF =
(
H̃HH̃

)−1
H̃H , (4.5)

EMMSE =

(
H̃HH̃ +

σ2
n

σ2
s

INufmc

)−1

H̃H , (4.6)

where H̃ ∈ CNufmc×Nufmc is the diagonal matrix containing the channel frequency response, σ2
s and σ2

n

denote the signal and noise variance, respectively. After the equalization, the IDFT is applied and the

UFMC demodulation process is carried out in the time domain which can be expressed as

ŝ = Uyeq ∈ CK×1, (4.7)

where ŝ represents the estimated data symbols, U ∈ CK×Nufmc is the UFMC demodulation matrix, and

yeq are the equalized symbols in the time domain. Standard receiver options can be employed for the

UFMC demodulator. It can be a matched filter (MF) receiver UMF = TH, or a zero forcing (ZF) receiver

UZF = T+ which completely removes the self interference, or a minimum mean square error (MMSE)

based receiver UMMSE =
(
THT + σ2

n/σ
2
sIK

)−1
TH . We can also use an FFT based receiver for UFMC,

which is a big advantage as the equalization and channel estimation can be performed in the frequency

domain as in CP-OFDM. In such an FFT based receiver, a 2N point FFT is applied on the received

signal y and then the frequency domain signal is down-sampled by a factor of 2. Later on, the channel

estimation and equalization are performed on the down-sampled signal [SWC14].

4.2.2. Generalized Frequency Division Multiplexing

GFDM is a comparatively more flexible multicarrier scheme as it spreads the data symbols onto a time-

frequency block and each subcarrier is filtered with a circular pulse shaping filter [MMG+14]. A block of

N complex-valued data symbols is decomposed into K subcarriers with M subsymbols such that the total

number of symbols is equal to N = KM . The serial-to-parallel conversion block converts the notation

from d = [d0, · · · , dN−1]T ∈ CN×1 to dk,m according to dk,m = [d0,0, ..., d0,M−1, ..., dK−1,M−1]T ∈ CN×1

55



4. Performance Comparison of Space-Time Block Codes for Different 5G Air Interface Proposals

0

5

10

15

20

25

30

0

5

10

15

20

25

30

0

0.5

1

column index i

sample index n

|[A
] n
,i
|

Figure 4.2.: GFDM transmitter matrix for N = 28, K = 4, M = 7, and a root raised cosine filter with
a roll off factor α = 0.5

as shown in Fig. 4.1b. Each element in dk,m corresponds to the data that will be transmitted on the kth

subcarrier and in the mth subsymbol of the GFDM signal. The indices n, k, and m are linked through

m = b nK c and k = n mod K in one direction and n = mK + k in the other. Here the b·c operator

indicates a floor function that takes as input a real number and gives as output the greatest integer that

is less than or equal to that real number. After this operation, the signal path splits into N parallel

substreams. In each stream, the respective data symbol dk,m is multiplied with a Dirac delta impulse

δ[n −mK], which has two effects. First, the substream signal is added with N − 1 zeros, i.e., N times

upsampling is performed. Second, a time shift of mK samples is introduced, which moves each data

symbol to the correct subsymbol position in the GFDM block [MMG+14]. Subsequently, the signal is

modulated with a prototype pulse shape g[n] and multiplied with a complex exponential exp[−j2π k
Kn],

which shifts the center frequency of the branch to address the K subcarriers in the system. Note that

the prototype pulse is defined with circularity g[n] = g[n modN ], as shown in Fig. 4.2. The overall

prototype pulse shaping filter is given by

gk,m [n] = g [(n−mK) modN ] exp

[
−j2π k

K
n

]
, (4.8)

where gk,m [n] is the transmit filter circularly shifted to the mth subsymbol and modulated to the kth

subcarrier as shown in Fig. 4.1b. The overall GFDM transmit signal samples x[n] of one block are given
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by

x [n] =

K−1∑

k=0

M−1∑

m=0

gk,m [n] dk,m n = 0, 1, ..., N − 1 (4.9)

We can rewrite Eq. (4.9) into a matrix according to

x = Ad ∈ CKM×1, (4.10)

where x represents the transmit samples in the time domain and A is the GFDM modulator matrix of

size KM ×KM with a structure according to

A = [g0,0, · · · , gK−1,0 g0,1, · · · , gK−1,M−1] ∈ CKM×KM ,

where filter coefficients in each column are achieved by varying n = 0, 1, · · · , N − 1 in Eq. (4.8). A CP

is added to the modulated signal to provide easy frequency domain equalization at the receiver. After

passing through the wireless channel, the received signal is given by Eq. (4.3). After removing the CP at

the receiver, the frequency domain equalization can be performed as described for UFMC. The equalized

time domain samples yeq are then passed through the GFDM demodulator, given as

d̂ = Byeq, (4.11)

where B ∈ CKM×KM is the GFDM demodulator matrix. Just like the UFMC demodulator, a MF re-

ceiver BMF = AH, a ZF receiver BZF = A+ or an MMSE receiver BMMSE =
(
AHA + σ2

n/σ
2
sIKM

)−1
AH

can be used as a GFDM demodulator. Moreover, it has been shown in [DMLF12] that even in the ab-

sence of noise and channel, BMF does not completely eliminate the crosstalk between different symbols

and channels. Therefore, a corresponding interference cancellation scheme is required for the MF.

4.2.3. Filter Bank Multicarrier

Another alternative to CP-OFDM is the filter bank multicarrier (FBMC) transmission technique. There

are two main advantages for FBMC over CP-OFDM. First the subchannels can be designed in the

frequency domain and secondly FBMC does not require a CP. Therefore FBMC is spectrally more

efficient than CP-OFDM. However, these benefits come at the cost of higher system complexity [Bel10a].

In FBMC systems, a synthesis filter bank (SFB) and an analysis filter bank (AFB) are implemented in

the modulator and demodulator, respectively. The SFB and AFB can be efficiently implemented using

IDFT/DFT processing combined with polyphase filtering. The complex I/Q baseband signal, necessary

for bandwidth efficient radio communications, at the output of the synthesis filter bank can be expressed

as [RIS10]

s[m] =
M−1∑

k=0

+∞∑

n=−∞
dk,nθk,nβk,np

[
m− nM

2

]
ej

2π
M
kn, (4.12)
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where

θk,n = ej
π
2

(k+n) = j(k+n) (4.13)

and

βk,n = (−1)kne−j
2πk
M

(L−1
2

) = j(k+n). (4.14)

Moreover, k is the subcarrier index, n is the subchannel sample index, m is the sample index at high rate

(at the SFB output), and M is the overall number of subchannels in the filter bank. Furthermore, dk,n

is the real-valued symbol which modulates the k-th subcarrier during the n-th symbol interval and θk,n

is the phase mapping between the real-valued symbol sequence and the complex-valued input samples to

the SFB. This signal model can be interpreted as an offset-QAM (OQAM) modulation where dk,n and

dk,n+1 carry the in-phase and quadrature components of complex-valued symbols, respectively.

We define T as the basic subchannel signaling interval, then the complex QAM symbols are modulated

at a rate of 1/T , which is equal to the subcarrier spacing ∆f . The sample rates at the SFB input and

AFB output are 2/T . The prototype filter defines the filter bank properties, and it is characterized

by two parameters, the overlapping factor K and roll-off factor ρ. The overlapping factor determines

the prototype filter impulse response length as L = KM − 1. The roll-off parameter determines the

overlapping of the transition bands of adjacent subchannels. Often in FBMC, a roll-off factor of ρ = 1

is used, in which case the transmission bands of immediately adjacent subchannels are overlapping, but

more distant subchannels are isolated very well from each other.

4.3. Space Time Block Codes

4.3.1. Space Time Block Coding for UFMC

In this section, we investigate the techniques to apply OSTBCs for the UFMC waveform. To this end, we

consider Alamouti STBCs using MT = 2 transmit antennas and MR receive antennas. Initially Alamouti

STBCs were designed for flat fading channels and the encoding rule was applied to two consecutive

symbols instead of applying it to the blocks of data. Later on, in [BP00], Alamouti-based space-frequency

coding for CP-OFDM was proposed. Moreover, in [AD01], work on combining the Alamouti scheme with

single carrier block transmission and frequency domain equalization was presented. Since additional

filtering is applied to lower the OOB emission for most of the newly proposed 5G transmission schemes,

therefore the transceiver architecture for the STBCs differs to that of CP-OFDM. Especially for UFMC,

the receiver design is strongly dependent on the type of receive filter employed. If an FFT based receiver

is used, a direct implementation of STBCs is possible as it is performed for CP-OFDM. But in the

case of other receive filters, the receiver architecture needs to be changed. Therefore, we propose two

approaches, shown in Fig. 4.3, for the application of OSTBCs for UFMC using different receive filtering

concepts.
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(a) Space-time coding on UFMC data carriers
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(b) TR-STC for UFMC

Figure 4.3.: Two approaches for Alamouti’s STBCs for UFMC waveforms

4.3.1.1. Approach 1: Space-time encoder in the frequency domain

Here we investigate space-time block coding for UFMC where coding is applied in the frequency domain

on data carriers. Fig. 4.3a shows the simplified block diagram for the Alamouti STBC for a UFMC

system using this approach. The data signals s1 ∈ CK×1 and s2 ∈ CK×1 for two transmit antennas are

processed by the space-time encoder to produce data symbols for two successive time frames as shown in

Table 4.1. The two data vectors at the output of the space-time encoder are independently modulated

Antenna 1 Antenna 2

Time frame 1 d1,1 = s1 d1,2 = s2
Time frame 2 d2,1 = −s∗2 d2,2 = s∗1

Table 4.1.: STBC in the frequency domain

by the UFMC modulator matrix T according to Eq. (4.2) and then transmitted by the two antennas.
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The received signal at the jth receive antenna during the tth time frame is given by

yt,j =

MT∑

i=1

Hj,iTdt,i + ṽ ∈ C(Nufmc+Nch−1)×1, (4.15)

where Hj,i ∈ C(Nufmc+Nch−1)×Nufmc is the channel convolution matrix (as shown in Appendix B) between

the jth receive antenna and the ith transmit antenna. The receiver architecture for this approach can

be characterized by the type of receiver filter that are discussed in the following.

Receive filters other than FFT First we discuss the STBC receiver architecture for the receive

filters, as shown in Fig. 4.3a. Note that this architecture is not applicable to FFT based receivers that

are discussed after this paragraph. After taking the conjugate of the received signal in the second time

frame, the combined signal for the two time frames can be written as




y1,1

...

y1,MR

y∗2,1
...

y∗2,MR




= HeffTeff

[
s1

s2

]
+




v1,1

...

v1,MR

v∗2,1
...

v∗2,MR




, (4.16)

where

Heff =




H1,1 H1,2 0 0
...

...
...

...

HMR,1 HMR,2 0 0

0 0 H∗1,2 −H∗1,1
...

...
...

...

0 0 H∗MR,1
−H∗MR,2




∈ C2MR(Nufmc+Nch−1)×4Nufmc

and

Teff =

[
IMT

⊗ T

IMT
⊗ T ∗

]
∈ C4Nufmc×2K (4.17)

are the equivalent channel matrix and the modulation matrix, respectively, to be processed at the receiver

for achieving diversity. This approach results in receivers with a very high computationally complexity.

In the first step, the DFT and the IDFT have to be applied to perform frequency domain equalization

at the receiver. Since the effective channel is non-orthogonal, linear equalization schemes such as ZF

or MMSE may be applied. In the second step, the equalized symbols are multiplied by a demodulator

matrix which utilizes the effcetive modulation matrix in Eq. (4.17) in the demodulation process.

FFT based receiver Unlike the other multicarrier modulation schemes such as FBMC and GFDM,

an FFT based receiver can be employed for UFMC as in the OFDM case, but with slightly higher
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complexity. This offers a simple solution for frequency domain equalization and channel estimation. A

2N point FFT is applied on the received signal after zero padding and then it is downsampled by a

factor 2, as shown in Fig. 4.4, where each second frequency value corresponds to a subcarrier main lobe.

Similar to CP-OFDM, single-tap per-subcarrier frequency domain equalizers can be used which equalize

the joint impact of the radio channel and the respective subband filter. This offers a straightforward

implementation of the STBC decoder in the frequency domain. We can employ maximum ratio combining

(MRC) based detection as in CP-OFDM that has a low complexity. The additional complexity of this

approach lies only in applying the FFT that has twice the size as in CP-OFDM.

STBC

Decoder

y1,2,y1,1

y2,2,y2,1

ŝ2, ŝ1

2N

2N

2

2

FFT

FFT

Figure 4.4.: An FFT based receiver for UFMC for MR = 2

4.3.1.2. Approach 2: Space-time encoder in the time domain

Since approach 1 results in receivers with a very high computationally complexity for all filtering methods

except for FFT based filtering, in approach 2, we propose to apply TR-STC on blocks of UFMC time

domain samples as shown in Fig. 4.3b. The data symbols are first modulated using the UFMC modulator

matrix T according to Eq. (4.2). Then the time domain output signals x1 and x2 are processed by the

space-time encoder according to Table 4.2 for n = 0, 1, ..., Nl − 1, where Nl is the length of UFMC

Antenna 1 Antenna 2

Time frame 1 x1,1[n] = x1[n] x2,1[n] = x2[n]
Time frame 2 x1,2[n] = −x∗2[(−n)Nl

] x2,2[n] = x∗1[(−n)Nl
]

Table 4.2.: TR-STC for UFMC

modulated signal vectors x1 or x2. At the receiver side, the signals at the jth receiving antenna for the

two time frames are

y1,j = Hj,1x1,1 + Hj,2x1,2 + vj,1

y2,j = Hj,1x2,1 + Hj,2x2,2 + vj,2,
(4.18)

where Hj,i ∈ C(Nufmc+Nch−1)×Nufmc is the channel convolution matrix (as shown in Appendix B) between

the ith transmit antenna and the jth receive antenna and vj,1 and vj,2 are the noise vectors for the
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two time frames. Both received signals are transformed into the frequency domain by applying the

DFT. Assuming that the channel remains constant for two time slots, we can rewrite Eq. (4.18) in the

frequency domain as




ẑ1

ẑ2

...

ẑNufmc




= H̃eff

[
x̃1

x̃2

]
+




v̂1

v̂2

...

v̂Nufmc



, (4.19)

where ẑl = [ỹ1,1,l · · · ỹ1,MR,l ỹ
∗
2,1,l · · · ŷ∗2,MR,l

]T is the equivalent received signal for two time frames, v̂l =

[ṽ1,1,l · · · ṽ1,MR,l ṽ∗2,1,l · · · ṽ∗2,MR,l
]T is the equivalent noise vectors for the two time frames, and H̃eff =

blkdiag[H̃1, · · · , H̃l] ∈ C2·MR·Nufmc×MT ·Nufmc ∀ l = 1, . . . , Nufmc is a block diagonal matrix with the Nufmc

subcarrier-wise combined channel transfer functions on its main diagonal. Here ỹt,j,l and ṽt,j,l denote the

lth component in the frequency domain of the vectors defined in Eq. (4.18). The combined frequency

response at the lth subcarrier is given as

H̃l =




h1,1,l h1,2,l

...
...

hMR,1,l hMR,2,l

h∗1,2,l −h∗1,1,l
...

...

h∗MR,2,l
−h∗MR,1,l




∀ l = 1, . . . , Nufmc (4.20)

Since the effective channel on each subcarrier is orthogonal, we can employ maximum ratio combining.

The equalized symbols are converted back to the time domain by applying the IDFT. Then in the second

step an appropriate demodulation scheme is applied. Note that the demodulator matrix is based on the

actual UFMC modulator matrix T in Eq. (4.2).

4.3.2. Space Time Block Coding for GFDM

We can also use space-time coding on data carriers or on time domain samples for GFDM. However,

when STBCs are applied directly to the data symbols, the linear GFDM demodulator can not decouple

the subcarriers and subsymbols because of the multipath propagation channel. Hence, it leads to a severe

performance loss. Because of this reason, in [MMG+15], TR-STC has been recommended for GFDM

when space-time coding is utilized for blocks of GFDM samples. We have used the same approach in

this work to evaluate the performance of GFDM.

4.3.3. Space Time Block Coding for FBMC

Space-time coding can also be applied in conjunction with FBMC for 2×2 MIMO systems using a block

Alamouti scheme as presented in [RIS10]. Due to the fact that FBMC has an OQAM signal structure it

is impossible to apply the Alamouti scheme for symbol-wise coding. Therefore the Alamouti scheme is
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utilized for a whole block of symbols instead of just one. We have used the approach presented in [RIS10]

in order to evaluate the performance of FBMC.

4.4. Simulation Results

For the simulations, a 2×2 LTE MIMO system with a bandwidth of 3 MHz is considered. The 3GPP

channel models extended pedestrian-A (EPA) and extended vehicular A (EVA) are used. The simulation

parameters for the three waveforms are defined in Table 4.3. It was assumed that all the resources

are allocated to a single user. The performance of these schemes is compared in terms of the BER.

Moreover, it is assumed that perfect synchronization and perfect channel state information are available

at the receiver. Furthermore, the roll-off factors for the pulse-shaping filter used in these waveforms are

indicated by α. Note that we have used the parameters in Table 3.3 for UW-OFDM using EPA and

EVA channel models.

The BER performance of the two STBCs approaches for UFMC, described in Section 4.3, over the

3GPP EVA channel is shown in Fig. 4.5a. The results show that both approaches have a similar

performance but the computational complexity of approach 1 is much higher than approach 2. Moreover,

a modified UFMC demodulator is needed if the STBCs are used on the data subcarriers (approach 1).

We also compare the performance of different UFMC receiver concepts for two modulation orders over

the EVA channel in Fig. 4.5b. The results show that when we use a lower modulation order, i.e., QPSK,

UFMC with a MF demodulator performs nearly the same as the ZF receiver or an FFT based receiver.

However, the performance of the UFMC MF receiver decreases when the higher modulation order of

16 QAM is employed. Although, the FFT based receiver has a slightly worse performance than the ZF

based receiver, an FFT based receiver is the simplest option to apply STBCs in the frequency domain

due to its lower computational complexity. However, approach 2 is a better solution when we employ a

MF, a ZF, or an MMSE based UFMC demodulator.

The performance comparison of the space-time block coded UFMC, GFDM, FBMC, UW-OFDM and

CP-OFDM system is shown in Fig. 4.6, for MF and ZF based receivers. The results are presented for

two different modulation orders, QPSK and 16 QAM, over the 3GPP EPA and EVA channel, as shown

in Fig. 4.6a and Fig. 4.6b, respectively. We have shown the results for UFMC using a FFT based receiver

using approach 1 and also for ZF receiver using approach 2. The UW-OFDM outperforms all of the

schemes especially for a highly frequency selective channel (EVA). This is due to the fact that UW-

OFDM achieves the maximum diversity even when no precoding is utilized at the transmitter [Ste13a].

To obtain this diversity, the G matrix needs to have full column rank. This condition is already fulfilled

in our design.

63



4. Performance Comparison of Space-Time Block Codes for Different 5G Air Interface Proposals

P
a
ra

m
e
te

rs
C

P
-O

F
D

M
U

F
M

C
G

F
D

M
F

B
M

C

M
o
d

u
la

ti
on

O
rd

er
Q

P
S

K
or

16
Q

A
M

O
Q

P
S

K
o
r

1
6

O
Q

A
M

L
T

E
B

a
n

d
w

id
th

3
M

H
z

N
o.

o
f

tr
an

sm
it

an
te

n
n

a
s

2

N
o.

o
f

re
ce

iv
e

a
n
te

n
n

as
2

C
h

an
n

el
m

o
d

el
E

P
A

an
d

E
V

A

S
am

p
li

n
g

fr
eq

u
en

cy
3.

84
M

H
z

S
u

b
ca

rr
ie

r
sp

a
ci

n
g

15
k
H

z
15

k
H

z
24

0
k
H

z
1
5

k
H

z

N
o.

o
f

su
b

ca
rr

ie
rs

18
0

18
0

1
6

6
4

N
o.

o
f

su
b

sy
m

b
o
ls

(M
)

1
5

N
o.

o
f

su
b

ca
rr

ie
rs

in
a

su
b

-b
an

d
12

IF
F

T
le

n
gt

h
N

25
6

25
6

C
P

d
u

ra
ti

on
18

sa
m

p
le

s
18

sa
m

p
le

s
(fi

lt
er

le
n

gt
h

-1
)

16
sa

m
p

le
s

P
u

ls
e

sh
a
p

in
g

R
ec

ta
n

gu
la

r
D

ol
p

h
-C

h
eb

y
sh

ev
α

S
L

B
=

60
R

o
ot

ra
is

ed
co

si
n

e
α

=
0
.5

R
o
o
t

ra
is

ed
co

si
n
e

α
=

1

T
ab

le
4.

3.
:

S
im

u
la

ti
on

p
ar

am
et

er
s.

64



4.4. Simulation Results

Surprisingly, the GFDM waveform performs the worst. This is in contrast to our previous results

in [CNA+16] where we have shown that it performs better than UFMC and CP-OFDM. The symbols in

GFDM are efficiently spread over time and frequency and the CP is utilized in a better way (over a data

block, instead of just one symbol). Therefore, it is expected that this should results in a better BER

performance as shown in various publications [MMG+14, MMF14, MMG+15]. But, we have noticed in

our simulations that the time-frequency spread of GFDM symbols (number of subcarriers and number

of subsymbols) should be carefully chosen for this improved performance. When the difference between

the number of subcarriers and the number of subsymbols is not that much (as in our case, where K = 16

and M = 15), the performance of GFDM is significantly reduced. However, to have a fair comparison

with other schemes, we have chosen the simulation parameters based on the LTE standard for a 3 MHz

bandwidth. Specifically, for GFDM, we have used the parameters that fit in the LTE grid as discussed

in [GMM+14]. Moreover, for GFDM, an increase in the value of the pulse shaping filter’s roll-off factor

(α) results in a worse performance. We have, however, shown the results for the case of a α = 0.5, because

in a practical system setup α should be chosen small to neglect the noise enhancement factor [MMG+14].

The results show that the GFDM with a MF receiver results in the worst performance because it cannot

resolve the ISI. Therefore, a ZF or MMSE receiver or some interference cancellation scheme has to be

employed.

The BER performance of UFMC using a FFT based receiver is approximately same as of CP-OFDM.

However, when a ZF based receiver is employed, it performs slightly better than CP-OFDM. For FBMC,

we have applied the block Alamouti scheme as described in [RIS10], where the performance of FBMC

was shown for different channel models using only OQPSK modulation. However, in this work we have

compared this performance with other schemes also for 16 OQAM. The results show that the proposed

block wise Alamouti works for OQPSK, but its performance severely degrades for higher modulation

orders. Moreover, even for OQPSK its performance is worst than all other schemes due to the presence

of self inter-symbol interference. Therefore, some interference cancellation technique has to be employed

additionally, for instance, [ZL13].
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Figure 4.5.: BER performance of UFMC for different receive filtering techniques.
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4.5. Conclusion

In this chapter, we have developed different space-time coding concepts for UFMC waveforms. We can

either use the STBCs on the data carriers in the frequency domain or on the time domain samples

(TR-STC). The results show that both approaches yield similar results, but approach 1 has a much

higher complexity for MF and ZF based receivers. If STBCs are used on the data carriers, an FFT

based receiver is a feasible solution. But we have also shown that if a MF or ZF based receiver is

utilized, TR-STC is recommended for UFMC, since it has a lower complexity. We have also compared

the performance of different air interface techniques with STBCs. The results show that UW-OFDM

has the best performance especially over highly frequency selective channels. This is due to the fact that

UW-OFDM achieves the maximum diversity when the code generator matrix has full column rank, which

is true for our case. Note that this better performance for space-time block coded UW-OFDM systems

is achieved with a much lower computation complexity as compared to other 5G air interface proposals,

since an MRC based detection along with a MF based receiver is employed. Moreover, UFMC has the

same performance as CP-OFDM while MF based receivers for GFDM and FBMC exhibit a very bad

performance. The performance of FBMC can be improved by using interference cancellation techniques

as suggested in [ZL13]. STBCs approaches for these waveforms are summarized in Table 4.4 with the

recommended receiver architectures.
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Part II of this thesis is devoted to the investigation of the transmission strategies for optical systems

that employ intensity modulation and direct detection (IM/DD). The most popular examples for such

optical systems are plastic optical fibers (POFs), multimode fibers and wireless optical transmission

such as visible light communication (VLC) that employ a LED as a source. Both POFs and VLC

suffer from electrical bandwidth limitation which occurs due to the source or due to the multipath

propagation channel. This bandwidth limitation leads to severe inter-symbol interference (ISI) especially

at higher data rates or transmission distances. Therefore, efficient transmission schemes along with

robust equalization techniques are needed to achieve high data rates in these systems.

CP-OFDM and its real-valued version discrete multitone transmission (DMT) are popular schemes to

compensate dispersion in direct detection optical systems. Since optical systems with IM/DD demand

for real-valued and positive signals, a Hermitian symmetry is applied, thus reducing the bandwidth

efficiency of the DMT schemes. Moreover, DMT schemes have a much higher peak-to-average power ratio

(PAPR). An alternative approach for these optical systems is PAM block transmission with frequency

domain equalization (PAM-FDE). The results indicate that PAM-FDE has not only a better performance

but also lower PAPR. We start this part of the thesis by first discussing these transmission schemes in

Chapter 5. We compared the performance of these transmission schemes for VLC and POF systems.

Major parts of this chapter have been published in one book chapter [WCH16a] and in one conference

paper [WCKL15]. In Chapter 6, the investigations are extended by considering non-linear precoding

and equalization techniques for PAM transmission. These non-linear schemes achieve a much better

performance for these optical systems but increase the overall complexity of the system. Therefore,

an alternate hybrid scheme is proposed which has a relatively low complexity, but achieves the same

performance as decision feedback equalization and Tomlinson-Harashima precoding. Parts of this chapter

have already been published in a conference paper [CWTH15].

Chapter 7 presents three novel DMT schemes for optical systems with IM/DD. These schemes are

derived from the UW-OFDM signaling concepts. In UW-OFDM, first redundancy is added to the data

symbols with the help of a code generator matrix. Then the IDFT is applied to the coded symbols. This

operation effectively maps the data symbols to different frequency bands of the resulting time domain

signal. However, this procedure produces complex-valued bipolar time domain samples, while intensity

modulation requires real non-negative signals. Therefore, the UW-OFDM signal has to be modified

before it becomes suitable for an IM/DD system. A real signal can be obtained by imposing Hermitian

symmetry in the information block on which an IDFT operation is applied during the signal generation

procedure. This requires a new design of code generator matrices. Therefore, we derive new code

generator matrices such that we obtain real-valued signals at the output of the IDFT. We also compare

the performance of the proposed schemes with the conventional CP-DMT schemes. Major parts of this

chapter have been published in one journal paper [CBWH17] and the remaining results are submitted

in the form of a letter [CWHH17].
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5. PAM Block Transmission with Frequency Domain

Equalization

CP-OFDM and its real-valued version DMT are popular schemes to compensate dispersion in direct

detection optical systems. In practice, a CP-OFDM signal is realized in a digital signal processor by

taking an IDFT of a block of data symbols. This enables simple cost-effective equalization with single-

tap equalizers in the frequency domain at the receiver. PAM or single subcarrier (SSC) modulation

combined with block transmission and frequency domain equalization has been recognized as a possible

alternative to the DMT schemes. Here, the IDFT is moved from the transmitter to the receiver, since the

modulation takes place directly in the time domain. In this chapter, we investigate the suitability of PAM

or SSC modulation combined with FDE for optical systems employing IM/DD. After the introduction,

we present the system model in Section 5.2 where we also describe channel models for POF and VLC

systems. We discuss the transmission schemes in Section 5.3. We compare the performance of these

schemes for both VLC and POF systems in Section 5.4. The chapter is summarized in Section 5.5.

5.1. Introduction

Plastic optical fiber (POF) and visible light communication (VLC) employ light emitting diodes (LEDs)

as a source. These optical systems get a lot of attention due to their applicability in a vast range of

application scenarios. For example, large core step-index plastic optical fibers (SI-POFs) with a typical

diameter of 1 mm are a low-cost solution for short-distance transmission in digital car networks, industrial

networks, and home networks. Recently VLC has also received a lot of attention due to its advantages

and its applicability in a vast range of scenarios such as indoor wireless communication, underwater

communication, and car-to-car communication. Specifically, high data rates can be achieved for indoor

wireless communications without any spectrum congestion problem. In such systems we have a limited

temporal and spatial coherence of the source (LED) and of the received signal, making a field modulation

impossible. This means that a quadrature modulation cannot take place at the optical level but only at

the electrical level by modulating one or multiple electrical subcarriers. The only solution is to employ

intensity modulation (IM) with direct detection (DD). Therefore, we need a real-valued positive signal.

In this work, we investigate the suitable transmission schemes for these optical systems. For radio

frequency (RF) transmission, CP-OFDM is a widespread solution. The success of CP-OFDM is closely

related to the fact that the signal processing is based on the FFT (fast Fourier transform) operation,

where this advantage is achieved due to the periodic insertion of a cyclic prefix (CP). However, due

to the problems associated with CP-OFDM such as a high peak-to-average power ratio, the concept of

single carrier block transmission with frequency domain equalization (FDE) [FA+02] has been recognized

as a powerful alternative in RF communications. It basically uses the same ”trick” as CP-OFDM. In

this scheme, the linear convolution of the signal with the channel impulse response appears as a cyclic

convolution within the correlation interval of the receiver, since a CP is inserted periodically between
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blocks of data symbols. This opens the door for very efficient signal processing based on the FFT. The

relation between the input signal and the output signal is determined by a pointwise multiplication of

the DFT (discrete Fourier transform) input spectrum with the DFT of the channel impulse response. In

contrast to CP-OFDM, where the data information is expressed and analyzed in the frequency domain,

the modulation and demodulation for single carrier block transmission takes place in the time domain.

Thus, single carrier block transmission systems do not require an inverse FFT (IFFT) at the transmitter,

but an additional IFFT at the receiver, before the equalization step. The equalization step itself is

basically the same as in CP-OFDM, where the FFT/IFFT usage ensures that fewer multiplications are

required as compared to linear/non-linear time domain equalizers. Moreover, the major advantage of

the single carrier approach is the reduced peak-to-average power ratio, which significantly decreases the

power consumption of the amplifier at the transmitter. It also relaxes the resolution of the analog to

digital converter (ADC) at the receiver.

Optical systems with IM/DD demand for real-valued (i.e., one dimensional) and non-negative signals.

Therefore, the conventional CP-OFDM cannot be directly applied to these systems and a Hermitian

symmetry is imposed to obtain a real-valued IDFT output signal [AS08, GL10, CCC14]. This real-

valued version of the CP-OFDM is also referred as discrete multitone transmission (DMT) which clearly

distinguishes such multiple subcarrier schemes from coherent OFDM approaches with a complex-valued

IDFT output signal that is used for a two-dimensional field modulation of an optical carrier. Clearly,

the necessity of a real-valued IDFT output reduces the bandwidth efficiency compared to CP-OFDM

approaches with field modulation by a factor of two. Moreover, while a DMT signal suffers from a

large peak-to-average power ratio, which demands for a correspondingly large dynamic range of the

LED driver, PAM transmission based on rectangular pulses exhibits only a certain number of discrete

amplitude levels equal to the modulation order, and the optical peak-to-average power ratio is as low

as 3 dB, if the non-return-to-zero (NRZ) format is used. This provides another reason to compare FDE

and DMT under the IM/DD constraint.

Due to the limited coherence of the optical carrier, QAM can either be applied on multiple electrical

subcarriers (DMT) or on single subcarrier (SSC) [CK96, ABNW11]. We also investigate various SSC

schemes for these optical systems. Specifically, we investigate whether block transmission with FDE may

also benefit from single subcarrier (SSC) modulation. As we focus on optical transmission with IM, we

avoid the term single carrier transmission in the following, since single carrier inherently suggests the

availability of a sinusoidal optical carrier and it also suggests that we observe the optical spectrum but

instead we focus on the spectrum of the modulating signal, where this signal is real-valued and positive.

Regarding the FDE, we refer to the transmission schemes simply as PAM block transmission or, if a

single electrical subcarrier is QAM-modulated, then as SSC-QAM with FDE.

In the following we summarize the main contributions of this chapter. So far, there have been minimal

investigations in the literature regarding PAM block transmission with FDE as a suitable waveform

for optical systems with IM/DD. We contribute in this regard by evaluating the performance of PAM

block transmission for POFs and VLC systems from various aspects. Specifically, we use return-to-zero

(RZ) and non-return-to-zero (NRZ) filtering methods and employ symbol-spaced and fractionally-spaced

receivers. Moreover, we propose line coding methods that can be used with PAM block transmission.

In addition, we present novel SSC transmission schemes, i.e., orthogonal PAM (OPAM) schemes. We
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5. PAM Block Transmission with Frequency Domain Equalization

also show that SSC schemes can be combined with block transmission and FDE. We contribute to DMT

schemes by proposing bit-loading methods. A comprehensive performance comparison of these schemes

is also not available in the literature especially for VLC systems. Therefore, in the last section, we

compare the performance of these schemes with and without the knowledge of channel state information

at the transmitter.

5.2. System Model

We assume a linear time invariant systems where the optical channel for wired or wireless systems is

modeled at the level of the instantaneous optical power as shown in Fig. 5.1. We denote the instantaneous

optical powers at the LED output and the photodiode input by p(t) and prx(t), where prx(t) is given as

prx(t) = p(t) ∗ hch(t). (5.1)

The term hch(t) denotes the channel impulse response and ∗ is the convolution operator. The corre-

sponding average optical powers at the transmitter and receiver for symbol interval Ti are given as

P = lim
Ti→∞

1

Ti

∫

Ti

p(t)dt and Prx = lim
Ti→∞

1

Ti

∫

Ti

prx(t)dt, (5.2)

where Prx can be also expressed as

Prx = P ·Hch(0) where Hch(f) =

∞∫

−∞

hch(t)exp[−j2πft]dt. (5.3)

The term Hch(f) corresponds to channel transfer function. The photodiode converts the received optical

LED Optical Channel R grx(t)+
p(t) prx(t) y(t)

n(t)

hch(t)

Figure 5.1.: Block diagram of the system model.

power prx(t) linearly into a current R · prx(t), where R denotes the photodiode responsivity. Moreover,

it is assumed that the current R · prx(t) at the diode output is superimposed by a signal independent

additive white Gaussian noise (AWGN) current n(t) with the two-sided power spectral density N0/2.

5.2.1. Performance Criteria

The performance of the proposed schemes is evaluated in terms of an optical power penalty which is

defined as

κloss = 10 · log10 (P/Pref) dB, (5.4)
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where P defines the required average optical power of the investigated transmission scheme and Pref is

the required reference power of NRZ-OOK (non-return-to-zero on-off keying). This reference power is

measured in a flat additive white Gaussian noise (AWGN) channel and is given as

Pref = POOK =

√
N0Rb

R
erfc−1(2pb), (5.5)

where erfc(·) denotes the complementary error function [Hay01], N0 is the power spectral density (single-

sided) of the signal independent additive white noise current (in A2/Hz) at the photodiode output, R

is the photodiode responsivity (in A/W), Rb is the bit rate, and pb is the bit error ratio. The bit error

ratio of any binary transmission scheme in a flat AWGN channel can be expressed as [Hay01]

pb =
1

2
· erfc

(
dE/2√
N0

)
, (5.6)

where dE is the Euclidean distance [Hay01] between the OOK signal vectors measured at the photodiode

output. For a unit energy rectangular basis function of duration Tb, dE is

dE = dE,ref = 2RP/
√
Rb. (5.7)

Clearly, the ratio P/POOK is measured at the same values of N0, R,Rb, and pb.

This approach has been adopted by various authors in the literature [KB97,CK94,PB95]. We prefer

this approach against a comparison of the electrical Eb,elec/N0 because of two reasons. Firstly, there is

no fixed relationship between Eb,elec and the mean optical power that is valid for all modulation schemes.

For instance, even if a NRZ- and a 50 % RZ-rectangular pulse have the same electrical Eb value, their

average optical powers differ by a factor
√

2, since the instantaneous electrical power depends on the

square of the instantaneous optical power. Thus, for IM/DD and a flat AWGN channel, 50 % RZ-OOK

exhibits a 1.5 dB power advantage over the reference scheme, since POOK/P =
√

2, as shown in Fig. 5.2.

Note that the optical power P0 is related to the mean optical power P according to

P = P0 · E{dk}, (5.8)

where dk denotes the data symbols to be transmitted i.e., for uniploar equiprobable PAM symbols

dk ∈ {0, 1, · · · ,M − 1} of modulation order of M we have E{dk} = (M − 1)/2.

5.2.2. Channel Models

The most important examples for optical systems employing intensity modulation and direct detection

are plastic optical fiber (POF) and visible light communication (VLC) systems. We evaluate the perfor-

mance of transmission schemes for both systems. In the following, we present channel models which are

used for our simulations.
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P0,NRZ

pNRZ(t)

Tb t

√
2P0,NRZ

pRZ(t)

Tb t

Figure 5.2.: Instantaneous power for transmitted ”on” pulses for NRZ- and RZ-OOK. Both optical
pulses lead to the same electrical energies, but their average optical powers differ by a factor

√
2.

5.2.2.1. Channel 1: POF

The presence of serious modal dispersion in the POF channel causes a low-pass frequency response. This

low-pass channel frequency response is modeled as a Gaussian low-pass filter with the transfer function

HPOF(f) = e
− ln(

√
2)
(

f
f3dB

)2

, (5.9)

where f3dB is the corresponding electrical 3 dB cut-off frequency compared to 1.5 dB in the optical

domain. Eq. (5.9) is a valid model for the multipath dispersion in POFs [PHH13,WMS13]. Theoretically,

the Gaussian function extends from −∞ to +∞, but the output pulse in the time domain cannot begin

before the input pulse has started. Therefore, Eq. (5.9) is multiplied with an exponential function to

make it casual and also restricted to some interval. However, for simplicity, we do not consider these

facts in this work. Clearly, the 3 dB cut-off frequency differs for various lengths of POFs [PHH13].

Since the multipath dispersion increases with the fiber length, f3dB decreases accordingly; for example,

f3dB of 130 MHz, 90 MHz, and 55 MHz are achieved for POF lengths of 15 m, 50 m, and 100 m,

respectively [PHH13].

5.2.2.2. Channel 2: VLC

For VLC systems, we consider the effect of multipath propagation for indoor wireless environments. For

such systems, the received optical signal experiences time dispersion due to the reflections from walls

and other objects. Possibly there may be also several, spatially separated LED-lamps that transmit one

and the same signal, which even leads to multiple LoS arrivals at the receiver (LoS: line-of-sight). In

practice, most of the reflections are diffuse in nature and modeled as Lambertian [GB79]. Therefore,

for such systems, the total channel impulse response (CIR) includes the contribution of both LoS and

diffuse components. In the literature, several methods have been proposed for calculating the CIR

of the diffuse part. These methods are generally based on ray-tracing models and the computational

complexity of these approaches depends on the number of reflections considered. In this work, we use a

recursive algorithm proposed by Barry in [BK+93]. In this method, the room surface for each reflection

is decomposed into a number of reflectors and the reflected lights are summed at the receiver [LKW+14].
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Figure 5.3.: Considered room configuration: room layout (left) and LED coordinates (right)

We consider a medium sized room of dimension (5×5×4) m3 as shown in Fig. 5.3. An array of (2×2)

LED lamps is installed on the ceiling in a symmetrical arrangement to insure room illuminations. It is

assumed that all lamps synchronously transmit the same signal, causing that several LoS components

impinge at the receiver. Clearly, these LoS components could be resolved by means of an imaging

receiver [KY+98], and the delays could be compensated accordingly, but we do not consider this case

here. We rather assume that the receiver has no angle-diversity capabilities. The receiver is positioned

at the height of 0.85 m above the floor pointing vertically towards the ceiling. The receiver field of

view (half angle) is set to 70◦ and we do not consider any receiver lens. Moreover, we show results for

three alternative receiver positions R1, R2, and R3: R1 being at the center of the room with coordinates

(2.5 m, 2.5 m), R2 is nearly beneath LED 2 with coordinates (1.3 m, 1.2 m), and R3 is at the room

corner with coordinates (0.5 m, 0.5 m). The reflection coefficients of the Lambertian reflectors such as

walls, floor, and the ceiling are considered to be 0.74, 0.61, and 0.38, respectively [LPB11]. We calculate

the CIR with a time resolution of 0.2 ns and consider up to 8 diffuse reflections.

The transfer functions arising for three receiver positions discussed above are shown in Fig. 5.4. If

hMP(t) = hLoS(t) + hDiff(t) (5.10)

denotes the multipath CIR decomposed into a pure LoS part and a pure diffuse part, the transfer function

is given as

HMP(f) = HLoS(f) +HDiff(f). (5.11)

The transfer functions HMP(f) arising from both the LoS and the diffuse components are shown in

Fig. 5.4a. To display the impact of HDiff(f), Fig. 5.4b shows the functions HLoS(f) and HDiff(f) sepa-

rately, too. It should be noted that all functions shown in Fig. 5.4 are normalized with respect to the

channel gain
HL0 = HLoS(0) =

∫ ∞

0
hLoS(t) dt (5.12)

of the LoS part.
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Figure 5.4.: Multipath channel transfer function

In VLC, fading with respect to the optical carrier cannot occur, since the light source is non-coherent.

The CIR correspond to the small-scale averaged power delay profile known from RF. However, if an

arrangement with multiple LoS arrivals is considered, fading can even take place on a subcarrier level.

This makes a big difference since the frequencies, which lie within the transmission range of the LED, are
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much smaller than the RF-carrier frequencies used in Wi-Fi networks. Thus, much larger path length

differences are required for a destructive λ/2 interference.

As shown in Fig. 5.4a, the transmitted signal will undergo much deeper fades at receiver position R2

as compared to the other positions. The deep fade at approximately 150 MHz for the R2 position is not

only caused due to a destructive interference of the 4 LoS multipath components. Fig. 5.4b shows that

even the diffuse part interferes destructively at this frequency. However, since HDiff(f) has a lowpass

characteristic, its contribution to HMP(f) disappears always in the high frequency range. In the lower

frequency range, it leads to the distortions, but it also adds additional power to the received signal.
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Figure 5.5.: Total transfer function of the VLC channel for three positions, as depicted in Fig. 5.3

VLC systems also suffer from the bandwidth limitation of the LED/LED driver combination which

plays a decisive role in the VLC system performance. The measurement results in [GL13] show that

this bandwidth limitation leads to a low pass characteristic which can approximately be modeled as a

Gaussian low-pass filter or a first order low-pass filter. Therefore, the total channel frequency response

of the VLC system can be defined as

HVLC(f) = HMP(f) ·HLED(f), (5.13)

where HLED(f) is the channel transfer function which models the bandwidth limitation of the LED/LED

driver combination. In this work, we assume that this has the characteristic of a Gaussian lowpass filter

with an optical 3 dB cut off frequency f3dB. Thus, if we assume for simplicity that p(t) denotes the

modulated optical signal in the ideal case, the received signal prx(t) appears to be a filtered version of

p(t), i.e. , Prx(f) = P(f) ·HLED(f) — even if an ideal free space channel exists between the LED and
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the photodiode. The filter is modeled as a Gaussian lowpass with the transfer function

HLED(f) = e
− ln(2)

(
f

f3dB

)2

. (5.14)

Note that the average optical power at the filter output is equal to the power at the input.

In Fig. 5.5, the total channel frequency response is shown for three positions where a Gaussian low-

pass filter with f3dB = 200 MHz is considered in order to take into account that the LED is bandwidth

limited. It is interesting to note that the lowpass characteristics of the LED/LED driver combination

dominates the overall channel transfer function. However, we also observe the multipath effects for the

R2 receiver position.

5.3. Transmission Schemes for IM/DD systems

5.3.1. PAM Block Transmission with Frequency Domain Equalization

In PAM block transmission, the original source symbols dk, unipolar and real-valued alphabets, are first

grouped into a series of blocks, each of size N , at the transmitter. Then, a CP of length L is inserted at

the beginning of each block, which decreases the net data rate to RbN/(N+L). The ratio N/(N+L) can

be interpreted as a bandwidth efficiency factor. For symbol spaced sampling, one such block excluding

the CP is represented as a column vector

x = RP0

[
d0 d1 . . . dN−1

]T
. (5.15)

After adding the CP, the symbols are convolved with the transmit filter as shown in Fig. 5.6. The

transmit filter can produce a NRZ-OOK signal or a 50 % RZ, as shown in Fig. 5.2.

built blocks PAM
of size N

add cyclic prefix
of size L

Input symbols
modulation

p(t)

Figure 5.6.: PAM block transmission transmitter block diagram.

At the receiver side, first the CP is removed. The CP serves two purposes; first the neighboring blocks

do not interfere, secondly the linear convolution of the transmitted symbols with the channel appears

as cyclic convolution. This offers a way to perform simple frequency domain equalization, since a cyclic

convolution in the time corresponds to a pointwise multiplication of the corresponding DFT vectors in

the frequency domain. The received signal in the frequency domain is given as

ȳ = H̄x̄ + nF , (5.16)

where

x̄ = FN · x =
[
X0 X1 · · · XN−1

]T
,

ȳ = FN · y =
[
Y0 Y1 · · · YN−1

]T
,
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and H̄ = diag
[
H0 H1 · · · HN−1

]
is the diagonal matrix containing the channel frequency response

on its diagonal. Each element of ȳ is given as

Yµ = HµXµ +NF,µ, µ = 0, . . . , N − 1. (5.17)

Here, FN denotes the DFT-matrix of size N×N with the elements 1√
N

e−j2π
µn
N , where µ, n = 0, 1, . . . , N−

1. Eq. (5.17) contains also the elements of the noise vector nF = FNn in the frequency domain where

NF,µ denotes the component of nF.

For fractional sampling, everything is basically the same, except that all vectors have the size 2N × 1

and all matrices have a size 2N × 2N . Thus the DFT/IDFT lengths are 2N , where N is the block size

in bits. The transmit vector x̌ is now

x̌ = RP0 ·
[
d0 0 d1 0 · · · dN−1 0

]T
. (5.18)

5.3.1.1. Linear Detection Schemes

In this section, we discuss the frequency domain equalization process which is nothing else than the

pointwise multiplication of ȳ (ˇ̄y) with the equalizer coefficients E (Ě) in the frequency domain, where

the terms in the parentheses correspond to fractional sampling. However, since the data information

is not directly contained in the frequency domain as in CP-OFDM (CP-DMT for optical system with

IM/DD), a further IFFT is applied to the equalized symbols so that symbols are demodulated in the

time domain, see Fig. 5.7.

5.3.1.1.1. Symbol Spaced Zero Forcing Equalization For zero forcing (ZF) equalization, where the

noise is not considered with respect to the equalizer coefficients Eµ, the received signal is equalized

such that each signal component Vµ = HµXµ · Eµ of the equalizer output vector ū meets the condition

Vµ
!

= Xµ, which simply gives Eµ = 1/Hµ, as shown in Fig. 5.7. Note that the equalizer output ū consists

of a desired signal component v̄ = [V0, V1, · · · , VN−1]T and a noise component w̄, where each component

of noise vector w̄ follows Wµ = Eµ ·NF,µ.

discrete channel
IFFT

(circ. matrix H)
FFT

equalization

(multi. with Eµ)

ū = v̄ + w̄ u = v +w
+

x

nF

y ȳ

Figure 5.7.: High level block diagram for symbol spaced sampling. The vector at the equalizer output is
denoted as ū and consists of a desired signal component v̄ and a noise component w̄. The time

domain vector vector u is used for PAM de-mapping.

5.3.1.1.2. Fractionally Spaced Zero Forcing Equalization For fractionally spaced sampling, each re-

ceive vector u in the time domain consists of 2N samples. However, the final demodulation process is

based on only N decisions. Thus, if ¯̌v and v̌ = F̌−1
2N

¯̌v denote the desired signal at the equalizer output

in the frequency and time domain, the ZF condition is vdec =
[
v̌0 v̌2 v̌4 . . . v̌2N−2

]T !
= x, where
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5. PAM Block Transmission with Frequency Domain Equalization

vdec is the factor 2 decimated version of v̌. The frequency domain equivalence of this expression is

v̄dec = FN · vdec =
[
V̌0 + V̌N V̌1 + V̌N+1 . . . V̌N−1 + V̌2N−1

]T
/2

!
= x̄. (5.19)

Since X̌µ = X̌µ+N = Xµ, the required relation between Ě and Ȟ is therefore

ȞµĚµ + Ȟµ+N Ěµ+N = 2, µ = 0, 1, . . . , N − 1. (5.20)

This intermediate solution shows nicely the first Nyquist criterion in the frequency domain and it indi-

cates a degree of freedom in the selection of the coefficients, which can be used to minimize the noise. If

white noise with ΦnFnF(µ) = N0/2 is assumed, the SNR on each frequency pair will be maximized1 for

Ěµ = cµ·Ȟ∗µ and Ěµ+N = cµ·Ȟ∗µ+N , where cµ is a constant in order to guarantee condition (5.20). Thus,

the optimal coefficients are

Ěµ =
2Ȟ∗µ

|Ȟµ|2 + |Ȟµ+N |2
, Ěµ+N =

2Ȟ∗µ+N

|Ȟµ|2 + |Ȟµ+N |2
. (5.21)

It should be noted that an IFFT of size N can be used to obtain the equalized time domain vector udec,

if the IFFT is performed on

ūdec =
[
Ǔ0 + ǓN Ǔ1 + ǓN+1 . . . ǓN−1 + Ǔ2N−1

]T
/2. (5.22)

The frequency domain components Ǔµ and Ǔµ+N at the equalizer output are obtained by computing

Ǔµ = Ěµ · Y̌µ, Ǔµ+N = Ěµ+N · Y̌µ+N , (5.23)

where the equalizer coefficients are obtained using Eq. (5.21). Finally time domain symbols udec are

demodulated using PAM de-mapping.

5.3.1.1.3. Symbol Spaced MMSE Equalization For MMSE (minimum mean square error) equaliza-

tion, the coefficients Eµ shall satisfy the condition E
{
|u − x|2

} !
= min. The solution can be directly

obtained from the Wiener filter theory. In order to determine Eµ, it is advantageous to consider the

channel as a part of a Wiener filter at a first step. The corresponding coefficients would be [KI89]

EWNR
µ = 1

/(
1 +

ΦnFnF(µ)

|Hµ|2 · Φxx(µ)

)
, (5.24)

where Φxx(µ) denotes the power spectral density of the desired signal x and ΦnFnF(µ)/|Hµ|2 denotes

the power spectral density of the the original noise after it has passed a filter with the transfer function

1/Hµ.

1Cauchy Schwarz inequality. The solution for colored noise is given in [WH11].
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ĔZF
µ

T/2-ZF

UZF
µ = (ŬZF

µ + ŬZF
µ+N )/2

(=̂ down-sampling in t)

EWNR
µ

(T -Wiener)
IFFT

Y̆µ ŬZF
µ UZF

µ
Uµ uµ

(T/2-MMSE Equalizer)

Figure 5.8.: Possible view on fractional MMSE equalization: A fractional ZF equalizer is cascaded with
a symbol spaced Wiener filter.

Since EWNR
µ = Hµ · Eµ, the optimal solution for the actual equalizer coefficients Eµ is given as

Eµ =
1

Hµ
· 1

1 +
ΦnFnF

(µ)

|Hµ|2·Φxx(µ)

= EZF
µ · EWNR

µ , µ = 0, 1, ..., N − 1, (5.25)

where we assume that the channel transfer function does not contain spectral zeros, i.e., Hµ 6= 0 (∀ µ).

Eq. (5.25) shows that the actual equalization process of the received signal ȳ can be split into a ZF

equalization part — the coefficients are EZF
µ = 1/Hµ — and a Wiener filter part with the filter coefficients

EWNR
µ . This very intuitive result was also formulated by Yamazaki [YA10]. It should be noted that

Eq. (5.25) can be rewritten as

Eµ =
H∗µ

|Hµ|2 + 1/ηµ
, (5.26)

where ηµ is the signal-to-noise power ratio Φxx(µ)/ΦnFnF(µ).

5.3.1.1.4. Fractionally Spaced MMSE equalization In [WH11] it has been shown that the same ap-

proach can be used for fractional MMSE equalization. The main difference is that the present ZF

equalizer operates on a fractional basis, whereas the subsequent Wiener filter remains symbol spaced,

see Eq. (5.25) and Fig. 5.8. For white noise with ΦnFnF(µ) = N0/2, the coefficients of the ZF filter part

can be obtained from Eq. (5.21).

The Wiener filter shown in Fig. 5.8 receives the desired signal superimposed by noise whose power

spectral density is colored by the ZF equalizer. Since a factor 2 decimation in the time domain cor-

responds to a periodic repetition of the original spectrum (period 2N) with a period N in the DFT

frequency domain, the noise power spectral density at the Wiener filter input is given as [WGR+10]

Φnn(µ) =

(
Φ̆nFnF(µ)

∣∣∣ĔZF
µ

∣∣∣
2

+ Φ̆nFnF(µ+N)
∣∣∣ĔZF

µ+N

∣∣∣
2
)
/2, µ = 0, 1, ..., N − 1. (5.27)

Thus the coefficients of the equalizer are given as

Ěµ =
2Ȟ∗µ

|Ȟµ|2 + |Ȟµ+N |2 + 2/ηµ
, Ěµ+N =

2Ȟ∗µ+N

|Ȟµ|2 + |Ȟµ+N |2 + 2/ηµ
, (5.28)

where ηµ is the signal-to-noise power ratio Φxx(µ)/Φnn(µ).
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5. PAM Block Transmission with Frequency Domain Equalization

5.3.1.2. DC-Balanced PAM-FDE - A solution for VLC

Since LED-light sources are additionally used for communications in VLC systems, it is aimed that the

brightness should be data independent and there is no flickering of light. Thus, the transmit signals need

to be DC-balanced for a constant brightness. Since PAM does not provide DC-balance for rectangular

pulses (or baseband pulses in general), it needs to be combined with line coding.

5.3.1.2.1. Conventional Line Codes - 8B10B A well known line code for binary transmission is the

8B10B IBM-code [WF83], which consists of a concatenation of a 5B6B and a 3B4B code. Since 8B10B line

codes add more redundancy than 5B6B codes, we consider only the 5B6B line code for M = 2, where the

symbol rate is increased by a factor 6/5. For higher modulation orders (M = 4, M = 8), we assume the

same 6/5 increase of the symbol rate. The corresponding codes for these higher modulation orders, which

rely on the same principle as the 5B6B code, have already been discussed in the literature [GCS+05].

5.3.1.2.2. Partial Response Line Coding DC-balance can also be achieved by partial-response line

coding, where we only consider pseudo-ternary coding here. One well known example of such codes is

alternate-mark inversion (AMI), where original 1-bits are alternately mapped to −1 and +1. This is

achieved by means of a digital filter with the transfer function given as

Gz(z) = 0.5 · (1− z−1). (5.29)

For bipolar input bits, which are precoded in order to simplify the detection, the symbols at the filter

output take the values −1, 0, +1. The DC is therefore removed and the data spectrum is additionally

shaped with

|G(f)|2 = |Gz(z)|2z=ej2πfT = sin2(πfT ), (5.30)

where T is the symbol interval. As we need to ensure a non-negative signal, we assume that the 3-PAM

modulator is fed by the unipolar 3-level symbols dk + 1.

Differential
Encoding

z−1

+
-

+
0
1 2

1
0 or

1/2

1/2

bipolar
bits

Pseudo ternary
output symbols

+1

Figure 5.9.: Block diagram of pseudo-ternary coding.

A second type of pseudo ternary coding is also considered, denoted as PR-II, where the digital filter

is given by [Kam08]

Gz(z) = 1− z−2. (5.31)

This shapes the data spectrum additionally with |G(f)|2 = sin2(2πfT ) and introduces a zero at f =

1/(2T ). In order to benefit from this spectral shaping, we have assumed MMSE equalization for these

two schemes.
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5.3. Transmission Schemes for IM/DD systems

5.3.2. Discrete Multitone Transmission Schemes

Optical systems with IM/DD demands for real-valued and unipolar (positive) time domain signals. The

real-valued base-band version of CP-OFDM is usually referred to as discrete multitone transmission

(DMT). DMT schemes are widely recommended for optical systems with IM/DD. The main reason for

their popularity comes from the success of CP-OFDM in RF transmission. However, due to IM/DD

constraints, the bandwidth efficiency of the DMT schemes reduces. In the literature, many variants of

CP-DMT schemes have been discussed [AS08,VFea10,DA13,LRBV09]. In the following, we summarize

these DMT schemes. Specifically, we present these schemes in matrix/vector notation which is not found

in the literature. Moreover, for the first time, we present bit-loading schemes that can be combined with

these CP-DMT schemes.

First we present a general model that is used to obtain a real-valued signal. A classical discrete time

DMT signal with bipolar amplitudes at the output of IDFT can be written as

x(n) =

Nm∑

µ=1

(
dµej2πµ

n
N + d∗µe−j2πµ

n
N

)
∀n = 0, 1, 2, · · · , N − 1, (5.32)

where d is the complex data symbol from QAM constellation, N is the FFT/IFFT length, andNm ≤ N
2 −1

is number of effective data subcarriers. The Hermitian symmetry dµ = d∗µ or dµ = d∗N−µ of the data

symbols ensures a real-valued time domain signal. In matrix/vector notation, we can write the real-

valued signal at the IDFT output as

x = FH
N B̄

[
d

d∗

]
∈ RN×1, (5.33)

where FN is the N -point DFT matrix with its elements [FN ]k,l = 1√
N
e−j

2π
N
kl for k, l = 0, 1, 2, . . . ,N − 1

and B̄ maps the data symbols to the respective subcarrier positions. The B̄ matrix is given by

B̄ =

[
B 0

0 Π̂B

]
∈ RN×2Nm , (5.34)

where Π̂ is defined as

Π̂ =




0 0 . . . 0

0 0 . . . 1
...

...
...

...

0 1 . . . 0




=




0 0 . . . 0

0
... Π
0



,

and Π ∈ {0, 1}(N2 −1)×(N
2
−1) (therefore Π̂ ∈ {0, 1}N2 ×N2 ) is an anti-diagonal matrix, which has ones in

the anti-diagonal and zeros elsewhere. The real-valued matrix B ∈ {0, 1}N
2
×Nm maps these symbols

to the respective subcarriers and Π̂B ensures that a Hermitian symmetry is applied in the frequency

domain to obtain a real-valued signal. Various variants of the DMT schemes have been discussed in the

literature [AS08,DA13,WH12]. These schemes are discussed briefly in the following.
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5. PAM Block Transmission with Frequency Domain Equalization

5.3.2.1. Asymmetrically Clipped DMT Scheme

In asymmetrically clipped DMT (AC-DMT), only the odd subcarriers are M -QAM modulated i.e., every

second row of the B matrix in Eq. (5.34) is a zero row. One symbol of the discrete time optical signal

p(n) is given as

p(n) =




P0x(n) x(n) ≥ 0

0 else
(5.35)

where P0 is a given optical power which is related to the average optical power as Eq. (5.8) and p(n)

denotes the instantaneous optical power at the sampling time. Moreover, the symmetry x(n) = −x(n+

N/2), n = 0, 1, · · · , N/2 − 1 of x(n) ensures that all negative parts of x(n) can be clipped without an

information loss on the odd subcarriers. This means that there is no clipping noise.

5.3.2.2. DC-biased DMT Scheme

The positive real-valued signal can also be obtained by adding a DC-bias to the time domain signal

x(n) (Eq. (5.32)). An arbitrarily high DC-bias value cannot be added since an increase in the bias value

results in an increased value of the average optical power P . On the other hand, the increase in the

bias value reduces the clipping noise. Since clipping may result in bit errors, the bias value needs to be

carefully chosen. One symbol of the discrete time optical signal p(n) for this scheme is written as

p(n) =




P0z(n) z(n) ≥ 0

0 else
(5.36)

where

z(n) = x(n) + kclip

√
E{x2(n)}︸ ︷︷ ︸

DC-bias

, (5.37)

and kclip is the clipping value. The DC-bias is expressed as a multiple kclip ≥ 0 of the standard deviation

of x(n) [AS08]. In this work, kclip has been set in such a way that the clipping probability reduces

to 5 %. Note that in the AC-DMT scheme, halfwave rectifying destroys the DC-balance for QAM

modulation orders greater than 4. Thus it makes it less attractive for indoor VLC systems where a

constant brightness is desired. Therefore, DC-biased DMT scheme is an ideal scheme for VLC systems

since DC-biasing can also be used to ensure a DC-balance.

5.3.2.3. PAM DMT Scheme

In PAM-DMT, the real part of the data symbols is set to zero [LRBV09]. Let s = [s1, s2, · · · , sNm ]T ∈
RNm×1 be the data symbol vector of length Nm which are taken from a bipolar M -PAM constellation.

In order to ensure the odd symmetry in the time domain, these symbols are first converted to imaginary

symbols by setting the real part to zero as

d = js ∈ CNm×1, (5.38)
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5.3. Transmission Schemes for IM/DD systems

Then they are mapped to N
2 subcarriers in the frequency domain, with N being the DFT size. The real-

valued signal is obtained by using Eq. (5.33). The negative part of the time domain samples x is then

clipped without loss of any information. One symbols of the discrete time optical signal for PAM-DMT

signal can be written as

p(n) =




P0x(n) x(n) ≥ 0

0 else
(5.39)

where

x(n) = 2 ·
Nm∑

µ=1

sµsin
(

2πµ
n

N

)
(5.40)

The symmetry of x(n) ensures that clipping noise occurs only in the cos(·) components of the received

signal. Therefore, the clipping of the negative part does not result in any loss of information.

5.3.2.4. Power loading and Bit loading

If channel state information is available at the transmitter, power-loading and bit-loading can be applied

to DMT schemes to improve the performance. In power-loading, each dµ, which is taken from a squared

QAM constellation, is weighted with 1/|H(µf0)| prior to the inverse DFT at the transmitter, where

f0 = fs/N is the frequency spacing between the subcarriers. This is due the fact that we have the

same minimum Euclidean distance at the receiver for each dµ. Weighting by 1/|H(µf0)| increases the

second moment of each subcarrier by a factor 1/|H(µf0)|2, µ = 1, · · · , Nm. Moreover, to find the

theoretical benchmark performance of DMT schemes, optimal bit-loading algorithms such as Hughes-

Hartogs (HH) algorithm [HH89] can be applied. In this algorithm, the bits are incrementally assigned to

the subcarriers, where the total number of bits depends on Rb and the subcarrier spacing (DMT-symbol

interval). Starting with one single bit, the next bit is assigned to the subcarrier that needs the minimum

incremental energy, where the incremental electrical energies depend on 1/|H(µf0)|2 and the actual

modulation orders Mµ at that iteration step. The complexity of the Hughes-Hartogs algorithm is high

due to the iterative implementation. Therefore sub-optimal non-iterative bit-loading algorithms such as

the Fischer-Huber (FH) algorithm [FH96] are an attractive choice. In the Fischer-Huber algorithm the

bits are assigned according to the subchannel SNRs.

5.3.3. Single-Subcarrier (SSC) QAM Schemes

PAM is a modulation scheme with a one-dimensional signal space. In order to combine quadrature

modulation (that is a two-dimensional scheme) with IM/DD, an electrical subcarrier needs to be mod-

ulated, where an additional bias or half wave rectifying is required to ensure a non-negative signal that

modulates the LED. As explained earlier, VLC systems require DC-balanced schemes to ensure con-

stant brightness. In the previous section, we have discussed DMT schemes where QAM is modulated

on multiple subcarriers. In the following we discuss some of the state-of-the-art transmission schemes

where QAM is modulated on a single subcarrier (SSC) and the DC-balance is achieved by adding a

DC-bias. We also propose novel SSC schemes, i.e., orthogonal PAM (OPAM) schemes. Usually, in the

literature, the performance of these state-of-the-art SSC schemes is evaluated by employing time domain
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5. PAM Block Transmission with Frequency Domain Equalization

equalization techniques. However, we show for the first time that these schemes can also be combined

with block transmission which offers a simple frequency domain equalization. Moreover, we also show

that the carrier-less amplitude and phase modulation (CAP) scheme is nothing else but an extension

of SSC schemes where root-raised cosine (RRC) filtering is used instead of the conventional rectangular

filtering.

Add
CP

Tx
Filter

Re(·)

Add
CP

Tx
Filter

Im(·)

∑QAM symbol blocks
of size N

ψ1(t)

ψ2(t)

+

+

Figure 5.10.: Transmitter for SSC-QAM block transmission.

The block based transmission for the SSC schemes can be generalized by the transmitter architecture

presented in Fig. 5.10. At the transmitter, the block of complex QAM data symbols is first separated in

two two streams, i.e., the real and the imaginary symbols, as shown in Fig. 5.10. Then after adding the

CP, these two data streams are transmitted by means of the two waveforms, i.e., ψ1(t) and ψ2(t), and

the resulting modulated symbols are summed up. Based on the type of transmit filter basis functions,

different SSC-QAM techniques can be designed. Note that these basis function ψ1(t) and ψ2(t) should

be orthogonal in order to recover the original signal at the receiver. Block transmission with the addition

of the CP offers a simple solution at the receiver. Since both equalization and filtering are point-wise

multiplication in the frequency domain, both can be done at the same time. Moreover, both ψ1(t) and

ψ2(t) exhibit the same half wave symmetry, the positive valued optical signal p(t) can be demodulated

by correlating the received and equalized signal with the matched filters grx1(t) and grx2(t) or with the

complex equivalent

grx(t) = grx1(t) + jgrx2(t), (5.41)

where equalization and receive filtering can be performed in the frequency domain, as shown in Fig. 5.11.

Remove
CP

FFT IFFTEqualizer+x

n(t)hch

Rx
Filter

Frequency Domain Equalization

Figure 5.11.: Receiver for SSC-QAM block transmission.
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5.3.3.1. SSC-QAM with a Rectangular Pulse-Shape

In optical systems, frequency reuse is not a big issue, therefore a rectangular pulse shape is an obvious

first choice. If a(t) is a unit energy rectangular pulse of duration T , then the two basis functions at

subcarrier frequency fc = 1/T can be defined as

ψ1(t) = a(t) ·
√

2 cos(2πfct), ψ2(t) = −a(t) ·
√

2 sin(2πfct). (5.42)

These two basis functions are shown in Fig. 5.12. Note that orthogonality is achieved by a 90◦ phase

Figure 5.12.: Two basis functions for SSC-QAM with a rectangular pulse-shape.

shift. hence one block of the transmit signal (without CP) can be written as

p(t) = P0

N−1∑

n=0

(
d′n ·

√
T

2
· ψ1(t− nT ) + d′′n ·

√
T

2
· ψ2(t− nT )

)
, (5.43)

where dn = d′n + jd′′n, and dn denotes the complex-valued M-QAM symbols. We may switch from

asymmetrically clipped SSC transmission to DC-biased SSC transmission according to

p(t) = P + P0

N−1∑

n=0

(
d′n ·

√
T

2
· ψ1(t− nT ) + d′′n ·

√
T

2
· ψ2(t− nT )

)
, (5.44)

For a modulation order
√
M per orthogonal component, the required minimum DC-bias P to avoid

clipping and to obtain a perfect DC-balance is P = P0 ·max(|dn|) =
√

2(
√
M − 1)P0.

5.3.3.2. Carrier-less Amplitude and Phase Modulation

For a rectangular pulse shaping and a QAM-symbol duration T , the subcarrier frequency fc must be

equal to 1/T (or an integer multiple of it) in order to ensure the orthogonality between the quadrature

components. Assuming a channel with a low pass characteristic, this is a big disadvantage, since the

spectral centroid is shifted from zero to 1/T . In this case, M -PAM (based on rectangular pulses with

modulation order M) would require exactly the same bandwidth (first zero crossing) as M2-QAM, but

QAM would suffer from the fact that the main signal energy is centered at higher frequencies. This

disadvantage can be reduced, if a root-raised cosine (RRC) pulse shape is used for QAM. Assuming a

roll-off factor r, 0 < r ≤ 1, the center frequency can be reduced to fc = (1 + r)/(2T ), and the total

required physical bandwidth is only (1+r)/T . This approach is referred to as carrier-less amplitude and
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phase modulation (CAP) [WL+12], where the term ’carrier less’ comes from the fact that the bandpass

signal is not obtained by a quadrature up-conversion of two baseband signals. Instead, two bandpass

FIR filters [WL+12] are used to generate the QAM signal. The two filters with impulse responses ψ1(t)

and ψ2(t) in Eq. (5.42) form a Hilbert transform pair, i.e., ψ2(t) = H{ψ1(t)} and Ψ2(f) = −j ·Ψ1(f) for

f > 0, and both transfer functions differ only in a 90◦ shift. Here ψ1(t) is chosen as root-raised cosine

filter.

The biggest advantage of CAP is to implement the signal generation by means of two filters with the

impulse responses ψ1(t) and ψ2(t), and not by a quadrature upconversion of a complex QAM-baseband

signal to the subcarrier frequency fc. However, these filters at the transmitter may be very large (multiple

taps) which is not feasible in practical applications. Therefore, in practice, both ψ1(t) and ψ2(t) must

be truncated which reduces its performance. Another disadvantage compared to the rectangular pulse-

shape is the increased peak to average power ratio of the transmit signal, since several transmit pulses

interfere with each other.

5.3.3.3. Orthogonal PAM (OPAM)

In order to simplify the signal generation and detection of an SSC-QAM like scheme, in [WCHG14], we

have suggested to use the binary replacements of the quadrature pair shown in Fig. 5.12 and denoted

this scheme as orthogonal PAM. The basic principle is identical to SSC-QAM, but the term QAM is

simply avoided since the orthogonality of ψ1(t) and ψ2(t) is not achieved by a 90◦ phase shift as shown

in Fig. 5.13. One block of the transmit signal (without CP) before clipping is given as

Figure 5.13.: Two basis functions for OPAM.

p(t) = P0

N−1∑

n=0

(
d′n ·
√
T · ψ1(t− nT ) + d′′n ·

√
T · ψ2(t− nT )

)
, (5.45)

To ensure a constant moving average, even for higher modulation orders, we may use line coding or we

may switch from AC-OPAM to DC-biased OPAM according to

p(t) = P + P0

N−1∑

n=0

(
d′n ·
√
T · ψ1(t− nT ) + d′′n ·

√
T · ψ2(t− nT )

)
, (5.46)

Moreover, in [WCHG14] we have shown that OPAM has exactly the same AWGN power penalty as

SSC-QAM with a rectangular baseband pulse shape a(t).
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5.4. Simulation Results

We evaluate the performance of these schemes for the two channels discussed in Section 5.2.2. For all

schemes, perfect channel knowledge and block synchronization has been assumed. The required relative

power P/POOK of a certain scheme, as indicated by Eq. (5.4), is shown for a fixed value of pb = 10−3.

First we show the performance of these schemes for the POF channel. In Section 5.4.2, we will discuss

the performance of theses schemes for the VLC channel (channel 2).

5.4.1. Performance in Channel 1 (POF)

An FFT size of N = 128 with a CP length of L = 16 is used for all transmission schemes. For very low

values of Rb, the results depict the power efficiency of the various transmission schemes in a flat AWGN

channel, whereas the increase in the curves corresponds to the penalty caused by the Gaussian lowpass

filter, that is the dispersive induced penalty.
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Figure 5.14.: Performance of PAM-FDE with different transmit filters. RZ-PAM results in a 1.5 dB
gain over NRZ-PAM.

In Fig. 5.14, the results are shown for PAM block transmission with frequency domain equalization for

two transmit filters, i.e., 50 % RZ and NRZ. Moreover, a T/2 fractionally spaced ZF receiver is employed.

As expected, at lower bit rates, the RZ-format promises a gain of 1.5 dB compared to the NRZ-format,

independent of the modulation order M . If the dispersion imposes a power penalty, this gain becomes

slightly smaller. Note that, as explained in Section 5.2.1, power penalty refers to the additional power

required by these schemes as compared to the reference scheme (OOK) in AWGN channel at pb = 10−3.
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Figure 5.15.: Performance of different DMT schemes. PAM-DMT and AC-DMT have exactly the same
performance.

In Fig. 5.15, the comparison between different DMT schemes is shown. To have a fair comparison,

the results are shown for AC-DMT using an alphabet size of M2, if DC-biased DMT and PAM-DMT

use a modulation order of M . This is due to the fact that the AC-DMT scheme uses half of the

subcarriers as compared to the DC-biased DMT and PAM-DMT schemes. In our simulations, we have

used 26 subcarriers for AC-DMT while 52 subcarriers are used for PAM-DMT and DC-biased DMT

schemes. The results show that AC-DMT and PAM-DMT schemes provide the same bandwidth efficiency

and suffer in exactly the same way from the dispersive channel. Although PAM-DMT and AC-DMT

systems seem to use very different approaches, the comparable performance is not as surprising [WH12],

since an M2-QAM constellation is a combination of two M -PAM modulated inphase and quadrature

constellations. In DC-biased DMT, the positive signal is obtained by adding a DC-bias to the real-valued

signal. However, due to the maximum power constraints, an addition of an infinite amount of the DC-

bias is not appropriate. Therefore, a clipping of the negative signal is carried out after adding a feasible

amount of bias. Since the clipping may result in bit errors, the bias needs to be chosen carefully. In

this work, we have set the DC-bias to a value where the second moment of the clipping noise is equal

to the power of the additive white Gaussian noise at the receiver after sampling. However, the clipping

effect on the bit error rate also depends on the assignment of the modulation orders [WCHG14]. Note

that both AC-DMT and PAM-DMT do not suffer from clipping noise. The results show that DC-biased

DMT outperforms the AC-DMT or the PAM-DMT, if the modulation order M is greater or equal to 64.

For lower modulation orders, the AC-DMT or PAM-DMT schemes outperforms the DC-biased scheme.
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Figure 5.16.: Performance of different SSC schemes. CAP outperforms the OPAM significantly.

The comparison of the DC-biased SSC-QAM schemes is shown in Fig. 5.16. For CAP, i.e., SSC-QAM

with a RRC pulse shape, a roll-off factor r = 0.5 and a baseband subcarrier frequency fc = (1 + r)/(2T )

has been assumed, where the transmit and receive pulses are truncated at t = ±5T . The DC bias was set

in the same way as shown for the DC-biased DMT scheme, i.e., a small amount of clipping was allowed

in order to minimize the required power for pb = 10−3. In this work, for M = 4, the clipping value

kclip, as defined in Eq. (5.37), has been set to 1.52 in order to limit the clipping probability to 5 %. For

M = 16 and M = 64, kclip has been set to 1.72 and 2.2 — the smallest values of the kclip that achieve the

cliping probability of 5 %. Clearly CAP outperforms the OPAM scheme significantly. Note that at very

low values of Rb (equivalent to AWGN channel), OPAM has same performance of CAP but afterwards

the performance degrades significantly. OPAM suffers from the fact that the spectral centroid of the

spectrum is nearly at 1/T , which is a big disadvantage if the signal is low pass filtered.

We compare the performance of these schemes in Fig. 5.17. Clearly, the RZ-PAM scheme outperforms

all other schemes. The AC-DMT scheme with M = 4096 and the DC-biased DMT scheme with M = 64

do not even match the performance of the RZ-PAM with M = 4 for Rb/f3dB ≤ 12. Although the

performance of CAP has been fine tuned by means of best DC-bias, still it cannot reach the performance

of RZ-PAM. RZ-PAM with M = 2 outperforms the 4-CAP at all Rb/f3dB values. As explained in

Section 5.3.3.2, the performance of CAP suffers due to the truncation of the filters and the clipping

noise. Note that the complexity of the CAP transmitter is also much larger, since it requires a long FIR

filter and a larger amplifier back-off. Therefore, RZ-PAM is a better choice for POF systems.

Lastly, we compare the performance the DMT schemes with PAM-FDE when channel state information
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Figure 5.17.: Comparison of transmission schemes over a Gaussian low-pass channel. RZ-PAM
outperforms all other schemes significantly.

is available at the transmitter. In this case, power-loading combined with bit-loading can be used for the

DMT schemes. It can also be observed from Fig. 5.18 that the difference between the optimal bit-loading

algorithm (Hughes-Hartogs) and the suboptimal Fischer-Huber algorithm is almost negligible for both

AC-DMT and DC-biased DMT. For Rb/f3dB smaller than 12, AC-DMT performs better than DC-biased

DMT. For DC-biased DMT, at Rb/f3dB ≥ 5, the suboptimal FH algorithm performs better than the

optimal HH algorithm. This result is not caused by a simulation error, in fact it is due to the clipping

noise [WCHG14]. We have also shown the result for RZ-PAM with the best modulation order selection

at each Rb/f3dB value. The performance of RZ-PAM with the best selection of M is better than the

AC-DMT and the DC-biased DMT schemes with optimal and suboptimal bit-loading algorithms. Note

that the DMT schemes require the knowledge of full CSI at the transmitter while RZ-PAM requires only

information about the modulation order and the symbol interval.

5.4.2. Performance in Channel 2 (VLC)

For VLC systems, the transmit signals need to be DC-balanced for a constant brightness. Therefore,

we only consider DC-balanced schemes for the simulations. Since PAM does not provide DC-balance

for rectangular pulses, we combine PAM with 5B6B line codes as discussed in Section 5.3.1.2. An FFT

length of N = 128 with 25% overhead due to the CP has been assumed.

It can be seen from Fig. 5.5 that the HDiff(f) contribution to HMP(f) leads to distortions, but it also

adds additional power to the received signal. The distortions can be removed by means of the discussed
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Figure 5.18.: Performance of DMT and PAM-FDE schemes with CSI at the transmitter. RZ-PAM with
optimal modulation order outperforms the DMT schemes with optimal bit-loading that require full

CSI at the transmitter.

transmission schemes, and all schemes benefit from the diffuse scattering, as shown in Fig. 5.19. Here,

the power penalties compared to the reference scheme POOK are shown for the position R2, where we

assume hch(t) = δ(t) for Pref . We show the results for this position since it suffers more from frequency

selectivity. The results are shown not only for HMP(f) but also for HLoS(f) where both transfer functions

are combined with HLED(f).

The results in Fig. 5.19 show the same trends as for POF. The results show that the 4-PAM FDE

scheme outperforms the DC-biased DMT scheme, and even the pseudo-ternary (pseudo-T) transmission

works very well, if Rb ≤ 500 Mbps, and thus Rb/f3dB ≤ 2.5. As Hdiff(f) adds additional power to the

received signal, we observe a gain of roughly 2 dB for HMP(f) as compared to the HLoS(f) for lower data

rates. Moreover, the results also indicate that there is negligible gain if we employ MMSE equalization

for the PAM-FDE scheme.

We also consider a pure non-line-of-sight (NLoS) scenario, where we assume that all lines-of-sight are

blocked. The results for such a scenario are shown in Fig. 5.20 for two receiver positions R2 and R3. In

order to take into account that less power is received if all the LoS-paths are blocked, we still assume

the normalization with respect to HLoS(0) as discussed before. The multipath induced much higher

penalties, but still all the FDE schemes are competitive or even better as the DC-biased DMT scheme.

Furthermore, the multipaths have a different impact at different receiver positions. This is evident from

the Fig. 5.20 where we achieve higher data rates at lower power penalties for the position R3 as compared
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(a) Comparison of transmission schemes for R2 LoS scenario (HLoS(f))
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Figure 5.19.: Performance comparison of transmission schemes for R2 position

to the position R2.
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Figure 5.20.: Comparison of transmission schemes for the diffuse part only (blocked LoS) for two
receiver position. In both cases, a HLED(f) is additionally considered.

97



5. PAM Block Transmission with Frequency Domain Equalization

5.5. Conclusion

In this chapter, we have discussed various transmission schemes for optical systems with intensity mod-

ulation and direct detection. We have shown the performance of these schemes for two such optical

systems, i.e., POFs and VLC. The results suggest that block transmission with FDE is a very good

alternative to DMT schemes. Under the constraint of a low-pass channel with a Gaussian profile for

POF systems, it has been shown that there is no performance gain for DMT schemes over PAM block

transmission with FDE. Moreover, single subcarrier schemes such as OPAM or CAP also do not reach

to the performance of PAM-FDE. Specifically, DC-biased OPAM shows a considerable loss compared to

PAM-FDE, since the spectral centroid is not at zero. The optimal performance of these schemes can be

obtained when CSI is available at the transmitter. Although DC-biased DMT loses against AC-DMT,

but at a given average optical power, neither AC-DMT nor DC-biased DMT with optimal bit-loading

offers a higher data rate as compared to PAM-FDE. Moreover, bit-loading enhanced DMT schemes re-

quire a more complex transmitter architecture since the whole magnitude frequency response needs to

be known to the transmitter whereas in the case of PAM-FDE, only the information of the modulation

order and the symbol interval is required at the transmitter.

For VLC systems, the performance of the proposed modulation schemes has been evaluated by con-

sidering two types of dispersion. The dispersion caused by the LED has been modeled by means of a

Gaussian low-pass filter. The multipath propagation effect has been studied based on a scenario where

four lamps are placed in a medium sized room at different locations. Here we decompose the total CIR

into a LoS-part and a diffuse part. The results show that the impact of the diffuse part disappears at

higher frequencies, whereas it provides additional power in the lower frequency range. Throughout the

whole chapter, absolute powers have not been considered. Instead, the power penalty caused by the

dispersion has been estimated. We have shown that PAM-FDE combined with line-coding or partial-

response coding is a serious alternative to DC-biased DMT, even if bit-loading is used in the latter case.

CAP transmission, i.e., DC-biased single subcarrier QAM with a RRC pulse-shaping (CAP), seems to

be less attractive because the transmitter requires additional high order FIR filters and a LED driver

with an increased dynamic range. Moreover, its performance cannot compete with PAM-FDE or DMT.
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In the previous chapter, we have shown that PAM block transmission with linear FDE has not only

a better performance than other state-of-the-art schemes but also has other advantages such as lower

PAPR. Although linear FDE can fully compensate ISI, it suffers from noise enhancement. Therefore,

non-linear techniques such as decision feedback equalization (DFE) and Tomlinson-Harashima precoding

(THP) can enhance the system performance significantly in dispersive optical channels. But these

techniques have a very high computational complexity, thus making them less appealing for practical

applications. In the literature, the performance of PAM transmission with these schemes is often not

evaluated for optical systems using IM/DD constraints. Therefore, in this chapter, we expand our

investigations to non-linear equalization and precoding techniques for PAM transmission. Specifically,

we present a new transceiver design for PAM block transmission that employs a hybrid equalization

technique. This hybrid equalization technique has a lower computational complexity as compared to the

conventional non-linear equalization techniques but achieves the same performance. This equalization

technique still employs a linear frequency domain equalizer, but an additional time domain feedback

filter with significantly fewer taps is added. Such a hybrid equalization technique still suffers from error

propagation, therefore a solution to solve this problem is also discussed.

6.1. Introduction

Optical Systems such as POF and VLC suffer from bandwidth limitation. The bandwidth limitation

occurs due to the source (LED) or due to the multipath propagation channel. In dispersive channels,

the transmitted pulses are received with some inter symbol interference (ISI). More precisely, a received

symbol depends not only on the symbol sent at that time, but, in general, on the previous and future

transmitted symbols. ISI is mainly caused by the bandwidth limited and dispersive nature of the

propagation channel. The ISI caused by the previous and future symbols are called pre-cursor and

post-cursor ISI, respectively. Due to the dispersive nature of the optical channel, efficient and robust

equalization techniques need to be employed that can mitigate both types of ISI (pre-cursor and post-

cursor). The equalization can be performed either in the frequency domain or in the time domain. The

choice is determined by which domain leads to a smaller computational complexity to achieve the same

performance. Frequency domain equalization is computationally simpler than the corresponding time

domain equalization for channels with a severe delay spread. The time and frequency domain equalizers

can be further divided into two broad categories based on their structure: linear and non-linear. The

non-linear equalizers outperform the linear equalizers in dispersive optical channels but at the cost of a

higher computational complexity.

In this chapter, we discuss some of the equalization and precoding techniques that can be combined

with the PAM transmission. In the previous chapter, we have already discussed the linear frequency

domain equalization techniques. Therefore, we expand our investigations to the non-linear equalization

and precoding techniques such as decision feedback equalization (DFE) and Tomlinson-Harashima pre-
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coding (THP). In such techniques, a feedforward filter is used to remove pre-cursor ISI while a feedback

filter is used for post-cursor ISI. But these techniques have a very high computational complexity. Specif-

ically, DFE suffers from error propagation and THP requires full channel state information (CSI) at the

transmitter. A low complexity non-linear equalization technique is also discussed in the last part of the

chapter. This equalization technique still employs a linear frequency domain equalizer, but an additional

time domain feedback filter with significantly fewer taps is added. Such a hybrid equalization technique

also suffers from error propagation which is resolved by using a unique word (UW) instead of a cyclic

prefix (CP). Moreover, as discussed in the previous chapter, spectrally efficient transmission schemes

combined with robust equalization techniques at the receiver are required for such systems in order to

cope with the bandwidth limitation of the LED/LED-driver combination and the multipath propagation

environment. There are several papers on this topic which propose different solutions for these optical

systems. For instance, a 3-Gbits/s transmission scheme for 10 m of POF used for an automotive physical

layer is presented in [WMS13] and a combination of THP with an adaptive time domain equalizer at

the receiver is recommended. In [WL+12], a CAP transmission with DFE is recommended for VLC.

However, in this chapter, we show that the non-linear techniques such as THP and DFE outperform the

linear time and frequency domain equalization, at the expense of a very high computational complexity.

Therefore, we recommend a low-complex but efficient transceiver design for these dispersive optical sys-

tems. Moreover, we not only evaluate the performance of PAM transmission with different equalization

and precoding techniques but also compare it with other schemes that are discussed in Chapter 5.

6.2. System Model

h
x[k]

+

channel

n[k]

y[k]

Figure 6.1.: Block diagram of the system model.

We assume a linear time invariant system as shown in Fig. 6.1. The received signal y[k] in the

symbol-spaced sampled discrete time form is given by

y[k] =

L∑

m=−L
h[m]x[k −m] + n[k], (6.1)

where k is the discrete-time sample index, x[k] is the transmitted signal and the noise n[k] is assumed

to be additive white Gaussian noise (AWGN).

Fig. 6.2 shows an example of a sampled POF channel (channel 1, as discussed in Section 5.2.2.1)

with L = 4. The channel impulse response h[m] is symmetrical where the total number of samples

is equal to 2L + 1. We use positive and negative index values for this 9 tap channel to indicate that
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the main tap is not the first one. Thus, the taps other than the main tap with index 0 (left and right

components around the main one) in Fig. 6.2 cause pre-cursor and post-cursor ISI. This type of channel

is non-causal [RSR13], although it is just a channel with an even symmetry with respect to the main

sample of the impulse response. Eq. (6.1) can be further elaborated as,
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Figure 6.2.: Example of sampled Gaussian impulse response of POF channel.

y [k ] =
−1∑

m=−L
h[m]x[k −m]

︸ ︷︷ ︸
Pre-cursor ISI

+ h[0]x[k]︸ ︷︷ ︸
Information

bearing cursor

+
L∑

m=1

h[m]x[k −m]

︸ ︷︷ ︸
Post-cursor ISI

+ n[k] (6.2)

The product of h[0]x[k] is the desired signal component (main cursor), all other components in the

Eq. (6.2) contribute towards the pre-cursor and post-cursor ISI. The positive and negative sample index

values indicate the left and right samples of the main tap. The goal of an equalizer is to eliminate both

of those ISI components effectively.

6.3. Decision Feedback Equalization

Non-linear equalization techniques such as DFE provide a better performance for optical systems since

they completely remove the ISI. The DFE, in its basic implementation, involves only a single feedback

loop as shown in Fig. 6.3. Here, bH represents the vector containing the feedback filter coefficients. The

feedback filter is used to reduce the ISI by utilizing the information of the previous symbols. Due to the

decision device, the operation of the DFE is non-linear. But it can be analyzed using linear techniques

if the outputs of the decision device are assumed to be correct.

In order to illustrate the mechanism of equalization by using the feedback filter, we assume a channel
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y[k]
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Decision
Device

x̂[k]

Feedback Filter

+

Decision Feedback Equalizer

v[k]

z[k]

Figure 6.3.: Block diagram of the system including the basic implementation of the DFE

h̃ ∈ R2L+1 with its first tap as the main cursor h̃[0] (which is the largest coefficient of the channel),

i.e., the channel causes only post-cursor ISI (Eq. (6.2)). Although this is not true for the POF optical

channel, this assumption is used to make the analytical explanation simple. Therefore, the received

signal y[k] over this channel can be expressed as

y[k] =

2L∑

m=0

h̃[m]x[k −m] + n[k] (6.3)

= h̃[0]x[k] +

2L∑

m=1

h[m]x[k −m] + n[k], (6.4)

where the channel impulse response h̃ is

h̃ =
[
h̃[0] h̃[1] h̃[2] · · · h̃[2L]

]T
. (6.5)

Moreover, the feedback filter must be strictly causal so that it does not have a direct path from its

output to its input, since previous decisions are being fed back through this filter. This requires that

first coefficient of the feedback filter bH is b[0] = 0. Therefore, we can express the feedback filter as

bH =
[

0 −h̃[1] −h̃[2] · · · −h̃[2L]
]
. (6.6)

Assuming that all previous decisions are correct, i.e., x̂[k −m] = x[k −m], the output of the feedback

filter becomes,

v[k] = −
(

2L∑

m=1

h̃[m]x̂[k −m]

)
= −

(
2L∑

m=1

h̃[m]x[k −m]

)
, (6.7)

Next, we can write the signal at the input of the decision device as

z[k] = y[k] + v[k] (6.8)

= h̃[0]x[k] +

2L∑

m=1

h̃[m]x[k −m]−
2L∑

m=1

h̃[m]x[k −m] + n[k] (6.9)
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= h̃[0]x[k] + n[k]. (6.10)

This simple implementation is efficient for eliminating only the post-cursor ISI. Since the optical

channel has both pre-cursor and post-cursor ISI, as shown in Eq. (6.2), an additional feedforward filter is

used to force the channel response to have only post-cursor ISI. This is the reason why decision feedback

equalizers generally contain an additional feedforward filter as shown in Fig. 6.4. These two filters are

required to efficiently eliminate both types of ISI. The filter coefficients can be derived using either of

h
x[k]

+

Channel

n[k]

y[k] Decision
Device

x̂[k]

Feedback Filter

+

Decision Feedback Equalizer

z[k]
fH

bH

Feedfoward
Filter

Figure 6.4.: Block diagram of the system including a DFE with a feedforward filter

the ZF or the MMSE criterion. In this work, we use the MMSE algorithm for our simulations since it is

expected to perform better than the ZF algorithm. The MMSE algorithm is applied at the input of the

decision device and the error variance before the decision is aimed to be minimized. The cost function

is defined as

J(f , b) = E
{
|e[k ]|2

}
(6.11)

= E
{
|x[k]− z[k]|2

}
(6.12)

= E
{
|x[k]− (fHy + bH x̂)|2

}
, (6.13)

where fH =
[
f [0] f [1] · · · f [F − 1]

]
is the feedforward filter with a length of F and bH =

[
0 b[1] · · · b[B − 1]

]
is the feedback filter with a length of B. Here b[0] = 0 since the feedback

filter is strictly causal as mentioned before.

We assume that all decisions of the decision device are correct, i.e., x̂ = x. Therefore, we can rewrite

the cost function in terms of the input data as

J(f, b) = E
{
|x[k]− (fHy + bHx)|2

}
. (6.14)

In Eq. (6.14), it can be seen that (x[k] − bHx) component is equivalent to the product of a row vector

b̄H =
[

1 −b[1] −b[2] · · · −b[B − 1]
]

with x =
[
x[k] x[k − 1] · · · x[k −B + 1]

]T
. Therefore,

the cost function can be rewritten as follows,

J(f , b̄) = E
{
|b̄Hx− fHy|2

}
(6.15)
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Figure 6.5.: Block diagram of the system including THP

The filter coefficients fH and b̄H are determined by minimizing the cost function. This task is accom-

plished in [Say03] by firstly minimizing the cost function over one of the vectors, and then, determining

the other one. As a result, the filter vectors containing the optimum coefficients are given in [Say03] as

b̄Hopt =
eT1 R

−1
δ

eT1 R
−1
δ e1

, (6.16)

fHopt = b̄HoptRxyR
−1
yy , (6.17)

where e1 =
[

1 0 0 · · · 0
]T
∈ R(B+1)×1 is the first basis vector and Rδ = Rxx −RxyR

−1
yyRyx is

introduced. Further details of the derivation of b̄Hopt and fHopt can be found in Appendix C.

6.4. Tomlinson-Harashima Precoding

Although the DFE is a better solution than linear equalization for channels having both pre-cursor and

post-cursor ISI, it has two major drawbacks. Firstly, we assume that the decisions at the output of the

decision device are absolutely correct and if this assumption does not hold true, the erroneous decisions

cause a problem of error propagation, that is, the following decisions would include errors because of

that triggering error. In practice, the probability of the occurrence of this phenomenon increases as

the constellation distance between the symbols decreases. Secondly, the integration of channel coding

schemes with the DFE is not straightforward. Employing a channel decoder simply at the output of the

DFE would be inefficient, because the error propagation may destroy the coding gain. Therefore, it is

feasible to have a channel decoder as a part of the decision device for reliable and accurate decisions.

But, in such a case, the channel encoder will be a part of the feedback loop and it will increase the

system complexity too much as symbol by symbol decisions are performed in the DFE.

These disadvantages of the DFE can be mitigated by employing a similar feedback equalization al-

gorithm at the transmitter if the CSI is known. This type of pre-equalization can be implemented by

using the Tomlinson-Harashima precoding (THP). The conventional THP uses a feedback filter at the

transmitter and modulo devices at both the transmitter and the receiver. Implementing a feedback filter

at the transmitter eliminates the error propagation problem, because the noise does not come into play

at the transmitter yet. It also makes the integration of the channel coding schemes straightforward. The
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feedback filter is again causal, that is, b[0] = 0 as in the case of the DFE. The modulo operation in the

classical THP structure is required to keep the sum of the input data and the feedback value within the

constellation interval. If the input to the modulo device is greater than the modulation order M , 2M is

subtracted until the result is less than M and if the input is less than −M , 2M is added until the output

of the modulo device is greater than −M . As an example, this function is also schematically represented

in Fig. 6.6 for a biploar PAM with M = 4. As seen in the figure the output of the modulo device is kept

in the interval of [−4,+4] for 4-PAM modulation.

Figure 6.6.: Input-output relation of 2M -modulo function for 4-PAM modulation

As optical systems with IM/DD require a unipolar PAM modulation constellation, a change is made to

the classical THP modulo device. That is, the bipolar input symbols are shifted from an integer valued

PAM constellation [−M + 1,M − 1] to the soft valued range [0, 2M ] at the output of modulo device.

The modulo operation is like adding a unique value to the input symbol at each time instant such that

the channel input signal lies in the interval [0, 2M ]. Even though the operation of the modulo device is

non-linear, the mechanism of the THP can be described by using its equivalent linear model which is

shown in Fig. 6.7. In this figure, the addition of d[k] corresponds to the operation of the modulo device,

c[k] is the transmit signal, and f [k] is the output of the feedback filter. Moreover, these signals can be

expressed as,

v[k] = x[k] + d[k] (6.18)

c[k] = v[k] + f [k]. (6.19)

We again assume for the explanation purposes that the channel causes only post-cursor ISI, i.e., the first

element of the channel vector h̃ is again chosen as the main tap. The received signal is given by

y [k ] =
2L∑

m=0

h̃[m]c[k −m] + n[k] (6.20)

= h̃[0]c[k] +
2L∑

m=1

h̃[m]c[k −m] + n[k]. (6.21)
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The same feedback filter coefficients as in the case of DFE are chosen in the following form,

bH =
[

0 −h̃[1] −h̃[2] · · · −h̃[2L]
]

(6.22)

Therefore, the output of the feedback filter becomes,

h
x[k]

+

Channel

n[k]

y[k] x̂[k]

Feedback Filter

+

Linearized THP

bH

Modulo
Device

Decision
Device+

d[k]
f [k]

c[k]v[k]

Figure 6.7.: Block diagram of the system including equivalent linear model of THP

f [k] = −
2L∑

m=1

h̃[m]c[k −m] (6.23)

Using this results, we can rewrite Eq. (6.21) as,

y[k] = h̃[0]c[k] +

2L∑

m=1

h̃[m]c[k −m] + n[k]

= h̃[0]c[k]− f [k] + n[k]

= h̃[0] (v[k] + f [k])− f [k] + n[k]. (6.24)

The channel is assumed to be monic which means that h[0] is 1 in Eq. (6.24). This results in

y [k ] = v [k ] + n[k ]

= x [k ] + d [k ] + n[k ]. (6.25)

At the receiver, the modulo operation is again performed to remove the addition of d[k] from y[k].

As in the case of the DFE, this basic structure of THP can only be used to remove all post-cursor ISI

efficiently. Hence, we need an additional feedforward equalizer at the receiver to mitigate the impact of

the pre-cursor ISI, as shown in Fig. 6.8. This structure is almost similar to the DFE implementation

but the feedback filter is moved to the transmitter. Therefore, the feedforward and the feedback filter

coefficients defined by Eq. (6.16) and Eq. (6.17) can also be used in this precoding structure. As a result,

it can be stated that, DFE and THP schemes in their basic form (without feedforward filters) have the

ability to efficiently eliminate only post-cursor ISI. But since the optical channels cause pre-cursor and

post-cursor ISI, an additional feedforward filter is required to efficiently remove these both types of ISI.
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h
x[k]

+

Channel

n[k]

y[k]Modulo
Device

x̂[k]

Feedback Filter

+

Tomlinson-Harashima Precoder

fH

bH

Feedfoward
Filter

Modulo
Device

Decision
Device

Figure 6.8.: Block diagram of the system including THP with a feedforward filter

6.5. Hybrid Detection Scheme

The introduction of a feedback filter in DFE improves the system performance since the ISI can be can-

celed in two subsequent steps but at the cost of a much higher complexity. The computational complexity

of the DFE can be significantly reduced by employing a hybrid non-linear equalization technique, where

the feedforward filter processes a block of data in the frequency domain, as in linear FDE, and the feed-

back filter operates on symbol by symbol basis in the time domain. This hybrid equalization technique

was first proposed in [FABSE02] for single-carrier (SC) systems in RF communications. A joint design

to calculate the frequency domain feed-forward filter and time domain feedback filter weights has also

been presented in [FABSE02]. Block transmission with FDE offers a straightforward implementation for

such a hybrid equalizer since only an additional time domain equalizer is added in the feedback loop

after linear FDE, as shown in Fig. 6.9.

+x FFT W IFFT + Decision
Device

bH

+
-

symbol-by-symbol

nh Process block of N samples at a time︸ ︷︷ ︸ subtraction of feedback symbols︸ ︷︷ ︸

Feedforward Filter

Feedback Filter

y x̂[k]z[k]

Figure 6.9.: Block diagram of Hybrid Equalizer

In the first step, the received symbols are multiplied by a forward filter in the frequency domain. This

feedforward filter has N complex frequency domain coefficients Wn ∀n = 1, · · · , N which are given by

Wn =

H∗n[1−
B∑
i=1

biexp(−j2π niN )]

σ2
n
σ2
x

+ |Hn|2
, (6.26)

where σ2
n is the noise variance, σ2

x is the signal variance, bi denotes the i-th feedback filter coefficient,

and B is the length of feedback filter. After the frequency domain equalization, the equalized symbols
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are converted to the time domain by applying the IFFT. In the second step, the time domain output is

sampled once per symbol interval where the feedback filter coefficients bH of length B are calculated as

bH = V −1v. (6.27)

Here the quantities V and v are calculated as

[V ]m,i =
N−1∑

n=0

exp(−j2π n(i−m)
N )]

σ2
n
σ2
x

+ |Hn|2

[v]m =
N−1∑

n=0

exp(j2π nmN )]
σ2
n
σ2
x

+ |Hn|2
,

where 1 ≤ m, i ≤ B and [V ]m,i denotes the m, i-th components of the matrix V . Due to the block

structure, the feedback filter is not able to cancel interference more than the length of the CP. Therefore,

the number of the feedback filter coefficients should be less than or equal to the length of the CP.

Moreover, to minimize complexity, the number of feedback coefficients B should be kept as low as

possible. This can be accomplished if the indices i ∈ B correspond to the relative estimated delays of

the largest channel impulse response echoes.

A major challenge of the DFE is its error propagation problem. This problem can also be resolved

in a hybrid equalizer via two ways. Firstly, the length of the time domain feedback filter is limited

by only a few taps which not only limits the error propagation but also reduces the complexity of the

equalizer. Secondly, a unique word (UW) can be used instead of a CP, as shown in Fig. 6.10. Note that

adding a UW to the PAM block transmission scheme is different to the UW-OFDM signaling concept

that has been discussed in Part 1. In UW-OFDM, we add redundancy in the frequency domain to get

zeros at the tail of the IFFT output. Then in the time domain, a UW is added. However, in PAM block

transmission, PAM data symbols are already in the time domain, so we can add a UW according to the

Fig. 6.10. Moreover as described in Part 1, a UW refers to a deterministic sequence which is known at

the transmitter and the receiver. Since a CP is only used to have cyclic convolution, this property can

still be maintained by using a UW. Furthermore, a UW can advantageously be used for synchronization

and channel estimation purposes. Since the UW is known at the receiver, the error propagation problem

is also resolved for the hybrid equalizer . Therefore, we propose to use a UW instead of a CP for PAM

block transmission.

6.6. Simulation Results

The performance comparison of different schemes is evaluated in terms of power penalties as discussed

in Section 5.2. In this work, we have used a bit error ratio pb = 10−3 in Eq. (5.5) for the calculation

of power penalties. Moreover, we have assumed perfect channel knowledge and time synchronization.

The CP/UW overhead is 12.5 % with an FFT size of N = 128 for all block-based transmission schemes.

Note that we have used a UW instead of a CP for PAM block transmission schemes.

We first discuss the performance of PAM transmission combined with different equalization techniques.
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(a) PAM block transmission with a CP

CP1 CP2 CP3

UW UW UW

N -FFT

Data 1

Data 1 Data 2

Data 2

at the receiver
N -FFT

at the receiver

N -FFT
at the receiver

N -FFT
at the receiver

(b) PAM block transmission with a UW

Figure 6.10.: PAM block transmission with a CP or a UW

In Fig. 6.11a, the performance of 4 NRZ-PAM with a hybrid equalizer is shown for different feedback

filter taps. Here, we have used a UW instead of a CP. Moreover, we have employed an MMSE based

criterion to calculate the frequency domain and the time domain filter weights as discussed in the

previous sections. As expected, with an increasing number of feedback filter taps, the performance

improves. There is a significant gain between a 1-tap feedback equalizer and a 3-tap equalizer, but

thereafter the gain is negligible with an increasing number of taps. The performance of NRZ-PAM with

different equalization techniques and THP is compared in Fig. 6.11b. We have used a 13-tap feedforward

filter for all time domain equalization techniques. Moreover, a 11-tap feedback filter is used for DFE

and THP. We have observed in our simulations that the gain is negligible even if we use more taps for

the considered channel models. All filter weights are calculated using the MMSE criterion. As evident

from the results, the performance of PAM with linear frequency domain equalization (FDE) is slightly

worse than linear time domain equalization (TDE). This is due to the fact that a UW/CP is inserted

periodically to perform FDE at the receiver. Therefore, some energy is utilized for this purpose. On the

other hand, the computational complexity of FDE is much lower than TDE. The performance of NRZ-

PAM with linear equalization techniques is similar to the non-linear equalization techniques for low data

rates (Rb/f3dB ≤ 5). But the gain of non-linear techniques is significant at higher data rates. This is due

the fact that the optical channel causes pre- and post-cursor ISI and the linear equalization techniques

cannot fully mitigate the ISI. It can also be seen that the hybrid equalizer has a similar performance as

the DFE, but with a significantly smaller computational complexity. Note that the hybrid equalizer uses

only a 5-tap feedback filter while the DFE employs an 11-tap feedback filter. Moreover, we have used a

UW instead of a CP to resolve the error propagation of the DFE. Furthermore, it can be observed that

the DFE and the hybrid equalizer are slightly more power efficient than THP at low data rates. This is

because of the modulo and precoding losses of THP. At higher data rates, the performance of THP is

similar to the DFE and the hybrid equalization technique. Although the error propagation problem of

the DFE can be resolved by THP, THP has a much higher computational complexity and also requires

CSI at the transmitter. Clearly, PAM block transmission combined with a hybrid equalizer is a better

choice due to its low complexity and better performance.

In Fig. 6.12, the performance of the transmission techniques discussed in Chapter 5 is compared using

the POF channel (channel 1). For very low values of Rb, the penalty depicts the power efficiency of
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(a) Performance of NRZ-PAM with hybrid equalizer using different number of
feedback filter taps. The gain is negligible after 5-tap feedback equalizer.
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Figure 6.11.: Performance Comparison of 4 NRZ-PAM transmission with different equalization
techniques. A 15-tap feedforward filter is used for TDE, DFE, and THP while a 13-tap feedback

filter is used for DFE and THP. The hybrid equalizer employs only 5-tap feedback filter.

the various transmission schemes in a flat AWGN channel. For instance, OOK in such an ideal AWGN

channel has a normalized power requirement of 0 dB. The increase in the curves corresponds to the
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Figure 6.12.: Performance Comparison of transmission strategies.

penalty caused by the Gaussian lowpass filter. Here, we have shown results for PAM block transmission

with a 50 % RZ pulse shaping filter since it exhibits a better performance compared to a NRZ filter.
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First we discuss the performance of these schemes in terms of spectral efficiency (Rb/f3dB), as shown in

Fig. 6.12a. PAM block transmission with linear FDE shows a better performance than the CAP scheme

with an approximate gain of 3 dB for all values. The gain becomes significant when we use a hybrid

equalizer for PAM block transmission. Even 16 CAP has a worse performance than 2 RZ-PAM (OOK)

with a hybrid equalizer. Note that we have fine tuned the CAP performance with its best clipping value

but it still cannot reach the performance of RZ-PAM with linear FDE or hybrid equalization. Moreover,

the CAP transmitter also has a much higher complexity, since it requires a long FIR filter and a large

amplifier back-off. Therefore, we only show the results of CAP with FDE.

The performance of the DC-biased DMT schemes with Fisher Huber bit-loading is also shown in

Fig. 6.12a. The result shows that even 2 PAM-RZ with a hybrid equalizer outperforms DC-biased DMT

with bit-loading up to Rb/f3dB ≤ 10 and thereafter 4 RZ-PAM matches the DC-biased DMT. Note that

DMT with bit-loading requires the full CSI at the transmitter and a careful selection of the clipping

factor, whereas PAM block transmission does not require CSI or clipping. Moreover, an adaptive PAM

block transmission combined with linear FDE or hybrid equalization can also be used to achieve the best

performance. In contrast to the DMT with bit-loading, it requires only knowledge of the modulation

order and the pulse duration.

As an example, in Fig. 6.12b we show the data rates achieved by these schemes for a step index POF

of 10 m length used in an automotive environment according to the media oriented systems transport

(MOST) 150 specifications [MOS10,Grz11]. Data rates up to 2 Gbits/s or slightly more can be achieved

with a 2 RZ-PAM (OOK) modulation combined with a hybrid equalizer. Even the 64 CAP does not

match the performance of 2 RZ-PAM (OOK) with a hybrid equalizer or 8 PAM with linear FDE.

Therefore, the CAP scheme is not a good solution for achieving high data rates in these optical systems

due to its higher complexity and lower performance. The performance of DC-biased DMT with FH

bit-loading is also worse than 4 RZ-PAM with a hybrid equalizer or 8 PAM with linear FDE up to 2

Gbits/s and thereafter it matches the 4 RZ-PAM with a hybrid equalizer or is slightly better. Clearly

UW based PAM block transmission combined with a hybrid equalizer or even with a linear FDE is a

better choice because of its good performance and low complexity.

6.7. Conclusion

In this chapter, we have investigated the performance of PAM transmission with different equalization

and precoding techniques. PAM block transmission combined with frequency domain equalization offers

an attractive and low complexity solution for optical systems employing IM/DD. Other state-of-the-art

transmission strategies such as CAP and DC-biased DMT with bit-loading do not match the performance

of RZ-PAM even with linear FDE and also require a much higher computational complexity. Since optical

channels cause pre- and post-cursor ISI, the non-linear techniques offer a better solution as they can

mitigate both ISIs in an efficient manner. The statement is verified by the results where the non-linear

techniques such as DFE and THP significantly outperform the linear equalizers but at the cost of much

higher computational complexity. Alternatively, a hybrid equalization technique can be employed which

not only has a lower complexity but also achieves the same performance. PAM block transmission

with a hybrid equalizer not only significantly outperforms PAM block transmission with linear FDE but
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also others schemes. In such a technique, an additional time domain feedback filter with fewer taps is

employed along with a linear frequency domain equalizer. Moreover, the error propagation problem of

DFE can be resolved by using a unique word instead of a cyclic prefix. The results show that PAM block

transmission with a hybrid equalizer has the similar performance of DFE and THP but significantly

reduce computational complexity. Moreover, THP requires CSI at the transmitter and DFE suffers from

error propagation.
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7. Unique Word DMT Schemes

Discrete multitone transmission schemes such as AC-DMT, DC-biased DMT, and PAM-DMT are pop-

ular multicarrier transmission schemes for dispersive optical channels employing intensity modulation

and direct detection. These transmission schemes utilize a cyclic prefix (CP) to have a simple frequency

domain equalization at the receiver. In this chapter, we propose three novel DMT signaling schemes for

such optical systems, where the guard interval is built of a unique word, i.e., a deterministic data inde-

pendent sequence. These schemes are derived from the UW-OFDM signaling concept which is discussed

in Part I of the thesis. This approach becomes possible since redundancy is added in the frequency

domain and the UW is a part of the DFT interval. The results show that the proposed UW-DMT

schemes outperform the conventional CP-DMT schemes in dispersive optical channels. Furthermore, the

UW can be additionally used for other purposes such as synchronization and channel estimation.

7.1. Introduction

Optical systems with non-coherent sources such as light emitting diodes rely on intensity modulation

and direct detection. As a result of the limited coherence of the source (the electrical field appears as

broadband noise), a field modulation of two high frequencies carriers with 90◦ phase shift (quadrature up

conversion) as in RF is impossible. On the contrary, for IM/DD, all signals need to be real-valued and

non-negative. The real-valued baseband version of OFDM is usually referred to as discrete multitone

transmission. As compared to OFDM, the DMT scheme requires some extra signal manipulations before

and after the IFFT to make the time domain signal real-valued and positive. Depending on the type

of pre- and post-IFFT processing, many variants of DMT schemes such as AC-DMT, DC-biased DMT

schemes, and PAM-DMT have been proposed in the literature [AS08,LRBV09,VFea10,WH12] and are

also discussed in Section 5.3.2. These schemes take different approaches for complex-valued and real-

valued modulation formats to obtain a real-valued signal at the output of the IFFT. Moreover, similar

to OFDM, these DMT schemes utilize a CP for simple frequency domain equalization.

In this chapter, we propose new unique word DMT signaling schemes for optical systems employing

IM/DD. These schemes are derived from the UW-OFDM signaling concept [HHH10b,OH10] which has

been introduced for RF in [HHH10b, OH10] and discussed in the first part of the thesis. It has already

been shown in [HHH10b, OH10, HHH10a, HHOH14] that UW-OFDM has superior BER performance

over classical CP-OFDM in frequency selective environments for RF communication. However, due to

IM/DD constraints, the original UW-OFDM design cannot be directly applied to the optical systems

such as POFs and VLC. Therefore, our proposed UW-DMT concept is different to the original UW-

OFDM design. In our concept, the redundancy introduced in the frequency domain not only ensures

that the signals are real-valued at the output of the IFFT but also we get zeros at the start or at the

end of the time domain signal so that a UW can be added in the time domain. This is achieved by

designing a code generator matrix which is multiplied with the data symbols in the frequency domain.

Specifically, the design of the code generator matrix is different for complex-valued and real-valued
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modulation formats. This is in contrast to UW-OFDM where the code generator matrix is independent

of the type of the modulation format. Moreover, the design of this code generator matrix is not unique

and different matrices yield different performances. In this work, we propose different types of code

generator matrices. We refer to these new schemes as UW-DMT schemes while the classical CP based

DMT schemes are referred to as CP-DMT.

The remainder of this chapter is organized as follows. The UW-DMT schemes that use complex-

valued modulation formats are presented in Section 7.2 whereas the UW-DMT schemes for real-valued

modulation formats are discussed in Section 7.3. We also discuss different designs for code generator

matrices and receiver concepts for these proposed schemes. We also show the performance of the proposed

transmission schemes and compare these schemes with the conventional CP-DMT schemes. Finally, we

summarize our results in Section 7.4.

7.2. UW-DMT Transmission Techniques for Complex-Valued

Constellations

In this section, we present the proposed UW-DMT schemes for complex-valued constellations such as

QAM. The conventional CP-DMT schemes in the literature, which use complex-valued constellations,

are AC-DMT and DC-biased DMT schemes [AS08,VFea10,WH12]. These schemes have been discussed

in Section 5.3.2. First we present the system model and in the subsequent part, we discuss the proposed

DMT schemes.

Let Nm be the effective number of data symbols which are to be mapped on N
2 subcarriers in the

frequency domain, with N being the DFT size. Since IM/DD requires for real-valued signals, a Hermitian

symmetry has to be enforced in the frequency domain. The real-valued signal at the IFFT output for

these CP-DMT schemes is given as

x = FH
N B̄d̂ ∈ RN×1, (7.1)

where FN is the N -point DFT matrix with its elements [FN ]k,l = 1√
N
e−j

2π
N
kl for k, l = 0, 1, 2, . . . ,N − 1,

d̂ = [d d∗]T ∈ C2Nm×1 contains the complex-valued data vector d and its conjugate, and B̄ ∈ RN×2Nm

(as defined in Eq. (5.34)) maps these symbols to the respective subcarriers. Depending upon the variant

of the DMT scheme, the post-IFFT processing (such as clipping for AC-DMT or adding an appropriate

DC-bias along with clipping for DC-biased DMT) is carried out to ensure that the transmit signal is

positive-valued.

In the UW-DMT symbol generation, we propose to generate a symbol x =
[
0 xTd

]T
with a zero UW

in the first step. Note that x in Eq. (7.1) does not contain the cyclic prefix. In the second step, the

desired UW is added in the time domain. Let xu ∈ RNu×1 be a unique word of length Nu which is added

at the start of the time domain UW-DMT symbol such that

x′ =

[
0

xd

]
+

[
xu

0

]
(7.2)
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= x +

[
xu

0

]
=

[
xu

xd

]
∈ RN×1 (7.3)

The symbol x with a zero UW is obtained by adding redundancy in the frequency domain. Let

G ∈ CNm×Nd be a code generator matrix which adds redundancy in the frequency domain, then the

time domain vector at the output of the IDFT is given as,

x =

[
0

xd

]
= FH

N

[
B 0

0 Π̂B

][
G 0

0 G∗

][
d

d∗

]

= FH
N B̄c, (7.4)

where d ∈ CNd×1 contains the data symbols in the frequency domain, c ∈ C2Nm×1 contains the coded

symbols using the code generator matrix, and Nm = Nd + Nr with Nr being the redundancy added

in the frequency domain. It has been shown for UW-OFDM in [HHH10a, HHOH14] that the design of

the G matrix is not unique and different types of code generator matrices can be obtained. Using a

similar idea as for UW-OFDM, we derive different code generator matrices for UW-DMT schemes that

satisfy Eq. (7.4). Since we have a different problem (Eq. (7.4)) for UW-DMT schemes as compared to

UW-OFDM, we will also get different solutions. Depending on how the redundancy is added, the design

of the G matrix can be divided into two categories that are discussed in the following.

7.2.1. Systematic Code Generator Matrix

In the systematic approach, UW-DMT symbols are generated by appropriately loading so-called redun-

dant subcarriers r ∈ CNr×1 with the help of a permutation matrix P ∈ RNm×Nm . In this approach, the

data and the redundant symbols are distinguishable at the output of the code generator matrix. We

redefine Eq. (7.4) for this approach as

x =

[
0

xd

]
= FH

N

[
B 0

0 Π̂B

][
P 0

0 P

]

︸ ︷︷ ︸M11 M12 M13 M14

M21 M22 M23 M24






d

r

d∗

r∗



. (7.5)

From the first block, we see that

M11d + M12r + M13d
∗ + M14r

∗ = 0.

Note that (M13d
∗+M14r

∗) corresponds to the IDFT of the negative part of the spectrum. This means

that

M13d
∗ + M14r

∗ = (M11d + M12r)∗,
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therefore,

0 = M11d + M12r + M13d
∗ + M14r

∗

0 = 2 · Re {M11d + M12r} .

Our aim is to express r as a function of d which is achieved by solving

0 = Re {M11d + M12r} . (7.6)

Note that this equation has more than one solution, since the Re{·} operator offers an extra degree of

freedom. In the following we present two approaches to solve the Eq. (7.6).

7.2.1.1. Solution 1

The simplest solution for Eq. (7.6) is

0 = M11d + M12r

r = (M12)−1M11d

r = T ′d, (7.7)

where T ′ = (M22)−1M21 is an invertible matrix. We simplify Eq. (7.5) by inserting r from Eq. (7.7)

which results in

x = FH
N

[
B 0

0 Π̂B

][
P 0

0 P

]



d

T ′d

d∗

(T ′d)∗




= FH
N B̄

[
P 0

0 P

]



INd 0

T ′ 0

0 INd
0 (T ′)∗




[
d

d∗

]

= FH
N B̄

[
GSys1 0

0 G∗Sys1

][
d

d∗

]
(7.8)

where

GSys1 = P

[
INd
T ′

]
∈ CNm×Nd (7.9)

is the code generator matrix for this solution.

117



7. Unique Word DMT Schemes

7.2.1.2. Solution 2

The design of the GSys1 matrix in Eq. (7.9) does not exploit the extra degrees of freedom that are

provided by the Re{.} operation in Eq. (7.6). In this section, we exploit the property, Re{V · Q} =

Re{V }Re{Q} − Im{V }Im{Q} for two complex matrices V and Q. Using this property, we rewrite our

original problem in Eq. (7.6) as

0 = Re {M11d + M12r}
= Re{M11}Re{d} − Im{M11}Im{d}
+ Re{M12}Re{r} − Im{M12}Im{r}.

The solution is given by





Re {r} = −Re {M12}−1 · Re {M11} · Re {d}
Im {r} = −Im {M12}−1 · Im {M11} · Im {d}

.

Next, let us define two real-valued matrices Tr and Ti as




Tr = −Re {M12}−1 · Re {M11}
Ti = −Im {M12}−1 · Im {M11}

.

Therefore, vector r for this solution can be expressed as

r = Tr · Re {d}+ jTi · Im {d} . (7.10)

Inserting r in Eq. (7.5) results in

x = FH
N B̄

[
P 0

0 P

]






INd
Tr

INd
Tr




Re{d}+ j




INd
Ti

−INd
−Ti




Im{d}



. (7.11)

Defining two real-valued code generator matrices as

Gr,Sys = P

[
INd
Tr

]
∈ RNm×Nd Gi,Sys = P

[
INd
Ti

]
∈ RNm×Nd

Eq. (7.11) simplifies to

x = FH
N B̄

(
Ĝr,SysRe{d}+ jĜi,SysIm{d}

)
,

where

Ĝr,Sys =

[
Gr,Sys

Gr,Sys

]
Ĝi,Sys =

[
Gi,Sys

−Gi,Sys

]
(7.12)

118



7.2. UW-DMT Transmission Techniques for Complex-Valued Constellations

0 5 10 15 20 25 30 35 40 45 50 55 60
−0.4

−0.2

0

0.2

0.4

(a) Solution 1 for AC-UW-DMT

0 5 10 15 20 25 30 35 40 45 50 55 60
−0.4

−0.2

0

0.2

0.4

(b) Solution 2 for AC-UW-DMT

0 5 10 15 20 25 30 35 40 45 50 55 60
−1

−0.5

0

0.5

1

(c) Solution 1 for DC-biased UW-DMT

0 5 10 15 20 25 30 35 40 45 50 55 60
−1

−0.5

0

0.5

1

(d) Solution 2 for DC-biased UW-DMT

Figure 7.1.: Time domain comparison of both solutions for AC-UW-DMT and DC-biased UW-DMT
for N = 64, Nr = 10

7.2.1.3. Design of the Permutation Matrix

The position of redundant subcarriers in the systematic UW-DMT schemes plays an important role

regarding its performance. Therefore, the design of the P matrix is crucial for the performance of

systematic UW-DMT. We use a similar procedure as proposed for UW-OFDM in [HHH10b] to find the

optimal permutation matrix P . The goal is to find a matrix P that minimizes the redundant energy.
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We use the heuristic method proposed in [HHOH14] to calculate almost optimal positions. The expected

redundant energy for the DMT schemes is given as

Er =
2

N
E
{
rHr

}
, (7.13)

where the factor 2 is due to the conjugate symmetry of DMT schemes. In the following, we calculate the

redundant energy for both solutions. Then we apply the heuristic algorithm in [HHOH14] to calculate

the P matrix.

7.2.1.3.1. Redundant Energy for Solution 1 By using the properties of the trace operator (i.e. tr(·)),
we get

Er,1 =
2

N
E
{
rHr

}

=
2

N
E
{

tr(rrH)
}

=
2

N
E
{

tr(T ′ddHT ′H)
}

= 2
σ2
d

N
tr
(
T ′T ′H

)

where σ2
d is the variance of the data symbols.

7.2.1.3.2. Redundant Energy for Solution 2 Let r′ be the real part of r and r′′ be the imaginary

part. Similarly, let d′ be the real part of d and d′′ be the imaginary part. Then

Er,2 =
2

N
E
{
rHr

}
=

2

N
E
{

(r′ − jr′′)T (r′ + jr′′)
}

=
2

N
E
{

(r′)Tr′ + (r′′)Tr′′
}

=
2

N
E
{

tr(r′(r′)T ) + tr(r′′(r′′)T )
}

=
2σ2

d′

N
tr
(
TrT

T
r

)
+

2σ2
d′′

N
tr
(
TiT

T
i

)

=
2
σ2
d
2

N
tr
(
TrT

T
r

)
+

2
σ2
d
2

N
tr
(
TiT

T
i

)

=
σ2
d

N

(
tr
(
TrT

T
r

)
+ tr

(
TiT

T
i

))
,

where we have used σ2
d′ = σ2

d′′ =
σ2
d
2 which is true for uncorrelated QAM symbols.

7.2.2. Non-Systematic Code Generator Matrix

In the non-systematic design, we abandon the idea of dedicated redundant subcarriers and design a code

generator matrix that distributes the energy over all subcarriers. Therefore, at the output of the code
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generator matrix, the data and redundant symbols are not anymore distinguishable. Let us define

[
M11 M12

M21 M22

]
= FH

N

[
B 0

0 Π̂B

]
(7.14)

Inserting this definition in Eq. (7.4), we get

[
M11 M12

M21 M22

][
G 0

0 G∗

][
d

d∗

]
=

[
0

xd

]
(7.15)

Hence, we can extract the following relation from the above equation,

0 = M11Gd + M12G
∗d∗,

where M12G
∗d∗ corresponds to the IDFT of the negative part of the spectrum. Therefore,

0 = M11Gd + M12G
∗d∗

0 = 2 · Re {M11Gd} . (7.16)

Note that this problem is similar to the systematic code generator design and a unique solution does

not exist. In the following, we will present two solutions as presented for the systematic code generator

matrix.

7.2.2.1. Solution 1

Since the relation in Eq. (7.29) must hold for any d vector, the simplest solution is

0 = M11G. (7.17)

Note that Eq. (7.17) implies that the columns of G should belong to the null-space of M11. There exist

multiple solutions to this problem but all should fulfill the constraints in Eq. (7.17). One solution can be

a matrix that contains an orthonormal basis of the null space. This can be achieved by computing the

singular value decomposition (SVD) of M11. We denote the code matrix as GNsys1 which is computed

in this way.

7.2.2.2. Solution 2

In the second approach, we design two real-valued generator matrices for the real and the imaginary

parts of the data symbols, respectively. Let Gr ∈ RNm×Nd and Gi ∈ RNm×Nd denote two real-valued

generator matrices. We can rewrite Eq. (7.4) as

[
0

xd

]
= FH

N

[
B 0

0 Π̂B

]([
Gr

Gr

]
Re{d}+ j

[
Gi

−Gi

]
Im{d}

)
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Using the Eq. (7.14), we obtain

[
0

xd

]
=

[
M11 M12

M21 M22

]([
Gr

Gr

]
Re{d}+ j

[
Gi

−Gi

]
Im{d}

)
, (7.18)

where

M12GrRe{d} = (M11GrRe{d})∗

−M12GiIm{d} = (M11GiIm{d})∗.

Using the above properties, we can simplify the first block of Eq. (7.18) as

0 = Re {M11GrRe{d}+ jM11GiIm{d}}
= Re{M11}GrRe{d} − Im{M11}GiIm{d}.

Therefore, following constraints have to be fulfilled for the design of these two code generator matrices.





0 = Re{M11}Gr

0 = Im{M11}Gi

.

Note that, this implies that the columns of Gr and Gi matrices belong to the null space of Re{M11}
and Im{M11}, respectively. Similar to solution 1, we can compute the SVD of Re{M11} and Im{M11}
to obtain Gr and Gi, respectively. In this work, we refer to the matrices obtained through this method

as Gr,Nsys and Gi,Nsys. Therefore, the signal at the output of the IDFT is

x = FH
N B̄

(
Ĝr,NsysRe{d}+ jĜi,NsysIm{d}

)
,

where

Ĝr,Nsys =

[
Gr,Nsys

Gr,Nsys

]
Ĝi,Nsys =

[
Gi,Nsys

−Gi,Nsys

]
(7.19)

7.2.3. Comparison of Both Solutions

A realization of the real-valued time domain samples at the output of the IDFT is shown in Fig. 7.1 for

both solutions and for both unique word DMT schemes. Different numbers of zeros at different positions

are obtained for both solutions and also for both DMT schemes. Since solution 1 does not take full

advantage of the real operator in Eq. (7.6) and Eq. (7.29), we only get Nu zeros at the start of the

symbols for both UW-DMT schemes. Additionally, we also get Nu zeros in the middle for AC-DMT due

to the Hermitian symmetry property. Since in solution 2, we use two real-valued generator matrices for

the positive and the negative spectrum, we get Nu zeros at the start and Nu − 1 zeros at the end of the

time domain samples. Since the first row of Im{M11} contains only zeros, we get only Nu−1 zeros at the

end instead of Nu zeros. Moreover, we get an additional 2Nu− 1 zeros in the middle for AC-UW-DMT.
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Figure 7.2.: Comparison of 4-QAM DC-biased UW-DMT scheme for different Rb/f3dB values using
GNsys and solution 2

Clearly, solution 2 is a better option since we need only half of the redundancy (Nr/2) as compared to

solution 1 to add a unique word of length Nu. This is accomplished by adding a UW in between two

symbols since we get zeros not only at the start but also at the end of time domain symbols.

7.2.4. Receiver Design

The data received in the frequency domain after subtracting the UW and removing the zero subcarriers

is given by

y = B̄TFNĤFH
N B̄c + B̄TFN n̂

= Hc + n, (7.20)

where Ĥ ∈ RN×N is the circulant convolutional matrix containing the channel impulse response, H =

B̄TFNĤFH
N B̄ ∈ C2Nm×2Nm is a diagonal matrix with the channel transfer function on its diagonal,

and n = B̄TFN n̂ denotes the noise in the frequency domain. The impact of the channel is removed by

utilizing an appropriate detector. In this work, we present only linear detectors for UW-DMT schemes.

The linear detection schemes differ for both solutions.
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7.2.4.1. Linear Detectors for Solution 1

Irrespective of the type of code generator matrix (systematic or non-systematic) used, the symbols at

the output of the code generator matrix for solution 1 are given as

c =

[
G 0

0 G∗

][
d

d∗

]

where G can be chosen as GSys1 or GNsys1. The symbols can be estimated as

d̂ = Eŷ ∈ CNd×1,

where ŷ corresponds to the received spectrum of the positive frequencies and E ∈ CNd×Nm contains the

equalizer filter weights. In [HOH11, CZHH16], it has been shown that the optimum linear estimators

such as the best linear unbiased estimator (BLUE) or the linear minimum mean square error (LMMSE)

estimator can be used to estimate the data symbols for UW-OFDM. We use the same estimators for

UW-DMT schemes. The estimators for the solution 1 are given as

EBLUE =
(
GHH̃HH̃G

)−1
GHH̃H , (7.21)

EMMSE =

(
GHH̃HH̃G +N

σ2
n

σ2
d

INd

)−1

GHH̃H , (7.22)

where H̃ ∈ CNm×Nm denotes a diagonal matrix with the channel transfer function of the spectrum of

the positive frequencies on its diagonal, G can be either GSys1 or GNsys1, σ2
n is the variance of the noise

samples, and σ2
d is the variance of the data symbols.

7.2.4.2. Linear Detectors for Solution 2

If the G matrices based on the solution 2 are used, then the received signal will be,

y = H
(
ĜrRe{d}+ jĜiIm{d}

)
+ n

= HĜrRe{d}+ jHĜiIm{d}+ n,

where Ĝr and Ĝi can be the generator matrices for the systematic or non-systematic approach. The

symbols are then estimated as

d̂ = Re{Erŷ}+ jIm{Eiŷ} ∈ CNd×1,

where Er and Ei are the equalizer filter weights for the real and the imaginary part of the data symbols.

The equalizer weights can be calculated by replacing G in Eq. (7.21) and Eq. (7.22) with G′r,Sys or

G′r,Nsys for Er and G′r,sSys or G′r,Nsys for Ei.
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Figure 7.3.: Comparison of DC-biased UW-DMT schemes with different G matrices

UW-DMT CP-DMT

FFT size (N) 128

pb 10−3

Data Carriers (Nd)
AC-DMT: 16, 21
DC-biased: 42, 47

AC-DMT: 26
DC-biased: 52

Redundant Carriers (Nr)
Solution 1: 10
Solution 2: 5

-

CP/UW duration 10 Samples

Oversampling,factor 2

Channel Gaussian Low Pass

Table 7.1.: Simulation Parameters

7.2.5. Simulation Results

We evaluate the performance of these schemes over POF channel which has been discussed in Sec-

tion 5.2.2. The performance of the proposed schemes is evaluated in terms of an optical power penalty

as discussed in Section 5.2.1. We also show results for the BER vs. the required average optical power for

the DC-biased UW-DMT scheme in Fig. 7.2. Note that the ratio RP/
√
N0Rb in this figure corresponds

to the ratio Eb,elec/N0 which is usually used for performance analysis in RF communication. Moreover,

the horizontal green line at pb = 10−3 represents an example of the power penalty. Since we would need

a separate curve for each Rb/f3dB value, we do not show the BER plots in the following figures. Instead,

we show the power penalty mentioned above over Rb/f3dB at pb = 10−3. Moreover, we have used a

zero UW in our simulations but other sequences such as m-sequence can also be used. The rest of the

simulation parameters are described in Table 7.1.

125



7. Unique Word DMT Schemes

0.5 1 2 3 5 8 10 20
0

2

4

6

8

10

12

14

16

18

20

Spectral Efficiency (Rb/f3dB) in bits/s/Hz

P
o
w

er
P

en
a
lt

y
(P
/
P

O
O

K
)

in
d

B

4 QAM DC-biased CP-DMT

16 QAM DC-biased CP-DMT

4 QAM DC-biased UW-DMT

16 QAM DC-biased UW-DMT

(a) Comparison of DC-biased UW-DMT with DC-biased CP-DMT using GNsys and
solution 2
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Figure 7.4.: Comparison of UW-DMT schemes with CP-DMT schemes

First we discuss the performance of the UW-DMT schemes with different code generator matrices

designed for both solutions. As an example, we show the performance of 16 QAM DC-biased UW-DMT

in Fig. 7.3 but the results are similar for AC-UW-DMT as shown in Fig. 7.4b. It is evident from the
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results that all G matrices result in different performance where the systematic and the non systematic

code generator matrices using solution 2 outperform the solution 1. One of the reasons is the use of

less number of redundant carriers for solution 2. Moreover, the UW-DMT schemes with GNsys matrices

outperforms the GSys. This is due to the fact that the redundancy is distributed over all subcarriers for

the non-systematic approach. It is also analogous to the UW-OFDM system where the UW-OFDM with

non-systematic code generator matrices outperforms the UW-OFDM with systematic matrices. Clearly,

the GNsys matrix designed using the solution 2 is a better choice for UW-DMT schemes. Note that the

code generator matrices are designed only once for the given system parameters.

We compare the performance of the DC-biased UW-DMT scheme with the DC-biased CP-DMT scheme

in Fig. 7.2 and Fig. 7.4a. Here, we have only shown the results for the UW-DMT scheme with non-

systematic generator matrices using solution 2 since this combination outperforms the other solutions.

However, we also show the performance of the AC-UW-DMT scheme with systematic generator matrices

using solution 2 in Fig. 7.4b. The results show that DC-biased UW-DMT scheme outperforms the DC-

biased CP-DMT scheme at all Rb/f3dB values for a fixed pb = 10−3, as shown in Fig. 7.4a. The same

is true in Fig. 7.2 where we show results for the BER vs. the normalized power for a fixed Rb value.

The results are slightly different for the AC-DMT scheme as shown in Fig. 7.4b, where we observe

approximately the same power penalties at very high Rb/f3dB values, but still a high gain for AC-UW-

DMT is observed at lower Rb/f3dB values. Note that the design of the code generator matrix is not

unique and different code generator matrices yield different performances. In this work, we have only

used the non-systematic GNsys matrix based on the singular value decomposition but other matrices can

also be designed. These code generator matrices can be designed using the channel statistics and may

further improve the performance of the UW-DMT schemes.

7.3. UW-DMT Transmission Techniques for Real-Valued Constellations

In this section, we propose a novel UW-DMT scheme that uses real-valued modulation formats such as

PAM (a counterpart of the PAM CP-DMT scheme as proposed in [LRBV09]). PAM CP-DMT scheme

has already been introduced in Section 5.3.2. In this scheme, the data symbols are first converted to

imaginary symbols as d = js ∈ CNm×1 to ensure the odd symmetry in the time domain, where s ∈ RNm×1

is the data symbol vector of length Nm in the frequency domain.

We use a similar procedure to generate the PAM UW-DMT symbols as proposed for other UW-DMT

schemes in the previous section. In the first step, we generate a symbol x =
[
0 xTd

]T
with a zero UW,

as shown in Fig. 7.5. In the second step, the desired UW is added in the time domain. The symbols at

the output of the IDFT are given as,

x =

[
0

xd

]
= FH

N B̄

[
G 0

0 G∗

][
d

d∗

]

= FH
N B̄c, (7.23)

where c ∈ CNm×1 contains the Nm coded symbols at the output of the code generator matrix with

127



7. Unique Word DMT Schemes

Nm = Nd + Nr. As shown in the previous section, the design of the G matrix plays an important role

regarding the performance of UW-DMT where different G matrices are proposed for UW-DMT schemes

using complex-valued constellations. In this section, we first derive the G matrices for PAM UW-DMT.

In the following we discuss the design of two types of code generator matrices where we only consider

solution 2 since it is a better choice for UW-DMT schemes.

G
d = js c

B̄ FH
N

x clipping

add UW
+

x′

Figure 7.5.: Transmit structure for PAM UW-DMT

7.3.1. Systematic Code Generator Matrix

Similar to UW-DMT schemes for complex-valued formats, we start by redefining Eq. (7.4) as

x =

[
0

xd

]
= FH

N

[
B 0

0 Π̂B

][
P 0

0 P

]

︸ ︷︷ ︸M11 M12 M13 M14

M21 M22 M23 M24






d

r

d∗

r∗



, (7.24)

that yields

0 = M11d + M12r + M13d
∗ + M14r

∗

0 = 2 · Re {M11d + M12r}
0 = Re {M11d + M12r} . (7.25)

Next, we use the property, Re{V · Q} = Re{V }Re{Q} − Im{V }Im{Q} for two complex matrices V

and Q, to get

0 = Re {M11d + M12r}
= Re{M11}Re{d} − Im{M11}Im{d}+ Re{M12}Re{r} − Im{M12}Im{r}.

Note that Re{d} = 0, such that with the choice Re{r} = 0, (or r = j · Im {r}) we obtain the solution

Im {r} = −Im {M12}−1 · Im {M11} · Im {d}
= T · Im {d} = Ts,
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where T = −Im {M12}−1 · Im {M11} ∈ RNr×Nd . Inserting the r in Eq. (7.24) results in

x = FH
N B̄

[
P 0

0 P

]



INd
T

−INd
−T



d

= FH
N B̄

[
GSys

−GSys

]
d, (7.26)

where GSys = P

[
INd
T

]
∈ RNm×Nd is the code generator matrix for the systematic approach. To calculate

the best P matrix for the PAM UW-DMT scheme,we define the expected redundant energy as

Er =
2

N
E
{
rHr

}
=
σ2
d

N
tr
(
TTH

)
. (7.27)

Then we use the heuristic method proposed in [HHOH14] to calculate the best position of the redundant

subcarriers (P matrix).

7.3.2. Non-Systematic Code Generator Matrix

We have shown in the previous section that even with the optimal positions of the redundant subcarriers,

the systematic approach still results in a high energy contribution of the redundant subcarriers. There-

fore, we present a non-systematic code generator matrix design for PAM UW-DMT where the data and

the redundant symbols are not distinguishable at the output of the code generator matrix. We rewrite

Eq. (7.23) as

FH
N

[
B 0

0 Π̂B

]

︸ ︷︷ ︸M11 M12

M21 M22



[
G 0

0 G∗

][
d

d∗

]
=

[
0

xd

]
. (7.28)

Using a similar procedure as for the systematic approach, we get

0 = M11Gd + M12G
∗d∗

0 = 2 · Re {M11Gd} . (7.29)

By choosing a real-valued generator matrix (Im{G} = 0), this results in

0 = Re{M11}Re{G}Re{d} − Im{M11}Re{G}Im{d}.
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Since Re{d} = 0, and with GNsys = Re{G}, we finally end up at the constraint

0 = Im{M11}GNsys,

i.e., the columns of GNsys matrix are in the null space of Im{M11}. Note that there exist multiple

solutions of this problem and the code generator matrix is not unique. Hence, we compute the singular

value decomposition (SVD) of Im{M11} and select the orthonormal columns corresponding to the null

space of the Im{M11} matrix. We refer to this code generator matrix as GNsys ∈ RNm×Nd which

simplifies Eq. (7.4) as

x = FH
N B̄

[
GNsys

−GNsys

]
d. (7.30)

7.3.3. Receiver Design

The data received in the frequency domain after subtracting the UW and removing the zero subcarriers

is given by

y = B̄TFNĤFH
N B̄

[
G

−G

]
d + B̄TFN n̂

= HGeffd + n, (7.31)

where Geff is the combined code generator matrix that consist of either of a systematic or a non-systematic

code generator matrix, Ĥ ∈ RN×N is the circulant convolutional matrix containing the channel impulse

response, H = B̄TFNĤFH
N B̄ ∈ C2Nm×2Nm is a diagonal matrix with the channel transfer function on

its diagonal, and n = B̄TFN n̂ is the noise in the frequency domain. We use the BLUE and LMMSE

estimators for the PAM UW-DMT scheme which are given as

EBLUE =
(
GH

effH
HHGeff

)−1
GH

effH
H , (7.32)

EMMSE =

(
GH

effH
HHGeff +

σ2
n

σ2
d

INd

)−1

GH
effH

H , (7.33)

where σ2
n is the variance of the noise samples and σ2

d is the variance of the data symbols. The estimated

symbols ŝ are given as

ŝ = Im{Ey} ∈ CNd×1.

7.3.4. Simulation Results

In this work, we evaluate the performance of the proposed scheme over a Gaussian low pass channel

(Channel 1). Moreover, we also include the impact of the transmit and the receive filtering in our

130



7.3. UW-DMT Transmission Techniques for Real-Valued Constellations
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Figure 7.6.: Time domain samples at the output of IDFT (before clipping) for N = 64 and Nr = 10

simulation. The overall impulse response is given as

h(t) = gtx(t) ∗ gch(t) ∗ grx(t), (7.34)

where ∗ is the convolution operator, gtx(t) is the impulse response of the transmit filter, gch(t) is the

channel impulse response of the Gaussian low pass filter, and grx(t) is the impulse response of the receive

filter. In this work, we use a rectangular filter as the transmit filter whereas a 5th order Bessel filter

is used as the receive filter. Moreover, we evaluate the performance in terms of the BER versus the

normalized optical power which is given as RP/
√
N0Rb. Here P defines the required average optical

power of the investigated transmission scheme, R is the photodiode responsivity which is chosen as one

in this work, Rb is the bit rate, and N0 is the noise power spectral density of the signal independent

noise current. Note that the ratio RP/
√
N0Rb corresponds to the ratio Eb,elec/N0 which is usually used

for performance analysis in RF communication. The remaining parameters are shown in Table 7.2. We

used half of the redundant carriers for the length of the UW. This is due to the fact that our proposed

code generator matrices produce Nr = Nu zeros at the start of the time domain samples and Nu zeros at

the end of the time domain samples, as shown in Fig. 7.6. Therefore, a UW of length Nu can be added

in between two symbols by generating Nu/2 zeros in the first step.

UW-DMT CP-DMT

FFT size (N) 128

Data Carriers (Nd) 55 60

Redundant Carriers (Nr) 5 -

CP/UW duration 10 Samples

Oversampling factor 2

Channel Gaussian Low Pass

Table 7.2.: Simulation Parameters

We compare the performance of the proposed scheme with the conventional PAM CP-DMT scheme

for two modulation orders, 4-PAM and 16-PAM, and for different cut-off frequencies of the Gaussian
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Figure 7.7.: Performance comparison of PAM UW-DMT scheme

channel, as shown in Fig. 7.7. Note that Rb/f3dB characterizes the spectral efficiency in bits/s/Hz.

Therefore, the results can be interpreted as showing plots for the BER versus the required normalized

optical power to achieve a particular spectral efficiency. Moreover, we show results for the two proposed

generator matrix designs where both generator matrices result in a different UW-DMT performance.
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Even when using the optimum positions of the redundant subcarriers, the systematic design suffers

from the high redundant energy contribution, i.e., the mean power of the redundant subcarrier symbols

is still considerably higher than that of the data symbols. However, in the non-systematic case, the

redundant energy is distributed over all symbols, resulting in a lower contribution of the redundant

energy. Therefore, the PAM UW-DMT performance with GSys is worse than UW-DMT with GNsys,

especially at higher cut-off frequencies. Moreover, the results show that our proposed scheme with GNsys

outperforms CP-DMT by 0.9 dB to 1.2 dB, depending on the modulation order and the cut-off frequency.

Thus, the proposed PAM UW-DMT scheme requires lower optical power to achieve the same spectral

efficiency. Note that the G matrix is only designed once for the system specific parameters and does not

need to be changed in run-time. Therefore, the additional complexity at the transmitter side compared

to the CP-DMT scheme lies in the multiplication with the G matrix. At the receiver, the complexity

depends on the type of detector employed.

7.4. Conclusion

In this work, we have proposed three novel unique word DMT schemes for complex- and real-valued

formats, namely AC UW-DMT, DC-biased UW-DMT, and PAM UW-DMT for optical systems with

IM/DD. We have proposed different types of code generator matrices for these schemes. In the DMT

schemes, a Hermitian symmetry has to be enforced to obtain real-valued signals. This constraint offers an

extra degree of freedom in designing the code generator matrices where we have proposed two solutions

for complex-valued UW-DMT scheme. The solution 2 is a better choice as compared to solution 1,

since it generates zeros not only at the tail, but also at the start of the time domain samples, thus

reducing the amount of redundancy required to employ a UW of length Nu. The results show that the

non-systematic code generator matrix that uses solution 2 is the best design choice for all UW-DMT

schemes. The UW-DMT schemes with this design not only outperform the other designs in terms of

power penalties but also the conventional CP-DMT schemes significantly. In addition to the improved

performance, the UW in the UW-DMT schemes can be used for other purposes such as synchronization

or parameter estimation.
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Part III.

Analytical Performance Analysis of Multi-linear

(tensor) Algebraic Concepts
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In the last part of the thesis, we discuss the first-order analytical performance of some of the funda-

mental multi-linear algebraic concepts such as the truncated higher order singular value decomposition

(HOSVD) and the SEmi-algebraic canonical polyadic decomposition via SImultaneous Matrix Diago-

nalization (SECSI) framework. These algorithms have been used in a vast range of applications. For

instance, the HOSVD is most commonly applied to the extraction of relevant information from multi-

way arrays, e.g., for real-time event detection from complex data streams in disease surveillance [FG14].

Similarly, the SECSI framework has already been successfully applied for source localization and source

extraction from EEG recordings [BCA+10] and also for space-time-frequency component analysis of

event-related EEGs [WRH+09]. The performance of these multi-linear algorithms is often evaluated us-

ing the Monte-Carlo simulations in the literature. However, a perturbation analysis of these algorithms

is of major importance for analyzing the performance of these algorithms without using the computa-

tional expensive Monte-Carlo trials. It also helps in acquiring better insights on the behavior of the

reconstruction error beforehand.

We start this part of the thesis by first discussing the first-order perturbation analysis of the truncated

HOSVD in Chapter 8. We evaluate the performance of the obtained analytical expressions not only by

using computer generated data but also by using some low rank images. Parts of this chapter have been

published in one conference paper [BCS+16]. In Chapter 9, we provide an analytical performance analysis

of the SECSI framework for the computation of the approximate canonical polyadic decomposition (CPD)

of noise corrupted low-rank 3-dimensional (3D) tensors. Since the truncated HOSVD is the first step

performed in the SECSI framework, we also utilize the results obtained in Chapter 8. We derive closed-

form expressions of the relative mean square error for each of the estimated factor matrices. Parts of

the results of this chapter have been published in one conference paper [CBW+17] and the remaining

results are submitted in a journal paper [CBC+17].
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8. First-order Performance Analysis of Truncated HOSVD

The truncated version of the higher-order singular value decomposition (HOSVD) has a great significance

in multi-dimensional tensor-based signal processing. It allows to extract the principal components from

noisy observations in order to find a low-rank approximation of the multi-dimensional data. In this

chapter, we address the question of how good the approximation is by analytically quantifying the

tensor reconstruction error introduced by the truncated HOSVD. After introducing the state-of-the-

art, we discuss the system model in Section 8.2. We present a first-order perturbation analysis of the

truncated HOSVD in Section 8.3 to obtain analytical expressions for the signal subspace error in each

dimension as well as the tensor reconstruction error induced by the low-rank approximation of the noise

corrupted tensor. We further simplify the obtained expressions for the special case of uncorrelated noise

with equal variance. We show the simulation results using computer generated data and also using

images in Section 8.4. The chapter is concluded in Section 8.5.

8.1. Introduction

The problem of extracting information and parameters of multi-dimensional signals from noisy observa-

tions plays an important role in a broad variety of applications in signal processing. In order to exploit the

multi-dimensional structure of the signals, tensor-based algorithms are often used. Many of these algo-

rithms require a low-rank approximation of the measurement tensor as a preprocessing step. Such an ap-

proximation is usually obtained by the higher-order singular value decomposition (HOSVD) [dLdMV00b],

which preserves the multi-dimensional nature inherent in the data. Its truncated version enables the

retrieval of the principal components to form a low-rank approximation of the measurement tensor. In

contrast to the matrix case, the truncated HOSVD is not necessarily the best low-rank approximation

of a tensor in the Frobenius norm. Thus, [dLdMV00a] proposes an iterative algorithm based on higher-

order orthogonal iterations (HOOI) to compute the best rank-(r1, r2, . . . , rN ) approximation. However,

as shown in [Roe12], the improvement in terms of the reconstruction error from the HOOI algorithm

over the truncated HOSVD is only marginal in the low signal-to-noise ratio (SNR) regime and negligible

for high SNRs. Hence, the truncated HOSVD is usually preferred. Applications where the truncated

HOSVD is commonly used are, for instance, image processing [LZH09a,DLS+15,AG13], object/pattern

recognition [JSI+07,FKC+12,MNM11,AHF+14,CS14], parameter estimation [CB10,HRdG08,BGPF12],

control engineering [ORV11, HX14], data analysis [LYD+15, RSV13, MPG09, RSSV13, RD13, LZY+05],

and others. Therefore, a performance analysis to assess the reconstruction error introduced by the

low-rank approximation based on the truncated HOSVD is of major importance when analyzing the

performance of several algorithms that are based on such a low-rank approximation.

A first-order perturbation analysis for the n-mode singular vectors and singular values obtained from

the HOSVD was first presented in [dLdMV00b]. Therein, however, only the full HOSVD without the

truncation was investigated. In [dL04], a first-order performance analysis for the best low-rank approx-

imation of a tensor [dLdMV00a] in the least squares sense was presented. However, both perturba-
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tion analyses do not provide explicit analytical expressions for the reconstruction error in terms of the

noise statistics. In the case of the multidimensional harmonic retrieval problem, a first-order expansion

of the HOSVD-based subspace estimation error of the noisy measurement tensor has been proposed

in [RHDG14], which generalizes the first-order performance analysis framework for the subspace esti-

mation error from the SVD of the measurement matrix [LLV93] to the tensor case. This framework is

applicable whenever the signal component is superimposed by a small noise contribution. In [RHDG14],

the derived analytical mean square error (MSE) expressions merely depend on the second-order moments

of the noise and hence, only require the noise to be zero-mean. However, to the best of our knowledge,

we are the first ones to perform such a perturbation analysis for the truncated HOSVD.

In this chapter, we further extend [RHDG14] and propose a first-order perturbation analysis of the

truncated HOSVD. Specifically, we provide analytical closed-form MSE expressions for the tensor recon-

struction error in terms of the second-order moments of the noise. Thus, apart from a zero-mean and

finite second-order moments, no assumptions on the statistics of the noise are required, i.e., the derived

expressions are even valid for non-Gaussian or colored noise. Moreover, the expressions are asymptotic

in the signal-to-noise ratio (SNR). In order to provide further insights into the truncated HOSVD, we

also provide analytical MSE expressions for the subspace estimation error in the n-th mode, which may

be of interest in some of the aforementioned applications. Additionally, we derive simplified versions

of the analytical MSE expressions for the reconstruction error and the subspace estimation error for

the special case of uncorrelated noise with equal variance. Simulations show that the analytical results

provide an excellent match to the empirical ones.

8.2. Data Model

A generalization of the singular value decomposition to R-way arrays or order R tensors is referred as

higher order singular value decomposition. It is special case of the Tucker3 decomposition for the 3-D

case [Tuc66]. In the general R-D case, the HOSVD of a R order X ∈ CM1×M2×···×MR is given by

X = S ×1 U1 · · · ×R UR = S
R×r
r=1

U r, (8.1)

where S ∈ Cp1×p2×···×pR is the core tensor and Ur ∈ CMr×pr are the unitary basis for the r-th space of

X . Here pr refers to the r-rank of X which are defined as pr = rank
(
[X ](r)

)
for r = 1, 2, . . . , R. The

unitary basis are obtained from the matrix SVDs of the r-mode unfoldings of X . Moreover, the full core

tensor is obtained by

S = X ×1 U
H
1 · · · ×R UH

R . (8.2)

An example of HOSVD of a 3-way tensor is shown in Fig. 8.1.

In reality, the tensor X is corrupted by the noise which can be modeled as a low rank tensor plus a

full-rank noise tensor. Therefore we have

X = X 0 + N , (8.3)
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Figure 8.1.: Graphical representation of HOSVD of 3-way tensor.

where X 0 ∈ CM1×M2×···×MR is the noiseless low-rank tensor and N ∈ CM1×M2×···×MR is a random

additive noise full-rank tensor. Moreover, we define the r-mode correlation matrices Rr of N as1

Rr , E
{

vec
{

[N ](r)
}
· vec

{
[N ](r)

}H
}
∈ CM×M .

Note that the signal to be represented by X and X 0 depends on the application. To illustrate this point,

some examples are shown in Table 8.1. Therefore, a low-rank approximation is of great important in

Application X 0 X
De-noising True data Noisy data

Compression Compressed data Uncompressed data
Parameter Estimation Ideal measurements Noisy measurements

Table 8.1.: Different interpretations for the low-rank tensor X 0, and the noisy tensor X according to
Eq. (8.3)

such application. For a low-rank tensor, the SVD of the r-mode unfolding is given by

[X 0](r) = U r ·Σr · V H
r

=
[
U

[s]
r U

[n]
r

][ Σ
[s]
r 0pr×M/Mr

0(Mr−pr)×pr 0(Mr−pr)×M/Mr

][
V

[s]
r V

[n]
r

]H
,

where Σ
[s]
r = diag

{
σ

(i)
r

}pr
i=1

is the diagonal matrix that contains the singular values of [X 0](r), and

U
[s]
r ∈ CMr×pr , U

[n]
r ∈ CMr×(Mr−pr), V

[s]
r ∈ C

Mr
M
×pr , and V

[n]
r ∈ C

Mr
M
×(Mr

M
−pr) have unitary columns

∀r = 1, 2, . . . , R. Hence the noiseless tensor X 0 can be represented by the economy size HOSVD, which

1Note that R1,R2, . . . ,RR are permuted versions of each other.
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is given by

X 0 = S [s] ×1 U
[s]
1 · · · ×R U

[s]
R = S [s]

R×r
r=1

U [s]
r . (8.4)

Similarly, for the noisy full-rank tensor, the SVD of the r-mode unfolding is given by

[X ](r) = Û r · Σ̂r · V̂
H
r

=
[
Û

[s]
r Û

[n]
r

] [ Σ̂
[s]
r 0pr×M/Mr

0(Mr−pr)×pr Σ̂
[n]
r

] [
V̂

[s]
r V̂

[n]
r

]H
.

In this case, Û
[s]
r ∈ CMr×pr is an estimate of U

[s]
r .

The low-rank approximation in the tensor case can be provided by the truncated HOSVD. In this

case, the low-rank approximation of the original tensor (X 0 ≈ X̂ ) is achieved by truncating the core

tensor and the signal subspace matrices. Assuming that the r-ranks of the noiseless tensor X 0 are either

known, fixed, or estimated before performing the truncated HOSVD, the noiseless tensor X 0 can be

estimated from X as

X̂ = Ŝ [s] ×1 Û
[s]
1 · · · ×R Û

[s]
R = Ŝ [s]

R×r
r=1

Û
[s]
r , (8.5)

where the truncated core tensor Ŝ [s]
can be computed using the definition in Eq. (8.2) as

Ŝ [s]
= X

R×r
r=1

Û
[s]H

r ∈ Cp1×p2×···pR . (8.6)

8.3. First-order Perturbation Analysis of Truncated HOSVD

The estimated tensor, truncated core tensor, and subspace estimates in Eq. (8.5) are related to the true

tensor, core tensor, and subspace for the noiseless tensor in Eq. (8.4) as

X̂ = X 0 + ∆X (8.7)

Ŝ [s]
= S [s] + ∆S [s] (8.8)

Û
[s]
r = U [s]

r + ∆U [s]
r , (8.9)

where ∆X , ∆S [s], and ∆U
[s]
r are the perturbations present in X 0, Ŝ [s]

, and Û
[s]
r , respectively. Eq. (8.5)

can be further simplified by using Eq. (8.6) to obtain

X̂ = Ŝ [s]
R×r
r=1

Û
[s]
r = X

R×r
r=1

Γ̂r, (8.10)
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where the Γ̂r matrices are the estimated signal subspace projection matrices which are defined as

Γ̂r = Û
[s]
r · Û

[s]H

r . (8.11)

We can express the perturbation in Γ̂r as

Γ̂r = Γr + ∆Γr, (8.12)

where Γr = U
[s]
r ·U [s]H

r be the projection matrix onto the column space spanned by U
[s]
r for the noiseless

tensor. By inserting the above definition and the relation X = X 0 + N , Eq. (8.10) can be further

simplified as

X̂ = (X 0 + N )
R×r
r=1

Γ̂r

= X 0

R×r
r=1

Γ̂r + N
R×r
r=1

Γ̂r

= X 0

R×r
r=1

(Γr + ∆Γr) + N
R×r
r=1

(Γr + ∆Γr)

= X 0

R×r
r=1

Γr + N
R×r
r=1

Γr +

R∑

r=1


X 0 ×r ∆Γr

R×i
i=1
i 6=r

Γi


+O(∆2) (8.13)

Note that, all the terms with more than one error variable (such as N , ∆Γ1,∆Γ2, . . . ,∆ΓR) are included

inside O(∆2). For the sake of simplicity, let us define the noise tensor projected on the signal subspaces

N [s] as N [s] , N
R×r
r=1

Γr. Since the term X 0 ×r Γr = X 0 for all r = 1, 2, . . . , R, we can further simplify

Eq. (8.13) by using the relation X̂ = X 0 + ∆X to get

X 0 + ∆X = X 0 +

R∑

r=1

(X 0 ×r ∆Γr) + N [s] +O(∆2)

∆X =
R∑

r=1

(X 0 ×r ∆Γr) + N [s] +O(∆2). (8.14)

Our goal is to find an analytical expression for E
{
‖∆X‖2H

}
. Since ∆X in Eq. (8.14) is a function of the

perturbation in signal subspace projection matrices, we first analyze the signal subspace perturbation.

8.3.1. Signal Subspace Perturbation

For the truncated HOSVD tensor estimation, we are only interested in the perturbation on the column

space spanned by Û
[s]
r . Note that the choice of U

[s]
r is not unique when the HOSVD of X 0 is calculated,

but the projection matrix into the subspace spanned by the columns of U
[s]
r is always unique, i.e., Γr.

Therefore we first analyze the perturbation of the r-mode signal subspaces, which are defined as the

column spaces spanned by U
[s]
r for r = 1, 2, . . . , R.
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8.3.1.1. General Expression

The perturbation ∆Γr can be computed by using the definitions in Eq. (8.9) and Eq. (8.11) in Eq. (8.12)

to get

∆Γr + U [s]
r ·U [s]H

r = Û
[s]
r · Û

[s]H

r

∆Γr + U [s]
r ·U [s]H

r = (U [s]
r + ∆U [s]

r ) · (U [s]
r + ∆U [s]

r )H

∆Γr = U [s]
r ·∆U [s]H

r + ∆U [s]
r ·U [s]H

r +O(∆2). (8.15)

Note that ∆U
[s]
r ·∆U

[s]H

r is a second order term and, therefore, it is considered inside O(∆2). Moreover,

we can use the result for ∆U
[s]
r , obtained in [RHDG14,LLV93], which is

∆U [s]
r = U [n]

r ·U [n]H

r · [N ](r) · V [s]
r ·Σ[s]−1

r +O(∆2). (8.16)

Note that ∆U
[s]H

r · U [s]
r = 0, which means that the perturbation is orthogonal to the column space of

U
[s]
r . To simplify this expression, let Ñ r ∈ C(Mr−pr)×pr be the transformed version of r-mode unfolding

of the noise, defined as

Ñ r , U [n]H

r · [N ](r) · V [s]
r , (8.17)

with its corresponding correlation matrix denoted as R̃r , E{vec{Ñ r} · vec{Ñ r}H}. Note that we can

express R̃r in terms of the r-mode correlation matrix of the noise Rr as

R̃r = E
{

vec
{
Ñ r

}
· vec

{
Ñ r

}H
}

= E
{

vec
{
U [n]H

r · [N ](r) · V [s]
r

}
· vec

{
U [n]H

r · [N ](r) · V [s]
r

}H
}

= E
{(

V [s]T

r ⊗U [n]H

r

)
· vec

{
[N ](r)

}
· vec

{
[N ](r)

}H ·
(
V [s]∗
r ⊗U [n]

r

)}

=
(
V [s]T

r ⊗U [n]H

r

)
·Rr ·

(
V [s]∗
r ⊗U [n]

r

)
. (8.18)

Therefore, by applying the notation proposed in Eq. (8.17), we rewrite Eq. (8.16) as

∆U [s]
r = U [n]

r · Ñ r ·Σ[s]−1

r +O(∆2). (8.19)

The goal is to obtain an analytical expression for the expected value of the Frobenius norm of the r-mode

subspace estimation error, i.e., E
{
‖∆Γr‖2F

}
. To that end, we first analyze the following expression

‖∆Γr‖2F = tr
[
∆Γr ·∆ΓH

r

]
(8.20)

Substituting Eq. (8.15) into Eq. (8.20) and neglecting the terms that contain O(∆2), we obtain

‖∆Γr‖2F ≈ tr
[
U [s]
r ·∆U [s]H

r ·U [s]
r ·∆U [s]H

r

]
+ tr

[
U [s]
r ·∆U [s]H

r ·∆U [s]
r ·U [s]H

r

]

+ tr
[
∆U [s]

r ·U [s]H

r ·U [s]
r ·∆U [s]H

r

]
+ tr

[
∆U [s]

r ·U [s]H

r ·∆U [s]
r ·U [s]H

r

]
.
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Since ∆U
[s]H

r ·U [s]
r =

(
U

[s]H

r ·∆U
[s]
r

)H
= 0pr×pr and U

[s]H

r ·U [s]
r = Ipr , we can use the properties of the

trace operator to simply this further to

‖∆Γr‖2F ≈ 2 · tr
[
∆U [s]H

r ·∆U [s]
r

]
(8.21)

Now, by using Eq. (8.19) and neglecting the second order term, we get

tr
[
∆U [s]H

r ·∆U [s]
r

]
≈ tr

[
Σ[s]−1

r · ÑH

r ·U [n]H

r ·U [n]
r · Ñ r ·Σ[s]−1

r

]

= tr
[
Σ[s]−1

r · ÑH

r · Ñ r ·Σ[s]−1

r

]

= tr

[(
Ñ r ·Σ[s]−1

r

)H
·
(
Ñ r ·Σ[s]−1

r

)]
= ‖Ñ r ·Σ[s]−1

r ‖2F

= tr

[
vec
{
Ñ r ·Σ[s]−1

r

}
· vec

{
Ñ r ·Σ[s]−1

r

}H
]

= tr
[ (

Σ[s]−1

r ⊗ I(Mr−pr)
)
· vec{Ñ r} · vec{Ñ r}H ·

(
Σ[s]−1

r ⊗ I(Mr−pr)
) ]

= tr
[ (

Σ[s]−2

r ⊗ I(Mr−pr)
)
· vec{Ñ r} · vec{Ñ r}H

]
. (8.22)

Next, we take the expected value of Eq. (8.22) and obtain

E
{

tr
[
∆U [s]H

r ·∆U [s]
r

]}
≈ E

{
tr
[(

Σ[s]−2

r ⊗ I(Mr−pr)
)
· vec{Ñ r} · vec{Ñ r}H

]}

= tr
[(

Σ[s]−2

r ⊗ I(Mr−pr)
)
· E
{

vec{Ñ r} · vec{Ñ r}H
}]

= tr
[(

Σ[s]−2

r ⊗ I(Mr−pr)
)
· R̃r

]
.

We can now take the expected value of ‖∆Γr‖2F (from Eq. (8.21)) and use this relation to obtain the

desired closed-form expression

E
{
‖∆Γr‖2F

}
≈ E

{
2 · tr

[
∆U [s]H

r ·∆U [s]
r

]}

= 2 · tr
[(

Σ[s]−2

r ⊗ I(Mr−pr)
)
· R̃r

]
. (8.23)

8.3.1.2. Special Case of Uncorrelated Noise

Eq. (8.23) can be simplified even further if we assume that the noise is zero-mean and uncorrelated with

variance σ2
N , i.e., Rr = σ2

N · IM . Therefore, R̃r in Eq. (8.18) is simplified to

R̃r =
(
V [s]T

r ⊗U [n]H

r

)
· σ2

N · IM ·
(
V [s]∗
r ⊗U [n]

r

)

= σ2
N ·
(

(V [s]T

r · V [s]∗
r )⊗ (U [n]H

r ·U [n]
r )
)

= σ2
N · (Ipr ⊗ IMr−pr) = σ2

N · Ipr·(Mr−pr). (8.24)

Thus, the desired expression in Eq. (8.23) becomes

E
{
‖∆Γr‖2F

}
= 2 · tr

[(
Σ[s]−2

r ⊗ (σ2
N · I(Mr−pr))

)]
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= 2 · (Mr − pr) · σ2
N ·

pr∑

i=1

1
(
σ

(i)
r

)2 . (8.25)

8.3.2. Perturbation in the Truncated HOSVD estimate

8.3.2.1. General Expression

In the previous section, we obtained the closed-form expressions for the perturbation in the signal

subspace matrices. In this section, we derive an analytical expression for the expected value of the

Frobenius norm of the error term of interest (i.e., E
{
‖∆X‖2H

}
) by utilizing the obtained results. Let us

assume that ∆Γ1,∆Γ2, . . . ,∆ΓR and N [s] are independent from each other. Therefore, we approximate

E
{
‖∆X‖2H

}
in Eq. (8.14) as

E
{
‖∆X‖2H

}
≈ E

{
R∑

r=1

‖X 0 ×r ∆Γr‖2H + ‖N [s]‖2H

}
. (8.26)

The term ‖X 0 ×r ∆Γr‖2H contained in Eq. (8.26) can be written as

‖X 0 ×r ∆Γr‖2H = tr
[
[X 0]H(r) ·∆ΓH

r ·∆Γr · [X 0](r)

]

By applying the result obtained in Eq. (8.15), we can approximate the term ∆ΓH
r ·∆Γr (by neglecting

the terms that contain O(∆2) in Eq. (8.15)) to

∆ΓH
r ·∆Γr ≈ U [s]

r ·∆U [s]H

r ·∆U [s]
r ·U [s]H

r + ∆U [s]
r ·∆U [s]H

r .

We can now use this relation to further expand Eq. (8.26) as

‖X 0 ×r ∆Γr‖2H = tr
[
[X 0]H(r) ·∆ΓH

r ·∆Γr · [X 0](r)

]

≈ tr
[
(U [s]

r ·∆U [s]H

r ·∆U [s]
r ·U [s]H

r + ∆U [s]
r ·∆U [s]H

r ) · [X 0](r) · [X 0]H(r)

]

= tr
[
U [s]
r ·∆U [s]H

r ·∆U [s]
r ·U [s]H

r · [X 0](r) · [X 0]H(r)

]
.

Now, we use Eq. (8.19) and again neglect the terms that contain O(∆2) to simplify this further to

‖X 0 ×r ∆Γr‖2H ≈ tr
[
U [s]
r ·Σ[s]−1

r · ÑH

r ·U [n]H

r ·U [n]
r · Ñ r ·Σ[s]−1

r ·U [s]H

r · [X 0](r) · [X 0]H(r)

]

= tr
[
U [s]
r ·Σ[s]−1

r · ÑH

r · Ñ r ·Σ[s]−1

r ·U [s]H

r ·U [s]
r ·Σ[s]

r · V [s]H

r · V [s]
r ·Σ[s]

r ·U [s]H

r

]

= tr
[
U [s]
r ·Σ[s]−1

r · ÑH

r · Ñ r ·Σ[s]−1

r ·Σ[s]
r ·Σ[s]

r ·U [s]H

r

]

= tr
[
Ñ

H

r · Ñ r ·Σ[s]
r ·U [s]H

r ·U [s]
r ·Σ[s]−1

r

]

= tr
[
Ñ

H

r · Ñ r

]

= tr
[
vec{Ñ r} · vec{Ñ r}H

]
.
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Therefore, E{‖X 0 ×r ∆Γr‖2H} is reduced to

E{‖X 0 ×r ∆Γr‖2F} ≈ tr[R̃r]. (8.27)

Next, we need to obtain an expression for E
{
‖N [s]‖2H

}
. To that end, let us express N [s] and N as (R+1)-

order tensors N [s] = N
R×r
r=1

Γr×R+11 and N = N×R+11. Using this formulation we can take the (R+1)-

mode unfolding of N [s] (i.e., [N [s]](R+1) ∈ C1×M ) to obtain [N [s]](R+1) = 1 · [N ](R+1) ·
(⊗R

r=1 Γr

)T
=

vec
{

[N ](R)

}T ·
(⊗R

r=1 Γr

)∗
. Using this expression we get

E
{
‖N [s]‖2H

}
= E

{
‖[N [s]]T(R+1)‖22

}

= E
{

tr
[
[N [s]]T(R+1) · [N [s]]∗(R+1)

]}

= tr

[(
R⊗

r=1

T r

)
·RR

]
. (8.28)

Finally, using Eq. (8.27) and Eq. (8.28), E
{
‖∆X‖2F

}
from Eq. (8.26) is approximated to

E
{
‖∆X‖2H

}
≈

R∑

r=1

tr[R̃r] + tr

[(
R⊗

r=1

Γr

)
·RR

]

=
R∑

r=1

tr
[(

V [s]T

r ⊗U [n]H

r

)
·Rr ·

(
V [s]∗
r ⊗U [n]

r

)]
+ tr

[(
R⊗

r=1

Γr

)
·RR

]
. (8.29)

8.3.2.2. Special Case of Uncorrelated Noise

As in Section 8.3.1, we simplify this expression for the special case of uncorrelated noise with variance

σ2
N . It can be easily shown that, in this case, E

{
‖N [s]‖2H

}
= σ2

N ·
∏R
r=1 pr. Using this property and

Eq. (8.24), we simplify Eq. (8.29) further to E
{
‖∆X‖2H

}
≈ ∑R

r=1 tr
[
σ2
N · Ipr(Mr−pr)

]
+ σ2

N ·
∏R
r=1 pr.

Finally, we reach the desired E
{
‖∆X‖2H

}
in terms of the noise variance for the uncorrelated noise case,

i.e.,

E
{
‖∆X‖2H

}
≈ σ2

N ·
(

R∑

r=1

(Mr − pr) · pr +

R∏

r=1

pr

)
. (8.30)

8.4. Simulation Results

To validate the analytical results obtained in the previous sections, we perform empirical simulations

not only on computer generated data but also on low-rank compressed images.

8.4.1. Simulation Results using Computer Generated Data

First we define the noiseless tensor(s) and the noise characteristics for the computer generated data. For

all such simulations, the noiseless low-rank tensor X 0 is X 0 ∈ R20×20×20 and norm ‖X 0‖2H = 1. Note
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Figure 8.2.: (a): Subspace estimation errors corresponding to each of the subspaces of tensor 1,
described in Table 8.2. (b): Tensor estimation error for tensors 2, 3 and 4, described in Table 8.3.
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pr Tr
[
Σ

[s]−2

r

]

r = 1 3 9.7420
r = 2 9 290.0909
r = 3 15 4418.2000

Table 8.2.: Parameters of tensor 1, used in
Figure 8.2(a)

X 0 p1 p2 p3

Tensor 2 5 5 5
Tensor 3 10 10 10
Tensor 4 15 20 20

Table 8.3.: r-ranks of tensors 2, 3, and 4, used
in Figure 8.2(b)

that, a tensor B ∈ R20×20×20 with r-ranks (p1, p2, p3) can be generated as B = A×1W ×2Y ×3Z, where

A ∈ Rp1×p2×p3 , W ∈ R20×p1 , Y ∈ R20×p2 and Z ∈ R20×p3 are randomly generated using independent

zero-mean Gaussian distributions with equal variance. Furthermore, we use uncorrelated zero-mean

Gaussian distributed noise with variance σ2
N for the realizations of the noise tensor N ∈ R20×20×20,

where σ2
N is calculated as

σ2
N =

‖X 0‖2H
SNR ·M

for the different signal-to-noise ratio (SNR) values 2.

In Figure 8.2(a), we validate the results obtained in Section 8.3.1. Here, the noiseless tensor X 0

(referred to as tensor 1 in Figure 8.2(a)), has the characteristics shown in Table 8.2. Then, after 1000

trials of uncorrelated noise realizations for each SNR point, the empirical error curve for E
{
‖∆Γr‖2F

}

is computed for r = 1, 2, 3. Furthermore, we can observe how the analytical expressions obtained using

equation (8.25) asymptotically match the empirical error curve for each of the subspace estimates of the

noiseless tensor.

Likewise, in Figure 8.2(b) we validate the results obtained in Section 8.3.2. Here, the simulations are

conducted for 3 different noiseless tensors (i.e., tensors 2, 3 and 4) of the same sizes, but with different

r-ranks. Furthermore, the r-ranks (p1, p2, p3) of this tensors are shown in Table 8.3. As before, 1000

trials of uncorrelated noise realizations for each SNR point are simulated to obtain the empirical error

curve for E
{
‖∆X‖2H

}
. Furthermore, we can see how the analytical expressions obtained using equation

(8.30) match the empirical curves as expected.

8.4.2. Simulation Results using Images

The truncated HOSVD is a widely recommended technique for image compression and image denoising.

Especially when the compression ratio is high or image is very noisy, reconstructed images based on the

truncated HOSVD show a better performance. We take examples of color images that can be interpreted

as third-order tensors. The first and second dimension correspond to the image pixels while third

dimension corresponds to RGB channels. We have taken two images as an example, i.e., Lenna image of

size 512×512×3 with truncated 1−rank = 70, truncated 2−rank = 70, and 3−rank = 3 and a fruit image

of size 400× 800× 3 with truncated 1−rank = 70, truncated 2−rank = 100, and 3−rank = 3, as shown

in Fig. 8.3a and Fig. 8.3b, respectively. We first evaluate the performance of the truncated HOSVD for

these images at two SNR values of 4 dB and 12 dB. The results suggest that the truncated HOSVD shows

a good denoising performance as suggested in various publications [RRB13,LZH09a,DLS+15,AG13]. We

2The SNR here is defined on a linear scale (not in dB).
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(a) Low-rank Lenna image of size 512× 512× 3 with 1−rank = 70,
2−rank = 70, and 3−rank = 3
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(b) Low-rank fruit image of size 400× 800× 3 with 1−rank = 70,
2−rank = 100, and 3−rank = 3

Figure 8.3.: Two low-rank images.

evaluate the performance of the derived analytical expressions against the Monte-carlo simulations for

the reconstruction error of these images for different SNRs, as shown in Fig. 8.6. The performance

analysis achieves a very good match to the empirical results for both images.

8.5. Conclusion

In this chapter, a first-order perturbation analysis of the truncated HOSVD is presented, where we pro-

vide closed-form expressions for the tensor reconstruction error. The derived expressions are formulated

in terms of the second-order moments of the noise, such that apart from a zero-mean, no assumptions
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(a) The images corrupted by Gaussian noise for
SNR =4 dB
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(b) Recovered image
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(c) The images corrupted by Gaussian noise for
SNR =12 dB
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(d) Recovered image

Figure 8.4.: Noisy and recovered Lenna images of size 512× 512× 3 and 1−rank = 70, 2−rank = 70,
and 3−rank = 3 for different SNRs.

on the noise statistics are required. In addition, the obtained general expressions have been simplified

for the special case of uncorrelated noise with equal variance. This simplification provides better in-

sights into the truncated HOSVD performance. The simulation results show that the proposed solution

achieves an excellent match to the empirical results.
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(d) Recovered image

Figure 8.5.: Noisy and recovered fruit images of size 400× 800× 3 with 1−rank = 70, 2−rank = 100,
and 3−rank = 3 for different SNRs.
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(a) Reconstruction error for Lenna image
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(b) Reconstruction error for fruit image

Figure 8.6.: Reconstruction error for both images for different SNRs.
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9. First-Order Perturbation Analysis of the SECSI Framework

for the Approximate CPD

The Semi-Algebraic framework for the approximate canonical polyadic decomposition (CPD) via si-

multaneaous matrix diagonalization (SECSI) is an efficient tool for the computation of the CPD. The

SECSI framework reformulates the CPD into a set of joint eigenvalue decomposition (JEVD) problems.

Solving all JEVDs, we obtain multiple estimates of the factor matrices and the best estimate is chosen

in a subsequent step by using an exhaustive search or some heuristic strategy that reduces the com-

putational complexity. Moreover, the SECSI framework retains the option of choosing the number of

JEVDs to be solved, thus providing an adjustable complexity-accuracy trade-off. In this chapter, we

provide an analytical performance analysis of the SECSI framework for the computation of the approxi-

mate CPD of a noise corrupted low-rank tensor, where we derive closed-form expressions of the relative

mean square error for each of the estimated factor matrices. These expressions are obtained using a

first-order perturbation analysis and are formulated in terms of the second-order moments of the noise,

such that apart from a zero-mean, no assumptions on the noise statistics are required. We also propose a

new performance analysis based selection (PAS) scheme to choose the final factor matrix estimate. The

results show that the proposed PAS scheme outperforms the existing heuristics, especially in the high

SNR regime. After the introduction, we start by performing the first-order perturbation analysis of the

SECSI framework in terms of a known noisy tensor in Section 9.3. The closed-form relative Mean Square

Factor Error (rMSFE) expressions for each of the factor matrices for the first JEVD are presented in

Section 9.4. The results are extended for each of the factor matrices resulting from the second JEVD

in Section 9.5.1. The results of the remaining JEVDs are obtained via a permutation of the previous

results that are discussed in Section 9.4. In Section 9.6, we propose a new estimate selection scheme that

is based on the performance analysis results. The simulation results are discussed in Section 9.7 and the

conclusions are provided in Section 9.8.

9.1. Introduction

The canonical polyadic decomposition (CPD) of R-way arrays is a powerful tool in multi-linear algebra.

It allows to decompose a tensor into a sum of rank-one components. There exist many applications where

the underlying signal of interest can be represented by a trilinear or multilinear canonical polyadic model.

These range from psychometrics and chemometrics over array signal processing and communications to

biomedical signal processing, image compression or numerical mathematics [KB09, dL05, SGB00]. In

practice, the signal of interest in these applications is contaminated by the noise. Therefore, we only

compute an approximate CPD of the noisy signal.

Algorithms for the computation of an approximate CPD from noisy observations are often based on

Alternating Least Squares (ALS). These algorithms compute the CPD in an iterative manner proce-

dure [CC70,Har70]. The main drawbacks of ALS-based algorithms is that the number of required iter-
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ations may be very large, and convergence is not guaranteed. Moreover, ALS based algorithms are less

accurate in ill-conditioned scenarios, especially if the columns of the factor matrices are highly correlated.

Alternatively, semi-algebraic solutions, where the CPD is rephrased into a generic problem such as the

Joint Eigenvalue Decomposition (JEVD) (also called Simultaneous Matrix Diagonalization (SMD)), have

been proposed in the literature [dL05]. The link between the CPD and the JEVD is discussed in [dL06]

where it has been shown that the canonical components can be obtained from a simultaneous matrix

diagonalization by congruence. A SEmi-algebraic framework for CPD via SImultaneous matrix diagonal-

ization (SECSI) was presented in [RH08a,RH08b,RH13] for R = 3 dimensional tensors and was extended

for tensors with R > 3 dimensions using the concept of generalized unfoldings (SECSI-GU) in [RSH12].

The SECSI concept facilitates a distributed implementation on a parallel JEVDs to be solved depending

upon the accuracy and the computational complexity requirements of the system. By solving all JEVDs,

multiple estimates of the factor matrices are obtained. The selection of the best factor matrices from the

resulting estimates can be obtained either by using an exhaustive search based best matching scheme

or by using heuristic selection schemes with a reduced computational complexity. Several schemes with

different accuracy-complexity trade-off points are presented in [RH13]. Thus, the SECSI framework

results in more reliable estimates and also offers a flexible accuracy-complexity trade-off.

An analytical performance assessment of the semi-algebraic algorithms to compute an approximate

CPD is of considerable research interest. In the literature, the performance of the CPD is often evaluated

using Monte-Carlo simulations. To the best of our knowledge, there exists no analytical performance

analysis of an approximate CPD of noise-corrupted low-rank tensors in the literature. In this chapter,

a first-order perturbation analysis of the SECSI framework is carried out, where apart from zero-mean

and finite second order moments, no assumptions about the noise are required. The SECSI framework

performs three distinct steps to compute the approximate CPD of a noisy tensor, as summarized in Fig.

9.1. First, the truncated higher order singular value decomposition (HOSVD) is used to suppress the

noise. In the second step, several JEVDs are constructed from the core tensor. This results in several

estimates of the factor matrices. Lastly, the best factor matrices are selected from these estimates by

applying the best matching scheme or an appropriate heuristic scheme that has a lower computational

complexity [RH13]. Hence, a perturbation analysis for each of the steps is required for the overall

performance analysis of the SECSI framework. In the previous chapter, we have already presented a

first-order perturbation analysis of low-rank tensor approximations based on the truncated HOSVD. We

have also performed the perturbation analysis of JEVD algorithms which are based on the indirect least

squares (LS) cost function in [BCW+17]. In this chapter, we extend our work to the overall performance

analysis of the SECSI framework for 3-D tensors. Finally, we present closed-form expressions for the

rMSFE for each of the estimates of the three factor matrices. These expressions are asymptotic in the

SNR and are expressed in terms of the covariance matrix of the noise. Furthermore, we devise a new

heuristic approach based on the performance analysis results to select the best estimates that we call

Performance Analysis based Selection (PAS) scheme.
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Û

[s
]

3
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Û

[s
]

1
×

2
Û
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−
1

2
,p
·Ŝ
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9. First-Order Perturbation Analysis of the SECSI Framework for the Approximate CPD

9.2. Data Model

One of the major challenges in data-driven applications is that only a noise-corrupted version of the

noiseless tensor X 0 ∈ CM1×M2×M3 of tensor rank d is observed. Let us consider the non-degenerate case

first where d ≤ min{M1,M2,M3}. However, as discussed in Section 9.5.2, the SECSI framework can

also be applied in the degenerate case where the tensor rank of the noiseless tensor may be greater than

any one of the dimensions (i.e., M1 < d ≤ min{M2,M3}). The CPD of such a low-rank noiseless tensor

is given by

X 0 = I3,d ×1 F
(1) ×2 F

(2) ×3 F
(3), (9.1)

where F (r) ∈ CMr×d, ∀r = 1, 2, 3 is the factor matrix in the r-th mode and I3,d is the 3-way identity

tensor of size d × d × d. In this work, we assume that the factor matrices are known, and the goal of

the SECSI framework is to estimate them. For future reference, the SVD of the r-mode unfolding of the

noiseless low-rank tensor X 0 ∈ CM1×M2×M3 is given as

[X 0](r) = U r ·Σr · V H
r

=
[
U

[s]
r U

[n]
r

][ Σ
[s]
r 0d×Mr

0(Mr−d)×d 0(Mr−d)×Mr

][
V

[s]
r V

[n]
r

]H

= U [s]
r ·Σ[s]

r · V [s]H

r , ∀r = 1, 2, 3 (9.2)

where the superscripts [s] and [n] represent the signal and the noise subspaces, respectively. Let

X = X 0 + N ∈ CM1×M2×M3 (9.3)

be the observed noisy tensor where the desired signal component X 0 is superimposed by a zero-mean

additive noise tensor N ∈ CM1×M2×M3 . The SVD of the r-mode unfolding of the observed noisy tensor

X is given as

[X ](r) = Û r · Σ̂r · V̂
H
r

=
[
Û

[s]
r Û

[n]
r

][ Σ̂
[s]
r 0d×Mr

0(Mr−d)×d Σ̂
[n]
r

][
V̂

[s]
r V̂

[n]
r

]H
. (9.4)

9.3. First-Order Perturbation Analysis

The SECSI framework performs three distinct steps to compute the approximate CPD of noise corrupted

low-rank tensor, as shown in Fig. 9.1. In the first step, the truncated HOSVD is used to suppress the

noise. Then using the truncated core tensor, the whole set of JEVDs is constructed, Finally, the factor

matrices are estimated by solving these JEVDs. In the following, we calculate the perturbation in each

of the involved step.

154



9.3. First-Order Perturbation Analysis

9.3.1. Perturbation of the Truncated HOSVD

As discussed in Chapter 8, a low-rank approximation of X can be computed by truncating the HOSVD

of the noisy tensor

X = Ŝ ×1 Û1 ×2 Û2 ×3 Û3

as [dLdMV00b]

X̂ = Ŝ [s] ×1 Û
[s]
1 ×2 Û

[s]
2 ×3 Û

[s]
3 , (9.5)

where Ŝ [s] ∈ Cd×d×d is the truncated core tensor and Û
[s]
r ∈ CMr×d,∀r = 1, 2, 3 is obtained from

Eq. (9.4). In Chapter 8, we have presented a first order perturbation analysis of the truncated HOSVD

where we have obtained analytical expressions for the signal subspace error in each dimension of the

tensor. Additionally, we have also obtained the analytical expressions for the tensor reconstruction error

induced by the low-rank approximation of the noise corrupted tensor. Let us express the noisy estimates

in Eq. (9.5) as

Û
[s]
r , U [s]

r + ∆U [s]
r , ∀r = 1, 2, 3 (9.6)

Ŝ [s]
, S [s] + ∆S [s]. (9.7)

The perturbation present in the r-mode signal subspace estimate Û
[s]
r is given by [LLV93]

∆U [s]
r = U [n]

r ·U [n]H

r · [N ](r) · V [s]
r ·Σ[s]−1

r +O(∆2)

= Γ[n]
r · [N ](r) · V [s]

r ·Σ[s]−1

r +O(∆2) , (9.8)

where Γ
[n]
r , U

[n]
r ·U [n]H

r and all higher order terms are contained in O(∆2). Furthermore, we use this

result to expand the expression for the truncated core tensor Ŝ [s]
= X

3×r
r=1

Û
[s]H

r as

S [s] + ∆S [s] = (X 0 + N )
3×r
r=1

(
U [s]H

r + ∆U [s]H

r

)
+O(∆2)

= X 0

3×r
r=1

U [s]H

r + N
3×r
r=1

U [s]H

r + X 0 ×1 ∆U
[s]H

1 ×2 U
[s]H

2 ×3 U
[s]H

3

+ X 0 ×1 U
[s]H

1 ×2 ∆U
[s]H

2 ×3 U
[s]H

3 + X 0 ×1 U
[s]H

1 ×2 U
[s]H

2 ×3 ∆U
[s]H

3 +O(∆2).

Note that all terms that include products of more than one ”∆ term” are included in O(∆2). Moreover,

N is also considered as a ∆ term. In the noiseless case, the truncated core tensor S [s] is equal to

S [s] , X 0

3×r
r=1

U
[s]H

r . Using the definitions in Eq. (9.2) and Eq. (9.8), the above expression simplifies to

∆S [s] = N
3×r
r=1

U [s]H

r +O(∆2) . (9.9)
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9. First-Order Perturbation Analysis of the SECSI Framework for the Approximate CPD

1: Compute Û
[s]
r for r = 1, 2, 3 via the HOSVD of X

2: Ŝ [s]
= X

R×r
r=1

Û
[s]H

r

3: Ŝ [s]
3 = Ŝ [s] ×3 Û

[s]
3

4: Ŝ3,k = Ŝ [s]
3 ×3 e

T
M3,k

for k = 1, 2, . . . ,M3

5: p̂ = argmink=1,2,...,M3
cond

(
Ŝ3,k

)

6: Ŝ
rhs
3,k = Ŝ3,k·, Ŝ

−1
3,p for k = 1, 2, . . . ,M3 6: Ŝ

lhs
3,k ,

(
Ŝ
−1
3,p · Ŝ3,k

)T
for k = 1, 2, . . . ,M3

7: Compute T̂ 1 and D̂3,k via JEVD of
{
Ŝ

rhs
3,k

}M3

k=1
7: Compute T̂ 2 and D̂3,k via JEVD of

{
Ŝ

lhs
3,k

}M3

k=1

8: F̂
(1)

= Û
[s]
1 · T̂ 1 8: F̂

(1)
= [X ](1) ·

[
F̂

(2) � F̂ (3)
]+T

9: ˆ̃F (3)(k, :) = diag
(
D̂3,k

)T
9: F̂

(2)
= Û

[s]
2 · T̂ 2

10: F̂
(2)

= [X ](2) ·
(
F̂

(3) � F̂ (1)
)+T

10: ˆ̃F (3)(k, :) = diag
(
D̂3,k

)T

Table 9.1.: SECSI Algorithm: Factor matrix estimates resulting from the 2 JEVD construction from
Eq. (13). The whole SECSI framework is shown in Fig. 9.1

.

9.3.2. Perturbation of the JEVD Estimates

For a 3-way array, we can construct up to 6 JEVD problems in the SECSI framework [RH13] that are

obtained from

Ŝ [s]
1 = Ŝ [s] ×1 Û

[s]
1 ∈ CM1×d×d (9.10)

Ŝ [s]
2 = Ŝ [s] ×2 Û

[s]
2 ∈ Cd×M2×d (9.11)

Ŝ [s]
3 = Ŝ [s] ×3 Û

[s]
3 ∈ Cd×d×M3 , (9.12)

respectively. As an example, let us consider the two JEVD problems constructed from Eq. (9.12). Here

the noisy estimate Ŝ [s]
3 can be expressed as

Ŝ [s]
3 , S [s]

3 + ∆S [s]
3 . (9.13)

Using Eq. (9.12), we get

S [s]
3 + ∆S [s]

3 =
(
S [s] + ∆S [s]

)
×3

(
U

[s]
3 + ∆U

[s]
3

)

= S [s]
3 + ∆S [s] ×3 U

[s]
3 + S [s] ×3 ∆U

[s]
3 +O(∆2).

Therefore, we have

∆S [s]
3 =∆S [s] ×3 U

[s]
3 + S [s] ×3 ∆U

[s]
3 +O(∆2). (9.14)
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9.3. First-Order Perturbation Analysis

According to [RH08a,RH13], we define the 3-mode slices of Ŝ3 as

Ŝ3,k , Ŝ [s]
3 ×3 e

T
M3,k ∈ Cd×d, k = 1, 2, ...M3, (9.15)

where Ŝ3,k represents the k-th slice (along the third dimension) of Ŝ [s]
3 in Eq. (9.12). As explained

in [RH13], these slices satisfy

Diag
{
F̂

(3)
(k, :)

}
≈ T̂

−1
1 · Ŝ3,k · T̂

−1
2 , (9.16)

where T̂ 1 and T̂ 2 are transformation matrices obtained by solving the associated JEVD problems. In the

noiseless case, the factor matrices are related to the signal subspaces via these transformation matrices

as F (r) = U
[s]
r · T r, r = 1, 2, 3. Defining the perturbation in the k-th slice, we get

Ŝ3,k , S3,k + ∆S3,k, ∀k = 1, 2, . . . ,M3. (9.17)

Using Eq. (9.15), this results in

∆S3,k =∆S [s]
3 ×3 e

T
M3,k +O(∆2). (9.18)

According to [RH13], we select the slice of Ŝ [s]
3 with the lowest condition number, i.e., Ŝ3,p where

p = argmink

{
cond

(
Ŝ3,k

)}
and cond(·) denotes the condition number operator. This leads to two sets

of matrices, namely the right-hand-side (rhs) set and the left-hand-side (lhs) set that are defined as

Ŝ
rhs
3,k , Ŝ3,k · Ŝ

−1
3,p, ∀k = 1, 2, . . . ,M3 (9.19)

Ŝ
lhs
3,k ,

(
Ŝ
−1
3,p · Ŝ3,k

)T
, ∀k = 1, 2, . . . ,M3. (9.20)

As an example, we compute the perturbation in Eq. (9.19). To this end, let us obtain the perturbation

in Ŝ
rhs
3,k as

Ŝ
rhs
3,k , Srhs

3,k + ∆Srhs
3,k, ∀k = 1, 2, . . . ,M3. (9.21)

Using this definition, we now expand Eq. (9.19), as

Srhs
3,k + ∆Srhs

3,k = (S3,k + ∆S3,k) (S3,p + ∆S3,p)
−1 +O(∆2)

Using the definition in Eq. (1.12) for the matrix inverse, we get

(S3,p + ∆S3,p)
−1 = S−1

3,p − S−1
3,p ·∆S3,p · S−1

3,p +O(∆2).

According to Eq. (9.21), the perturbation in the slices Ŝ
rhs
3,k, ∀k = 1, 2, . . . ,M3 is given by

∆Srhs
3,k = ∆S3,k · S−1

3,p − S3,k · S−1
3,p ·∆S3,p · S−1

3,p +O(∆2). (9.22)
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9. First-Order Perturbation Analysis of the SECSI Framework for the Approximate CPD

Using the results in Eq. (9.16), it is easy to show that the two sets of matrices in Eq. (9.19) and Eq. (9.20)

correspond to the following JEVD problems

Ŝ
rhs
3,k ≈ T̂ 1 · D̂3,k · T−1

1 ∀k = 1, 2, . . . ,M3, (9.23)

Ŝ
lhs
3,k ≈ T̂ 2 · D̂3,k · T̂

−1
2 , ∀k = 1, 2, . . . ,M3, (9.24)

respectively, where the diagonal matrices D̂3,k are defined as

D̂3,k , Diag
{
F̂

(3)
(k, :)

}
·Diag

{
F̂

(3)
(p, :)

}−1

. (9.25)

Eqs. (9.23) and (9.24) show that T̂ 1 and T̂ 2 can be found via an approximate joint diagonalization of

the matrix slices Ŝ
rhs
3,k and Ŝ

lhs
3,k, respectively. Such an approximate joint diagonalization of Eq. (9.23)

and Eq. (9.24) can, for instance, be achieved via joint diagonalization algorithms based on the indirect

least squares (LS) cost function such as Sh-Rt [FG06], JDTM [LA10], or the coupled JEVD [RLM16].

In [BCW+17], we have presented a first order perturbation analysis of JEVD algorithms that are based on

the indirect LS cost function. The results are also summarized in Appendix D.1. We can use these results

to obtain analytical expressions for the perturbation in the estimates T̂ 1, T̂ 2, and D̂3,k,∀k = 1, 2, . . . ,M3.

To this end, the perturbations in the T̂ 1, T̂ 2, and D̂3,k estimates are defined as

T̂ 1 , T 1 + ∆T 1 (9.26)

T̂ 2 , T 2 + ∆T 2 (9.27)

D̂3,k , D3,k + ∆D3,k, ∀k = 1, 2, . . . ,M3 . (9.28)

According to [BCW+17], we also define the following matrices

B0 = J (d) ·
(
TT

1 ⊗ T−1
1

)
(9.29)

sk = vec
{

∆Srhs
3,k

}
(9.30)

Ak = J (d) ·
[(

IM ⊗ T−1
1 · Srhs

3,k

)
−
(
D3,k ⊗ T−1

1

)]
, (9.31)

where J (d) ∈ {0, 1}d
2×d2

is a selection matrix that satisfies the relation vec {Off (X)} = J (d) · vec {X},
for any given X ∈ Cd×d. After defining the quantities

A =




A1

A2

...

AM3



, B = IM3 ⊗B0, s =




s1

s2

...

sM3



, (9.32)

we can use the results obtained in [BCW+17]. This leads to

vec {∆T 1} = −A+ ·B · s +O(∆2) (9.33)
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9.3. First-Order Perturbation Analysis

∆D3,k = Ddiag
(
T−1

1 ·∆Srhs
3,k · T 1

)
+O(∆2), (9.34)

for the rhs JEVD problem.

9.3.3. Perturbation of the Factor Matrix Estimates

Using the SECSI framework for a 3-way tensor, we can get up to six different estimates for each factor

matrix. The factor matrix F (1) can be estimated from the transform matrix T̂ 1 via F̂
(1)

= Û
[s]
1 · T̂ 1 by

using the result of the JEVD defined in Eq. (9.23). Expanding this equation leads to

F̂
(1)

=
(
U

[s]
1 + ∆U

[s]
1

)
· (T 1 + ∆T 1) +O(∆2)

= F (1) + ∆U
[s]
1 · T 1 + U

[s]
1 ·∆T 1 +O(∆2).

Again, we express the perturbation in F̂
(1)

as

F̂
(1)

, F (1) + ∆F (1). (9.35)

This results in an expression for the perturbation ∆F (1) in the first factor matrix as

∆F (1) =∆U
[s]
1 · T 1 + U

[s]
1 ·∆T 1 +O(∆2). (9.36)

Using the result of the JEVD defined in Eq. (9.23), a scaled version of the kth row of the factor matrix

F (3) can be estimated from the diagonal of D̂3,k, ∀k = 1, 2, . . . ,M3, according to Eq. (9.25) as

ˆ̃F (3)(k, :) = diag
(
D̂3,k

)T

= diag (D3,k + ∆D3,k)
T

= F̃
(3)

(k, :) + diag (∆D3,k)
T +O(∆2) ,

where the perturbation in ˆ̃F (3)(k, :) is defined as

ˆ̃F (3)(k, :) = F̃
(3)

(k, :) + ∆F̃
(3)

(k, :),

which results in

∆F̃
(3)

(k, :) = diag (∆D3,k)
T +O(∆2).

To get an expression of the corresponding factor matrix estimate F̂
(3)

, we take into account Eq. (9.25)

via F̂
(3)

, ˆ̃F (3) ·Diag
(
F (3)(p, :)

)
. This leads to

F̂
(3)

= F (3) + ∆F (3), (9.37)
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9. First-Order Perturbation Analysis of the SECSI Framework for the Approximate CPD

where

∆F (3) = ∆F̃
(3) ·Diag

(
F (3)(p, :)

)
. (9.38)

Using this equation, the perturbation of the kth row of ∆F (3) is obtained as

∆F (3)(k, :) = diag (∆D3,k)
T ·Diag

(
F (3)(p, :)

)
+O(∆2). (9.39)

The factor matrix F (2) can be estimated via a LS fit. To this end, we define the LS estimate of F (2) as

F̂
(2)

, [X ](2) ·
(
F̂

(3) � F̂ (1)
)+T

.

Using equations (9.35) and (9.37), we get:

F̂
(2)

=
[
X 0 + N

]
(2)
·
[(

F (3) + ∆F (3)
)
�
(
F (1) + ∆F (1)

)]+T
.

Since F̂
(2)

= F (2) + ∆F (2), we finally calculate ∆F (2) as

∆F (2) = F̂
(2) − F (2)

=
[
X 0 + N

]
(2)

[(
F (3) + ∆F (3)

)
�
(
F (1) + ∆F (1)

)]+T
− F (2)

= [X 0](2) ·
[ (

F (3) � F (1)
)

+
(

∆F (3) � F (1)
)

+
(
F (3) �∆F (1)

) ]+T

+ [N ](2) ·
[
F (3) � F (1)

]+T
− F (2)+O(∆2)

Using the definition in Eq. (1.12), we get

∆F (2) = [X 0](2) ·
[ (

F (3) � F (1)
)+
−
(
F (3) � F (1)

)+

·
((

∆F (3) � F (1)
)

+
(
F (3) �∆F (1)

))
·
(
F (3) � F (1)

)+ ]T
+ [N ](2) ·

[
F (3) � F (1)

]+T
− F (2)

+O(∆2)

= −[X 0](2) ·
[ (

F (3) � F (1)
)+
·
((

∆F (3) � F (1)
)

+
(
F (3) �∆F (1)

))
·
(
F (3) � F (1)

)+ ]T

+ [N ](2) ·
[
F (3) � F (1)

]+T
+O(∆2)

= −F (2) ·
[(

∆F (3) � F (1)
)

+
(
F (3) �∆F (1)

)]T
·
(
F (3) � F (1)

)+T
+ [N ](2) ·

[
F (3) � F (1)

]+T

+O(∆2). (9.40)

In the same manner, another set of factor matrix estimates can be obtained by solving the lhs JEVD

problem for T̂ 2 and D̂3,k,∀k = 1, 2 . . . ,M3 in Eq. (9.24). This leads to the two sets of estimates (rhs and

lhs) in the third mode, as summarized in Table 9.1. Note that the obtained expressions can be directly

used for the first and second mode estimates obtained from Eq. (9.10) and Eq. (9.11), respectively,

since such estimates can be derived by applying the SECSI framework to a permuted version of X .
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For example, we can obtain the first mode estimates, corresponding to Eq. (9.10), by applying the

SECSI framework on the third mode of permute(X , [2, 3, 1]), where permute(A,ORDER) rearranges

the dimensions of A so that they are in the order specified by the vector ORDER (as defined in Matlab).

In the same manner, the second mode estimates, corresponding to Eq. (9.11), are obtained by using the

SECSI framework on the third mode of permute(X , [1, 3, 2]). Therefore, we obtain a total of six estimates

for each factor matrix (two from each mode), as shown in Fig. 9.1. To select the final estimates, we can

use best matching scheme or any low-complexity heuristic alternative that has been discussed in [RH13].

9.4. Closed-Form rMSFE expressions

In this section, we present an analytical rMSFE expression for each of the factor matrices estimates.

We first introduce some definitions which will be used subsequently to derive the analytical expressions.

Additionally, Theorem 1 will be used to resolve the scaling ambiguity in the factor matrices of the CPD.

9.4.1. Preliminary Definitions

Let P
(r)
(M1,M2,M3) ∈ {0, 1}(M1·M2·M3)×(M1·M2·M3) be the r-to-1 mode permutation matrix of any third order

tensor Z ∈ CM1×M2×M3 . This means that the permutation matrix P
(r)
(M1,M2,M3) satisfies the property

vec
{

[Z](r)
}

= P
(r)
(M1,M2,M3) · vec

{
[Z](1)

}
. (9.41)

Note that P
(1)
(M1,M2,M3) = I(M1·M2·M3). In the same manner, let Q(M1,M2) ∈ {0, 1}(M1·M2)×(M1·M2) be the

permutation matrix that satisfies the following relation for any Z ∈ CM1×M2

vec
{
ZT
}

= Q(M1,M2) · vec {Z} . (9.42)

Additionally, let nr , vec
{

[N ](r)
}

be the r-mode noise vector, with R
(r)
nn , E{nr · nH

r } and C
(r)
nn ,

E{nr · nT
r } being the corresponding r-mode covariance and pseudo-covariance matrices, respectively.

Note that the these covariance matrices R
(r)
nn are permuted versions of R

(1)
nn , since nr = P

(r)
(M1,M2,M3) ·n1.

This property is also satisfied for the pseudo-covariance matrices C
(r)
nn .

Let W (d) ∈ {0, 1}d
2×d2

be the diagonal elements selection matrix defined as

vec {Ddiag (Z)} = W (d) · vec {Z} ∈ Cd
2×1, (9.43)

where Z ∈ Cd×d is a square matrix. Note that W(d) is simply Id2 − J(d), where J(d) has already been

defined below Eq. (9.31). Likewise, let W red
(d) ∈ {0, 1}d×d

2
be the reduced dimensional diagonal elements

selection matrix that selects only the diagonal elements i.e.,

diag (Z) = W red
(d) · vec {Z} ∈ Cd×1 (9.44)

for any square matrix Z ∈ Cd×d.
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Theorem 1. Let Z ∈ Cd×d and ∆Z ∈ Cd×d be two matrices where the norm of each column in ∆Z is

much smaller than the corresponding column in Z. Let P̃ ∈ Cd×d be a diagonal matrix that introduces

a scaling ambiguity in (Z + ∆Z). Then, a diagonal matrix P opt that resolve this scaling ambiguity can

be expressed as

P opt = argmin
P∈MD(d)

∥∥∥Z − (Z + ∆Z) · P̃ · P
∥∥∥

2

F
,

where MD(d) is the set of d× d diagonal matrices. Thus, the following relation holds

Z − (Z + ∆Z) · P̃ · P opt = Z ·Ddiag
(
ZH ·∆Z

)
·K−1 −∆Z +O(∆2),

where K = Ddiag(ZH ·Z) ∈ Rd×d is a diagonal matrix.

Proof. cf. Appendix D.2

9.4.2. Factor Matrices rMSFE Expressions

In this section, we derive closed-form rMSFE expressions for the three factor matrices. As an example,

we consider these closed-form rMSFE expressions using the JEVD of the rhs tensor slices in Eq. (9.23).

In Section 9.5.1, we also present the results for the lhs tensor slices in Eq. (9.24). The rMSFE in the

r-th factor matrix is defined as

rMSFE(r) = E





min
P (r)∈MPD(d)




∥∥∥F (r) − F̂
(r) · P (r)

∥∥∥
2

F∥∥∥F (r)
∥∥∥

2

F







, (9.45)

where MPD(d) is the set of d× d permuted diagonal matrices (also called monomial matrices), i.e., the

matrices P (r) correct the permutation and scaling ambiguity that is inherent in the estimation of the

loading matrices [RH13] and F (r) is the true factor matrix. The goal of the SECSI framework is to

estimate these factor matrices up to the inevitable ambiguities, and our goal in the performance analysis

is to predict the resulting relative errors, assuming (for the sake of the analysis) that the true matrices

are known and that these ambiguities are resolved. Consequently, the rMSFE measures how accurately

the actual canonical polyadic model can be estimated from the noisy observations. After correcting the

permutation ambiguity, the factor matrix estimates that we get from Monte-Carlo simulations [RH13]

can be approximated as

F̂
(r)

= (F (r) + ∆F (r)) · P̃ (r)
,

where ∆F (r) represents the perturbation that can be obtained from the performance analysis and P̃
(r)

is a diagonal matrix modeling the scaling ambiguity. By using this relation, we rewrite the rMSFE

definition in Eq. (9.45) as

rMSFE(r) = E





∥∥∥F (r) − (F (r) + ∆F (r)) · P̃ (r) · P (r)
opt

∥∥∥
2

F∥∥∥F (r)
∥∥∥

2

F




, (9.46)
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where P
(r)
opt is the optimal column scaling matrix, since the scaling ambiguity is only relevant for the

perturbation analysis. To derive closed-form rMSFE(r) expressions, we first vectorize F (r) − (F (r) +

∆F (r)) · P̃ (r) · P (r)
opt, use Theorem 1, and the definitions in Eq. (9.43) and Eq. (9.42), to get

vec
{
F (r) − (F (r) + ∆F (r)) · P̃ (r) · P (r)

opt

}
≈ vec

{
F (r) ·Ddiag

(
F (r)H ·∆F (r)

)
·K−1

r −∆F (r)

}

=
(
Id ⊗ F (r)

)
·
(
K−1
r ⊗ Id

)
·W (d) · vec

{
F (r)H ·∆F (r)

}
− vec

{
∆F (r)

}

=
(
Id ⊗ F (r)

)
·
(
K−1
r ⊗ Id

)
·W (d) ·

(
Id ⊗ F (r)H

)
· vec

{
∆F (r)

}
− vec

{
∆F (r)

}
, (9.47)

where Kr = Ddiag
(
F (r)H · F (r)

)
. Note that the resulting expression contains the vectorization of the

perturbation in the respective factor matrix estimates. As shown in Section 9.3.3, the perturbations

in the three factor matrix estimates (Eq. (9.36), Eq. (9.40), and Eq. (9.38)) are a function of different

perturbations, i.e., ∆U
[s]
r in Eq. (9.8), ∆S [s] in Eq. (9.9), ∆S [s]

3 in Eq. (9.14), ∆S3,k in Eq. (9.18),

∆Srhs
3,k in Eq. (9.22), and ∆D3,k in Eq. (9.34). Therefore, to get final closed-form rMSFE expressions

for the three factor matrices in Eq. (9.47), we vectorize all of the perturbation expressions. We start by

applying the vectorization operator to ∆U
[s]
r in Eq. (9.8) and use the r-to-1 mode permutation matrix

in Eq. (9.41) to get

vec
{

∆U [s]
r

}
=
(
Σ[s]−1

r V [s]T

r ⊗ Γ[n]
r

)
· nr +O(∆2)

=
(
Σ[s]−1

r V [s]T

r ⊗ Γ[n]
r

)
· P (r)

(M1,M2,M3) · n1 +O(∆2). (9.48)

Next, we vectorize the 1-mode unfolding of ∆S [s]in Eq. (9.9), by using the definition in Eq. (9.41) to

obtain

vec
{

[∆S [s]](1)

}
= vec





[
N

3×r
r=1

U [s]H

r

]

(1)



+O(∆2)

=
(
U

[s]H

2 ⊗U
[s]H

3 ⊗U
[s]H

1

)

︸ ︷︷ ︸
L0

·n1 +O(∆2). (9.49)

In the same manner, we expand vec
{

[∆S [s]
3 ](1)

}
using Eq. (9.48) and Eq. (9.49) to get

vec
{

[∆S [s]
3 ](1)

}
= vec

{
[∆S [s] ×3 U

[s]
3 + S [s] ×3 ∆U

[s]
3 ](1)

}
+O(∆2)

= P
(3)T

(d,d,M3) · vec
{

[∆S [s] ×3 U
[s]
3 + S [s] ×3 ∆U

[s]
3 ](3)

}
+O(∆2)

= P
(3)T

(d,d,M3) ·
(
Id2 ⊗U

[s]
3

)
· vec

{
[∆S [s]](3)

}

+ P
(3)T

(d,d,M3) ·
(

[S [s]]T(3) ⊗ IM3

)
· vec

{
∆U

[s]
3

}
+O(∆2)

= P
(3)T

(d,d,M3) ·
(
Id2 ⊗U

[s]
3

)
· P (3)

(d,d,d) · vec
{

[∆S [s]](1)

}
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+ P
(3)T

(d,d,M3) ·
(

[∆S [s]]T(3) ⊗ IM3

)
·
(
Σ

[s]−1

3 V
[s]T

3 ⊗ Γ
[n]
3

)
· P (3)

(M1,M2,M3) · n1 +O(∆2)

= P
(3)T

(d,d,M3) ·
(
Id2 ⊗U

[s]
3

)
· P (3)

(d,d,d) ·L0 · n1

+ P
(3)T

(d,d,M3) ·
(

[∆S [s]]T(3) ·Σ
[s]−1

3 V
[s]T

3 ⊗ Γ
[n]
3

)
· P (3)

(M1,M2,M3) · n1 +O(∆2)

= L1 · n1 +O(∆2) , (9.50)

where

L1 , P
(3)T

(d,d,M3) ·
(
Id2 ⊗U

[s]
3

)
· P (3)

(d,d,d) ·L0 + P
(3)T

(d,d,M3) ·
(

[S [s]]T(3) ·Σ
[s]−1

3 V
[s]T

3 ⊗ Γ
[n]
3

)
· P (3)

(M1,M2,M3)

(9.51)

Furthermore, we can use this result to obtain an expression for the vectorization of each slice ∆S3,k ∀k =

1, 2, . . . ,M3 of ∆S [s]
3 . Using Eq. (9.18) and Eq. (9.50), we derive an expression for vec {∆S3,k} as

vec {∆S3,k} = vec
{

∆S [s]
3 ×3 e

T
M3,k

}

= vec
{

[∆S [s]
3 ×3 e

T
M3,k](1)

}

= vec
{

[∆S [s]
3 ](1) · (Id ⊗ eT

M3,k)
T
}

+O(∆2)

= (Id ⊗ eT
M3,k ⊗ Id) · vec

{
[∆S [s]

3 ](1)

}

= (Id ⊗ eT
M3,k ⊗ Id) ·L1 · n1

= L
(k)
2 · n1 +O(∆2) , (9.52)

where

L
(k)
2 , (Id ⊗ eT

M3,k ⊗ Id) ·L1 (9.53)

for k = 1, 2, . . . ,M3. Next, we use this result and Eq. (9.9) to expand the vectorization of Eq. (9.22).

This leads to

vec
{

∆Srhs
3,k

}
= vec

{
∆S3,k · S−1

3,p − S3,k · S−1
3,p ·∆S3,p · S−1

3,p

}
+O(∆2)

= (S−T
3,p ⊗ Id) · vec {∆S3,k} − (S−T

3,p ⊗ S3,k · S−1
3,p) · vec {∆S3,p}+O(∆2)

= (S−T
3,p ⊗ Id) ·L(k)

2 · n1 − (S−T
3,p ⊗ S3,k · S−1

3,p) ·L
(p)
2 · n1 +O(∆2)

= L
(k)
3 · n1 +O(∆2) , (9.54)

where

L
(k)
3 , (S−T

3,p ⊗ Id) ·L(k)
2 − (S−T

3,p ⊗ S3,k · S−1
3,p) ·L

(p)
2 . (9.55)

Next, we stack the column vectors sk = vec
{

∆Srhs
3,k

}
into the vector s, as defined in Eq. (9.32), and use
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the previous result to obtain

s = L3 · n1 +O(∆2), (9.56)

where L3 =
[
L

(1)
3 L

(2)
3 . . .L

(M3)
3

]T
. This expression for s is used to expand Eq. (9.33) into

vec {∆T 1} = −A+ ·B · s+O(∆2)

= −A+ ·B ·L3︸ ︷︷ ︸
L4

·n1+O(∆2). (9.57)

Since diag (Ddiag (Z)) = diag (Z) for any matrix Z, we use the matrix W red
(d) (defined in Eq. (9.44)) and

Eq. (9.34) to vectorize Eq. (9.39) as

vec
{

∆F (3)(k, :)
}

= vec
{

diag (∆D3,k)
T ·Diag

(
F (3)(p, :)

)}

= vec

{
diag

(
Ddiag

(
T−1

1 ·∆Srhs
3,k · T 1

))T
Diag

(
F (3)(p, :)

)}
+O(∆2)

= vec

{
diag

(
T−1

1 ·∆Srhs
3,k · T 1

)T
·Diag

(
F (3)(p, :)

)}
+O(∆2)

= vec
{

diag
[
T−1

1 ·∆Srhs
3,k · T 1 ·Diag

(
F (3)(p, :)

)]}
+O(∆2)

= W red
(d) · vec

{
T−1

1 ·∆Srhs
3,k · T 1 ·Diag

(
F (3)(p, :)

)}
+O(∆2)

= W red
(d) ·

(
diag

(
F (3)(p, :)

)
· TT

1 ⊗ T−1
1

)
· vec

{
∆Srhs

3,k

}
+O(∆2)

= W red
(d)

(
diag

(
F (3)(p, :)

)
· TT

1 ⊗ T−1
1

)
·L(k)

3 · n1 +O(∆2)

= L
(k)
4 · n1 +O(∆2) , (9.58)

where

L
(k)
4 , W red

(d) ·
(

diag
(
F (3)(p, :)

)
· TT

1 ⊗ T−1
1

)
·L(k)

3 . (9.59)

The expression for each row of ∆F (3) in Eq. (9.58) can be used to obtain an expression for the vector-

ization of ∆F (3). To this end, we use the permutation matrix Q(M3,d), defined in Eq. (9.42), to express

vec
{

∆F (3)
}

as

vec
{

∆F (3)
}

= QT
(M3,d) · vec

{
∆F (3)T

}

= QT
(M3,d) ·




vec
{

∆F (3)(1, :)
}

vec
{

∆F (3)(2, :)
}

...

vec
{

∆F (3)(M3, :)
}



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= QT
(M3,d) ·




L
(1)
4

L
(2)
4
...

L
(M3)
4



· n1 +O(∆2)

= L5 · n1 +O(∆2) , (9.60)

where

L5 = QT
(M3,d) ·




L
(1)
4

L
(2)
4
...

L
(M3)
4



. (9.61)

Then we insert Eq. (9.60) in Eq. (9.47) to get

vec
{
F (3) − (F (3) + ∆F (3)) · P̃ (3) · P (3)

opt

}
≈ LF3 · n1, (9.62)

where

LF3 =
(
Id ⊗ F (3)

)
·
(
K−1

3 ⊗ Id
)
·W (d) ·

[ (
Id ⊗ F (1)H

)
·L5

]
−L5 . (9.63)

The final closed-form rMSFEF3 expression can be approximated to

rMSFEF3 =
tr
(
LF3 ·R

(1)
nn ·LH

F3

)

∥∥∥F (3)
∥∥∥

2

F

. (9.64)

Similarly, vectorization of the perturbation in the first factor matrix estimate ∆F (1) is performed by

using Eq. (9.36), Eq. (9.57), and Eq. (9.48) as

vec
{

∆F (1)
}

= vec
{

∆U
[s]
1 · T 1 + U

[s]
1 ·∆T 1

}
+O(∆2)

=
(
Id ⊗U

[s]
1

)
· vec {∆T 1}+

(
TT

1 ⊗ IM1

)
· vec

{
∆U

[s]
1

}
+O(∆2)

=
(
Id ⊗U

[s]
1

)
·L4 · n1 +

(
TT

1 ⊗ IM1

)
·
(
Σ

[s]−1

1 V
[s]T

1 ⊗ Γ
[n]
1

)
· n1 +O(∆2)

= L6 · n1 +O(∆2) , (9.65)

where

L6 =
(
Id ⊗U

[s]
1

)
·L4 +

(
TT

1 ·Σ[s]−1

1 V
[s]T

1 ⊗ Γ
[n]
1

)
. (9.66)

By inserting Eq. (9.65) in Eq. (9.47), we get

vec
{
F (1) − (F (1) + ∆F (1)) · P̃ (1) · P (1)

opt

}
≈ LF1 · n1, (9.67)
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where

LF1 =
(
Id ⊗ F (1)

)
·
(
K−1

1 ⊗ Id
)
·W (d) ·

[ (
Id ⊗ F (1)H

)
·L6

]
−L6 . (9.68)

Now we get the closed-form expression for the first factor matrix rMSFEF1 by

rMSFEF1 =
tr
(
LF1 ·R

(1)
nn ·LH

F1

)

∥∥∥F (1)
∥∥∥

2

F

. (9.69)

Finally, the vectorization of the perturbation in the second factor matrix estimate ∆F (2) is achieved

by using the obtained expressions for the vectorization of ∆F (1) (Eq. (9.65)) and ∆F (3) (Eq. (9.60)) to

vectorize ∆F (2) as

vec
{

∆F (2)
}

= vec
{

[N ](2) ·
[
F (3) � F (1)

]+T
− F (2) ·

[ (
∆F (3) � F (1)

)

+
(
F (3) �∆F (1)

) ]T
·
(
F (3) � F (1)

)+T }
+O(∆2)

=

((
F (3) � F (1)

)+
⊗ IM2

)
· P (2)

(M1,M2,M3) · n1

−
((

F (3) � F (1)
)+
⊗ F (2)

)
·Q(M1·M2,d) ·

[
vec
{

∆F (3) � F (1)
}

+ vec
{
F (3) �∆F (1)

}]

+O(∆2). (9.70)

The following relation for two matrices X = [x1,x2, . . . ,xd] ∈ CM1×d and Y = [y1,y2, . . . ,yd] ∈ CM2×d

can easily be verified for the vectorization of Khatri-Rao products.

vec {X � Y } = G(X,M2) · vec{Y } = H(Y ,M1) · vec{X}, (9.71)

where

G(X,M2) ,




(x1 ⊗ IM2) ·
(
eT
d,1 ⊗ IM2

)

(x2 ⊗ IM2) ·
(
eT
d,2 ⊗ IM2

)

...

(xd ⊗ IM2) ·
(
eT
d,d ⊗ IM2

)




H(Y ,M1) ,




(IM1 ⊗ y1) ·
(
eT
d,1 ⊗ IM1

)

(IM1 ⊗ y2) ·
(
eT
d,2 ⊗ IM1

)

...

(IM1 ⊗ yd) ·
(
eT
d,d ⊗ IM1

)



.

In order to apply the relation in Eq. (9.71) to Eq. (9.70), we define f
(r)
l to be the l-th column of the r-th

factor matrix F (r) which implies that f
(r)
l = F (r)(:, l). Therefore, by applying the relation in Eq. (9.71)
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to vec
{

∆F (3) � F (1)
}

we get

vec
{

∆F (3) � F (1)
}

= H(F (1),M3) · vec
{

∆F (3)
}
. (9.72)

In the same manner, we apply the relation in Eq. (9.71) to vec
{
F (3) �∆F (1)

}
, leading to

vec
{
F (3) �∆F (1)

}
= G(F (3),M1) · vec

{
∆F (1)

}
. (9.73)

Furthermore, we use the results from Eq. (9.72) and Eq. (9.73), as well as from Eq. (9.65) and Eq. (9.60),

in Eq. (9.70) to get

vec
{

∆F (2)
}

= L7 · n1 +O(∆2) , (9.74)

where

L7 =

((
F (3) � F (1)

)+
⊗ IM2

)
· P (2)

(M1,M2,M3)

−
((

F (3) � F (1)
)+
⊗ F (2)

)
·Q(M1·M3,d) ·

(
H(F (1),M3) ·L5 + G(F (3),M1) ·L6

)
. (9.75)

By using the obtained expressions for Eq. (9.74) in Eq. (9.47), we get

vec
{
F (2) − (F (2) + ∆F (2)) · P̃ (2) · P (2)

opt

}
≈ LF2 · n1, (9.76)

where

LF2 =
(
Id ⊗ F (2)

)
·
(
K−1

2 ⊗ Id
)
·W (d) ·

[ (
Id ⊗ F (2)H

)
·L7

]
−L7 . (9.77)

Finally, the closed-form expression for the second factor matrix rMSFEF2 is approximated by

rMSFEF2 =
tr
(
LF2 ·R

(1)
nn ·LH

F2

)

∥∥∥F (2)
∥∥∥

2

F

. (9.78)

Note that we have performed this first order perturbation analysis on the 3-mode rhs solution as shown

in Table 9.1, where rMSFE(1) ≈ rMSFEF1 , rMSFE(2) ≈ rMSFEF2 , and rMSFE(3) ≈ rMSFEF3 . Nev-

ertheless, the 1-mode and 2-mode rhs estimates can be obtained by applying the SECSI framework on

the 3-mode (i.e., Table 9.1) to the permuted versions of the input tensor X . In the same manner, the

rMSFE(r) for the 1-mode and 2-mode rhs estimates can also be approximated, by applying this perfor-

mance analysis framework on the permuted versions of the noiseless input tensor X 0, as shown in Table

9.2.
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3-mode 2-mode 1-mode

input X perm(X , [2, 3, 1]) perm(X , [1, 3, 2])

rMSFE(1) rMSFEF1 rMSFEF3 rMSFEF1

rMSFE(2) rMSFEF2 rMSFEF1 rMSFEF3

rMSFE(3) rMSFEF3 rMSFEF2 rMSFEF2

Table 9.2.: rMSFE(r) from Eq. (9.45) approximation, using eqs. (9.69) (9.78) (9.64), for the different
r-modes of SECSI

9.5. Extensions

9.5.1. Extension to the 3-mode LHS

In this section, we extend the obtained results for the rhs estimates to the lhs estimates. We first describe

the main differences between the rhs and lhs third mode estimates, and later redefine the performance

analysis framework accordingly. Note that, since there are no significant changes for computing the lhs

estimates, when compared to the rhs case, we can reuse most of the expressions obtained in Section 9.4

for this extension to the lhs.

For computing the lhs estimates, the matrices Slhs
3,k from Eq. (9.24) are used as input to the JEVD

problem, instead of the matrices Srhs
3,k from Eq. (9.23). This leads to a redefinition of the matrices K

(k)
3

and L
(k)
3 that appear in the vectorization of Srhs

3,k (Eq. (9.54)), in the rhs case, and now are used to

express the vectorization of Slhs
3,k as vec

{
Slhs

3,k

}
= L

(k)
3,lhs · n1, where

L
(k)
3,lhs = QT

d,d · (Id ⊗ S−1
3,p) ·L

(k)
2 − (ST3,k · S−T

3,p ⊗ S−1
3,p) ·L

(p)
2 . (9.79)

The calculation of a JEVD for the slices Ŝ
lhs
3,k in Eq. (9.24) results in the estimation of the transformation

matrix T 2, instead of T 1. Therefore, this leads to a different way of estimating the factor matrices, as

defined in Table 9.1. For instance, F (1) is estimated via a LS-fit and F (2) is now estimated from T 2.

These changes lead to a redefinition of L6 that is similar to the definition of L7 for the rhs (Eq. (9.75)).

Therefore, we refer to it as

L7,lhs =
(
Id ⊗U

[s]
2

)
·L4 +

(
TT

2 ·Σ[s]−1

2 V
[s]T

2 ⊗ Γ
[n]
2

)
. (9.80)

In the same manner, L7 for the rhs is also redefined for the lhs as

L6,lhs =

((
F (2) � F (3)

)+
⊗ IM1

)
· P (1)

(M1,M2,M3)

−
((

F (2) � F (3)
)+
⊗ F (1)

)
·Q(M2·M3,d) ·

(
G(F (2),M3) ·L5 + H(F (3),M2) ·L7

)
. (9.81)

Finally, a summary of the third mode rhs and lhs performance analysis is shown in Table 9.3 and Table

9.4, respectively. Note that only steps 4 ( L
(k)
3 ), 8 ( L6), and 9 ( L7 ) are changed from the rhs to the lhs

performance analysis. Once the matrices L5, L6, and L7 have been calculated, then the matrices LF1 ,

LF1 , LF1 are calculated for both lhs and rhs by using Eq. (9.67), Eq. (9.76), and Eq. (9.62), respectively.
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Finally, the rMSFE expressions for the lhs and rhs factor matrices are calculated by using Eq. (9.69),

Eq. (9.78), and Eq. (9.64). Moreover the lhs rMSFE(r) expressions in the other modes (i.e., 1-mode

and 2-mode) can be approximated in the same manner as in Section 9.4 by applying this first order

performance analysis to permuted versions of the noiseless tensor X 0, as shown in Table 9.2.

9.5.2. Extension to the underdetermined (degenerate) case

In this work, we have assumed the non-degenerate case, but the results can also be applied to the

underdetermined (degenerate) case. The decomposition is underdetermined in mode n if d > Mn. The

SECSI framework is still applicable if the problem is underdetermined in up to one mode [RH13].

For example, let the tensor rank of the noiseless tensor be greater than any one of the dimension, i.e.,

M1 < d ≤ min{M2,M3}. In this case, F (1) ∈ CM1×d is a flat matrix. But U1 has the dimension of

M1×M1. Therefore, T1 does not exist. However, the diagonalization problems Srhs
1,k and Slhs

1,k in Fig. 9.1

can still be solved and yield two estimates for F (1), one for F (2), and one for F (3).

9.6. A Performance Analysis based Factor Matrix Estimates Selection

Scheme

In this section we propose a new estimates selection scheme for the SECSI framework. We refer to

this new scheme as Performance Analysis based Selection (PAS). Unlike other selection schemes for the

final matrix estimates proposed in [RH13], such as CON-PS (conditioning number - paired solutions),

REC-PS (reconstruction error - paired solutions), and BM (best matching), which perform a heuristic

selection or an exhaustive search (BM) to select the final estimates, this new selection scheme allows us

to directly select one estimate per factor matrix (instead of performing a search among all the possible

estimate combinations). For instance, the BM scheme tests all possible combinations of the estimates of

the loading matrices in an exhaustive search. It therefore requires the reconstruction of (R · (R − 1))R

tensors [RH13], which grows rapidly with R and already reaches 216 for R = 3, whereas the PAS scheme

requires only 18 estimates for R = 3.

All the analytical expressions in the performance analysis are computed from the noiseless estimates

(such as X 0, U
[s]
r , S [s], etc.). For the PAS scheme, we approximate the noiseless quantities with the noisy

ones as X 0 ≈ X̂ , U
[s]
r ≈ Û

[s]
r , S [s] ≈ Ŝ [s]

, etc. Then, we use the corresponding performance analysis and

assume perfect knowledge of the second order moments of the noise (i.e., R
(r)
nn and C

(r)
nn ), to estimate

rMSFE(r) for all r = 1, 2, 3, in all the r-mode lhs and rhs solutions. Finally, we select the estimates that

correspond to the smallest estimated rMSFE(r) values, for all r = 1, 2, 3. Note that estimating the noise

variance has no effect on this scheme, since all the estimated rMSFE(r) values are multiplied by the same

σ2
N factor.
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9.7. Simulation Results

In this section, we validate the resulting analytical expressions with empirical simulations. First we

compare the results for the proposed analytical framework to the empirical results. Then, we compare

the performance of the PAS selection scheme with other estimates selection schemes.

9.7.1. Performance Analysis Simulations

We define three simulation scenarios, where the properties of the noiseless tensor X 0 and the number of

trials used for every point of the simulation are stated in Table 9.5.

Scenario Size d F (r) Correlation Trials

I 5× 5× 5 4 (none) 10, 000
II 5× 8× 7 4 r = 1 10, 000
III 3× 15× 70 3 (none) 5, 000

Table 9.5.: Scenarios for varying SNR simulations.

In scenario I and scenario III, we have used real-valued tensors while complex-valued tensors are used

for scenario II. Moreover, to further illustrate the robustness of our performance analysis results, we have

used different JEVDs algorithms for both scenarios. We employ the JDTM algorithm [LA10] for scenario

I while the coupled JEVD [RLM16] is employed for scenario II. Note that both algorithms are based on

the indirect LS cost function [BCW+17]. For every trial, the noise tensor N is randomly generated and

has zero-mean Gaussian entries of variance σ2
N = ‖X 0‖2H/(SNR·M). Moreover, the noiseless tensor X 0 is

fixed in each the experiment and has zero-mean uncorrelated Gaussian entries on its factor matrices F (r).

We plot several realizations of the experiments (therefore different X 0) on top of each other, to provide

better insights about the performance of the tested algorithms. This simulation setup is selected, since

the derived analytical expression depicts the rMSFE for a known noiseless tensor X 0 over several noise

trials. Moreover, every realization of the noiseless tensor X 0 is given by X 0 = I3,d×1F
(1)×2F

(2)×3F
(3),

where the factor matrices F (r) ∈ RMr×d have uncorrelated Gaussian entries for all r = 1, 2, 3 for scenario

I. Furthermore, for scenario II, we also introduce correlation in the factor matrix F (1). In this scenario,

the factor matrices F (2) and F (3) are randomly drawn but F (1) is fixed along the experiments as

F (1) =




1 1 1 1

1 0.95 0.95 0.95

1 0.95 1 1

1 1 0.95 1

0.95 1 1 1



. (9.82)

We depict the results in the form of the Total rMSFE (TrMSFE) since it reflects the total factor matrix

estimation accuracy of the tested algorithms. The TrMSFE is defined as TrMSFE =
∑3

r=1 rMSFE(r)

where rMSFE(r) is the same as in Eq. (9.45).

It is evident from the results in Fig. 9.2 that the analytical results from the proposed first-order
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perturbation analysis match well with the Monte-Carlo simulations for both real and complex-valued

tensors. Moreover, the results also show an excellent match to the empirical simulations for scenario II

where we have an asymmetric tensor and also have high correlation in the first factor matrix.

In Fig. 9.3, we show the analytical and empirical results for the asymmetric scenario III where the

results are shown for 6 estimates of each factor matrix obtained by solving all of the r-modes for a SNR

= 50 dB. The estimates are arranged according to Fig. 9.1. The results show an excellent match for

emiprical and analytical results for all of 6 estimates for each factor matrix. Moreover, the estimates

F
(1)
IV , F

(1)
V , F

(2)
IV , F

(2)
V , F

(3)
I , and F

(3)
II are the best estimates for each of the factor matrices. Note that all

of these estimates are obtained by solving the JEVD problem for the 3-mode in Eq. (9.23) and Eq. (9.24).

This results from the fact that JEVD for this mode has the highest number of slices (70) which results

in a better accuracy.

9.7.2. SECSI framework based on PAS scheme

In this section, we compare the performance of the PAS scheme with other selection schemes, such as

the CON-PS, REC-PS, and BM schemes from [RH13] for two simulation scenarios in Table 9.6.

Scenario Size SNR d F (r) Correlation Trials

IV 5× 5× 5 50 dB 3 (none) 10, 000
V 3× 15× 70 40 dB 3 (none) 5, 000

Table 9.6.: Scenarios for fixed SNR simulations.

In these simulation setups, the noise tensor N as well as the noiseless tensor X 0 are randomly gen-

erated at every trial. Since the noise variance has no effect on the selected estimate, for the real-valued

uncorrelated noise with equal variance scenario, we use R
(r)
nn = IM and C

(r)
nn = IM , for all r = 1, 2, 3, as

input for this PAS scheme, regardless of the value of σ2
N . Moreover, to provide more insights about the

performance, we also define a naive selection scheme denoted as DUMMYR, where the final estimates

are randomly selected among the 6 possible estimates available per factor matrix. We use the comple-

mentary cumulative density function (CCDF) of the TrMSFE to illustrate the robustness of the selected

strategy [RH13].

The results are shown in Fig. 9.4 for two scenarios with different tensor sizes. The results show that

the proposed PAS scheme outperforms the other schemes especially in scenario IV where the tensor size

is small and the SNR is also high. This is to be expected, since the expressions used to build the PAS

scheme are based on the high SNR assumption. Nevertheless, we also observe that even with the higher

dimensional tensor and relatively low SNR, as shown in Fig. 9.4(b), we observe that the PAS scheme

performs slightly better than the CON-PS, REC-PS, and BM schemes.

9.8. Conclusion

In this chapter, a first-order perturbation analysis of the SECSI framework for the approximate CPD of 3-

D noise-corrupted low-rank tensors is presented, where we provide closed-form expressions for the relative
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mean square error for each of the estimated factor matrices. The derived expressions are formulated in

terms of the second-order moments of the noise, such that apart from a zero-mean, no assumptions on the

noise statistics are required. The simulation results depict the excellent match between the closed-form

expressions and the empirical results for both real-valued and complex-valued data. Moreover, these

expressions can also be used for an enhancement in the factor matrix estimates selection step of the

SECSI framework. The new PAS selection scheme outperforms the existing schemes especially at high

SNR values.
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Figure 9.2.: TrMSFE of the 3-mode rhs estimates using the SECSI framework in scenarios I and II
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Figure 9.3.: 6 estimates for each of the factor matrix for scenario III and for a SNR = 50 dB.
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Figure 9.4.: CCDF of the TrMSFE for Scenarios IV and V.
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10. Conclusions and future work

In this thesis, we develop novel and advanced signal processing algorithms for multi-dimensional areas of

future communication systems. The main goal is to fulfill the ever-growing demand for new innovations

that require an enhanced performance, a higher efficiency, a greater flexibility, etc. With this aim in

mind, we have discussed signal processing aspects for three application areas, i.e., MIMO concepts for

waveforms to be used in 5G communications systems and beyond, efficient transceiver designs for optical

systems employing intensity modulation and direct detection, and a first-order perturbation analysis of

tensor decomposition methods. Moreover, since we address a broad spectrum of topics in the thesis, it

opens up many exciting directions for future research.

In the first part of thesis, we discuss MIMO concepts for UW-OFDM systems. UW-OFDM is a

novel signaling schemes that has been introduced in 2010 [HHH10b,OH10]. In contrast to the other CP

based schemes, a known deterministic sequence is inserted in the time domain inside the IDFT interval.

This is achieved by introducing redundancy in the frequency domain which is added with the help of

a code generator matrix. This code generator matrix has to be applied on all data subcarriers and

introduces correlation among the data symbols. This correlation can be exploited at the receiver by

designing sophisticated receivers. For SISO systems, it has been shown that a design based on joint

detection exploits this correlation in an efficient manner and results in a superior BER performance

over CP-OFDM [HOH11, Oni13]. Note that joint detection refers to a detection scheme where channel

equalization and code generator demodulation is performed in a single step. We have extended these

investigations to MIMO UW-OFDM systems. We start by proposing two linear detection schemes. In

the first approach, the joint detection based design for SISO systems is extended to a MIMO UW-OFDM

system. This approach outperforms CP-OFDM significantly but also results in receivers with very high

computational complexity, thus making it unsuitable for practical applications. Therefore, an alternative

low complexity scheme is proposed where the detection is performed in two steps. In the first step, a

subcarrier-wise linear equalization is performed, and in the second step an LMMSE based demodulation

is performed. This scheme results practically in the same performance as the joint detection scheme, but

has a much lower computational complexity. After discussing the linear detection schemes, we expand

our investigations to SIC receivers. The SIC receivers for UW-OFDM can only be designed based on

the joint detection approach. Using this technique, we have proposed ZF and QR decomposition based

SIC detection schemes. UW-OFDM with these SIC detection schemes shows a high performance gain

in terms of the BER, but at the cost of a much higher computational complexity. Therefore, we have

proposed a novel hybrid detection scheme that is based on a two step approach. In this scheme, a linear

equalization is performed in the first step and a SIC code generator demodulation is used in the second

step. This scheme results in a better BER performance than the linear detection schemes but slightly

worse than the QR SIC scheme. On the other hand, it has a much lower computational complexity, thus

offering a trade-off between performance and computational complexity. In Chapter 3, we have further

extended these investigations to space-time block coded UW-OFDM system. We have aimed to provide

methods to use existing OSTBCs for UW-OFDM. For this purpose, we have proposed two approaches.
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In the first approach, we have followed the technique employed for CP-OFDM and apply OSTBCs in the

frequency domain. But unlike CP-OFDM, this approach results in a non-orthogonal effective channel

matrix at the receiver. Thus it demands for computationally complex receivers, since the performance

of MRC based detection is not good enough, as shown in Fig. 3.5. In the second approach, we have

applied OSTBCs on the time domain samples. This requires a slight modification of the conventional

UW-OFDM frame structure to correctly use this approach. This approach not only yields a similar

performance as the first approach but also results in receivers with a very low computational complexity.

Specifically, we have shown that we can use a two step detection method where in the first step, an MRC

based detection is performed on each subcarrier and in the second step, an MF based demodulation

is performed. This combination has a slightly higher computational complexity than for CP-OFDM

but outperforms CP-OFDM with the corresponding OSTBCs significantly. We have compared the

performance of this space-time block coded UW-OFDM systems with other 5G air interface proposals

such as GFDM, FBMC, and UFMC in Chapter 4. Only for GFDM and FBMC waveforms, techniques

to apply STBCs have already been proposed in the literature [MMF14,MMG+15,ZL13]. Therefore, we

have first proposed different space-time coding concepts for UFMC waveforms. Similar to space-time

block coded UW-OFDM systems, we can either use the STBCs on the data carriers in the frequency

domain or on the time domain samples (TR-STC). However, the decoding complexity depends on the

type of receive filtering technique. We have shown that if an FFT based receiver is employed, the use of

a STBC encoder in the frequency domain is a feasible solution. However, TR-STCs are recommended for

all filtering techniques such as matched filtering, ZF, and MMSE filtering. After describing the methods

to use STBCs with UFMC waveforms, we have compared the performance of space-time block coded

UW-OFDM, UFMC, GFDM, and FBMC systems using the LTE-A parameters. Our simulations show

that UW-OFDM has not only the best performance especially over highly frequency selective channels

but also has a lower decoding complexity. This is due to the fact that we can efficiently employ an MF

based demodulation for UW-OFDM if the channel matrix is orthogonal. However, for other waveforms,

a MF based demodulation cannot efficiently resolve the interference, even if the effective channel matrix

is orthogonal.

In this work, we have proposed novel concepts for MIMO UW-OFDM systems. These results emphasize

the potential of UW-OFDM over currently utilized multicarrier techniques. However, there are still many

aspects which require further and intense research to fully assess the potential of MIMO UW-OFDM.

In the presented work, we have assumed a single user MIMO (SU-MIMO) case with no CSI at the

transmitter. We have also assumed the use of the same code generator matrix for all transmit antennas.

Moreover, the code generator matrices to produce UW-OFDM symbols have been optimized assuming an

AWGN channel [HHH12]. This allows for designing the generator matrix independently of instantaneous

channel conditions, thus avoiding the implementation of a side information channel from the receiver to

the transmitter for selecting the proper matrix. Despite this simplification, UW-OFDM systems show

an impressive performance especially in a frequency selective environment. However, a code generator

design exploiting CSI is still an open issue. Specifically for MIMO UW-OFDM systems, a separate code

generator matrix can be designed for each transmit antenna. Such code generator matrices can yield a

better performance for UW-OFDM but at the expense of a higher complexity of the system. Therefore,

the main challenge of the design is to achieve a trade-off between the performance and the computational
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complexity. Another open issue is the design of precoding and beamforming techniques for MIMO UW-

OFDM systems when CSI is available at the transmitter. The main challenge is to design a subcarrier-

wise precoding matrix for each spatial stream. However, this may require a new code generator design

based on the precoding matrix for each channel realization. Such designs will significantly increase the

computational complexity at the transmitter and hence are not the best choices. A suboptimal solution

to this problem can be a code-book based precoding design where different precoding matrices along

with different code genrator matrices are stored for different channel conditions. So far we have focused

on some of the SU-MIMO aspects of UW-OFDM. The extension to multi-user MIMO (MU-MIMO) is

still an open problem. This opens a vast range of research challenges that address efficient STBCs and

spatial multiplexing transmission and reception schemes with reasonable complexity for the MU-MIMO

uplink and downlink scenarios. We have also assumed a perfect synchronization and channel estimation

in our work. However, the impact of synchronization and channel estimation errors on the performance

of MIMO UW-OFDM systems still needs to be investigated. The open question is that whether the

inherent nature of UW-OFDM provides some benefits in an asynchronous environment compared to

CP-OFDM and other waveforms. Moreover, the efficient utilization of the UW in the channel estimation

process for MIMO UW-OFDM is another research direction.

The second part of the thesis is devoted to the transmission strategies for optical systems that employ

intensity modulation and direct detection (IM/DD). Such systems demand for real-valued and positive

signals at the transmitter. Therefore, the transmission strategies used for RF communication systems

cannot be directly used. The CP-DMT schemes (real-valued version of CP-OFDM from RF) are widely

recommended schemes for these optical systems. However, in these schemes a Hermitian symmetry is

applied to obtain a real-valued signal. This results in a reduced bandwidth efficiency of these schemes.

Therefore, in Chapter 5, we have discussed various alternative transmission schemes and have compared

their performance with the CP-DMT schemes and other state-of-the-art schemes. Specifically, we have

shown that PAM block transmission with FDE is an efficient scheme for these optical systems. We have

investigated this scheme from various aspects. We have also proposed some novel SSC block transmission

schemes such as OPAM schemes. Moreover, we have presented a simple transceiver architecture for SSC

schemes where we have shown how these scheme can benefit from block transmission and FDE. The

performance of all of these schemes is evaluated for two optical systems, i.e., POFs and VLC. Since VLC

systems require a DC-balance scheme, we have proposed novel DC-balance techniques for PAM block

transmission. The results suggest that PAM block transmission with FDE is a very good alternative to

CP-DMT schemes. Especially, PAM block transmission with a 50 % RZ-rectangular pulse shows a much

superior performance as compared to all other schemes, as shown in Section 5.4. Under the constraint

of a low-pass channel with a Gaussian profile for POF systems, it has been shown that there is no

performance gain for CP-DMT schemes over PAM block transmission with FDE. Even with full CSI

at the transmitter, bit-loading enhanced CP-DMT schemes do not match the performance of adaptive

PAM block transmission. Note that bit-loading requires the knowledge of full CSI at the transmitter

but adaptive PAM block transmission requires only information about the modulation order and the

symbol interval. Moreover, there is a negligible performance difference between the optimal bit-loading

Hughes-Hartogs algorithm and the suboptimal Fischer-Huber algorithm. For VLC systems, we have

considered only DC-balanced schemes. We have used a scenario where four LED lamps are placed
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in a medium sized room at different locations, as explained in Section 5.2.2. We have calculated the

channel impulse response using up to 8 reflections. The results show that the impact of the diffuse part

disappears at higher frequencies, whereas it provides additional power in the lower frequency range.

Although, line codes add more redundancy, PAM block transmission shows a superior performance than

the DC-biased CP-DMT, even if bit-loading is used in the latter case. DC-biased single-subcarrier

modulation or orthogonal PAM are not attractive choices, since the spectral centroid of the signal is

shifted to the bandpass range that results in their inferior performance. Another widely recommended

scheme for VLC systems is carrier-less amplitude and phase modulation (CAP). However, we have shown

that the performance of CAP is worse than the PAM block transmission and DC-biased DMT schemes.

Moreover, the CAP scheme requires long FIR filters and has high PAPR, thus making it less suitable for

VLC systems. Although PAM block transmission has shown superior performance over all other schemes,

but still PAM does not achieve the best performance, if linear equalization is used. Therefore, we have

further extended these investigations to non-linear precoding and equalization techniques in Chapter 6.

We have discussed DFE and THP techniques that can be used with PAM transmission. These techniques

result in a much superior performance of PAM transmission in dispersive optical channels. However,

such techniques increase the computational complexity of the system significantly. Moreover, DFE suffers

from the error propagation problem, while THP requires full CSI at the transmitter. These factors make

these techniques less suitable for practical application. Alternatively, we have suggested to use a hybrid

equalization scheme with PAM block transmission. In this scheme, a frequency domain equalizer is still

used while an additional feedback filter is added in the time domain to eliminate the residual ISI. Such a

hybrid equalizer requires fewer feedback filter taps as compared to the DFE. Moreover, instead of using

a CP, we have used a UW to resolve the error propagation problem of the DFE. We have shown that

PAM block transmission with this hybrid scheme has the same performance as the DFE, but on the

other side it has a significantly lower computational complexity. We have shown that even with a 2

PAM-RZ (OOK) modulation combined with this hybrid equalization scheme, data rates up to 2 Gbps

can be achieved for 10m of step-index POF with a reasonable power penalty, as shown in Fig. 6.12b.

Therefore, this transceiver design offers the best performance for the dispersive optical systems with a

reasonable system complexity. In the last chapter of this part, we have proposed three novel UW-DMT

schemes that are derived from the UW-OFDM concept. Since optical systems with IM/DD require

real-valued signals, this puts an extra constraint on the design of the code generator matrix. We have

shown that the design of the code generator is different for complex-valued and real-valued constellation

formats. We have designed systematic and non-systematic code generator matrices and proposed two

solutions, as discussed in Section 7.2. The design based on the solution 2 outperforms the solution 1.

Moreover, UW-DMT schemes with non-systematic code generator matrices outperforms the UW-DMT

schemes with systematic code generator matrices. Specifically we have shown that all UW-DMT schemes

outperform their counterpart CP-DMT schemes significantly.

In this part of the thesis, we have discussed various transmission schemes. We have shown that PAM

block transmission can be a serious alternate to the widely recommended CP-DMT schemes. Although

we have investigated PAM block transmission from various aspects, there are still many open problems.

For instance, we have used 5B6B codes to guarantee a constant brightness for VLC systems. However,

better line codes can be designed by extending the existing 5B6B codes to general XBYM codes meaning

183



10. Conclusions and future work

where X Bits are mapped to Y M -level symbols. We have also recommended to use a UW instead of a CP

for PAM block transmission, especially with a hybrid equalizer. The UW can be additionally used for the

clock-frequency offset tracking which needs to be investigated. For VLC systems, we have investigated

the performance of all the schemes assuming a single-user and a single-cell. The use of a single-cell

or multi-cell multi-user VLC technique is a primary method for boosting the network throughput for

indoor VLC wireless systems. In multi-user scenarios the intra-cell or inter-cell interference will limit

the performance and therefore the interference mitigation tasks becomes critical. Recent studies on

single-cell or multi-cell multi-user VLC networks are either only based on DMT waveforms or do not

consider the illumination constraints. Therefore, interference mitigation techniques such as space division

multiple access for PAM block transmission based VLC system with illumination constraints need to be

investigated. In Chapter 7, we have proposed three novel UW-DMT schemes that are designed using

the UW-OFDM concept. We have designed the systematic and non-systematic code generator matrices

for these schemes. We have also demonstrated that the UW-DMT schemes using non-systematic code

generator matrices outperform the UW-DMT schemes with systematic code generator matrices. These

non-systematic code generator matrices contain an orthonormal basis of the null space that are computed

by the SVD of the desired matrices. However, for UW-OFDM systems, the optimum code generator

matrices are derived by minimizing the trace of the error covariance matrices of the BLUE or LMMSE

estimator in the AWGN channel and for a fixed signal-to-noise ratio. Such code generator matrices can

also be designed for UW-DMT schemes which may further improve their performance.

In the last part of the thesis, we have performed a first-order perturbation analysis of some of the

multi-linear (tensor) algebraic concepts. The most widely employed tensor decompositions methods are

the truncated HOSVD and the CPD. These methods are used in a variety of scientific application fields

ranging from telecommunications to quantum chemistry. The performance of these tensor decomposition

methods is usually evaluated by performing time-expensive Monte-Carlo trials. However, an analytical

perturbation analysis of these algorithms could predict the performance of these algorithms for different

noisy conditions in advance. This has motivated us to perform the first-order perturbation analysis. A

first-order perturbation analysis of the truncated HOSVD is presented in Chapter 8. For this purpose,

we have derived closed-form expressions for the subspace estimation error and the tensor estimation

error. For the derivation of these closed-form expressions, we have only assumed that the noise is zero-

mean. However, to provide a better insight into the truncated HOSVD performance, we have further

simplified the obtained expression for the special case of uncorrelated noise with equal variance. We

have evaluated the performance of the derived expressions using computer generated data and also using

images. The simulations results show that the proposed solutions (MSE of the subspace estimation error

and the reconstruction error) depicts an excellent match to the empirical results for both data sets.

There exist many methods to compute the CPD of a low-rank noisy tensor. However, the semi-algebraic

approaches are widely recommended in the literature due to their better performance and comparatively

low complexity. In particular, the semi-algebraic framework for the approximate canonical polyadic

decomposition via simultaneaous matrix diagonalization (SECSI) is an efficient and flexible framework

for the computation of the CPD. We have performed a first-order perturbation analysis of the SECSI

framework for the approximate CPD of 3-D noise-corrupted low-rank tensors in Chapter 9. The SECSI

framework performs three distinct steps to estimate the factor matrices. Thus, to compute a performance
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analysis of the SECSI framework, a perturbation analysis of each of the steps is required. In the first step,

the truncated HOSVD is used to suppress the noise. For this purpose, the results derived in Chapter

8 have been used. In the second step, the whole sets of JEVDs are constructed from the truncated

core tensor. In the SECSI framework, the JEVD algorithms that are based on the indirect LS cost

function are used. We have performed a first order perturbation analysis of such JEVDs algorithms,

i.e., JDTM [LA10], Sh-Rt [FG06], and coupled JEVD [RLM16], in [BCW+17]. These results are also

summarized in Appendix D.1. Using these results, we have performed a first-order performance analysis

of the SECSI framework. Specifically, we have presented the closed-form analytical expressions for the

rMSFE for each of the estimates of the factor matrices. The derived expressions are formulated in terms

of second-order moment of the noise, where we have only assumed that the noise is zero-mean. We

have evaluated the performance of the proposed results for real-valued and complex-valued tensors. We

have also shown results using different JEVD algorithms. The results show an excellent match between

the analytical closed-form expressions and the empirical results for both real-valued and complex-valued

data. Note that, solving all JEVDs result in several estimates of the factor matrices. The best factor

matrices are estimated from these estimates using an exhaustive search based best matching scheme or

by using heuristic selection schemes with a reduced computational complexity, as proposed in [RH13].

Alternatively, we have also proposed a new selection scheme that is based on the performance analysis

results. We have shown that the new PAS scheme outperforms the existing schemes especially at high

SNR values.

Although we have proposed the first-order perturbation analysis of the truncated HOSVD and the

SECSI framework, there are many open problems. For example, the SECSI framework can be extended

for tensors with symmetries and Hermitian symmetries along with the corresponding performance anal-

ysis. In such cases, we do not need to multiply with the inverse of the pivot slice to render the diago-

nalizations symmetric. Therefore, we can use diagonalization by congruence algorithms such as ACDC.

However, it needs to be investigated that such a formulation will result in an improved performance or

not. If it results in an improved performance, then the perturbation analysis can be modified accord-

ingly. This will require to perform a perturbation analysis of diagonalization by congruence algorithms.

A truncated version of SECSI (i.e., T-SECSI) has been introduced recently in [NHT+16]. In this ap-

proach, the diagonalizing of the slices of the estimated core tensor is performed that leads to complexity

reduction. Based on the performance analysis results, a first-order perturbation analysis of the T-SECSI

can also be performed. In [NH16], the SECSI framework has been extended for coupled tensors. The

coupled SECSI framework exploits the fact that the tensors have at least one factor matrix in common

and guarantees that even in noisy scenarios the common mode will have the same factor matrix for the

different tensors. Such a tensor structure is present in many combined signal processing applications

such as the joint processing of EEG and MEG data. A performance analysis of the coupled SECSI

framework can be performed in future using the performance analysis results for the SECSI framework.
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Appendix A.

Glossary of Acronyms, Symbols and Notation

A.1. Acronyms

4G Fourth Generation
5G Fifth Generation
AWGN Additive White Gaussian Noise
BER Bit Error Rate
BLUE Best Linear Unbiased Estimator
BPSK Binary Phase Shift Keying
CAP Carrier-less Amplitude and Phase modulation
CCDF Complementary Cumulative Distribution Function
CP Cyclic Prefix
CPD Canonical Polyadic Decomposition
CSI Channel State Information
CTF Channel Transfer Function
DFT Discrete Fourier Transform
DFT Decision Feedback Equalization
DSL Dynamic Subscriber Line
DVB-T Digital Video Broadcasting Terrestrial
EPA Extended Pedestrian A
EVA Extended Vehicular A
FDE Frequency Division Equalization
FFT Fast Fourier Transform
FBMC Filter Bank Multicarrier
FH Fischer-Huber
GFDM Generalized Frequency Division Multiplex
HH Hughes-Hartogs
HOSVD Higher Order Singular Value Decomposition
ICI Inter Carrier Interference
IDFT Inverse Discrete Fourier Transform
IFFT Inverse Fast Fourier Transform
ISI Inter Symbol Interference
JEVD Joint Eigen Value Decomposition
KS Known Symbol
KSP Known Symbol Padding
LED Light Emitting Diode
LS Least Squares
LTE Long Term Evolution
LTI Linear Time Invariant
M2M Machine-to-Machine
MF Matched Filter
MIMO Multiple Input Multiple Output
MOST Media Oriented System Transport
MRC Maximum Ratio Combining
MSE Mean Square Error
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MMSE Minimum Mean Squared Error
NLoS Non Line Of Sight
NRZ Non Return to Zero
OFDM Orthogonal Frequency Division Multiplexing
OOB out-of-band
OOK On Off Keying
OSTBC Orthogonal Space-Time Block Code
PAS Performance Analysis based Selection
PAM Pulse Amplitude Modulation
PAPR Peak to Average Power Ratio
POF Plastic Optical Fiber
QAM Quadrature Amplitude Modulation
RF Radio Frequency
RRC Root-Raised Cosine
RS Relay Station
SECSI Semi-Algebraic CPD via Simultaneous Matrix Diagonalization
SMD Simultaneous Matrix Diagonalization
SNR Signal to Noise Ratio
SIC Successive Interference cancellation
SISO Single Input Single Output
SSC Single Subcarrier
SVD Singular Value Decomposition
THP Tomlinson Harashima Precoding
TR-STC Time Reversal Space-Time Code
UFMC Universal Filtered Multicarrier
UE User Equipment
UT User Terminal
UW Unique Word
VLC Visible Light Communication
ZF Zero Forcing
ZMCSCG Zero Mean Circularly Symmetric Complex Gaussian

A.2. Symbols and Notation

R Set of real numbers

C Set of complex numbers

a, b, c Scalars

a, b, c Column vectors

A, B, C Matrices

Re{x} Real part of complex variable x

Im{x} Imaginary part of complex variable x

x∗ Complex conjugate of x

0M×N Matrix of zeros of size M ×N
IM Identity matrix of size M ×M
ΠM Exchange of size M ×M with ones on its anti-diagonal and zeros elsewhere

(·)T Matrix transpose

(·)H Hermitian transpose

‖·‖2 Euclidean (two-) norm
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‖·‖F Frobenius norm

‖·‖H Higher-Order (Frobenius) norm

A⊗B Kronecker product between A ∈ CM×N and B ∈ CP×Q defined as

A⊗B =




a1,1 ·B a1,2 ·B · · · a1,N ·B
a2,1 ·B a2,2 ·B · · · a2,N ·B

...
...

...
...

aM,1 ·B aM,2 ·B · · · aM,N ·B



.

A �B Khatri-Rao (column-wise Kronecker) product between A ∈ CM×N and B ∈ CP×N

vec{·} Vec-operator: stack elements of a matrix/tensor into a column vector, begin with

first (row) index, then proceed to second (column), third, etc.

unvec{·} Inverse vec-operator: reshape elements of a vector back into a matrix/tensor of the

indicated size

tr{·} Trace of a matrix (sum of diagonal elements = sum of eigenvalues)

rank{·} Rank of a matrix

A+ Moore-Penrose pseudo inverse of a matrix A ∈ CM×N , which we can compute via

• A+ = Vs ·Σ−1
s ·UH

s , where A = Us ·Σs · V H
s represents the economy-size SVD

of A.

• A+ = (AH ·A)−1 ·AH if rank{A} = N (full column rank)

• A+ = AH · (A ·AH)−1 if rank{A} = M (full row rank).

E{X} Expectation operator, i.e., mean of the random variable X
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Appendix B.

An example illustrating the cyclic convolution

Let us assume a system where a block of data samples x ∈ CN×1 of length N is transmitted. The

received signal is given by

y = Hx + n ∈ C(N+Nch−1)×1, (B.1)

where H is the channel convolution matrix containing the channel impulse response. The channel

convolution matrix has the following structure

H =




h1 0 0 0 0

h2 h1 0 0 0

h3 h2 h1 0 0

0 h3 h2 h1 0

0 0 h3 h2 h1

0 0 0 h3 h2

0 0 0 0 h3




∈ C(N+Nch−1)×N , (B.2)

where, for simplicity, we have assumed that the length of channel impulse response is Nch = 3.

Next we assume a system where a CP/UW is prepended to the block of data samples x ∈ CN×1 before

transmission. Then the received signal after removing the CP/UW in the time domain is given as

y = Ĥx + n ∈ CN×1. (B.3)

In this case, Ĥ is a circulant matrix that contains the channel impulse response of length Nch = 3 in

the following way

Ĥ =




h1 0 0 h3 h2

h2 h1 0 0 h3

h3 h2 h1 0 0

0 h3 h2 h1 0

0 0 h3 h2 h1



∈ CN×N . (B.4)
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Appendix C.

Derivation of the decision feedback equalizer filters

The cost function as defined by Eq. (6.15) is,

J(f, b̄) = E
{
|b̄Hx− fHy|2

}
(C.1)

The task is to determine the filter vectors fH and b̄H that minimize this cost function. This goal is

accomplished by firstly minimizing the cost function over one of the vectors, and then determining the

other one [Say03]. We first fix the vector b̄ and minimize the error variance over f . To do so, a scalar

α = b̄Hx is introduced such that

J(f) = E
{
|α− fHy|2

}
. (C.2)

This cost function is a standard linear least-mean-squares estimation problem and results in the optimal

choice of f as,

fHopt = RαyR
−1
yy , (C.3)

where Rαy = E
{
αyH

}
= E

{
b̄HxyH

}
= b̄HRxy. This implies that

fHopt = b̄HRxyR
−1
yy . (C.4)

Substituting this expression into the cost function (Eq. (C.2)), we get

J(b̄) = E
{
|α− fHopty|2

}

= Rαα −RαyR
−1
yyRyα

= b̄HRxxb̄− b̄HRxyR
−1
yyRyxb̄

= b̄H
(
Rxx −RxyR

−1
yyRyx

)
b̄

= b̄HRδb̄, (C.5)

where Rδ = Rxx −RxyR
−1
yy Ryx.

Note that the first entry of b̄ is unity, so that the constrained problem in Eq. (C.5), i.e., J(b̄) = b̄HRδb̄

is minimized subject to b̄He1 = 1. Here e1 =
[

1 0 0 · · · 0
]T
∈ R(B+1)×1 is the first basis column

vector. To solve this problem, we benefit from the results of Gauss-Markov Theorem. Using this theorem,

the optimal filter coefficients for b̄ result in,

b̄Hopt =
eT1 R−1

δ

eT1 R−1
δ e1

. (C.6)
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Appendix C. Derivation of the decision feedback equalizer filters

And by substituting Eq. (C.6) into Eq. (C.4), optimum feedforward filter coefficients are

fHopt = b̄HoptRxyR
−1
yy . (C.7)
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Appendix D.

Proofs and derivations for Part 3

D.1. Perturbations in indirect LS JEVD Algorithms

Computing the JEVD of a given set of K jointly diagonalizable matrices Sk ∈ CM×M , ∀k = 1, 2, . . . ,K

consists of finding the matrix T such that

Sk = T ·Dk · T−1, ∀k = 1, 2, . . . ,K, (D.1)

where T ∈ CM×M is an invertible matrix and Dk ∈ CM×M are diagonal matrices for k = 1, 2, . . . ,K.

The algorithms such as JDTM, Sh-Rt, and coupled JEVD aim to find the T̂ that minimizes the indirect

LS cost function

J =

K∑

k=1

∥∥∥Off
(
T̂
−1 · Ŝk · T̂

)∥∥∥
2

F
. (D.2)

This implies that, ideally, these algorithms estimate T iteratively by solving

T̂ = argmin
ˆT

(
K∑

k=1

∥∥∥Off
(
T̂
−1 · Ŝk · T̂

)∥∥∥
2

F

)
. (D.3)

and the estimates D̂k are computed as

D̂k = Ddiag
(
T̂
−1 · Ŝk · T̂

)
, ∀k = 1, 2, . . . ,K. (D.4)

Note that in the case of the JEVD algorithms based on the direct LS cost function, the matrix T is

estimated by solving

T̂ = argmin
ˆT

(
K∑

k=1

∥∥∥Ŝk − T̂ · D̂k · T̂
−1
∥∥∥

2

F

)
. (D.5)

In this appendix, we solve for the perturbations to compute the JEVDs using indirect LS cost function.

We expand the term T̂
−1 · Ŝk · T̂ , inside equation (D.2), to

T̂
−1 · Ŝk · T̂ = (T + ∆T )−1 · (Sk + ∆Sk) · (T + ∆T )

=
(
T−1 − T−1 ·∆T · T−1

)
· (Sk + ∆Sk) · (T + ∆T ) +O(∆2)

= T−1 · Sk · T + T−1 ·∆Sk · T + T−1 · Sk ·∆T − T−1 ·∆T · T−1 · Sk · T +O(∆2)

= Dk + T−1 ·∆Sk · T + T−1 · Sk ·∆T − T−1 ·∆T ·Dk +O(∆2). (D.6)
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Since Off (Dk) = 0, we compute

Off
(
T̂
−1 · Ŝk · T̂

)
= Off

(
Dk + T−1 ·∆Sk · T + T−1 · Sk ·∆T − T−1 ·∆T ·Dk +O(∆2)

)

= Off
(
T−1 ·∆Sk · T

)
+ Off

(
T−1 · Sk ·∆T

)
−Off

(
T−1 ·∆T ·Dk

)
+O(∆2).

(D.7)

Next we vectorise the result from equation (D.7) to find

vec
{

(Off
(
T̂
−1 · Ŝk · T̂

)}
= vec

{
Off

(
T−1 ·∆Sk · T + T−1 · Sk ·∆T − T−1∆T ·Dk +O(∆2)

)}

= Q · vec
{
T−1 ·∆Sk · T

}
+ Q · vec

{
T−1 · Sk ·∆T

}

−Q · vec
{
T−1 ·∆T ·Dk

}
+O(∆2)

= Q ·
(
TT ⊗ T−1

)
· vec {∆Sk}+ Q ·

(
I ⊗ T−1 · Sk

)
· vec {∆T }

−Q ·
(
Dk ⊗ T−1

)
· vec {∆T }+O(∆2), (D.8)

where Q ∈ {0, 1}M2×M2
is a selection matrix that satisfies the relation vec {(Off (X)} = Q · vec {X}

and can be constructed as Q = IM2 − diag (vec {IM}).

Let us define B0 ∈ CM2×M2
, nk ∈ CM2×1, Ak ∈ CM2×M2

, and w ∈ CM2×1 as

B0 = Q ·
(
TT ⊗ T−1

)
(D.9)

nk = vec {∆Sk} (D.10)

Ak = Q ·
[(
IM ⊗ T−1 · Sk

)
−
(
Dk ⊗ T−1

)]
(D.11)

w = vec {∆T } . (D.12)

This notation allows us to reformulate equation (D.8) as

vec
{

Off
(
T̂
−1 · Ŝk · T̂

)}
= B0 · nk + Ak ·w +O(∆2). (D.13)

Now, by substituting the values of equation (D.13) in equation (D.2) and neglecting the terms that

contain O(∆2), we approximate the indirect LS cost function to

J =

K∑

k=1

∥∥∥Off
(
T̂
−1 · Ŝk · T̂

)∥∥∥
2

F

≈
K∑

k=1

‖B0 · nk + Ak ·w‖2

= ‖B · n + A ·w‖2 , (D.14)
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where

A =




A1

A2

...

AK



, B =




B0 0 · · · 0

0 B0 · · · 0
...

...
...

...

0 0 · · · B0



, n =




n1

n2

...

nK



. (D.15)

Since we have approximated equation (D.2) by a conventional LS problem in equation (D.14), the

w = wopt that approximately minimizes J is given by

wopt = −A+ ·B · n, (D.16)

which means that

∆T ≈ unvec
M×M

{wopt} . (D.17)

Next, we substitute equation (D.6) into (D.4) that leads to

Dk + ∆Dk = Ddiag
(
T̂
−1 · Ŝk · T̂

)
≈Dk + Ddiag

(
T−1 ·∆Sk · T

)

+ Ddiag
(
T−1 · Sk ·∆T − T−1 ·∆T ·Dk

)
. (D.18)

We now rewrite the last term of equation (D.18) as

Ddiag
(
T−1 · Sk ·∆T − T−1 ·∆T ·Dk

)

= unvec
M×M

{
P · vec

(
T−1 · Sk ·∆T − T−1 ·∆T ·Dk

)}

= unvec
M×M

{
P ·

[(
IM ⊗ T−1 · Sk

)
−
(
Dk ⊗ T−1

)]
· vec (∆T )

}

= unvec
M×M

{
P ·

[(
IM ⊗Dk · T−1

)
−
(
Dk ⊗ T−1

)]
· vec (∆T )

}

= unvec
M×M

{P ·Rk · vec (∆T )} , (D.19)

where P is a selection matrix defined as P = diag(vec{IM}). Furthermore, the structure present in Rk

as discussed above ensures that P ·Rk is always equal to zero. This leads to equation (D.19) being equal

to zero and, therefore, equation (D.18) leads to

∆Dk ≈ Ddiag
(
T−1 ·∆Sk · T

)
. (D.20)

D.2. Proof of Theorem 1

The term (Z + ∆Z) · P̃ can be interpreted as the estimate of Z up to a scaling of its column, given by

Ẑ = (Z + ∆Z) · P̃ = Z̃ + ∆Z̃.
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Therefore, P̃ can be expressed as P̃ = Ddiag
(
ZH · Z̃ ·K−1

)
. To resolve the scaling ambiguity, we

compute a diagonal matrix P opt that satisfies P opt = Ddiag(ZH · Ẑ ·K−1)−1. This result leads to

P̃ · P opt = P̃ ·Ddiag
(
ZH · Ẑ ·K−1

)−1

= P̃ ·Ddiag
(
ZH · (Z + ∆Z) · P̃ ·K−1

)−1

=
(
Id + Ddiag(ZH ·∆Z) ·K−1

)−1

Let us define the diagonal matrix U , Ddiag
(
ZH ·∆Z

)
·K−1 of size d × d with diagonal elements

U(i, i) for all i = 1, 2, . . . , d. Therefore, (Id + U)−1 is also a diagonal matrix, with diagonal elements

(1 + U(i, i))−1 for all i = 1, 2, . . . , d. Since the elements U(i, i) are first-order terms, we use the well

known Taylor’s expansion (1 +x)−1 = 1−x+O(∆2) which holds for any first-order scalar term x. This

leads to (Id + U)−1 = (Id −U) +O(∆2). Therefore, we get

(
Id + Ddiag(ZH ·∆Z) ·K−1

)−1
= Id −Ddiag

(
ZH ·∆Z

)
·K−1 +O(∆2),

and thus

Z − (Z + ∆Z) · P̃ · P opt = Z − (Z + ∆Z) ·
[
Id −Ddiag

(
ZH ·∆Z

)
·K−1

]
+O(∆2)

= Z ·Ddiag
(
ZH ·∆Z

)
·K−1 −∆Z +O(∆2),

which proves this theorem.
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[PNCZ+16] A. I. Pérez-Neira, M. Caus, R. Zakaria, D. L. Ruyet, E. Kofidis, M. Haardt, X. Mestre, and
Y. Cheng, “MIMO signal processing in offset-QAM based filter bank multicarrier systems,”
IEEE Transactions on Signal Processing, vol. 64, no. 21, pp. 5733–5762, Nov 2016.

[RBHW09] F. Roemer, H. Becker, M. Haardt, and M. Weis, “Analytical performance evaluation for
HOSVD-based parameter estimation schemes,” in Proceedings of 3rd IEEE International
Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP),
December 2009, pp. 77–80.

[RD13] D. Rafailidis and P. Daras, “The TFC model: Tensor factorization and tag clustering for
item recommendation in social tagging systems,” IEEE Transactions on Systems, Man,
and Cybernetics: Systems, vol. 43, no. 3, pp. 673–688, May 2013.

[RH08a] F. Roemer and M. Haardt, “A closed-form solution for multilinear PARAFAC decom-
positions,” in Proceedings of 5th IEEE Sensor Array and Multichannel Signal Processing
Workshop, 2008, pp. 487–491.

[RH08b] ——, “A closed-form solution for parallel factor (PARAFAC) analysis,” in Proceedings of
IEEE International Conference on Acoustics, Speech and Signal Processing 2008, March
2008.

[RH13] ——, “A semi-algebraic framework for approximate CP decompositions via simultaneous
matrix diagonalizations (SECSI),” Signal Processing, vol. 93, no. 9, pp. 2722
– 2738, 2013. [Online]. Available: http://www.sciencedirect.com/science/article/pii/
S0165168413000704

[RHDG14] F. Roemer, M. Haardt, and G. Del Galdo, “Analytical performance assessment of multi-
dimensional matrix- and tensor-based ESPRIT-type algorithms,” IEEE Transactions on
Signal Processing, vol. 62, no. 10, pp. 2611–2625, May 2014.

[RIS10] M. Renfors, T. Ihalainen, and T. Stitz, “A block-Alamouti scheme for filter bank based
multicarrier transmission,” in Proceedings of European Wireless Conference (EW),, April
2010, pp. 1031–1037.

207

http://www.sciencedirect.com/science/article/pii/S0165168413000704
http://www.sciencedirect.com/science/article/pii/S0165168413000704


Bibliography

[RKS14] M. Rajabzadeh, H. Khoshbin, and H. Steendam, “Sidelobe suppression for non-systematic
coded UW-OFDM in cognitive radio networks,” in Proceedings of 20th European Wireless
Conference, May 2014, pp. 1–6.

[RLM16] A. Remi, X. Luciani, and E. Moreau, “A coupled joint eigenvalue decomposition algo-
rithm for canonical polyadic decomposition of tensors,” in 2016 IEEE Sensor Array and
Multichannel Signal Processing Workshop (SAM), 2016.

[RNSK14] M. Rajabzadeh, N. Noels, H. Steendam, and H. Khoshbin, “Sidelobe suppression for non-
systematic coded UW-OFDM in cognitive radio networks,” in Proceedings of European
Wireless Conference (EW2014), Barcelona, Spain, May 2014.

[Roe12] F. Roemer, “Advanced algebraic concepts for efficient multi-channel signal processing,”
Ph.D. dissertation, Universitätsbibliothek Ilmenau, 2012.
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