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Abstract

This article describes computationally efficient approaches and associated theoretical performance guarantees for the
detection of known targets and anomalies from few projection measurements of the underlying signals. The
proposed approaches accommodate signals of different strengths contaminated by a colored Gaussian background,
and perform detection without reconstructing the underlying signals from the observations. The theoretical
performance bounds of the target detector highlight fundamental tradeoffs among the number of measurements
collected, amount of background signal present, signal-to-noise ratio, and similarity among potential targets coming
from a known dictionary. The anomaly detector is designed to control the number of false discoveries. The proposed
approach does not depend on a known sparse representation of targets; rather, the theoretical performance bounds
exploit the structure of a known dictionary of targets and the distance preservation property of the measurement
matrix. Simulation experiments illustrate the practicality and effectiveness of the proposed approaches.
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Introduction
The theory of compressive sensing (CS) has shown that it
is possible to accurately reconstruct a sparse signal from
few (relative to the signal dimension) projection measure-
ments [1,2]. Though such a reconstruction is crucial to
visually inspect the signal, there are many instances where
one is solely interested in identifying whether the under-
lying signal is one of several possible signals of interest.
In such situations, a complete reconstruction is computa-
tionally expensive and does not optimize the correct per-
formance metric. Recently, CS ideas have been exploited
in [3-5] to perform target detection and classification
from projection measurements, without reconstructing
the underlying signal of interest. In [3,5], the authors pro-
pose nearest-neighbor based methods to classify a signal
f ∈ R

N to one of m known signals given projection mea-
surements of the form y = Af + n ∈ R

K for K ≤ N ,
where A ∈ R

K×N is a known projection operator and
n ∼ N (

0, σ 2I
)
is the additive Gaussian noise. This model

is simple to analyze, but is impractical, since in reality, a
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signal is always corrupted by some kind of interference
or background noise. Extension of the methods in [3,5]
to handle background noise is nontrivial. Though, Duarte
et al. [4] provides a way to account for background con-
tamination, it makes a strong assumption that the signal
of interest and the background are sparse in bases that
are incoherent. This might not always be true in many
applications. Recent works on CS [6,7] allow for the input
signal f to be corrupted by some pre-measurement noise
b ∼ N (

0, σ 2
b I

)
such that one observes y = A(f + b) + n,

and study reconstruction performance as a function of the
number of measurements, pre- and post-measurement
noise statistics and the dimension of the input signal. In
this work, however, we are interested in performing target
detection without an intermediate reconstruction step.
Furthermore, the increased utility of high-dimensional
imaging techniques such as spectral imaging or videog-
raphy in applications like remote sensing, biomedical
imaging and astronomical imaging [8-15] necessitates
the extension of compressive target detection ideas to
such imaging modalities to achieve reliable target detec-
tion from fewer measurements relative to the ambient
signal dimensions.
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For example, recent advances in CS have led to the
development of new spectral imaging platforms which
attempt to address challenges in conventional imaging
platforms related to system size, resolution, and noise
by acquiring fewer compressive measurements than spa-
tiospectral voxels [16-21]. However, these system designs
have a number of degrees of freedom which influence
subsequent data analysis. For instance, the single-shot
compressive spectral imager discussed in [18] collects one
coded projection of each spectrum in the scene. One
projection per spectrum is sufficient for reconstructing
spatially homogeneous spectral images, since projections
of neighboring locations can be combined to infer each
spectrum. Significantly more projections are required for
detecting targets of unknown strengths without the ben-
efit of spatial homogeneity. We are interested in investi-
gating how several such systems can be used in parallel
to reliably detect spectral targets and anomalies from
different coded projections.
In general, we consider a broadly applicable framework

that allows us to account for background and sensor noise,
and perform target detection directly from projection
measurements of signals obtained at different spatial or
temporal locations. The precise problem formulation is
provided below.

Problem formulation
Let us assume access to a dictionary of possible targets
of interest D = {f (1), f (2), . . . , f (m)}, where f (j) ∈ R

N for
j = 1, . . . ,m is unit-norm. Our measurements are of the
form

zi = Φ(αif ∗
i + bi) + wi (1)

where

• i ∈ {1, . . . ,M} indexes the spatial or temporal
locations at which data are collected;

• αi ≥ 0 is a measure of the signal-to-noise ratio at
location i, which is either known or estimated from
observations;

• Φ ∈ R
K×N for K < N , is a measurement matrix to

be specified in Section “Whitening compressive
observations”;

• bi ∈ R
N ∼ N (μb,Σb) is the background noise

vector, and wi ∈ R
K ∼ N (0, σ 2I) is the i.i.d. sensor

noise.

For example, in the case of spectral imaging f ∗
i repre-

sents the spectrum at the ith spatial location, and in
video sequences f ∗

i represents the vectorized image frame
obtained at the ith time interval. In this article we consider
the following target detection problems:

(1) Dictionary signal detection (DSD): Here we assume
that each f ∗

i ∈ D for i ∈ {1, . . . ,M}, and our task is

to detect all instances of one target signal f (j) ∈ D
for some unknown j ∈ {1, . . . ,m}, i.e., to locate
S =

{
i : f ∗

i = f (j)
}
. DSD is useful in contexts in

which we know the makeup of a scene and wish to
focus our attention on the locations of a particular
signal. For instance, in spectral imaging, DSD is
used to study a scene of interest by classifying every
spectrum in the scene to different known classes
[11,22]. In a video setup, DSD could be used to
classify video segments to one of several categories
(such as news, weather, sports, etc.) by projecting
the video sequence to an appropriate feature space
and comparing the feature vectors to the ones in a
known dictionary [23].

(2) Anomalous signal detection (ASD): Here, our task is
to detect all signals which are not members of our
dictionary, i.e., detect S = {

i : f ∗
i /∈ D}

(this is akin
to anomaly detection methods in the literature
which are based on nominal, nonanomalous
training samples [24,25]). For instance, ASD may be
used when we know most components of a spectral
image and wish to identify all spectra which deviate
from this model [26].

Our goal is to accurately perform DSD or ASD with-
out reconstructing the spectral input f ∗

i from zi for i ∈
{1, . . . ,M}. Accounting for background is a crucial issue.
Typically, the background corresponding to the scene of
interest and the sensor noise are modeled together by a
colored multivariate Gaussian distribution [27]. However,
in our case, it is important to distinguish the two because
of the presence of the projection operator Φ . The pro-
jection operator acts upon the background spectrum in
the same way as on the target spectrum, but it does not
affect the sensor noise. We assume that bi and wi are
independent of each other, and the prior probabilities of
different targets in the dictionary p(j) = P

(
f ∗
i = f (j)

)
for

j ∈ {1, · · · ,m} are known in advance. If these probabilities
are unknown, then the targets can be considered equally
likely. Given this setup, our goal is to develop suitable
target and anomaly detection approaches, and provide
theoretical guarantees on their performances.
In this article, we develop detection performance

bounds which show how performance scales with the
number of detectors in a compressive setting as a func-
tion of SNR, the similarity between potential targets in
a known dictionary, and their prior probabilities. Our
bounds are based on a detection strategy which operates
directly on the collected data as opposed to first recon-
structing each f ∗

i and then performing detection on the
estimated signals. Reconstruction as an intermediate step
in detection may be appealing to end users who wish to
visually inspect spectral images instead of relying entirely
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on an automatic detection algorithm. However, using this
intermediate step has two potential pitfalls. First, the Rao–
Blackwell theorem [28] tells us that an optimal detection
algorithm operating on the processed data (i.e., not suf-
ficient statistics) cannot perform better than an optimal
detection algorithm operating on the raw data. In other
words, optimal performance is possible on the raw data,
but we have no such performance guarantee for the recon-
structed signals. Second, the relationship between recon-
struction errors and detection performance is not well
understood in many settings. Although we do not recon-
struct the underlying signals, our performance bounds
are intimately related to the signal resolution needed to
achieve the signal diversity present in our dictionary. Since
we have many fewer observations than the signals at this
resolution, we adopt the “compressive” terminology.

Performance metric
To assess the performance of our detection strategies, we
consider the false discovery rate (FDR) metric and related
quantities developed for multiple hypothesis testing prob-
lems [29]. Since we collect M independent observations
of potentially different signals, we are simultaneously con-
ducting M hypothesis tests when we search for targets.
Unlike the probability of false alarm, which measures the
probability of falsely declaring a target for a single test,
the FDR measures the fraction of declared targets that
are false alarms, that is, it provides information about
the entire set of M hypotheses instead of just one. More
formally, the FDR is given by,

FDR = E

[
V
R

]
,

where V is the number of falsely rejected null hypothe-
ses, and R is the total number of rejected null hypothe-
ses. Controlling the FDR in a multiple hypothesis testing
framework is akin to designing a constant false alarm rate
(CFAR) detector in spectral target detection applications
that keeps the false alarm rate at a desired level irre-
spective of the background interference and sensor noise
statistics [22].

Previous investigations
Much of the classical target detection literature [30-34]
assume that each target lies in a P-dimensional subspace
of RN for P < N . The subspace in which the target lies is
often assumed to be known or specified by the user, and
the variability of the background is modeled using a prob-
ability distribution. Given knowledge of the target sub-
space, background statistics and sensor noise statistics,
detection methods based on LRTs (likelihood ratio tests)
and GLRTs (generalized likelihood ratio tests) have been

proposed in [30-35]. A subspace model is optimal if the
subspace in which targets lie is known in advance. How-
ever, in many applications, such subspaces might be hard
to characterize. An alternative, and a more flexible option
is to assume that the high-dimensional target exhibits
some low-dimensional structure that can be exploited to
perform efficient target detection. This approach is uti-
lized in this work and in [5] where the target signal in R

N

is assumed to come from a dictionary of m known sig-
nals such that m � N , and in [3], where the targets are
assumed to lie in a low-dimensional manifold embedded
in high-dimensional target space.
Recently, several methods for target or anomaly detec-

tion that rely on recovering the full spatiospectral data
from projection measurements [36,37] have been pro-
posed. However, they are computationally intensive and
the detection performance associated with these recon-
structions is unknown. Other researchers have exploited
CS to perform target detection and classification without
reconstructing the underlying signal [3-5]. Duarte et al.
[4] propose a matching pursuit based algorithm, called the
incoherent detection and estimation algorithm (IDEA), to
detect the presence of a signal of interest against a strong
interfering signal from noisy projection measurements.
The algorithm is shown to perform well on experimental
data sets under some strong assumptions on the spar-
sity of the signal of interest and the interfering signal.
Davenport et al. [3] develop a classification algorithm
called the smashed filter to classify an image in R

N to
one of m known classes from K projections of the signal,
where K < N . The underlying image is assumed to lie on
a low-dimensional manifold, and the algorithm finds the
closest match from the m known classes by performing
a nearest neighbor search over the m different manifolds.
The projection measurements are chosen to preserve the
distances among the manifolds. Though Davenport et al.
[3] offers theoretical bounds on the number of measure-
ments necessary to preserve distances among different
manifolds, it is not clear how the performance scales with
K or how to incorporate background models into this
setup. Moreover, this approach may be computationally
intensive since it involves learning and searching over dif-
ferent manifolds. Haupt et al. [5] use a nearest-neighbor
classifier to classify an N-dimensional signal to one of
m equally likely target classes based on K < N random
projections, and provide theoretical guarantees on the
detector performance. While the method discussed in
[5] is computationally efficient, it is nontrivial to extend
to the case of target detection with colored background
noise and nonequiprobable targets. Furthermore, their
performance guarantees cannot be directly extended to
our problem since we focus on error measures that let
us analyze the performance of multiple hypothesis tests
simultaneously as opposed to the above methods that
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consider compressive classification performance for a
single hypothesis test.
The authors of a more recent work [38] extend the

classical RX anomaly detector [39] to directly detect
anomalies from random, orthonormal projection mea-
surements without an intermediate reconstruction step.
They numerically show how the detection probability
improves as a function of the signal-to-noise ratio when
the number of measurements changes. Though proba-
bility of detection is a good performance measure, in
many applications controlling the false discoveries below
a desired level is more crucial. As a result, in our work, we
propose an anomaly detection method that controls the
FDR below a desired level.

Contributions
This article makes the following contributions to the
above literature:

• A compressive target detection approach, which (a)
is computationally efficient, (b) allows for the signal
strengths of the targets to vary with spatial location,
(c) allows for backgrounds mixed with potential
targets, (d) considers targets with different a priori
probabilities, and (e) yields theoretical guarantees on
detector performance. This article unifies preliminary
work by the authors [40,41], presents previously
unpublished aspects of the proofs, and contains
updated experimental results.

• A computationally efficient anomaly detection
method that detects anomalies of different strengths
from projection measurements and also controls the
FDR at a desired level.

• A whitening filter approach to compressive
measurements of signals with background
contamination, and associated analysis leading to
bounds on the amount of background to which our
detection procedure is robust.

The above theoretical results, which are the main focus
of this article, are supported with simulation studies in
Section “Experimental results”. Classical detection meth-
ods described in [22,26,27,30-35,39,42-45] do not estab-
lish performance bounds as a function of signal resolution
or target dictionary properties and rely on relatively direct
observationmodels which we show to be suboptimal when
the detector size is limited. The methods in [3,4] do
not contain performance analysis, and our analysis builds
upon the analysis in [5] to account for several specific
aspects of the compressive target detection problem.

Whitening compressive observations
Before we present our detection methods for DSD and
ASD problems, respectively, we briefly discuss a whitening
step that is common to both our problems of interest.

Let us suppose that there are enough background train-
ing data available to estimate the background mean μb
and covariance matrix Σb. We can assume without loss
of generality that μb = 0 since Φμb can be subtracted
from y. Given the knowledge of the background statis-
tics, we can transform the background and sensor noise
model Φbi + wi ∼ N (0,ΦΣbΦ

T + σ 2I) discussed in
(1) to a simple white Gaussian noise model by multiplying
the observations zi, i ∈ {1, . . . ,M}, by the whitening filter
CΦ � (ΦΣbΦ

T + σ 2I)−1/2. This whitening transforma-
tion reduces the observation model in (1) to

yi = CΦ

(
Φ

(
αif ∗

i + bi
) + wi

)︸ ︷︷ ︸
zi

= αiAf ∗
i + ni (2)

where

A = CΦΦ , (3)

and ni = CΦ (Φbi + wi) ∼ N (0, I). To verify that ni ∼
N (0, I), observe that

ni = CΦ (Φbi + wi) ∼ N

⎛⎜⎜⎝0,CΦ

(
ΦΣbΦ

T + σ 2I
)
CT

Φ︸ ︷︷ ︸
I

⎞⎟⎟⎠ .

We can now choose Φ so that the corresponding A has
certain desirable properties as detailed in Sections “Dic-
tionary signal detection” and “Anomalous signal detec-
tion”.
For a given A, the following theorem provides a con-

struction of Φ that satisfies (3) and a bound on the
maximum tolerable background contamination:

Theorem 1. Let B = I − AΣbAT . If the largest eigen-
value of Σb satisfies

λmax <
1

‖A‖2 , (4)

where ‖A‖ is the spectral norm of A, then B is positive def-
inite and Φ = σB−1/2A is a sensing matrix, which can
be used in conjunction with a whitening filter to produce
observations modeled in (2).

The proof of this theorem is provided in Appendix 1.
This theorem draws an interesting relationship between
the maximum background perturbation that the system
can tolerate and the spectral norm of the measurement
matrix, which in turn varies with K and N. Hardware
designs such as those in [17,19] use spatial light modu-
lators and digital micro mirrors, which allow the mea-
surement matrix Φ to be adjusted easily in response to
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changing background statistics and other operating con-
ditions.
In the sections that follow, we consider collecting mea-

surements of the form yi = αiAf ∗
i + ni given in (2), where

f ∗
i is the target of interest for i = 1, . . . ,M, and A ∈ R

K×N

is a sensing matrix that satisfies (3). It is assumed that any
background contamination has been eliminated with the
whitening procedure described in this section.

Dictionary signal detection
Suppose that the end user wants to test for the presence
of one known target versus the rest, but it is not known a
priori which target fromD the user wants to detect. In this
case, let us cast the DSD problem as a multiple hypothesis
testing problem of the form

H(j)
0i : f ∗

i = f (j) vs. H(j)
1i : f ∗

i 	= f (j) (5)

where f (j) ∈ D is the target of interest and i = 1, . . . ,M.

Decision rule
We define our decision rule corresponding to target
f (j) ∈ D in terms of a set of significance regions Γ

(j)
i such

that one rejects the ith null hypothesis if its test statistic
yi falls in the ith significance region. Specifically, Γ

(j)
i is

defined according to

Γ
(j)
i =

{
y : logP

(
f ∗
i = f (j)∣∣yi,αi,A

)
≤ (6)

logP
(
f ∗
i = f (�)

∣∣yi,αi,A
)
for some � ∈ {1, . . . ,m}, � 	= j

}
,

where logP
(
f ∗
i = f (j)∣∣yi,αi,A

)
= K

2 log
( 1
2π

) −∥∥∥yi−αiAf (j)
∥∥∥2

2 + log p(j) is the logarithm of the a posteri-
ori probability density of the target f (j) at the ith spatial
location given the observations yi, the signal-to-noise
ratio αi and the sensing matrix A, and p(j) is the a pri-
ori probability of target class j. Note that the process of
determining these decision regions involves a sequence of
nearest-neighbor calculations, so the computational com-
plexity scales with the number of classes m. In this work,
we operate under the assumption that m is much smaller
than the dimensionality of the datasets we consider. For
example, if we consider spectral images, then the number
of objects (signal classes) that make up a scene of interest
is often smaller than the number of voxels in the image.
This assumption is not unrealistic and has been exploited
in earlier work such as [22] and the references therein.
In most of the prior work we have surveyed [46,47], the
number of signal classes is less than 35, which doesn’t
make our approach intractable.

The decision rule can be formally expressed in terms of
the significance regions as follows:

reject H(j)
0i if the test statistic yi ∈ Γ

(j)
i . (7)

We analyze this detector by extending the positive FDR
(pFDR) error measure introduced by Storey to character-
ize the errors encountered in performing multiple, inde-
pendent and nonidentical hypothesis tests simultaneously
[48]. The pFDR, discussed formally below, is the fraction
of falsely rejected null hypotheses among the total num-
ber of rejected null hypotheses, subject to the positivity
condition that one rejects at least one null hypothesis.
The pFDR is similar to the FDR except that the positivity
condition is enforced here. In our context, the positivity
condition means that we declare at least one signal to be a
nontarget, which in turn implies that the scene of interest
is composed of more than one object in the case of spec-
tral imaging, or that the scene is not static in the case of
video imaging.
Consider a collection of significance regions Γ ={
Γ

(j)
i : i = 1, · · · ,M

}
, such that one declares H(j)

1i if the

test statistic yi ∈ Γ
(j)
i . The pFDR for multiple, non-

identical hypothesis tests can be defined in terms of the
significance regions as follows:

pFDR(j) (Γ ) = E

[
V (Γ )

R (Γ )

∣∣∣∣R (Γ ) > 0
]

(8)

where

V (Γ ) =
M∑
i=1

I{yi∈Γ
(j)
i

}I{H0i} (9)

is the number of falsely rejected null hypotheses,

R (Γ ) =
M∑
i=1

I{yi∈Γ
(j)
i

} (10)

is the total number of rejected null hypotheses, and
I{E} = 1 if event E is true and 0 otherwise. In our setup,
the pFDR corresponds to the expected ratio of the num-
ber of missed targets to the number of signals declared
to be nontargets subject to the condition that at least one
signal is declared to be a nontarget (note that this ratio
is traditionally referred to as the positive false nondis-
covery rate (pFNR), but is technically the pFDR in this
context because of our definitions of the null and alternate
hypotheses). The theorem below presents our main result:

Theorem 2. Given observations of the form (2), if
one performs multiple, independent, nonidentical hypoth-
esis tests of the form (5) and decides according to
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(7), then the worst-case pFDR given by pFDRmax =
maxj∈{1,...,m}pFDR(j) (Γ ) , satisfies the following bound:

pFDRmax ≤ min
(
1,

(Pe)max
1 − pmax − (Pe)max

)
(11)

where

pmax = max
j∈{1,...,m} p

(j),

(Pe)max = max
i∈{1,...,M}P

(̂
f i 	= f ∗

i

)
, and

f̂ i = argmax
f ∈D

P
(
f ∗
i = f

∣∣ yi,αi,A
)
. (12)

The proof of this theorem is detailed in Appendix 2. A
key element of our proof is the adaptation of the tech-
niques from [48] to nonidentical independent hypothesis
tests.

An achievable bound on the worst-case pFDR
Theorem 2 in the preceding section shows that, for a given
A, the worst-case pFDR is bounded from above by a func-
tion of the worst-case misclassification probability. In this
section, we use this theorem to establish an achievable
bound on the worst-case pFDR that explicitly depends on
the number of observations K, signal strengths {αi}Mi=1,
similarity among different targets of interest, and a priori
target probabilities.
Let us first define the quantities

dmin = min
f (i),f (j)∈D,i	=j

‖f (i) − f (j)‖

pmin = min
j∈{1,...,m} p

(j)

αmin = min
i∈{1,...,M} αi.

Then we have the following theorem, whose proof is given
in Appendix 3:

Theorem 3. Let λmax denote the largest eigenvalue of
Σb. For a given 0 < ε < 1 − pmax, assume that K and N
are sufficiently large so that the following conditions hold:

1 − pmax − ε ≥ 1 − pmin
pmin

(
1 + αmin2d2min

4Kσ 2

)− K
2

+ 2 exp
(

− (K + N)ε2

2

)
(13a)

λmax <
1

(1 + ε)2
(√

N
K + 1

)2 , (13b)

K >
2 log

(
2

pmin
1−pmin
1−pmax

)
log

(
1 + α2

mind
2
min

4K

) . (13c)

Then there exists a K × N sensing matrix A that satisfies
the condition of Theorem 1, and for which

pFDRmax ≤ 1
pmin

⎛⎝1 − pmax
1 − pmin

(
1 + α2

mind2min
4K

) K
2

− 1
pmin

⎞⎠−1

+ 2(1 − pmax)

ε2
exp

(
− (K + N)ε2

2

)
. (14)

This result has the following implications and conse-
quences:

(1) For a given N, the upper bound (13b) on λmax
increases as K increases, which implies that the
system can tolerate more background perturbation
if we collect more measurements.

(2) The pFDR bound (14) decays with the increase in
the values of K, dmin and αmin, and increases as pmin
decreases. For a fixed pmax, pmin, αmin and dmin, the
bound in (14) enables one to choose a value of K to
guarantee a desired pFDR value.

(3) The dominant part of the bound (14) is independent
of N, and is only a function of K, pmax, pmin, αmin,
and dmin. The lack of dependence on N is not
unexpected. Indeed, when we are interested in
preserving pairwise distances among the members
of a fixed dictionary of size m, the
Johnson–Lindenstrauss lemma [49] says that, with
high probability, K = O (

logm
)
random Gaussian

projections suffice, regardless of the ambient
dimension N. This is precisely the regime we are
working with here.

(4) The bound on K given in (13c) increases
logarithmically with the increase in the difference
between pmax and pmin. This is to be expected since
one would need more measurements to detect a less
probable target as our decision rule weights each
target by its a priori probability. If all targets are
equally likely, then pmax = pmin = 1/m, and
K = O (

logm
)
is sufficient provided α2

mind2min is
sufficiently large such that

log
(
1 + α2

mind2min
4K

)
> log

(
1 + α2

mind2min
4N

)
> 1

(where the first inequality holds since K < N). In
addition, the lower bound on K also illustrates the
interplay between the signal strength of the targets,
the similarity among different targets inD, and the
number of measurements collected. A small value of
dmin suggests that the targets in D are very similar
to each other, and thus αmin and K need to be high
enough so that similar targets can still be
distinguished. The experimental results discussed in
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Section “Experimental results” illustrate the
tightness of the theoretical results discussed here.

Inspection of the proof shows that if A is generated
according to a Gaussian distribution, then the conditions
of Theorem 3 will be met with high probability.

Extension to amanifold-based target detection
framework
The DSD problem formulation in Section “ASD problem
formulation” is accurate if the signals in the dictionary
are faithful representations of the target signals that we
observe. In reality, however, the target signals will dif-
fer from the dictionary signals owing to the differences
in the experimental conditions under which they are col-
lected. For instance, in spectral imaging applications, the
observed spectrum of any material will not match the
reference spectrum of the same material observed in a
laboratory because of the differences in atmospheric and
illumination conditions. To overcome this problem, one
could form a large dictionary to account for such uncer-
tainties in the target signals and perform target detec-
tion according to the approaches discussed in Sections
“Whitening compressive observations” and “Dictionary
signal detection”. A potential drawback with this approach
is that our theoretical performance bound increases with
the size of D through pmin and dmin. Instead, one could
reasonably model the target signals observed under dif-
ferent experimental conditions to lie in a low-dimensional
submanifold of the high-dimensional ambient signal space
as shown to be true for spectral images in [50]. We
can exploit this result to extend our analysis to a much
broader framework that accounts for uncertainties in our
dictionary.
Let us consider a dictionary of manifolds DM ={M(1), . . . ,M(m)

}
corresponding to m different target

classes, and that f ∗
i for i ∈ {1, . . . ,M} is in one of the man-

ifolds in DM. Considering an observation model of the
form given in (2), our goal is to determine

{
i : f ∗

i ∈ M(j)},
where j ∈ {1, . . . ,m} is the target class of interest. Let
us assume that all target classes are equally likely to keep
the presentation simple, though the analysis extends to
the case where the targets classes have different a priori
probabilities. Suppose that we collect independent sets of
measurements

{
yi
}M
i=1 and

{̃
yi
}M
i=1. Then, we can use the

following two-step procedure to extend our DSD method
to this manifold-based framework:

(1) Given
{
yi
}
, form a data-dependent dictionary

Dyi =
{̃
f (1)
i , . . . , f̃ (m)

i

}
corresponding to each yi by

finding its nearest-neighbor in each manifold:

f̃ (�)

i = argmax
f ∈M(�)

P
(
yi
∣∣ f ∗

i = f ,αi,A
)

for � ∈ {1, . . . ,m} and i = 1, . . . ,M.
(2) Given

{̃
yi
}
and corresponding

{Dyi
}
, find

f̂ i = argmax
f̃ ∈Dyi

P

(
ỹi
∣∣ f ∗

i = f̃ ,αi,A
)

and declare that the i th observed spectrum
corresponds to class j if f̂ i = f̃ (j)

i .

This two-step procedure is studied in [3] for the case{
yi
} = {̃

yi
}
where the authors provide bounds on the

number of projection measurements needed to preserve
distances among manifolds. However, they do not offer
associated target detection performance guarantees. Our
analysis and the theoretical performance bounds extend
directly to this framework, if we collect two sets of obser-
vations as discussed above. Specifically, the hypothesis
tests corresponding to the second step can be written as

H0i : f ∗
i = f̃ (j)

i vs. H1i : f ∗
i 	= f̃ (j)

i

where f̃ (j)
i ∈ Dyi for i = 1, . . . ,M. Since the dictionary

in this case changes with i, these tests are nonidentical.
This is another instance where our extension of pFDR-
based analysis towards simultaneous testing of multiple,
independent, and nonidentical hypothesis tests (8) is very
significant. Following the proof techniques discussed in
the appendix, we can straightforwardly show that the
bound in (14) in this manifold setting holds with pmin =
pmax = 1/m since all target classes are assumed to be
equally likely here, and dmin = mini∈{1,...,M}di where

di = min
f̃ (�)

i ,̃f (k)
i ∈Dyi ,� 	=k

‖̃f (�)

i − f̃ (k)
i ‖.

Anomalous signal detection
The target detection approach discussed above assumes
that the target signal of interest resides in a dictionary
that is available to the user. However, in some applications
(such as military applications and surveillance), one might
be interested in detecting objects not in the dictionary.
In other words, the target signals of interest are anoma-
lous and are not available to the user. In this section, we
show how the target detection methods discussed above
can be extended to anomaly detection. In particular, we
exploit the distance preservation property of the sens-
ing matrix A to detect anomalous targets from projection
measurements.

ASD problem formulation
Given observations of the form in (2), we are interested in
detecting whether f ∗ ∈ D or f ∗ is anomalous. Let us write
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the anomaly detection problem as the following multiple
hypothesis test:

H0i : ‖f ∗
i − f ‖ ≤ τ for some f ∈ D (15a)

H1i : ‖f ∗
i − f ‖ > τ for all f ∈ D (15b)

where τ ∈
[
0,

√
2
)
is a user-defined threshold that encap-

sulates our uncertainty about the accuracy with which we
know the dictionary.a In particular, τ controls how dif-
ferent a signal needs to be from every dictionary element
to truly be considered anomalous. In the absence of any
prior knowledge on the targets of interest, τ can simply be
set to zero. The null hypothesis in this setting models the
normal behavior, while the alternative hypothesis models
the abnormal or anomalous behavior. This formulation is
consistent with the literature [26,38].
Note that the definition of the hypotheses given in (15a)

and (15b) matches the definition in (5) for the special
case where the dictionary contains just one signal. In
this special case, the signal input f ∗ is in the dictionary
under the null hypothesis in both DSD and ASD problem
formulations.b

Anomaly detection approach
Our anomaly detection approach and the associated the-
oretical analysis are based on a “distance preservation”
property of A, which is stated formally in (18). We pro-
pose an anomaly detection method that controls the FDR
below a desired level δ for different background and sensor
noise statistics. In other words, we control the expected
ratio of falsely declared anomalies to the total number of
signals declared to be anomalous. Note that here we work
with the FDR as opposed to the pFDR, since it is possi-
ble for a scene to not contain any anomalies at all. We let
V/R = 0 for R = V = 0 since one does not declare any
signal to be anomalous in this case. In [29], Benjamini and
Hochberg discuss a p-value based procedure, “BH proce-
dure”, that controls the FDR ofM independent hypothesis
tests below a desired level. Let,

di = min
f ∈D

‖yi − αiAf ‖ = min
f ∈D

‖αiA
(
f ∗
i − f

)+ ni‖ (16)

be the test statistic at the ith location. The p-value can be
defined in terms of our test statistic as follows:

pi = P

(̃
di ≥ di

∣∣H0i
)

(17)

where d̃i = minf ∈D‖αiA
(
f ∗
i − f

) + n‖ and n ∼ N (0, I)
is independent of ni. This is the probability under the null

hypothesis, of acquiring a test statistic at least as extreme
as the one observed. Let us denote the ordered set of
p-values by p(1) ≤ p(2) ≤ · · · ≤ p(M) and let H(0i) be
the null hypothesis corresponding to (i)th p-value. The BH
procedure says that if we reject all H(0i) for i = 1, . . . , t
where t is the largest i for which p(i) ≤ iδ/M, then the FDR
is controlled at δ.
To apply this procedure in our setting, we need to find

a tractable expression for the p-value at every location.
This can be accomplished when A satisfies the distance-
preservation condition stated below. Let V = D⋃{f ∗

i :
i ∈ {1, . . . ,M}} be the set of all signals in the dictionary
and the ones whose projections are measured. Note that
|V | ≤ M + m. For a given ε ∈ (0, 1), a projection opera-
tor A ∈ R

K×N , K ≤ N , is distance-preserving on V if the
following holds for all u, v ∈ V :

(1−ε)‖u−v‖ ≤ ‖A(u−v)‖ ≤ (1+ε)‖u−v‖, ∀u, v ∈ V .
(18)

The existence of such projection operators is guaran-
teed by the celebrated Johnson and Lindenstrauss (JL)
lemma [49], which says that there exists random construc-
tions of A for which (18) holds with probability at least
1 − 2|V |2e−Kc(ε) provided K = O (

log |V |) ≤ N , where
c(ε) = ε2/16− ε3/48 [51,52]. Examples of such construc-
tions are: (a) Gaussian matrices whose entries are drawn
from N (0, 1/K), (b) Bernoulli matrices whose entries are
±1/

√
N with probability 1/2, (c) random matrices whose

entries are ±√
3/N with probability 1/6 and zero with

probability 2/3 [51,52], and (d) matrices that satisfy the
restricted isometry property (RIP) where the signs of the
entries in each column are randomized [53].
We now state our main theorem that gives a tight upper

bound on the p-value at every location when {αi} are
unknown and are estimated from the observations. Let
{̂αi} be the estimates of {αi} that satisfy

1 − ζ ≤ αi
α̂i

≤ 1 + ζ (19)

for i = 1, . . . ,M where ζ ∈[ 0, 1] is a measure of the
accuracy of the estimation procedure.

Theorem4. If the ith hypothesis test is defined according
to (15a) and (15b), the projection matrixA satisfies (18) for
a given ε ∈ (0, 1), and the estimates {̂αi} satisfy (19) for
some ζ ∈[ 0, 1], then the bound

pi ≤ 1 − F (
d2i ;K , (1 + ε)2α̂2

i (ζ + τ)2
)

(20)

holds for all i = 1, . . . ,M where F (·;K , ν) is the CDF of a
noncentral χ2 random variable with K degrees of freedom
and noncentrality parameter ν [54].
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The proof of this theorem is given in Appendix 4. We
find the p-value upper bounds at every location and use
the BH procedure to perform anomaly detection. The per-
formance of this procedure depends on the values of K,
{αi}, τ and ε. The parameter ε is a measure of the accu-
racy with which the projection matrix A preserves the
distances between any two vectors in R

N . A value of ε

close to zero implies that the distances are preserved fairly
accurately. When {αi} are unknown and estimated from
the observations, the performance depends on the accu-
racy of the estimation procedure, which is reflected in our
bounds in (20) through ζ .
One can easily estimate {αi} from {yi} for some choices

of A. For instance, if the entries of the projection matrix
A are drawn from N (0, 1/K), the {αi} can be estimated
using a maximum likelihood estimator (MLE) by exploit-
ing the statistics of the projection matrix and noise. Note
that the jth element of the ith measured spectrum is

yi,j = ∑N
k=1 αif ∗

i,kaj,k + ni,j ∼ N
(
0,
∑N

k=1
α2
i
K f ∗

i,k
2 + 1

)
for

j ∈ {1, . . . ,K}. Since ∥∥f ∗
i
∥∥
2 = 1 according to our problem

formulation, yi,j
i.i.d.∼ N

(
0, α2

i
K + 1

)
. The MLE of αi given

by α̂i = argmaxαP(yi|A,α) then reduces to

α̂i =
√(‖yi‖2 − K

)
. (21)

In practice, we use α̂i =
√(‖yi‖2 − K

)
+ where the (a)+ =

a if a ≥ 0 and 0 otherwise to ensure that ‖yi‖2 − K
is nonnegative. We can use concentration inequalities to
show that with high probability,

∥∥yi∥∥22 is tightly concen-

trated around its mean E

[∥∥yi∥∥22] = α2
i + K . Since yi,j

i.i.d.∼
N

(
0, α2

i
K + 1

)
, K

α2+K
∥∥yi∥∥22 ∼ χ2

K . From ([55], Lemma

2.2), and ([56], Proposition 1 and Remark 1), for any t > 0

P

(∣∣∣∥∥yi∥∥22 − (α2
i + K)

∣∣∣ ≥ t
)

≤ C exp(−ct2) (22)

for some absolute constants C, c > 0. This result shows
that with high probability,

∥∥yi∥∥22 − K is nonnegative.
The experimental results discussed in Section “Exper-

imental results” demonstrate the performance of this
detector as a function ofK, {αi} and τ when {αi} are known
and as a function of K, τ and ζ when {αi} are estimated.

Experimental results
In the experiments that follow, the entries of A are drawn
fromN (0, 1/K).

Dictionary signal detection
To test the effectiveness of our approach, we formed a
dictionary D of nine spectra (corresponding to different
kinds of trees, grass, water bodies and roads) obtained
from a labeled HyMap (Hyperspectral Mapper) remote
sensing data set [57], and simulated a realistic dataset
using the spectra from this dictionary. Each HyMap spec-
trum is of length N = 106. We generated projection mea-
surements of these data such that zi = αiΦ(f ∗

i + bi) + wi
according to (1), where wi ∼ N (0, σ 2I), f ∗

i ∈ D for i =
1, . . . , 8100, bi ∼ N (

μb,Σb
)
such that Σb satisfies the

condition in (4), and αi = α∗
i
√
K where α∗

i ∼ U [ 21, 25]
and U denotes uniform distribution. We let σ 2 = 5 and
model {αi} to be proportional to

√
K to account for the

fact that the total observed signal energy increases as the
number of detectors increases. We transform the zi by a
series of operations to arrive at a model of the form dis-
cussed in (2), which is yi = αiAf ∗

i + ni. For this dataset,
pmin = 0.04938, pmax = 0.1481, and dmin = 0.04341.
We evaluate the performance of our detector (7) on the

transformed observations, relative to the number of mea-
surements K, by comparing the detection results to the
ground truth. Our MAP detector returns a label LMAP

i for
every observed spectrum which is determined according
to

LMAP
i = arg min

�∈{1,...,m},f (�)∈D

(
1
2
||yi − αiAf (�)||2 − log p(�)

)

where m is the number of signals in D, and p(�) is the a
priori probability of target class �. In our experiments we
evaluate the performance of our classifier when (a) {αi} are
known (AK) and (b) {αi} are unknown (AU) and must be
estimated from y, respectively. The empirical pFDR(j) for
each target spectrum j is calculated as follows:

pFDR(j) =
∑M

i=1 I
{
LGTi =j

}I{LMAP
i 	=j

}∑M
i=1 I

{
LMAP
i 	=j

}

where {LGTi } denote the ground truth labels. The empiri-
cal pFDR(·) is the ratio of the number of missed targets to
the total number of signals that were declared to be non-
targets. The plots in Figure 1a show the results obtained
using our target detection approach under the AK case
(shown by a dark gray dashed line) and the AU case
(shown by a light gray dashed line), compared to the theo-
retical upper bound (shown by a solid line). These results
are obtained by averaging the pFDR values obtained over
1000 different noise, sensing matrix and background real-
izations. Note that theoretical results only apply to the AK
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Figure 1 Compressive target detection results under the AK ({αi} known) and AU ({αi} unknown) cases respectively as a function of K. (a)
Comparison of the worst-case empirical pFDR curves with the theoretical bounds when SNR is high. (b) Comparison of the results obtained by the
proposed method using projection measurements using Φ designed according to (24), Φ chosen at random, and the ones using downsampled
measurements (DM) when the SNR is low.

case since they were derived under the assumption of {αi}
being known. The experimental results are shown for both
AK and AU cases to provide a comparison between the
two scenarios. In both these cases, the worst-case empir-
ical pFDR curves decay with the increase in the values of
K. In the AK case, in particular, the worst-case empirical
pFDR curve decays at the same rate as the upper bound.
In this experiment, for a fixed αmin and dmin, we chose K
to satisfy (13c). The theory is somewhat conservative, and
in practice the method works well even when the values of
K are below the bound in (13c).
In the experiment that follows, we let α∗

i ∼ U [ 10, 20],
where U denotes a uniform random variable, αi = √

Kα∗
i

and evaluate the performance of our detector for differ-
ent values of K that are not necessarily chosen to satisfy
(13c). In addition, we also compare the performance of our
detection method to that of a MAP based target detec-
tor operating on downsampled versions of our simulated
spectral input image. The reason behind such a compar-
ison is to show what kinds of measurements yield better
results given a fixed number of detectors.
For an input spectrum g ∈ R

N , we let g̃ ∈ R
K denote its

downsampled approximation. Specifically, the jth element
of g̃i is

∑r
�=1 g(j−1)r+� where r = �N/K. Let us consider

making observations of the form

yi = g̃i
c

+ ni ∈ R
K (23)

where g̃i = αĩf
∗
i + b̃i is the K-dimensional downsampled

version of f ∗
i + bi for K ≤ N , ni ∼ N (0, σ 2I) for σ 2 = 5

and c is a constant that is chosen to preserve the mean
signal-to-noise ratio corresponding to the downsampled
and projection measurements. The MAP-based detec-
tor operating on the downsampled data returns a label

DMAP
i for every observed spectrum which is determined

according to

DMAP
i = arg min

�∈{1,...,m},f (�)∈D

(
yi − αĩf

(�)
)T

G−1

×
(
yi − αĩf

(�)
)

− log p(�)

where G = Σ̃b + σ 2I and Σ̃b is the covariance matrix
obtained from the downsampled versions of the back-
ground training data and f̃ (�) is the downsampled version
of f (�) ∈ D. The algorithm declares that target spectrum
f (j) ∈ D is present in the ith location ifDMAP

i = j. In order
to illustrate the advantages of using a Φ designed accord-
ing to (24), we compare the performances of the proposed
anomaly detector when Φ is chosen to be a random
Gaussianmatrix whose entries are drawn fromN (0, 1/K)

and when Φ is chosen according to (24). Figure 1b shows
a comparison of the results obtained using the projec-
tion measurements obtained using Φ designed according
to (24), Φ chosen at random, and the downsampled mea-
surements under the AK case. These results show that
the detection algorithm operating on projection measure-
ments using Φ designed using background and sensor
noise statistics yield significantly better results than the
one operating on the downsampled data, and that the
empirical pFDR values in our method decays with K. The
improvement in performance using projection measure-
ments comes from the distance-preservation property
of the projection operator A. While a Gaussian sensing
matrix A preserves distances between any pair of vectors
from a finite collection of vectors with high probabil-
ity [51,52], downsampling loses some of the fine differ-
ences between similar-looking spectra in the dictionary.
Furthermore, when Φ is chosen at random, the result-
ing whitened transformation matrix is not necessarily
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distance-preserving. This may worsen the performance as
illustrated in Figure 1b.

Anomaly detection
In this section, we evaluate the performance of our
anomaly detection method on (a) a simulated dataset
and provide a comparison of the results obtained
using the proposed projection measurements and the
ones obtained using downsampled measurements, and
(b) real AVIRIS (Airborne Visible InfraRed Imaging
Spectrometer) dataset.

Experiments on simulated data
We simulate a spectral image f ∗ composed of 8100
spectra, where each of them is either drawn from a dic-
tionary D = {f (1), · · · , f (5)} consisting of five labeled
spectra from the HyMap data that correspond to a nat-
ural landscape (trees, grass and lakes) or is anomalous.
The anomalous spectrum is extracted from unlabeled
AVIRIS data, and the minimum distance between the
anomalous spectrum f (a) and any of the spectra in D is
dmin = minf ∈D‖f − f (a)‖ = 0.5308. The simulated data
has 625 locations that contain the anomalous spectrum.
Our goal is to find the spatial locations that contain the
anomalous AVIRIS spectrum given noisy measurements
of the form zi = Φ

(
αif ∗

i + bi
) + wi where bi ∼ (μb,Σb),

Φ is designed according to (24), wi ∼ N (0, σ 2I) and
f ∗
i ∈ D under H0i. As discussed in Section “Anomalous

signal detection”, f ∗
i is anomalous underH1i, and our goal

is to control the FDR below a user-specified false discov-
ery level δ. We simulate {αi} = √

Kα∗
i where α∗

i ∼ U [ 2, 3].
In this experiment we assume the availability of back-
ground training data to estimate the background statistics
and the sensor noise variance σ 2. Given the knowledge
of the background statistics, we perform the whitening
transformation discussed in Section “Whitening compres-
sive observations” and evaluate the detection performance
on the preprocessed observations given by (2).
For a fixed τ = 0.1 and ε = 0.1, we evaluate the per-

formance of the detector as the number of measurements
K increases under the AK and AU cases respectively, by
comparing the pseudo-ROC (receiver operating charac-
teristic) curves obtained by plotting the empirical FDR
against 1−FNR, where FNR is the false nondiscovery rate.
Note that 1 − FNR is the expected ratio of the number of
null hypotheses that are correctly rejected to the number
of declared null hypotheses. The empirical FDR and FNR
are computed according to

FDR =
∑M

i=1 I
{
LGTi =0

}I{pi≤pt}∑M
i=1 I{pi≤pt}

and

FNR =
∑M

i=1 I
{
LGTi =1

}I{pi>pt}∑M
i=1 I{pi>pt}

where pt is the p-value threshold such that the BH pro-
cedure rejects all null hypotheses for which pi ≤ pt , and
the ground truth label LGTi = 0 if the ith spectrum is not
anomalous, and 1 otherwise. In this experiment, we con-
sider three different values of K approximately given by
K ∈ {N/6,N/3,N/2} where N = 106, and evaluate the
performance of our detector for each K . Furthermore, in
our experiments with simulated data, we declare a spec-
trum to be anomalous if di ≥ η where η is a user-specified
threshold and di is defined in (16). We use the p-value
upper bound in (20) in our experiments with real data
where the ground truth is unknown.
We compare the performance of our method to a gener-

alized likelihood ratio test (GLRT)-based procedure oper-
ating on downsampled data, where we collect measure-
ments of the form in (23) and f ∗

i ∈ D underH0i. Observe
that yi|H0i ∼ ∑

f ∈D P
(
f ∗
i = f

)N (αĩf , Σ̃b + I), where f̃
refers to the downsampled version of f ∈ D. In this exper-
iment we assume that each spectrum inD is equally likely
under H0i for i = 1, . . . ,M. The GLRT-based approach
declares the ith spectrum to be anomalous if

− logP
(
yi|H0i

) H1i
≷
H0i

η

for i = 1, . . . ,M, where η is a user-specified threshold
[26]. While our anomaly detection method is designed
to control the FDR below a user-specified threshold, the
GLRT-based method is designed to increase the proba-
bility of detection while keeping the probability of false
alarm as low as possible. To facilitate a fair evaluation of
thesemethods, we compare the pseudo-ROC curves (FDR
versus 1 − FNR) and the actual ROC curves (probabil-
ity of false alarm pf versus probability of detection pd)
corresponding to these methods obtained by averaging
the empirical FDR, FNR, pd and pf over 1,000 different
noise and sensing matrix realizations for different values
of K. We also compare the performance of the proposed
method when Φ is chosen according to (24) and when it
is chosen at random, as discussed in the previous section.
Figure 2a,e show the pseudo-ROC plots and the conven-
tional ROC plots obtained using the GLRT-based method
operating on downsampled data when {αi} are known.
Figure 2b,f show the results obtained by using a ran-
dom Gaussian Φ instead of the Φ in (24). Figure 2c,g
show the pseudo-ROC plots and the conventional ROC
plots obtained using our method when {αi} are known.
These plots show that performing anomaly detection
from our designed projection measurements yields better
results than performing anomaly detection on downsam-
pled measurements and on measurements obtained using
a random Gaussian Φ . This is largely due to the fact that
carefully chosen projection measurements preserve dis-
tances (up to a constant factor) among pairs of vectors



Krishnamurthy et al. EURASIP Journal on Advances in Signal Processing 2012, 2012:205 Page 12 of 19
http://asp.eurasipjournals.com/content/2012/1/205

0 0.1 0.3 0.5 0.7 0.9
FDR

1-
F

N
R

K = 53

K = 26

K = 17

Pseudo-ROC plots, GLRT-based
method operating on downsampled
data using true values of

0 0.1 0.3 0.5 0.7 0.9

0.94

0.96

0.98

1

FDR

1-
F

N
R

0.92

K = 53

K = 26

K = 17

Pseudo-ROC plots, Proposed
method with chosen to be a random
Gaussian projection matrix using true
values of

0 0.1 0.3 0.5 0.7 0.9
0.92

0.94

0.96

0.98

1

FDR

1-
F

N
R

K = 53

K = 26

K = 17

Pseudo-ROC plots, Proposed
method where is designed according
to (24) using true values of

0 0.1 0.3 0.5 0.7 0.9

0.94

0.96

0.98

1

FDR

1-
F

N
R

K = 53; = 0.2

K = 26; = 0.3

K = 17; = 0.4

0.92

Pseudo-ROC plots, Proposed
method where is designed according
to (24) using ML estimates of

0 0.1 0.3 0.5 0.7 0.9

0.2

0.4

0.6

0.8

1

K = 53

K = 26

K = 17

p f

ROC plots, GLRT-based method
operating on downsampled data using
true values of

0 0.1 0.3 0.5 0.7 0.9

0.2

0.4

0.6

0.8

1

K = 53

K = 26

K = 17

p f

p
d

ROC plots, Proposed method with
chosen to be a random Gaussian pro-

jection matrix using true values of

0 0.1 0.3 0.5 0.7 0.9

0.2

0.4

0.6

0.8

1

K = 53

K = 26

K = 17

p f

ROC plots, Proposed method where
is designed according to (24) using

true values of

0 0.1 0.3 0.5 0.7 0.9

0.2

0.4

0.6

0.8

1

pf

p
d

K = 53; ζ = 0.2

K = 26; ζ = 0.3

K = 17; ζ

ζ
ζ
ζ

= 0.4

ROC plots, Proposed method
where is designed according to (24)
using ML estimates of

0.94

0.96

0.98

1

p d
p

d

a b

c d

fe

hg
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in a finite collection, where as the downsampled mea-
surements fail to preserve distances among vectors that
are very similar to each other. Similarly, a random pro-
jection matrix Φ is not necessarily distance-preserving
post-whitening transformation, which leads to poor per-
formance as illustrated in Figure 2b,f. Figure 2d,h shows
the pseudo-ROC plots and the conventional ROC plots
obtained using our method when {αi} are unknown, and
are estimated from the measurements. Note that the value
of ζ decreases as K increases since the estimation accu-
racy of {αi} increases with increase in K. These plots show
that the performance improves as we collect more obser-
vations, and that, as expected, the performance under the
AK case is better than the performance under the AU case.

Experiments on real AVIRIS data
To test the performance of our anomaly detector on a
real dataset, we consider the unlabeled AVIRIS Jasper
Ridge dataset g ∈ R

614×512×197, which is publicly avail-
able from theNASAAVIRIS website, http://aviris.jpl.nasa.
gov/html/aviris.freedata.html. We split this data spatially
to form equisized training and validation datasets, gt and
gv respectively, each of which is of size 128 × 128 × 197.
Figure 3a,b show images of the AVIRIS training and val-
idation data summed through the spectral coordinates.
The training data are comprised of a rocky terrain with a
small patch of trees. The validation data seems to be made
of a similar rocky terrain, but also contain an anomalous

lake-like structure. The goal is to evaluate the perfor-
mance of the detector in detecting the anomalous region
in the validation data for different values of K. We clus-
ter the spectral targets in the normalized training data
to eight different clusters using the K-means clustering
algorithm and form a dictionary D comprising of the
cluster centroids. Given the dictionary and the validation
data, we find the ground truth by labeling the ith valida-
tion spectrum as anomalous if minf ∈D

∥∥∥f − gvi
‖gvi ‖

∥∥∥ > τ .
Since the statistics of the possible background contamina-
tion in the data could not be learned in this experiment
because of the lack of labeled training data, the dictionary
might be background contaminated as well. The param-
eter τ encapsulates this uncertainty in our knowledge of
the dictionary. In this experiment, we set τ = 0.2.
We generate measurements of the form yi = √

Kgvi +ni
for i = 1, . . . , 128×128, where ni ∼ N (0, I). The

√
K fac-

tor indicates that the observed signal strength increases
with K. For a fixed FDR control value of 0.01, Figure 3c,d
shows the results obtained for K ≈ N/5 and K ≈ N/2,
respectively. Figure 3e shows how the probability of error
decays as a function of the number of measurements
K. The results presented here are obtained by averaging
over 1,000 different noise and sensing matrix realiza-
tions. From these results, we can see that the number of
detected anomalies increases with K and the number of
misclassifications decrease with K.

Trainingdata Validationdata Anomalies detected
(shown by white dots) for
K ≈ N/ 5 = 39.

Anomalies detected
(shown by white dots) for
K ≈ N/ 2 = 99.

20 60 100 140 180
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Figure 3 Anomaly detection results corresponding to real AVIRIS data for a fixed FDR control of 0.01.
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Conclusion
This work presents computationally efficient approaches
for detecting known targets and anomalies of different
strengths from projection measurements without per-
forming a complete reconstruction of the underlying sig-
nals, and offers theoretical bounds on the worst-case tar-
get detector performance. This article treats each signal
as independent of its spatial or temporal neighbors. This
assumption is reasonable in many contexts, especially
when the spatial or temporal resolution is low relative to
the spatial homogeneity of the environment or the pace
with which a scene changes. However, emerging technolo-
gies in computational optical systems continue to improve
the resolution of spectral imagers. In our future work we
will build upon the methods that we have discussed here
to exploit the spatial or temporal correlations in the data.

Appendix 1: Proof of Theorem 1
Using linear algebra and matrix theory, it is possible to
show that if B = I − AΣbAT is positive definite, then

Φ = σB−1/2A (24)

satisfies (3).c In particular, we can substitute (24) in (3)
to verify that the proposed construction of Φ satisfies (3).
Observe that CΦ = (

ΦΣbΦ
T + σ 2I

)−1/2 can be written
in terms of (24) as follows:

CΦ =
([

σB− 1
2A

]
Σb

[
σB− 1

2A
]T + σ 2I

)− 1
2

=
(

σ 2B−1/2
(
AΣbAT

) (
B− 1

2
)T + σ 2I

)− 1
2

=
(

σ 2B− 1
2 (I − B)

(
B− 1

2
)T + σ 2I

)− 1
2

= (
σ 2B−1)− 1

2 = σ−1B
1
2 (25)

where the third-to-last equation follows from the defini-
tion ofB and (25) follows from the fact thatB is symmetric
and positive definite. If B is positive definite, then B−1 is
positive definite as well and can be decomposed as B−1 =(
B−1/2)T B−1/2, where the matrix square root B−1/2 is
symmetric and positive definite. By substituting (25) and
(24) in (3), we have CΦΦ = σ−1B1/2σB−1/2A = A. A
sufficient condition for B to be positive definite can be
derived as follows.
To ensure positive definiteness of B, we must have

xTBx = xTx − xT
(
AΣbAT

)
x > 0 (26)

for any nonzero x ∈ R
K . Note that since Σb is positive

semidefinite, xT
(
AΣbAT) x ≥ 0. However, the right hand

side of (26) is > 0 only if the spectral norm of AΣbAT is

< 1, since xT
(
AΣbAT) x ≤ ‖x‖2 · ‖AΣbAT‖. The norm

of AΣbAT is in turn bounded above by

‖AΣbAT‖ ≤ ‖A‖‖Σb‖‖AT‖ = ‖A‖2‖Σb‖ = ‖A‖2λmax

since ‖A‖ = ‖AT‖ and ‖Σb‖ = λmax, where λmax is
the largest eigenvalue of Σb. To ensure ‖AΣbAT‖ < 1,
‖A‖2λmax has to be < 1, which leads to the result of
Theorem 1.

Appendix 2: Proof of Theorem 2
The proof of Theorem 2 adapts the proof techniques from
[48] to nonidentical independent hypothesis tests. We
begin by expanding the pFDR definition in (8) as follows:

pFDR(j) (Γ ) =
M∑
k=1

E

[
V (Γ )

R (Γ )

∣∣∣∣R (Γ ) = k
]

× P (R (Γ ) = k|R (Γ ) > 0) .

Observe that R (Γ ) = k implies that there exists some sub-
set Sk = {u1, . . . ,uk} ⊆ {1, . . . ,M} of size k such that yu�

∈
Γ

(j)
u�

for � = 1, . . . , k and yi 	∈ Γ
(j)
i for all i 	∈ Sk . To simplify

the notation, let ΛSk = ∏
u∈Sk Γ

j
u ×∏

�/∈Sk Γ̃
(j)
� , where Γ̃

(j)
�

is the complement of Γ
(j)
� , denote the significance region

that corresponds to set Sk , and T = (y1, . . . , yM) be a
set of test statistics corresponding to each hypothesis test.
Considering all such subsets we have

pFDR(j) (Γ ) =
M∑
k=1

∑
Sk

E

[
V (Γ )

k

∣∣∣∣T ∈ ΛSk

]
× P

(
T ∈ ΛSk

∣∣R (Γ ) > 0
)
. (27)

By plugging in the definition of V ({Γi}) from (9), we have

E
[
V (Γ )|T ∈ ΛSk

] = E

[ M∑
i=1

I{yi∈Γ
(j)
i

}I{H(j)
i =0

}
∣∣∣∣∣T ∈ ΛSk

]

≡
k∑

�=1
E

[
I{H(j)

u�
=0

}∣∣∣∣ yu�

]
=

k∑
�=1

P

(
H(j)

u�
= 0

∣∣∣ yu�
∈ Γ

(j)
u�

)
(28)

for all u� ∈ Sk since the tests are independent of each other
given A. The posterior probability P

(
H(j)

i = 0
∣∣∣ yi ∈ Γ

(j)
i

)
for the ith hypothesis test can be expanded using Bayes’
rule as

P

(
H(j)

0i

∣∣∣yi ∈ Γ
(j)
i

)
=

P

(
yi ∈ Γ

(j)
i |H0i

)
P

(
H(j)

0i

)
P

(
y(j)
i ∈ Γ

(j)
i

)
≡

P

(
f̂ i 	= f (j)

∣∣∣ f ∗
i = f (j)

)
P

(
f ∗
i = f (j)

)
P

(̂
f i 	= f (j)

) ,

(29)
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where f̂ i = argmaxf (�)∈D P

(
f ∗
i = f (�)

∣∣∣ yi,αi,A
)
. To

upper bound the numerator of (29), consider the probabil-
ity of misclassification given by (Pe)i = P

(̂
f i 	= f ∗

i

)
where

f ∗
i = f (j) ∈ D, which can be expanded as follows:

(Pe)i =P

(̂
f i 	= f ∗

i

)
=

m∑
�=1

P

(
f̂ i 	= f ∗

i

∣∣∣ f ∗
i = f (�)

)
P

(
f ∗
i = f (�)

)
≡

m∑
�=1

P

(
f̂ i 	= f (�)

∣∣∣ f ∗
i = f (�)

)
P

(
f ∗
i = f (�)

)
≥P

(
f̂ i 	= f (j)

∣∣∣ f ∗
i = f (j)

)
P

(
f ∗
i = f (j)

)
. (30)

The denominator term in (29) can be expanded as
follows:

P

(̂
f i 	= f (j)

)
=P

(
f̂ i 	= f (j)

∣∣∣ f ∗
i = f (j)

)
P

(
f ∗
i = f (j)

)
+ P

(
f̂ i 	= f (j)

∣∣∣ f ∗
i 	= f (j)

)
P

(
f ∗
i 	= f (j)

)
.

Observe that P
(
f̂ i 	= f (j)

∣∣∣ f ∗
i = f (j)

)
is nonnegative, and

P

(
f̂ i 	= f (j)

∣∣∣ f ∗
i 	= f (j)

)
= P

(
f̂ i ∈ D\f (j)

∣∣∣ f ∗
i 	= f (j)

)
≥ P

(
f̂ i = f ∗

i

∣∣∣ f ∗
i 	= f (j)

)
= 1 − P

(
f̂ i 	= f ∗

i

∣∣∣ f ∗
i 	= f (j)

)
= 1 −

P

(̂
f i 	= f ∗

i , f ∗
i 	= f (j)

)
P

(
f ∗
i 	= f (j)

)
≥ 1 −

P

(̂
f i 	= f ∗

i

)
P

(
f ∗
i 	= f (j)

)
= 1 − (Pe)i

1 − p(j) .

Thus

P

(̂
f i 	= f (j)

)
≥
(
1− (Pe)i

1 − p(j)

)(
1 − p(j)

)
=1−p(j) − (Pe)i.

(31)

Substituting (30) and (31) in (29),

P

(
H(j)

0i

∣∣∣yi ∈ Γ
(j)
i

)
≤ (Pe)i

1 − p(j) − (Pe)i

≤ (Pe)max
1 − p(j) − (Pe)max

. (32)

By substituting (32) in (27) and (28) we have:

pFDR(j) (Γ ) ≤
M∑
k=1

∑
Sk

1
k

( k∑
�=1

(Pe)max
1 − p(j) − (Pe)max

)
× P

(
T ∈ ΛSk

∣∣R (Γ ) > 0
)

= (Pe)max
1 − p(j) − (Pe)max

×
M∑
k=1

∑
Sk

P
(
T ∈ ΛSk

∣∣R (Γ ) > 0
)

≤ (Pe)max
1 − p(j) − (Pe)max

since
∑M

k=1
∑

Sk P
(
T ∈ ΛSk

∣∣R (Γ ) > 0
) ≤ 1. The result

of Theorem 2 is obtained by finding an upper bound on
the worst-case pFDR given by

pFDRmax = max
j∈{1,...,m} pFDR

(j) (Γ )

≤ max
j∈{1,...,m}

(Pe)max
1 − p(j) − (Pe)max

= (Pe)max
1 − pmax − (Pe)max

where pmax = max�∈{1,...,m}p(�).

Appendix 3: Proof of Theorem 3
The proof is via a random selection technique, similar to
random coding arguments common in information the-
ory. Specifically, we will draw a K ×N sensing matrix A at
random from a particular distribution and then show that,
for ε, N, and K satisfying the conditions of the theorem,
the probability that the conclusions of the theoremwill fail
to hold for this randomly chosen A is strictly smaller than
unity. This will imply that the conclusions of the theorem
must be true for at least one (deterministic) realization of
A.
We begin by specifying all the relevant random vari-

ables:

• f ∗
1, . . . , f ∗

M are i.i.d. random variables taking values in
the dictionary D = {f (1), . . . , f (m)} with probabilities
p(j) = Pr{f ∗

i = f (j)}, j ∈ {1, . . . ,m};
• n1, . . . ,nM

i.i.d.∼ N (0, I);
• G is a random K ×N matrix with i.i.d.N (0, 1) entries.

We assume that {f ∗
i }Mi=1, {ni}Mi=1, and G are mutually inde-

pendent, and we will denote by P their joint probability
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distribution. Finally, we let A = 1√
KG and consider the

observation model

yi = αiAf ∗
i + ni, i ∈ {1, . . . ,M} (33)

where α1, . . . ,αM > 0 are the given signal strengths.
We first consider the case when α1 = · · · = αM =

α. Given ε, N, and K, we define the following two error
events:

E1 �
{
‖G‖ ≥ (1 + ε)(

√
K + √

N)
}
, and

E2 �
{̂
f 1 	= f ∗

1

}
,

where, for each i ∈ {1, . . . ,M}, f̂ i is defined according to
(12). Note that, since we have assumed that the αi’s are
equal and all the pairs (f ∗

i ,ni), i ∈ {1, . . . ,M}, are i.i.d.,

P(̂f i 	= f ∗
i |A) = P(E2|A), ∀i ∈ {1, . . . ,M}. (34)

We will now prove that

P(E1 ∪ E2) ≤1 − pmin
pmin

(
1 + α2d2min

4Kσ 2

)− K
2

+ 2 exp
(

− (K + N)ε2

2

)
. (35)

The union bound gives P(E1 ∪ E2) ≤ P(E1) + P(E2). First,
we bound P(E1). To do that, we use the following concen-
tration result for Gaussian random matrices [58]: for any
t ≥ 0,

Pr
{
‖G‖ ≥ √

K + √
N + t

}
≤ 2e−t2/2.

Letting t = ε(
√
K + √

N) and using the fact that t2 ≥
(K + N)ε2, we get

P(E1) ≤ 2 exp
(

− (K + N)ε2

2

)
. (36)

Next, we bound P(E2). To that end, we use the follow-
ing result, which is a straightforward extension of ([5],
Theorem 1) to nonequiprobable dictionary elements:

Lemma 1 (Compressive classification error). Con-
sider the problem of classifying a signal of interest f ∗ ∈
D = {f (1), . . . , f (m)} to one of m known target classes by
making observations of the form y = αAf ∗ + n where
n ∼ N (

0, σ 2I
)
, given the knowledge of the dictionary D,

prior probabilities p(j) for j ∈ {1, · · · ,m}, sensing matrix
A, and the noise variance σ 2. If the entries of A are drawn

i.i.d. from N (0, 1/K) independently of f ∗ and n, and the
estimate f̂ is obtained according to (12), then

P

(̂
f 	= f ∗) ≤ 1 − pmin

pmin

(
1 + α2d2min

4Kσ 2

)− K
2

where the probability is taken with respect to the distribu-
tions underlying f ∗, A, and n.

Using the above lemma, we have

P(E2) ≤ 1 − pmin
pmin

(
1 + α2d2min

4K

)− K
2

. (37)

Combining (36) and (37), we get (35).
Because of (13a), the right-hand side of (35) is less than

1−ε−pmax, which is strictly positive by hypothesis. Thus,
from the fact that

P(E1 ∪ E2) = E[ P(E1 ∪ E2|A)]

and from (34), it follows that there exists at least one deter-
ministic choice of the K ×N sensing matrix A∗, such that:

‖A∗‖ ≤(1 + ε)

(
1 +

√
N
K

)
(38a)

(Pe)max(A∗) ≤1 − pmin
pmin

(
1 + α2d2min

4K

)− K
2

+ 2 exp
(

− (K + N)ε2

2

)
(38b)

where, for a given choice of A, (Pe)max(A) denotes the
maximum probability of error defined in Theorem 2.
Next, from (38a) and (13b) it follows thatA∗ satisfies the

conditions of Theorem 1. Finally, we use (11) to bound the
worst-case pFDR achievable with A∗. First of all, we note
that the function U(x) = x

1−pmax−x is twice differentiable
and convex on the interval [ 0, 1 − pmax]. Therefore, for
any x ∈[ 0, 1 − pmax] and any h > 0 small enough so that
x + h ∈[ 0, 1 − pmax], we have

U(x + h) ≤U(x) + U ′(x + h)h = U(x)

+ (1 − pmax)h
(1 − pmax − x − h)2

. (39)

Let us choose

x = 1 − pmin
pmin

(
1 + α2d2min

4K

)− K
2

and

h = 2 exp
(

− (K + N)ε2

2

)
.
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Then from (13a) we have x+h ≤ 1−ε −pmax < 1−pmax,
and from (13c) we have x + h ≥ 0. Hence, using (39) and
simplifying, we obtain the bound

pFDRmax(A∗) ≤ 1
pmin

⎛⎝1 − pmax
1 − pmin

(
1 + α2d2min

4K

) K
2

− 1
pmin

⎞⎠−1

+ 2(1 − pmax)

ε2
exp

(
− (K + N)ε2

2

)
.

This proves the theorem for the case α1 = · · · = αM = α.
To handle the case when the αi’s are distinct, we simply

let

i∗ � arg min
i∈{1,...,M}

αi

and replace the definition of the error event E2 with E ′
2 =

{̂f i∗ 	= f ∗
i∗}. Then the same argument goes through, except

that instead of (34) we use the bound

P(̂f i 	= f ∗
i |A) ≤ P(̂f i∗ 	= f ∗

i∗ |A) = P(E ′
2|A), ∀i 	= i∗

which follows from the following argument. First of all,
we can replace the observation model with the equivalent
model

ỹi = Af ∗
i + ñi, i ∈ {1, . . . ,M}

where ñi = 1
αi
ni ∼ N (0, 1

α2
i
I). Secondly, from the fact that

αi ≥ αi∗ ≡ αmin for any i 	= i∗ it follows that ñi∗ is equal in

distribution to ñi + ñ′
i, where ñ′

i ∼ N
(
0,
(

1
α2
i

− 1
α2
min

)
I
)

is independent of ñi. This implies that the i∗th observation
is the noisiest, and the corresponding MAP estimate f̂ i∗
has the largest probability of error.

Appendix 4: Proof of Theorem 4
We first prove this theorem assuming that {αi} are known
and later extend to the case where {̂αi} are estimated from
the observations. Let f̃ i = arg minf ∈D ‖f ∗

i − f ‖. The p-
value expression in (17) can be expanded as follows:

pi =P

(
d̃i ≥ di

∣∣∣H0i
)

=P

(
min
f ∈D

‖αiA(f ∗
i − f ) + n‖ ≥ di

∣∣∣∣H0i

)
≤P

(
‖αiA(f ∗

i − f̃ i) + n‖ ≥ di
∣∣∣H0i

)
=P

(
‖αiA(f ∗

i − f̃ i) + n‖2 ≥ d2i
∣∣∣H0i

)
. (40)

Note that ‖αiA(f ∗
i − f̃ i) + n‖2 is a noncentral χ2 random

variable with K degrees of freedom and a noncentrality
parameter νi = ‖αiA

(
f ∗
i − f̃ i

)
‖2. Thus (40) can be writ-

ten in terms of a noncentral χ2 CDF F (
d2i ;K , νi

)
with

parameter d2i . The upper and lower bounds on νi can be
obtained using the properties of the projection matrix A.
Applying (18), we see that

α2
i (1 − ε)2‖f ∗

i − f̃ i‖2 ≤ νi ≤ α2
i (1 + ε)2‖f ∗

i − f̃ i‖2

with high probability. Thus,

pi ≤ 1 − P

(
‖αiA(f ∗

i − f̃ i) + n‖2 ≤ d2i
∣∣∣H0i

)
= 1 − F (

d2i ;K , νi
)

(41)

≤ 1 − F
(
d2i ;K ,α2

i (1 + ε)2‖f ∗
i − f̃ i‖2

)
≤ 1 − F (

d2i ;K ,α2
i (1 + ε)2τ 2

)
since ‖f ∗

i − f ‖ ≤ τ for all f ∈ D underH0i.
When {αi} are estimated from the observations such

that {̂αi} satisfy (19), we can write the p-value expression
in (41) as follows:

pi ≤ 1 − F
(
d2i ;K ,

∥∥∥A (
αif ∗

i − α̂ĩf i
)∥∥∥2)

≤ 1 − F
(
d2i ;K , (1 + ε)2α̂2

i

∥∥∥∥αi
α̂i
f ∗
i − f̃ i

∥∥∥∥2
)

(42)

where (42) is due to the distance preservation property of
A given in (18). Observe that

∥∥∥αi
α̂i
f ∗
i − f̃ i

∥∥∥2 can be upper
bounded as shown below:∥∥∥∥αi

α̂i
f ∗
i − f̃ i

∥∥∥∥2 =
∥∥∥∥(αi

α̂i
− 1

)
f ∗
i + f ∗

i − f̃ i
∥∥∥∥2

≤
(∥∥∥∥(αi

α̂i
− 1

)
f ∗
i

∥∥∥∥ + ∥∥f ∗
i − f̃ i

∥∥)2

=
(∣∣∣∣αi

α̂i
− 1

∣∣∣∣ + ∥∥f ∗
i − f̃ i

∥∥)2

≤
(
ζ + ∥∥f ∗

i − f̃ i
∥∥)2

where third-to-last equation is due to the triangle inequal-
ity, second-to-last equation comes from the assumption
that

∥∥f ∗
i
∥∥ = 1, and the last inequality is due to (19). By

applying this result to (42) and exploiting the fact that
‖f ∗

i − f ‖ ≤ τ underH0i for some f ∈ D, we have

pi ≤ 1 − F
(
d2i ;K , (1 + ε)2α̂2

i

(
ζ + ∥∥f ∗

i − f̃ i
∥∥)2)

≤ 1 − F (
d2i ;K , (1 + ε)2α̂2

i (ζ + τ)2
)
.

Endnotes
a Note that τ cannot exceed

√
2 because we assume that

all targets of interest, including those in D and the actual
target f ∗, are unit-norm.
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b The anomaly detection problem discussed here is more
accurately described as target detection in the classical
detection theory vocabulary. However, in recent works
[24,25], the authors assume that the nominal distribution
is obtained from training data and a test sample is declared
to be anomalous if it falls outside of the nominal distri-
bution learned form the training data. Our work is in a
similar spirit where we learn our dictionary from training
data and label any test spectrum that does not correspond
to our dictionary as being anomalous.
c The authors would like to thank Prof. Roummel Marcia
for fruitful discussions related to this point.
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