759 research outputs found

    Target Detection Performance Bounds in Compressive Imaging

    Get PDF
    This paper describes computationally efficient approaches and associated theoretical performance guarantees for the detection of known targets and anomalies from few projection measurements of the underlying signals. The proposed approaches accommodate signals of different strengths contaminated by a colored Gaussian background, and perform detection without reconstructing the underlying signals from the observations. The theoretical performance bounds of the target detector highlight fundamental tradeoffs among the number of measurements collected, amount of background signal present, signal-to-noise ratio, and similarity among potential targets coming from a known dictionary. The anomaly detector is designed to control the number of false discoveries. The proposed approach does not depend on a known sparse representation of targets; rather, the theoretical performance bounds exploit the structure of a known dictionary of targets and the distance preservation property of the measurement matrix. Simulation experiments illustrate the practicality and effectiveness of the proposed approaches.Comment: Submitted to the EURASIP Journal on Advances in Signal Processin

    Optimal Spectral Domain Selection for Maximizing Archaeological Signatures: Italy Case Studies

    Get PDF
    Different landscape elements, including archaeological remains, can be automatically classified when their spectral characteristics are different, but major difficulties occur when extracting and classifying archaeological spectral features, as archaeological remains do not have unique shape or spectral characteristics. The spectral anomaly characteristics due to buried remains depend strongly on vegetation cover and/or soil types, which can make feature extraction more complicated. For crop areas, such as the test sites selected for this study, soil and moisture changes within near-surface archaeological deposits can influence surface vegetation patterns creating spectral anomalies of various kinds. In this context, this paper analyzes the usefulness of hyperspectral imagery, in the 0.4 to 12.8 μm spectral region, to identify the optimal spectral range for archaeological prospection as a function of the dominant land cover. MIVIS airborne hyperspectral imagery acquired in five different archaeological areas located in Italy has been used. Within these archaeological areas, 97 test sites with homogenous land cover and characterized by a statistically significant number of pixels related to the buried remains have been selected. The archaeological detection potential for all MIVIS bands has been assessed by applying a Separability Index on each spectral anomaly-background system of the test sites. A scatterplot analysis of the SI values vs. the dominant land cover fractional abundances, as retrieved by spectral mixture analysis, was performed to derive the optimal spectral ranges maximizing the archaeological detection. This work demonstrates that whenever we know the dominant land cover fractional abundances in archaeological sites, we can a priori select the optimal spectral range to improve the efficiency of archaeological observations performed by remote sensing data

    Hyperspectral Unmixing Overview: Geometrical, Statistical, and Sparse Regression-Based Approaches

    Get PDF
    Imaging spectrometers measure electromagnetic energy scattered in their instantaneous field view in hundreds or thousands of spectral channels with higher spectral resolution than multispectral cameras. Imaging spectrometers are therefore often referred to as hyperspectral cameras (HSCs). Higher spectral resolution enables material identification via spectroscopic analysis, which facilitates countless applications that require identifying materials in scenarios unsuitable for classical spectroscopic analysis. Due to low spatial resolution of HSCs, microscopic material mixing, and multiple scattering, spectra measured by HSCs are mixtures of spectra of materials in a scene. Thus, accurate estimation requires unmixing. Pixels are assumed to be mixtures of a few materials, called endmembers. Unmixing involves estimating all or some of: the number of endmembers, their spectral signatures, and their abundances at each pixel. Unmixing is a challenging, ill-posed inverse problem because of model inaccuracies, observation noise, environmental conditions, endmember variability, and data set size. Researchers have devised and investigated many models searching for robust, stable, tractable, and accurate unmixing algorithms. This paper presents an overview of unmixing methods from the time of Keshava and Mustard's unmixing tutorial [1] to the present. Mixing models are first discussed. Signal-subspace, geometrical, statistical, sparsity-based, and spatial-contextual unmixing algorithms are described. Mathematical problems and potential solutions are described. Algorithm characteristics are illustrated experimentally.Comment: This work has been accepted for publication in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensin

    Value Focused Thinking Applications to Supervised Pattern Classification with Extensions to Hyperspectral Anomaly Detection Algorithms

    Get PDF
    Hyperspectral imaging (HSI) is an emerging analytical tool with flexible applications in different target detection and classification environments, including Military Intelligence, environmental conservation, etc. Algorithms are being developed at a rapid rate, solving various related detection problems under certain assumptions. At the core of these algorithms is the concept of supervised pattern classification, which trains an algorithm to data with enough generalizability that it can be applied to multiple instances of data. It is necessary to develop a logical methodology that can weigh responses and provide an output value that can help determine an optimum algorithm. This research focuses on the comparison of supervised learning classification algorithms through the development of a value focused thinking (VFT) hierarchy. This hierarchy represents a fusion of qualitative/ quantitative parameter values developed with Subject Matter Expert a priori information. Parameters include a fusion of bias/variance values decomposed from quadratic and zero/one loss functions, and a comparison of cross-validation methodologies and resulting error. This methodology is utilized to compare the aforementioned classifiers as applied to hyperspectral imaging data. Conclusions reached include a proof of concept of the credibility and applicability of the value focused thinking process to determine an optimal algorithm in various conditions

    Anomaly detection in hyperspectral signatures using automated derivative spectroscopy methods

    Full text link
    The goal of this research was to detect anomalies in remotely sensed Hyperspectral images using automated derivative based methods. A database of Hyperspectral signatures was used that had simulated additive Gaussian anomalies that modeled a weakly concentrated aerosol in several spectral bands. The automated pattern detection system was carried out in four steps. They were: (1) feature extraction, (2) feature reduction through linear discriminant analysis, (3) performance characterization through receiver operating characteristic curves, and (4) signature classification using nearest mean and maximum likelihood classifiers. The Hyperspectral database contained signatures with various anomaly concentrations ranging from weakly present to moderately present and also anomalies in various spectral reflective and absorptive bands. It was found that the automated derivative based detection system gave classification accuracies of 97 percent for a Gaussian anomaly of SNR -45 dB and 70 percent for Gaussian anomaly of SNR -85 dB. This demonstrates the applicability of using derivative analysis methods for pattern detection and classification with remotely sensed Hyperspectral images

    High-Resolution Remotely Sensed Small Target Detection by Imitating Fly Visual Perception Mechanism

    Get PDF
    The difficulty and limitation of small target detection methods for high-resolution remote sensing data have been a recent research hot spot. Inspired by the information capture and processing theory of fly visual system, this paper endeavors to construct a characterized model of information perception and make use of the advantages of fast and accurate small target detection under complex varied nature environment. The proposed model forms a theoretical basis of small target detection for high-resolution remote sensing data. After the comparison of prevailing simulation mechanism behind fly visual systems, we propose a fly-imitated visual system method of information processing for high-resolution remote sensing data. A small target detector and corresponding detection algorithm are designed by simulating the mechanism of information acquisition, compression, and fusion of fly visual system and the function of pool cell and the character of nonlinear self-adaption. Experiments verify the feasibility and rationality of the proposed small target detection model and fly-imitated visual perception method

    Sparse representation based hyperspectral image compression and classification

    Get PDF
    Abstract This thesis presents a research work on applying sparse representation to lossy hyperspectral image compression and hyperspectral image classification. The proposed lossy hyperspectral image compression framework introduces two types of dictionaries distinguished by the terms sparse representation spectral dictionary (SRSD) and multi-scale spectral dictionary (MSSD), respectively. The former is learnt in the spectral domain to exploit the spectral correlations, and the latter in wavelet multi-scale spectral domain to exploit both spatial and spectral correlations in hyperspectral images. To alleviate the computational demand of dictionary learning, either a base dictionary trained offline or an update of the base dictionary is employed in the compression framework. The proposed compression method is evaluated in terms of different objective metrics, and compared to selected state-of-the-art hyperspectral image compression schemes, including JPEG 2000. The numerical results demonstrate the effectiveness and competitiveness of both SRSD and MSSD approaches. For the proposed hyperspectral image classification method, we utilize the sparse coefficients for training support vector machine (SVM) and k-nearest neighbour (kNN) classifiers. In particular, the discriminative character of the sparse coefficients is enhanced by incorporating contextual information using local mean filters. The classification performance is evaluated and compared to a number of similar or representative methods. The results show that our approach could outperform other approaches based on SVM or sparse representation. This thesis makes the following contributions. It provides a relatively thorough investigation of applying sparse representation to lossy hyperspectral image compression. Specifically, it reveals the effectiveness of sparse representation for the exploitation of spectral correlations in hyperspectral images. In addition, we have shown that the discriminative character of sparse coefficients can lead to superior performance in hyperspectral image classification.EM201

    Spectral Target Detection using Physics-Based Modeling and a Manifold Learning Technique

    Get PDF
    Identification of materials from calibrated radiance data collected by an airborne imaging spectrometer depends strongly on the atmospheric and illumination conditions at the time of collection. This thesis demonstrates a methodology for identifying material spectra using the assumption that each unique material class forms a lower-dimensional manifold (surface) in the higher-dimensional spectral radiance space and that all image spectra reside on, or near, these theoretic manifolds. Using a physical model, a manifold characteristic of the target material exposed to varying illumination and atmospheric conditions is formed. A graph-based model is then applied to the radiance data to capture the intricate structure of each material manifold, followed by the application of the commute time distance (CTD) transformation to separate the target manifold from the background. Detection algorithms are then applied in the CTD subspace. This nonlinear transformation is based on a random walk on a graph and is derived from an eigendecomposition of the pseudoinverse of the graph Laplacian matrix. This work provides a geometric interpretation of the CTD transformation, its algebraic properties, the atmospheric and illumination parameters varied in the physics-based model, and the influence the target manifold samples have on the orientation of the coordinate axes in the transformed space. This thesis concludes by demonstrating improved detection results in the CTD subspace as compared to detection in the original spectral radiance space

    Context-free hyperspectral image enhancement for wide-field optical biomarker visualization

    Get PDF
    Many well-known algorithms for the color enhancement of hyperspectral measurements in biomedical imaging are based on statistical assumptions that vary greatly with respect to the proportions of different pixels that appear in a given image, and thus may thwart their application in a surgical environment. This article attempts to explain why this occurs with SVD-based enhancement methods, and proposes the separation of spectral enhancement from analysis. The resulting method, termed affinity-based color enhancement, or ACE for short, achieves multi- and hyperspectral image coloring and contrast based on current spectral affinity metrics that can physically relate spectral data to a particular biomarker. This produces tunable, real-time results which are analogous to the current state-of-the-art algorithms, without suffering any of their inherent context-dependent limitations. Two applications of this method are shown as application examples: vein contrast enhancement and high-precision chromophore concentration estimation.Spanish Ministry of Science, Innovation and Universities (FIS2010-19860, TEC2016-76021-C2-2-R); Spanish Ministry of Economy, Industry and Competitiveness and Instituto de Salud Carlos III (DTS15-00238, DTS17-00055); Instituto de Investigación Valdecilla (IDIVAL) (INNVAL16/02, INNVAL18/23); Spanish Ministry of Education, Culture, and Sports (FPU16/05705
    corecore