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Abstract

Spatial information in wide variety of sub-sea applications such as deep sea exploration,

environmental monitoring, geological and ecological research, and samples collection

must be collected alongside the data modality of interest. Ocean bottom seismic

surveys are vital for oil and gas exploration and productivity enhancement of an

existing production facility. Ocean bottom seismic sensors are deployed on the seabed

to acquire those surveys. Node deployment methods used in industry today are

costly, time-consuming and incapable in deep oceans. Autonomous deployment of

ocean bottom seismic nodes implemented by a swarm of Autonomous Underwater

Vehicles (AUVs) is proposed. In autonomous deployment of ocean bottom seismic

nodes, a swarm of seismic sensors-equipped AUVs are deployed to communicate and

collaboratively achieve ocean bottom seismic imaging. However, the severely limited

bandwidth of the underwater acoustic communications and the high cost of maritime

assets limit the number of AUVs that can be deployed for experiments.

A holistic fuzzy-based localisation framework for large underwater robotic swarms

(i.e., in hundreds) to dynamically fuse multiple position estimates of an autonomous

underwater vehicle is proposed. Simplicity, flexibility and scalability are the main

three advantages inherent in the proposed localisation framework when compared to

other traditional and commonly adopted underwater localisation methods such as the

Extended Kalman Filter. The proposed fuzzy-based localisation algorithm improves

the entire swarm mean localisation error and standard deviation by 16.53% and 35.17%

respectively at swarm size of 150 AUVs when compared to the Extended Kalman Filter

based localisation with round-robin scheduling. The proposed fuzzy based localisation

method requires fuzzy rules and fuzzy set parameters tuning if deployment scenario is

changed.

Therefore, a cooperative localisation scheme that relies on a scalar localisation confi-

dence value is proposed. A swarm subset is navigationally aided by ultra-short baseline
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and a swarm subset (i.e., navigation beacons) is configured to broadcast navigation

aids (i.e., range-only) once their confidence values are higher than a predetermined

confidence threshold. The confidence value and navigation beacons subset size are

two key parameters for the proposed algorithm so that they are optimised using

the evolutionary multi-objective optimisation algorithm NSGA-II to enhance its

localisation performance. Confidence value based localisation is proposed to control

the cooperation dynamics among the swarm agents in terms of acoustic exteroceptive

sensors aiding. Given the error characteristics of a commercially available ultra-short

baseline system and the covariance matrix of a trilaterated underwater vehicle position,

Extended Kalman Filter-based acoustic exteroceptive sensors-aided dead reckoning

navigation is performed and controlled by the vehicle’s confidence value. The proposed

confidence-based localisation algorithm has significantly improved the entire swarm

mean localisation error by 67.10% and 59.28% when compared to the fuzzy-based and

round-robin Extended Kalman Filter-based localisation methods respectively at swarm

size of 150 AUVs.

The proposed fuzzy-based and confidence-based localisation algorithms for cooperative

underwater robotic swarms are validated on co-simulation platform. A physics-based

co-simulation platform that considers environment’s hydrodynamics, industrial grade

inertial measurement unit and underwater acoustic communications characteristics is

implemented for validation and optimisation purposes.
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Chapter 1

Introduction

Seventy-one percent of the earth’s surface is covered by water and it is commonly be-

lieved that we know more about the space than deep oceans [1]. Spatial information in

various offshore applications such as deep-sea exploration [2], environmental monitoring,

geological and ecological research [3] must be collected alongside the data modality of

interest. Advancement in robotics and communications technology have given rise to

underwater multi-agent robotic systems to achieve those marine missions. Underwater

navigation technology is fundamental to achieve those missions and its inaccuracy is

becoming an impediment to deep oceans missions.

This research is primarily driven by the need for an autonomous and cost effective

ocean bottom seismic imaging method for oil and gas production [4]. Seismic imaging

is being used in oil and gas industry in either fossil fuel exploration or productivity

enhancement of an existing onshore or offshore oil field. Four-dimensional (4D) and

three-dimensional (3D) seismic surveys currently represent a significant percentage of

overall seismic surveys [5]. Seismic sensors are deployed on the seabed or sea surface in

a mesh-like geometry for 3D seismic data acquisition [5]. Four-dimensional seismic data

is acquired when 3D surveys are repeated over time over the same area of interest [5].

Ocean bottom seismic sensors can provide high resolution 3D and 4D seismic images of

sub-seabed which are vital for oil and gas exploration and productivity enhancement of

an existent production facility. Recent developments in ocean bottom seismic sensors

have given rise to the need for a reliable and cost effective deployment method. Ocean

bottom seismic sensors are deployed in deep oceans using Remotely Operated Vehicle

(ROV) equipped with robotic arm and driven by on board crew. This is very costly
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and time consuming deployment method and it cannot be applied when it comes to

large number (i.e., in hundreds) of nodes. Therefore, there is a need for an autonomous

deployment (i.e., all sensor nodes can navigate to their designated locations without

human intervention) of ocean bottom seismic sensors to overcome the limitations of

the current deployment methods. Providing the ocean bottom seismic nodes with the

mobility function (i.e., Autonomous Underwater Vehicle (AUV) equipped with seismic

sensors) is a good illustration of autonomous deployment of ocean bottom seismic nodes.

Figure 1.1 shows an example of ocean bottom seismic node, work-class ROV and AUV.

This thesis explores underwater navigation approaches for multi-agent robotic system.

(a) (b) (c)

Figure 1.1: (a) Ocean bottom seismic node; Image courtesy of CGG [6] (b) A typical
work-class ROV used in industry today; Image courtesy of Saab SeaEye [7] (c) Recently
developed small-size AUV; Image courtesy of ecoSUB [8].

1.1 Motivation

Over the past two decades, swarm robotics have been widely investigated and it has been

proven that robotic swarms are more efficient in solving complicated tasks or tasks that

require wide spatial coverage than a single overly complicated robot [9]. While aerial and

terrestrial swarm robotics have been extensively investigated [10, 11, 12, 13], there has

been little investigation of underwater robotic swarms. A primary concern of any swarm

system is swarm connectivity which is realised by intra-swarm communication to enable

nodes collaboration. Intra-swarm communication can be achieved in either direct or in-

direct fashion. Radio and acoustic links are examples of direct communication whereas

indirect communication occurs through the environment such as stigmergic collaboration

[14]. Underwater robotic swarm deployment is particularly challenging due to the high

cost of maritime assets and limited bandwidth of underwater acoustic communications

channels. The wide variety of marine missions that can be achieved by means of mobile
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underwater sensor networks (e.g., underwater swarm robotics) such as deep sea explo-

ration and environmental monitoring have enabled and motivated underwater robotics

research for decades [15]. Localisation is one of the most critical problems in robotic

swarms as it is required to be successfully obtained in advance of nodes’ guidance and

control in location aware applications. The navigation module of an autonomous node

estimates its position and velocity and feeds them into the control and guidance modules

[16]. Figure 1.2 shows the navigation, control and guidance scheme of an AUV.

Figure 1.2: Navigation, guidance, and control scheme of an AUV.

In a sub-sea mission, a swarm of mobile and/or static nodes are typically deployed to

communicate and collaboratively achieve various predefined tasks in underwater envi-

ronments. In order to successfully complete assigned missions, locations of individual

nodes must be known and tracked all the time in the whole operation for successful mis-

sions. Figure 1.3 shows a sketch of an underwater wireless sensor network represented

by a swarm of mobile and static nodes.

Given the absence of the Global Navigation Satellite System (GNSS) in underwater

environments, AUV navigation predominately relies on proprioceptive sensors such as

Inertial Measurement Unit (IMU) integrated with Doppler Velocity Log (DVL) [17].

IMU-based navigation is prone to drift and the DVL is limited to operate close to seabed

[18]. Therefore, acoustic exteroceptive sensors are usually utilised as external naviga-

tion aids and integrated with the proprioceptive sensors position estimate to reduce the

estimated position uncertainty. The severely limited bandwidth and long latency of un-

derwater acoustic communication limit the number of AUVs that can be deployed at

once to collaboratively complete a mission [19, 20, 21]. Underwater multi-agent robotic

systems mainly rely on acoustic communication to exchange information among team

members with an average propagation speed of 1500 m/s (i.e., speed of sound in water)

with a maximum bit rate of around 60 kbps [22]. On the contrary, information among

members of multi-agent terrestrial or aerial robotic systems are exchanged in the speed
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Figure 1.3: Underwater wireless network of AUVs (yellow vessels with blue fins) and
anchored sensors (red).

of light of 3× 108 m/s with bit rate in Mbps.

Advancement in both underwater sensing and robotics together with the rising need for

autonomous underwater surveys in deep oceans have entailed expanding the state-of-the-

art in underwater swarm robotics navigation. The navigation framework investigated

herein is motivated by the robustness and scalability requirements of an underwater

robotic swarms for ocean bottom seismic or similar sub-sea missions. The robustness of

the proposed navigation frameworks can be stemmed from four different factors, namely

redundancy, decentralisation, simplicity of the individuals and multiplicity of sensing.

1.2 Research Challenges

The nature of ocean bottom seismic imaging application that requires swarm deployment

of AUVs together with the nature of underwater communication channel pose many

challenges that are simply not present in terrestrial or aerial localisation problems such

as:

• Unaffordable expenses associated with the field experiments of underwater robotic

swarms due to the high cost of maritime assets.
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• Different localisation methods have their own merits and limitations which make

them suitable for certain marine applications and under certain operating condi-

tions. Therefore, there is no single localisation method that is able to maintain

high localisation precision and accuracy under different operating conditions.

• Current trends in underwater localisation rely on fusing multiple localisation es-

timates using Gaussian filters family such as the Extended Kalman Filter (EKF)

[23] which requires substantial efforts when integrating new localisation methods

in an existent EKF-based navigation.

• The severely limited bandwidth of the underwater acoustic communications limits

the number of AUVs (i.e., 1–10 AUVs) that can be navigationally aided by extero-

ceptive sensors represented by Time of Flight (ToF) acoustic navigation systems.

• The limited bandwidth of the underwater acoustic communications also limits the

number of AUVs that can broadcast localisation aids in multi-agent cooperative

localisation. Therefore, a medium access control protocol should be carefully con-

sidered which drastically limits swarm sizes deployed in missions due to lack of

localisation aids.

• Difficult and rapidly varying acoustic communication channel conditions that de-

pends on changes in water temperature, geometry of the channel, roughness of

the sea surface. This results in high packet loss as compared to electromagnetic

signals due to the presence of large Doppler spread caused by time variation of the

acoustic channel.

1.3 Research Proposal

To overcome the challenges stated in Section 1.2, the following research steps are con-

sidered.

1. Ocean bottom seismic imaging solutions are reviewed to identify their limitations in

obtaining cost-efficient high resolution seismic images. This includes identifications

of commercially available or under development solutions to clear any possible

conflict of interests and proposing a fully autonomous robotic system for ocean

bottom seismic to overcome the limitations of the current deployment methods.

2. The current underwater navigation trends in both wireless sensor networks and
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cooperative autonomous vehicles to tackle the navigation problem of underwater

robotic swarms for ocean bottom seismic imaging are investigated.

3. Implementing a simulation platform that considers both dynamics and underwa-

ter communications simulation engines to perform a thorough evaluation of the

proposed localisation algorithm in terms of scalability and localisation accuracy.

4. Introducing a holistic underwater navigation framework that harnesses all avail-

able underwater navigation schemes under different operating conditions using

fuzzy decision support system to facilitate integrating newly introduced localisa-

tion methods.

5. Proposing a confidence-based navigation framework and tuning the proposed nav-

igation framework’s parameters so that the utilisation of the underwater acoustic

channel is optimised. Therefore, intra-swarm collaboration for cooperative local-

isation is maximised given the constraints imposed by the underwater acoustic

communication channel.

1.4 Research Aim and Objectives

The aim of this thesis is to develop a robust and scalable localisation method for under-

water robotic swarms for deep-sea missions such as exploration, environmental monitor-

ing, geological and ecological research. To achieve this aim, the following objectives are

identified to influence the research development taken in this thesis.

• Develop a comprehensive localisation framework for large scale underwater robotic

swarms to overcome the limitations of the Gaussian filters family based navigation

methods in design simplicity, localisation accuracy and scalability.

• Develop a confidence-based cooperative swarm navigation algorithm that guaran-

tees distributive harmony among the nodes with acknowledging the uncertainty

associated with the localisation process to nominate only a limited number of

AUVs (i.e., AUVs with high confidence on their localisation accuracy) to broad-

cast localisation aids.

• Optimise the utilisation of the underwater acoustic channel so that intra-swarm

cooperation is maximised to improve the localisation accuracy when swarm size

increases.

6



• Evaluate and compare the proposed localisation algorithms’ performances in terms

of scalability and localisation accuracy with other underwater localisation methods

in literature that are all evaluated on a developed co-simulation platform that

considers both dynamics and underwater communications simulation engines.

1.5 Contributions

The main focus of this thesis is to expand the state-of-the-art in underwater swarm

navigation by proposing a distributive cooperative localisation algorithm. This thesis

provides a set of methodologies to achieve the objectives listed in the previous section.

The contribution of this thesis is summarised as follows:

• An extensive investigation into the current state-of-the-art techniques in ocean

bottom seismic imaging and underwater navigation which resulted in establishing

research collaboration with Autonomous Robotics Ltd [24] and securing research

fund of GBP 27660 from the Oil and Gas Innovation Centre (currently part of the

Oil and Gas Technology Centre [25]). The project with Autonomous Robotics Ltd

was completed in October 2019.

• A physics-based co-simulation platform that considers underwater environments

hydrodynamics and underwater acoustic communications characteristics to vali-

date the proposed localisation algorithms in terms of localisation accuracy and

scalability in a cost-effective way. The hydrodynamics properties of underwater

environments i.e., density, viscosity and stream velocity are simulated to generate

external static and dynamic forces which are then applied to the modelled AUV’s

geometrical structure. In addition, the characteristics of underwater acoustic com-

munications including communication channel, modems, Medium Access Control

(MAC) protocol and time synchronisation are all simulated.

• An underwater localisation method to dynamically fuse multiple localisation es-

timates of an AUV using fuzzy decision support system [26, 27]. A number of

underwater localisation methods have been presented in the literature for wire-

less sensor networks. The proposed navigation framework harnesses established

localisation methods to provide navigation aids in the absence of the acoustic ex-

teroceptive sensors navigation aid (i.e., Ultra-short Baseline (USBL)) and can be

easily extended to accommodate some other localisation methods by expanding
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the fuzzy rule base. Simulation studies have shown that the proposed fuzzy-based

localisation outperforms the EKF-based localisation in localisation accuracy, scal-

ability and design simplicity.

• A confidence-based distributed cooperative localisation algorithm for a swarm of

mobile underwater sensor nodes [28]. The localisation accuracy is improved by

promoting high-precision localised ordinary nodes to reference nodes based on their

confidence values. The confidence value of a node is dynamically updated by the

proposed confidence update rules.

• Optimisation of the proposed confidence based algorithm’s parameters. The algo-

rithm’s parameters are optimised so that intra-swarm collaboration is maximised

given the constrains imposed by the underwater environments and swarm systems

[29]. Simulation studies have shown that parameter optimisation improves the

localisation accuracy specially at large swarm sizes i.e., 100-150 AUVs.

1.6 Thesis Structure

The remainder of the thesis is structured in seven chapters as follows:

• Chapter 2 provides a comprehensive review of seismic imaging and marine seismic

in terms of seismic sensors and seismic geographic data. The current available

robotic systems in marine seismic and the autonomous deployment of ocean bottom

nodes are discussed from the feasibility and associated challenges perspectives.

• Chapter 3 surveys related underwater localisation and communication algorithms

in the literature and provides background information that is necessary for the

remainder of the thesis.

• Chapter 4 illustrates the implemented co-simulation platform elements including

the high-fidelity physics-based robotic simulator, the Underwater Network Project

for acoustic simulation (i.e., UnetStack), the simulated AUV and the adopted IMU

model.

• Chapter 5 presents a fuzzy-based localisation framework. A simple proof-of-

concept simulation and high fidelity physics-based simulation based on the de-

veloped co-simulation platform presented in Chapter 4 have been conducted to
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validate the proposed fuzzy-based algorithm. The proposed fuzzy-based localisa-

tion framework is compared to other traditional and commonly adopted underwa-

ter localisation methods such as the Extended Kalman Filter in terms of scalability

and localisation accuracy under the same simulation sittings.

• Chapter 6 proposes an optimised confidence-based localisation algorithm for im-

proving localisation accuracy by promoting nodes with high confidence of loca-

tion estimates to references for their neighboring nodes. The confidence value is

updated based on the adopted localisation methods’ error characteristics where

expected localisation error is generated based on redundant sensory information

to control the cooperation dynamics in the swarm.

• Chapter 7 improves the confidence-based cooperative localisation scheme for under-

water robotic swarm. The confidence value update method is derived intuitively to

represent the localisation precision in a single scalar measurement. The algorithm’s

key parameters are optimised as in Chapter 6 and the algorithm’s performance is

evaluated on the developed co-simulation platform presented in Chapter 4.

• Chapter 8 concludes the thesis and summarises the findings of this work. Fu-

ture directions and recommendations are discussed to highlight possible further

considerations to potentially improve the proposed underwater swarm navigation

algorithm.
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Chapter 2

Seismic Imaging Literature

Ocean bottom seismic surveys are vital for oil and gas exploration and productivity en-

hancement of an existent production facility. Ocean bottom seismic nodes are deployed

on the seabed to acquire those surveys. Nodes deployment methods used in industry

today are costly, time-consuming and inapplicable in deep oceans. Autonomous deploy-

ment of ocean bottom seismic nodes implemented by a swarm of AUVs is considered.

2.1 Introduction

The most dominant source of energy (i.e., oil and gas) is hidden beneath land and sea

surfaces. Some of oil and gas reservoirs are at shallow depth and other at ultra-deep

layers in which drilling cost sharply increases. High resolution marine seismic is crucial

technology in reducing oil exploration and drilling cost. Offshore oil/gas reserves have

not been fully explored.

Global energy demand is expected to rise to 470 million barrels of oil per day in 2060

while it was 100.1 million barrels per day in 2019 [30, 31], thereby ultra-deep layers

must be explored at reasonable cost. In the last decade, renewable energy has greatly

improved; however, it still cannot match the global demand of energy. The Gulf of

Mexico and the Pre-salt area off Brazil may contain 100,000 million barrels of crude oil

and due to the ultra-deep water, the drilling cost in this area is between 175 and 200

million US dollars [32]. Due to the high cost of drilling, oil industries have been looking

forward to acquiring subsurface images of better resolution. Thus, better estimation of

hydrocarbon reserve before drilling is achieved.
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High resolution seismic imaging of substructure has always been an ultimate goal in oil

industry, whether to be used in the exploration phase or to enhance the productivity

of an existence oil platform. Autonomous deployment of seismic imaging devices can

further reduce oil production cost and personnel hazards, especially in remote and harsh

environment. Ocean Bottom Node (OBN) seismic has attracted a lot of interest when it

comes to high resolution marine seismic imaging. OBNs are simply seismic sensors with

the capability of providing relatively high resolution seismic images of sub-seabed [4].

Recent developments in OBN have risen the need for reliable and cost-effective deploy-

ment methods [4]. OBNs are currently deployed using a ROV equipped with a robotic

arm and driven by on board crew. The main disadvantage of the current deployment

method is the associated high cost due to the long time needed. Moreover, the current

deployment method becomes tedious and not cost effective when the number of OBN is

large i.e., in hundreds. Therefore, there is a need for an autonomous deployment system

of OBNs to overcome the limitations of the current OBNs deployment method. The key

challenge underlying the autonomous deployment of OBNs is underwater sensor nodes

localisation which has been an active research area in recent years given that the GNSS

is absent in underwater environments. Radio signals can propagate underwater only for

very short distances at low frequencies i.e., a few meters at 10 kHz [33]. Hence under-

water wireless communication relies predominately on acoustic waves to propagate for

long distances i.e., up to 10 km [34]. The rest of this chapter is organised as follows. A

generic review of seismic imaging is given in section 2.2 and marine seismic in particular

is explained in terms of seismic sensors and seismic data in section 2.3. The current

available robotic systems in marine seismic are then discussed in section 2.4. Finally,

this chapter is concluded in section 2.5.

2.2 Seismic Imaging

Bats cannot see very well; however, they still can fly in cluttered and unstructured

environments. Doctors can identify embryos gender and monitor their health status

in the fourteenth week of human pregnancy without any operation. Bat sends sound

waves that bounce off an object and its ears receive the reflected sound waves. Doctors

use the same principle i.e., sonar to identify embryos gender using transabdominal fetal

ultrasound image. Geologists apply the same principles to look into deep earth layers

and thus, determine whether or not there is an oil and gas deposit in a particular

geographical area [35]. A vibrator is employed on the earth surface to send sound waves
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into the subsurface layers. Sensors that receive the reflected waves are deployed on

land in land seismic or on sea surface in marine seismic. Acoustic images are generated

based on the recorded data. The generated sound image looks like a bunch of squiggles

[36]. To generate a picture that actually looks like the earth beneath us, the data has

to be processed by a series of sophisticated signal processing and model reconstruction

algorithms on high performance computing facilities [36].

2.2.1 Seismic Waves

There are two different types of sound waves involved in seismic imaging [5]. The first

type is compressional waves (i.e., P-waves, where P stands for Primary) they propagate

through solid or liquid mediums such as water and rocks with propagation speed depend-

ing on medium’s properties [37]. The second type is shear waves (i.e., S-waves, where S

stands for Secondary) which propagate through solid mediums only such as rocks [37].

Sound waves are generated by vibrator (i.e., sound-waves source on the surface) it can

propagate and reflect through rock layers as P-waves and it can be converted to S-waves

depends on the medium. P-waves contain the most important information that geol-

ogists need to reveal possible oil and gas deposits. However, S-waves, in some cases,

must be recorded and analysed as they contain information cannot be extracted from

P-waves. In general, S-waves have higher frequency components and travel slower than

P-waves and they reveal valuable information about rocks physical properties for many

fields of research including petrophysics, geology, geophysics, geochemistry, geotechnical

engineering and materials science [37].

2.2.2 Seismic Sensors

Seismic sensors can be deployed on land surface, sea surface or sea floor in different

deployment geometries. P-waves are acquired by hydrophones which are essentially

pressure sensors; it measures the amplitude of P-waves [38]. On the other hand, S-

waves are acquired by geophones which are essentially accelerometers [38]. Geophones

detect the ground motion in a single axis. For accurate recording, three geophones can

be used to detect ground motion in three orthogonal axes (North, East, and Down)

and it is called three component geophone [5]. In onshore seismic, geophones are de-

ployed on land surface ready to record reflected S-waves [5]. Whereas in offshore seismic,

only hydrophones are deployed on the sea surface ready to record reflected P-waves [5].
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Moreover, hydrophones and geophones are used in offshore seismic when sensors are

deployed on the seabed. Usually each seabed node contains either a hydrophone and a

geophone, called 2-component node, or a hydrophone and 3-component geophone, called

4-component node.

2.3 Marine Seismic

In this section marine seismic methods in term of sensors deployment geometries and

data dimensionality are reviewed.

Offshore oil and gas reservoirs are hidden underneath the seabed. Offshore oil produc-

tion represents more than thirty percent of world’s oil production; hence there is an

increasing demand for marine seismic surveys for oil and gas reservoirs characterisation

and localisation. Marine seismic methods can be differentiated in terms of sensors types,

sensors deployment geometries and sensors densities.

2.3.1 Sensor Deployment Geometry

Towed streamers, Ocean bottom and vertical seismic profiling are common marine seis-

mic methods differed in sensors deployment geometry. One or many streamers are towed

behind the survey vessel. A single vessel could tow from one to sixteen streamers in a

length of 3 to 12 km [5]. Streamers and a vibrator (i.e., sound waves source) are usually

towed not more than few metres apart from each other on the sea surface by the same

vessel. Hydrophones are located in an isolated rubber tube one metre apart and every

12 to 25 metres length of tube are electrically connected [5]. To allow easy maintenance,

streamers are divided into sections (modular) every 25 to 50 metres [5]. Simple mecha-

nism of depth control birds are placed every 300 metres to keep the streamer within 4

to 10 metres depth [5]. Streamer’s tubes are filled with extruded foam so it can help in

streamers buoyancy and reduce wave propagation inside the streamer [5]. Towed stream-

ers are usually used to explore open and large areas. Although this method provides

adequate geological information, it is not enough for geoscientists to make decisions on

drilling. Figure 2.1 shows a simple diagram of a towed streamer for seismic imaging.

Receivers can be deployed at designated locations on seabed (i.e., ocean bottom geome-

try) and each receiver consists of a hydrophone and a 3-component geophone to acquire

higher resolution seismic images in which any hidden hazards such as gas pockets or
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Figure 2.1: A streamer of hydrophone towed behind a vessel equipped with a source of
waves to capture the reflected signals of different sub-seabed layers.

Figure 2.2: Ocean bottom nodes are deployed in the vicinity of oil and gas platform to
record the reflected signals of the different sub-seabed layers.

buried river channels can be detected. Seabed deployment is mostly adopted in the

vicinity of oil and gas platform or any sub-sea constructions. Traditional streamers are

almost impossible to be towed in the vicinity of any offshore constructions. The vessel

can be 100 metres long and 30 metres wide plus 160 km length of sixteen streamers.

Figure 2.2 shows an example of OBN deployment geometry. Multiple source vessels can

be used simultaneously in one survey if OBNs are deployed on large areas to shorten

the survey duration [5]. Vertical deployment geometry, called vertical seismic profiling,
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is applied while drilling in which seismic sensors are deployed in a well hole. The main

inherent advantage of this method is that high sampling rate can be achieved in record-

ing as the receivers are located in the well hole so that reflected waves do not need to

travel for long distances to be captured.

2.3.2 Data Dimensionality

There are three different types of the acquired seismic data. Two dimensional data 2D,

in which receivers are deployed in a line. The acquired data is the cross-sectional area

of the sub-seabed along the vessel sail line. A single streamer is towed behind a vessel is

an example of 2D seismic imaging acquisition. Three dimensional data 3D, in which the

sensors are deployed in a grid. Three dimensional model of sub-seabed can be constructed

by the multiple acquired cross-sectional areas. For example, several streamers are towed

behind a vessel or a mesh-like deployment of OBNs. Three-dimensional seismic currently

represents ninety percent of seismic surveys. When 3D seismic survey is being repeated

over time across the same area or patch, the acquired data then has a fourth dimension

4D. The extracted data can be visualised as spatial-temporal volume of crude reservoirs.

Figure 2.3 presents an example of 2D and 3D seismic images available from [36] and [39].

(a) (b)

Figure 2.3: An example of (a) a 2D seismic image acquired by deploying a single streamer
on the sea surface [36] and (b) a 3D seismic image acquired by deploying multiple
streamers to form a grid of hydrophones on the sea surface [39].
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2.4 Robotic Systems in Marine Seismic

Performance, safety, efficiency and cost-effectiveness can be greatly improved when

robotic systems are applied. Robotic systems are widely applied in various industrial

applications. Researchers in seismic acquisition are always keen to mitigate traditional

seismic methods limitations such as cost and intensive labour by implementing efficient

and cost-effective automated systems.

2.4.1 Autonomous Towed Streamers

The Widely scalable Mobile Underwater Sonar Technology (WiMUST) is a project

funded by the European Commission aimed at developing a swarm of AUVs for geophys-

ical and geotechnical surveys such as marine seismic imaging [40]. The main objective

of WiMUST project was to convert the traditional marine seismic surveys acquired by

towed streamers into a distributed, manageable and re-configurable system where the

sound source (i.e., vibrator) and the streamers are decoupled [40]. Each streamer in

WiMUST is towed by an AUV and the source is towed by the operating vessel as shown

in Figure 2.4. The project has been concluded in 2018; an overview of the navigation,

control and guidance of WiMUST project is provided in [41].

Figure 2.4: Streamers of hydrophones are separated from the source vessel and towed
by multiple AUVs; WiMUST project’s concept.

Wave glider is an autonomous marine vehicle which has been introduced by Liquid

robotics [42]. Wave glider vehicle is powered by ocean waves and it is comprised of a

16



float part and a submerged part, connected by an umbilical tether as shown in Figure

2.5 [43]. In 2014, Moldoveanu et al. carried out a field experiment in which they used

Figure 2.5: Wave glider vehicle schematics. Image courtesy of Liquid Robotics [43].

a wave glider to tow a single streamer of 31 metres length in a depth of 6 to 7 metres

below the sea surface over a shallow water area [44]. This field experiment was carried

out over the same area at the same time using OBNs. By comparing the recorded

reflected waves by both the towed streamer and OBNs, no significant difference was

found between them. However, towed streamer recorded data must be processed in

advance for noise removal. An OBN is comprised of a hydrophone and a 3-component

geophone and a towed streamer contains only hydrophones. In this field experiment,

only hydrophone data was compared. Another similar field experiment has been carried

out in 2016 by Moldoveanu et al. in which a 3D seismic sensor array is towed instead of

a simple streamer [45]. The 3D seismic sensor array is comprised of 15 hydrophones, a

buoyancy engine and orientation sensors. They observed only slight differences between

the 3D seismic sensor array recorded data and the OBNs recorded data. Frequency

components of the OBNs recorded data was slightly less than those in 3D seismic sensor

array. However, the signal to noise ratio in 3D seismic sensor array recorded results was

higher than those in a single streamer.

2.4.2 Autonomous Ocean Bottom Nodes Deployment

OBNs are deployed on the seabed by either a submarine or an ROV. Trilobit is a 4-

component OBN that was introduced by the geophysical services company CGG, it is
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composed of a hydrophone, a 3-component geophone, its own recording unit and its own

battery so that it can survive for up to 90 days on seabed [46]. Z3000 is another OBN

has the same features of Trilobit but with longer battery life [47]. MANTA is the latest

OBN launched by Seabed GeoSolution [48]. Likewise, MANTA has the same general

features of Z3000 and Trilobit but with a lighter weight and a smaller size. Those OBNs

are deployed on the seabed by ROVs or cables that tie them together and keep them

separated in mesh-like geometry i.e., cabled nodes. Usually they are being deployed in

a grid with 200-400 metres apart from each other [5]. The positional relative accuracy

of the ROV deployment is 5-10 metres in 2 kilometres water depth (independent of the

GNSS accuracy) [49]. Figure 2.6 shows a diagram of OBNs being deployed by ROVs. To

speed up the deployment process a cage loaded with OBNs is first deployed on the seabed

from which the ROVs are deploying the OBNs at some designated seabed positions.

Figure 2.6: Ocean bottom nodes represented by yellow cylinders are deployed in a grid
on the seabed by remotely operated vehicles in the vicinity of oil and gas platform.

OBNs deployment by ROVs is very costly as it requires the existence of ROV operating

vessel with its crews on board. Nevertheless, the cost can sharply increase when it comes

to deep water and wide coverage deployment.

Autonomous Robotics Limited is currently working on a project called Flying Nodes,

the next generation of ocean bottom sensing acquisition technology for which they are

manufacturing a swarm of small size AUVs for autonomous deployment of OBNs [24].

Their aim is to convert each OBN to an AUV so there will be no need for an ROV to
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deploy them. Each AUV in the swarm will be deployed from around 20 metres depth of

sea surface and descend to their pre-programmed seabed positions with at least the same

accuracy of ROV deployment i.e., 5-10 metres in 2 kilometres water depth. Similar to

the Flying Nodes, another project called SpiceRack by CGG [6] and Saudi Aramco [50],

on the other hand, focuses on shallow water deployment. Both SpiceRack and Flying

Nodes are still under development. Figure 2.7 illustrates the idea of utilising a swarm of

AUVs for autonomous ocean bottom seismic imaging where each AUV is equipped with

a 4-component OBN. Holloway et al. have presented an interesting feasibility study in

Figure 2.7: A swarm of AUVs utilised for autonomous ocean bottom seismic imaging.
Each AUV is equipped with an ocean bottom seismic node.

[51] where they compared the total cost and time needed to deploy 2501 OBNs with 200

metres spacing by cables, ROVs or autonomous nodes i.e., Flying Nodes. They found

that an ocean bottom seismic survey can be completed in 90 days if ROV deployment is

adopted regardless the number of source vessels. However, when autonomous deployment

such as Flying Nodes or SpiceRack is adopted, the time needed to complete an ocean

bottom seismic survey significantly decreases (i.e., from 53 to 31 days) when one more

source vessel is used as shown in Figure 2.8 [51]. Autonomous deployment method of

OBNs such as Flying Nodes would always shorten the survey duration and reduce the

total cost regardless the number of source vessels as shown in Figure 2.8 and regardless

nodes separation as shown in Figure 2.9 [51].
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Figure 2.8: The number of source vessels effect on total survey cost and survey duration
in ocean bottom seismic imaging by three different deployment methods [51].

Figure 2.9: Ocean bottom nodes separation effect on total survey cost in three different
deployment methods - data depicted by the dashed lines are projected [51].

However, there are several challenges associated with autonomous deployment of OBNs

for seismic imaging, it is expected that such system will have a significant share of total

seismic surveys when it becomes commercially available as total survey cost and dura-

tion are considerably reduced. Challenges associated with underwater swarm systems

including underwater communications, AUV’s control, formation control, stabilisation,

path planning, efficient energy consumption and underwater localisation. Underwater

swarm localisation is one of the most enabling technology for autonomous deployment of
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OBNs. Many challenges such as AUV’s control, formation control, AUV’s stabilisation

and path planning required the AUVs to be localised first.

2.5 Conclusion

Ocean bottom seismic imaging acquired by OBNs can greatly improve seismic data qual-

ity to either make an better informed decision on drilling or enhance the productivity of

an existing oil field. OBNs are 4-component seismic sensors, each is comprised of a hy-

drophone, a 3-component geophone, a battery and a recording unit. OBN are currently

predominately deployed by ROVs. It is time consuming, very costly and the number of

OBNs that can be deployed by ROVs is very limited. A swarm of AUVs where each

AUV is equipped with a 4-component seismic sensor has been proposed to reduce the

cost and the duration of the current deployment methods of OBNs.

There are various technical challenges for autonomous deployment of OBNs such as

uderwater swarm localisation, AUV’s control, formation control, stabilisation and path

planning. Underwater swarm localisation importance is emphasised in autonomous de-

ployment of OBNs systems as the location of each individual swarm’s node (i.e., AUV

equipped with ocean bottom seismic sensor) is required to be known and tracked all the

time during operation. A collaborative research has been established with Autonomous

Robotics Ltd as part of this research to mitigate underwater swarm localisation chal-

lenges for the Flying Nodes project.
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Chapter 3

Underwater Localisation

Literature

3.1 Introduction

The wide variety of sub-sea applications such as deep sea exploration, environmental

monitoring, geological and ecological research, and samples collection have enabled and

motivated Underwater Wireless Sensor Network (UWSN) localisation researchers for

decades. In an UWSN application, a swarm of sensor nodes are deployed to commu-

nicate and collaboratively achieve various predefined tasks in underwater environments

such as ocean bottom seismic imaging. In order to successfully complete assigned mis-

sions, locations of individual sensor nodes must be known and tracked during operation

for location aware applications. Individual sensor node’s location must also be known

and tracked in underwater swarms application for guidance and control in autonomous

deployment of sensor nodes.

Usually, an UWSN consists of a few nodes with known positions (i.e., reference nodes)

and a large number of nodes with unknown positions i.e., unknown nodes. Underwater

environments inherently introduce many constraints including limited communications

bandwidth, long communications latency in case of acoustic communications and nodes

drifting. Therefore, unknown nodes usually rely on references nodes for localisation up-

dates. Each node in an UWSN could be static or mobile and some of the nodes maybe

situated on the sea surface for GNSS information and some could be located sub-sea sur-

face. An unknown node interrogates the network by broadcasting a signal (e.g., acoustic
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signal) when it needs to be localised. The localisation is then performed given the refer-

ence nodes’ positions and the distance between the unknown node and reference nodes

through e.g., the Time of Arrival (ToA) or Time Difference of Arrival (TDoA) methods

[52]. Reference nodes can obtain their positions by i) the GNSS if they are situated on

the sea surface ii) keeping them anchored at certain known positions i.e., anchor nodes

iii) external ToF acoustic navigation aid.

The localisation of each individual sensor node in a mobile UWSN (i.e., AUVs swarm)

relies on its proprioceptive sensors (i.e., IMU) with high update rate and exteroceptive

sensors with low update rate. External navigation aids usually rely on reference locations

and range measurements that can be achieved by means of ToF methods which require

robust underwater communications. The importance of the underwater communications

(i.e., physical layer and MAC layer) is further emphasised in cooperative localisation

where each localised sensor node may broadcast (depends on some predetermined crite-

ria) localisation aids to their neighbouring nodes.

The remainder of this chapter is organised as follows. Section 3.2 explains the backbone

system of underwater navigation (i.e., Inertial Navigation System (INS)) and the EKF

for pose estimation and sensor fusion. Section 3.3 reviews selected underwater locali-

sation algorithms and introduces the readers to the trilateration problem and the most

common methods of solving it in literature. A brief review of underwater communica-

tions is given in section 3.4. Finally, this chapter is concluded in section 3.5.

3.2 Inertial Navigation System

Mobile sensor nodes (i.e., AUVs) rely predominately on their proprioceptive sensors such

as IMU for localisation. Although IMU-based localisation (i.e., INS) is prone to drift,

the recent development in Microelectromechanical systems (MEMS) technology has en-

abled the IMU sensors development. A three-axis gyroscope, three-axis accelerometer

and three-axis compass are often encased in a single chip and referred to as nine-axis

IMU. Some the industrial-grade electronic navigation boards consist of a 9-axis IMU

and optionally run Kalman filter to estimate Roll, Pitch and Yaw angles as well as to

fuse external navigation aids i.e., from the GNSS [53]. The navigation system that fuses

the measurements of the gyroscope, accelerometer and magnetometer to estimate the

vehicle’s orientation is called Attitude Heading Reference System (AHRS) whereas the

INS estimates the vehicle’s position by double integrating the accelerometer’s measure-

ments given the initial position of the vehicle. The process of determining the vehicle’s
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position, velocity and attitude from the IMU’s raw measurements through solving the

system motion’s differential equations is often referred to as INS mechanisation or strap-

down mechanisation. Strapdown relates to the way the inertial sensors attached to the

vehicle’s body as they can be either directly strapped to the structure of the vehicle

or gimbaled [54]. Gimbaled IMU is mechanically complicated and not as common as

strapdown ones. We only consider a strapdown INS in our application for mobile sensor

nodes (i.e., AUVs) navigation.

The following frames definitions and nomenclature are used in the inertial measurements:

• The body frame of reference b is the IMU sensor frame that all inertial mea-

surements are resolved with respect to. Its origin is located at the centre of the

accelerometer triad and aligned with the casing.

• The inertial frame of reference i is the frame in which the IMU’s measurements

are returned with respect to. Its origin is located at the centre of the earth and its

axes are aligned with the stars.

• The earth frame of reference e rotates with earth and its origin is located at the

centre of the earth.

• The navigation frame of reference n is the frame in which we are interested to

localise the AUV. It is often considered stationary with respect to the earth unless

the moving body travels for long distances (i.e., comparable to the size of the earth)

then it should be rotated with the earth. It will always considered stationary with

respect to the earth in our application for AUV navigation.

A vector’s frame of reference is indicated by a superscript e.g vector A is written as bA

if it is in b frame of reference and the rotation matrix that rotates bA from b to n frame

of reference is nRb as nA = nRb
bA.

The gyroscope returns the AUV’s angular velocity iωb,t at time t in the inertial frame

of reference i corrupted by a time-varying bias Bt and noise eω,t and therefore the row

measurements model of the gyroscope yω,t is

yω,t = iωb,t + Bt + eω,t (3.1)

where the gyroscope error eω,t is drawn from a Gaussian distribution N (0,Σω) : Σω ∈
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R3×3 and the bias Bt can be modelled as a random walk by

Bt+1 = Bt +WB,t (3.2)

where WB,t ∼ N (0,ΣB) that represents how random the bias is.

Likewise, the accelerometer measures the force in the body frame of reference bft at

each time step t and its readings are corrupted by a time-varying bias At that can be

modelled as a random walk similar to Equation 3.2 and zero mean Gaussian noise ea,t;

the accelerometer measurements ya,t are then modelled by

ya,t = bft +At + ea,t (3.3)

bft = bRn,t(
nat −n gt) (3.4)

where bRn,t rotates the resultant vector of (nat−n gt) from the navigation n to the body

frame b. The accelerometer measurements are dominated by the gravity vector ngt and

therefore the linear acceleration nat can be neglected

ya,t = −bRn,t
ngt +At + ea,t (3.5)

At+1 = At +WA,t (3.6)

where WA,t ∼ N (0,ΣA) that represents how random the bias is.

On the other hand, the magnetometer complements the accelerometer to find the AUV’s

heading around the gravity vector i.e., yaw angle. The local magnetic field flux density

of the earth nm has a horizontal and a vertical components, the ratio between them

depends on the dip angle [55]. The dip angle δ changes with the experiment’s location

on the earth e.g. at the earth’s magnetic north pole the dip angle is equal to 90◦ and

therefore the local magnetic field nm would only have a vertical component [55]. The

local magnetic field of the earth nm can be expressed in terms of the dip angle as

nm = (cos δ 0 sin δ)> : ||nm|| = 1 (3.7)

Given the local magnetic field of the earth nm, the magnetometer measurements ym,t

are modelled by

ym,t = bRn,t
nm+ em,t (3.8)

where em,t ∼ N (0,Σm) : Σm ∈ R3×3 represents the magnetometer measurement noise.
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The local magnetic filed of the earth can be accurately determined from geophysical

studies [56] as it solely depends on the experiment’s location. The integration of the

gyroscope measurements estimates the sensor’s orientation and the double-integration

of the accelerometer measurements estimates the sensor’s position after subtracting the

earth’s gravity. The integration process and the noisy measurements of the IMU result

in integration drift and therefore external navigation aids must be fused. The problem

of integration drift is even exacerbated when a low cost IMU is utilised.

Vehicle’s position and orientation can be estimated based on the IMU measurements and

an external navigation aid in many different ways. For example, position and orientation

estimation can be interpreted as an optimisation or filtering problem [55]. The use of

Gauss-Newton optimisation in this framework is detailed in [55]. However, Kalman

filtering is the mostly adopted method in literature for fusing IMU measurements such as

magnetometer with gyroscope measurements to estimate the geomagnetic vector as well

as IMU measurements with an external navigation aid e.g. GNSS or USBL measurements

in underwater navigation. A considerable amount of literature has been published on

Kalman filter based externally aided Dead Reckoning (DR) navigation; see for example

[57, 55, 58, 59].

3.2.1 Pose Estimation

In pose estimation, the state vector includes the position npt, the velocity nvt and the

orientation nqb,t of the vehicle. The position and velocity dynamics are given by

npt+1 =n pt + ∆Tnvt +
∆T 2

2

(
nRb,t(ya,t −At) +n g + ea,t

)
(3.9)

nvt+1 =n vt + ∆T
(

nRb,t(ya,t −At) +n g + ea,t
)

(3.10)

where ∆T is the time step. The orientation nqb,t is encoded in term of linearisation

point as unit quaternion nq̃b,t and in term of orientation deviation as a rotation vector

ηt; given by
nqb,t = exp

( η̄t
2

)
�n q̃b,t (3.11)

where the quaternion multiplication is denoted by �, ηt is expressed in the navigation

frame, η̄t =
(
0 (ηt)

>)> and exp(η̄) is given by

exp(η̄) =

(
cos ||η||2
η
||η||2 sin ||η||2

)
(3.12)
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where ||η||2 denotes the L2-norm of vector η. The justification of this quaternion en-

coding in term of the linearisation point and the orientation deviation is detailed in [60]

and [61] and used in the navigation framework in [55]. The quaternion dynamics of the

orientation is given by

nqb,t+1 =n qb,t � expq
(∆T

2
(yω,t − Bt − eω,t)

)
(3.13)

where expq(η) = exp(η̄). The state space model of vector xt for pose estimation is then

given by
npt+1

nvt+1

nqb,t+1

 =


npt + ∆Tnvt + ∆T 2

2

(
nRb,t(ya,t −At) +n g + ep,a,t

)
nvt + ∆T

(
nRb,t(ya,t −At) +n g + ev,a,t

)
nqb,t � expq

(
∆T
2 (yω,t − Bt − eω,t)

)
 (3.14)

where ep,a,t ∼ N (0,Σa), ev,a,t ∼ N (0,Σa) and eω,t ∼ N (0,Σω) with Σa = σ2
aI3 and

Σω = σ2
ωI3: I3 is 3×3 identity matrix. In case of external navigation aid (yp,t) (i.e., GNSS

or USBL in underwater navigation) and magnetometer measurement (ym,t) availability,

the measurement model yt can be given by

yt =

(
yp,t

ym,t

)
(3.15)

with

yp,t =n pt + ep,t (3.16)

ym,t = bRn
nm+ em,t (3.17)

where ep,t ∼ N (0,Σp) and em,t ∼ N (0,Σm). Note that in 3.16 it is assumed that

the measurements provided by the external navigation aid are pre-processed positioning

data.

3.2.2 The Extended Kalman Filter (EKF)

The EKF is well proven and commonly known technique for fusion of IMU measure-

ments and external navigation aids [58]. However, there are different architectures of

the navigation filter design, namely direct integration, indirect feed-forward integration

and indirect feedback integration [62]. Each approach of designing the navigation filter

of the state estimator leads to different performance. In direct integration the set of
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variables are directly related to the motion model e.g. position and orientation are the

estimated variable in the EKF. However, the variables’ errors (i.e., position and orien-

tation errors) are instead estimated in the indirect navigation filter and it is subtracted

from either the motion model variables in the feed forward model or from the estimated

motion model variables of the previous time step in the feedback model [62]. Indirect

navigation filter is the mostly adopted architectures in the literature and third party

implemented libraries [58, 63, 64].

External navigation aids e.g., GNSS or USBL measurements can be integrated with

the vehicle’s INS estimated position and velocity in three different ways based on the

external navigation aid data, namely loosely coupled, tightly coupled and ultra-tightly

coupled [65]. In loosely coupled way the GNSS data is pre-processed so that the sensor’s

position and velocity are integrated with the INS estimated position and velocity. In

contrast, GNSS row data (i.e., pseudoranges and pseudorange rates) are fused with the

INS estimated position and velocity in the tightly coupled way. Likewise, raw GNSS

data is fused in the ultra-tightly coupled way but with some differences in the architec-

ture of the GNSS receivers.

External navigation aids in underwater navigation such as USBL, Long Baseline (LBL)

fusion with the AUV’s INS estimated position and velocity is loosely coupled as the un-

derwater external navigation aid means are normally integrated with their own filters to

process the raw data (i.e., range measurements and ToA) to output the target’s position

and velocity [66, 67]. In cases where the external navigation aid means (i.e., USBL or

LBL) are custom-built, tightly coupled approach can be adopted [68] and [69]. The EKF

is used to find the best estimate of the sensor’s position and orientation by the lineari-

sation of the motion model i.e., INS model. The EKF linearises the nonlinear model

and measurement model at some operating states and apply the original Kalman filter

update rules and it can be interpreted as one iteration of Gauss-Newton optimisation

[55] and hence it is computationally efficient. The EKF implementation is divided into

time update or prediction equations and measurement update or correction equations

[23]. Assume that the measurement noise is additive, the process noise and measurement

noise are zero-mean Gaussian with constant covariance. The nonlinear dynamic model

and the nonlinear measurement model are given in Equation 3.18 and Equation 3.19

respectively,

xt+1 = ft(xt, ut, wt) (3.18)

yt = ht(xt) + et (3.19)
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where wt ∼ N (0, Q) and et ∼ N (0, R): Q and R are error covariance matrices. The

following shows the equations of the EKF to estimate the state vector x̂ by performing

a time update using the model in 3.18 to predict the state of the next time step

x̂t+1|t = ft(x̂t|t, ut, wt) (3.20)

Σt+1|t = FtΣt|tF
>
t +GtQG

>
t (3.21)

with

Ft ≈
∂ft(xt, ut, wt)

∂xt

∣∣∣ wt=0
xt=x̂t|t

(3.22)

Gt ≈
∂ft(xt, ut, wt)

∂wt

∣∣∣ wt=0
xt=x̂t|t

(3.23)

The prior state estimate at time t + 1 given the measurements up to time t is denoted

by x̂t+1|t and its covariance matrix is denoted by Σt+1|t. Likewise, the posterior state

estimate is denoted by x̂t|t which is the state estimate at time t up to time t and its

covariance matrix is denoted by Σt|t. The EKF performs a measurement update using

the model in 3.19 to update the predicated state estimate as

x̂t|t = x̂t|t−1 +Kt(yt − ŷt|t−1) (3.24)

Σt|t = Σt|t−1 −KtStK
>
t (3.25)

where

St = HtΣt|t−1H
>
t +R, Kt = Σt|t−1H

>
t S
−1
t (3.26)

and

ŷt|t−1 = h(x̂t|t−1), Ht ≈
∂ht(xt)

∂xt

∣∣∣
xt=x̂t|t−1

(3.27)

Time and measurement updates in the EKF are performed iteratively to estimate the

state vector and its covariance matrix. The matrices Ft, Gt and Ht can be computed

given the state space model in Equations 3.14 and 3.15 to perform the EKF for pose

estimation. Interested readers are referred to [55] for the complete derivation of the EKF

for pose estimation.
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3.3 Underwater Localisation Algorithms

ToF acoustic navigation methods such as LBL and USBL have dominated the underwater

localisation industry since 1960’s [70]. The LBL is an acoustic localisation system where

the distances among the baseline stations (i.e., transceivers) are long relative to the

distance between them and the vehicle i.e., transponder. The baseline stations are

fixed at some known positions on the sea surface or on the seabed as shown in Figure

3.1a. The vehicle interrogates the baseline station network by broadcasting a signal and

each baseline station would respond back with its location; given the sound speed, range

measurements can be obtained by ToF and therefore the AUV’s position can be obtained

by trilateration [71].

The Short Baseline (SBL) has the same working principles of the LBL but the distances

among the base stations do not exceed 20-50 meters. The base stations are normally

mounted on different locations on the operation vessel as shown in Figure 3.1b.

The USBL is a hull-mounted system on a surface vehicle or buoy with hydrophones

arrays (i.e., transducer) separated by very short distances typically 10 cm apart where

acoustic signals ToA and phase delays are detected to triangulate a limited number of

transponders’ positions within localisation accuracy of 0.13-0.27% of slant range e.g., 10

AUVs can be navigationally aided with an update rate of 1 Hz by a hull-mounted USBL

system from Sonardyne [66]. A larger number of AUVs can be navigationally aided by

the USBL but with a lower update rate. The error characteristics of Sonardyne’s USBL

system [66] is utilised throughout the thesis and a small number of AUVs (i.e., 10) are

typically navigationally aided with an update rate of 1 Hz due to the swarm mobility.

(a) (b) (c)

Figure 3.1: (a) Long Baseline (b) Short Baseline (c) Ultra-short Baseline.

Readers are referred to [72] and [73] for details on those systems. The localisation

accuracy of ToF acoustic navigation can be further improved through careful utilisation

of optimal filtering or sensor fusion techniques such as Kalman filtering [74]. The number
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of underwater targets that can be localised in ToF acoustic navigation methods is limited

and the update rate decreases proportionally with the number of targets due to Time-

division multiple access (TDMA) utilisation in network interrogation [70]. Therefore, a

large number of underwater localisation algorithms have been proposed in literature to

obtain mass network localisation based on a few localised nodes [75]. Each localisation

algorithm has its own merits and limitations which make each algorithm suits certain

marine applications and underwater operating conditions but not all.

3.3.1 Sensor Network Localisation

A large and growing body of literature has investigated the localisation problem in

UWSN [76, 77, 78]. In [79], authors proposed a localisation scheme Large-scale Local-

isation scheme with No Prediction (LLNP) for large-scale underwater sensor network.

The authors in [80] extended the work proposed in [79] and introduced a new localisa-

tion scheme Scalable Localisation scheme with Mobility Prediction (SLMP). Both LLNP

and SLMP schemes considered scenarios of 3-dimensional UWSN that consists of anchor

nodes with high communications capability and ordinary nodes i.e., unknown nodes. The

UWSN considered in both LLNP and SLMP schemes consists of at least four surface

buoys, anchor nodes and unknown nodes. Surface buoys are localised by the GNSS and

anchor nodes have high communications capabilities so that they can contact the surface

buoys for localisation. Both LLNP and SLMP schemes attempt to localise the unknown

nodes. Distances among nodes are estimated in both schemes through ToA. In LLNP,

authors assumed that anchor nodes are localised by contacting surface buoys. Unknown

nodes localisation process is elaborated in Figure 3.2. During unknown node localisation

process, each node maintains a counter, n, of broadcasted localisation messages with a

predefined threshold of N and a counter, m, of reference nodes to which the distance is

known with a threshold of 4.

The confidence value of any anchor node is set to 1 and λ is the confidence threshold

which controls the possibility of a localised unknown node to become a new reference

node. The confidence threshold in both LLNP and SLMP schemes was set to 0.98. The

authors successfully demonstrated that the proposed scheme outperforms the recursive

scheme proposed in [81] and the euclidean scheme proposed in [82].

Based on the group movement properties of underwater objects, the authors extended

the proposed LLNP scheme to the SLMP scheme presented in [80]. Researchers in

hydrodynamics showed that underwater objects move in semi-periodic manner [83] and

31



Figure 3.2: Unknown node localisation process in LLNP [79]

[84]. The SLMP is one of the very few algorithms investigated the impact of nodes

location history on its next location. Similar to LLNP, anchor nodes are assumed to be

localised by contacting four or more surface buoys. However, both anchor nodes and

unknown nodes attempt to predict their mobility pattern based on a linear prediction

method [85] and nodes mobility patterns are exchanged among nodes. Unknown nodes

localisation process in SLMP is to a great extent similar to that in LLNP except the

linear mobility prediction part. Interested readers can refer to [80] for more details.

Figure 3.3 shows the average normalised localisation error with node density in LLNP

and SLMP under the same simulation sittings. The authors in [79] and [80] defined the

node density as the expected number of nodes that lies in a node’s communication range.

The power consumption is a crucial aspect of underwater wireless sensor nodes survival

and localisation, the researchers in [86] proposed a reactive localisation algorithm. As

its name implies, a node is localised when an event is detected [86]. Nodes that detect

an event broadcast a “hello” message includes their ID and their energy level. By K-

node coverage algorithm [86] four anchor nodes are detected and received the message.

Anchor nodes reply back with their location and hence unknown node can localise itself
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Figure 3.3: Relationship between the normalised localisation error to the node’s com-
munication range and the node density in LLNP [79] and SLMP [80].

by multilateration [86].

On the other hand, a more power consuming but more accurate localisation algorithm

was proposed in [87]. The authors assumed that there are three anchor nodes (A, B

and C) with known positions and one unknown node (S) [87]. (A) is a master node

which periodically broadcasts beacon messages. Node (B) starts broadcasting as soon

as it receives messages from node (A) and node (C) starts broadcasting when it receives

messages from node (A) and node (B). Unknown node (S) will not run its localisation

algorithm till it receives messages from all other nodes (A, B and C). Time differences

of receiving and broadcasting will be included in the transmitted messages. Hence, un-

known node (S) will be able to measure its distance to all other anchor nodes by TDoA

and localise itself [87]. The whole algorithm would fail and put on hold, if an anchor

node e.g. (B) does not receive a message from anchor node e.g. (A). Therefore, a time-

out method was proposed in an enhanced version [88] which significantly improves the

localisation speed. The researchers in [52] went even further to improve the previous

algorithm in which they increased reference nodes number. A localised unknown node

can act as a reference node and, therefore, any unknown node lies outside anchor nodes

communication range can be localised by the recent localised unknown nodes.

In all above-mentioned algorithms, wave propagation characteristics and sound speed

variation in water column are not considered. All algorithms assumed that acoustic

waves propagate in straight lines and acoustic signals have constant speed in water.
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Acoustic waves propagation and speed in water depend on salinity, depth and temper-

ature [89]. Localisation using ray tracing presented in [90] considered the propagation

path of acoustic signals and sound speed variation with water depth. Simulation results

showed that localisation accuracy has been improved. Another algorithm proposed in

[91] “dive and rise” considers a realistic underwater mobility model called meandering

current mobility [92]. A probabilistic approach have been considered for the localisa-

tion problem of a mobile UWSN that moves freely with the ocean tides. Moreover, the

authors in [93] have investigated the probabilistic locality model and k -trees theory to

estimate the uncertainty associated with a localised node.

3.3.2 Least-Squares Trilateration

Locating an object by its range measurements (e.g., achieved by means of ToF) to three

reference locations is known as trilateration. The term multilateration is used when

there are four or more references. This problem in its simplest form can be interpreted

as finding the intersection of four spheres. The three-dimensional localisation problem

can be converted into its 2D equivalence via orthogonal projection [94]. Figure 3.4

shows a 2D trilateration problem, with no error in range measurements, interpreted

as finding the intersection of three circles. A considerable amount of literature has

been published on solving the trilateration problem in robotics. In principle, an object

Figure 3.4: Two-dimensional trilateration problem of determining an object (red solid
circle) location X given the location of three stations (green diamonds) Ai and the range
measurements/distances di (i = 1, 2, 3).
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location (x, y, z) can be determined given the location of multiple references (xi, yi, zi)

and their corresponding range measurements di by solving a system of equations in the

form of Equation 3.28.

(x− xi)2 + (y − yi)2 + (z − zi)2 = d2
i (3.28)

Closed-form and numerical solutions have been proposed in the literature to solve the

trilateration problem. A closed-form solution has been presented by Thomas and Ros

in [95] that derives a formula containing a few numbers of Cayley-Menger determinants

[96] related to the geometry of tetrahedra. Coope in [97] presented a rather generic

closed-form method to find the intersection points on I spheres in RI . All closed-form

solutions have relatively low computational complexity and do not accommodate the

situation when a solution does not exist. However numerical methods are more compu-

tationally complex but they estimate the best solution in case of unique intersection point

of the spheres does not occur due to for example range measurements errors. A numer-

ical method called Taylor series estimation was presented in [98] to iteratively improve

the initial guess by finding the local linear least-sum-squared-error correction. A study

by Nadivi et al. compared three statistical methods in the trilateration context namely

linear least-squares estimator, iteratively re-weighted least-squares estimator and nonlin-

ear least-squares estimator and showed that nonlinear least-squares estimators perform

the best if error in range measurements is considered [99]. In nonlinear least-squares the

problem of trilateration in Equation 3.28 is re-written as in Equation 3.29. Equation

3.29 can be minimised either by local deterministic optimisers such as Gauss-newton

[100] that requires finding the derivative to minimise the residual of Equation 3.29 or by

global stochastic optimisers such as Particle Swarm Optimisation (PSO) [101].

min
X

I∑
i=1

(
||X−Ai||2 − di

)2
(3.29)

where ||.||2 denotes the Euclidean norm, I is the total number of reference nodes and Ai

is the position of reference node of index (i) i.e., Ai =
(
xi
yi
zi

)
and di is the corresponding

distance between X and Ai. We seek X coordinates i.e., X =
(
x
y
z

)
such that Equation

3.29 is minimised.

Although local deterministic optimisers such as Newton’s methods rely heavily on the

initial guess and they do not converge in some cases where singularities may occur

i.e., when the references are almost aligned, trilateration has been usually solved by
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Newton’s methods in literature [100]. The Gauss-Newton algorithm [100] starts with an

initial guess X(0) till the cost Equation 3.29 is iteratively minimised. Given the residual

functions ri(X) = ||X−Ai||2 − di, Gauss-Newton step proceeds as follows

X(s+1) = X(s) − (Jr
>Jr)

−1Jr
>r(X(s)) (3.30)

where the superscript (s) is the iteration index, r(X) =

( r1(X)

...
rI(X)

)
is the vector of residu-

als, the symbol > denotes matrix transpose and Jr is the Jacobian matrix of r(X). This

iterative process is carried out until either the maximum number of iteration is reached

or no further improvement is achieved i.e., ||X(s) −X(s−1)||2 is lower than a predefined

threshold.

In general, global stochastic optimisers tend to perform better in nonlinear least-squares

problems but they are computationally expensive. PSO starts with initialising a set

of candidate solutions (particles) randomly over the search space, each particle keeps

updating its best experience (Pbest) over the objective function and the algorithm keeps

updating a record of the entire swarm’s best experience (Gbest) over the objective func-

tion. The velocity Vj and the position Xj of each particle j are then determined in every

iteration based on (Pbest) and (Gbest) according to the following formula

V
(s+1)
j = ωV

(s)
j + c1r1

(
Pbest

(s)
j −X

(s)
j

)
+ c2r2

(
Gbest(s) −X

(s)
j

)
(3.31)

X
(s+1)
j = X

(s)
j + V

(s+1)
j (3.32)

where (s) is the iteration index, c1 and c2 are two positive constants, r1 and r2 are

two randomly generated numbers ∼ unif(0, 1), ω is the inertia constant such that

ω = 0.9 − (0.005s), Pbest is the best position particle based on its own experience

and Gbest is the global best position particle based on the entire swarm’s experience.

The constants c1 and c2 are typically set to 2 as per the common practice of PSO [102].

In PSO each particle represents a candidate solution and particles are randomly gener-

ated over the search space at the first iteration. Each particle X
(s)
j is evaluated at the

iteration (s) on the objective function i.e., Equation 3.29. Pbest and Gbest are updated

at each iteration accordingly. Each particle’s velocity and position are then updated as

in Equations 3.31 and 3.32 respectively.

36



Zhou in [103] proposed an algorithm with low computational complexity and high oper-

ational robustness for solving the nonlinear least squares trilateration /multilateration

problem in a closed-form solution using standard linear algebra techniques. In other

words, the algorithm in [103] can find the best approximation in a closed-form solution

even if the solution cannot be found using others closed-form methods due to errors in

range measurements. The nonlinear least squares trilateration /multilateration problem

in Equation 3.29 can be rewritten as

min
X

I∑
i=1

(
(Ai −X)>(Ai −X)− d2

i

)2
(3.33)

Consider a matrix H where H is obtained by Equation 3.34 and the k-th row of H is

denoted by h>k .

H = −2

I

I∑
i=1

AiA
>
i + 2cc>

c =
1

I

I∑
i=1

Ai

(3.34)

A matrix of (n − 1) × n can be be constructed as H′ = [ h1−hn,...,hn−1−hn ]> where n =

rank(H). Using orthogonal decomposition [104], the orthogonal matrix Q and the upper

diagonal matrix U can be obtained, H′ can be obtained by

H′ = QU (3.35)

Consider a new matrix f defined by Equation 3.36 where the k-th component of f is

denoted by fk.

f = a + Bc + 2cc>c (3.36)

where a and B are defined as in the following

a =
1

I

I∑
i=1

(
AiA

>
i Ai − d2

iAi
)

B =
1

I

I∑
i=1

(
2AiA

>
i − (A>i Ai)I + d2

i I
) (3.37)

A vector of n− 1 elements can be constructed as f ′ = [ f1−fn,...,fn−1−fn ]>.

37



Given the orthogonal matrix Q and f ′, a matrix V is defined by

V = Q>f ′ (3.38)

Consider a matrix q where qk is the k-th component of q; q1 and q2 are defined by

q1 = (
u12v2

u11u22
− v1

u11
) + (

u12u23

u11u22
− u13

u11
)q3

q2 = − v2

u22
− u23

u22
q3

(3.39)

where vk is the k-th component of V and ukj is the (k, j) element of the upper diagonal

matrix U. The following Equation 3.40 represents a valid constraint as q2
1 +q2

2 +q2
3 = q>q

q2
1 + q2

2 + q2
3 = −1

I

I∑
i=1

A>i Ai +
1

I

I∑
i=1

d2
i + c>c (3.40)

The parameters q1, q2 and q3 can be obtained by solving the equations in 3.39 with

Equation 3.40 as we have 3 unknowns and 3 equations. Given q and c vectors, the

unknown X (i.e., AUV’s position) can be obtained from the following linear equation

X = q + c (3.41)

Interested readers are referred to [103] for the mathematical derivation of the the afore-

mentioned equations.

The three methods are implemented and compared to solve the least-squares multilater-

ation problem i.e., Gauss-Newton [100], PSO [101] and analytical closed-form approach

[103]. Monte-Carlo simulations of 100 random walkers in a confined region of 100 m3

was considered to compare the three aforementioned nonlinear least-squares solvers for

the multilateration problem. If any 3 or more walkers are within a communication range

of 25 m of another walker, trilateration/multilateration is performed with zero error in

range measurements. The following histograms compare the accuracy of each method

i.e., Gauss-Newton (local gradient-based optimiser), PSO (global stochastic optimiser)

and analytical approach presented in [103] in solving the least-squares trilateration/mul-

tilateration problem. The three aforementioned methods have been adopted to solve the

least-squares trilateration/multilateration problem on the exact same network topology

for each simulation step. The trilateration/multilateration process has been carried out

around 15000 times for each method/optimiser. The maximum number of iteration and

the population size for the PSO were set to 200 iterations and 300 particles.

38



Figure 3.5: Histograms of mean multilateration error of around 15000 multilateration
process carried out in 100 walkers (nodes); The vertical line in each histogram represents
the mean error of the entire simulation.

Given that Equation 3.29 is a noncovex problem that may have local exterma, PSO

performs the best in minimising it as PSO method is capable of exploring the entire

solution space due to its population-based nature. On the contrary, Gauss-Newton

[100] heavily relies on the initial guess (i.e., the proximity of the initial guess to an

extremum). Although, the analytical approach presented in [103] is the least accurate,

it is a highly computationally efficient approach and it may perform well if Equation

3.29 is convexified as in [105]. Figure 3.5 clearly shows the superior performance of

PSO [101] over the analytical approach [103] and Gauss-Newton [100] in solving the

multilateration problem. The entire swarm mean localisation error when the analytical

approach [103], Gauss-Newton [100] and PSO [101] are adopted is 6.82 m, 1.76 m and

0.089 m respectively. There is an improvement of 74% in mean trilateration error when

Gauss-Newton optimiser is compared to the analytical approach presented in [103] and

an improvement of 94% when PSO is compared to Gauss-Newton. Therefore, PSO is

adopted in subsequent chapters to solve the least-squares trilateration/multilateration

problem.

3.3.3 Underwater Multi-vehicle Localisation

Over the past two decades, multi-agent and swarm robotic systems have become a very

attractive research area as it has been established, in many applications, that swarm
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robotics can provide relatively low-cost solutions when tasks are too complicated or

when wide region coverage is required e.g. surveillance missions [9]. A large and growing

body of literature has investigated swarm robotic research [9, 106]. Sahin in [9] identi-

fied five criteria to distinguish swarm from other multi-agent robotic systems, namely

autonomous robots, relatively incapable individually, large number of robots, a few ho-

mogeneous groups of robots and local sensing capability.

Localisation is one of most investigated research topics in terrestrial multi-robot and

swarm systems [107, 108]. Most terrestrial and aerial swarm localisation algorithms re-

ported in the literature are not directly applicable to underwater robotic swarm systems

as it is always assumed that information among swarm nodes can be easily exchanged.

The severely limited bandwidth and long latency of the underwater acoustic communica-

tions limit the number of AUVs that can be deployed at once to collaboratively complete

a mission [19, 20, 21]. Underwater multi-agent robotic systems mainly rely on acoustic

communications to exchange information among team members with an average prop-

agation speed of 1500 m/s (i.e., speed of sound in water) with a maximum bit rate of

around 60 kbps. On the contrary, information among members of multi-agent terrestrial

or aerial robotic systems are exchanged in the speed of light of 3×108 m/s with bit rate

in Mbps. In addition, the high cost of maritime assets and sea-trials in comparison to

aerial and terrestrial assets has limited the deployment of underwater swarm systems.

Much of the recent research in cooperative multi-agent maritime systems has focused

on the provision of path planning algorithms for oceanic field sampling [109, 110]. A

fleet of three gliders has been deployed for temperature observations in [111] and a

fleet of six gliders has been deployed for adaptive sampling and prediction in [110]. In

both [111, 110], gliders coordinate their motion for ocean sampling but they rely on

radio communications for cooperation when they are on the sea surface. The work in

[109] considered a team of three AUVs for adaptive ocean sampling where the problem

of reconstructing an oceanic field has been approached as a deterministic optimisation

problem. Each node in the team is in favour of covering the area of interest with mini-

mum sampling points while keeping in contact with the rest of the team [109]. Likewise

in [112], the authors proposed a cooperative sampling approach “sampling-on-demand”

to support a fleet of underwater gliders to optimise the sampling process with a pre-

defined acceptable uncertainty. A behaviour-based cooperative algorithm for a mobile

sensor node was proposed in [113] where each sensor node is mounted on an AUV. The

algorithm in [113] has been evaluated based on the coverage performance. It is worth

mentioning that most of the work in cooperative underwater robotics have considered

a heterogeneous maritime assets i.e., a group of sea-surface vehicles collaborating with
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a few underwater vehicles to complete a mission e.g., oceanic field sampling. Moreover,

when a team of AUVs is deployed, they typically keep in contact with a command and

control centre to facilitate their cooperation [15].

A few articles have addressed the acoustic localisation problem of a cooperative team

of a few number of AUVs i.e., 3-4 AUVs. A centralised EKF algorithm was proposed

in [57] where the algorithm has access to all sensor data including range measurements

to reduce the AUV’s location estimate uncertainty. A decentralised approach was pro-

posed in [114] where the Extended Information Filter (EIF) is utilised to enhance the

performance of the algorithm proposed in [57]. The authors in [114] considered a server

and a client AUVs and showed that the decentralised EIF is able to estimate the client’s

state and track the joint probability distribution between the server and the client with

a similar performance of the centralised EKF reported in [57] without access to the

server’s sensor data. Both [57, 114] have considered a single beacon navigation aid (i.e.,

range measurements) to reduce the AUV’s location estimate uncertainty. Similarly, the

authors in [115] employed the EKF for range measurements aid and ToF acoustic naviga-

tion aid (i.e., USBL fixes) in a network of a USBL, an AUV and two static sensor nodes.

A single beacon navigation aid represented in range measurements update between two

cooperative AUVs was investigated in [116]. The results in [116] showed that particle

filter provides better location estimates of the AUV than the EKF in range-only mea-

surements update. The development of smart mobile sensor network that provides node

localisation as a service for an existing acoustic network was discussed in [117]. A fleet of

small and low cost AUVs (i.e., ecoSUB [118]) was utilised in [117] where range measure-

ments aided DR navigation was implemented for node localisation [119]. Based on the

same principles of range measurements update that was presented in [116], the authors

in [119] considered the Two-Way Travel Time (TWTT) method for range measurements

and emphasised the node’s mobility impact on the localisation process by both adopting

time window of past range measurements and accounting for nodes’ velocity.

3.4 Underwater Communications

Cooperative systems are in general indispensable to establish reliable communications

channel among the nodes. Effective and well established communications means are in

particular vital to underwater range measurements and localisation which leads to the

success of underwater robotic missions. Acoustic channel is the most utilised channel

for wireless communications in underwater environments [15]. However, there are other
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communications technologies that can be utilised in underwater environments such as RF

electromagnetic and optical links but they are rather immature technologies for under-

water wireless communication. RF electromagnetic waves suffer from high attenuation

in underwater environments caused by electrical conductivity and high permittivity of

the water [120]. RF electromagnetic technology is featured in its high propagation speed

and its immunity to both acoustic noise and water turbidity [121]. Therefore, it can be

adopted for underwater wireless communication over short distances (i.e., less than 10

m) with data rate of 3 Mbps in fresh water and 3 kbps in sea water for applications

such as AUV docking and diver’s personal network [120]. Underwater optical commu-

nications also suffers from high attenuation due to scattering loss and absorption [122].

In addition, it requires line-of-sight and it is susceptible to water turbidity. Underwater

optical waves can provide high data rate (i.e., 5 Mbps) over 100–200 m in water clarity

with e-folding depth of 40 m [123]. On the other hand, acoustic waves in underwater

environments can propagate over long distances but suffer from limited bandwidth, high

propagation delay and multipath propagation [124]. The range in underwater Acoustic

Communications (ACOMMS) is inversely proportional to the frequency i.e., a maximum

communication range of 10 km can be achieved over a frequency band of 7 – 17 kHz with

data rate of 6.9 kbps [34], whereas a maximum communication range of 300 m can be

achieved over a frequency band of 120 – 180 kHz with data rate up to 62.5 kbps [22]. The

following table 3.1 summarises some of the key characteristics of different underwater

wireless communications technologies.

Type Range Data rate Propagation speed (m/s)

RF electromagnetic up to 50 m 8k - 300 bps up to 4.30×106

Optical up to 200 m 5 Mbps 3×108

Acoustic 300 m - 10 km 6.9 - 62.5 kbps 1500

Table 3.1: Underwater wireless communications technology

3.4.1 Physical Layer

Modulation, error correctness and channel equalisation are the main functionalities of

the physical layer. Exploiting the limited bandwidth of the underwater acoustic chan-

nel is the main objective in designing a modulation technique [124]. Frequency-Shift

Keying (FSK) based on energy detection is a reliable, simple and robust noncoherent

modulation scheme and it copes well with the received signal multipath and Doppler in
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applications of communicating low data rate required signals i.e., control and command

[15]. An example of noncoherent modulation scheme of 0.6 kbps data rate and 2.9 km

range with 10−3 bit error rate is presented in [125].

Although rapid phase variation characterises the underwater acoustic channel, phase-

coherent modulation schemes such as Phase-Shift Keying (PSK) and Quadrature Am-

plitude Modulation (QAM) are considered to increase both the communication range and

spectral efficiency but that was not possible without the improvements in phase tracking

algorithms [124]. Phase-coherent modulation techniques are classified into purely phase-

coherent and differentially coherent [124]. Differential Phase-Shift Keying (DPSK) is

considered as an intermediate solution between purely coherent and noncoherent as it

offers simple carrier recovery if it suffers from higher bit error rates compared to PSK

[124]. An example of DPSK modulation is shown in [126] of 20 kbps data rate in 1 km

range with 10−2 bit error rate. Multicarrier modulation techniques such as Orthogonal

Frequency-Division Multiplexing (OFDM) is usually used to overcome the long delay

spread [124]. OFDM is not commonly used in underwater ACOMMS due to the pres-

ence of large Doppler spread. However, OFDM schemes have been recently investigated

for underwater ACOMMS [124]. Experimental results were shown in [127] where Binary

Phase-Shift Keying (BPSK) modulation have been adopted in underwater acoustic com-

munications modems. The authors in [127] achieved data telemetry bit rates of 500 bps

at a distance of 10 km with bit error rate of 0 out of 4976 bits.

3.4.2 Medium Access Control Layer

Underwater acoustic communications are featured in limited bandwidth and high prop-

agation delay [19]. Therefore, MAC layer should be carefully considered to achieve the

maximum packet delivery ratio. Several multiple access techniques have been investi-

gated for underwater acoustic sensor networks such as TDMA, Code Division Multiple

Access (CDMA) and Carrier-Sense Multiple Access (CSMA). TDMA and random ac-

cess such as ALOHA-based access control [128] are the simplest to implement but they

both provide limited channel utilisation [124]. TDMA is probably the most commonly

adopted technique in underwater acoustic networks but it requires the networks to be

synchronised and it does not provide maximum utilisation of the channel specially in

large scale networks [129]. Each node in the network is allocated a certain time slot to

transmit its packet in one TDMA frame; see Figure 3.6.
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Figure 3.6: TDMA-based MAC layer where the time is divided into frames, each frame
is divided into slots and each slot is assigned to a single node where it is allowed to
transmit its data packet, guard time is added at both ends of each time slot to prevent
packets collision.

However, there have recently been further investigation in utilising TDMA scheme with-

out clock synchronisation [130]. In contrast, a node in CSMA scheme is required to

listen to the medium for a short period of time and transmits its packet if the medium

is idle [131]. However, underwater acoustic channel may be sensed idle when it is not

due to the high propagation delay [124].

A narrowband signal can be transmitted over a wideband signal by multiplying each

symbol by a spreading code of certain length in the physical layer and each node is

assigned with a unique spreading code that can resist interference from multiple nodes,

this can provide a resilient MAC technique i.e., direct-sequence CDMA [132]. Frequency-

division multiple access (FDMA) is not commonly used in underwater acoustics due to

the limited bandwidth. However, recent research and field experiments have showed that

single carrier FDMA is a promising MAC scheme for underwater ACOMMS [133], [134].

3.5 Conclusion

In summary, the complicated nature and wide-area coverage requirements of underwa-

ter missions such as exploration, environmental monitoring, geological and ecological

research have drawn special attention to multi-agent cooperative systems. Selected

underwater localisation algorithms suitable for UWSN have been reviewed including

least-squares trilateration. Monte-Carlo simulations were conducted to compare differ-

ent least-squares multilateration solvers i.e., Gauss-Newton, PSO and analytical closed-

form approach [103]. There is an improvement of 74% in mean trilateration error when

Gauss-Newton optimiser is compared to the analytical approach presented in [103] and
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an improvement of 94% when PSO is compared to Gauss-Newton. Therefore, PSO is

adopted in subsequent chapters to solve the least-squares trilateration/multilateration

problem. Inertial navigation system that is the backbone of any mobile underwater au-

tonomous system has been explained and some of the commercially available ToF-based

acoustic navigation aids have been briefly discussed.

Although underwater cooperative multi-robot systems have been fairly investigated in

literature, we lay greater emphasis on underwater cooperative swarm systems. The

key challenges underlying underwater cooperative swarm systems are localisation and

navigation. On top of the challenges that are associated with any swarm system such

as troubleshooting and parameters tuning, the offshore nature adds some complicated

environment-related challenges such as underwater communications. Therefore, under-

water communications technologies have been reviewed and their limitations have been

highlighted.
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Chapter 4

Underwater Robotics Simulation

Platform

A physics-based robotic co-simulation platform that considers the underwater acoustic

communications characteristics is developed and explained in this chapter to validate and

optimise the proposed localisation algorithms in this thesis for cooperative underwater

robotic swarms. Underwater robotic swarm deployment is particularly challenging due

to the high cost of maritime assets including a swarm of AUVs and a deployment vessel.

Simulation tools provide efficient and cost-effective alternatives to progress towards cut-

ting edge research in underwater robotics. In addition, physics-based simulation plays

a pivotal role in parameters optimisation and the scalability testing of newly-developed

algorithms. Underwater robotic swarm simulation e.g., [135] is able to provide a cost-

effective way to evaluate the system performance (e.g., localisation accuracy and scala-

bility) of large underwater robotic swarms.

There are many physics-based robotic simulators available for research and industry

communities such as Webots [136], EASY-ROB [137], Gazebo [138] and CoppeliaSim

[139]. Webots robotic simulator is employed in this thesis for robot physics and envi-

ronmental hydrodynamics simulation. Webots is a 3D simulation environment that can

model, program and simulate mobile robots [136]. Webots has many features that makes

it one of the best robotic simulators. Webots has the capability of simulating a swarm

of robots in a shared environment with local or global communication and provides a

supervisory control and monitoring of any agent. Webots simulator has a wide variety

of sensors and actuators that are commonly utilised in robotics systems. It provides
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Application Programming Interface (API) for many programming languages such as C,

C++, Python, Java and MATLAB; it can also be made compatible to any third party

software through TCP/IP socket programming. Webots utilises the Open Dynamics En-

gine (ODE) library [140] for high performance rigid body dynamics simulation. Common

robotic simulators such as Gazebo, CoppeliaSim and Webots do not have the capability

of simulating underwater acoustic channels but they have the capability of simulating

radio and infra-red links [141]. However, underwater acoustic communications properties

cannot be simulated within any of them. Therefore, the Underwater Network Project

for acoustic simulation (i.e., UnetStack) [142] is employed for underwater acoustic com-

munications simulation. In this chapter, the Underwater Network Project for acoustic

simulation (i.e., UnetStack) is briefly explored and validated throughout field experi-

ments in section 4.1. Section 4.2 presents the simulated AUV and the implemented

simulation platform. Mutual simulation settings in both Chapter 5 and 7 are provided

in section 4.3. Section 4.4 summarises this chapter.

4.1 Underwater Acoustic Communications

Intra-swarm communication is the backbone of cooperative navigation algorithms, there-

fore a realistic underwater acoustic simulation must be considered in underwater robotic

swarms or UWSNs. To overcome the limitation of robotic simulators platforms in simu-

lating underwater acoustic channel, a dedicated acoustic simulator is employed i.e., the

Underwater Networks Project UnetStack [142]. UnetStack is an agent-based network

stack and simulator developed to support highly optimised protocols for underwater

acoustic sensor networks [143]. It allows easy network configurations and management

and allows protocols to be simulated in realistic channel conditions. The nature of un-

derwater acoustic communications requires significant cross-layer information sharing

[144]. However most, if not all, network simulators are not designed for cross-layer

sharing. The popular network simulator ns2 [145] as an example, has not been origi-

nally implemented for cross-layer sharing but an extension was released called miracle

[146] to allow cross-layer information sharing. Underwater acoustics simulators such as

DESERT [147] and SUNSET [148] are ns2-based and of course they made use of mir-

acle plugin [146]. UnetStack however, adopted service-oriented agent architecture that

fundamentally enables cross-layer interaction. UnetStack supports both discrete-event

simulation mode and real-time simulation mode. Therefore, the developed protocol can

be deployed to any compatible underwater communications modem such as Evologics
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[22] for field experiments directly without the need for recompilation. Ns2 however, is

primarily a discrete-event simulator, efforts are needed to make significant changes to

run in real-time mode for field experiments. Nevertheless, moving a simulated protocol

to real-world deployments requires additional non-trivial steps such as cross-compilation.

UnetStack [142] is therefore selected to be integrated with Webots simulator for under-

water ACOMMS simulation to validate the proposed cooperative underwater localisation

algorithms.

In this section UnetStack simulator is validated by field experiments. We compare the

packet loss in the underwater communication channel in both UnetStack simulation and

field experiments when deploying the same acoustic modems and same network topology.

4.1.1 Acoustic Modem and Channel Models

A typical UnetStack simulation is composed of several agents. Each agent provides a

set of services and functionalities required to build underwater network consists of sev-

eral nodes to exchange data via acoustic links. A Unet agent called modem model (i.e.,

half duplex modem) simulates the physical services needed to emulate acoustic modem

behaviours. The properties (i.e., data rate, frame length, and power level) of the con-

trol channel, data channel and frame type (i.e., JANUS [149]) can be specified in Unet

modem model. Several other properties such that transmission delay when switching

from receiving to transmitting modes and frame header length that control the modem’s

behaviour are also modeled in Unet modem model. JANUS is an underwater acoustic

communication protocol that has been recognised as NATO standard [149].

The Unet channel model simulates the communication channel specifics i.e., bandwidth,

carrier frequency, salinity and temperature. The Unet simulator provides different chan-

nel models namely protocol channel model and acoustic channel model. The user can

modify the channel properties in each of the models but in each model only certain

properties can be parameterised.

The protocol channel model is a simple channel model and can be parameterised by

communication range, interference range, detection range, sound speed, probability of

detection PD and probability of decoding PC. Despite its simplicity, it models key

effects such as collisions, interference range, limited communication range and propaga-

tion delay. Successful communication is possible at ranges within the communication

range with a probability PD ×PC. A packet is possibly detected with a probability of

PD at ranges between the communication range and detection range but it will not be
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decoded. Data packets are lost at any range less than the interference range if they are

being received at the same time.

On the other hand, the acoustic channel model is comprised of two models namely

Urick acoustic model [150] and BPSK fading communication model [124]. The Unet

Urick acoustic model is parameterised by water depth, temperature and salinity, band-

width, carrier frequency, spreading loss factor and noise power spectral density level.

Sound speed in this model is computed based upon the nine terms equation proposed

by Mackenzie in [89] and transmission loss is computed as in [150].

Given the transmission source level SL in dB re µPa @1 m, the computed transmission

loss TL and the predefined noise level NL, the Signal-to-Noise Ratio (SNR) would be

SL − TL − NL [143]. The BPSK fading model uses Urick acoustic model’s SNR to

simulate a frame’s detection and successful decoding. The Unet BPSK fading model is

parameterised by Rician fading parameter, fast or slow fading, acceptable probability of

false alarm during detection and processing gain [124]. In order to compute the effective

SNR in the channel, 10 log10(B/D) is added to the SNR for BPSK communication signal

with data rate D bps and bandwidth B. Rician fading and Gaussian noise are assumed

to simulate bit errors. If fast fading is enabled, the error in each bit is generated in the

simulation independently from Rician fading model with Gaussian noise. In contrast, a

single realisation of Rician fading model with Gaussian noise is added to the entire frame

when slow fading is enabled instead. The frame is successfully received and decoded if

all bits are successful and it is lost if any bit is in error.

The following Figure shows the acoustic modem and the channel models that can be

simulation on UnetStack. The acoustic channel model with Urick acoustic and BPSK

fading models is utilised in our UnetStack simulation as it is a more realistic repre-

sentation of the underwater ACOMMS than the protocol channel model that relies on

predefined high-level parameters i.e., communication range, probability of detection and

probability of decoding.

4.1.2 Experiments and UnetStack Simulation

Field experiments have been carried out in Loch Earn in Lochearnhead, Scotland on

the 19th of March 2019 in collaboration with the stakeholders of smart dust for large

scale underwater wireless sensing project (USMART [151]). Seven static sensor nodes

have been deployed arbitrarily at different locations and depths. Each sensor node is

equipped with low power, bio-friendly acoustic modem with maximum communication
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Figure 4.1: UnetStack acoustic modem and channel models and their parameters. The
green highlighted models/parameters are utilised in our UnetStack simulation.

range of 2000 m, communication frequency of 24 – 28 kHz and acoustic data rate of

40-160 bps [152, 153]. Five of the sensor nodes are always on the receiving mode, one of

the sensor nodes (gateway) is always on the transmitting mode and one acts as a relay,

it re-broadcasts whatever it receives from the gateway. Figure 4.2 shows the location of

each node on google map and their addresses in Loch Earn, the same network topologies

are simulated on UnetStack for packet loss analysis. The only difference between the

two network topologies is that one of the sensor nodes in one topology communicates

with the gateway directly and through the relay node in another topology shown by the

dashed lines in Figure 4.2. Both experiments (i.e., different network topologies) have

been conducted separately. Each acoustic sensor node is deployed at a fixed location

with a depth range of 10 – 22 m. Two experiments with different network topology

have been conducted. In both experiments, the gateway broadcasts its address in 4

bytes every 10 seconds and the relay node (address 171) re-broadcasts the gateway

message 5 seconds after it is received. The same network topology, configurations and

communication modem specifications have been simulated on UnetStack. Table 4.1 lists

the parameters of the communication modem and channel on UnetStack simulation that

emulate Loch Earn experiments shown in Figure 4.2. The channel average packet loss of

the field experiments was around 6.2% which was unexpectedly low, this could be due

to i) the idleness of water as the experiments were carried out in March when there was

not any activities in the lake whatsoever and ii) the long allocated time-slot for each
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Figure 4.2: Network topology - top view; sensor nodes positions, MAC addresses and
the acoustic links (arrows) marked on Google map of Loch Earn field experiments. The
depth of each sensor node is shown in red. The two dashed lines show two different
topologies.

Parameter Value

Communication modem Freq band 25 kHz
Communication data rate 160 bit/s
Data packet length and duration 4 bytes; 200 ms
Data packet allocated TDMA time-slot length 5 s
Noise level 100 dB
Water salinity 1 ppt
Water temperature 10 ◦C
Rician fading parameter 10
Fast fading enabled

Table 4.1: UnetStack simulation settings and parameters of the communication channel
and modem

data packet to be transmitted (i.e., 5 seconds) in comparison to its duration of 200 ms.

It is worth mentioning that the packet loss achieved in this field experiments are only

valid in its environment with its certain experimental setup. The average packet loss

in an underwater acoustic communication channel as reported in [114] is 15-40% and it

depends on many factors such as the noise level and the guard time of each broadcast

message. On the other hand, the simulated underwater acoustic communication channel

packet loss was equal to 14.4% given that the noise level was set to 100 dB. The channel

average packet loss in simulation is 56.9% higher than the field experiments and therefore
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noise level for acoustic channel simulation in subsequent chapters is reduced to 60 dB.

More field experiments are detailed in [143] to validate UnetStack simulator.

4.2 Simulation Platform Architecture

The developed co-simulation platform consists of three interacting components, namely

physics-based robot simulator, underwater acoustic communications simulator and

MATLAB Navigation toolbox for IMU modelling. Realistic simulation can be pro-

vided by the physics-based robot simulator by considering the mechanics of the AUVs

and the hydrodynamic effects. The motion behaviours of AUVs are under significant

effect of the geometry, dynamics of the AUVs themselves, as well as the hydrodynamic

effect in underwater environment. Neglecting dynamics and hydrodynamics in simula-

tion would compromise the developed algorithm’s performance when it is deployed for

field experiments. A swarm of identical AUVs and static deployment vessel are simu-

lated on Webots; each AUV is subject to the static force (i.e., Archimedes’ thrust) and

the dynamic force (i.e., drag force) exerted by the simulated fluid properties on We-

bots such as density, viscosity and stream velocity [136]. The modelled AUV has three

thrusters, two of them are horizontally placed on the left and the right side of the AUV

to generate the surge velocity and to control the rotation around the vertical axis i.e.,

yaw angle. The third thruster is placed vertically to control the rotation around the

transverse axis i.e., pitch angle. Figure 4.3 shows the front, side and top views of the

modelled AUV. It can be noticed that the design of this AUV does not have an active

actuation around the longitudinal axis (i.e., roll angle) but the rudders have positive

dihedral which improves the stability around the longitudinal axis. Each AUV in the

Figure 4.3: The front, side and top views of the modelled AUV shows two horizontally
placed thruster and a vertical one. Autonomous Robotics Limited All rights reserved.
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swarm has its own controller that is implemented using Webots Matlab APIs. Figure 4.4

shows a Webots scene example of AUVs swarm deployment in shallow water and the

deployment vessel. A Webots supervisor-enabled node (Sniffer) is allocated to monitor

Figure 4.4: Underwater Webots simulation scene of 50 AUVs deployment, the USBL
transceiver is hull-mounted on the deployment vessel.

each AUV in the swarm. If an AUV broadcasts a navigation aid, the Sniffer reports

the network topology to UnetStack, runs the simulation and reports back the results

to each AUV in the swarm in terms of the received message content (if any) and time

of arrival. It is worth mentioning that the USBL system is not acoustically simulated

as the error characteristics of the assumed USBL localisation system accounts for the

localisation error due to non-ideal acoustic channel i.e., 10 AUVs can be localised with

localisation accuracy of 2.7 m (1-σ error) in 1000 m water depth in one TDMA frame of

1 second [66]. In addition, the characteristics of commercially available USBL system is

proprietary which makes it hard to simulate the low-level details of the USBL. However,

the centralisation of the USBL system and its TDMA frame and slots are simulated

by a Webots supervisor-enabled node as the proposed algorithm requires the USBL to

prioritise the Navigation Beacon (NB) AUVs over the rest when localisation requests

received by the USBL is more than it can aid in a single TDMA frame. NB AUVs are

randomly selected AUVs in the swarm and allowed to broadcast localisation aids based

on some predetermined localisation performance criteria.

Figure 4.5 shows an example simulation scenario of four AUVs navigate to their des-

tinations and only three of them broadcast localisation messages, the “Sniffer” reports

the network topology to UnetStack simulator and reports back the results of localisation

aids delivery and time of arrival to each AUV in the swarm.
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Figure 4.5: The implemented simulation platform used to validate the proposed nav-
igation algorithm. Webots robotic simulator is employed for physics simulation and
UnetStack is employed for simulating the underwater acoustic communication proper-
ties.

If an AUV that needs to be localised (i.e., based on some localisation performance cri-

teria) receives localisation aids within a predefined time window from NB AUVs, it

incorporates the new location estimate within its current location estimate using for

example the EKF.

The network’s mobility is neglected if all localisation aids are received within a time win-

dow of 200 milliseconds as the simulated AUV average velocity is about 0.5 m/s. The

maximum unaccounted displacement due to network mobility is thus 10 cm, which is in-

significant compared to the typical mean localisation error obtained i.e., 0.4%. However,

the AUV’s velocity impact on the trilaterated navigation aid due to time delay imposed

by UnetStack simulation is acknowledged. When the network topology is reported to

UnetStack (in the case of some NB AUVs are transmitting localisation aids), Webots

simulation is frozen and UnetStack simulation is run on discrete-event mode. Once the

results of UnetStack simulation is reported back to the AUVs’ controllers, Webots sim-

ulation is run by the duration of UnetStack simulation time ∆TUnet and only then an

AUV has access to its received localisation aids. If an AUV ai has successfully received

three or more localisation aids and performed trilateration, the trilaterated position due

to the AUV’s mobility during UnetStack simulation is linked to its velocity vit by the

following

piLAT,t2 = piLAT,t1 +

∫ t2

t1

vit dt (4.1)

where t2 − t1 represents the time that UnetStack took to run the simulation ∆TUnet or

in other words it is the timestamp of the last localisation aid being received in the entire

swarm, piLAT,t1 is the AUV’s trilaterated position when navigation aids are received at
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time t1 and piLAT,t2 is the position that AUV ai is aided by at time t2. Figure. 4.6 shows

three NB AUVs broadcast localisation aids at time t1; the localisation aids are received

by AUV a4. The trilaterated p4
LAT,t1

solution corresponds to a4 position when it was at

p4
t1 . AUV a4 is aided by p4

LAT,t2
which takes into consideration the mobility of a4.

Figure 4.6: Network mobility considerations when trilateration is performed.

4.3 Simulation Settings and Scenario

A simple finite state machine has been designed to guide an AUV to its destination in a

straight line trajectory. Figure 4.7 shows the implemented finite state machine with six

states. Each AUV attempts to follow the shortest path to reach its destination on the

seabed so that the swarm is deployed in a mesh-like geometry on the seabed for seismic

imaging. Figure 4.8 shows the ground-truth trajectories of 5 AUVs from their home

position on the sea surface to their seabed destinations. The IMU parameters and the

destination coordinates are being assigned in the initialisation state. The AUV’s target

yaw and pitch are then computed based on its current position (i.e., deployment position)

and its assigned destination. The required rotations are then executed by applying

different speeds on the thrusters till ∆Θ and ∆Φ are within a predefined tolerance

using a simple proportional–derivative controller where ∆Θ and ∆Φ are the errors in

the AUV’s yaw and pitch headings respectively. Once ∆Θ and ∆Φ are within the

predefined tolerance, the AUV surges to its destination and updates its target yaw and

pitch whenever it receives an external navigation aid i.e., USBL or NB localisation aid.

A typical industrial grade IMU is considered in our simulation [53] for DR navigation.

Webots robotic simulator provides a 9-axis IMU sensor model to return the AUV’s

roll, pitch and yaw angles with respect to the world coordinate, the AUV’s acceleration
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Figure 4.7: Finite state machine to guide the AUV to its pre-assigned destination where
∆Θ and ∆Φ are the errors in the AUV’s yaw and pitch respectively.

Figure 4.8: An example deployment scenario of 5 AUVs’ ground-truth trajectories.

and angular velocity can also be obtained [136]. Webots utilises a lookup table to

add error models to the IMU measurements or to match Webots IMU’s output with

device specific output; this look-up table can be very hard to generate given the IMU’s

model complexity. However, MATLAB Navigation toolbox seamlessly models all the

intricacies of a 9-axis IMU with a predefined properties such as velocity and angle random

walks, bias instability, axis misalignment and constant bias. We therefore generate the

angular velocity iωb,t, the acceleration bft and the local earth magnetic field nm of

Webots inertial unit sensor with no noise or biases added and feed them into MATLAB

Navigation toolbox for 9-axis IMU sensor modelling. Figure 4.9 shows a diagram of the

procedure we followed to model a 9-axis IMU. Table 4.2 summarises the properties of

the modelled IMU i.e., the predefined IMU properties and noise parameters.
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Figure 4.9: Angular velocity, acceleration and local magnetic field of the earth are gen-
erated as ground truth readings at each time instant of each IMU that is modeled in an
underwater environment in Webots simulator. Given the ground truth readings and the
IMU properties, a realistic 9-axis IMU is modelled on MATLAB navigation toolbox.

Parameter Value

Accelerometer Resolution 60.958 µg
Accelerometer Constant Bias 14 µg

Accelerometer Noise Density 57 µg/
√
Hz

Gyroscope Resolution 0.0625 ◦

Gyroscope Constant Bias 7 ◦/hour

Gyroscope Noise Density 0.15 ◦/
√
hour

Magnetometer Resolution 1 mGauss
Magnetometer Constant Bias 1.5 mGauss
Magnetometer Noise Density 3 mGauss

Table 4.2: Ellipse 2 micro IMU properties [53]

4.4 Summary

In summary, underwater swarm robotics research can be developed and validated on a

realistic simulation platform due to the high cost of maritime assets. A high fidelity sim-

ulation platform that considers AUVs sensors, environment hydrodynamics and acoustic

communications characteristics is implemented. Webots robotic simulator is employed

for AUVs physics and fluid simulation for its design agility in swarm robotics and an

industrial grade 9-axis IMU is modelled using MATLAB Navigation toolbox. The Under-

water Networks Project UnetStack is utilised for underwater acoustic communications

simulation for its easiness in network configurations and management and cross-layer

sharing feature. Field experiments were conducted to validate UnetStack for packet loss

in an underwater ACOMMS channel. The simulated and real world underwater acoustic

communications packet loss were equal to 14.4% and 6.2% respectively due to the high

simulated noise level and lake idleness where the experiments took place.
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Chapter 5

A Fuzzy Localisation Framework

for Underwater Robotic Swarms

This chapter proposes a novel underwater localisation method to dynamically fuse multi-

ple position estimates of an AUV for better localisation accuracy along the whole trajec-

tory using fuzzy decision support system. A simple proof-of-concept simulation and high

fidelity physics-based simulation have been conducted to validate the proposed fuzzy-

based algorithm. The results of the proposed algorithm are discussed and compared

to other underwater localisation methods in the literature. The proposed fuzzy-based

algorithm and its simulation results are published in [26, 27].

5.1 Introduction

Underwater localisation has recently attracted researchers interest, due to the wide vari-

ety of offshore applications that require this technology. A large number of underwater

localisation algorithms have been proposed. Localisation algorithms can be classified

into three categories based on operation depth, namely near surface, mid-water, and near

seabed localisation algorithms. Underwater vehicles are either umbilically connected to

sea surface vehicle [43] or periodically rise and dive [91] so that AUVs location can be

obtained by means of GPS when they are close to sea surface. Simultaneous Localisation

and Mapping (SLAM) based on seafloor landscape features [154] and DVL bottom track

based on seafloor relative velocity of underwater vehicle [18] are commonly employed to
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achieve near seafloor AUVs localisation. DVL water track or Acoustic Doppler Current

Profiler can be utilised as an aiding sensor in IMU-based DR navigation in mid-water

column [21]. ToF acoustic localisation such as LBL, SBL, and USBL are commonly

used as navigation aids in IMU-based DR navigation. USBL does not require any ar-

tificial landmarks on the seabed and a single Unmanned Surface Vehicle (USV) or ship

is deployed for operation. USBL is more flexible and has less limitations than those

in LBL and SBL; hence it is the most commonly adopted method in the industry. A

commercially available USBL system can achieve localisation accuracy of around 0.13-

0.27% of slant range and can support tracking of four to ten underwater targets in a

single TDMA frame of 1 second [66]. The localisation of each individual sensor node in

a mobile UWSN (i.e., AUVs swarm) relies predominately on its proprioceptive sensors

(i.e., IMU) but IMU-based navigation is prone to drift. Therefore, external navigation

aids that are made available by exteroceptive sensors (e.g., USBL transponder, DVL)

are usually required. Each localisation method such that USBL or DVL has its own

merits and limitations which make each method suits certain operating conditions.

In this chapter, an underwater localisation method to dynamically fuse multiple local-

isation estimates of an AUV using fuzzy decision support system is proposed. We suf-

fice, at first, with a simple proof-of-concept simulation and localisation methods’ error

characteristics to validate our approach. Thereafter, sophisticated simulation is imple-

mented in which three underwater localisation methods are considered to validate our

approach, namely IMU-based DR, trilateration/multilateration [155] and USBL. An in-

dustrial grade IMU is modelled, trilateration localisation methods are implemented and

the co-simulation platform explained in Chapter 4 are employed to validate the proposed

fuzzy-based localisation approach. The proposed cooperative navigation framework or-

ganises the cooperation among swarm nodes as exteroceptive sensors navigation aids

of each AUV are controlled by the implemented fuzzy rules. The proposed localisation

framework utilises fuzzy logic for information fusion which has inherent advantages over

the common EKF-based fusion such as design simplicity and flexibility. It is straight-

forward to capture human expert knowledge in characteristics of localisation methods

involved using fuzzy logic. In addition, new knowledge can be acquired and represented

in additional fuzzy rules or modifying rules in the proposed localisation framework. In

contrast, EKF-based fusion requires dynamic motion models, Gaussian error models and

major changes should be made to accommodate changes in the motion models in case of

integrating additional sensory information. Computational efficiency is another feature

that can be gained when adopting fuzzy logic for information fusion over EKF-based

fusion. Matrix operations in the EKF involve matrix inverse and multiplication that is
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computationally expensive for small and dense matrices (i.e., computational complexity

of O(n3) for n×n matrices) but fuzzy inference, on the other hand, is easy to parallelise

in rule evaluation [156]. In addition, fuzzy logic chips for embedded hardware are avail-

able for optimised memory demand and computation speed of fuzzy controllers [157].

The proposed method can be easily extended to accommodate some other newly devel-

oped localisation methods by expanding the fuzzy rule base and thus better scalability is

obtained with increasing swarm size. The proposed method’s localisation performance

is compared to USBL-aided DR navigation [63] with round-robin scheduling [158] in

extensive simulation with swarm size of 150.

The remainder of this chapter is organised as follows. Fuzzy logic in the navigation

context and the proposed localisation framework are illustrated in section 5.2. The ef-

fectiveness of the proposed fuzzy-based method is demonstrated by simulating a common

deployment scenario of AUVs in a simple proof-of-concept simulation in section 5.3 as

well as in a high fidelity physics-based simulation in section 5.4. Finally, section 5.5

concludes this chapter.

5.2 Fuzzy-based localisation

Fuzzy Logic [159] is efficient at information fusion, especially for uncertain or conflict-

ing information. On the contrary, the family of probabilistic filters [23] such as EKF

or Unscented Kalman Filter (UKF) requires Gaussian modelling of error uncertainty.

Gaussian modelling of error uncertainty requires extensive experiments to estimate the

parameters and shape of probability distribution of error and the error may not follow

Gaussian distribution in reality. Information fusion problem in fuzzy logic is transformed

into simple input-output mapping. Many other systems such as neural networks, differ-

ential equations and lookup tables can be used for input-output mapping but fuzzy logic

is still the most convenient method [156, 160]. Fuzzy logic is adopted in robotic swarms

literature in order to mitigate various challenges due to its simplicity. The authors in

[135] adopted a fuzzy logic-based voter to decide on an AUV’s health (i.e., the AUV is

either fit for the task or must go back to the base) in swarm behaviour simulation of

multiple AUVs. Fuzzy logic can be seen as a method for computing with words instead

of numbers and thus it is convenient to use as it imitates human reasoning processes. It

is the codification of common sense and therefore a lot closer to human intuition than

any other input-output mapping method.
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Figure 5.1: An example of input-output mapping for the localisation problem: “Given
three variable inputs what the localisation plan should be?”

Figure 5.1 shows an example of input-output mapping for the underwater localisation

problem based on three linguistic variable inputs i.e., the operational depth, battery

level and received messages. Each variable input is associated with several ordinal or

categorical linguistic concepts with vague boundaries. For example, the operational

depth can be described by different adjectives, like shallow, deep and very-deep. These

adjectives are the labels of linguistic concepts modelled by fuzzy sets [159]. In contrast,

the classical classification in crisp sets would either include an input in one set or exclude

it. A membership function has to be associated with each fuzzy set to map an input of

the entire input space, universe of discourse, to its membership value between 0 and 1

[159]. If-then rules are the main constituent of fuzzy logic systems, they combine the

antecedent (if-part) with the consequent (then-part) [156]. All variable inputs in the

antecedent are resolved to a graded membership between 0 and 1 (fuzzification) but if

the antecedent has multiple parts, fuzzy logic operators such as AND (t-norm) and OR

(t-conorm) are applied to resolve the antecedent to a single number between 0 and 1

which is the degree of support for the rule (application) [160]. The resultant degree of

support of the rule is then used to shape the output fuzzy set (implication) [160]. All

if-then rules are being processed in parallel so that the order of the rules does not make a

difference. Each if-then rule results in a fuzzy set, all consequent fuzzy sets are combined

to give a single resultant fuzzy set by taking the maximum or any other methods such

as sum of the rule output sets (aggregation) [159]. Given the aggregation process output

fuzzy set and the output space of the output fuzzy set, the resultant aggregate output

fuzzy set is converted into a single number (defuzzification) [159].

To summarise, fuzzy inference process comprises five steps:

• Fuzzification of the input variables.
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• Application of the fuzzy operator.

• Implication from the antecedent to the consequent.

• Aggregation of the output fuzzy set of each rule across all the rules.

• Defuzzification the aggregated output fuzzy set.

One example of an IF-THEN fuzzy linguistic rule considering the localisation problem:

IF Operational Depth is Shallow AND Battery Level is High THEN

Localisation Method is L.

Where Operational Depth and Battery Level are two variable inputs, Shallow and High

are two fuzzy sets to describe the inputs, both parts of the antecedent are combined

by AND logical operator and Localisation Method is the variable output where L is its

fuzzy set that refers to a particular localisation method and to be reshaped based on the

rule degree of support.

Assume a swarm of AUVs is launched from known positions on the sea surface and a

USBL system, which can navigationally aid only a limited number of AUVs in each of

its TDMA frame. Each AUV is equipped with long/medium ACOMMS modem (USBL

transponder), short range ACOMMS modem for intra-swarm communication, 9-axis

IMU and depth sensor. Assume we have n underwater localisation methods. Each

method can localise an underwater mobile sensor node with best accuracy under certain

operational conditions e.g., AUV’s operational depth and the reception of acoustic mes-

sages. This approach allows each AUV to either select a single localisation method or

to fuse two or more localisation methods’ estimates to improve localisation accuracy by

increasing localisation aid updates along the whole trajectory based on fuzzy inference

system. Mamdani fuzzy logic [161] is adopted for the localisation problem due to its

intuition and well-suitability to human input which can be easily captured using if-then

rule construct. Moreover, the impreciseness of human expert knowledge can be modelled

and processed by fuzzy inference.

Figure 5.2 illustrates four examples of decision support elements (input variables) for this

approach, namely operation depth D, USBL availability U , AUV’s battery level B and

number of localisation aids received within a predefined time window from neighbouring

AUVs G. Input fuzzy sets are determined intuitively based on the features of the variable

inputs e.g., a USBL localisation update or fix is either received by the AUV’s transponder

or not received. The final location estimate could be the output of either a single location
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Figure 5.2: Best Suitable Localisation Algorithm approach (Decision-making)

estimator or a weighted combination between two or more location estimators based

on the normalised sum of the firing strength in each of the output fuzzy set. Each

of the considered localisation method is represented by a disjoint triangular fuzzy set

over the universe of discourse so that each localisation method contribution in the final

localisation plan can be easily obtained by its firing strength. It is worth mentioning

that Chame et al. in [162, 163] have adopted our approach in sensor fusion in the

context of underwater navigation. A generic policy that evaluates redundant navigation

information of different estimators to obtain a navigation fusion plan was developed in

[162, 163]. The fusion process in [162, 163] was handled by utilising a neural network.

5.3 Proof Of Concept Simulation

A simplified proof-of-concept numerical simulation based on localisation error models of

four different underwater location estimator approaches was first conducted to show the

proposed method is feasible. Four different underwater location estimators are assumed

to validate our approach in this section and they are: USBL [66], LLNP [79], SLMP [80]

and Inertial Navigation System aided by Doppler Velocity Log (INS/DVL) [17].
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5.3.1 Localisation Error Models

Due to the lack of technical details of the sensor involved in all localisation methods

and the operating environment characteristics, stochastic localisation error models are

constructed based on literature for initial validation of the proposed Best Suitable Lo-

calisation Algorithm (BSLA) scheme. These error models are applied to emulate the lo-

calisation error generated by the corresponding localisation methods when sensor nodes

are traversing underwater. Advanced USBL localisation system can localise up to 10

underwater targets in a single TDMA frame of one second with accuracy of 0.27% 1

Drms of slant range [66]. Figure 5.3 shows the relationship between the total error in

meter 1 Drms of an accurate USBL system and the depth of an underwater target (blue

curve). Figure 5.3 shows that in 1000 m depth 63% (1Drms) of USBL localisation total

errors are within 2.7 m radius. Localisation accuracy of another assumed USBL system

is shown in Figure 5.3 (red curve) which follows the same profile of Ranger USBL but

with offset error of 7.3 m. The red curve suggests 63% of USBL fixes are within 10 m

radius in 1000 m depth. We assume that the localisation error of a USBL system follows

Gaussian distribution. The localisation error in USBL EU ∼ N (µ, σ2) where µ = 2.7

m and 10 m for Ranger USBL and ordinary USBL, respectively and σ is fitted to the

curves shown in Figure 5.3.

Figure 5.3: The localisation error of Ranger USBL and ordinary USBL with water depth

We assume that error characteristics of LLNP and SLMP (discussed in section 3.3) are

normally distributed over the aforementioned error data points of LLNP and SLMP
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in Figure 3.3 where EL ∼ N (µ, σ2): µ is the localisation error depicted in Figure 3.3

and σ = 0.02µ. This assumption has been made based on existing underwater distance

measurement technologies [164].

Figure 5.4: Root mean square of the velocity and the attitude errors using tightly coupled
DVL/INS [17].

Authors in [17] presented simulation results of an AUV navigation performance obtained

using different data fusion methods of INS aided by DVL. Figure 5.4 presents the root

mean square errors of the velocity vector and the attitude error of an AUV navigates

with a velocity of 2 m/s along a classic lawn mower trajectory using a tightly coupled

INS/DVL [17]. It can be noticed that the velocity and attitude errors in Figure 5.4 are

not consistent over time so that we assume that the velocity and attitude errors follow

Gaussian distribution over a sliding time window of 25 seconds.

5.3.2 Simulation Settings

Suppose there are 50 mobile sensor nodes each of them equipped with a depth sensor, a

9-axis IMU, a USBL transponder, and a 300 kHz DVL (has a range of around 200 m).

Their home position is somewhere close to sea surface and need to be deployed on pre-

determined seafloor positions at a depth of around 3 km. Assume we have a USBL

localisation system, which can only track one underwater node in its TDMA frame of

one second with low-accuracy, hull mounted on a surface vessel. Assume that n = 4 (i.e.,

four localisation methods are considered) where L1 represents USBL localisation system
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with total localisation error suggested in the previous section in Figure 5.3 (ordinary

USBL), L2 represents LLNP [79], L3 represents SLMP [80] and L4 represents DVL/INS

[17].

The following Figure 5.5 shows the implemented fuzzy antecedents, their types and lim-

its over the universe of discourse. Each localisation algorithm is represented by a disjoint

triangular fuzzy set as shown in Figure 5.5. This output fuzzy sets representation allows

us to determine the contribution (weight) of each location estimate in the final locali-

sation plan. Figure 5.5 shows equal contributions of L1 and L3 in the final localisation

plan so that the final location estimate would be 0.5L1 + 0.5L3. The fuzzy rule base we

employed in our simulation is shown in Appendix A.1.

Figure 5.5: The adopted fuzzy antecedents, their types and limits over the universe
of discourse in our poof-of-concept simulation. The aggregated fuzzy output shows an
example of a final localisation plan of (0.5L1 + 0.5L3)

A simple two-dimensional (i.e., North-Down) dynamic model has been assumed to govern

the AUV’s mobility. Its governing equations are:

Ẋ = Vsin(Θ) (5.1)

Ẏ = Vcos(Θ) (5.2)

Θ̇ = VK (5.3)
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where (X ,Y) are AUV’s position coordinates, Θ is AUV’s heading, V is the commanded

forward speed and K is the commanded turn curvature. Table 5.1 summarises simulation

and navigation parameters used to produce the results in this section.

Parameter Value

Time step 1 s

AUV velocity 5 m/s

DVL range 200 m

Seafloor depth 3000 m

AUV’s communication range 20 m

Anchor nodes density 50/100 m2

USBL update rate 1 s

Table 5.1: Simulation parameters

Anchor nodes are randomly deployed with a density of 50 nodes per 100 m2 and as-

sumed to be perfectly localised. Anchor node density and AUV’s communication range

parameters are intended to be identical to those assumed in both LLNP and SLMP so

that the use of the presented localisation error of LLNP and SLMP in Figure 3.3 can

be justified. Figure 5.6 shows an example of a predefined path of a mobile sensor node

descending from its home position (40 m below sea surface) to its destination on the

seafloor. All AUVs are launched from the same home position and passing through the

same Way Point 1 shown in Figure 5.6. Way Point 1 is at a depth where the bottom

track DVL can successfully work.

5.3.3 Results and Analysis

Localisation performance of each method including the proposed fuzzy-based BSLA is

obtained through five trial trajectories. Each of them has a different destination and

is presented in terms of mean errors and standard deviation of the estimated positions

along the trajectory. The unavailability of each localisation method along the trajectory

is also evaluated as it represents the localisation update an AUV receives when relying on

a certain localisation method. The performance of each localisation method in localising

a single underwater node is shown in Figure 5.7. It is observed from Figure 5.7(a)

and (b) that LLNP and SLMP have the most accurate localisation estimates but less

than 30% of AUV’s locations were estimated using either LLNP or SLMP, as shown in
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Figure 5.6: An example of a descending mobile sensor node trajectory

Figure 5.7(c). As it was expected, the USBL was able to estimate node’s position in

high update rate with high localisation error. This is due to the high localisation error

in the simulated USBL as a high offset error is added to commercially available USBL

system [66]. On the other hand, node’s positions were estimated using BSLA approach

have lower localisation error than that in the USBL and higher than that in LLNP and

SLMP but it was available along the whole navigated trajectory.

Figure 5.7: Performance of five localisation methods in localising a single underwater
node (a) mean error (b) error standard deviation (c) localisation approach unavailability
along the whole predefined trajectory

Figure 5.8 shows a comparison among all localisation methods. Each performance ele-

ment is presented on a radius line and normalised to its highest value so that the least

accurate and the most unavailable localisation approach would be reflected as an equi-

lateral circumscribed triangle. A perfect localisation method (i.e., zero mean error, zero

standard deviation of error and always available) would be reflected as a point at the
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centre in Figure 5.8. It is clear that LLNP and SLMP have almost identical performance

whereas DVL/INS has the highest mean error and the highest unavailability which was

expected since the DVL does not work unless the node (AUV) is close to the seafloor.

Figure 5.8: Normalised performance of five localisation approaches in localising a single
underwater node

In the second set of simulations, positions of three identically equipped underwater

nodes are estimated using the five localisation methods. The localisation performance in

terms of mean errors, standard deviation and unavailability are depicted in Figure 5.9.

Figure 5.10 compares the three performance elements of the five localisation methods.

The proposed fuzzy-based approach - i.e. BSLA - notably improved localisation accuracy

of around 23-30% compared to the USBL and DVL/INS. It is discernible that BSLA

has improved localisation accuracy and was the best approach in term of availability.

Figure 5.9: Performance of five localisation approaches in simultaneously localising three
underwater nodes (a) mean error (b) error standard deviation (c) localisation approach
unavailability along the whole navigated trajectory
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Figure 5.10: Normalised performance of five localisation approaches in simultaneously
localising three underwater nodes.

The proposed fuzzy-based approach for underwater mobile sensor nodes localisation im-

proved the localisation performance elements by dynamically fusing multiple location

estimates of available localisation methods based on fuzzy decision support system. Re-

sults show that the presented approach improves both the localisation accuracy of around

23-40% and the availability of around 70% when three underwater nodes are simultane-

ously localised.

In this simple numerical simulation, error characteristics of different localisation ap-

proaches were considered instead of implementing them, precisely localised nodes have

been considered with high density for LLNP and SLMP localisation methods and the

underwater acoustic channel packet loss has not been considered.

5.4 Physics-based Simulation

In this section, a sophisticated simulation platform is implemented in which three under-

water localisation methods are considered to validate our approach, namely IMU-based

DR, trilateration/multilateration [155] and USBL. An industrial grade IMU is modelled

and trilateration localisation methods are implemented. The physics-based co-simulation

platform implemented in Chapter 4 that considers underwater environments hydrody-

namics and underwater acoustic communications characteristics is employed to validate
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the proposed localisation framework.

A physics-based high fidelity robotic simulator Webots [136] is employed to simulate

AUV dynamics and hydrodynamic properties of underwater environments i.e., density,

viscosity and stream velocity to generate external static and dynamic forces. The static

and dynamic forces are then applied on the AUVs’ body and corresponding thrust power

is generated to guide each AUV to its destination. The Underwater Network Project

for acoustic simulation (i.e., UnetStack) [142] is employed for underwater acoustic com-

munications simulation in which the characteristics of the employed channel, modems,

MAC protocol and time synchronisation are all considered. The proposed cooperative

navigation framework organises the cooperation among swarm nodes as exteroceptive

sensors navigation aids of each AUV are regulated by the implemented fuzzy rules. The

proposed localisation framework utilises fuzzy logic for information fusion which has

inherent advantages over EKF-based fusion such as design simplicity and flexibility. It

is straightforward to capture human expert knowledge in characteristics of localisation

methods involved using fuzzy logic. In addition, new knowledge can be acquired and

represented in additional fuzzy rules or modifying rules in the proposed localisation

framework. In contrast, EKF-based fusion requires dynamic motion models, Gaussian

error models and major changes should be made to accommodate changes in the motion

models in case of integrating additional sensory information. The proposed method can

be easily extended to accommodate some other newly developed localisation methods

by expanding the fuzzy rule base and thus better scalability is obtained with increasing

swarm size. The proposed method’s localisation performance is compared to USBL-

aided DR navigation [63] with round-robin scheduling [158] in extensive simulation with

swarm size of 150.

5.4.1 Implementation

Assume each AUV is equipped with long/medium ACOMMS modem (USBL transpon-

der) working at medium frequency band i.e., 20-40 kHz, short range ACOMMS modem

working at high frequency band (i.e., 100-180 kHz) for intra-swarm communication, 9-

axis IMU, depth sensor and Chip Scale Atomic Clock (CSAC) for clock-synchronisation

of the AUVs [165]. We assume that either FDMA MAC protocol [132] is utilised to sep-

arate intra-swarm communication from USBL communication and each channel has its

own TDMA schedule to broadcast acoustic messages. Range measurements are acquired

by means of One-Way Travel Time (OWTT) [166]. Timestamps for range measurements
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are subject to Gaussian additive noise of zero mean and standard deviation of 1.2 ms

[167] which corresponds to error standard deviation of 1.8 m in range measurements given

that the average speed of underwater acoustic waves is 1500 m/s. The three-dimensional

localisation problem can be converted into its 2D counterpart via orthogonal projection

[94] as all AUVs are equipped with pressure sensors for accurate depth estimation. Due

to the severely limited bandwidth and high latency in ACOMMS, only a subset of the

swarm (i.e., NB) is made capable of broadcasting navigation aids within a short period

of time once any reliable location estimator (e.g., USBL or trilateration) is dominat-

ing the final localisation plan. NB AUVs are considered as references for neighbouring

AUVs localisation. Five variable inputs have been considered to determine the weights

of the different underwater location estimators in the final localisation plan and they

are: USBL availability U , the number of localisation aids received within a predefined

time window from NBs G, battery level B, operational depth D and DR time R. The

USBL availability determines whether a USBL fix from the USBL transceivers (on the

sea-surface) has been received or not. DR time represents the time period that the AUV

has been relying on IMU-based DR for navigation and it resets to zero once a USBL fix

or a trilateration/multilateration estimate has been fused. Inputs fuzzy sets have been

determined intuitively by human expert based on its features e.g., a USBL fix is either

received by the AUV’s transponder or not received and thus the USBL availability U is

represented by crisp sets over the universe of discourse i.e., available or unavailable. In

this implementation, the number of localisation aids received from NBs is either enough

or not enough to perform trilateration i.e., three or more localisation aids received from

recent USBL-localised NB AUVs. Although localisation by NB aids can be performed

with less than three measurements (i.e., solutions are eliminated based on the AUV’s

direction of movement; see [116] for more details), we only consider three or more NB

aids to reduce the localisation process’s uncertainty.

Three localisation methods (i.e., location estimators) have been considered in our imple-

mentation, namely IMU-based DR, USBL and trilateration/multilateration and denoted

by L1, L2 and L3 respectively. The final location estimate could be the output of either

a single location estimator or a weighted combination between two or more location es-

timators based on the normalised sum of the firing strength in each of the output fuzzy

set. Each of the localisation methods is represented by a disjoint triangular fuzzy set

over the universe of discourse so that the firing strength of each localisation method can

be easily dissociated and normalised in the final localisation plan. Gaussian error mod-

els are assumed in this implementation. However, fuzzy-based localisation can handle
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non-Gaussian modelled noise but Gaussian error models have been assumed to make

fair comparison between the proposed fuzzy-based localisation and EKF-based localisa-

tion which requires Gaussian modelled noise. Figure 5.11 shows fuzzy inference system’s

variable inputs based on each AUV’s on-board sensors and Figure 5.12 shows the vari-

able inputs and their fuzzy/crisp sets, their types and limits and the three underwater

location estimators used in this implementation. An example of a final localisation plan

of a combination between L1 and L3 is shown in Figure 5.12 where the final location

estimate would be (2
3L1 + 1

3L3) as L1 firing strength is as double as L3. Fuzzy set

parameters were fine tuned in our simulation based on trial-and-error simulation but

their initial values were estimated based on prior knowledge of each localisation method

operating conditions e.g. USBL localisation error is low at shallow operational depths

and battery consumption in trilateration localisation is relatively high. Therefore USBL

localisation is most likely to be adopted (if available) at shallow operational depths and

trilateration is most likely to be performed if battery level is high. The employed fuzzy

rule base is shown in Appendix A.2. The proposed underwater swarm localisation al-

Figure 5.11: Fuzzy inference variable inputs of each AUV in a swarm of AUVs based on
its on-board acoustic communication modems and sensors.

gorithm’s performance is compared to USBL-aided DR navigation [63] with round-robin

scheduling [158]. It is worth mentioning that in the proposed fuzzy-based localisation

method if USBL transceivers receive localisation requests from more than the maximum

that it can be aided in a single TDMA frame, the USBL employs round-robin scheduling

[158] to respond to all AUV’s localisation requests. A subset of the swarm (i.e., NBs) is

configured to broadcast navigation aids within a predetermined period of time once any

reliable location estimator (e.g., USBL or trilateration) is dominating the final localisa-

tion plan. The NB AUVs are a fixed set of AUVs and they are selected randomly in the
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Figure 5.12: Fuzzy-based underwater localisation approach (Decision-making) with 5
variable inputs & their fuzzy/crisp sets and 3 underwater location estimators. The
aggregated fuzzy output shows an example of a final localisation plan of (2

3L1 + 1
3L3).

swarm before deployment. Figure 5.13 shows an example of round-robin scheduling of

a swarm of AUVs for USBL localisation where only 5 AUVs can be localised in a single

TDMA frame ∆T . Each subset of 5 AUVs in Figure 5.13 can be navigationally re-aided

by the USBL after the last node is aided e.g. the first subset of 5 AUVs is navigationally

re-aided by the USBL every k∆T where k is the swarm size divided by the maximum

number of AUVs that can be aided in a single TDMA frame e.g., 5 AUVs. AUVs group-

ing for round-robin scheduling is performed based on first come, first served basis. In

the proposed algorithm, when a NB receives a USBL fix, it broadcasts localisation aids

of its North and East coordinates to its neighbouring AUVs. Similar to the MAC pro-

tocol adopted in GSM communications (i.e., a combination between both FDMA and

TDMA [168]), we assume that either FDMA or CDMA MAC protocol [132] is utilised

to separate intra-swarm communication from USBL communication and within both

intra-swarm and USBL communications TDMA MAC protocol is adopted.

Figure 5.14 shows an example scenario of the proposed algorithm assuming that the

USBL received localisation requests from all 11 AUVs shown in Figure 5.14. Given that

the USBL can send navigation aids to only 5 AUVs in a single TDMA frame of ∆T ,

round-robin is then adopted for USBL navigation aids in three TDMA frames where at

time = to the first subset of 5 AUVs is aided by the USBL and at time = to + ∆T the

second subset of 5 AUVs is aided. Subsequently the third subset of 1 AUV is aided.

However in the proposed fuzzy-based localisation method while the second subset of
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AUVs is aided by the USBL at time = to+ ∆T , NBs that have been aided by the USBL

at time = to broadcast localisation aid to their neighbouring AUV for trilateration.

Figure 5.13: An Example of round-robin scheduling for USBL navigation aid (repre-
sented by the green bar) in a swarm of AUVs. The USBL, in this example, can only
navigationally aid 5 AUVs in a single TDMA frame of ∆T .

Figure 5.14: The proposed fuzzy-based localisation framework harnesses round-robin
scheduling for USBL navigation aid assuming that all AUVs requested USBL navigation
aid. The USBL can only navigatioanlly aid 5 AUVs in a single TDMA frame of ∆T
utilising low-frequency ACOMMS (in black arrows). NBs (in blue) broadcast localisation
aid to their neighbouring AUV utilising high-frequency ACOMMS (in red arrows).

5.4.2 Simulation Scenario and Settings

A swarm of N AUVs is launched from known positions on the sea surface, each AUV has

a unique ID associated with a specific seabed destination. We assume that an AUV’s

battery level follows a typical discharging profile of a lithium battery cell [169]. A hull-

mounted USBL system on the sea surface can localise 10 AUVs in each of its TDMA

frame [66].

A finite state machine with a proportional–derivative controller was designed to guide

each AUV to its destination on the seabed through the shortest path i.e., straight line.

The AUV’s target yaw and pitch are updated once an external navigation aid is fused.
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A swarm size of 50 to 150 AUVs has been simulated on Webots. Ten AUVs can be

navigationally aided by the USBL in its TDMA frame of 1 second [66] so that a different

subset of the swarm can be aided by the USBL every USBL TDMA frame. A fixed subset

of the swarm (i.e., NBs) is configured to broadcast localisation aids to their neighbouring

AUVs within a predefined period of time once they are externally aided by the USBL

or NBs i.e., the weight of the USBL or trilateration estimators is greater than 0.8 in

the final localisation plan of the proposed fuzzy-based localisation method. We consider

a short period of time (i.e., 1 second), depends on DR accuracy, in which a NB can

broadcast localisation aids once their final localisation plan is dominated by the USBL

or trilateration. The same period of time (i.e., 1 second) is considered in the round-

robin EKF-based localisation for the NBs to broadcast localisation aids once a USBL fix

is received. Table 5.2 summarises the specifications of the modelled IMU. A subset of

10 AUVs can be navigationally aided by the USBL every 1 second (i.e., USBL TDMA

frame length) but we instead delay the USBL update for 3 more seconds to account for

larger swarm sizes (i.e., 3 times as large) in which the simulation becomes intractable

using the available computing resources1. Table 5.3 summarises simulation settings and

parameters we have considered in our simulation and Table 5.4 lists the parameters of

the simulated intra-swarm ACOMMS.

Parameter Value

Accelerometer Resolution 60.958 µg
Accelerometer Constant Bias 14 µg

Accelerometer Noise Density 57 µg/
√
Hz

Gyroscope Resolution 0.0625 ◦

Gyroscope Constant Bias 7 ◦/hour

Gyroscope Noise Density 0.15 ◦/
√
hour

Magnetometer Resolution 1 mGauss
Magnetometer Constant Bias 1.5 mGauss
Magnetometer Noise Density 3 mGauss

Table 5.2: Ellipse 2 micro IMU properties [53]

5.4.3 Results and Analysis

Swarm sizes of 50 to 150 AUVs are considered to validate and compare the proposed

fuzzy-based localisation algorithm’s performance. The performance of each localisation

1 Dedicated workstation with Intel Xeon Gold 6148 CPU @ 2.40 GHz 20 Cores, 192 GB RAM and
Nvidia TITAN Xp 12 GB.
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Parameter Value

Swarm Size 50; 100; 150 AUVs
Simulation Time Step 100 ms
Clock-synchronisation error 1.2 ms 1-σ
Seabed Depth 1000 m
Depth Sensor 2 Hz, 0.1 m 1-σ error
USBL Transponder Communication Range 6000 m
USBL Localisation Accuracy in 1000 m 2.7 m 1-σ error
Number of AUVs positioned by the USBL in a single TDMA frame 10 AUVs
USBL TDMA Frame length 1 s
USBL update rate 4 s
Number of NBs 10 AUVs
NBs broadcasting period 1 s

Table 5.3: Simulation parameters

Parameter Value

Communication modem Frequency band 160 kHz
Communication data rate 50 kbit/s
Navigation aid length and duration 20 bytes; 3.2 ms
Navigation aid allocated TDMA time-slot length 20 ms
Noise level 60 dB
Water salinity 35 ppt
Water temperature 10 ◦C
Rician fading parameter 10
Fast fading enabled

Table 5.4: Intra-swarm communication modem and channel parameters

method is compared based on mean localisation error and standard deviation of each

AUV as well as of the entire swarm. Figure 5.15 shows the entire swarm mean localisation

error and standard deviation in each simulation trial. Ten NBs are considered in both

the proposed fuzzy-based localisation and EKF-based localisation. Round-robin EKF-

based aiding at swarm size of 50 outperforms the proposed algorithm in the entire swarm

mean localisation error by 29.8%. However the proposed fuzzy-based localisation algo-

rithm outperforms Round-robin EKF-based aiding at swarm size of 100 and 150 AUVs

by 13.25% and 16.53% respectively. The proposed fuzzy-based localisation algorithm

greatly improves the entire swarm standard deviation by 35.17% at swarm size of 150

AUVs when compared to round-robin EKF-based method. One-tail two sample t-test is

conducted to compare the localisation accuracy performance of each simulation trial in

both round-robin EKF-based method and the proposed fuzzy-based method. Sufficient

support of data is obtained at swarm size of 100 AUVs to reject the null hypothesis at
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0.05 significance level with p-value of 0.025. Although the null hypothesis at swarm size

of 150 AUVs is also rejected at 0.05 significance level with p-value that was expected to

decrease, it has increased by insignificant margin of 0.007 to reach 0.032. It is believed

that the null hypothesis will always be rejected at large swarm sizes (i.e., larger than 50

AUVs) and the p-value is expected to decrease when swarm size increases. Based on the

one tail test, mean localisation error of the proposed fuzzy-based method is lower than

that of the EKF-based method at significance level of 0.05. Therefore, mean localisation

error of the proposed fuzzy-based method is lower than that of the EKF-based method

when swarm size increases. Table A.1 in Appendix A.3 shows p-values, degree of free-

dom, t-statistics and critical values of each simulation trial to statistically compare the

localisation accuracy of the proposed fuzzy-based method with the EKF-based method.

Figure 5.15 shows that the break-even point for the proposed algorithm to outperform

round-robin EKF-based aiding is at swarm size of around 80 AUVs.

Figure 5.15: The entire swarm mean and standard deviation localisation error in both
the proposed Fuzzy-based USBL/trilateration aided DR navigation (in blue) and round-
robin EKF-based USBL/trilateration aided DR navigation (in red) at swarm size of
50, 100 and 150 AUVs. The error bar around the mean point represents 2σ standard
deviation.

Figure 5.16 shows histograms of mean localisation error and standard deviation of each

AUV in a swarm of 150 AUVs. The results in Figure 5.16 are depicted by computing

the mean and standard deviation of each AUV along the followed trajectory from its

home position on the sea surface to its destination on the seabed. It can be seen that

the number of occurrences of standard deviation below 100 m is higher in the proposed
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algorithm than in round-robin EKF-based localisation. There are 81 out of 150 AUVs

achieved standard deviation below 100 m along their trajectories as opposed to 73 AUVs

when round-robin EKF-based aiding is adopted. Localisation performance of an AUV

in a swarm of 150 when the proposed fuzzy-based, round-robin-based and DR-only are

shown in Figure 5.17. The AUV’s localisation performance in Figure 5.17 is aided by

the USBL around the same time in both round-robin EKF-based and fuzzy-based aiding

and that happened for two reasons. Firstly, the AUV has been exposed to the same

environment settings when either of the localisation method is adopted. Secondly, the

fuzzy rules are designed to prioritise a USBL fix whenever it is received. Figure 5.17

Figure 5.16: Histogram of the mean localisation error and standard deviation of each
AUV of the entire swarm of 150 AUVs. The vertical lines represent the entire swarm
mean localisation error which is 49.76 m and 59.62 m in fuzzy-based and round-robin
EKF-based localisation respectively.

shows that the AUV’s localisation error quickly accumulates over 200 m in the first

100 seconds of the mission when there is no external navigation aid available as in DR-

only (black curve). It can be observed that the AUV is being externally aided by the

navigation beacons more frequently when the proposed fuzzy-based algorithm is adopted.
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Figure 5.17: Instantaneous localisation performance of an AUV in a swarm of 150 when
the proposed fuzzy-based, round-robin EKF-based and DR-only methods are adopted.
A time window of 500 seconds shows the fused external navigation aid

5.5 Summary

In summary, design simplicity and flexibility are emphasised in the proposed localisa-

tion framework as new knowledge can be acquired and represented in additional fuzzy

rules or modifying existent rules in the proposed localisation framework. In contrast,

substantial efforts are needed when integrating new localisation methods in an existent

EKF-based navigation for two reasons: Gaussian error modelling; and the entire filter

re-implementation to expand the covariance matrix and the state vector. The proposed

method can be easily extended to accommodate different localisation methods such as

DVL aided navigation by expanding the fuzzy rule base and thus better scalability is

obtained with increasing swarm size. The proposed fuzzy-based localisation method

is computationally less expensive than the EKF-based localisation method, as matrix

operations in the EKF that involve matrix inverse and multiplication are computation-

ally expensive. Matrix operations in the EKF is not efficient to parallelise for small

matrices (e.g., 6 × 6 matrices). However, fuzzy inference can be easily parallelised and

fuzzy logic chips are available for optimised memory demand and computation speed

implementation.

The proposed algorithm enhanced the overall localisation accuracy of the entire swarm

by providing the AUVs with external navigation aids more frequently. The proposed
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fuzzy-based aiding has improved the entire swarm mean localisation error and stan-

dard deviation by 16.53% and 35.17% respectively at swarm size of 150 AUVs when it

was compared to round-robin EKF-based USBL/trilateration-aided DR navigation. The

total number of AUVs that achieved standard deviation below 100 m along their tra-

jectories has increased by around 10% when the proposed fuzzy-based aiding is adopted

compared to round-robin EKF-based aiding. Simple fuzzy rules that capture human

expert knowledge in underwater localisation methods by if-then rules are proposed and

the impreciseness of expert knowledge is modelled and processed using fuzzy inference.

The proposed algorithm performance is emphasised in large swarm sizes as it becomes

nearly impossible to navigationally aid all AUVs by round-robin scheduling.

The proposed fuzzy-based localisation method does not provide information about lo-

calisation precision or uncertainty and it considers a fixed period of time for NB AUVs

to broadcast navigation aids once they receive USBL localisation updates. Fuzzy set

parameters and rules were fine tuned in our specific deployment scenario based on trial-

and-error simulation but their initial values were estimated based on prior knowledge of

each localisation method error characteristics. Tuning those parameters can be tedious

as parameters need to be tuned if deployment scenarios are different. Moreover, it is

hard to generate data sets for self-tuning the fuzzy rule base through experiments or

simulation. In the following chapter an uncertainty indicator of the localisation process

will be developed to prioritise the USBL navigation aids for some AUVs over the rest.

This uncertainty indicator can be also used to control NBs broadcasting period e.g.,

when greater than a predefined threshold. A single localisation precision indicator (i.e.,

based on each localisation method error characteristics) is utilised in the following chap-

ter to decide on which localisation method to be adopted in case of redundant navigation

information.
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Chapter 6

Confidence based Underwater

Swarm Localisation and

Optimisation

A confidence-based localisation algorithm is proposed in this chapter for improving lo-

calisation accuracy by promoting AUVs with high confidence of location estimates to

references for their neighboring AUVs, and therefore increasing the external navigation

aids update rate. Confidence update rules based on Bayes filters are proposed given

localisation methods’ error characteristics where expected localisation error is generated

based on measurements such as operational depth and travelled distance. The proposed

algorithm’s key parameters are then optimised using the Evolutionary Multi-objective

Optimisation (EMO) algorithm NSGA-II [170] for localisation error minimisation and

localisation confidence maximisation. The proposed confidence-based localisation algo-

rithm and its optimised parameters are published in [28] and [29].

6.1 Introduction

Over the past two decades, swarm robotics have become an attractive research area as

it can provide relatively low-cost solutions for complicated tasks in many applications,

especially when wide region coverage is required [9], [106] and [10]. Locations of each
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individual node must be known and tracked during operation for location-aware appli-

cations e.g. seismic imaging and environmental monitoring. Nodes localisation can be

performed in a centralised way in which information is gathered from all nodes including

a set of anchors to be processed in centralised server for localisation i.e., decision is made

based on complete information from the whole swarm and environment. Nodes localisa-

tion can alternatively be performed in a cooperative way in which anchors as well as a

few nodes with known locations, at a certain instant, navigationally aid the others. Most

efforts in this area, such as [107] and [108], assume an environment where information

can be exchanged easily among team members. We rather consider a swarm of AUVs

that utilises acoustic channels for communication. The high cost of AUVs, the severely

limited bandwidth and long latency of the underwater acoustic communication limit the

number of AUVs that can be deployed at once to collaboratively complete a mission [19]

and [21]. Therefore, most terrestrial and aerial swarm localisation algorithms reported

in the literature are not directly applicable to underwater swarm robotic systems. The

USBL is the most commonly adopted localisation method in the industry due to its

flexibility as it does not require artificial landmarks to be deployed on the seafloor and

it only requires a single surface vessel for operation. However, the maximum number

of underwater targets that can be localised in a single TDMA frame by the USBL is

very limited (up to 10 using the most advanced technology) [66]. Different localisation

methods including trilateration and dead reckoning are employed when USBL is not

available in hierarchical localisation [80, 79, 171].

In this chapter, we lay down the proposed algorithm’s concepts in underwater cooper-

ative localisation for swarm of AUVs. Underwater acoustic communication constraints

(i.e., packet loss and limited bandwidth) are not considered in this chapter for proof-of-

concept simulation but it will be considered in Chapter 7 using the high fidelity physics

based co-simulation platform developed in Chapter 4.

A confidence-based underwater localisation scheme is introduced in which three common

localisation methods, namely USBL localisation, trilateration and DR were adopted.

The confidence threshold and node 1 density are key parameters to the confidence-based

localisation algorithm’s performance, so they are optimised for accuracy enhancement

using an Evolutionary Multi-objective Optimisation algorithm through extensive sim-

ulation. Each AUV or node in the swarm is associated with a scalar confidence value

which represents the localisation estimate precision using a belief function to update the

role of an AUV by either promoting it from an ordinary node to a reference node or

demoting it from a reference node to an ordinary node in the swarm. Confidence values

1The term “node” and “AUV” are used interchangeably in this chapter
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are updated and monitored through the proposed algorithm in which confidence update

rules based on localisation error characteristics and Bayes filters are employed. Nodes

with high confidence can be employed as references for neighboring ordinary nodes lo-

calisation using trilateration.

The remainder of this chapter is organised as follows. Section 6.2 provides a brief back-

ground of both hierarchical localisation algorithms, source of inspiration, and multi-

objective optimisation. Section 6.3 explains the proposed algorithm and formulates the

multi-objective optimisation problem for finding the optimal confidence threshold and

AUV density. Section 6.4 shows how to employ localisation method’s error characteris-

tics in confidence update rules and multi-objective optimisation in localisation accuracy

improvement. Moreover, the algorithm’s performance is compared for both optimised

and arbitrary non-optimised cases and a scalability test is carried out. The algorithm’s

performance is also compared to round-robin scheduling-based USBL aided DR naviga-

tion. Finally, section 6.5 summaries this chapter.

6.2 Background

6.2.1 Evolutionary Multi-objective Optimisation (EMO)

Multi-objective optimisation involves, as the name suggests, optimising more than one

objective. The problem of Multi-objective optimisation becomes particularly challenging

when the objectives are irreconcilable. Population based approaches such as Evolution-

ary Optimisation (EO) algorithms are very popular in EMO. EO algorithms are funda-

mentally different from classical optimisation methodologies as: (a) EO algorithms do

not require the gradient of the objective functions (b) EO algorithms update more than

one solution in each iteration (population-based) versus classical optimisation approaches

update a single solution in each iteration (point-based) [172]. EO approaches are flexible

and widely applicable as they do not require the gradient information of the objective

functions which are hard to be obtained in most real-life applications. Moreover, the

nature of population-based search allows EO algorithms in multi-objective optimisation

problems to return a set of trade-off optimal solutions instead of a single solution that

does not optimise all irreconcilable objectives [173]. For the aforementioned reasons, EO

algorithms are superior choice for multi-objective optimisation [174].

EO algorithms begins with random initialisation of the population over the solutions’

search space; each individual in the population represents a solution. The population
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evolves iteratively through the selection, crossover and mutation procedure. The last

generation would have the elitist population. Each individual in the population is eval-

uated according to the fitness function in the selection process (tournament selection)

[172]; however obtaining a mathematical representation of the fitness function may not

always be possible (e.g. topology optimisation) in such cases each member is evaluated

on a simulated environment that captures the main characteristics of the optimisation

problem (simulation-based optimisation) [175]. The new generation (i.e., offspring) is

then created from the fittest members of the tournament selection by the crossover pro-

cess. The new generation would have a mixture of their parents’ characteristics (parents’

genes). New characteristics or genes are introduced to a small portion of the offspring

in the mutation process so they are not a mirror subset of their parents [172]. Mutation

severity and portion size of the new generation to mutate is usually governed by a prob-

abilistic distribution. The mutation process is crucial in EO so that the new generation

does not stick in a local extrema [172].

EMO has increasingly attracted research and industry communities’ attention. It is now

an established field of research and applications. The Fast and Elitist Multi-objective

Genetic Algorithm NSGA-II is a robust and efficient EMO algorithm introduced by Deb

et al. to find the Pareto-optimal set based on non-dominated sorting and crowding dis-

tance [170]. Pareto-optimal solutions are the elitists population in the last generation

in which choosing one solution over another requires sacrificing one objective and gain-

ing another [173]. A solution is said to dominate another when it is not worse in all

objectives and better in at least one objective. The crowding distance is simply a mea-

sure of how close a solution is to another. Longer distances are associated with higher

scores, and thus the diversity is ensured in the Pareto-optimal set. The population of

each generation in EMO algorithms is divided into non-dominated fronts. The solutions

in the first non-dominated front are identified by comparing each solution with every

other solution in the population to find if it is dominated [174]. To find the solution

in the subsequent fronts, the solutions in the first front are excluded temporarily of the

population and the same comparison procedure is repeated [174].

In NSGA-II, fast non-dominated sorting is carried out by calculating (i) the domination

count which is the number of solutions that dominate a certain individual and (ii) the

set of solutions that a certain individual dominates [170]. The domination count of each

individual in the first front is equal to zero. The solutions that a first front individual

dominates are visited and their domination counts are discounted by one. The solutions

with a domination count of zero after the discount are the second front members. The

same procedure is repeated on the solutions dominated by the second front individuals
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to find the third front members.

Figure 6.1 shows an example of a Pareto-optimal solutions in three fronts in the objec-

tive space of f1 and f2. Assume both objective function f1 and f2 to be minimised so

individual D has a domination count of zero as it is not dominated by any other solution,

therefore it belongs to front 1. However if we consider that individual C domination

count is equal to two, the first front solution D dominates [A, B, C, . . . ] and the first

front solution E dominates [B, C, . . . ]. Therefore solution C would then belong to the

second front as its domination count is equal to zero after it has been discounted by one

for every time individual C is found in a first front members’ dominating list.

The second main sorting approach in NSGA-II after the fast non-dominated sorting

is the crowding distance sorting. The population is first sorted according to the as-

cending order of each objective function value. Infinity distances are assigned to the

boundary solutions and the distance for all other intermediate solutions is equal to the

absolute normalised difference in the function values of two sandwich-neighbouring so-

lutions. The crowding distance would be equal to the sum of the individual’s distances

in each objective. Members with high crowding-distance values are associated with high

score (preferred) to ensure the diversity in the next population. The dashed rectangle in

Figure 6.1 shows an example of a Front 3 individual’s crowding distance which is equal

to (d1 + d2) as both d1 and d2 correspond to the absolute normalised difference of the

adjacent neighbouring solution values in both objectives f1 and f2.

Figure 6.1: A Pareto-optimal solutions in three fronts in the objective space of f1 and
f2 with an example of non-dominated sorting and crowding-distance sorting procedures
in NSGA-II.
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The Fast and Elitist Multi-objective Genetic Algorithm NSGA-II procedure begins with

random parents population and each member is assigned a fitness equal to its non-

domination rank. The usual selection, crossover and mutation operators are adopted

to create offspring population. From the second iteration till the algorithm terminates,

the parents Pt and offspring Qt populations are combined to create a new population

Rt as shown in Figure 6.2. The new population is then sorted into different fronts

by the fast non-dominated sorting, members with lower rank fronts pass through to

the next population (minimisation of the objective functions is assumed). The next

parent population Pt+1 has to be of the same size of the old parents population Pt. The

crowding-distance approach is then adopted to either accept or reject members of the

same front rank in the next parents population Pt+1. Interested readers are referred to

[170] for the computation complexity of NSGA-II.

Figure 6.2: NSGA-II procedure where the population is sorted into different fronts
(F1, F2, F3, · · · ) by fast non-dominated sorting and members of the same front are either
accepted or rejected in the next parents population based on its crowding distance values.

6.2.2 Hierarchical Underwater Localisation

A large-scale hierarchical localisation approach has been investigated in [79] for station-

ary underwater sensor network. Zhou et al. in [80] extended the algorithm in [79] and

introduced a hierarchical localisation approach for mobile underwater sensor network in

which underwater sensors predict their mobility patterns. The details of both [79] and
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[80] have been discussed in Chapter 3. The main concept behind a hierarchical localisa-

tion approach is that a successfully localised ordinary node with high precision can serve

as a reference node for neighboring nodes localisation. Both [79] and [80] considered a

simple approach to regulate the promotion of ordinary nodes to reference nodes. They

introduced the concept of the confidence value and confidence threshold for promoting

ordinary nodes to reference nodes and demoting reference nodes. Confidence values of

localised ordinary nodes in [79] were solely dependent on the localisation error. The ma-

jor drawback of this algorithm is that it is not always possible to measure localisation

error in underwater missions. However, the confidence values in [80] were calculated by

simply averaging the participating reference nodes’ confidence values and considering

the error in range measurements. Bhuvaneswari et al. in [176] proposed a confidence

discount rule based on the number of time steps since last external localisation update

and a high but arbitrarily defined confidence threshold. A computationally expensive

quality of trilateration-based localisation scheme in 2-dimensional space has been in-

troduced in [177] where reference nodes are selected based on geometric relationship of

their positions and ranging errors. The authors in [177] focused only on localisation by

trilateration and considered a scenario in which a node has to select 3 reference nodes

for localisation based on their quality-of-trilateration score.

6.3 Confidence-based localisation Algorithm

In this section, confidence-based localisation algorithm for a swarm of mobile underwater

sensor nodes is proposed. The proposed algorithm aims at improving localisation cov-

erage and localisation estimate accuracy by promoting high-precision localised ordinary

nodes to reference nodes based on their confidence values. The confidence value of a

node is dynamically updated by the proposed confidence update rules.

6.3.1 Confidence Update Rules

Consider a swarm of N AUVs denoted by a set A =
{
a1, a2, . . . , aN

}
. Define δit as a

confidence value, which is between 0 and 1, associated with the AUV ai at time t. It

measures the uncertainty associated with the AUV’s current location estimate using a

belief function. The certainty of an AUV being at a certain position can be considered
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as a belief (i.e., state of knowledge) and it can be represented as a conditional likeli-

hood distribution [178]. A belief can be easily calculated by the Bayes filter algorithm

[178]. If an AUV has a confidence value of 1, its current location estimate is certain.

On the other hand, the current location estimate of an AUV is completely unreliable

if its confidence value is 0. Initially it is set to 1 as all AUVs are deployed from a

known position. The confidence value of AUV ai (δit) is dynamically updated in each

localisation step. Any localisation method can be integrated in the proposed algorithm

by implementing confidence value update rules based on a localisation method’s error

characteristics i.e., mean localisation error and standard deviation of localisation error.

Different update rules of the confidence value are implemented based on a designated

localisation method’s expected localisation error. In contrast to terrestrial localisation,

localisation estimate error in the underwater environment cannot be measured unless a

sophisticated localisation system is employed such as LBL which require artificial land-

marks to be deployed on the seafloor in advance. If the confidence value of AUV ai (δit)

drops below a pre-defined confidence threshold λ1 and the USBL is available, then AUV

ai will be localised by the USBL and its confidence value is updated (boosted) based

on its previous confidence value δit−1 that is related to pit−1 where pit−1 is the estimated

position at time t−1 and measurements {zt: operational depth} which can be accurately

acquired by a depth sensor. The AUV’s confidence value (δit) is updated as follows

δit := bel (pit) (6.1)

bel (pit) = L(mt | pit) bel (pit−1) (6.2)

where L(mt | pit) represents the likelihood of AUV ai being at the estimated position pit

given some measurements mt i.e., the operational depth zt when an AUV is localised

by the USBL. In other words, the likelihood of an estimated position being matched

with an expected position is related to the expected error derived from a localisation

method’s error characteristics. If an AUV does not receive a USBL localisation aid

(USBL is not available), then three conditions will be checked (refer to Algorithm 1)

prior to performing ToA based trilateration [155] where J is the number of neighbouring

AUVs and ld is the minimum bounding box’s dimensions formed by neighbouring AUVs

j = 1, 2, . . . , J . ToA-based trilateration least squares problem is solved using PSO [101]

as shown in subsection 3.3.2. Confidence value (δit) is updated, in this case, based

on neighbouring AUVs confidence values (δjt ) and their estimated positions (pjt ), the

estimated position of AUV ai (pit) and range measurements (rijt ) between AUV ai and

its neighbouring AUVs (aj : j = 1, 2, . . . , J):
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δit =

∑J
j=1 δ

j
t

(
1− ||p

j
t−pit|−r

ij
t |

|pjt−pit|

)
J

(6.3)

Equation 6.3 is introduced based on empirical evaluation as it considers the undiscounted

confidence value of a neighbour AUV aj if the distance between AUV ai and aj through

their estimated positions (pit) and (pjt ) perfectly matches the corresponding range mea-

surement (rijt ). AUV ai location will be tracked using dead reckoning when neither USBL

nor trilateration method can be adopted. Confidence value (δit) is discounted based on

its previous confidence value and current measurements (wt: travelled distance since the

last USBL or trilateration localisation) using Equations 6.1 and 6.2 with mt = wt. Algo-

rithm 1 depicts the localisation process of AUV ai in which USBL system (at most ten

AUVs can be localised in a single TDMA frame of 1 second) [66], trilateration or dead

reckoning localisation is selected for every localisation period ∆T based on its confidence

value (δit).

Algorithm 1: Confidence-based localisation - AUV ai localisation

Result: pit, δ
i
t

initialisation: pit=t0 = piinitial, δ
i
t=t0 = 1;

for each time step ∆T do
if δit ≤ λ1 then

Request a USBL localisation aid
if request is granted then

Adopt USBL
Update δit ← (pit−1, zt) as in 6.2

end

if request is not granted && min
j=1:J

δjt ≥ λ1 && J ≥ 4 && min
d=1:3

ld ≥ 1 then

Adopt Trilateration
Update δit ← (δjt , p

j
t , p

i
t, r

ij
t ) as in 6.3

else
Adopt Dead reckoning
Update δit ← (pit−1, wt) as in 6.2

end

else
Adopt Dead reckoning
Update δit ← (pit−1, wt) as in 6.2

end

end
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6.3.2 Parameters Optimisation

In the proposed algorithm, a predefined confidence threshold (λ1) is set to promote an

ordinary high precision localised AUV to a reference AUV. However, determining a uni-

versal confidence threshold that suits different AUV deployment scenarios is laborious

and nearly impossible. In addition, as far as ToA-based trilateration localisation method

is concerned, a minimum AUV density (λ2) in the swarm should also be carefully main-

tained i.e., at least 3 references should be in an AUV’s communication range to perform

trilateration as explained in subsection 3.3.2. Random walkers motion model is a simple

way to generate many possible spatial patterns of nodes in a node’s neighbourhood.

Therefore, it has been commonly assumed that the optimised parameters on random

walkers may suit various deployment scenarios. We have assumed correlated and uncor-

related random walker models [179] to govern the mobility of nodes in a confined region.

The impact of confidence threshold and AUV density on localisation performance have

been investigated through extensive simulation. Four performance metrics were con-

sidered, namely mean localisation error, mean confidence value, USBL utilisation and

ToA-based trilateration utilisation.

Our objectives are to minimise localisation error (i.e., f1(λ1, λ2)) and ToA-based trilat-

eration utilisation (i.e., f2(λ1, λ2)) due to its high demand of on-board computational

power while maximising mean confidence value (i.e., f3(λ1, λ2)) and USBL utilisation

(i.e., f4(λ1, λ2)) as it is the most reliable localisation method. There is no single optimum

solution in the parameter space that simultaneously optimises these four irreconcilable

objectives in Equation 6.4. However, a set of optimal solutions that provides a trade-off

among objectives seems ideal to this multi-objective optimisation problem:
min f1(λ1, λ2)

min f2(λ1, λ2)

max f3(λ1, λ2)

max f4(λ1, λ2)

subject to

{
L1 ≤ λ1 ≤ U1

L2 ≤ λ2 ≤ U2

(6.4)

where λ1 is confidence threshold, λ2 is AUV density, Li and Ui (i = 1, 2) are their

lower and upper bounds respectively. AUV density (λ2) is defined as the expected

number of AUVs in an AUV’s neighbourhood and thus it can be varied by the AUVs’

communication range.
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The objective functions f1, f2, f3 and f4 are defined in the simulation as follows:

f(λ1, λ2) =

N∑
i=1

(∑T
t=0 Ψi

t
T

)
N

(6.5)

where N is the swarm size and T is the simulation maximum time step. Ψi
t in Equation

6.5 is defined as the localisation error for f1, true binary variable if trilateration is

successful for f2, confidence value for f3 and true binary variable if USBL aiding is

successful for f4 of AUV ai at time instant t. The Fast and Elitist Multi-objective

Genetic Algorithm NSGA-II [170] explained earlier in Section 6.2 is adopted to find the

Pareto-optimal solutions of Equation 6.4.

6.4 Simulation

In this section, error characteristics of localisation methods are employed to generate

a localisation method’s expected error and thus, confidence values are updated as in

Equations 6.2 and 6.3. The importance of optimising confidence threshold and node

density is emphasised in this section by comparing the proposed algorithm’s performance

with optimised parameters and arbitrarily selected non-optimised parameters.

6.4.1 Error Characteristics for Confidence Update

When USBL localisation method is adopted, the expected error for localisation estimate

can be generated based on its error characteristics. In 1000 m depth, 63% (1 Drms) of

the total USBL localisation errors are within 2.7 m radius [66]. We assume that the

localisation estimate error of a given USBL system follows a Gaussian distribution given

by

EU ∼ N (µ, σ2) (6.6)

where µ = 2.7 m and σ = total error (1Drms) depicted from the relationship in [66]

and shown in Figure 5.3. The USBL localisation error can be predicted based on the

operational depth. We calculate the likelihood L(zt | pit) in Equation 6.2 as follows

L(zt | pit) =
1

σ
√

2π
e−(EU )2/2σ2

+ τ (6.7)
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where EU is the USBL expected localisation error, τ is a damping factor. A damping

factor (τ) is crucial for the likelihood stability, the higher the value of τ the less-likely the

confidence value is to fluctuate. Equation 6.3 is used to calculate the confidence value of

AUV ai when ToA-based trilateration is adopted. Based on existing underwater range

measurement technologies we assume that the range measurement between two arbitrary

neighboring AUVs ai and aj (rijt ) follows a Gaussian distribution with mean equal to

real measured range and standard deviation of 2% of the mean [164]. In case none of

the available external localisation aids is adopted, an AUV’s location is tracked using

IMU-based dead reckoning. Confidence value (δit) is then updated based on equation

6.2. We assume a low cost and low power consumption sensor suite consists of INS and

pressure gauge employed in each node with a typical dead reckoning accuracy of 30% of

travelled distance [180]. We calculate the expected error of dead reckoning localisation

as follows

ED = wt Φ : Φ ∼ uniform(α, β) (6.8)

L(wt | pit) =
1

σ
√

2π
e−(ED)2/2σ2

+ τ (6.9)

where ED is the dead reckoning expected localisation error, α is proportionally related to

the number of dead reckoning navigation steps (resets to 0 when USBL or trilateration is

adopted) and β is the maximum drift of dead reckoning navigation i.e., 30% of travelled

distance. Thus, the width of the probability density function of Φ is decreasing when

time progresses.

6.4.2 Simulation Settings

Suppose 100 identical mobile nodes are randomly deployed on a surface of a confined

region of 100 m3. Each node is equipped with a depth sensor with accuracy of 0.01%

[181], IMU with a typical INS dead reckoning accuracy of 30% [180] of the travelled

distance, a USBL transponder and a short-range communications modem. Assume a

USBL localisation system, hull mounted on a surface vessel, capable of localising 10 nodes

in a single TDMA frame of 1 second [66]. Correlated and uncorrelated random walker

models [179] are employed to govern the mobility of the nodes. Table 6.1 summarises the

key parameters of the simulation and Evolutionary Multi-objective Optimisation NSGA-

II [170] used in confidence-based localisation algorithm optimisation. Notice that we

consider measuring distances in the objectives space (Pareto Front) instead of variables

space for crowding-distance as the computed distances of solutions in variables space
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Parameter Value

Endurance time 1000-time step
Time step 1 s
Swarm size 100-node
Initial confidence value 1
Max number of USBL localised nodes in a single TDMA frame 10-node
USBL TDMA frame length 1 s
Max dead reckoning drift 30%
Intra-swarm node’s communication range [5, 55] m
Confidence threshold [0, 1]
NSGA-II population size 1000
NSGA-II max generation No. 500
NSGA-II non-dominated fraction 0.02

Table 6.1: Simulation parameters

might be very small although their corresponding Pareto Front distances are not.

6.4.3 Results and Analysis

The proposed algorithm performance with respect to the four aforementioned perfor-

mance indicators has been investigated through more than 200 simulations in which the

confidence threshold (λ1) was varied from 0 to 1 with an increment of 0.05 and nodes’

communication range were varied from 5 m to 55 m with an increment of 5 m. This

represents nodes density (λ2) ranging from 0 to almost 40 as shown in Figure 6.3. Fig-

ure 6.4 shows the impact of the confidence threshold and the AUVs density (varied by

AUVs’ communication range) on (a) mean localisation error, (b) mean confidence value,

(c) USBL utilisation and (d) ToA-based trilateration utilisation in a swarm of 100 AUVs.
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Figure 6.3: The relationship between the average number of the nodes in an node’s
neighborhood (AUVs density) and node’s communication range.

The fitness function of each objective has been built based on data fitting models of the

objective function surfaces shown in Figure 6.4. The evolutionary multi-objective opti-

misation method NSGA-II is then employed to find the optimised confidence threshold

λ1 : 0 ≤ λ1 ≤ 1 and node density λ2 : 0 ≤ λ2 ≤ 40. The upper bound of λ2 (40) is

equivalent to nodes’ communication range of more than 50% (≈ 55 m) of a deployment

region’s dimension i.e., 100 m. Figure 6.5 reveals the Pareto Front (Pareto-optimal set

score in objectives space) and Figure 6.6 shows the corresponding Pareto-optimal set.

Figure 6.7 shows the score of the four objectives of four dominant optimal solutions in

the proposed deployment scenario.
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(a) (b)

(c) (d)

Figure 6.4: The impact of the confidence threshold and AUVs density on (a) mean
error (b) mean confidence value (c) USBL utilisation and (d) ToA-based trilateration
utilisation in a swarm of 100 AUVs over 1000 localisation period.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.5: The score of Pareto-optimal set, Pareto Front, in (a) mean error and mean
confidence value (b) mean error and USBL utilisation (c) mean error and ToA-based tri-
lateration utilisation (d) mean confidence value and USBL utilisation (e) mean confidence
value and ToA-based utilisation and (f) USBL utilisation and ToA-based utilisation. The
solutions in Pareto front are numbered from 1 to 23.
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Figure 6.6: The corresponding Pareto-optimal set of Pareto Front (in Confidence Thresh-
old and AUVs Density). Four optimal solutions are selected (filled coloured circles) to
represent their typical clusters’ parameter values in the objective space.

Figure 6.7: The score of four selected optimal solutions in the four objectives (a) mean
error (b) mean confidence value (c) USBL utilisation and (d) ToA-based utilisation.

A decision maker now has the option to choose any of the solutions in the Pareto-optimal

set in Figure 6.6 based on application requirements or objectives priorities. It can be

noticed that the optimal solutions in Figure 6.6 can be grouped into 4 clusters. We

therefore select a single solution in each cluster in the Pareto-optimal set to emphasise

each cluster’s score in the Pareto Front. The selected four optimal solutions (coloured)
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are 19, 20, 7 and 23, as shown in Figure 6.6. Solution 7 (O7) minimises the mean

error in Figure 6.7 (a) while maximises mean confidence value in Figure 6.7 (b) and

USBL utilisation in Figure 6.7 (c) but it does not minimise trilateration utilisation

in Figure 6.7 (d). Although O23 minimises trilateration utilisation in Figure 6.7 (d), it

maximises the mean error in Figure 6.7 (a). However, O19 outperforms O20 in minimising

the trilateration utilisation in Figure 6.7 (d) by around 30%. O20 outperforms O19 in

maximising both USBL utilisation and mean confidence value; hence O19 suggests mostly

dead-reckoning localisation which may lead to severe error accumulation in different

deployment scenarios. Therefore, we select the set of optimal parameters represented by

O20. It is worth mentioning that O19 can provide optimal parameters for our deployment

scenario given the relatively small deployment region considered. From Figure 6.6, O20

suggests a confidence threshold of 0.7109 and AUV density of 26 (communication range

of 45 m). Figure 6.8 below shows histograms of localisation estimate error and confidence

value of arbitrarily selected AUV in a swarm of 100 AUVs over 1000 localisation period in

an arbitrarily selected non-optimal case where confidence threshold (λ1) is 0.9 and AUV

density (λ2) is 6.35 (25 m communication range) and in the selected optimal case (O20).

Figure 6.9 depicts the traces of localisation error, confidence value and the adopted

localisation method in each localisation period of the same AUV presented in Figure 6.8

over a time window of 150 localisation period in both cases.

Figure 6.8: Histograms of localisation error and confidence value of a single AUV in
both a non-optimal case (red) and the optimal case (blue) over 1000 localisation period
with mean localisation error of 4.42 m and 2.08 m and mean confidence value of 0.56
and 0.74 in the non-optimal and the optimal cases respectively.
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Figure 6.9: Traces of typical localisation errors and confidence values of a single AUV
over the first 150 localisation period in the non-optimal case (red) and the optimal case
(blue). The red dashed horizontal lines represent confidence thresholds.

When both Confidence Threshold (λ1) and AUV Density (λ2) are optimised, the AUV

presented in Figure 6.9 (the optimal case) was considered as a reference node for 62.9%

(629 localisation periods) of the total running time (1000 localisation periods). In con-

trast, when confidence threshold and AUV density were arbitrarily set to 0.9 and 6.35

respectively (a non-optimal case), the AUV presented in Figure 6.9 was considered as a

reference AUV for only 18% (180 localisation period) of the total running time. Con-

sequently, mean localisation error and mean confidence value have been improved by

52.94% and 32.14% respectively when confidence threshold and AUV density are opti-

mised as shown in Figure 6.8. More AUVs can become reference AUVs for trilateration

with sufficiently high confidence in the optimised case. In addition, standard deviations

of both localisation estimate error and confidence value in Figure 6.8 have been improved

by around 30.15% (from 1.99 to 1.39) and 65.5% (from 0.29 to 0.10) respectively. Fig-

ure 6.10 shows histograms of the localisation estimate error and the confidence value

of the entire swarm (i.e., 100 AUVs) in the pre-mentioned non-optimal case and in the

suggested optimal case (O20).

Figure 6.10 reveals an improvement of 47.7% in localisation mean error, 27.3% in local-

isation error standard deviation and 33.92% in the mean confidence value in the swarm

(105 localisation period) when algorithm’s parameters (confidence threshold and AUV

density) are optimised.
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Figure 6.10: Histograms of localisation error and confidence value of 100 AUVs in both
the non-optimal case (red) and the optimal case (blue) over 1000 localisation periods.
The mean localisation error in 105 localisation periods is equal to 4.48 m and 2.34 m
with mean confidence value equal to 0.56 and 0.75 in the non-optimal and the optimal
cases respectively.

We have furthermore taken the advantage of the simulation platform simplicity to test

the scalability of the proposed confidence-based localisation approach. An extensive sim-

ulation has been performed to test the scalability and to further compare the proposed

localisation approach with round-robin scheduling-based USBL aided DR navigation.

Figure 6.11 shows the mean localisation error of the entire swarm in both the proposed

confidence-based USBL/trilateration aided DR navigation and round-robin scheduling-

based USBL aided DR navigation and Figure 6.12 shows the associated standard de-

viation. Mean localisation error and standard deviation of the entire swarm shown in

Figures 6.11 and 6.12 are depicted over a swarm size of 10 to 1000 AUVs with an incre-

ment of 10 AUVs.

It can be clearly noticed that the localisation mean error and standard deviation in

round-robin scheduling-based USBL aided DR navigation increases linearly with increas-

ing swarm size as the USBL update delay increases linearly in round-robin scheduling.

Whereas mean localisation error slightly increases as shown in Figure 6.11 with increas-

ing swarm size when the proposed confidence-based localisation algorithm is adopted.

Linear regression has been performed on the data presented in Figure 6.11 to find the

data model in both cases. The regression coefficient (slope) in round-robin scheduling-

based USBL aided DR navigation is equal to 74×10−4 whereas it is equal to 8.27×10−4
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Figure 6.11: The performance of the proposed algorithm is compared through the mean
error of the entire swarm with round-robin scheduling-based USBL aided dead reckoning
navigation. The black dashed lines represent the data models in both cases found by
linear regressions.

Figure 6.12: Localization error standard deviation of the whole swarm is compared when
two different localization methods are employed.

in the proposed confidence-based USBL/trilateration aided DR navigation with coeffi-

cient of determination R2 of 0.99 and 0.89 respectively.

Figure 6.11 shows that round-robin scheduling approach outperforms the proposed lo-

calisation approach in swarm sizes less than 130 AUVs. This depends on two factors,

namely the AUV’s on-board IMU accuracy and trilateration robustness. The AUV’s
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on-board IMU accuracy is essential to the time interval length between two consecutive

external navigation aids i.e., USBL or trilateration.

In deployment scenarios of swarm sizes less than 130 AUVs, frequent USBL aids and

relatively accurate AUV’s on-board IMU, either an outlier detection algorithm can be

developed and integrated in the proposed algorithm to reject inaccurate trilateration

results or further tuning of the proposed algorithm’s parameters can be carried out to

minimise trilateration utilisation. In the later case the proposed localisation algorithm

performance would at least be similar to round-robin scheduling performance.

6.5 Summary

In this chapter, a confidence-based algorithm is proposed for underwater localisation in

large-scale mobile swarm. Confidence threshold and AUV density are key parameters in

the proposed algorithm. They are obtained and optimised through extensive simulation

in which random walker models are applied so that the optimised parameters could

suit various deployment scenarios. The presented results highlight the importance of

optimising the proposed algorithm’s parameters as mean localisation error is improved

when the parameters are optimised. Mean localisation error and mean confidence value

have been improved by 52.94% and 32.14% respectively when the proposed algorithm’s

parameters are optimised.

Different underwater localisation methods (i.e., USBL, ToA-based trilateration and IMU-

based DR) have been considered in the proposed localisation scheme. We sufficed to

stochastically model the USBL and IMU-based DR localisation methods based on their

error characteristics to show the proposed method is feasible. Random walker models

have been considered to govern the mobility of the AUVs and hence IMU-based DR

navigation method has been stochastically modelled. The proposed localisation algo-

rithm offers a holistic approach in which a location-confidence value is associated with

each AUV in the swarm. Given that each AUV’s confidence value is being updated

on-the-fly, limited external navigation aid resources (i.e., USBL) can be then optimally

utilised. Furthermore, based on the same confidence value a decision on whether an

AUV broadcasts navigation aids is made. The proposed algorithm’s performance in

term of the entire swarm mean localisation error and standard deviation is compared

with round-robin scheduling-based USBL aided DR navigation. The presented results

strengthens the idea of cooperative localisation in large scale underwater robotic swarms
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as the mean error of the entire swarm remains almost constant or slightly increases with

increasing swarm size.

The proposed fuzzy-based localisation algorithm of Chapter 5 considers a fixed period of

time for reference nodes (i.e., NB AUVs) to broadcast localisation aids. On the contrary,

reference nodes in the proposed confidence-based localisation algorithm relies on a single

indicator and a predetermined threshold (i.e., confidence value and confidence thresh-

old) to broadcast localisation aids. Therefore, more localisation aids can be broadcasted

and maximum acoustic channel utilisation can be achieved. A fixed number of reference

nodes (i.e., NB AUVs) have been considered in fuzzy-based localisation algorithm (i.e.,

10 AUVs). However, the number of reference nodes in the proposed confidence-based

algorithm has been optimised through node density. The proposed confidence-based

algorithm successfully eliminates the need for constructing and tuning a fuzzy system

but it introduces some other parameters that have to be tuned due to its dependence on

localisation methods error characteristics in penalising the confidence value. The confi-

dence value in the following chapter will be updated intuitively based on one generic rule.

Ocean bottom seismic imaging deployment scenario is simulated on the co-simulation

platform for localisation performance analysis. Confidence threshold and the number of

navigation beacons are then optimised based on the same multi-objective optimisation

procedure presented in this chapter.
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Chapter 7

Confidence based Localisation for

Cooperative Underwater Robotic

Swarms using the Extended

Kalman Filter

A cooperative confidence-based localisation scheme for underwater robotic swarms using

the EKF is proposed. A subset of the robots in the swarm is localised using ultra-short

baseline technology, and another subset is configured to broadcast their location esti-

mate (i.e., once this reaches a given confidence threshold) in order to act as range-only

Navigation Beacon (NB)s. The confidence value for localisation precision in a single

measurement is proposed to control the cooperation dynamics in the swarm in term of

USBL localisation and navigation beacons aiding. Given the error characteristics of a

commercially available USBL system and the covariance matrix of a trilaterated under-

water vehicle position, EKF-based USBL or range measurements-aided dead reckoning

navigation is performed and controlled by the AUV’s confidence value. We compare the

performance of the proposed confidence-based localisation algorithm with both round-

robin USBL-aided EKF-based DR navigating and the fuzzy-based localisation algorithm

proposed in Chapter 5.
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7.1 Introduction

Cooperative localisation of underwater multi-agent robotic system (i.e., 3-4 AUVs) has

been investigated in [57], [114] and [116]. In cooperative underwater navigation, where

server-client or transmitter-receiver architecture is normally considered, MAC proto-

col must be carefully designed to coordinate multiple transmitted acoustic signals with

collision-free and maximum channel utilisation. TDMA is the most adopted MAC pro-

tocol in the subsea domain [130] while other multiple access technologies such as FDMA

[182] and CDMA [132] are rarely utilised for underwater acoustic communications [183].

TDMA scheme required all active participants of the network to be synchronised; see

[129] for a survey on TDMA schemes. However when clock-synchronisation is not avail-

able, CDMA, FDMA or CSMA schemes can be adopted [124]. A centralised cooperative

localisation algorithm for synchronous-clock acoustic navigation has been reported in

[57] using a centralised EKF. Webster et al. in [114] designed a decentralised coopera-

tive navigation scheme to improve the scalability of the localisation scheme reported in

[57] where they employed the EIF to reduce the transmitted information amount among

the vehicles. In both [57] and [114], the authors considered one surface vehicle and two

AUVs for cooperative localisation where the navigation relies on range measurements

from a single beacon with known position. Likewise, in [116], Bahr et al. studied the

cooperative localisation of two AUVs based on range measurements from a single bea-

con. Despite the paucity of underwater robotic swarm localisation research, a number

of UWSN localisation techniques have already been investigated for ocean monitoring,

geological and ecological research, and samples collection [167]. A localisation scheme

for large scale UWSN integrates a 3-dimensional Euclidean distance estimation method

with a recursive location estimation method introduced in [79]. Further gain in locali-

sation accuracy was shown in [80], by incorporating sensors’ mobility prediction model

into the algorithm reported in [79]. The localisation scheme in both [79] and [80] is hier-

archical where a localised sensor node serves as a localisation reference for non-localised

sensor nodes if its associated confidence value is higher than a predetermined threshold.

In chapter 6, we proposed a confidence-based underwater localisation for AUVs swarm

in which confidence update rules were introduced based on the adopted localisation

method’s error characteristics and a simulation-based optimisation was carried out to

determine an optimal confidence threshold.

A distributed cooperative localisation algorithm for underwater robotic swarm is pro-

posed in which we utilise a USBL system for a subset of the swarm localisation. A
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NB broadcasts a localisation message once its confidence value is higher than a pre-

determined optimised confidence threshold. If another AUV with low confidence value

receives three or more NB localisation messages (i.e., range-only) within a time window,

unscented trilateration/multilateration is performed. The EKF is incorporated for Multi

Data Sensor Fusion (MDSF). This chapter extends the confidence-based localisation al-

gorithm proposed in Chapter 6 with the following contributions:

1. Incorporating the EKF for MDSF so that the confidence value of an AUV location

can be intuitively generated of the associated covariance matrix.

2. A comprehensive analysis of the proposed algorithm based on simulating real-world

deployment scenarios for ocean bottom seismic imaging using the co-simulation

platform discussed in Chapter 4.

3. A comparison of the proposed algorithm performance with other navigation frame-

works such as round-robin EKF-based cooperative localisation and the proposed

fuzzy-based localisation in Chapter 5.

The remainder of this chapter is organised as follows. Section 7.2 details the proposed

localisation algorithm and its confidence update rules. Section 7.3 presents deployment

scenarios and settings and reports performance evaluation of the proposed confidence-

based localisation algorithm. Finally, this chapter is summarised in section 7.4.

7.2 Cooperative Swarm Localisation

In this section, the proposed underwater robotic swarm localisation algorithm is detailed.

Two different localisation aids are considered in the proposed algorithm, namely USBL

fixes and range-only measurements to NBs. Spherical Error Probability (SEP) [184] is

employed as an indicator for the location estimate precision of an AUV.

7.2.1 Algorithm Overview

Consider a swarm of N AUVs denoted by a set A =
{
a1, a2, . . . , aN

}
is on a mission.

Consider we have a USBL system, which can localise only a limited number of AUVs in

each of its TDMA frame. Assume each AUV is equipped with a medium range acoustic

USBL transponder working at medium frequency band i.e., 20-40 kHz, a short range
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acoustic modem working at high frequency band (i.e., 100-180 kHz) for intra-swarm

communication, a 9-axis IMU, a depth sensor and a CSAC for clock-synchronisation

of the AUVs. Range measurements are acquired by means of OWTT as all AUVs are

accurately synchronised using CSAC.

The three-dimensional localisation problem can be converted into its 2D counterpart via

projection onto the horizontal plane as all AUVs are equipped with a pressure sensor

with accurate depth estimation [94]. A subset of the swarm ANB with a priori known IDs

are dedicated NBs i.e., transmit localisation messages when they are precisely localised

where ANB ⊆ A. Localisation precision is determined by the SEP of the estimated

position covariance matrix which we define as the AUV’s confidence value. All AUVs

are launched from known position p̂ito relative to the deployment vessel’s position (i.e.,

independent of the GNSS accuracy) and hence their initial position’s covariance matrix

norm ||Σi
to || is close to zero.

Let δit be the confidence value of AUV ai being at a certain position p̂it at time (t); δit is

a scalar between 0 and 1. In the proposed algorithm, a localised navigation beacon (i.e.,

NB) with confidence value higher than a predefined confidence threshold λ1 broadcasts

a localisation aid to its neighboring AUVs. It keeps silent otherwise as it is considered as

an unreliable navigation beacon i.e., need-to-be-aided. The AUVs are assumed to nav-

igate towards their designated destinations using their on-board proprioceptive sensors

based on their INS which is composed of the IMU hardware and navigation algorithms

as explained in Section 3.2. Their confidence values are updated at each localisation step

based on their estimated position’s covariance matrix. Once the confidence value δit of

ai drops below a predefined confidence threshold λ1, ai broadcasts a USBL localisation

request in its USBL TDMA slot. The USBL can localise a limited number of AUVs in

a single TDMA frame. Specifically, USBL transceiver broadcasts a localisation message

to ai in a time slot in its TDMA frame if the maximum number of the AUVs that can

be localised in one TDMA frame is not reached. If the number of localisation requests

received by the USBL transceiver is more than what it can be localised in one USBL

TDMA frame, AUVs with the lowest confidence values are only considered with priori-

tising NBs i.e., ai ∈ ANB. Alternatively, once the confidence value δit of ai drops below

λ1 and if ai receives three or more localisation messages from neighbouring NBs within

a time window, ai performs unscented multilateration, explained in subsection 7.2.3, for

location and covariance estimation (piLAT,t,Σ
i
LAT,t). Figure 7.1 depicts the localisation

process of the proposed confidence-based localisation algorithm of each AUV ai in the

swarm in which the EKF is utilised for fusing and tracking the biases of the IMU’s

measurements in indirect feedback integration as explained in subsection 3.2.2. The
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spherical linear interpolation utilised as a low pass filter to smooth the AUV’s orienta-

tion estimates by creating a sequence of quaternions that vary smoothly between every

two estimates with a constant angular velocity [185]. A simple outlier detector, based

on the travelled distance, is applied on both USBL and multilateration localisation aids

before being fused.

It has been proven in Chapter 6 that optimising the confidence threshold and node

density (varied by the communication range of each node) can enhance the proposed

localisation algorithm’s performance. We are in this chapter adopting a more generic

and intuitive method to update the confidence value than that we proposed in Chap-

ter 6. Moreover, practical implementations of the proposed confidence-based algorithm

are considered in this chapter and hence utilises off-the-shelf acoustic communications

modem for intra-swarm communication with a communication range that cannot be ad-

justed. Therefore, the confidence threshold (i.e., λ1) in this chapter is optimised based

on the proposed confidence update method and in the sense that the communication

range cannot be adjusted, the number of NBs (i.e., λ2) is optimised. Optimising the

number of NBs in the swarm is essentially node density optimisation which is defined

as the number of NBs within an AUV’s communication range. The same optimisation

procedure presented in Chapter 6 are followed but the USBL utilisation is minimised and

range measurements aiding (i.e., trilateration) utilisation is maximised. We acknowledge

that the USBL utilisation should be maximised. However the optimisation is carried out

on fixed swarm size of 50 AUVs and the resultant optimsed parameters are going to

be used for a scaled up swarm sizes i.e., 100 and 150 AUVs. Given that the USBL

can navigationally aid only a limited number of AUVs in a short TDMA frame (i.e., 1

second), the USBL utilisation is minimised so that the average localisation error of the

entire swarm does not dramatically increase with increasing swarm size. The parame-

ters λ1 and λ2 are optimised on a fixed number of AUVs (i.e., swarm size) and then the

performance of the proposed algorithm with the optimised parameters is evaluated on a

scaled-up swarm sizes.

Our objectives are to minimise the entire swarm mean localisation error i.e., f1(λ1, λ2),

the entire swarm standard deviation of the mean of each AUV’s instantaneous Root

Mean Square Error (RMSE) (1-σ error) i.e., f2(λ1, λ2), USBL utilisation i.e., f3(λ1, λ2)

and intra-swarm communication packet loss i.e., f4(λ1, λ2) while maximising the entire

swarm mean confidence value i.e., f5(λ1, λ2) and trilateration utilisation i.e., f6(λ1, λ2)
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as shown in Equation 7.1.

min f1(λ1, λ2)

min f2(λ1, λ2)

min f3(λ1, λ2)

min f4(λ1, λ2)

max f5(λ1, λ2)

max f6(λ1, λ2)

subject to

{
L1 ≤ λ1 ≤ U1

L2 ≤ λ2 ≤ U2

(7.1)

where Li and Ui (i = 1, 2) are lower and upper bounds of λ1 and λ2 respectively. The Fast

and Elitist Multi-objective Genetic Algorithm NSGA-II [170], as shown in Chapter 6, is

employed to find the Pareto-optimal solutions of Equation 7.1. The objective functions

f1, f2 . . . , f6 and are defined in the simulation as follows:

f1,3,5,6(λ1, λ2) =

N∑
i=1

(∑T
t=0 Ψi

t
T

)
N

(7.2)

f2(λ1, λ2) =

√√√√√ N∑
i=1

iא) − 2(מ

N
(7.3)

f4(λ1, λ2) =

TUnet∑
t=0

tק

TUnet
(7.4)

where N is the swarm size and T is the simulation maximum time step. Ψi
t in Equation

6.5 is defined as the localisation error for f1, true binary variable if USBL aiding is suc-

cessful for f3, confidence value for f5 and true binary variable if trilateration is successful

for f6 of AUV ai at time instant t. iא and מ in Equation 7.3 are the mean localisation

error of AUV ai along the whole trajectory and the entire swarm mean localisation error

respectively. tק and TUnet in Equation 7.4 is the entire swarm (i.e., network) packet

loss at time instant t and computed in UnetStack as explained in subsection 4.1.1 and

UnetStack maximum time step respectively.

7.2.2 Confidence Value Update

Three metrics are commonly used to describe the error modelled by multivariate Gaus-

sian distribution with a single measurement, namely the covariance determinant, the
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area/volume of the 3-σ error ellipse/ellipsoid and the ratio of the minor axis to the

major axis of the error ellipse [186]. The first two metrics describe the overall error

of the AUV’s position in a single value, but it is hard to set a threshold using these

metrics as they do not provide an intuitive interpretation of the localisation estimate

precision. Moreover, the last metric does not capture the size of the error ellipse. None

of these three metrics provides enough information about the localisation precision to

be used as a confidence value. The Circular Error Probability (CEP) is proposed for

the confidence value update. The CEP provides a more intuitive way to describe local-

isation confidence than the aforementioned alternatives. Shnidman in [184] defined the

CEP as the probability of a realisation of a zero-mean, bivariant Gaussian distribution

N (0,Σ) being within a circle with its centre at the origin and a radius of (R). The circle

radius is considered as user-specified application’s acceptable error. Shnidman reported

an algorithm in [184] to compute the CEP. The concept is extended to 3D cases and the

Spherical Error Probability (SEP) is computed given the covariance matrix Σ ∈ R3× 3

associated with each localisation estimate p̂ ∈ R3 of an AUV by the following:

P (R) =
1

σxx σyy σzz (2π)3/2

∫∫∫
x2+y2+z2≤R2

exp

(
−1

2

(
x2

σ2
xx

+
y2

σ2
yy

+
z2

σ2
zz

))
dx dy dz

(7.5)

Equation 7.5 can be simplified to:

P (R) =
2

σxx σyy π

∫ R

0

∫ π/2

0
r exp

(
−r

2

2

(
cos θ2

σ2
xx

+
sin θ2

σ2
yy

))
erf

(√
R2 − r√
2σzz

)
dθ dr

(7.6)

where R is the acceptable localisation error (application dependable), erf (.) is the error

function and P (R) is the confidence value δ. We attempt to optimise the confidence

threshold λ1 with acknowledging that the sphere’s radius R pertains to the confidence

value δ. Therefore, the sphere’s radius R is set to constant in all simulation trials.

7.2.3 Multilateration in the Presence of Uncertainty

NB AUVs in the proposed algorithm are configured to broadcast navigation beacon aids

based on their confidence values and a predefined confidence threshold. The confidence

value is essentially a single value representation of the associated covariance matrix.

The uncertainty in the navigational beacon’s positions cannot be ignored in cooperative

localisation when trilateration is adopted. Bahr et al. in [116] and [186] investigated the

112



uncertainty distribution associated with a trilaterated target position given the uncer-

tainty in both navigation beacons’ position and range measurements. The uncertainty

distribution associated with the trilaterated target position is related to the Jacobian of

the intersection function. In the case of a few navigation beacons e.g. 2-3 navigation

beacons as in [116] and [186] a closed-form expression of the intersection function can

be found and therefore the Jacobian can be directly derived. However, in the case of

multilateration where navigation beacons are more than three with noisy range measure-

ments, a closed-form expression of the target’s position cannot be found. The maximum

likelihood estimator of a target’s position in this case is the solution of the following

optimisation problem

min
X

ΣJ
j=1 (rj − ||Aj −X||)2 (7.7)

where j = {1, 2, . . . , J}, J is the number of navigation beacons, rj are range measure-

ments from the unknown target’s position X to the navigation beacon positions Aj .

Problem 7.7 is nonconvex but guaranteed to have a global minimum [105]. Accurate

estimates with fast convergence of Equation 7.7 can be provided by a stochastic optimi-

sation techniques such as PSO as explained in 3.3.2. The most straightforward solution

to investigate error propagation, given that a closed-form expression of the target’s posi-

tion cannot be derived, is to perform Monte-Carlo simulation to construct the covariance

matrix of the trilaterated position. The main drawback of this approach is its high com-

putational cost as Equation 7.7 will need to be solved m(2×J) times by PSO; where m is

the Monte-Carlo sample number and J is the navigation beacons number. We instead

select a few weighted samples of range measurements and navigation beacon positions

using the Unscented Transform (UT) [178] to construct the covariance matrix of the tar-

get’s trilaterated position. In the UT, 2L + 1 weighted samples (i.e., sigma points) are

selected from the Gaussian distribution N (µ,Σ) and passes through a nonlinear func-

tion to find the mapped sigma points; where L is the Gaussian distribution dimension.

Each sigma point Sk is associated with two weights ξk and ψk. The resultant Gaussian’s

parameters are extracted from the mapped weighted sigma points where ξk is used when

computing the mean and ψk is used when recovering the covariance. For L-dimensional

Gaussian with mean µ and covariance Σ, the resultant sigma point Sk are selected based

on the following:

S0 = µ

Sk = µ+
(√

(L+ γ)Σ
)
k

for k = 1, . . . , L

Sk = µ−
(√

(L+ γ)Σ
)
k−L for k = L+ 1, . . . , 2L

(7.8)
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Where γ = α2(L + κ) − L; α and κ are scaling parameters to determine how far the

sigma points are spread from the mean.

The weights ξk and ψk associated with each sigma point Sk are computed as in the

following:

ξ0 =
γ

L+ γ

ψ0 =
γ

L+ γ
+ (1 + α2 + φ)

ξk = ψk =
1

2(L+ γ)
for k = 1, . . . , 2L

(7.9)

Where φ is a high-order parameter to encode further knowledge about the distribution

e.g. φ = 2 is chosen when the distribution is an exact Gaussian.

Assume f(x1, x2) is a nonlinear function where x1 and x2 are independent variables with

standard deviation of σx1 and σx2 respectively. The variance of f(x1, x2) is given by

σ2
f =

∣∣ ∂f
∂x1

∣∣2 σ2
x1 +

∣∣ ∂f
∂x2

∣∣2 σ2
x2 (7.10)

Equation 7.10 shows that in the case of independent variables we can decouple the mul-

tilateration over each set of sigma points as shown in Figure 7.2 for fewer iterations and

for straightforward extraction of the resulting Gaussian’s parameters from the mapped

sigma points. The number of iterations in one multilateration localisation run, when it

is decoupled, is reduced from (2L+ 1)(2×J) to (2× J)× (2L+ 1) where J is the number

of navigation beacons and L is the distribution dimension assuming that the proba-

bility distribution in range measurements has the same dimension of the probability

distribution in navigation beacon positions.
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Figure 7.2: Decoupling the trilateration process over each set of sigma points. The
same is carried out over range measurements sampling. Weighted sigma points SK (in
gray) through the unscented transform are selected to represent sufficient sampling of
the navigation beacon’s position and range measurement. Mean position XNB,j and the
covariance matrix ΣNB,j are extracted from the resultant weighted trilaterated positions
Xk (in red). The final mean position is the mean of all extracted mean positions and its
final covariance matrix is the sum of all extracted covariance matrices.

The variables XNB,j and ΣNB,j represent the resultant Gaussian’s mean and covariance

respectively that can be extracted from the mapped sigma points Xk according to:

XNB,j =
2L+1∑
k=1

ξkXk

ΣNB,j =
2L+1∑
k=1

ψk
(
Xk −XNB,j

) (
Xk −XNB,j

)> (7.11)

The same applies over range measurements samplings to estimate XRM,j and ΣRM,j .

Let {ANB} be navigation beacon whose localisation aids are received by AUV ai within
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a predefined time window and let {MNB} and {MRM} be their corresponding positions

and range measurements respectively. Algorithm 2 shows the decoupled unscented mul-

tilateration process when ai receives localisation aids from neighbouring NBs where the

position, range measurement to ai and covariance matrix of an NB aj are denoted by

pj , dj and Σj respectively.

Algorithm 2: Decoupled Unscented Multilateration of AUV ai

Result: piLAT , Σi
LAT

for each pj ∈MNB do
Unscented Transform Sampling as in equations 7.8 and 7.9

Solve equation 7.7 by PSO for each sample with {MNB} \ pj

Extract pjNB and Σj
NB as in equation 7.11

end

for each dj ∈MRM do
Unscented Transform Sampling as in equations 7.8 and 7.9

Solve equation 7.7 by PSO for each sample with {MRM} \ dj

Extract pjRM and Σj
RM as in equation 7.11

end

piLAT = mean
(
pjNB, p

j
RM

)
∀j

Σi
LAT = sum

(
Σj
NB,Σ

j
RM

)
∀j

7.3 Simulation

7.3.1 Deployment Scenario and Settings

Each AUV is equipped with USBL transponder for long range communication operat-

ing at medium frequency band i.e., 20-40 kHz, 9-axis IMU, pressure gauge and CSAC

for clock synchronization. Range measurements are acquired by means of OWTT as

all AUVs are accurately synchronised. The error characteristics of the assumed USBL

system can be found in [66]. Each AUV is also equipped with high-frequency acoustic

modem for intra-swarm communication. We assume that either FDMA or CDMA MAC

protocol is utilised to minimise the packet loss between the intra-swarm and USBL com-

munication messages and within both intra-swarm and USBL communications TDMA

MAC protocol is adopted. The modem S2CM-HS [22] specifications are adopted for

intra-swarm communication and simulated on UnetStack as explained in Chapter 4.

Table 7.1 lists the simulation settings and parameters for the intra-swarm ACOMMS.
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Each AUV is deployed from known sea surface position and navigates towards a pre-

Parameter Value

Communication modem Freq band 160 kHz
Communication data rate 50 kbit/s
Navigation aid length and duration 20 bytes; 3.2 ms
Navigation aid allocated TDMA time-slot length 20 ms
Noise level 60 dB
Water salinity 35 ppt
Water temperature 10 ◦C
Rician fading parameter 10
Fast fading enabled

Table 7.1: Intra-swarm communication modem and channel parameters

determined seabed position. We are adopting the same deployment scenario in Section

5.4 where each AUV follows the shortest path to reach its seabed destination. A finite

state machine has been implemented to guide each AUV to its destination as explained

in Section 5.4. A deployment rate of a minimum of one AUV every second is considered

for collision avoidance. All AUVs eventually form a grid on the seabed separated by at

least 50 m from each other. Some of the AUVs with a priori known IDs are dedicated

NBs. A NB AUV broadcasts localisation messages (i.e., navigation aids) when it is pre-

cisely localised i.e. when its confidence value is greater than a predetermined confidence

threshold λ1. The broadcasted navigation aid by a NB AUV contains the broadcasting

timestamp in microseconds, the NB AUV’s north and east coordinates (i.e., p̂it ∈ R2)

and the principal axis of the associated covariance matrix (i.e., diag(Σi
t) ∈ R2) in a data

packet of 20 bytes such that 6 bytes for North and East coordinates, 8 bytes for North

and East coordinates uncertainties and 6 bytes for the time stamp. Each navigation

beacon has a time slot in a TDMA frame to broadcast their navigation aids and sep-

arated by guard intervals. The confidence threshold λ1 and the NB subset size λ2 are

two key parameters and therefore they are optimised at first to enhance the proposed

localisation algorithm’s performance. Table 7.2 summarises simulation’s key parameters

to optimise the confidence threshold λ1 and NB subset size λ2.

7.3.2 Results and Analysis

The proposed confidence-based localisation algorithm’s parameters (i.e., λ1 and λ2) are

optimised in a swarm size of 50 AUVs and then the algorithm’s performance is anal-

ysed over scaled-up swarm sizes of 100 and 150 AUVs. The algorithm’s performance is
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Parameter Value

Simulation time step 100 ms
Water depth 1000 m
Swarm size 50; 100; 150 AUVs
Deployment rate 1 AUV/s
Pressure sensor 2 Hz, 0.1m 1-σ error
Confidence threshold [0.1, 0.9]
NB subset size (percentage of swarm size) [10, 40]%
Sphere’s radius for SEP (R) 5 m
USBL transponder communication range 6000 m
USBL localization accuracy in 1000 m 2.7 m 1-σ error
Max number of USBL localised AUVs in a single TDMA frame 10 AUVs
USBL TDMA Frame length 1 s
USBL update rate 4 s
NSGA-II population size 1000
NSGA-II max generation No. 500
NSGA-II non-dominated Fraction 0.015

Table 7.2: Simulation parameters

measured over the entire swarm with respect to the six aforementioned performance in-

dicators i.e., localisation mean error, standard deviation, mean confidence value, USBL

utilisation, trilateration utilisation and packet loss in the intra-swarm communication

channel. The confidence threshold λ1 was varied from 0.1 to 0.9 with an increment of

0.1 and the number of NBs λ2 in the swarm was varied from 10% to 40% of the swarm

size with an increment of 10%.

Similar to the optimisation procedures followed in Section 6.4, the fitness function of

each objective has been built based on data fitting models of the objective function sur-

faces. The evolutionary multi-objective optimisation method NSGA-II is then employed

to find the optimised confidence threshold λ1 : 0.1 ≤ λ1 ≤ 0.9 and number of NB subset

size represented by a percentage of the swarm size λ2 : 10 ≤ λ2 ≤ 40. The upper bound

of λ2 40% is equivalent to 60 AUVs in a swarm size of 150 AUVs which means that the

maximum length of the TDMA cycle would be 1.2 seconds given that each NB has a time

slot of 20 milliseconds to broadcast its navigation aid. Figure 7.3 shows the suggested

optimised parameters for λ1 and λ2 (i.e., Pareto-optimal set) and Figure 7.4 shows the

Pareto Front i.e., Pareto-optimal set score in the objectives space.

Any of the Pareto-optimal solution can be selected to run the proposed confidence based

localisation algorithm. A decision maker may have to gain in some objectives and sacri-

fice others, it solely depends on the objectives priority i.e., based on mission requirements.
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Figure 7.3: The corresponding Pareto-optimal set of Pareto Front (in confidence thresh-
old and number of navigation beacons)

Our objectives are to:

• Minimise mean localisation error while i) maximising mean confidence value and

trilateration utilisation and ii) minimising USBL utilisation, error standard devia-

tion and packet loss of intra-swarm communication channel

• Minimise packet loss of intra-swarm communication channel while maximising tri-

lateration utilisation.

In case of irreconcilable objectives, mean localisation error minimisation is prioritised

over all of the rest of the objectives and trilateration utilisation maximisation is priori-

tised over packet loss minimisation. It is worth mentioning that packet loss of intra-

swarm communication channel can be minimised due to minimal intra-swarm communi-

cation, for example when the confidence threshold is too high i.e., λ1 ≥ 0.9 intra-swarm

communication is minimised as NBs do not broadcast navigation aids unless their confi-

dence value is higher than the confidence threshold. Maximising trilateration utilisation

while minimising packet loss ensures that packet loss minimisation is not caused by lack

of intra-swarm communication.

It can be noticed from Figure 7.4a that the optimised solution number 3 (O3) minimises

the mean localisation error but it does not minimise the standard deviation. However
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solution O9 minimises the standard deviation but the associated packet loss of solution

O9 is around 70% and the same goes for solution O16. It can be seen that solutions O17,

O15, O5 and O1 keep balance between the mean error and all other objectives. Solution

O1 outperforms solutions O5, O17 and O15 in the mean confidence value, trilateration

utilisation and packet loss but it does not outperform them in the mean localisation error

and USBL utilisation. On the other hand, solution O17 has a similar performance to so-

lution O15 and it outperforms solution O5 in the packet loss and trilateration utilisation.

Solution O17 as shown in Figure 7.3 requires less number of NBs than those required

in solutions O1 and O5. We therefore select the algorithm’s parameters suggested by

solution O17 which are around 0.7 for the confidence threshold (i.e., λ1) and around 30%

of the swarm size for NB subset size i.e., λ2.

The proposed confidence-based localisation algorithm is evaluated with the selected opti-

mised parameters λ1 and λ2 on scaled-up swarm sizes of 100 and 150 AUVs. The perfor-

mance of the proposed confidence-based localisation algorithm is compared to both the

Fuzzy-based localisation algorithm proposed in Chapter 5 and round-robin EKF-based

localisation in Figure 7.5. The optimised number of NBs (λ2) have been considered ret-

rospectively in both Fuzzy-based localisation and round-robin EKF-based localisation

methods for performance comparisons with the proposed confidence-based localisation.

Figure 7.5 shows the entire swarm mean localisation error and 2-σ standard deviation.

The standard deviation in Figure 7.5 is the entire swarm standard deviation of each

AUV’s mean localisation error along its whole trajectory. Figure 7.5 shows that the

proposed confidence-based localisation method outperforms both the fuzzy-based locali-

sation and round-robin-based method in the mean localisation error of the entire swarm

by around 26.69% and 20.70% respectively at swarm size of 50 AUVs. The proposed

confidence-based localisation algorithm outperforms both the fuzzy-based and round-

robin-based localisation methods by 62.3% and 59.77% respectively in the entire swarm

mean localisation error and by 81.62% and 82.19% in the entire swarm 1-σ standard de-

viation at swarm size of 100 AUVs. The entire swarm mean localisation error improved

by 67.10% and 59.28% and the entire swarm 1-σ standard deviation improved by 79.27%

and 72.04% when the proposed confidence-based localisation algorithm performance is

compared to the fuzzy-based and round-robin-based methods respectively at swarm size

of 150 AUVs.

One-tail two sample t-test is conducted to compare the localisation accuracy perfor-

mance of each simulation trial in both round-robin EKF-based method and the proposed

confidence-based localisation method. The null hypothesis is rejected at 0.05 significance
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level with p-values of 9.51×10−11, 7.42×10−18 and 8.03×10−16 at swarm sizes of 50, 100

and 150 AUVs respectively. Based on the one tail test, mean localisation error of the

proposed confidence-based localisation method is lower than that of the EKF-based

method at significance level of 0.05. Table B.1 in Appendix B.1 shows p-values, degree

of freedom, t-statistics and critical values of each simulation trial to statistically compare

the localisation accuracy of the proposed confidence-based localisation method with the

EKF-based method.

Figure 7.6 shows a comparison of the instantaneous RMSE of a typical AUV performance

in a swarm of 150 AUVs when the proposed parameters-optimised confidence-based or

round-robin EKF-based localisation is adopted. It can be noticed from Figure 7.6 that

the AUV receives more navigation aids when the the confidence-based localisation algo-

rithm is adopted. This is partly due to minimising packet loss and maximising trilatera-

tion utilisation. The average packet loss in the intra-swarm communication channel when

the proposed parameters-optimised confidence-based localisation algorithm is adopted

at different swarm sizes was consistent i.e., 41-42% at 50, 100 and 150 AUVs, whereas

it was about 73-78% when round-robin EKF-based localisation algorithm is adopted.

It can be noticed from Figure 7.5 that round-robin EKF-based localisation method out-

performs fuzzy-based localisation method as opposed to the conclusion that has been

drawn in Chapter 5. It is worth reminding the readers that the number of navigation

beacons in this simulation set was optimised for the confidence-based localisation method

and applied retrospectively for both fuzzy-based and round-robin EKF-based localisa-

tion methods. Whereas the number of navigation beacons in Chapter 5 simulation was

arbitrarily set to 10 AUVs. Fuzzy set parameters and rules can be further tuned in this

simulation set so that the performance of fuzzy-based localisation method is similar (or

outperforms) to that achieved in round-robin EKF-based localisation method.

Figure 7.7 shows the instantaneous RMSE with +/- 3-σ error bounds of an AUV in a

swarm of 150 AUVs when the propsed localisation algorithm is adopted.

7.4 Summary

In summary, a confidence-based underwater swarm localisation using the EKF is pro-

posed. Each AUV in the swarm has its own navigational suite which includes acoustic

communication modems, depth sensor and 9-axis IMU. The confidence threshold and

NB subset size are two key parameters of the proposed algorithm and therefore they
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are optimised through extensive simulation using the Fast and Elitist Multi-objective

Genetic Algorithm NSGA-II [170]. The confidence threshold and NB subset size param-

eters are optimised at fixed number of AUVs i.e., 50. The localisation accuracy of the

proposed algorithm with the optimised parameters is then evaluated on different swarm

sizes i.e., 100 and 150 AUVs. Navigation beacons broadcast localisation aids whenever

their confidence value is higher than the confidence threshold. If an AUV with low confi-

dence value receives navigation aids from neighbouring NB AUVs, it performs unscented

multilateration and fuses its location estimate using the EKF.

USBL transceiver are placed near the sea-surface and therefore a low frequency, long

range communication modems are dedicated for the USBL system. However, a high

frequency, short range acoustic communication modems are dedicated for intra-swarm

communication to maximise the utilisation of the underwater ACOMMS channel. The

intra-swarm communication is simulated on UnetStack [142]; The environment, the AUV

physics are simulated on Webots [136].

The proposed algorithm has significantly improved the entire swarm mean localisation

error by 67.10% and 59.28% when compared to the fuzzy-based and round-robin EKF

based localisation methods respectively at swarm size of 150 AUVs. The proposed al-

gorithm enhanced the overall localisation accuracy of the entire swarm by minimising

packet loss in the intra-swarm communication channel with maximising intra-swarm

cooperation (i.e., trilateration/multilateration utilisation) through multi-objective opti-

misation of confidence threshold and number of navigation beacons. Packet loss in intra-

swarm communication channel dropped by around 30% when the proposed confidence-

based localisation method was adopted for swarm localisation as opposed to round-robin

EKF-based localisation method.
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(a) (b)

(c) (d)

(e) (f)

Figure 7.4: The score of Pareto-optimal set, Pareto Front, in (a) mean error and stan-
dard deviation (b) mean error and USBL utilisation (c) mean error and trilateration
utilisation (d) mean error and mean confidence value (e) mean error and intra-swarm
communication packet loss and (f) trilateration utilisation and intra-swarm communica-
tion packet loss. The solutions in Pareto front are numbered from 1 to 18. Solution O17

is selected for the algorithm’s parameters.
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Figure 7.5: The entire swarm mean and standard deviation localisation error in Fuzzy-
based USBL/trilateration aided DR navigation (in blue), Round-robin-based USBL-
aided DR navigation (in red) and the proposed confidence-based USBL/trilateration
aided DR navigation (in black) at swarm size of 50, 100 and 150 AUVs. The error bar
around the mean point represents 2-σ standard deviation.
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Figure 7.6: Instantaneous root mean square localisation error of a typical AUV in a
swarm of 150 when the proposed parameters-optimised confidence-based and fuzzy-based
localisation methods are adopted. A time window of the first 1000 seconds of the mission
time shows the fused external navigation aid.

Figure 7.7: An AUV’s RMSE with 3-σ error bounds in a swarm of 150 AUVs when the
proposed parameters-optimised confidence-based localisation algorithm is adopted.

125



Chapter 8

Conclusion and Future Work

This chapter summarises the main conclusions resulting from this body of work and

discusses future directions and recommendations to potentially further improve the pro-

posed cooperative navigation methods for underwater robotic swarms.

This thesis contributes to the advancement of the state-of-the-art in underwater naviga-

tion approaches for robotic swarms. In particular, the proposed cooperative navigation

methods in this thesis address: 1) implementation and validation of a holistic naviga-

tion framework that is suitable for underwater robotic swarms and flexible enough to

accommodate newly introduced localisation methods; 2) implementation and validation

of an optimised confidence based navigation algorithm for underwater robotic swarms

aims to control the cooperation dynamics in the swarm in a fully distributive fashion

and optimise the acoustic channel utilisation.

8.1 Summary

Swarm robotics have become an attractive research area due to its capability of providing

relatively low-cost solutions for complicated tasks in many applications, especially when

wide region coverage is required. Locations of each individual node must be known and

tracked during operation for location-aware applications e.g., marine geology, seismic

imaging, environmental monitoring and exploration. A swarm of AUVs utilises acous-

tic channels for communication that can be deployed for ocean bottom seismic imaging

is considered in this thesis. Radio signals in underwater environment suffer from high

attenuation that prevents it from penetrating water bodies hence the absence of the
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GNSS in underwater environment. The high cost of marine assets, the severely limited

bandwidth and long latency of underwater acoustic communication limit the number of

AUVs that can be deployed at once to collaboratively complete a mission. Therefore,

most terrestrial and aerial swarm localisation algorithms reported in the literature are

not directly applicable to underwater robotic swarms. A fuzzy-based localisation and

a confidence-based localisation methods for underwater cooperative robotic swarms are

proposed, the performance of both localisation methods are first validated on a simple

proof-of-concept simulation platform and then a sophisticated simulation platform is im-

plemented for further evaluation. A physics-based robotic co-simulation platform that

considers the underwater acoustic communications characteristics is developed to val-

idate the proposed localisation algorithms for cooperative underwater robotic swarms.

The developed co-simulation platform is composed of three main elements, namely We-

bots robotic simulator for AUVs physics and hydrodynamics simulation, UnetStack for

intra-swarm acoustic communications simulation and MATLAB Navigation toolbox for

industrial grade IMU simulation.

A fuzzy-based navigation framework was proposed to enhance the entire swarm locali-

sation accuracy by providing the nodes with external navigation aids more frequently.

The proposed fuzzy-based aiding has improved the entire swarm mean localisation error

and standard deviation by 16.53% and 35.17% respectively at swarm size of 150 AUVs

when its compared to round-robin EKF-based USBL/trilateration-aided DR navigation.

The proposed fuzzy-based algorithm performance is emphasised on large swarm sizes.

Mamadani fuzzy inference system has been adopted for the localisation problem due to

its intuition, simplicity and well-suitability to human input. The proposed navigation

framework can accommodate other external navigation aid methods such as DVL aid by

simply expanding the fuzzy rule base. Expanding the fuzzy rule base to integrate other

external navigation aids is relatively easy compared to Kalman filter-based integration.

Substantial efforts are needed when integrating new localisation methods in an existent

EKF-based navigation for two reasons: Gaussian error modelling; and the entire filter

re-implementation to expand the covariance matrix and the state vector.

A confidence-based localisation algorithm for underwater robotic swarm is proposed in

which a ToF-acoustic navigation aid (i.e., USBL) is utilised for a subset of the AUV

swarm localisation based on their confidence value and the EKF is adopted for MDSF.

The proposed confidence value represents the localisation uncertainty in a single scalar

measurements. AUVs with confidence values higher than a predefined confidence thresh-

old broadcast navigation aids i.e., navigation beacons. If an AUV with low confidence
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value passively receives three of more navigation aids with a predefined time window,

multilateration that considers both range measurements and navigation beacons posi-

tions uncertainties is performed. To ensure an optimal utilisation of the acoustic channel:

1) Only a subset of the swarm is configured to broadcast navigation aids i.e., NB AUV;

2) A predefined confidence threshold is set to let an NB AUV to broadcast navigation

aids and the same confidence threshold is used by all swarm nodes to request a USBL

navigation aid. 3) The proposed confidence-based algorithm’s parameters i.e., confidence

threshold and NB subset size are optimised using the EMO algorithm NSGA-II [170] for

localisation error minimisation and localisation precision maximisation.

The proposed confidence-based algorithm has significantly improved the entire swarm

mean localisation error by 62.3% and 67.10% when it is compared to the fuzzy-based

localisation method and by 59.77% and 59.28% when it is compared to round-robin

EKF-based localisation method at swarm sizes of 100 and 150 AUVs respectively.

The robustness of the proposed cooperative localisation methods is ensured by the four

robustness factors of swarm systems [9]. These are: 1) Redundancy; that is, malfunction

or loss of any AUV does not impact the navigation performance of the entire swarm. 2)

Decentralisation; that is, the entire swarm navigation does not rely on a single command

centre and destroying part of the swarm does not halt the navigation algorithm. 3)

Simplicity; that is, the decision making process is relatively simple as each AUV takes

its own decision. 4) Multiplicity of sensing; that is, the navigation suit of each AUV

relies on multiple sensory data.

8.2 Future Directions

Task decomposition, negotiation and allocation is a major challenge in cooperative

robotics. The global aim of a sub-sea mission e.g., deep sea exploration and sub-sea

structure scanning is given by the operator at the control and command station. These

missions, either for each robot to conduct them on its own or conduct them in coop-

eration, are with different degrees of complexity. In case of cooperation, every robot

receives the same mission. A mission then must be set in ordered tasks with sub-goals

to be attained. Tasks are allocated and can be executed in the most efficient manner by

considering the local knowledge of each robot’s environment and each robot’s capability

i.e., in case of a heterogeneous robotic swarm. The problem of optimally evaluating
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and allocating tasks is not trivial in a distributive sense when the mission to be accom-

plished by the robots involves collaboration. Several algorithms based on contract nets

protocol (i.e., contract-based negotiation) can be found in the literature for multiple

robot task allocation problems [187, 188]. The negotiation has a common structure 1)

distributed negotiation, not centralised and operates locally at each robot level 2) Two-

way communications between robots to exchange information 3) each node evaluates the

information from its own perspective and 4) final agreement among nodes is achieved by

mutual selection based on contract-based or auction-based algorithms [189]. The pro-

posed cooperative localisation algorithm considers a homogeneous robotic swarm with a

fixed set of navigation beacons. A negotiation-based algorithm can be adopted to select

the navigation beacons in the swarm to further improve the localisation accuracy. In

addition, optimal path planning for the surface vehicle where the USBL is mounted can

greatly enhance the localisation accuracy of the underwater vehicles [190]. This can be

further improved by considering multiple surface vehicles for the ToF acoustic navigation

aid and utilise an auction-based algorithm to optimise each surface vehicle position when

transmitting navigation aids for the underwater vehicles. Figure 8.1 shows an example

of task allocation scheme in a heterogeneous robotic swarm of AUVs, USVs and static

sensor nodes.

Figure 8.1: Task allocation in a heterogeneous robotic swarm of AUVs, USVs and static
sensor nodes.

The proposed cooperative localisation algorithm considers OWTT for range measure-

ments among the AUVs together with TDMA for cooperative localisation as all AUVs

are accurately synchronised. However, it is always possible that a few AUVs’ clocks
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fall out of synchronisation. Therefore, adopting TWTT for ranging and self-organising

TDMA that does not heavily rely on time synchronisation can possibly further tune the

cooperation dynamics in the proposed localisation algorithm. Although, TWTT does

not require time synchronisation among AUVs but the minimum update rate for an

AUV using TWTT ranging is the cumulative sum of the TWTT for each AUV.

Another major challenge for marine robotic systems is the presence of disturbances

caused by sea currents and waves while retrieving AUVs into structures that may be

moving. Station-keeping of AUVs is crucial specially in AUVs retrieval scenarios that

require AUVs docking. Vision-based and ocean’s currents model-based station keeping

algorithm has been reported in the literature [191, 192]. The presence of disturbances is

neglected in the current implementation based on the assumption that AUVs deployment

is taking place from at least 20 meters below sea-surface where ocean’s water column

layer is almost static. This assumption is reasonable for deep sea deployment however,

the presence of disturbances caused by waves and sea currents cannot be neglected in

retrieval scenarios. Guiding the AUVs to a docking station, for retrieval, that is lowered

from a surface vessel requires careful consideration of these interactions to improve the

controllability and station-keeping of the AUVs and the docking station.
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localization of AUV teams. In: 2013 MTS/IEEE OCEANS - Bergen; 2013. p. 1–8.

[116] Bahr A, Leonard JJ, Fallon MF. Cooperative localization for autonomous underwater vehicles.

The International Journal of Robotics Research. 2009;28(6):714–728.
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Appendix A

A Fuzzy Localisation Framework

for Underwater Robotic Swarms

A.1 Fuzzy rules - MATLAB simulation

• IF D is Shallow AND B is High AND U is Available AND G is High THEN Y is

L3.

• IF D is Shallow AND B is High AND U is Available AND G is Adequate THEN

Y is L2.

• IF D is Shallow AND B is High AND U is Available AND G is Low THEN Y is

L1.

• IF D is Shallow AND B is Mid AND U is Available AND G is High THEN Y is

L3.

• IF D is Shallow AND B is Mid AND U is Available AND G is Adequate THEN Y
is L2.

• IF D is Shallow AND B is Mid AND U is Available AND G is Low THEN Y is L1.

• IF D is Shallow AND B is Low AND U is Available AND G is High THEN Y is

L3.

• IF D is Shallow AND B is Low AND U is Available AND G is Adequate THEN Y
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is L2.

• IF D is Shallow AND B is Low AND U is Available AND G is Low THEN Y is L1.

• IF D is Shallow AND U is Not Available AND G is Low THEN Y is L2.

• IF D is Shallow AND U is Not Available AND G is Adequate THEN Y is L2.

• IF D is Shallow AND U is Not Available AND G is High THEN Y is L3.

• IF D is Mid-water AND U is Available AND G is Low THEN Y is L1.

• IF D is Mid-water AND U is Not Available AND G is Low THEN Y is L2.

• IF D is Mid-water AND G is High THEN Y is L3.

• IF D is Mid-water AND G is Adequate THEN Y isL2.

• IF D is Deep AND B is High AND G is High THEN Y is L3.

• IF D is Deep AND B is Mid AND G is High THEN Y is L3.

• IF D is Deep AND B is Low AND G is High THEN Y is L4.

• IF D is Deep AND G is Adequate THEN Y is L4.

• IF D is Deep AND G is Low THEN Y is L4.

• IF D is Mid-water AND U is Available AND B is High AND G is Low THEN Y
is L1.

• IF D is Deep AND G is Mid AND G is Low THEN Y is L4.

A.2 Fuzzy rules - Webots simulation

• IF D is Shallow AND R is Short THEN Y is L1.

• IF U is Not Available AND G is Not Enough THEN Y is L1.

• IF B is Low AND U is Available AND G is Not Enough AND R is Long THEN Y
is L2.

• IF B is Low AND U is Not Available AND G is Enough AND R is Long THEN Y
is L3.

144



• IF U is Available AND R is Long THEN Y is L2.

• IF B is High AND U is Available AND G is Not Enough AND R is Mid THEN Y
is L2.

• IF B is High AND U is Not Available AND G is Enough AND R is Long THEN

Y is L3.

• IF D is Shallow AND B is High AND U is Not Available AND G is Enough AND

R is Mid THEN Y is L3.

• IF D is Shallow AND B is High AND U is Available AND G is Enough AND R is

Mid THEN Y is L2.

• IF U is Available AND R is Mid THEN Y is L2.

• IF B is Low AND U is Available AND G is Enough AND R is Long THEN Y is

L3.

• IF D is Deep AND B is High AND U is Available AND R is Mid THEN Y is L2.

• IF D is Deep AND B is High AND U is Available AND R is Long THEN Y is L2.

• IF D is Shallow AND B is High AND U is Available AND R is Long THEN Y is

L2.

• IF B is High AND U is Not Available AND G is Enough AND R is Long THEN

Y is L3.

• IF D is Deep AND B is High AND U is Not Available AND G is Enough AND R
is Mid THEN Y is L1.

• IF B is High AND U is Available AND R is Long THEN Y is L2.

• IF B is High AND U is Available AND R is Mid THEN Y is L2.

• IF B is High AND U is Not Available AND G is Enough AND R is Long THEN

Y is L3.

• IF U is Not Available AND G is Enough AND R is Mid THEN Y is L3.

• IF D is Deep AND U is Available THEN Y is L2.
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• IF D is Deep AND U is Not Available AND G is Enough AND R is Short THEN

Y is L1.

A.3 One-tail two sample t-test

The null hypothesis (H0) and the alternate hypothesis (H1) of the one-tail two sample

t-test performed in subsection 5.4.3 are listed as follows:

H0: Mean EKF Error = Mean Fuzzy Error

H1: Mean EKF Error > Mean Fuzzy Error

Swarm size H0 Rejected P-value DoF t-statistics Critical value

50 No 1.0000 75.45 -4.35 1.6653
100 Yes 0.0252 194.48 1.96 1.6527
150 Yes 0.0324 255.45 1.85 1.6508

Table A.1: One-tail two sample t-test

where the critical value is the inverse cumulative density function (CDF) of t distribution

at 0.05 significant level. Rejection of the null hypothesis H0 indicates that the mean

localisation error of EKF-based method is greater than that of the proposed fuzzy-based

method at 0.05 significance level.
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Appendix B

Confidence based Localisation for

Cooperative Underwater Robotic

Swarms using the Extended

Kalman Filter

B.1 One-tail two sample t-test

The null hypothesis (H0) and the alternate hypothesis (H1) of the one-tail two sample

t-test performed in subsection 7.3.2 are listed as follows:

H0: Mean EKF Error = Mean Confidence Error

H1: Mean EKF Error > Mean Confidence Error

Swarm size H0 Rejected P-value DoF t-statistics Critical value

50 Yes 9.51×10−11 83.74 7.25 1.6633
100 Yes 7.42×10−18 105.30 10.26 1.6595
150 Yes 8.03×10−16 172.14 8.77 1.6538

Table B.1: One-tail two sample t-test

where the critical value is the inverse cumulative density function (CDF) of t distribution

at 0.05 significant level. Rejection of the null hypothesis H0 indicates that the mean
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localisation error of EKF-based method is greater than that of the proposed confidence-

based localisation method at 0.05 significance level.
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