
Sparse Representation Based Hyperspectral
Image Compression and Classification

Hairong Wang

Supervised by Professor Turgay Celik

A thesis submitted to the Faculty of Science, University of the Witwatersrand,
Johannesburg, in fulfilment of the requirements for the degree of Doctor of Philosophy.

May 2018, Johannesburg

Declaration
I, Hairong Wang, declare that this Thesis is my own, unaided work. It is being submitted for the
Degree of Doctor of Philosophy at the University of the Witwatersrand, Johannesburg. It has not
been submitted before for any degree or examination at any other university.

(Signature of candidate)

Signed on the 7th day of May 2018 in Johannesburg

i

Abstract
This thesis presents a research work on applying sparse representation to lossy hyperspectral im-
age compression and hyperspectral image classification. The proposed lossy hyperspectral image
compression framework introduces two types of dictionaries distinguished by the terms sparse
representation spectral dictionary (SRSD) and multi-scale spectral dictionary (MSSD), respec-
tively. The former is learnt in the spectral domain to exploit the spectral correlations, and the
latter in wavelet multi-scale spectral domain to exploit both spatial and spectral correlations in
hyperspectral images. To alleviate the computational demand of dictionary learning, either a
base dictionary trained offline or an update of the base dictionary is employed in the compres-
sion framework. The proposed compression method is evaluated in terms of different objective
metrics, and compared to selected state-of-the-art hyperspectral image compression schemes, in-
cluding JPEG 2000. The numerical results demonstrate the effectiveness and competitiveness of
both SRSD and MSSD approaches.

For the proposed hyperspectral image classification method, we utilize the sparse coefficients
for training support vector machine (SVM) and k-nearest neighbour (kNN) classifiers. In particu-
lar, the discriminative character of the sparse coefficients is enhanced by incorporating contextual
information using local mean filters. The classification performance is evaluated and compared
to a number of similar or representative methods. The results show that our approach could out-
perform other approaches based on SVM or sparse representation.

This thesis makes the following contributions. It provides a relatively thorough investiga-
tion of applying sparse representation to lossy hyperspectral image compression. Specifically,
it reveals the effectiveness of sparse representation for the exploitation of spectral correlations
in hyperspectral images. In addition, we have shown that the discriminative character of sparse
coefficients can lead to superior performance in hyperspectral image classification.

ii

Acknowledgements
I would like to extend my sincere gratitude to my supervisor, Professor Turgay Celik. Professor
Celik has probably been the best supervisor I could ask for. He constantly encouraged me to ex-
plore new research ideas; he was always open to me to discuss my research progress, to give good
advices in tackling my research problems; his positiveness and enthusiasm have been truly inspir-
ing. I have learnt so many things from him, and he helped to make my PhD study a worthwhile
experience.

I am deeply grateful to my examiners, professor Michael Sears and two others, for taking their
time to examinemy thesis and provide helpful and encouraging comments. In particular, professor
Michael Sears has shown genuine interest in my research work throughout my studies. Professor
Sears has not only examined my thesis, but also put effort to correct some of the language errors
in my thesis. His advice and suggestions have been always invaluable.

I would also like to thank my three wonderful daughters, Nandi, Christine and Marilyn, for
always trying to help out in many ways, and most importantly, trying to do their best.

Lastly, I would like to thank my husband, Sheng, for his love and support, who made my years
of study possible in the first place.

iii

Contents

Declaration . i
Abstract . ii
Acknowledgements . iii
List of Figures . vi
List of Tables . viii
List of Algorithms . viii
List of Acronyms . ix

Acronyms x

1 Introduction 1
1.1 Problem Motivation . 2
1.2 Problem Statement and Research Objectives . 4
1.3 Overview of Methodology . 4
1.4 Contribution of The Thesis . 5
1.5 Notation . 6
1.6 Organisation of The Thesis . 6

2 Hyperspectral Imaging 8
2.1 Imaging Spectroscopy . 9

2.1.1 Reflectance and Radiance . 10
2.1.2 Sensors . 12

2.2 Hyperspectral Image Processing . 13
2.2.1 Endmember Extraction and Hyperspectral Unmixing 14
2.2.2 Target Detection in Hyperspectral Images 15

2.3 Summary . 18

3 Sparse Representation 19
3.1 Problem Formulation . 19

3.1.1 `1-Norm Based Formulation . 20
3.1.2 `0-Norm Based Formulation . 21
3.1.3 Sparsity and Geometric View of Norms 22
3.1.4 Summary . 23

3.2 Sparse Coding . 24
3.2.1 Matching Pursuit . 24
3.2.2 Orthogonal Matching Pursuit . 26
3.2.3 Homotopy Method . 27

iv

3.2.4 Basis Pursuit . 28
3.2.5 Summary . 29

3.3 Dictionary Learning . 29
3.3.1 The Method of Optimal Directions . 30
3.3.2 The K-SVD Algorithm . 30
3.3.3 Online Dictionary Learning . 32
3.3.4 Some Examples of Dictionaries . 34
3.3.5 Summary . 36

4 Hyperspectral Image Compression 40
4.1 The Architecture of Hyperspectral Data Compression 41
4.2 Entropy and Huffman Coding . 42

4.2.1 Entropy . 42
4.2.2 Huffman Coding . 42

4.3 Quantization . 43
4.3.1 Scalar Quantization . 44
4.3.2 Uniform and Nonuniform Quantizers 45
4.3.3 Vector Quantization . 46

4.4 Predictive Coding . 47
4.4.1 DPCM . 49
4.4.2 CALIC . 49

4.5 Transform Coding . 50
4.5.1 Karhunen-Loève Transform . 51
4.5.2 Discrete Cosine Transform . 52
4.5.3 Subband Coding . 53
4.5.4 Discrete Wavelet Transform . 54
4.5.5 Bitplane and Significance-Map Coding 56
4.5.6 Set Partitioning in Hierarchical Trees 56
4.5.7 3D Wavelet Based Compression of Hyperspectral Images 59

4.6 JPEG 2000 . 60
4.6.1 Pre-Processing . 61
4.6.2 DWT . 61
4.6.3 Quantization . 62
4.6.4 Entropy Coding . 63
4.6.5 Bit Stream Organization . 64

4.7 CCSDS Recommendation for Data Compression 64
4.7.1 CCSDS-122 . 65
4.7.2 CCSDS-123 . 65

4.8 Summary . 65

5 Sparse Representation Based Lossy Hyperspectral Image Compression 67
5.1 Introduction . 67
5.2 Background and Related Work . 68

5.2.1 Dictionary Learning . 68
5.2.2 Related Work . 69

5.3 Sparse Representation Based Hyperspectral Image Compression 71

v

5.3.1 Dictionary Training . 71
5.3.1.1 Multiscale Spatial Spectral Dictionary Learning 73
5.3.1.2 Dictionary Atom Sorting . 74

5.3.2 Hyperspectral Image Compression . 75
5.3.3 Decompression . 80

5.4 Experiments . 80
5.4.1 Experimental Data Sets . 80
5.4.2 Experiment Setup . 82
5.4.3 Results of Experiments and Discussion 83

5.4.3.1 Compression Performance . 83
5.4.3.2 The Comparison of Base and Updated Dictionaries 86
5.4.3.3 Tuning Dictionary Learning Parameters 87
5.4.3.4 The Drawbacks of the Proposed Method 88

5.5 Conclusion . 89

6 Sparse Representation Based Hyperspectral Image Classification 93
6.1 Introduction . 93
6.2 Related Work . 95

6.2.1 SVM Classification Approach . 95
6.2.1.1 SVM Formulation . 95
6.2.1.2 SVMs for Hyperspectral Image Classification 97

6.2.2 Sparse Representation Based Classification Approach 98
6.2.3 KNN Classification Approach . 99

6.3 The Proposed Sparse Representation Based Classifiers 100
6.3.1 Dictionary Training . 100
6.3.2 Hyperspectral Image Classification Using Contextual Sparse Coefficients 101

6.4 Experiments . 102
6.4.1 Data Set Description . 102
6.4.2 Experiment Design . 104
6.4.3 Experimental Results . 105

6.4.3.1 Classification Results of Various Approaches 105
6.4.3.2 Classification Performance on Varying Parameters for the Pro-

posed Methods . 107
6.5 Conclusion . 109

7 Conclusion 115
7.1 Summary . 115
7.2 Future Work . 116
7.3 Conclusion . 116

Bibliography 119

vi

List of Figures

2.1 The Concept of Imaging Spectroscopy . 10
2.2 The 3D Structure of Hyperspectral Cube . 11
2.3 Reflectance Spectra of Soil, Green and Dry Vegetations 11
2.4 Reflectance Spectra of Brick, Starch (Corn) and Limestone 12

3.1 The Behaviour of |α|p for Different Values of p 22
3.2 Comparison Among Different Balls of Sparsity Inducing Norms 23
3.3 The Intersection Between `p-ball and the Set Dα = x 23
3.4 Examples of Regularization Path . 28
3.5 Visual Comparison of Dictionaries for Image Data 35
3.6 Visual Comparison of Dictionaries for A Hyperspectral Image 37
3.7 Visual Comparison of Principle Components and Dictionaries for A Hyperspec-

tral Image . 38
3.8 Dictionary Visualization . 39

4.1 Input-Output Mappings for Two Scalar Quantizers 45
4.2 The Comparison of Dynamic Ranges of the Outputs of an Original and Its Pre-

dictive Sequences . 48
4.3 The Architecture of a Basic Transform Coding 51
4.4 One-Dimensional, 3-Level Wavelet Decomposition 54
4.5 Two-Dimensional, 2-Level Wavelet Decomposition 55
4.7 A Ten-Band Wavelet Decomposition . 57
4.8 The Spatial Orientation Tree for the Dyadic Wavelet Decomposition 58

5.1 The ProposedHyperspectral Image LossyCompression Framework based onDic-
tionary and Sparse coding . 72

5.2 Illustrative Examples of Sparse Coefficients, Dictionary Atoms, Original and Re-
constructed Hyperspectral Image Pixels . 76

5.3 The Process of Hyperspectral Image Compression using Dictionary and Sparse
Coding . 77

5.4 Grayscale Images of Group 1 Data Sets . 81
5.5 False Colour Images of Group 2 Data Sets . 81
5.6 Grayscale Images of Group 3 Data Sets . 91
5.7 Rate-Distortion Curves for the Compression of Sub-Cubes from Lunar Lake and

Moffett Field II Data Sets using Different Dictionary Sizes 92
5.8 Rate-Distortion Curves for the Compression of Sub-Cubes fromBayArea I Using

Various Values of µ . 92

vii

6.1 The diagram of the proposed classification framework. X – the HSI data after pre-
processing; D – the dictionary; A – the matrix consists of the sparse coefficients;
CSC – contextual sparse coefficients; . 100

6.2 Classification Maps for Indian Pines Data Set 108
6.3 The Classification Performance of CSCSVM for Indian Pines Data Set using Var-

ious Regularization Parameters . 111
6.4 The Classification Performance of CSCNN for Indian Pines Data Set using Vari-

ous Regularization Parameters . 112
6.5 The Selected Class Accuracies of CSCSVM for Indian Pines Data Set using Dif-

ferent Regularization Parameters . 113
6.6 The Classification Performance of CSCSVM for Indian Pines Data Set using Var-

ious Dictionary Sizes . 114

List of Tables

4.1 Decoder Mappings . 45

5.1 Coefficients for 5/3 Filter Bank . 74
5.2 Coefficients for 9/7 Filter Bank . 74
5.3 Compression Performance of Various Methods for Group 1 Data Sets 84
5.4 Compression Performance ofMSSDwith orwithout theDictionaries Being Trans-

mitted . 85
5.5 Compression Performance of Various Methods for Group 3 Data Sets 86
5.6 Compression Performance of Various Methods for Group 2 Data Sets 87
5.7 Performance Comparison of the Base and Updated Dictionaries 87
5.8 Bit Allocation for Various Components using SRSD 88
5.9 Sparse Coding Performance for 3 Selected Data Sets using SRSD 89

6.1 The Ground Truth Classes in AVIRIS Indian Pines Data Set 103
6.2 The Ground Truth Classes in ROSIS University of Pavia Data Set 103
6.3 The Ground Truth Classes in AVIRIS Salinas Data Set 104
6.4 Classification Performance for Indian Pines Data Set 105
6.5 Classification Performance for University of Pavia Data Set 106
6.6 Classification Performance for Salinas Data Set 107
6.7 The Running Time for Dictionary Training using Various λs 109

viii

List of Algorithms

1 Matching Pursuit Algorithm . 25
2 Orthogonal Matching Pursuit Algorithm . 26
3 The Method of Optimal Directions Algorithm . 31
4 The K-SVD Algorithm . 32
5 Online Dictionary Learning . 33
6 Dictionary Update . 34

7 Huffman Decoding . 43

8 Encoding the Sparse Representation Matrix . 77
9 A Uniform Scalar Quantizer . 78

ix

Acronyms

1D One-dimensional
2D Two-dimensional
3D Three-dimensional
ADPCM Adaptive DPCM
AVIRIS Airborne visible/infrared imaging spectrometer
BP Basis pursuit
BPE Bit plane encoder
CALIC Context-based adaptive lossless image codec
CCSDS Consultative committee for space data systems
CFAR Constant false-alarm rate
DCT Discrete cosine transform
DPCM Differential pulse code modulation
DWT Discrete wavelet transform
EBCOT Embedded block coding with optimised truncation
EZW Embedded zerotree wavelet
GAP Gradient-adjusted prediction
GLA Generalised Lloyd algorithm
HSI Hyperspectral image
ICT Irreversible colour transform
IDC Image data compression
JPEG Joint photographic experts group
KLT Karhunen-Loève transform
M-NVQ Mean-normalized vector quantization
MP Matching pursuit
MSB Most significant bit
MSE Mean squared error
MSSD Multi-scale spectral dictionary
NN Nearest neighbour
ODL Online dictionary learning
OMP Orthogonal matching pursuit
PCA Principle component analysis
PDF Probability density function
PPI Pixel purity index
PSNR Peak signal to noise ratio
RCT Reversible colour transform
RMSE Root mean squared error
SAM Spectral angle mapper

SD Spectral dictionary
SKA Square kilometre array
SNR Signal to noise ratio
SPECK Set partitioned embedded block
SPIHT Set partitioning in hierarchical trees
SRSD Sparse representation spectral dictionary
SVD Singular value decomposition
SVM Support vector machine
VQ Vector quantization

xi

xii

Chapter 1
Introduction

In signal and image processing, finding an appropriate model for the data is the heart of the
problem. Sparsity based models, or simply sparsity models, have been widely adopted as the
choice of models in this topic. Using sparsity models, many types of signals such as still image,
video and acoustic can be sparsely represented through linear transforms. These models assume
that the signal or image vectors, usually lie in a combination of subspaces, where each subspace
is spanned by a few elements from a set of basis vectors. Sparsity models have received signif-
icant attention in image processing in a variety of applications, including image compression,
denoising, classification, to name a few. The well known digital image coding standard joint pho-
tographic experts group (JPEG), and its successor JPEG 2000 are both based on transforms that
lead to sparsity.

A commonly adopted transform coding strategy is to apply a linear transform to an image vec-
torx ∈ RM by taking themultiplication of the imagewith a set of basis vectors {w1,w2, . . . ,wL},
where wi ∈ RM . We may express this transform in vector notation as

b = WTx, (1.1)

where the columns in matrix W correspond to the basis vectors. The goal in such a transform
coding is to find a set of orthogonal basis vectors that span the vector space of input images. The
coefficient vectors obtained under these basis vectors usually lead to some criterion of optimality,
such as decorrelation and sparseness. Discrete cosine transform (DCT) is an example of such
transform coding strategy.

An alternative way of transforming images within the linear framework is using a generative
sparsity model introduced by Olshausen and Field [1997]. It is based on learning a dictionary D
using a set of training data. The learnt dictionary is utilizedchecks for sparsely representing the
input images or signals. This type of sparsity models are often referred to as sparse representation
in the literature.

An image x, using sparse representation, is modelled in terms of the linear superposition of a
set of vectors {d1,d2, . . . ,dK}, commonly termed as atoms.

x = Dα, (1.2)

where the atoms in D correspond to a set of learned vectors, andα ∈ RK is the coefficient vector.
In contrast to the transform in (1.1), the vectors in dictionary D are not necessarily orthogonal
to each other, and it requires custom algorithms for finding the coefficient vector α. Specifically,
if the dictionary D is overcomplete, which is true when the number of atoms in D exceeds the
dimensionality of the input vector, then the solution for α is not unique.

1.1 Problem Motivation 2

An image is always associated with a set of data and visually interpretative entities. The data
set associated with an image can be understood as an array with each entry being an intensity value
and referred to as a pixel. A typical colour image has three channels (or bands) and each of them
conveys information at different electromagnetic wavelengths. In fact, the human visual system
needs only three wavelength channels, i.e., red, green, and blue (RGB), to see colours [Geladi
et al. 2007]. However, there are many imaging techniques that are able to acquire more than
three bands, and this number is constantly growing. Hyperspectral imaging is one among such
techniques. It is a spectral imaging modality that obtains environmental and geographical infor-
mation by imaging ground locations from airborne or spaceborne platforms. It is also frequently
applied in laboratories and hospitals. Hyperspectral imaging typically uses hundreds of contigu-
ous spectral bands that are regularly spaced from infrared to ultraviolet spectrum. For example,
the airborne visible/infrared imaging spectrometer (AVIRIS) delivers calibrated images of the
upwelling spectral radiance in 224 contiguous spectral bands with wavelengths from 0.4µm to
2.5µm [NASA JPL 2015]. The image data results from hyperspectral imaging is viewed as a
three-dimensional (3D) data cube.

1.1 Problem Motivation

Modern hyperspectral sensors have high spectral resolutions covering up to several hundred bands.
The transmission and storage of the resultant large volume of data collected by such sensors mean
that data compression is an essential feature of the systems incorporating hyperspectral sensors.
Hyperspectral data compression has received particular interest in hyperspectral image process-
ing and analysis due to several reasons. Firstly, the volume of such data is commonly enormous.
Secondly, there is a significant amount of redundancy in the spectral domain. Thus, by designing
efficient compression schemes, high compression ratio can be achieved without loss of signifi-
cant information. Thirdly, although a hyperspectral image can be viewed as a 3D image cube, it
does not necessarily lead to an efficient compression technique by simply extending the existing
two-dimensional (2D) image compression methods. For 2D image compression, exploiting the
2D spatial redundancy is the key. When it comes to 3D hyperspectral image cube, the spectral
domain often demands distinctive approaches in reducing the redundancy than those for spatial
domain. Lastly, the compression performance of hyperspectral data is evaluated not only in terms
of compression ratio, but also information preserving. In fact, the latter is often more important
than the former. Unlike the conventional images with high spatial resolutions, hyperspectral im-
ages have relatively lower spatial resolutions. A pixel in a hyperspectral image may have mixed
spectra. It is crucial to preserve such information in data compression for further data analysis
in various applications, such as target detection and anomaly detection. For this purpose, spec-
tral compression and spatial compression should be decoupled [Chang 2013]. One might argue
that lossless compression should be preferred over the lossy one for the purpose of information
preserving. However, lossless compression only allows very limited compression ratios, and the
abundant spectral and spatial redundancies in hyperspectral image can not be adequately reduced.
As a result, storage and bandwidth could be wasted.

Compression of still images has been a very active research and application field. It offers
many contributions in the literature, and a number of standard image compression schemes exist.
A representative standard would be the JPEG 2000, which is a general purpose, wavelet transform
based compression framework. By general purpose, we mean that the standard does not neces-

3 1.2 Problem Statement and Research Objectives

sarily adapt to or perform optimally for some specific families of images, including hyperspectral
images. It is often necessary for different compression algorithms to be developed for specific
types of images. Previous investigations of hyperspectral data compression include differential
pulse code modulation (DPCM) or predictive coding based methods [Roger and Cavenor 1996;
Wu and Memon 1997], vector quantization (VQ) based methods [Kaukoranta et al. 1999; Qian
2004; Rizzo et al. 2005], and transform coding based methods [Goyal 2001; Penna et al. 2007].

Transform coding plays an important role in hyperspectral image compression. DCT and dis-
crete wavelet transform (DWT) have been applied successfully in still image compression stan-
dards JPEG and JPEG 2000, respectively. Both DCT and DWT offer excellent energy compaction
features, which are essential in data compression, in these standards. On the other hand, given a
dictionary, an image can be approximated as a linear combination of very few dictionary atoms.
That is, in sparse representation domain, the coefficient is sparse and hence, displays energy com-
paction feature. A natural question is if sparse representation can be applied in data compression.
This leads to the primary research question of this thesis.

Recent work on various image processing applications show that sparse representation based
methods could lead to state-of-the-art results. These include but not limited to vision tasks such
as image classification [Bahrampour et al. 2016], image denoising, deblurring, inpainting [Elad
and Aharon 2006; Elad et al. 2010], image restoration [Mairal et al. 2008a]. There are also recent
works on applying sparse representation to process some specific types of images, such as facial
image [Bryt and Elad 2008], video [Guha and Ward 2012] and medical imaging [Li et al. 2012].
In addition, the application of sparse representation has been widely extended to hyperspectral im-
age processing tasks such as classification [Chen et al. 2011a; Soltani-Farani et al. 2013], target
detection [Chen et al. 2011b], denoising [Zhao and Yang 2015; Lu et al. 2016], anomaly detec-
tion [Xu et al. 2016], and hyperspectral unmixing [Iordache et al. 2011 2014]. Compared with
these, there is relatively little work on applying sparse representation to data compression, and in
particular hyperspectral data compression.

Motivated by the recent advances in theoretical, methodological, application aspects of sparse
representation, in this thesis, we present an application of sparse representation in the lossy hyper-
spectral image compression framework. The study is extended further to investigate hyperspectral
image classification using sparse representation.

The study in this thesis is not only relevant to hyperspectral imagery, it certainly contributes
to the broader communities of data compression, image and signal processing. For instance, they
could be the ones in the exciting square kilometre array (SKA) project [SKA 2015]. The SKA
project is an international effort to build the world’s largest radio telescope. It aims at enabling
astronomers to monitor the sky in unprecedented detail and survey the entire sky thousands of
times faster than any systems currently in existence [SKA SA 2015]. Signal and image processing
is an integral part in the SKA project to produce high resolution radio images and to analyse them.
The central data processing elements in the SKA project will need to process and transmit the data
received by thousands of telescopes. The input data rates are expected to be in the hundreds of
gigabits per second and need to be processed in soft-realtime. One of the main challenges in this
scenario will be the development and deployment of sophisticated radio frequency interference
mitigation, calibration and imaging algorithms. The current sparsity based models, including the
sparse representation, adapted to the high dimensional data such as hyperspectral imagery would
provide substantial insights to the relevant tasks in SKA project.

1.3 Overview of Methodology 4

1.2 Problem Statement and Research Objectives

The primary research questions in this thesis are:

1. How sparse representation can be effectively utilized in hyperspectral image compression
framework?

2. If sparse representation is employed in the hyperspectral image compression, are the sparse
coefficients of hyperpsectral image pixels applicable in the subsequent hyperspectral image
processing tasks, such as classification?

Problem Statement: Based on the research questions above, the problem to be addressed in this
thesis concerns the applications of sparse representation to i) hyperspectral image compression,
and ii) hyperspectral image classification.

The aim of this thesis is to effectively apply sparse representation to hyperspectral image
compression and hyperspectral image classification. We set the specific research objectives as
follows.

1. Development of a hyperspectral image compression framework that deploys sparse repre-
sentation.

2. Implementation of a prototype of the proposed compression framework.
3. Dictionary learning for effective exploitation of the spectral and spatial correlations in a

hyperspectral image.
4. Evaluation and comparison of the proposed compression method to the existing state-of-

the-art hyperspectral image compression approaches, which include JPEG 2000 standard.
5. Development and implementation of a hyperspectral image classification scheme that in-

corporates sparse representation.
6. Evaluation and comparison of the proposed classification approach to other representative

hyperspectral image classification methods including sparse representation based ones.

A number of problems may be subsumed under the primary problems. These include:

• A dictionary is a key element in sparse representation. How do we alleviate the overhead
of transmitting the dictionary in a data compression framework?
• When we pursue reducing the data size in lossy data compression, it is also important to
preserve information. How do we achieve this goal in sparse representation based compres-
sion scheme?

1.3 Overview of Methodology

In this section, we give an overview of our methodology for applying the sparse representation
to hyperspectral image compression and classification. The proposed lossy hyperspectral image
compression framework consists of two integral parts: encoder and decoder. Sparse representa-
tion is employed in the encoder in two aspects, that is dictionary learning and sparse coding.

Dictionary Learning: Dictionaries are learned to exploit the redundancy of a hyperspectral
image in spectral domain, and such a dictionary is termed as spectral dictionary (SD). Online
dictionary learning algorithm [Mairal et al. 2008a] is applied for the training process. Online
dictionary learning is a stochastic gradient descent based approach that picks a random training

5 1.4 Contribution of The Thesis

sample at each iteration and updates the objective function on the basis of this example only. It
optimizes the expected cost of the objective function rather than the empirical cost. Airborne or
spaceborne hyperspectral images are often obtained over the same or similar geological locations.
This makes it possible to learn a base dictionary offline. By ‘offline’ we mean the dictionary
learning process is not included as a part in the encoder. The base dictionary can be used in the
sparse representation of hyperspectral images from the similar geological locations. To improve
upon the representative capacity of the base dictionary, a dictionary update step is included in the
encoder. This approach has two advantages. One is to improve the adaptivity of the dictionary
with moderate computational cost. The other is reducing the cost of transmitting the dictionary,
as we only need to transmit the difference between the base and updated dictionaries.

The spectral dictionaries discussed above can only be utilized for exploiting the spectral re-
dundancy in hyperspectral images. In order to exploit the spatial redundancy as well, we take an
approach where the dictionaries are trained in the multi-scale spectral domain, and such a dic-
tionary is termed as MSSD. Specifically, the DWT is performed in the spatial domain to exploit
the spatial redundancy in hyperspectral images. This is followed by training multi-scale spectral
dictionaries in the resulting wavelet spectral domain.

Sparse coding: Using a learned dictionary and sparse coding, the hyperspectral image pixels
are transformed into sparse coefficients. Being the main information to be transmitted to the
decoder, these sparse coefficients are represented as a sparse matrix. Subsequently, an efficient
representation of a sparse matrix, called index-value pair, is applied. The index-value pairs of the
sparse coefficients have two types of information, one is position index, and the other is coefficient
value. As such, these are treated in separate manners in the encoding stage.

Besides the sparse coefficients, the dictionary and the mean values of the hyperspectral image
pixels, also need to be transmitted. The information with non-integer values are quantized using
uniform scalar quantizers. Huffman coding is applied in the entropy coding to formulate the final
bit stream.

The hyperspectral image classification in this thesis is a supervised classification approach that
utilizes sparse representation. The proposed method starts with learning a dictionary that induces
sparsity in the representation coefficients and minimizes the reconstruction error. In order to
incorporate the contextual information into the spectral sparse coefficients, we enforce smooth
variations in the neighbourhoods of pixels by applying a local filter on sparse coefficients. These
contextual sparse coefficients are then used as feature vectors for two popular classifiers, namely
SVMs and nearest neighbour (NN) classifier, for their robustness and simplicity.

A highlight of the methodology in this thesis is that the proposed compression and classifica-
tion approaches are evaluated not only in terms of relevant performance criteria that are commonly
used in the literature, but also are compared to some of the state-of-the-art hyperspectral image
compression or classification methods.

1.4 Contribution of The Thesis

The successful applications and developments of sparse representation in various signal and im-
age processing tasks, including hyperspectral image (or data) processing, show the effectiveness
of this particular sparsity based model. In contrast, there is little work done in respect of the ap-
plication of sparse representation to data compression. Theoretically, however, due to its sparsity
inducing nature, sparse representation is suitable to be applied in data compression. This thesis is

1.6 Organisation of The Thesis 6

such an attempt to incorporate sparse representation with hyperspectral image compression. The
experimental results show that the proposed approach is comparable to some of the state-of-the-
art hyperspectral image compression methods. This shows that sparse representation is indeed a
very effective method to exploit the spectral redundancy in hyperspectral images.

The sparse representation based hyperspectral image classification approach reveals the ef-
fectiveness of sparse coefficients in the discriminative tasks such as classification. While the
work in this regard takes mostly standard approaches, it presents a much simpler way of applying
sparse representation to the concerned task and achieves similar or better results. In particular, the
dictionary learning and sparse coding may take the same approach in both the compression and
classification of hyperspectral images. Under such scenario, it becomes feasible in the proposed
hyperspectral image compression framework that the side information, including the dictionary,
can be entirely excluded in the final bit stream. Thus, the major challenge of transmitting the
dictionary can be alleviated.

So far, some of the results of this thesis are either published or accepted for publication. They
are included in the following list.

1. H. Wang and T. Celik, “Sparse representation based lossy hyperspectral data compression,”
2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), pp. 2761-
2764, July 2016, Beijing, China.

2. H. Wang and T. Celik, “Sparse representation based hyperspectral data processing: lossy
compression,” IEEE Journal of Selected Topics in Applied Earth and Remote Sensing,
10(5), pp. 2036-2045, May 2017.

3. H. Wang and T. Celik, “Sparse representation based hyperspectral image classification,”
Signal, Image and Video Processing (2018). https://doi.org/10.1007/s11760-018-1249-1.

1.5 Notation

In This Thesis , constant scalar values are denoted by upper-case letters, and variables by lower-
case ones. Vectors are denoted by bold lower-case letters, and matrices by bold upper-case ones.

1.6 Organisation of The Thesis

The rest of this thesis is organised as follows. Chapter 2 gives an overview of some of the prin-
ciples of hyperspectral imaging sensors, the methods of data acquisition, and the characteristics
of the data acquired. It also gives a brief discussion of some common tasks and approaches in
hyperspectral image processing.

Chapter 3 presents a review of sparse representation, where its theoretical background, rele-
vant existing algorithms for dictionary learning and sparse coding are studied.

The general topics of data compression are discussed in Chapter 4, with the focus on hyper-
spectral image compression. These include entropy coding, predictive coding, quantization, and
transform coding. Brief overviews of popular hyperspectral image compression methods, as well
as the latest image compression standards from JPEG and consultative committee for space data
systems (CCSDS) are also included in this chapter.

Chapter 5 provides the details of the proposed lossy hyperspectral image compression frame-
work based on sparse representation. It also discusses some related work in data compression

7 1.6 Organisation of The Thesis

based on sparse representation. Further, it presents the evaluation of the proposed method includ-
ing the experimental setup, results, and discussions.

Chapter 6 introduces the proposed sparse representation based hyperspectral image classifi-
cation method. It includes the details of related work in this topic, the evaluation and comparison
results of various hyperspectral image classification methods, and the related discussions.

Finally, Chapter 7 concludes this thesis and proposes some possible future work.

Note that efforts are taken to write each chapter independently, in the hope that they are self
contained. Thus, minor repetitions of some contents are present in Chapters 3, 5, and 6.

Chapter 2
Hyperspectral Imaging

Remote sensing of the Earth provides a vital form of information not easily acquired by con-
ventional surface observation. The advances in aviation and space exploration inevitably lead to
the integration of these technologies with remote sensing. Imaging spectroscopy, a major tech-
nique for remote sensing, is capable of acquiring images in contiguous, dozens or hundreds of
spectral bands throughout the visible and solar-infrared intervals of the electromagnetic spec-
trum. The resulting image data sets are referred to as hyperspectral imagery or simply hyperspec-
tral image. Hyperspectral imagery characterizes the reflection of light against objects. It uses
the fundamental principles of the interrelations among colour, frequency and wavelength of nat-
ural light [Borengasser et al. 2007]. Multispectral imagery, on the other hand, usually contains
a small number of relatively broad wavelength spectral bands [Borengasser et al. 2007; Chang
2007b]. In addition, multispectral imaging systems often have their spectral bands widely irreg-
ularly spaced, while hyperspectral imaging systems have spectral bands that are adjacent to each
other and regularly spaced.

Remote sensors allow us a vantage point to obtain not only vertical views of the Earth’s land
surface, but also information covering large areas quickly. This raises the question of dealing
with large volumes of data, even with relatively low spatial resolutions of remote sensing data.
Higher spatial resolution results in larger quantities of data, more sophisticated sensors and con-
trol systems, increased requirements for storage and downlink bandwidth. These motivated the
consideration of ways to collect information via spaceborne or airborne platforms from image data
with lower spatial resolutions. This resulted in the concept of using spectral measurements of a
pixel to analyse the type of ground cover a pixel represents, instead of using spatial variations and
the conventional image processing techniques that rely on higher spatial resolution [Landgrebe
1999].

Hyperspectral imaging spectrometers are capable of capturing images that contain both spa-
tial and spectral information at relatively fine resolutions. The resulting data was shown to be
useful in identifying different materials, and producing thematic maps that display the spatial
distribution of these materials. This property led to broad applications of hyperspectral imaging
in different problems, adapting the processing used to extract relevant information. In remote
sensing, the applications of hyperspectral imaging cover a variety of fields such as land use moni-
toring [Bachmann et al. 2002], agriculture [Haboudane et al. 2004], urbanmapping [Benediktsson
et al. 2003 2005], coastal environment and water monitoring [Corson et al. 2008], geology [Kruse
et al. 2003], mine detection [Zare et al. 2008], chemical agent detection [Kwan et al. 2006], and
others [Meer and de Jong 2001; Eismann et al. 2009; Nasrabadi 2014, and references therein]. In
general, these applications perform the tasks of detection, recognition, or classification of anoma-
lies or targets, or characterization of background scenes. Beyond remote sensing, hyperspectral

9 2.1 Imaging Spectroscopy

imaging has also found applications in various fields such as pharmaceuticals [Ravn et al. 2008],
medical [Harvey et al. 2002], and food quality and safety [Elmasry et al. 2012].

Hyperspectral images contain a wealth of information. Processing and analysing this type of
data, such as information extraction, requires an understanding of what properties of land surface
materials are captured and how they are measured by hyperspectral sensors. For this purpose,
in the following section, we investigate briefly some of the principles of hyperspectral imaging
sensors, methods of data acquisition and the characteristics of the data acquired. We also discuss
some common tasks and approaches in hyperspectral image processing before we summarize this
chapter.

2.1 Imaging Spectroscopy

Spectroscopy is the study of light as a function of wavelength that has been emitted, reflected, or
scattered from a solid, liquid, or gas [Clark 1999]. As photons enter a material, reflection, trans-
mission and absorption all occur. Material surfaces are also capable of emitting photons under
certain conditions. The varying characteristics of photon absorption, reflection or emission from
different materials provide us with information about the materials. When applied to the optical
remote sensing, spectroscopy deals with the spectrum of sunlight that is absorbed, reflected or
scattered by materials on the Earth’s surface. Based on spectroscopy, instruments called spec-
trometers are developed to measure the light energy reflected from a test material. An optical
refraction device such as a prism in a spectrometer splits the light into many narrow, consecutive
wavelength bands. The energy in each one of these bands is measured by a separate detector.
By using hundreds or thousands of detectors, spectrometers can make spectral measurements of
bands as narrow as several nanometres.

As a type of remote sensing instrument, imaging spectrometers are passive sensors. Passive
sensors detect natural energy that is emitted or reflected by the objects they observe. Reflected
sunlight is the most common source of radiation measured by passive sensors. On the other hand,
active sensors provide their own source of energy to illuminate the objects. They emit radiation
towards the targets, and then detect and measure the reflected or backscattered radiation from
them [NASA 2018].

Imaging spectroscopy is a technique for obtaining a spectrum at each position of a large array
of spatial positions, so that any one spectral wavelength can be used to make a recognizable im-
age [Clark 1999]. In remote sensing literature, imaging spectroscopy is also known as imaging
spectrometry, hypespectral imaging, or ultraspectral imaging. The concept of imaging spec-
troscopy in the case of satellite remote sensing is illustrated in Figure 2.1.

Hyperspectral images are produced by imaging spectrometers. Most imaging spectrometers
used are aboard air- or space-based platforms. For example, the NASA’s AVIRIS is flown on
the ER-2 jet at 20km above the ground. These imaging spectrometers are developed to measure
spectra as images in some or all of the 400 − 2500 nm electromagnetic spectral region. As
the analysis of hyperspectral data in this part of the spectrum mainly deals with the reflectance
nature of solid and liquid materials. These hyperspectral images are typically arranged as a 3-
dimensional data cube as shown at the centre of Figure 2.2. Hyperspectral data can be viewed as
a set of pixel vectors, each consists of a group of spectral components for the same spatial location.
Each component of a pixel vector corresponds to the received energy at a particular wavelength.
The spectra of a hyperspectral pixel vector is shown at the left of Figure 2.2. Alternatively, we

2.1 Imaging Spectroscopy 10

Figure 2.1: The concept of imaging spectroscopy (Source: [Shaw and Burke 2003]). An airborne or space-
borne sensor samples multiple spectral wavelengths over a ground based scene. In the resulting image, each
pixel contains a spectral measurement of reflectance. The spectral variance of three types of materials is
also shown in the graph.

can view the hyperspectral data cube as being composed of a group of co-registered 2D images
with each of them corresponding to a particular wavelength. These images are often referred to
as band images or simply bands. An example band image is shown at the right of Figure 2.2.

2.1.1 Reflectance and Radiance

Through imaging spectroscopy, we want to obtain a measurement, called spectral reflectance,
which reveals the property of a particular material. Reflectance is the ratio of the amount of
energy leaving a target to the amount of energy striking the target. It is a fractional number
between 0 and 1. Reflectance varies with wavelength for most materials because light at a certain
wavelength is reflected, scattered or absorbed differently. Figures 2.3 and 2.4 show the spectra of
different materials. The former figure shows three common Earth surface materials, namely green
vegetation, dry vegetation, and soil, and the latter shows the spectra of three materials, namely,
bricks, starch (corn), and limestone. Each spectral curve shows the differing levels of absorption
of light energy of the corresponding material. For example, vegetation has higher reflectance (or
lower absorption) in the near infrared range, and lower reflectance of red light than soil. In the case
of green and dry vegetations, the spectral curves are generally similar due to the two materials are
made of the same basic components. The shape of the spectral curve, the position and strength

11 2.1 Imaging Spectroscopy

Figure 2.2: The 3D structure of hyperspectral cube (Source: [Manolakis et al. 2003]).

of absorption bands are often used in distinguishing among different surface materials.

Figure 2.3: Reflectance spectra of Soil, Green and Dry vegetations (Source: [Clark 1999]).

Radiance typically describes the amount of light the imaging spectrometer detects from the
object being observed. This is the quantity directly measured by a spectrometer. Radiance indi-
cates howmuch of energy emitted or reflected from a surface is received by an imaging spectrom-
eter looking at the target at a certain angle. While radiance reflects the total amount of emission
or reflectance, spectral radiance indicates the amount of radiance at a single wavelength. Ra-
diance data contains information relevant to the material composition of each pixel. However,
this information is generally perturbed in the collected data by various aspects. These include
environmental factors such as weather, solar illumination, downward and upward atmospheric
passages, and adjacency effects, as well as sensor characteristic influences. These factors need to
be compensated effectively through the combination of sensor calibration [Green et al. 1990] and
atmosphere normalization [Green et al. 1993]. Several commonly used strategies for converting
AVIRIS radiance data to reflectance data is discussed in [Farrand et al. 1994].

2.1 Imaging Spectroscopy 12

Figure 2.4: Reflectance spectra of brick, starch (corn) and limestone.

2.1.2 Sensors

The critical part of hyperspectral imaging is the sensor. The imaging process in hyperspectral
sensing involves the focusing of light from a small region of the Earth’s surface to a given detector
unit that forms a pixel in the resulting image [Chang 2007a]. The spatial resolution of the image is
determined by the sizes of relevant hardware elements such as the detector and lens. The sensors
form an image by arranging the pixels in two-dimensional array. Each pixel has a number of
spectral components. Thus, a hyperspectral image is often described as a data cube. The two
spatial dimensions include along-track dimension (column) and its orthogonal dimension (row or
scan line) which is sometimes referred to as swath. The along-track dimension is built up by the
motion of the platform carrying the sensor, and the swath is the width of the field-of-view covered
by the sensor. The spectral dimension consists of a number of spectra at varying wavelengths (see
Figure 2.1).

Modern imaging spectrometers differ in the methods they collect data. These methods focus
on two primary aspects, namely, spatial scanning and spectral selection. From the spatial point of
view, there are a number of basic ways the sensors form (2D) images. For different approaches,
the focal plane complexity and platform stability requirements differ for the sensors [Schaepman
2009; Chang 2007a]. In the following, we briefly describe the three approaches for spatial scan-
ning. In general, whiskbroom imaging spectrometer collects series of pixels, pushbroom scanners
series of lines, and filter wheel cameras series of monochromatic images.

Whiskbroom scanners cover the field-of-view by a mechanized angular movement of a scanning
mirror sweeping from one edge of the swath to the other, or by the mechanical rotation of the
sensor. The scanner view of the field at a moment is a single spatial pixel and its associated

13 2.2 Hyperspectral Image Processing

spectral components. The image lines are collected using an across-track scanning and the entire
image is obtained using the forward movement of the carrier platform.

Pushbroom scanners acquire a series of one-dimensional samples orthogonal to the platform
line of flight, with along-track spatial dimension constructed by the forward movement of the
platform. The spectral component is obtained by dispersing the incoming radiation onto an area
array. This type of scanners do not require the use of moving mirror because a linear array of
detectors image a line of image across the field of view simultaneously.

Filter wheel cameras are opto-mechanical sensors that change the spectral sensitivity of various
channels using a turnable filter wheel in the optical path. Such a camera relies on the use of
two-dimensional detector array in the focal plane to acquire a monochromatic frame of the field-
of-view at one time. The spectral components are obtained by rotating the filter wheel to different
band pass filters.

On the other hand, the spectral measurements are accomplished by several techniques includ-
ing prism, grating, filter wheel, interferometer, and acousto-optical tunable filter or liquid crystal
tunable filter. Using prism, the incident light is diffracted in different directions, depending on the
wavelength. The linear detectors are then positioned at appropriate locations to the prism to sam-
ple the varying spectra. Grating works similar to that of prisms by dispersing the light spatially,
except that the light is reflected rather than diffracted through the spectral selection elements. For
filter wheel approaches, interference filters are arranged around the edge of a wheel, which are
rotated in front of the detector to collect data at various wavelengths. The interferometer systems
collect interferograms which must be converted to optical spectrum. Finally, the acousto-optical
and liquid crystal tunable filters work on the principle of selective transmission of light through
materials in which acoustic waves are passed or a varying voltage is applied [Chang 2007a].

The recent developments in hyperspectral imaging spectroscopy mostly concentrated on air-
borne spectrometers covering visible to near-infrared, and shortwave-infrared range of spectra.
For an example, the AVIRIS [Green et al. 1998], designed and operated by NASA’s Jet Propul-
sion Laboratory in California, USA, has been used since late 1980’s in a large number of scientific
experiments and field campaigns. Deployed on NASA’s ER-2 or WB-57, flying up to 20km above
the ground, AVIRIS is able to collect data with 20m spatial resolution over an estimate of 11km
swath. It can also be applied at lower altitude for finer ground resolution. Among the spaceborne
spectromters, Hyperion, on board NASA’s Earth Observing-1 (EO-1) spacecraft, has been one of
the main providers of space based hyperspectral data. To improve the amount and quality of space
based hyperspectral data, the number of space borne projects are gradually increasing. The en-
vironmental mapping and analysis program (EnMAP) German imaging spectroscopy mission is
one such program. EnMAP is expected to become a key system in the field of spaceborne imaging
spectroscopy in potential co-existence with other comparable missions around the world [Guanter
et al. 2015].

2.2 Hyperspectral Image Processing
Extracting information in hyperspectral data is an important subject. Various techniques are de-
veloped recently to classify, detect, identify, quantify, and characterize the features and objects
using the hyperspectral images [Chang 2007a]. Although the applications of hyperspectral imag-
ing cover numerous fields, some application specific tasks are dealt with commonly. One such

2.2 Hyperspectral Image Processing 14

task is dimensionality reduction. Hyperspectral sensors are designed to capture spectral infor-
mation in fine resolutions so that any narrow spectral features are adequately represented. Some
sensors can achieve high resolutions in spatial feature as well. As an important task, dimensional-
ity reduction tries to reduce the redundancies in both spectral and spatial domains without loss of
significant information. It is implemented either explicitly or implicitly in a specific application.
The most widely used approaches for dimensionality reduction is the principle component analy-
sis (PCA) or Karhunen-Loève transform (KLT). Other common hyperspectral image processing
tasks include the following:

• Endmember extraction and spectral unmixing involves identifying the endmembers in a
hyperspectral scene, and estimating the fractional abundance of each endmember in each
pixel spectrum;
• Target and anomaly detection;
• Classification is a task of assigning a class label to each pixel vector in a hyperspectral
image.

A comprehensive treatment of hyperspectral image processing is beyond the scope of this
thesis. Interested readers are referred to the topics, including hyperspectral image endmember
extraction, unmixing, detection, classification and compression, covered in [Chang 2013; Camps-
Valls et al. 2012], and some recent publications on other topics such as hyperspectral image de-
noising [Chen and Qian 2011; Zhao and Yang 2015], the estimation of noise in hyperspectral
images [Gao et al. 2013; Mahmood et al. 2017], and hyperspectral image fusion [Yokoya et al.
2012; Akhtar et al. 2014; Wei et al. 2015]. The main focus of this thesis is hyperspectral image
compression and classification, which we discuss in detail in Chapters 4, 5, and 6. In the fol-
lowing sub-sections, we briefly describe a few selected common tasks in hyperspectral imaging
applications. These include endmember extraction, spectral unmixing, target detection. The main
reason these tasks are selected is that they share closely related techniques.

2.2.1 Endmember Extraction and Hyperspectral Unmixing

A basic approach to analysing hyperspectral image is to match each pixel spectrum to one of
the reference spectra in a spectral library. The approach is effective in the case where the scene
of interest includes areas of pure materials that have corresponding reflectance spectra in the
reference library. However, most hyperspectral scenes include pixels of mixed materials. This
is possibly due to the low spatial resolutions of most hyperspectral sensors, or the mixture of
distinct materials that are formed naturally. The resulting image spectrum may resemble multiple
reference spectra. In general, the endmembers represent the pure materials present in the image,
and the set of abundances at each pixel to indicate the percentage of each endmember that is
present [Bioucas-Dias et al. 2012]. In hyperspectral imaging, endmember extraction is the process
of selecting a group of pure signature spectra of materials that are present in the hyperspectral
scene.

Many techniques are available for endmember extraction with or without the assumption of
existence of pure pixels in a scene [Plaza et al. 2012, and references therein]. A popular algorithm
based on the geometrical approach is the pixel purity index (PPI) [Boardman et al. 1995]. PPI
projects every spectral vector to skewers, defined as a set of random vectors. The vectors that
are extremes for each skewer are counted. After a certain number of repeated projections onto
different skewers, the pixels with highest count scores are the purest ones. N-FINDER [Winter

15 2.2 Hyperspectral Image Processing

1999] is another widely used approach for endmember extraction. This method is based on the
fact that in the spectral domain, the simplex formed by the purest pixels has the largest volume.
The algorithm finds the set of pixels that define a simplex with the largest volume.

The endmembers are used to decompose each pixel’s spectrum to identify the relative frac-
tional abundance of each endmember material through the process called spectral unmixing.
Spectral unmixing involves decomposing a pixel spectrum into its pure component endmember
spectra, and estimating the abundance of each endmember in the pixel. Many unmixing tech-
niques [Keshava and Mustard 2002; Bioucas-Dias et al. 2012; Ma et al. 2014] have been devel-
oped using approaches such as geometrical [Craig 1994; Boardman et al. 1995; Winter 1999],
statistical [Moussaoui et al. 2008; Dobigeon et al. 2009; Bioucas-Dias and Nascimento 2012],
and sparse regression based [Iordache et al. 2011 2014]. Unmixing approaches usually start with
modelling the underlying physics foundation of hyperspectral imaging, and then use these models
to perform the inverse operation. Two common such models are linear mixing model and non-
linear mixing model. Compared to the linear mixing model, nonlinear unmixing approaches are
more complex, relying on the scene parameters that are hard to obtain. Notable nonlinear un-
mixing approaches include kernel-based methods [Broadwater et al. 2011], and machine learning
methods [Plaza et al. 2009b]. On the other hand, the linear mixing model is well studied and has
become a standard technique. It assumes that each spectral vector can be approximated by a linear
combination of the endmembers weighted by their corresponding fractional abundances. That is,
given a set of endmembers as the columns in matrix Φ ∈ RM×P , a spectral vector x ∈ RM is
modelled by

x =
P∑
j=1

Φjβj + ε, (2.1)

whereΦj ∈ RM , j = 1, 2, · · · , P , is the jth column (or endmember) inΦ,β = [β1 β2 · · · βP]T ∈
RP where βj represents the fractional abundance of jth endmember, and ε ∈ RM is the model
error. The fractional abundances are subject to the constraints

βj ≥ 0 j = 1, 2, · · · , P,
P∑
j=1

βj = 1.
(2.2)

Under the linear mixing model, hyperspectral unmixing process generally consists of a num-
ber of stages, namely, atmospheric correction, data reduction, unmixing, and inverse operation.
Atmospheric correction converts radiance data to reflectance. The second stage performs dimen-
sionality reduction to improve the algorithm performance, reduce the computational complexity
and data storage. During the unmixing step, the endmembers in the scene are identified, as well as
their abundances at each pixel. Given a spectral vector and the identified endmembers, the inver-
sion operation involves solving a constrained optimization problem which minimizes the residual
between the given spectral vector and a linear combination of the endmembers.

2.2.2 Target Detection in Hyperspectral Images

Target detection aims at labelling every pixel in a hyperspectral image as target or background.
Typically, such applications seek to identify a relatively small number of targets with fixed shape

2.2 Hyperspectral Image Processing 16

or spectrum in a scene. Background refers to all the non-target pixels. Targets are usually ar-
tificial objects with spectra differing from the spectra of natural background pixels. The target
detection problem is often formulated as binary hypothesis test with two possible outcomes: H0

– background only or target absent and H1 – target and background or target present. Given an
observed spectrum x ∈ RM of a test pixel, target detection approaches are frequently based on
likelihood ratio (LR) test, which is given by

y = d(x) =
p(x|H1)

p(x|H0)
, (2.3)

where scalar y is the ratio of the conditional probability density functions (PDFs), p(x|H1) and
p(x|H0), of x under the two possible outcomes. If y exceeds a certain threshold, then the target
is present. When there are unknown PDFs in (2.3), a widely used approach is to replace them
with their maximum-likelihood estimates. The resulting LR is called generalized likelihood ratio
(GLR).

Although target detection is essentially a binary classifier, the methods for classification are
not applicable to target detection. In a classification task, we expect there are many instances for
each class. The result of a classification is usually clusters of the majority of pixels from the same
class with occasional misclassifications of a negligible number of pixels. In a target detection
task, on the other hand, the number of target pixels in a scene is usually too small to support the
statistical property of the target class. Moreover, depending on the spatial resolution of a sensor,
the target may appear in just a single or a few pixels. Thus, different approaches are employed in
the classification and detection applications of hyperspectral images.

Full-pixel target detection When the target of interest occupies the full pixel, i.e., full-pixel
target, the detection algorithms are designed according to the variability of target and background
spectra. The simplest case is where the statistics of the target and background are known. Assume
the normal distribution probability model and the same covariance matrix, Γ ∈ RM×M , for both
the target and background, the LR detector has the form [Manolakis et al. 2003]

y = d(x) = CT
MFx, (2.4)

where
CMF = kΓ−1(µ1 − µ0), (2.5)

µ1,µ0 are respectively the mean vectors for target and background, and k is a normalization
constant. If the value of y exceeds a certain threshold η, then the target is present. The threshold
is determined in a way so that the false-alarm rate is kept constant at a desirable level. This can be
achieved by using a constant false-alarm rate (CFAR) [Kelly 1986] threshold-selection processor,
which depends on the background statistical model.

In practice, it is often the case that we do not have sufficient statistical information on the
target. That is, we have information only on the background. Using the assumption of normal
distribution and the same covariance matrix for both the target and background, the detector takes
the form

y = d(x) = (x− µ0)TΓ−1(x− µ0), (2.6)

which is the Mahalanobis distance of the test pixel spectrum and the mean of the background
distribution. The detector in (2.6) is often referred to as anomaly detector.

17 2.3 Summary

If both the background and target statistics are not available, the mean vector and covariance
matrix of the background are approximated using all the pixels in a selected region. The selected
region can be chosen globally as the whole hyperspectral image, or locally using a sliding window
approach. The performance of the detector is then dependent on the quality of the approximated
covariance matrix. The widely used Reed-Xiaoli (RX) anomaly detector [Reed and Yu 1990]
takes the adaptive detector approach. It adopts the CFAR property that allows the detector to use
a single threshold to maintain a false alarm rate regardless of the background variations at the
different locations of the scene [Nasrabadi 2014].

Subpixel target detection For subpixel targets, the spectrum is often a linear mixing of target and
background spectra, given that the spectra of the subpixel size object is known. Such subpixel
target detection algorithms model the variabilities of target and background spectra using either
statistical (unstructured background) or subspace (structured background) approaches.

In unstructured background models, the background, b ∈ RM , is modelled by a multivariate
normal distribution with mean zero and covariance matrix Γ ∈ RM×M , where we assume the
additive noise has been included in the background. The two competing outcomes under this
model become

H0 : x = b target absent, (2.7)
H1 : x = Sa + b target present, (2.8)

where S ∈ RM×P consists of a set of user specified endmembers that characterizes the target
subspace, and a ∈ RP is the abundance vector. Assuming the same covariance matrix for the
two possible outcomes, i.e., the same background, the GLR based detection statistics is obtained
as [Manolakis et al. 2003, and references therein]

y = d(x) =
xTΓ̂

−1
S(STΓ̂

−1
S)−1STΓ̂

−1
x

N + xTΓ̂
−1

x
. (2.9)

In (2.9), Γ̂ is the maximum-likelihood estimate of Γ, and N is the number of available samples.
When we are looking for deterministic targets that lie in the data subspace, the (2.9) becomes

y = d(x) = xTΓ̂
−1

x, (2.10)

which is essentially the adaptive version of (2.6).
When the background statistics is modelled as a subspace model, a target detector chooses

between the following two possible outcomes:

H0 : x = Bab,0 + w target absent, (2.11)
H1 : x = Sa + Bab,1 + w target present, (2.12)

where B ∈ RM×Q is determined from the data, a,ab,0 ∈ RQ, and ab,1 ∈ RQ are the abundance
vectors, and w ∈ RM is the additive noise. Use of GLR approach results in the detection statistic

y = d(x) =
xTP⊥Bx

xTP⊥SBx
, (2.13)

where P⊥A is an operator for any matrix A defined as P⊥A = I − PA, I is the identity matrix,
PA = A(ATA)−1AT is the projection matrix onto the column space of matrix A, and SB =
[S B] is the matrix obtained by concatenating matrices S and B.

2.3 Summary 18

2.3 Summary
From its acquisition, hyperspectral imaging evolves in terms of the quality of the acquired images.
This ever growing evolution demands improved techniques for solving the variety of hyperspec-
tral image processing problems. The analysis of hyperspectral images, or any multi-dimensional
images from various remote sensing equipments, leads to many applications. These include land
use monitoring, environmental monitoring, mining and mineralogy, target and change detection,
urban growth monitoring, and crop field identification. In this chapter, we have briefly described
hyperspectral imaging spectroscopy in terms of its principle of acquiring images, the character-
istics of hyperspectral image data, and some basic hyperspectral image processing techniques.

Chapter 3
Sparse Representation

The problem in the generative model (1.2) is to find the dictionaryD that best accounts for the
structure in images. In the probabilistic framework, we want to match as closely as possible the
distribution of images arising from our image model P (x|D) to the actual distribution of images
observed in nature. In order to calculate P (x|D), we need to specify the á priori probability
distribution over the coefficients, P (α). If we incorporate sparsity into P (α), we obtain a linear
generative model which is referred to as sparse representation.

If we compare the two models formulated in (1.1) and (1.2), we can distinguish them as one
being analysis and the other synthesis. Analysis involves the operation of associating with each
signal a coefficient vector attached to atoms as in (1.1). Synthesis is the operation of building up a
signal by superposing atoms as in Problem (1.2). These two operations can not be viewed simply
as being inverse to each other. Note that in (1.2), if the dictionary D consists of a basis, then D is
a non-singular matrix and invertible. Additionally, if the atoms in D forms an orthogonal bases,
then the inverse of D−1 = DT. In sparse representation, we assume that images are composed of
features with certain continuum among them instead of being independent of each other. In order
to match the rich structure present in an input image, the dictionary D is usually overcomplete.
Such a dictionary not only possesses greater robustness in the case of noise, but also allows greater
flexibility to match with a particular input structure. On the other hand, the assumption we make
in the transform coding strategy, i.e., the model in (1.1), is that images are composed of a certain
number (the dimensionality of the input) of linearly independent basis vectors, or features.

The sparse representation modelling of signal has been shown to be a powerful tool in im-
age processing. Such image processing tasks include but are not limited to image compression,
denoising, deblurring, inpainting and more. In this chapter, we present a review of sparse repre-
sentation. Relevant known algorithms for learning a dictionary and sparse coding will be studied.

3.1 Problem Formulation

In signal and image processing, data modelling is a crucial step for performing various operations
such as compression and restoration. Sparsity basedmodels are considered viable in this field, and
beyond, such as statistics. These models adhere to the rule of sparsity, which implies representing
a phenomenon with as few variables as possible [Mairal et al. 2014]. Similarly, in terms of sparse
representation, a signal is approximated by the linear combination of a few dictionary elements.
Many researchers have contributed towards designing dictionaries that could achieve the goal
of sparsity. This leads to various sorts of wavelets [Daubechies 1988; Donoho 1999; Do and
Vetterli 2005; Mallat 2008]. Different from this line of traditional approach, Olshausen and Field
[1997] proposed learning a dictionary from the training data, instead of using fixed pre-defined

3.1 Problem Formulation 20

dictionaries. Interestingly, the work of [Olshausen and Field 1997] is concerned with the coding
strategy of area V1 of the mammalian visual cortex. It is argued in [Olshausen and Field 1997]
that there are comparable similarities between the functions of spatial receptive fields of simple
cells and the wavelet transform. In particular, the investigation of overcomplete code leads to a
deviation of the input-output function being purely linear. This deviation from linearity provides
potential explanation of the observed weak form of non-linearity in the cortical simple cells and
meaningful insights on their response to natural images.

Using sparse representation, we assume that an image x ∈ RM is generated by a linear
combination of just a few elements from an overcomplete dictionary D ∈ RM×K(M < K)
that contains K columns or prototype atoms. That is, the representation of x is x = Dα, or
x ≈ Dα, satisfying ‖x −Dα‖2 ≤ ε, where ‖ · ‖2 is the `2-norm. The vector α ∈ RK is the
sparse representation coefficient of the vector x [Aharon et al. 2006]. Clearly, x = Dα defines
a under-determined linear systems with more unknowns than the equations. Therefore, if it has
a solution, there are infinitely many αs that may match x. In order to narrow the choices to one
well-defined solution, the problem is turned into an optimisation problem [Elad 2010, chap. 1]

argmin
α

J(α) subject to x = Dα, (3.1)

where J(α) controls the coefficient activities in α. A number of options for J(α) has been
studied in the literature. Using `p-norm ofα as J (α) to drive the results to become sparse is one
of them. This type of methods can be put in a general form as

argmin
α

‖α‖pp subject to x = Dα. (3.2)

3.1.1 `1-Norm Based Formulation

The problem (3.2) for p = 2 has a closed form unique solution, and it is widely used in various
fields of engineering, image and signal processing. However, it is by no means the best choice
for various problems, especially in image and signal processing. The fact that `2-norm makes
the problem (3.2) to have a unique solution is that selecting any strictly convex function J(·)
guarantees such uniqueness. Besides `2-norm, there are other choices of J(·) that are convex
or strictly convex. (Strictly convex implies a unique solution, however, not necessarily a closed
form.) The `p-norms for p ≥ 1 are a family of such functions. These are defined as

‖x‖pp =
∑
i

|xi|p, 1 ≤ p <∞, (3.3)

and
‖x‖∞ = max{x1, x2, · · · , xM}. (3.4)

In particular, `1-norm is a special interest due to its tendency to give sparse solutions. In general,
as we move from `2-norm towards `1-norm, or p < 1, we promote sparser solutions.

The exact constraint in both (3.1) and (3.2) is often relaxed to the approximated one ‖x −
Dα‖2 ≤ ε, where ε > 0 is the error tolerance. Specifically, the problem (3.2) for p = 1 becomes

argmin
α
‖α‖1 subject to ‖x−Dα‖2 ≤ ε. (3.5)

21 3.1 Problem Formulation

Such relaxation is desirable in terms of i) handling the cases where no exact solutions exist; and
ii) utilizing the ideas and methods in optimization and statistics.

Alternatively, the problem (3.5) can be formulated as

argmin
α

1

2
‖x−Dα‖2 subject to ‖α‖1 ≤ µ, (3.6)

where µ > 0 is the regularization parameter that controls the trade-off between the approximation
error and the sparsity of α. The problem (3.6) is the Lasso, for ‘least absolute shrinkage and
selection operator’, by [Tibshirani 1996].

The basis pursuit denoising formulation of [Chen et al. 2001] is similar to (3.6) with the
constraint being replaced by a penalty,

argmin
α

1

2
‖x−Dα‖2 + λ‖α‖1, (3.7)

where λ is the parameter that controls the size of residual, i.e. x − Dα. When λ converges
to 0+, the residual converges to 0, and the data is considered essentially noise free. Then the
problem (3.7) becomes the main basis pursuit formulation of [Chen et al. 2001]

argmin
α
‖α‖1 subject to x = Dα, (3.8)

which is the problem (3.2) for p = 1.
Problems (3.6) and (3.7) are essentially equivalent from a convex optimization point of view [Boyd

and Vandenberghe 2004; Mairal et al. 2014]. That is, given x, D, and µ > 0, for any solutionα∗

of (3.6), there exists λ ≥ 0 such that α∗ is also a solution of (3.7). For this reason, (3.7) is well
known as ‘Lasso’ in the literature.

3.1.2 `0-Norm Based Formulation

The extreme among all the sparsity inducing norms is the case of p→ 0. The `0-norm is defined
as ‖α‖0 = # |{i : αi 6= 0}|, which is the number of non-zero entries in α. Figure 3.1 illustrates
the function |α|p, which is the core of the norm computation, for various values of p. It shows
that as p tends to zero, the graph of |α|p becomes similar to that of the indicator function. Thus,
the summation of such measures for all the entries of α can be approximated by the count of the
nonzeros in vector α. When p = 2 or 1, the function weighs various values of α differently. For
example, in the case of p = 2, the function value increases exponentially when |α| increases. For
the purpose of promoting sparseness, we expect that function ‖α‖pp should be able to distinguish
the entries ofα being zero or not. When p→ 0, the function approaches the state where its value
becomes 0 for α = 0 and 1 for other values.

Setting J(α) = ‖α‖0, the problem (3.1) becomes

argmin
α

‖α‖0 subject to x = Dα. (3.9)

Solving (3.9) is a combinatorial search problemwhich is proven to be NP-Hard [Davis et al. 1997].
Similar to the `1-norm based formulation, (3.9) can also be extended to the approximate solution
problem

argmin
α
‖α‖0 subject to ‖x−Dα‖2 ≤ ε, (3.10)

and
argmin

α

1

2
‖x−Dα‖2 subject to ‖α‖0 ≤ µ. (3.11)

3.1 Problem Formulation 22

Figure 3.1: The behaviour of |α|p for p = {0.1, 0.5, 1, 2}. As p tends to zero, |α|p approaches the indicator
function, which is 0 for α = 0 and 1 for α 6= 0.

3.1.3 Sparsity and Geometric View of Norms

The sparse representation problem formulations in Sections 3.1.1 and 3.1.2 assume the á priori
of sparsity in the solutions. Why sparseness is an appropriate á priori forα? From the image and
signal processing perspective, two reasons are given in [Olshausen and Field 1997] for the desir-
ability of sparseness. One is based on intuition that natural images may generally be described
in terms of a small number of structural primitives, such as edges, lines, or other elementary fea-
tures. The second form of reasoning is to consider an alternative distribution model, where the
distribution of code elements is not unimodal. However, this is contrary to the typical case where
an event occurs rarely, and when it does occur it does so along a continuum.

From the geometric point of view, the sparsity inducing effect of the `p-norm for p > 0 can be
illustrated using the normal cone of B = α ∈ RK , ‖α‖pp ≤ µ for some µ ∈ R+. The geometry
of ball B is related to the properties of solution to (3.2) [Bach et al. 2012; Mairal et al. 2014].
Figure 3.2 shows the 2-dimensional `p-norm balls for p = {0.25, 0.5, 1, 2, 4,∞}. The `p-norm
balls for 0 < p ≤ 1 encourage solutions to be on its corners, and thus promote sparser solutions.

Suppose D ∈ R1×2, and Dα = x. The solutions of α form a line L. The solution that
minimizes the `p-norm of α is obtained at the intersection of ball B and the line L. Figure 3.3
compares the solutions using `1- and `2-norms. In the case of `1-norm, the intersection is at the
horizontal axis, and thus one of the two entries in the solution is zero. On the other hand, the
solution using `2-norm has both of the two entries non-zero. Similarly, the ball B for `1-norm
in dimension greater than 2, the singular points are located along the axes. Therefore, sparse
solutions are obtained if they exist. This simple example can be generalized to problems in higher
dimensions.

23 3.1 Problem Formulation

p = 0.25 p = 0.5 p = 1

p = 2 p = 4 p = inf

Figure 3.2: Comparison among different balls of sparsity inducing `p-norms in two dimensions. The
singular points appearing along the axis on these balls illustrate the sparsity inducing behaviour of these
norms.

p = 1 p = 2

Figure 3.3: The intersection between `p-ball and the set Dα = x. It is demonstrated in 2D here for p = 1
and p = 2, When p ≤ 1, the intersection takes place at a corner of the ball, leading to a sparse solution.

3.1.4 Summary

The problems formulated in this section require the solutions of two main unknowns. That is, the
dictionary D and the sparse coefficient vector α. The dictionary D is usually found by learning
a set of atoms (or feature vectors) from a training data set. We refer to this process as dictionary
learning. Once the dictionary is known and given a signal vector x, we find the corresponding
α through sparse coding. Sparse coding is also referred to as sparse reconstruction, sparse de-

3.2 Sparse Coding 24

composition, or sparse estimation. Both dictionary learning and sparse coding algorithms take
different approaches depending on the varying objective optimization functions. In the following
two sections, we investigate a number of methods for sparse coding and dictionary learning.

3.2 Sparse Coding
Sparse coding methods aim at obtaining sparse representations of data. Such methods try to solve
optimization problems by regularizing the empirical cost with appropriate non-smooth norms.
While the literature is vast in this field [Bach et al. 2012], we investigate a few pursuit algorithms,
namely, matching pursuit, orthogonal matching pursuit, homotopy and LARS methods, and basis
pursuit. These algorithms are commonly used to solve the `0- and `1-norm based sparse cod-
ing problems, including (3.6) and (3.11), which we applied in our proposed hyperspectral image
compression and classification framework.

Problem (3.2) for p = 2 has a unique, closed form solution— called minimum-norm solution,
and computed as follows. Using the Lagrange multipliersλ ∈ RM for the constraint set, we define
Lagrangian

‖α‖22 + λT(x−Dα), (3.12)

where ‖α‖22 = αTα. Taking the derivative of (3.12) with respect to α results in

2α− λTD. (3.13)

The solution is then
α∗ =

1

2
λTD. (3.14)

Substituting (3.14) into the constraint of Problem (3.2) for p = 2, that is

x =
1

2
DλTD =

1

2
DDTλ, (3.15)

then λ is solved as
λ = 2(DDT)−1x. (3.16)

From (3.14) and (3.16), we obtain

α∗ = DT(DDT)−1x = D+x, (3.17)

where D+ = DT(DDT)−1 is the pseudo inverse. This solution has computational advantages
such as closed-form and uniqueness as manifested above. However, it does not provide sparse
solutions.

In the following subsections, we consider a number of sparse coding approaches that promote
sparse solutions for the `1- and `0-norm based problems formulated in Section 3.1.

3.2.1 Matching Pursuit

Matching pursuit (MP) is a greedy algorithm that progressively refines the signal approximation
with an iterative procedure. It is a common choice of algorithms for dealing with NP-hard prob-
lems such as (3.10) and (3.11). Given a dictionary D and signal x, the first step of a matching
pursuit is to approximate x by projecting it on a vector d(0) ∈ D. The vector d(0) is chosen in

25 3.2 Sparse Coding

Algorithm 1:Matching Pursuit Algorithm [Mallat and Zhang 1993; Mairal et al. 2014]
Input: Signal x ∈ RM ; dictionary D = {d1,d2, · · · ,dK} for di ∈ RM , and ‖di‖2 = 1;

and stopping criteria µ (or ε).
Output: Sparse coefficient α.

1 begin
2 Initialize α = 0
3 while ‖α‖0 < k (or ‖x−Dα‖22 > ε) do
4 Select the coordinate with maximum partial derivative

̂ ∈ argmax
j
|dT
j (x−Dα)| (3.18)

Update the entry
α[̂] = α[̂] + dT

̂ (x−Dα) (3.19)

such a way that the norm of the residue R(0) can be minimised. Residue R(0) here is the approx-
imation error after the first step, i.e., the difference between the original signal and the current
approximation using the vector d(0). The algorithm iterates this procedure by sub-decomposing
the current residue R(0) in the next step. This procedure is also referred to as coordinate descent
algorithm, where it iteratively selects one entry in the current sparse coefficient α at a time and
updates it. This iterative process is shown in Algorithm 1.

The operation (3.18) in Algorithm 1 essentially selects a coordinate by projecting the current
residue on a d ∈ D that maximizes |dT

j (x−Dα)|. This in turn minimizes next residue. The con-
vergence of the approximation error to zero in the case of infinite dimensions is shown in [Mallat
and Zhang 1993]. In infinite dimensions, the convergence of this residue can be extremely slow.
However, in finite dimensions, the energy of the residue decreases exponentially with a minimum
decay rate [Davis et al. 1997; Mallat and Zhang 1993]. That is, the convergence is exponential
in finite dimensions. It is clear from (3.18) and (3.19) that the residue indeed monotonically de-
creases when the density ofα increases. In particular, the (3.19) can be interpreted as minimizing
the residue with respect to one of the coordinates in α while the others remain fixed.

The coordinate descent algorithm for Lasso [Mairal et al. 2014] is comparable to the matching
pursuit algorithm. However, the former is for the `1-regularized problems, while the latter is for
the `0-constraint ones. The coordinate descent algorithm for Lasso, i.e., Problem (3.6), is first
proposed by [Fu 1998]. Similar to Algorithm 1, at each iteration, the coordinate descent approach
selects one coordinate ̂; the selected coordinate is then updated by

α[̂] = Sλ

(
α[̂] +

dT
̂ (x−Dα)

‖d̂‖22

)
, (3.20)

where Sλ denotes the soft-threshold operator [Donoho and Johnstone 1994]

Sλ : θ 7→ sign(θ) max{|θ| − λ, 0}, (3.21)

where λ is a chosen threshold. The operator Sλ not only sets small coefficients of a vector θ to
zero, but also reduces the magnitude of the nonzero ones. The selection of ̂ at each iteration can
be done by cycling through all the entries in α, or choosing ̂ uniformly at random, or using the
same strategy as in Algorithm 1.

3.2 Sparse Coding 26

Algorithm 2: Orthogonal matching pursuit algorithm [Elad 2010, chap. 3]
Input: The dictionary matrix D, the vector x, and the error threshold ε0
Output: Approximate solution α to (3.10) and (3.11)

1 begin
22 α = 0, r = x, S = ∅
3 while (stopping criterion not met) do
44 Compute the error ε(j) = minzj ‖djzj − r‖22 for j = 1, 2, · · · ,K, using zj as the

optimal choice z∗j = dT
j r/‖dj‖22

55 Find a minimiser, j0 of ε(j) : ∀j /∈ S, ε(j0) ≤ ε(j), and update S ← S ∪ j0
66 Compute α, the minimiser of ‖Dα− x‖22 subject to S
77 Update the residue: r← x−Dα

3.2.2 Orthogonal Matching Pursuit

It is shown in [Mallat and Zhang 1993] that the convergence of the matching pursuit algorithm
is guaranteed in both infinite and finite dimensions. However, the rate of convergence is low in
the infinite dimension and exponential in the finite one. The vector selected at each iteration is
orthogonal to the updated residue, but in general it is not orthogonal to the previously selected
vectors. By orthogonalizing the directions of the projection, the approximation derived from the
matching pursuit can be refined. The resulting orthogonal matching pursuit (OMP) converges
with a number of iterations in finite dimensional spaces [Davis et al. 1997; Pati et al. 1993].

The OMP selects at each iteration a vector which is orthogonal to all the other previously
selected vectors. Davis et al. [1997] shows that the residue of an OMP converges strongly to zero
and the number of iterations required for convergence does not exceed the dimension of the input
space. Thus, it is guaranteed that the OMP converges in a finite number of iterations. Algorithm 2
shows the OMP algorithm. In Algorithm 2:

• Line 2: The coefficient vector α is initialised to zero vector; the initial residue r is equal
to the input signal x; the set S consists of the indexes of the selected atoms in D, which is
initially empty.
• Line 4: The error function is ε(j) = ||djzj − r||22. That is, the current residue is ap-
proximated by a scalar multiple of some column of the dictionary D. We are going to
identify this column by computing the error function for each column of D. The scalar
value for each test is chosen as the optimal value by setting the ε(j) to zero. This leads to
z∗j = dT

j r/||dj ||22. Substitute z∗j back into the error expression ε(j), we get

ε(j) =

∥∥∥∥∥ dT
j r

‖dj‖22
dj − r

∥∥∥∥∥
2

2

= ‖r‖22 − 2
(dT

j r)2

‖dj‖22
+

(dT
j r)2

||dj ||22

= ‖r‖22 −
(dT

j r)2

‖dj‖22
.

27 3.2 Sparse Coding

Thus, finding the smallest error ε(j) is equivalent to finding the largest inner product of r
and the normalised vectors of matrix D, i.e., solving argmaxj |dT

j r|.
• Line 5: Add the index of the newly selected atom to the set S.
• Line 6: Once an atom is selected, we minimise the term ‖Dα − x‖22 with respect to α,
such that its support is S. The problem to be solved is a minimisation of ‖DSαS − x‖22,
where DS contains the selected atoms, andαS is the non-zero portion of the vectorα. The
solution is given by

αS = (DT
SDS)−1DT

Sx. (3.22)
In order to reduce the computational cost involved in Line 6, Rubinstein et al. [2008] intro-

duced an alternative implementation of OMP algorithm, called batch-OMP. The batch-OMP is
specifically optimised for sparse coding of large number of signals.

3.2.3 Homotopy Method

Homotopymethod relates to orthogonal matching pursuit, but for solving the `1-norm based prob-
lems such as (3.5), (3.6), and (3.7). Similar to OMP, homotopy method builds an active set which
is initially empty, and iteratively adds one variable at a time. While the method works similarly
for the three problems mentioned above, we attempt to explain the method using Problem (3.6)
in particular. The solution to (3.6) is unique, and we denote the set of such solutions for different
values of λ as P = {α∗(λ) : λ > 0} [Bach et al. 2012]. We also name the function λ 7→ α∗(λ)
as regularization path. In fact, the homotopy method finds the set of all solutions of (3.6), i.e., P .
An appealing property of the regularization path is that it is piecewise linear, see Figure 3.4 for
an example. This property leads to the design of homotopy method for Lasso in [Osborne et al.
2000], and least angle regression (LARS) of [Efron et al. 2004].

The homotopy method finds a point on the piecewise linear path, computes the direction of the
current piece (see (3.23) and (3.24)), and follows it until the direction changes (the points where
the direction change are called kinks). The algorithm either returns the full regularization path,
or stops if it reaches a solution for a target λ, a target residue ε, or `1-norm µ. Thus, it may be
used for solving (3.5), (3.6), and (3.7) [Mairal et al. 2014]. The homotopy algorithm for Lasso,
i.e., (3.6), is described below following [Bach et al. 2012; Mairal and Yu 2012].

Step 1. Set λ = ‖DTx‖∞ so that α∗(λ) = 0.
Step 2. Set J = {j ∈ {1, · · · ,K} : |dT

j x = λ|} as the set of active atoms.
Step 3. Follow the regularization path by decreasing the value of λ, by computing

α∗J(λ) = (DT
JDJ)−1(DT

J x− λtJ), (3.23)

where t ∈ {−1, 0, 1}K , t = sign(DT(x−Dα∗)), and

α∗Jc(λ) = 0, (3.24)

where Jc is the complement of J , until one of the following events occurs:

(a) There exists j ∈ Jc such that |dT
j (x−Dα∗(λ))| = λ, then add j to J ;

(b) There exists j ∈ J such that a non-zero coordinate of α∗ hits zero, then remove j
from J .

We assume only one of the event occurs at any moment. The value of λ corresponding
to the next event can be obtained in closed form such that one can “jump” from a kink to
another.

3.2 Sparse Coding 28

Step 4. Go back to Step Step 3..

(a) Image ‘girl’ (b) Image ‘shutteredwindows’

(c) Path for image ‘girl’ (d) Path for image ‘shutteredwindows’

Figure 3.4: Two examples of regularization path for Lasso using homotopy method. The dictionary used
here is the one displayed in Figure 3.8, (a), without sorting. The sparse coding was done for two different
images. The initial λ = 0.125. The support, i.e., the number of non-zero components in a coefficient
vector, µ = 11 for the image ‘girl’, and µ = 8 for the image ‘shutteredwindow’. Each path corresponds to
one coefficient entry in the solutions. Note that the paths are piecewise linear. Only the ‘Red’ channel of
the colour image is used here.

3.2.4 Basis Pursuit

The principle of basis pursuit (BP) is to find a sparse coding of the signal whose coefficients have
minimal `1 norm. Thus, it can be used to solve Problem (3.8). The solution involves a convex,
non-quadratic optimisation approach. BP adopts algorithms for linear programming in solving
its optimisation problem [Chen et al. 2001]. The main idea of BP is to identify an optimal basis in
D. The atoms in this basis are linearly independent but not necessarily orthogonal. Once such a
basis is found, the solution is uniquely determined by the basis. Due to the resemblance to linear
programming problem, BP can apply any algorithm for linear programming, such as simplex or
interior point methods to solve its optimisation problem.

Using simplex algorithm, one starts from a linearly independent collection of dictionary atoms,
named as current decomposition. Then the current decomposition is updated iteratively by replac-
ing some atoms by new ones, in order to optimize the objective function. The iterative update of
the basis stops when an optimal solution is reached.

29 3.3 Dictionary Learning

Interior point algorithm starts from a solution to x = Dα(0) with α(0). It iteratively modi-
fies the coefficients, maintaining x = Dα(l) and applying a transform that sparsifies α(l). The
iteration stops when the vector α contains just a few significantly nonzero coefficients. Then, all
other coefficients can be forced to zero, leaving those few selected significant coefficients as the
sparse coding.

3.2.5 Summary

A few sparse coding algorithms are discussed in this sub-section. The MP and OMP algorithms
are commonly used to solve the `0-norm based sparse coding problems formulated in (3.10)
and (3.11). They are both greedy algorithms that find a series of locally optimized terms one
by one for a solution, instead of finding a globally optimized one by exhaustive search. As the `0-
norm in (3.9), (3.10), and (3.11) is highly discontinuous, basis pursuit algorithms replace it with
continuous or smooth approximations such as `1-norm. The homotopy and LARS methods are
applied to solve `1-norm based sparse coding problem in (3.6). The comparisons of these meth-
ods [Elad 2010, Chapters 3 and 5] show that the LARS and basis pursuit methods perform better
than greedy algorithms in reducing the approximation error, while the OMP is more accurate in
finding the support (number of nonzero components) in the solutions.

3.3 Dictionary Learning
We now turn to the problem of learning a dictionary. The goal of dictionary learning is to dis-
cover a set of base elements, i.e., dictionary atoms, that best describes the latent structure of the
collection of signal instances. A set of base elements that attempts to meet such a goal can be
constructed in a number of different ways. Recall the Fourier series expansion. We can decom-
pose a periodic signal into the superposition of the basis set φk(t). In general, if φk(t) is chosen
appropriately, there exists a dual basis set φ̃k(t) such that φk(t) and φ̃k(t) are orthonormal. Fur-
ther, the coefficients resulting from such transforms usually concentrate on a number of crucial
values, such as the low frequency terms in Fourier transforms. Similar approaches include the
widely applied discrete cosine transform (DCT) and discrete wavelet transform (DWT). These
approaches are theoretically well founded and have many successful applications in signal and
image processing. However, one limitation of pre-constructed dictionaries is that the basis func-
tions are usually limited to certain types of signal or image [Elad 2010]. This limitation can be
overcome by learning a dictionary based on a set of signal instances. The dictionary atoms in this
type of approach are built from the underlying empirical data, hence, they can be adapted to any
type of signal or image as far as the assumption of á priori sparsity is satisfied.

Given a finite set of training instances X = (x1, · · · ,xN) in RM×N , in order to find a dictio-
nary D = (d1, · · · ,dK) ∈ C, where

C = {D ∈ RM×K , s. t.∀j = 1, 2, · · · ,K,dT
j d ≤ 1}, (3.25)

we can set the dictionary learning problem similar to the `0- and `1-norm based sparse coding
problems in Section 3.1, namely Problems (3.5) ~(3.11), with the quest for D. While the ap-
proaches in solving dictionary learning problems differ, they are common in the sense that they
are usually set as joint optimization problems of the dictionary and coefficient vector, which are
not jointly convex, but convex with respect to each of the two variables (D andα) when the other

3.3 Dictionary Learning 30

is fixed [Mairal et al. 2010]. To prevent the entries in D from being arbitrarily large, which would
result in arbitrarily small values in α, its columns are constrained to have `2-norms less than or
equal to 1 as defined in C. In the rest of this section, we put our focus on a number of dictionary
learning algorithms, which include method of optimal directions, K-SVD, and online dictionary
learning. These methods are the most basic ones and they are frequently applied in the quest of a
dictionary.

3.3.1 The Method of Optimal Directions

Let X ∈ RM×N be the set of training samples, D ∈ C the dictionary, and the coefficient vector
αs constitute the columns in a matrix A ∈ RK×N . The method of optimal directions (MOD)
proposed by Engan et al. [Engan et al. 1999] solves the dictionary learning problems, which are
expressed in the matrix forms

argmin
A,D

‖X−DA‖2F, subject to ‖αi‖0 ≤ µ for ∀i, (3.26)

and
argmin

A,D
‖αi‖0 subject to ‖xi −Dαi‖22 ≤ εi, ∀i, (3.27)

where the notation ‖ · ‖F stands for the Frobenius norm, defined as ‖Y‖F =
√∑

i,j Y2
i,j . To

optimize the cost function (3.26) and (3.27), MOD alternatively solves D or A when the other
is fixed. It starts with an initial dictionary, typically set by choosing a number of random atoms
or training samples. When D is fixed, the coefficients are found using one of the `0-norm based
sparse coding algorithms, such as those presented in Section 3.2. This is followed by a dictionary
update, which minimizes the cost function f(D) = ‖X−DA‖2F. Taking the derivative of f(D)
with respect to D and equating it to 0 we obtain (X−DA)AT = 0. Thus

D = XAT(AAT)
−1
. (3.28)

The algorithm is described in Algorithm 3.
For the inverse in (3.28) to exist, all dictionary vectors have to be used by at least one training

vector. Usually this condition can be met if the training set is reasonably large. Alternatively, a
dictionary atom that is not used at all can be replaced by a training vector that is difficult to be
approximated [Engan et al. 2007].

3.3.2 The K-SVD Algorithm

The K-SVD algorithm, proposed by Aharon et al. [2006], is a popular approach to solve the
same dictionary learning problems as MOD does. The K-SVD algorithm (see Algorithm 4) first
carries out the sparse coding of all the training examples, followed by dictionary update step.
Any `0-norm based sparse coding algorithm can be used. The dictionary update is done in the
block coordinate descent (BCD) [Bertsekas 1999] fashion, i.e., it updates one column at a time,
setting all the other atoms inD fixed. During the dictionary update step, unlike MOD, the K-SVD
algorithm updates the non-zero components of the sparse coefficients in matrix A as well. That
means when updating a particular atom dj , the algorithm also updates the non-zero components
of the sparse coefficients that use dj . Allowing a change in the values of coefficients during the

31 3.3 Dictionary Learning

Algorithm 3: The MOD dictionary learning algorithm
Input: The training data set X ∈ RM×N

Output: Trained dictionary D ∈ C
1 begin
2 k = 0

3 Initialize D(0) either by using random entries, orK samples randomly chosen from X

4 Normalise the columns of D(0)

5 k ← k + 1
6 Sparse coding: Use a pursuit algorithm to approximate the solutions of (3.11) for

x1, · · · ,xN using D(k−1). The solutions constitute A(k)

7 Dictionary Update: Compute the updated dictionary D(k) using (3.28) and A(k)

8 Stopping rule: If the change in ‖X−D(k)A(k)‖2F is small enough (for (3.27)), or the
target sparsity is reached (for (3.26)), stop; otherwise go to Line 4

9 Output: The desired result is D(k)

dictionary update stage accelerates convergence. This kind of update can be done via singular
value decomposition (SVD). Thus, the K-SVD algorithm obtains the updated dictionary by K
number of SVD computations, where each computation updates one atom.

We now look more closely at the process of updating the dictionary together with the non-zero
coefficients. Following the BCD strategy, at a time, we examine one atom, dl, in the dictionary,
and the coefficients that use this atom, which is the l-th row in A denoted by αZ

l , where the
superscript Z is used to indicate the vector is a row in A. Then the loss function can be rewritten
as

‖X−DA‖2F =

∥∥∥∥∥∥X−
K∑
j=1

djα
Z
j

∥∥∥∥∥∥
2

F

=

∥∥∥∥∥∥
X−

K∑
j 6=l

djα
Z
j

− dlα
Z
l

∥∥∥∥∥∥
2

F

= ‖El − dlα
Z
l ‖2F,

(3.29)
where the matrix El is the error for all the other training samples when the atom dl is removed.
Instead of using SVD at this stage to finddl andαZ

l in (3.29), the K-SVD algorithm takes a simple
and intuitive remedy step in order to enforce sparsity constraint before applying SVD. It forces the
update ofαZ

l to have the same support as the original one. Let ωl = {i : 1 ≤ i ≤ N,αZ
l (i) 6= 0},

which is the group of indices of the training samples that activate the atom dl in the sparse coding.
We then formulate a matrix Ωl of size N × µ where µ is the number of elements in ωl, with
Ωωl(i),i = 1 and zeros elsewhere. The cost term to be minimised now is

‖ElΩl − dlα
Z
l Ωl‖2F = ‖ER

l − dlα
R
l ‖2F. (3.30)

Note that the effect of multiplication ElΩl is to shrink the size of matrix El ∈ RM×N to ER
l ∈

RM×µ, and the same for dlα
Z
l Ωl. The SVD is now applied to decompose ER

l = U∆VT. The
solution for the updated dl is obtained as the first column of U, and the updated coefficient αR

l

is the first column of V multiplied by ∆(1, 1), i.e., the largest eigenvalue.

3.3 Dictionary Learning 32

Algorithm 4: The K-SVD algorithm [Aharon et al. 2006, chap. 12]
Input: The training data set X ∈ RM×N

Output: Trained dictionary D ∈ C
1 begin
2 Initialize D(0) either by using random entries, orK samples randomly chosen from X

3 Normalise the columns of D(0)

4 k = 1
5 while not converged (stopping rule) do
6 Sparse coding: Use a pursuit algorithm to approximate the solutions of (3.11) for

x1, · · · ,xN using D(k−1)

7 Dictionary update: For each atom l = 1, 2, . . . ,K in D(k−1), update it by
• Define the group of indices of samples that use atom dl, i.e.,
ωl = {i : 1 ≤ i ≤ N,αZ

l (i) 6= 0}.
• Compute the overall representation error matrix, El, by

El = X−
∑
j 6=l

djα
Z
j .

• Restrict El by choosing only the columns corresponding to ωl, and obtain ER
l .

• Apply SVD: ER
l = U∆VT.

• Choose the updated dictionary column dl to be the first column of U.
• Update the coefficient vector αR

l to be the first column of V multiplied by ∆(1, 1).

k = k + 1.

3.3.3 Online Dictionary Learning

Both MOD and K-SVD algorithms access the whole training data at each iteration. Hence, these
methods may become impractical in terms of speed and memory requirements when the training
data is very large. In such a setting, stochastic approximations based online dictionary learning
(ODL) [Mairal et al. 2009] becomes advantageous. Stochastic gradient descent (SGD) algorithms
pick a random training example at each iteration and updates the objective function on the basis of
this example only. Given a training set X = {x1, · · · ,xN} ∈ RM×N , online dictionary learning
considers the `1-regularized problem

argmin
D∈C,α∈RK

1

N

N∑
i=1

(
1

2
‖xi −Dαi‖22 + λ‖αi‖1

)
, (3.31)

where λ is the regularization parameter. The empirical cost function for the problem (3.31) is

fN (D) =
1

N

N∑
1

l(xi,D), (3.32)

where
l(x,D) = argmin

α

1

2
‖x−Dα‖22 + λ‖α‖1. (3.33)

33 3.3 Dictionary Learning

As pointed out by Bottou and Bousquet [2008], since the empirical cost fN (D) is an approxi-
mation of expected cost f(D) = E(l(x,D)) = limN→∞ fN (D), it should not be necessary to
carry out the minimization of fN (D)with great accuracy. Moreover, [Bottou and Bousquet 2008]
has shown that the convergence of SGD is primarily limited by the stochastic noise induced by
random choice of one sample at each iteration. The total number of training samples is not an
essential factor for the convergence.

Algorithm 5: Online dictionary learning [Mairal et al. 2009]
Input: i.i.d signals x1,x2, · · · ∈ RM , regularization parameter λ, initial dictionary

D0 ∈ C, number of iterations T .
Output: Trained dictionary D ∈ C

1 begin
2 Initialization: A0 ∈ RK×K ← 0, B0 ∈ RM×K ← 0
3 for t = 1 to T do
4 Draw xt and compute

argmin
α∈RK

1

2
‖xt −Dt−1α‖22 + λ‖α‖1 (3.34)

5 Ct ← Ct−1 + αtα
T
t

6 Bt ← Bt−1 + xtα
T
t

7 Update D using Algorithm 6 with Dt−1 as warm restart, so that

Dt = argmin
D∈C

1

t

t∑
i=1

(
1

2
‖xi −Dαi‖22 + λ‖αi‖1

)
= argmin

D∈C

1

t

(
1

2
tr(DTDCt)− tr(DTBt)

) (3.35)

The ODL algorithm is summarized in Algorithm 5. Assuming the training data set is com-
posed of i.i.d samples of a data distribution, the algorithm draws one sample xt at a time, and
alternates between sparse coding and dictionary update. The sparse coding is done using the dic-
tionary obtained from the previous iteration. The information on newly acquired sparse coefficient
αt is incremented into the matrix C and B that store all the past information. Accumulating the
past data through matrices C and B enables the procedure not to require storing all the training
vectors and their coefficients. The new dictionary is computed by minimizing the surrogate (3.35)
using αis for i < t computed during the previous iterations. The function (3.35) aggregates the
past information with a few statistics obtained during the previous steps, i.e., the vector αis. As
it is shown in [Mairal et al. 2009] that the objective functions (3.32) and (3.35) converge almost
surely to the same limit, and thus (3.35) acts as a surrogate for (3.32). The solution to problem
in (3.35) amounts to the dictionary update in Algorithm 6. Each atom dj is updated in turn when

3.3 Dictionary Learning 34

Algorithm 6: Dictionary update [Mairal et al. 2009]
Input: D = [d1, · · · ,dK] ∈ RM×K (input dictionary), C = [c1, · · · , cK] ∈ RK×K ,

B = [b1, · · · ,bK] ∈ RM×K

Output: Updated dictionary D
1 begin
2 Repeat
3 for j = 1 toK do
4 Update the jth column to optimize for (3.35)

uj ←
1

Cj,j
(bj −Dcj) + dj ,

dj ←
1

max{‖uj‖2, 1}
uj

(3.36)

5 Until Convergence

keeping the others fixed in Algorithm 6. This is formulated in the matrix form as

dj ← argmin
d

1

2
||X−DA + djα

j − dαj ||2F , (3.37)

where αj is the j-th row of A ∈ RK×N . The solution of Problem (3.37) can be given as dj
in (3.36) including an orthogonal projection of the vector uj onto the unit `2 ball. Moreover, for
large values of t,Dt is close toDt−1. Hence, it is efficient to useDt−1 as warm restart to compute
Dt.

In practice, the convergence of Algorithm 6 is often accelerated by drawing a mini-batch of
signals, i.e., η > 1 signals, at a time. Then the Lines 5 and 6 in Algorithm 6 become

Ct ← Ct−1 +
1

η

η∑
i=1

αt,iα
T
t,i, (3.38)

Bt ← Bt−1 +
1

η

η∑
i=1

xt,iα
T
t,i. (3.39)

3.3.4 Some Examples of Dictionaries

We illustrate in this section some visual examples of dictionaries learned using the abovemethods,
namely, MOD, K-SVD, and ODL, discussed in the preceding sections. For comparison, we also
show some visualizations of principle components (PCs), DCT dictionary, and Gabor filters.

Figure 3.5 presents the visualizations and the comparison of reconstruction errors of three
dictionaries learned using MOD, K-SVD, and ODL, respectively. The reconstruction errors are
in terms of root mean squared error (RMSE) defined as

RMSE = ‖X−DA‖F. (3.40)

35 3.3 Dictionary Learning

(a) (b)

(c) (d)

Figure 3.5: (a) Dictionary learned usingMOD; (b) Dictionary learned using K-SVD; (c) Dictionary learned
using ODL; (d) Comparison of the reconstruction errors amongMOD, K-SVD, and ODL. The dictionaries
were trained on 8 grey scale images, namely, ‘baboon’, ‘barbara’, ‘camera’, ‘elaine’, ‘lake’, ‘lena’, ‘man’,
and ‘woman’, from the USC-SIPI Image Database at http://sipi.usc.edu/database/database.
php. 12× 12 image patches were extracted from these test images to formulate the training samples. The
training samples were with zero means and normalized. The dictionary training parameters were the same
for all three methods considered. That is, the sizes of the dictionaries were 144×256; the initial dictionaries
were the same; the number of iterations was 100; and the parameter for the sparse coding µ = 5.

We observe that some of the dictionary atoms in all three dictionaries resemble some of the dis-
crete cosine bases, and some resemble Gabor wavelets (see Figure 3.8). Moreover, with less than
100 iterations, all three methods were able to bring the RMSE below 0.06. This indicates the
effectiveness of the dictionaries learned using these methods. However, the RMSE of ODL is
higher than the two others. This results from the differences in dictionary updates for the three
methods. While MOD and K-SVD consider the entire training set at each iteration, ODL only

http://sipi.usc.edu/database/database.php
http://sipi.usc.edu/database/database.php

3.3 Dictionary Learning 36

considers a single training sample or a mini-batch of them. Further, MOD and K-SVD try to
optimize the objective function (the least square error in our case) by minimizing the empirical
cost. Thus, the resulting dictionaries are learned to fit the training data. In the case of ODL, the
objective function is optimized by minimizing the expected cost, and the learned dictionary aims
to represent not only the training samples, but also the unknown future data.

Similar experiments were also carried out for hyperspectral data. We used a sub scene of
ROSIS03 Pavia University hyperspectral imagery. The dictionaries were learned in the spectral
domain. Thus, only a small number of dictionary atoms were selected for display. Figure 3.6
shows 8 uniformly sampled atoms from the sorted dictionaries, as well as the reconstruction errors
using these dictionaries. The result for the RMSE is similar to the one in Figure 3.5. However, the
spectral features of the dictionary atoms in the resulting dictionaries using different methods need
to be further investigated to establish their similarities. We also compared in Figure 3.7 among
the first 8 atoms from the sorted dictionaries learned usingMOD, K-SVD, and ODL, respectively,
and the first 8 principle components of the training hyperspectral image data.

We present in Figure 3.8 some visual results obtained with learned dictionaries, principle
components, a DCT dictionary, and Gabor filters. For this example, we used two sets of natural
image data, one contains 88856 distinct 12 × 12 image patches, and the other 38301 distinct
patches of the same size. The dictionaries were trained using ODL for the formulation of (3.31),
with the regularization parameter λ set to 0.1. The dictionary atoms are sorted from most to least
used, and they are in row-major order. The principle components of these two data sets are also
displayed in Figure 3.8. The two data sets contain different images, however there is no significant
structural difference among them. Further, both image data sets are centralized and normalized
during the pre-processing stage. Similar to the work of [Olshausen and Field 1997], the dictionary
elements in Figure 3.8 are localized, oriented, and with both low and high frequencies. One
should also observe that the similarity between the principle components of the two sets of data is
more prominent than the one between the dictionaries. There is a resemblance between principle
components and DCT base elements. The Gabor filters in Figure 3.8 correspond to g(x, y) =

e−x
2/(2σ2

x)−y2/(2σ2
y) cos(ωx + φ). The three Gabor filters in the top row were obtained by using

different phases, i.e., φ = 0, π/2, and π, respectively. The three others in the bottom row were
obtained by rotating the first filter in the top row. That is, the x and y in function g(x, y) were
replaced by x′ = x cos θ + y sin θ and y′ = −x sin θ + y cos θ. The similarity among (a), (b),
and (f) in Figure 3.8 shows that the dictionary learning is able to recover similar structures as the
Gabor wavelets with localized and oriented atoms.

3.3.5 Summary

Three dictionary learning approaches—MOD, K-SVD, and ODL—are discussed in this section.
The advantages of the MOD method are its simple way of updating the dictionary, and parameter
free. The K-SVD algorithm is probably one of themost popular approaches in dictionary learning.
It is related to the MOD, but the dictionary update step includes updating the nonzero coefficients
as well. Furthermore, the K-SVD updates the dictionary atoms one by one, in a block coordinate
manner. Unlike the MOD and K-SVD, the ODL is based on stochastic approximations. Although
inferior to the MOD or K-SVD from the perspective of data fitting, the ODL is much faster than
the MOD or K-SVD. This is because the ODL processes only one sample (or a small fraction) of
the training set for each dictionary update step, where the MOD and K-SVD process the entire
training set or a batch of it. Thus, the ODL becomes advantageous in the case of large training

37 3.3 Dictionary Learning

(a)

(b) (c)

(d) (e)

Figure 3.6: (a) A false colour image of sub-scene of Pavia University. Randomly selected atoms from (b)
Dictionary learned using MOD; (c) Dictionary learned using K-SVD; (d) Dictionary learned using ODL.
(e) Comparison of the reconstruction errors amongMOD, K-SVD, and ODL. The dictionaries were trained
using a sub cube, 128 × 256 × 103, from ROSIS03 University of Pavia data set. The dictionary training
parameters were the same for all three methods considered. That is, the sizes of the dictionaries were
103× 256; the initial dictionaries were the same; the number of iterations was 100; and the parameter for
the sparse coding µ = 5.

sets, where the MOD or K-SVD becomes slow in such scenario. This is the reason we adopted the
ODL for learning a dictionary for hyperspectral images, as the training data set is usually large.

3.3 Dictionary Learning 38

(a) (b)

(c) (d)

Figure 3.7: The first 8 columns in the (a) PCs; (b) Dictionary learned using MOD; (c) Dictionary learned
using K-SVD; (d) Dictionary learned using ODL. The principle components are obtained on the same sub
scene of University of Pavia as in Figure 3.6, and the dictionaries are the same ones as in Figure 3.6.

In this section, we have only presented three dictionary learning algorithms that address the
formulations (3.26), (3.27), and (3.31). Other dictionary learning methods exist for these prob-
lems, their variants, or extensions. These include the stochastic gradient descent method for (3.31)
in [Olshausen and Field 1997], an extension of the MOD [Engan et al. 2007], recursive least
squares dictionary learning algorithm [Skretting and Engan 2010] for (3.27), hierarchical dic-
tionary learning for (3.31) where the penalty term is replaced by a more complex one [Jenat-
ton et al. 2010], Bayesian dictionary learning modelling [Zhou et al. 2012; Hughes et al. 2013],
multiscale dictionary learning [Sallee and Olshausen 2003], and semi-multiscale extension of
K-SVD [Mairal et al. 2008b].

39 3.3 Dictionary Learning

(a) (b)

(c) (d)

φ = 0 φ = π
2 φ = π

φ = 0, θ = π
4 φ = 0, θ = π

2 φ = 0, θ = 3π
4

(e) (f)

Figure 3.8: Dictionaries and principle components obtained from two sets of image data. (a), (b): Dictio-
naries of size 144× 256; (c),(d): principle components; (e) DCT dictionary; (f) Gabor filters.

Chapter 4
Hyperspectral Image Compression

Data compression plays an important role in efficient information storage and communication.
From our dailymobile communication, high definition streamingmultimedia, to the cloud storage,
data compression is ubiquitous. Especially, in the current trends of big data, Internet of things, the
velocity, volume and variety of data generated by all sizes of entities demand constant advances in
storage and communication technologies, including data compression. Data compression involves
the development of compact representation of information. Most representations of information
contain large amount of redundancy. Redundancy has different forms. It can be in the form
of correlation, such as spatially close pixels in an image are also close in their intensity values;
consecutive video frames have little change in their contents. Redundancy can be dependant on the
perceptions of the users, such as a human observer is more responsive to the lower frequencies in
an image, and hence, the information in the higher frequencies become redundant. An important
aspect of data compression is to find a proper model that captures the essential part of information
or data, and removes the redundancy as much as possible.

Hyperspectral imagery is characterised by high dimensionality and enormous data volume
due to the increasing spatial, spectral and temporal resolutions of imaging spectrometers. Effi-
cient compression of hyperspectral data is essential in many aspects such as storage, transmission
and analysis of the data. From the acquisition points on the sensors, to the ground stations, distri-
bution points, and then to the end users, there are many places where the compression of hyper-
spectral image is necessary. Two types of data compression can be performed on hyperspectral
data, namely lossless and lossy compression. Lossless compression eliminates unnecessary re-
dundancy without loss of information. The decompressed, or the reconstructed data is identical
to the original data. The requirement of zero loss of information puts a limit on the compression
we can get. There are some applications demand lossless compression. For example, medical
applications that demand lossless compression, since any errors or loss of information in medical
images implicates the diagnosis or treatment of a patient. Where the storage and transmission
channels allow, the ground stations or the distribution points prefer acquiring hyperspectral data
without any loss of information. Thus, lossless compression is applied in this scenario.

On the other hand, lossy compression removes unwanted or insignificant information which
results in entropy increase. The primary goal of lossy compression is to minimize the number of
bits required to represent a sequence within the acceptable range of distortion, or loss of infor-
mation. Lossy compression methods achieve remarkably higher compression ratios than lossless
compression methods. The choice of compression often depends on the type of application in
which the data is used.

A particular type of lossy compression, termed near-lossless compression, is applied where
a tight control of image quality is required. This is typically achieved by imposing a bound on

41 4.1 The Architecture of Hyperspectral Data Compression

the `∞-norm. In some applications, such as medical imaging or remote sensing [Beerten et al.
2015], a large error in a sample could lead to failure in diagnosis or classification.

In the following sections, we discuss some common issues of data compression in general,
with our focus on hyperspectral image compression. However, most of the coding components
and techniques are applicable in the general domain of data compression. Hence, we describe
such components or techniques from a general point of view, and more details in the case of hy-
perspectral image are given where necessary. Section 4.1 starts with a high level architecture of
hyperspectral image compression, which gives us a framework to discuss various data compres-
sion components and related techniques in the following sections. We introduce entropy coding,
an essential building block in data compression, in Section 4.2. Section 4.3 presents some details
on the problem of quantization, as this is the basic technique to achieve high compression ratio
in lossy compression. A popular compression technique, especially in the case of lossless com-
pression, the predictive coding is discussed in Section 4.4. Section 4.5 introduces the transform
coding technique, where we study various transforms and their applications in hyperspectral data
compression. In Sections 4.6 and 4.7, we give brief overviews of the latest image compression
standards from JPEG and CCSDS, respectively.

4.1 The Architecture of Hyperspectral Data Compression

A typical hyperspectral data compression system consists of two structural blocks [Pickering and
Ryan 2006]: an encoder and a decoder. Besides these two blocks, some systems also include
a pre-processing of the input data and a post-processing of the reconstructed data. The encoder
usually consists of the following phases: mapping and entropy coding, while the decoder consists
of entropy decoding and inverse mapping. The functionality of each of these stages is briefly
explained as follows.

Mapping: Transforms the input data in a way so that the redundancy in it can be reduced. The
raw data is decorrelated in this phase. The mapper often uses one of the standard image
compression techniques, such as vector quantization and transform coding.

Entropy coding: Creates a fixed- or variable-length code to represent the output of the first phase.
Entropy decoding: Performs the inverse operation of the entropy coder.
Inverse mapping: Performs the inverse operation of the mapper.

We use the term ‘entropy coding’ here in the sense of ‘coding’ primarily. Coding is the process
of mapping each possible output from an information source to a sequence of binary bits, called
code or codeword. An entropy coder maps its input symbols to another set of symbols where the
average number of bits per symbol can be minimised. The goal is to carry as much information as
possible using a limited number of bits. For this purpose, we need to use different number of bits
to represent different symbols. The codes generated from this approach are referred to as variable
length codes. If we use fewer bits to represent the symbols that occur more often, we could reduce
the number of bits per symbol on average. To utilize this idea, an entropy coder needs to know
the probabilities of occurrence of the input symbols. If such statistics are known, then a fixed
mapping such as Huffman coding can be used. Otherwise, if the statistics change over time, or
unknown, methods such as adaptive Huffman coding should be used.

In lossy compression, a quantization stage is often placed between the mapper and entropy
coding, where the compression occurs with some loss of information. Before we look more

4.2 Entropy and Huffman Coding 42

closely at the techniques used for the mapper stage, we examineHuffman coding and quantization
in more detail.

4.2 Entropy and Huffman Coding

4.2.1 Entropy

Suppose we have a random variable (or source), X , any outcome x of X is in a set AX with
probability distribution PX(x). The entropy of X is given by

H(X) = −
∑
x∈AX

PX(x) log2 PX(x). (4.1)

The entropy is used to measure the amount of information. The unit of entropy in (4.1) is bits.
We can see from the definition of entropy that it is a strictly decreasing function of the probability
PX(x). This implies that a highly unlikely event carries considerable information when it does
occur. Shannon showed that firstly, the entropy is the minimum average number of bits needed to
represent each outcome of the random variableX; secondly, the fixed length coding is incapable
of guaranteeing that all source outcome will be represented exactly [Taubman 2000]. Hence, the
variable length coding is the solution.

4.2.2 Huffman Coding

Huffman coding procedure generates codes, called Huffman codes, that are variable length, opti-
mum, and prefix codes [Huffman 1952]. Being optimum guarantees the average codeword length
is minimized. A prefix code is one in which no codeword is the prefix of any other code. Huffman
coding is based on the following observations [Sayood 2005].

1. In an optimum code, symbols that occur more frequently have shorter codewords than those
that occur less frequently.

2. In an optimum code, the two symbols that occur least frequently have codewords of the
same length.

A simple addition to these observations is that the two codewords for the two symbols with least
probability of occurrence differ only in the last bit.

The Huffman coding procedure can be implemented by building a binary tree first, and then
traverse the tree to generate the codewords for each symbol in the leaf nodes. Assume an in-
formation source puts out N symbols S = {s1, s2, . . . , sN}, with probability of occurrence
P = {P (s1), P (s2), . . . , P (sN)}, and an initial empty binary tree T .

Step 1. Sort the symbols in S according to their corresponding probabilities in P .
Step 2. Insert the two symbols, say si and sj where 1 ≤ i, j ≤ N , with the least frequencies (or

probabilities) as two leaves in the binary tree T , and create a parent node of an arbitrary
symbol s′ with P (s′) = P (si) + P (sj).

Step 3. Remove the two symbols, i.e., si and sj , identified in Step Step 2. from S, and add the
arbitrary symbol s′ to it. Meanwhile, P (si), P (sj) are also deleted from P , and P (s′) is
added to P .

Step 4. Repeat Steps Step 1., Step 2. and Step 3. until there is only one symbol left in S, which
becomes the root node of T .

43 4.3 Quantization

To obtain the codeword for each symbol, we traverse the tree from the root to each leaf node,
assigning bit 0 to left child, and 1 to the right one. Once a leaf node is reached, the concatenated
bit sequence becomes the codeword for the symbol corresponding to that leaf node.

As Huffman codes are prefix codes, they are uniquely decodable. A simple decoding algo-
rithm [Taubman 2000] for prefix codes, as shown in Algorithm 7, can be used for the decoding
of Huffman codes.

Algorithm 7: Huffman decoding
Input: A bit stream, the symbol list S = {s1, s2, . . . , sN}, and its corresponding

codeword list, or codebook, C = {ĉ(s1), ĉ(s2), · · · , ĉ(sN)}
Output: Decoded sequence

1 begin
2 while not the end of bit stream do
3 for l = 0, 1, · · · do
4 for i = 1 to N do
5 Compare the first l bits of the received bit stream with codeword ĉ(si)
6 if a match is found then
7 The prefix code condition guarantees no other value of l will yield a

match, so the symbol must be si
8 Remove the l bits from the bit stream, and apply the algorithm

recursively from Line 2 to decode the next symbol

Huffman coding requires that the statistics of the information source is known. If this is not
the case, or the statistics vary over time, Huffman coding needs to be adapted accordingly. One
potential solution is to turn the Huffman coding into two-pass procedure: the statistics are col-
lected periodically in the first pass, and the source is encoded in the second pass. This approach
requires the transmission of updated codewords periodically to the decoder. Another solution is
for both the encoder and decoder to periodically estimate the source statistics and construct iden-
tical Huffman codes based on the previously encoded source outcomes. This approach is known
as adaptive Huffman coding [Sayood 2005].

4.3 Quantization

Quantization is an element in lossy compression systems that leads to higher compression at
the expense of losing some precision of the data. The number of distinct values a source input
produces is usually much larger than the number of codewords available to represent them. The
process of mapping a large, or possibly infinite, number of values onto a small set of values is
called quantization. If the set of inputs and outputs of a quantizer consists of scalars, we call
the mapping process scalar quantization. A more complicated quantization could be handling
vectors as inputs and outputs, and it is referred to as vector quantization. Some comprehensive
treatments of quantization can be found in [Sayood 2005; Taubman 2000].

4.3 Quantization 44

4.3.1 Scalar Quantization

A quantizer observes a single input value and selects the nearest approximation value from a
predetermined finite set. AK-point scalar quantizer Q is a mapping Q : R 7→ Y , and

Y = {y1, y2, · · · , yK} ⊂ R (4.2)

is the output set with size |Y| = K. AnyK-point quantizer essentially partitions the real number
line into K intervals or cells. These intervals are identified with decision boundaries {bi}Ki=0.
That is, [bi−1, bi) is an interval and defined as {r : bi−1 ≤ r < bi} for i = 1, 2, · · · ,K. A
cell that is bounded is called granular cell, and an unbounded one is overload cell. Usually,
b0 = −∞, bK = ∞, and the two outer cells become the overload ones. The output values, yi,
are also referred to as output levels, or reproduction values. Each output value is assigned to a
sequence of binary bits, called codeword. The set of codewords, or codebook, is denoted by

C = {ĉi∈I : I = {1, 2, · · · ,K}}. (4.3)

Since the reproduction values and the codewords correspond to each other, the term ‘codebook’
can also be used to refer to Y , and the word ‘codeword’ is sometimes used interchangeably with
output level. In a practical data compression system, the quantizer consists of encoder mapping,
E , and decoder mapping, D, or simply, quantizer and de-quantizer, respectively. The quantizer
receives an input value and maps it to a codeword as an output, i.e, if Q(x) = yi, then E(x) =
ĉi; and the de-quantizer retrieves the corresponding reconstruction value given a codeword, i.e,
D(ĉi) = yi.

The design of a quantizer usually involves dividing the source input range into a number of
consecutive non-overlapping intervals, assigning an output level to each interval, and choosing
the codewords for every output values.

Example 4.3.1.1. An input signal source, f(t) = 2 sin 2πt is sampled every 0.05 second. To
quantize this particular input source, one of the two scalar quantizers, namely midrise quantizer
and midtread quantizer, with encoder and decoder mappings shown in Figure 4.1 can be used.
(The difference of these two quantizers is further discussed in the next section.) Two possible
codebooks for these quantizers are shown in Table 4.1.

The performance of a quantizer is measured by its distortion and rate. The distortion, or more
often the average distortion is measured as the difference between the input and the output values.
The mean-squared quantization error, denoted by σ2

q , is often used for this purpose. Assume
we have an input modelled by a random variable X with PDF fX(x), and a quantizer Q with K
intervals identified with decision boundaries {bi}Ki=0. The mean squared quantization error σ2

q is
then given by [Sayood 2005]

σ2
q =

K∑
i=1

∫ bi

bi−1

(x−Q(x))2fX(x)dx. (4.4)

If we use fixed-length codewords, the rate of a quantizer is simplyR = dlog2Ke, whereK is
the number of quantizer outputs. However, if variable-length codes are used, and li is the length
of the code ĉi ∈ C, then the rate is

R =
K∑
i=1

li

∫ bi

bi−1

fX(x)dx. (4.5)

45 4.3 Quantization

Figure 4.1: The input-output mappings for two different scalar quantizers.

Table 4.1: Decoder mappings for the two quantizers in Figure 4.1
Midrise Midtread

Codeword Output Codeword Output

000 −1.75 0000 −2
001 −1.25 0001 −1.5
010 −0.75 0010 −1.0
011 −0.25 0011 −0.5
100 0.25 0100 0
101 0.75 0101 0.5
110 1.25 0110 1.0
111 1.75 0111 1.5
– – 1000 2.0

– Not applicable.

4.3.2 Uniform and Nonuniform Quantizers

UniformQuantizer For a uniform quantizer, the input range is divided into equal intervals, except
possibly for the two outer intervals (see the midtread quantizer in Figure 4.1). The size of these
intervals is referred to as step size, and denoted by ∆. The output values are often chosen as the
midpoint of each interval, and they are spaced evenly. Thus, the step sizes for both input and output
values are the same. The two quantizers in Example 4.3.1.1 are both uniform quantizers with
∆ = 0.5. The quantizer whose output values does not include zero is called midrise quantizer,

4.3 Quantization 46

and the one includes zero is midtread quantizer.
The simplest case is designing a uniform quantizer for a bounded and uniformly distributed

input source. Suppose such an input X is distributed uniformly in the interval [−Xmax, Xmax].
Then the step size ∆ for anK-level midrise uniform quantizer is simply

∆ =
2Xmax

K
. (4.6)

The output value for an interval [(i−1)∆, i∆) in this case becomes (2i−1)∆/2, and the average
distortion is

σ2
q =

K∑
i=1

∫ i∆

(i−1)∆

(
x− 2i− 1

2
∆

)2 1

2Xmax
dx. (4.7)

The evaluation of (4.7) gives us σ2
q = ∆2/12. Further, the maximum possible error for a uniform

quantizer is ∆/2, and thus, the uniform quantizer minimizes the maximum error. It gives the
uniform quantizer a useful robustness that maintains reasonably good performance for a wide
variety of input signals [Gersho and Gray 1991].

Nonuniform QuantizerWhen the input source is not uniformly distributed, it is not practical to
obtain the step size using (4.6). A quantizer with optimal mean squared quantization error can
be found by minimizing (4.4) for a given number of output values. Such a quantizer is called
nonuniform quantizer. Given the probability function fX(x), a nonuniform quantizer can be
obtained by iteratively solving the following two equations,

yj =

∫ bj
bj−1

xfX(x)dx∫ bj
bj−1

fX(x)dx
, (4.8)

bj =
yj+1 + yj

2
, (4.9)

where yj is a quantization output level, and bj represents the boundary of an interval. Equa-
tion (4.8) implies that an input is assigned to the nearest output level, and (4.9) the optimal quan-
tization levels are the centroids of an interval. The numerical solution of (4.8) and (4.9) usually
proceeds iteratively solving one and then the other. The well known Lloyed-Max algorithm, or
simply Lloyed algorithm [Lloyed 1982] is often used for this purpose. The Lloyed-Max algorithm
can be adapted to run on different scenarios such as the one in which input PDF fX(x) is known,
or a set of training samples is available without the input PDF. A detailed discussion in this regard
can be found in [Taubman 2000].

4.3.3 Vector Quantization

VQ is a generalization of scalar quantization to vectors. Compared to scalar quantization, VQ
allowsmuch broader concepts, techniques, and applications due to the change from one dimension
to multi-dimension. Vector quantization can be viewed as pattern matching where an input vector
(or pattern) is approximated by one of the output vectors in a predetermined set. A vector quantizer
Q maps k-dimensional vectors in the vector space Rk to a finite set of vectors Y = {yi, i =
1, 2, . . . ,K}. Each vector yi ∈ Rk is called a code vector or codeword, and the set Y is called
the codebook. The performance of VQ can be measured using distortion and rate as in the case
of scalar quantizer.

47 4.4 Predictive Coding

The application of VQ for the task of data compression usually involves the following four
consecutive stages [Pickering and Ryan 2006].

Vector formation: Decomposition of the image into a set of vectors.
Training set generation: A subset of the input vectors is chosen as a training set.
Codebook generation: A codebook is generated from the training set using an iterative cluster-

ing algorithm.
Quantization: The codeword for the closest code vector in the codebook is found for each input

vector and the codeword is transmitted along with the difference between the code vector
and the original vector.

One of the widely used codebook design algorithms is the Linde-Buzo-Gray (LBG) algorithm,
or the generalised Lloyd algorithm (GLA) [Linde et al. 1980]. The GLA algorithm takes as input
a training set of N vectors of a certain dimension. K random vectors are selected, and using
them as an initial codewords, the input space is partitioned intoK subspaces. For each partition,
a centroid is calculated by averaging all vectors in the partition; the original codewords are then
replaced by these new centroids. This operation is iterated until there is no further improvement
or the improvement falls under a threshold. A big challenge when applying GLA in hyperspectral
data compression is its high computational complexity.

A VQ generated by GLA is locally optimal and has no structure. Locating a codeword for
an input vector requires an exhaustive search in the codebook. Many fast search algorithms for
VQ have been proposed. The method in [Kaukoranta et al. 1999] tries to reduce the number of
distance calculations in GLA. It monitors the activities of the codevectors so that the updates are
only performed on those active codevectors. A similar approach is introduced in [Qian 2004] to
speed up the search process. A key observation in it is that most of the training vectors are placed
in the same cluster as in the previous iteration, although the codevectors have been updated. To
determine whether a full search is needed for a training vector, the distance between a training
vector and the cluster is compared for the current and previous iterations. If the current distance
is improved from the previous iteration, then a full search is not necessary.

Adaptive vector quantization adjusts dynamically the dimensions of the vectors in a codebook
[Rizzo et al. 2005]. Alternatively, imposing a structure to the codebook is a practical method to
simplify codebook design as well as to speed up the encoding.

Various hyperspectral data compression schemes based on predictive coding, transform cod-
ing, PCA, and vector quantization have been proposed. Efficient compression methods using
these methods exist for 2D images. However, due to the different characteristics of spatial and
spectral dimensions, simple extension of a compression method for 2D images does not neces-
sarily perform well on 3-dimensional hyperspectral data. Further enhancement or adaptation is
necessary for 2D methods to be 3-dimensional. The following sections provide a brief overview
of background and techniques of hyperspectral data compression.

4.4 Predictive Coding

Predictive coding is a popular data compression technique used in both lossless and lossy coding.
Sources such as images have correlations from sample to sample. This allows the prediction of
a new sample based on its close past neighbours. Prediction exploits the correlation in spatial,
spectral, or temporal dimensions, or context, to decorrelate the input signal or image. Rather

4.4 Predictive Coding 48

than encoding the original sample, predictive coding encodes the difference between this sample
and its prediction. If there is a large amount of correlation between neighbouring samples, the
technique of predictive coding could lead to better bit rate.

Figure 4.2: The comparison of dynamic ranges of the outputs for f(t) = sin 2πt and a simple predictive
model of f(t).

Example 4.4.0.1. Consider an input source, f(t) = sin 2πt, where it is sampled every 0.05
seconds. The dynamic range of the output of this source is [−1, 1]. Assume we predict each
sample, except the first one, by its immediate previous sample, then the dynamic range of the
sequence of errors (or differences) is reduced to [−0.309, 0.309]. Figure 4.2 shows the above
claim. Further, if we use an 8-level uniform midrise quantizer for the original sequence, the step
size will be 0.25, and this results in the range of quantization error of [−0.125, 0.125]. Using
the same level of quantizer for the difference sequence, the step size will be 0.078, and the error
range becomes [−0.039, 0.039].

Example 4.4.0.1 has shown the encoding of difference values uses fewer bits than the encoding
of the original ones. However, the decoder only receives the quantized difference values, and use
them to estimate the original signal. Since the quantization errors in the reconstructed sequence
are accumulative, the error range becomes much larger than the one at the encoder. One technique
to avoid this scenario is to take the difference between the current sample and the reconstructed
previous sample. That is, the difference sequence is generated as

dn = xn − x̂n−1, (4.10)

instead of
dn = xn − xn−1, (4.11)

where x̂n−1 is the reconstructed value for xn−1. In this way, both the encoder and the decoder
could use the same information. Moreover, the idea of using the immediate previous sample to

49 4.4 Predictive Coding

predict the current one can be extended to the use of more than one previous samples. Given all
the previously reconstructed samples x̂n−1, x̂n−2, · · · , x̂1, a predictor function can be put as

pn = f(x̂n−1, x̂n−2, · · · , x̂1), (4.12)

where pn is the predicted value for the current sample xn. For instance, a linear predictor can be
constructed as

pn =

N∑
i=1

aix̂n−i, (4.13)

where ai, i = 1, 2, · · · , N , is the predictor coefficients, and N is the order of the predictor,
which determines the number of past samples used in the prediction of the current one. A sim-
ple approach to find the predictor coefficients in (4.13) is to replace x̂n−i, i = 1, 2, · · · , N , with
xn−i, i = 1, 2, · · · , N . An analytical solution can then be obtained by minimizing the mean
squared prediction error.

4.4.1 DPCM

The popular encoding system DPCM [Roger and Cavenor 1996; Wu and Memon 1997] is built
upon the basic idea presented above. For instance, the DPCM for images usually consists of a
spatial prediction followed by an entropy coder for the difference images. If the neighbourhood
pixels are causal, i.e. those pixels are already known to both the encoder and decoder, then a
predictor function can be designed such that the prediction error can beminimised. It is usually not
feasible to find a single model that fits all local structures within an input source. This is especially
the case for higher dimensional input sources. In practice, multiple predictors are employed to
capture different structures, or to adapt the predictors to the incoming data in a progressivemanner.
The adaptive DPCM (ADPCM) [Roger and Cavenor 1996] takes the latter approach, where the
predictors are updated as long as new data becomes available.

For hyperspectral data, two types of correlation exist. One is the spatial correlation between
neighbouring pixels within one band; the other is the spectral correlation between neighbouring
bands. Thus, a linear combination of values from pixels that are spatially and spectrally adjacent
to the current pixel is typically used as the prediction. Roger and Cavenor [1996] developed a loss-
less compression of AVIRIS images based on ADPCM. A number of predictors, including both
fixed and adaptive ones, are designed and evaluated. The overall compression scheme consists of
two stages: predictive decorrelation and residual encoding. In the predictive decorrelation stage,
ADPCM uses a selected predictor to compute the prediction value for a pixel being encoded.
Here, different predictors are used to exploit spatial (intraband) correlation, spectral (interband)
correlation, or the combination of both correlations. The residual images are then entropy coded
using various variable length codes. The best performance is given by the adaptive predictors
which exploit interband correlation or both intraband and interband correlations.

4.4.2 CALIC

Context-based adaptive lossless image codec (CALIC) is an efficient lossless coding scheme,
which is also based on predictive coding [Wu and Memon 1997]. CALIC encodes and decodes
a 2D image in raster scan order with a single pass through the image. It uses a neighbourhood
of pixel values taken from the previous two rows of the current pixel being encoded. CALIC

4.5 Transform Coding 50

operates in twomodes: binary and continuous tone. The latter is designed for compressing natural
continuous tone images. In this mode, CALIC has four major components: gradient-adjusted
prediction (GAP), context selection and quantization, context modelling of prediction errors, and
entropy coding of prediction errors. The first three components are briefly explained below.

GAP: The GAP is a simple, adaptive, nonlinear predictor. It weights the neighbouring pixels
of the current one, say a pixel p at 2D spatial position (i, j), according to the estimated
gradients of the intensity function near (i, j). These usually include the gradients of the
intensity function in the horizontal, or vertical directions. They are used to detect the edges
in the input image, so that necessary adjustments can be made in the prediction.

Coding context selection and quantization: In order to further adjust the prediction fromGAP,
an error energy estimator is defined and used to separate the error distribution into classes of
different variances. Then a quantizer is designed on the error energy estimators to minimize
the errors.

Context modelling of prediction errors: This stage is to further refine prediction by exploiting
higher order structures, such as texture patterns, that gradients cannot capture fully.

The binary mode is for images or sub-images containing very few widely separated grey levels
where predictive coding fails. A unique feature of CALIC is the use of large number of modelling
contexts to condition a nonlinear predictor and adapt the predictor to varying source statistics.

The 3-dimensional adaptation of CALIC, interband CALIC or 3D-CALIC, is introduced in
[Wu and Memon 2000]. 3D-CALIC incorporates interband prediction techniques into the frame-
work of 2D (or intraband) CALIC. Given a reference band Bref , and a particular pixel y in the
current band, the correlation is measured between the causal neighbourhoods of y and its counter-
part pixel, x, inBref . If the correlation is high, we can use the neighbouring pixels of x to predict
y. Moreover, such a predictor can be adjusted in the case of sharp edges. On the other hand, if the
correlation is low or below a threshold, the prediction is carried out using the intraband CALIC.

CALIC-based lossless or near-lossless compression for hyperspectral data, called M-CALIC,
is proposed in [Magli et al. 2004] to optimize 3D-CALIC for this particular type of data. Since
the wavelength resolution is high in hyperspectral data, the correlation between bands is also
sufficiently high. Thus, it is possible to always use interband prediction. The reference band in
M-CALIC is set as the linear combination of the two previous bands.

4.5 Transform Coding

In transform coding, a reversible, linear transform is used to map the original data to a set of trans-
form coefficients, which are quantized and entropy coded. Figure 4.3 shows the modularisation
of the essence of transform coding. First, an invertible linear transform of the source vector z is
computed to obtain the coefficient vector y = Tz. Each component of y is then scalar quantized
to produce a set of quantizer indexes. Finally, the quantizer indexes are entropy coded. At the de-
coder, the entropy decoder Y−1 recovers the quantized indexes. The dequantizer β−1 produces
an estimate vector y′ of the transform coefficients. To complete the reconstruction, a linear trans-
form U is applied to y′ to produce the approximation z′. Typically U = T−1. Many transform
coding systems based on discrete Fourier, discrete cosine, discrete wavelet transforms, and others
have been studied extensively.

In general, the input vectors are multiplied by a set of basis vectors to produce the transform

51 4.5 Transform Coding

coefficients. In the context of data compression, the following properties in the transform domain
are considered to be appealing [Vetterli and Kovacevic 1995]. Firstly, the transform coefficients
are not correlated, which is equivalent to diagonalising the autocovariance matrix of the signal.
Secondly, the transform coefficients are more suitable for quantization. In particular, we desire the
transform coefficients to consist of a significant number of small magnitudes that can be quantized
or discarded with little distortion. That is, only a small number of coefficients is sufficient to carry
majority of the information in the original data. Lastly, there usually exists fast algorithms for
transform decomposition.

Figure 4.3: The architecture of a basic transform coding (Source: [Goyal 2001]).

4.5.1 Karhunen-Loève Transform

KLT is considered to be the most efficient transform in theory in that i) completely decorrelates
the signal, and ii) optimally compacts signal energy. Given an input source X consisting of ran-
dom variables, the KLT transform matrix T is found as the eigenvectors of the covariance matrix
of X, denoted by CX . This is typically done by singular value decomposition (SVD). As a re-
sult, the transformed vector Y = TTX has uncorrelated components, i.e., Y has a diagonalized
covariance matrix.

KLT, as with any other transform, may be understood as a decomposition of the input source
as a linear combination of prototypes. These prototypes in the case of KLT are referred to as
‘principle components’. We often desire keeping only a subset of the coefficients, such as in data
compression, or dimensionality reduction. For this, we should select the first P coefficients in
order to minimize the mean squared error (MSE) for the approximation. In fact, it can be shown
that amongst all linear transforms, if we keep onlym coefficients, KLT gives the minimumMSE.
This is due to the optimal energy packing property of KLT, where it says the first few coefficients
contain most of the energy of the transformed input.

PCA, being almost identical to the KLT, allows dimensionality reduction by retaining in the
KLT transformmatrix (M×M) only those eigenvectors corresponding to the P (P < M) largest
ones. Thus, the dimension in the transform domain is reduced fromM to P . For hyperspectral
image compression, both KLT and PCA are often used for spectral decorrelation or dimensionality
reduction in conjunction with other coding strategies. PCA is employed in JPEG 2000 to provide
spectral decorrelation as well as dimensionality reduction [Du and Fowler 2007]. This approach
yields a better performance in terms of rate distortion and information preservation compared to
the wavelet based coder (further discussion in Chapter 5). Lee et al. [2002] compared several
approaches with different spectral compression methods followed by spatial compression using
the JPEG 2000 coding. KLT, DCT, wavelet coding and spectral DPCM are considered for the
spectral compression.

4.5 Transform Coding 52

4.5.2 Discrete Cosine Transform

Both KLT and PCA are source dependent. DCT is a close approximation to KLT, however, it has
fast algorithms for implementation and its transform matrix is not dependent on the source out-
put. It expresses a finite number of data points in terms of a sum of cosine functions oscillating at
different frequencies. Most of the signal information in the transform domain tends to be concen-
trated in a few low-frequency components. Due to this strong energy compaction property, DCT
is often considered as an approximation to KLT. The computational simplicity of DCT is another
appealing factor, with fast O(M logM) algorithm available for it as opposed to the O(M2) for
KLT. DCT calculates the transform coefficients for 1D block signal x with size U as

yu = cu

U−1∑
i=0

xi cos
π(2i+ 1)u

2U
, (4.14)

for u = 0, 1, · · · , U − 1, and

cu =


√

1
U u = 0;√
2
U u 6= 0.

(4.15)

The 2D DCT is the separable extension of 1D DCT, and computes the coefficients within each
UV block as

Yu,v = cucv

U−1∑
i=0

V−1∑
j=0

Xi,j cos
π(2i+ 1)u

2U
cos

π(2j + 1)v

2V
, (4.16)

for u = 0, 1, · · · , U − 1, v = 0, 1, · · · , V − 1, and cu, cv are defined same as (4.15).
DCT has been adopted for still image compression standard such as JPEG, as well as video

compression standard such as MPEG. Typically, when the DCT is applied to correlated data, the
coefficients corresponding to the low frequency DCT basis vectors have larger magnitudes, and
the coefficients corresponding to the high frequency basis vectors have much smaller magnitudes.
The quantization of these coefficients usually results in the coefficients for higher frequencies
being quantized to zero. One shortcoming of DCT is that it is a block based transform, and this
often leads to poor compression performance in the block boundaries such as blocking effects.

DCT can be applied in hyperspectral image compression in combination with other techniques
such as vector quantization. Pickering and Ryan [2001] investigated applying DCT in spectral do-
main in order to compress the residual data produced by the mean-normalized vector quantization
(M-NVQ). One-dimensional DCT is performed on each spectral vector of residual data produced
by the M-NVQ process. This combination results in some improvement in terms of compression
ratio over using M-NVQ alone. For low distortion levels, further improvements in compression
ratio is obtained in [Baizert et al. 2001] by replacing the spatial M-NVQ by a spatial 2D DCT. A
comprehensive experiment is carried out in [Penna et al. 2007] to compare the coding efficien-
cies of several combinations of spatial and spectral transforms. These transforms include DCT,
wavelet, wavelet packet transforms and KLT. A low-complexity KLT is also proposed, and in-
tegrated with the JPEG 2000 standard to evaluate its performance. The combination of sparse
representation and DCT is applied for video compression in [Kang et al. 2013]. A dictionary is
adaptively trained to contain featured patterns of residual signals so that a high portion of energy
in a structured residual can be efficiently coded via sparse coding. DCT is then applied to the
remaining signal to improve the coding efficiency.

53 4.5 Transform Coding

4.5.3 Subband Coding

It should be emphasized at this point that the transforms discussed previously are block based
transforms. That is, the source output is divided into blocks of certain size, each block is treated
independently in the transform process. The result of such process is that the source output is
decomposed into different frequency bands. Thus, the transform coefficients display varying sta-
tistical characters, and can be utilized efficiently in the following stages of coding. A drawback
of such approach lies in the arbitrary division of a source output into blocks, and the resulting
coding artifacts at the block boundaries. A popular strategy to generalize the block transform to
the entire source output is the ‘sliding window’ transform, or subband transform. Under this ap-
proach, we decompose the original sequence into a number of sequences, so that each sequence
carries different characteristics. This is usually implemented using discrete time filters, which
operate on a sequence of discrete values that are commonly the outcome of sampling process of
a continuous source output.

Filters are used to isolate certain frequency components. In a simple case, this involves taking
the weighted sum of current and past inputs to the filter. This process is called analysis, and can
be given as

yt =

U−1∑
i=0

aixt−i, (4.17)

where xt, t = 0, 1, · · · , N − 1, is the input sequence, yt, t = 0, 1, · · · , N − 1, is the output
sequence, ai, i = 0, 1, · · · , U − 1, are the filter coefficients, and U is often called the number of
taps in the filter. Filters that only allow the components below a certain frequency, f0, is called
low-pass filters; in contrast, filters that block all frequency components below f0 are called high-
pass filters. If the filter coefficients are selected carefully, the inverse transform (or synthesis)
of (4.17) almost always exists and takes the similar form as (4.17). The same decomposition
approach can be applied recursively on the subsequences.

Using different filters on the same input sequence, different output sequences are generated.
From (4.17), we observe that these sequences have the same length. If we send these outputs
without further processing, we will end up sending more samples than the original sequence has.
This is avoided by sending only a part of each output sequence, i.e., a subsequence or subband. For
instance, using a pair of low-pass and high-pass filters, two output sequences will be generated.
If we take half of the samples from each output sequence, then the total number of samples in the
two subsequences will be the same as that of the original sequence. This process is referred to as
downsampling. On the decoder side, the inverse of downsampling becomes necessary, and such
a process is called upsampling.

In a basic subband coding system, the source output is passed through analysis filter bank
first, the output sequences are then downsampled. This is followed by the quantization and en-
tropy coding of subbands, where a suitable encoding scheme, such as DPCM, ADPCM, can also
be applied. The quantized and coded coefficients are used for the reconstruction of the origi-
nal sequence at the decoder. The inverse operations of entropy coding and quantization recover
the subbands. These decoded samples in the subbands are then upsampled to pass through the
synthesis filter bank. The output sequences are then combined to give the final reconstruction.

As the low-pass subband usually contains the majority of source output energy, the decompo-
sition can be carried out for this subband only. This leads us to multiresolution transform, where
only the low-pass subband is further decomposed at each level.

4.5 Transform Coding 54

4.5.4 Discrete Wavelet Transform

Wavelets provide a signal representation in which some of the coefficients represent long data
lags corresponding to a narrow band, low frequency range, and some of the coefficients represent
short data lags corresponding to a wide band, high frequency range [Shapiro 1993]. Wavelet
theory studies filter design methods such that the filter bank is perfectly reconstructing, and both
the low-pass and high-pass filters have finite impulse responses [Vetterli and Kovacevic 1995].
DWT is often used to find a compact multiresolution representation of signals, including images.

One-dimensional DWT decorrelates a signal by splitting the data into two half-rate subse-
quences, i.e., low- and high-frequency half-bands, carrying information on the approximation
and detail of the original signal, respectively. The two-channel decomposition can be repeated re-
spectively on the low-pass and high-pass subband samples of a previous filtering stage to provide
a multi-resolution decomposition of the input signal. However, in most DWT decompositions,
only the low-pass output is further decomposed, and we refer to this type as dyadic decomposi-
tion. Figure 4.4 shows a 1D, three-level dyadic wavelet decomposition by means of a filter bank
scheme with low-pass and high-pass filters denoted as g[n] and h[n], respectively. At each level
of the decomposition, the low-pass filter preserves the low frequencies of a signal while elimi-
nating the high frequencies, thus resulting in a coarse approximation of the original signal. The
high-pass filter, conversely, preserves the high frequencies of the signal such as edges, texture
and detail, while removing the low frequencies. In summary, the high-pass samples in the tree-
structured transform are wavelet transform coefficients, and the low-pass samples are of vanishing
importance when the number of decomposition levels becomes large. However, practical DWT
implementations must include the low resolution subband samples in the reconstruction.

Figure 4.4: One-dimensional, 3-level wavelet decomposition. g[n] and h[n] denote low-pass and high-pass
filters, respectively. The circles denote downsampling by a factor of 2 (Source: [Vetterli and Kovacevic
1995]).

For two-dimensional images, wavelet transform can be applied using two 1D DWT, one in the
horizontal direction, and the other in the vertical direction. This approach is known as separable
DWT. At the first level, an image is decomposed into four subbands, namely, LL0,LH0,HL0

and HH0. To obtain the next coarser scale of wavelet coefficients, the subband LL0 is further
decomposed and subsampled at the second stage. The passband structure after two levels of 2D
wavelet decomposition is shown in Figure 4.5. LL1 is the second level coarse approximation
of the original image. HH bands contain high frequency contents in both horizontal and vertical

55 4.5 Transform Coding

directions. They respond primarily to diagonal features. LH bands contain low frequency content
in the horizontal direction and high frequency content in the vertical direction. They respondmost
strongly to the horizontal edges and line segments. Similarly, HL bands respond most strongly to
the vertical ones. Figure 4.6 shows the three-level DWT of image ‘Lena’.

Figure 4.5: Two-dimensional, 2-level wavelet decomposition.

Figure 4.6: Three levels of wavelet decomposition for the image ‘Lena’ using the Daubechies wavelets.

4.5 Transform Coding 56

4.5.5 Bitplane and Significance-Map Coding

An important characteristic of wavelet-based compression schemes is the support for progressive
transmission and embedded coding. Progressive transmission allows the successive reconstruc-
tions of the image, and it is typically implemented through embedded coding. Using embedded
coding for a dataset, any prefix of length l bits of M -bit (0 < l ≤ M) coding is also a valid
coding of the dataset; when the value of l increases, the quality upon reconstruction improves.
Thus, embedded coding allows an encoder to terminate the encoding at any point when a target
rate or distortion metric is met. DWT decomposes the source output into subbands, where these
subbands carry information of varying importance. As such, some coefficients are more impor-
tant than the others, and can be used to obtain an approximation of the original signal. Further,
the idea is carried to the bit level such that the importance of every bit in a coefficient should
also be differentiated. Specifically, to transmit a set of coefficient using embedded coding, we
transmit the first most significant bit (MSB) of all coefficient magnitudes, then the second MSB
of all coefficient magnitudes, and so on. This strategy is referred to as the bitplane coding.

Bitplane coding is often implemented by iteratively running two passes, namely significance
pass and refinement pass, for each bitplane. Given a threshold t and using the sign-magnitude
representation of the coefficients, the significance status s of a coefficient cp at position p is de-
termined as

sp =

{
1 (significant), |cp| ≥ t,
0 (insignificant), |cp| < t.

(4.18)

The significance pass determines the values of s for all the coefficients using the current t. The
result of this pass is often referred to as the significance map in the case of images. The refinement
pass then produces the approximations to those significant coefficients for the current bitplane.
After each iteration, the threshold is decreased by half and the process is repeated for the next
bitplane.

4.5.6 Set Partitioning in Hierarchical Trees

The set partitioning in hierarchical trees (SPIHT) [Said and Pearlman 1996] is a widely used
wavelet-based coding scheme of images, which is based on embedded zerotree wavelet (EZW)
coding introduced in [Shapiro 1993]. EZW exploits the characteristic that the wavelet coefficients
in different subbands represent the same location in the image. It is feasible to use a coefficient
in the smaller subband to represent those in larger subbands. For instance, a ten-band wavelet de-
composition in Figure 4.7 shows the spatial relationships among wavelet coefficients in different
subbands. The coefficients a in Band I, a1 in Band II, a11, a12, a13, a14 in Band V, and so on,
roughly represent the same spatial location at different scales. This spatial relationship is repre-
sented using the data structure zerotree in EZW. That is, the coefficient at the coarser level is the
parent node in the zerotree, and those corresponding to the same location, but at finer level sub-
bands become the children. Given a threshold, a coefficient is said to be an element of a zerotree
if itself and all its descendants are insignificant with respect to the threshold, i.e., the magnitudes
of the coefficients are less than the threshold. Thus, if a parent node is determined to be a zerotree
root, then the descendant coefficients do not need to be encoded. Using self similarity, zerotree
coding provides an efficient way to reduce the cost of encoding the significance map.

One important feature in SPIHT is that it sorts and transmits the transform coefficients accord-
ing to their significance. This can be solved by sorting the coefficients by the MSB. The SPIHT,

57 4.5 Transform Coding

Figure 4.7: A ten-band wavelet decomposition (Source: [Sayood 2005]).

however, solves this problem without explicitly sorting the coefficients. It uses the set partition-
ing sorting algorithm to divide the set of pixels into partitioning subsets and the magnitude test
is performed on each subset. If a subset is insignificant, then all the coefficients in that subset are
insignificant. On the other hand, if a subset is significant, then it is divided into new subsets. This
set division process continues until the magnitude test is done to all single coordinate significant
subsets in order to identify the significant coefficients. The set partitioning rule is defined in a
way such that the subsets expected to be insignificant contain a large number of coefficients, and
the subsets expected to be significant contain only one coefficient. SPIHT realises this idea based
on a tree structure, called spatial orientation tree. The spatial orientation tree exploits two prop-
erties in the transform coefficients, especially the wavelet transform coefficients. One is that the
low-frequency components usually contain most of a decomposed signal; the other is that there
is a spatial similarity between subbands, and the magnitude of the coefficients tends to decrease
along the same spatial orientation towards the finer scale subbands. An example of spatial orien-
tation tree is shown in Figure 4.8. The tree is defined in such a way that each node has either no
offspring or four offspring, which always form a group of 2× 2 adjacent pixels.

4.5 Transform Coding 58

Figure 4.8: The spatial orientation tree for the dyadic wavelet decomposition (Source: [Shapiro 1993]).

The spatial orientation tree in SPIHT is partitioned into four types of sets as follows.

• O(i, j) Coordinates of all offspring of the node (i, j);
• D(i, j) Coordinates of all descendants of the node (i, j);
• H Coordinates of all root nodes;
• L(i, j) = D(i, j)−O(i, j).

Further, the algorithm uses three ordered lists, namely, list of insignificant sets (LIS), list of in-
significant pixels (LIP), and list of significant pixels (LSP). The LSP and LIP store the coordinates
of coefficients (or pixels), while the LIS represents either D(i, j) (type A) or L(i, j) (type B).

In each pass, the SPIHT algorithm consists of two main steps: sorting and refinement. The
sorting step processes the lists LIP and LIS. First, it examines each element in LIP of its significant
status. If an element is significant (it is greater than the threshold), the bit 1 is transmitted followed
by another bit indicating the sign. Otherwise, it transmits a bit 0. After the list LIP is processed,
the elements in the LIS are processed. If the set at an entry in the LIS is significant, the bit 1 is
transmitted, otherwise, the bit 0 is transmitted. When the set at an entry is significant, different
treatments are followed depending on the set types. If the set type is A, we examine the coefficients
at coordinates inO(i, j). For each coefficient that is significant, the bit 1 is transmitted followed by
a sign bit. The corresponding coordinate is then moved to the LSP. If a coefficient is insignificant,
the bit 0 is transmitted, and the corresponding coordinate is moved to the LIP. At this stage, we
processed all the coefficients corresponding to the coordinates inO(i, j) and removed them from
theD(i, j), what is left now is L(i, j). If the set L(i, j) is not empty, we move (i, j) to the end of
the LIS as an entry of type B. If it is empty, we remove the entry from the LIS. If the set type is
B, each coordinate inO(i, j) is added to the end of the LIS as an entry of type A. The entry (i, j)

59 4.5 Transform Coding

is then removed from the LIS. Note that each newly added entry in the LIS must be processed in
the current pass. In the refinement step, for each entry (i, j) in the LSP, except those being added
during the sorting step at the current pass, we output the most significant bit of the corresponding
coefficient.

The SPIHT coding works by grouping image pixels in spatial orientation trees. The hierarchi-
cal structure in such trees expose the similarity across the subbands at the same spatial locations.
The similar ideas are realized in other coding schemes as well. One such scheme is the embedded,
block-based coding algorithm set partitioned embedded block (SPECK) [Pearlman et al. 2004].
Instead of using the spatial orientation tree, the SPECK algorithm makes use of two types of sets,
namely S and I. S is a rectangular region of an image, and I is obtained by removing a small
square region at the top left of a larger square. A set S in the LIS is first tested for significance. If
it is significant, the set is partitioned into four subsets. Each of these subsets is recursively tested
for significance. That is, if significant, it is partitioned again, and if insignificant, it is added to
the LIS. Every significance test result is then sent to the bitstream. Such a partitioning process
is called quadtree partitioning, and it is capable of quickly identifying the areas of high energy,
as well as locating groups of coefficients as insignificant. On the other hand, if found to be sig-
nificant, the set I is partitioned using the octave band partitioning. The scheme partitions I into
four sets, three of them being type S, and one being type I. The purpose of such partitioning
is to exploit the hierarchical pyramidal structure of the wavelet decomposition, where the energy
tends to be more concentrated in the top most levels of the pyramid.

4.5.7 3D Wavelet Based Compression of Hyperspectral Images

For hyperspectral imagery, the 2D DWT of Figure 4.5 is extended to 3 dimensions to take into
consideration the spectral dimension. Similar to the 2D dyadic DWT, a 3D DWT can be imple-
mented in separable fashion. That is, 1-dimensional DWT is applied for the spatial row, column,
and spectral dimensions separately. Another 3DDWT approach, called wavelet-packet transform,
first performs a separable 2D DWT for each spectral band, then follows a 1D decomposition in
the spectral dimension. Fowler and Rucker [2007] shows that wavelet-packet transform typically
yields more efficient coding for hyperspectral images than the dyadic decomposition does. This
is due to the flexibility in exploiting the spatial and spectral dimensions differently.

2D SPIHT has been extended to 3D SPIHT for the task of video coding in [Kim et al. 2000].
In particular, a group of continuous video frames is analysed as 3D data cube. The 3D subband
structure is obtained by decomposing the group of frames in the temporal and spatial dimensions,
as well as subsampling. Within the resulting subband structure, there exists not only spatial simi-
larity inside each frame across different scale, but also temporal similarity between neighbouring
two frames. These similarities are further exploited using the 3D SPIHT algorithm. Similar to
the 2D SPIHT, the 3D SPIHT also consists of sorting and refinement as the two main stages.
The difference is that the pixels are now grouped in 3D rather than 2D trees. For this, a 3D
spatial-temporal orientation tree is defined to describe the parent-offspring relationships in 3D
SPIHT. A straightforward extension in this case is to form the nodes with 3D pixel blocks in the
spatio-temporal orientation tree. For instance, in the case of using dyadic decomposition, we can
formulate a node of 2 × 2 × 2 pixels. The root nodes (at the highest level of the pyramid) have
one pixel with no descendants, and each of the other seven points to a node with 8 offspring at the
immediate next coarser level, where the parent and offspring nodes correspond to the same loca-
tion at different scales. Once the spatio-temporal orientation tree is set up, the 3D SPIHT sorts

4.6 JPEG 2000 60

the coefficients according to the magnitude (sorting), and refine the bit plane by adding necessary
bits (refinement).

Dragotti et al. [2000] applied 3D SPIHT in the compression of multispectral images. Unlike
the video frames, where large number of continuous frames are available, multispectral images
have only a few spectral bands. Thus, applying the DWT in both the spatial and spectral dimen-
sions does not yield good results. For this reason, Dragotti et al. [2000] applied a KLT in the
spectral dimension while 2D DWT applied in the spatial domain. The transform coefficients are
then organized in a 3D hierarchical structure to run the SPIHT algorithm. A second technique
proposed in the same work is to apply VQ for the spectral coefficients. More precisely, after the
2D DWT of all the bands in the image is performed, coefficient vectors are formulated in the spec-
tral dimension, and they are vector quantized. The SPIHT algorithm is then run on the vectors,
where the magnitude of a scalar is replaced by the norm of a vector.

Hyperspectral images consist of hundreds of bands, and thus, the interband correlations can be
exploited efficiently using DWT. In such a case, the 3D SPIHT of [Kim et al. 2000] can be applied
to compress the hyperspectral images [Tang et al. 2003b; Tang and Pearlman 2006]. Moreover,
it has been shown in some works that the spectral and spatial redundancies should be treated dif-
ferently in order to achieve efficient compression of hyperspectral images. A popular approach
involves the combination of one-dimensional spectral decorrelation followed by the JPEG 2000
being applied for the spatial decorrelation, rate allocation, and entropy coding. PCA is employed
in JPEG 2000 to provide spectral decorrelation, as well as spectral dimensionality reduction [Du
and Fowler 2007]. Penna et al. [2007] investigated a number of combinations of different trans-
forms, such as wavelets, wavelet packets, DCT, and KLT, in exploiting the spatial and spectral
redundancies for hyperspetral image coding. For the spectral decorrelation followed by a 2D
DWT spatial decomposition, the KLT gives the best transform in terms of peak signal to noise
ratio (PSNR), and the DWT performs better than the DCT at most of the bit rate regions. To ex-
ploit the superior decorrelation capability of KLT, a low-complexity KLT is proposed in [Penna
et al. 2007] to reduce the computational cost involved.

Part 2 of the JPEG 2000 allows the multiple component transformations, where the standard
provides two general approaches to achieve this goal. It may include a decorrelation transform,
such as KLT or PCA, or a linear predictive transform. The second approach involves using a
default or user specified one-dimensional DWT in the component direction.

4.6 JPEG 2000

The JPEG 2000 [Christopoulos et al. 2000; Rabbani and Joshi 2002; Taubman and Marcellin
2002] still image compression standard has been designed and developed to utilize the advances
in image compression technology, and meet the demand of fast evolving markets and applications.
The standard is based on discrete wavelet decomposition. It consists of multiple parts dealing with
a variety of applications, from basic image compression to medical imaging and motion pictures.
In this section, we attempt to have a brief look at the key components of JPEG 2000 Part 1, the
core image coding system. A typical JPEG 2000 encoder consists of building blocks such as pre-
processing, DWT, quantization, arithmetic coding, and bit stream organization. More details are
given below regarding each of these.

61 4.6 JPEG 2000

4.6.1 Pre-Processing

The pre-processing deals with partitioning the input image into non-overlapping blocks called
tiles. Tiles are treated independently of each other in the subsequent processes. For unsigned
sample values in each tile component, the DC level shifting is performed by subtracting a fixed
value (i.e., the component depth) from each sample to make its value symmetric around zero.
In the cases of multiple component image, a forward intercomponent transform is applied to re-
duce the correlation. Two such transform choices are available in Part 1, one is the irreversible
colour transform (ICT), and the other is reversible colour transform (RCT). The forward ICT is
the traditional RGB to YCbCr color transform, and it is defined asY

Cb
Cr

 =

 0.299 0.587 0.114
−0.16875 −0.33126 0.5

0.5 −0.41869 −0.08131

RG
B

 . (4.19)

The inverse of (4.19) isRG
B

 =

1.0 0 1.402
1.0 −0.34413 0.71414
1.0 1.772 0

Y
Cb
Cr

 . (4.20)

The forward RCT is defined as

Y =

⌊
R+ 2G+B

4

⌋
, U = R−G, V = B −G, (4.21)

and the inverse RCT is

G = Y −
⌊
U + V

4

⌋
, R = U +G, B = V +G. (4.22)

4.6.2 DWT

Following the pre-processing stage, the DWT is performed on each of the tile components. Part
1 of the JPEG 2000 allows the power of 2 decompositions in the form of dyadic wavelet trans-
form. The DWT can be irreversible or reversible. The irreversible DWT is implemented using the
Daubechies 9/7 filter bank [Antonini et al. 1992], and the reversible DWT is implemented using
the 5/3 filter bank [Gall and Tabatabai 1988]. The low-pass and high-pass analysis filter pair is
often designed such that after downsampling the output of each filter by a factor of 2, the original
signal can still be recovered exactly. We say such a filter satisfies the perfect reconstruction prop-
erty. Both 9/7 and 5/3 filter banks satisfy this property. Note that although Part 1 of JPEG 2000
gives only two DWT filters, Part 2 of the standard allows arbitrary filter specifications.

TheDWT in the JPEG2000 is implemented using the lifting scheme [Daubechies and Sweldens
1998, and references therein]. The method reduces the requirements for memory, as well as the
computational complexity. The wavelet coefficients computed using the lifting scheme are iden-
tical to those computed by the traditional filter bank convolution. Consider the one dimensional
two channel wavelet transform. The lifting scheme starts with splitting the 1D input sequence
into two subsequences, one consists of the even indexed samples, denoted by d0

i , and the other
the odd indexed ones, denoted by s0

i . This step is also referred to as the ‘lazy wavelet’ transform.

4.6 JPEG 2000 62

The values in the two subsequences are then modified in a sequence of alternating prediction and
updating steps. A prediction step involves predicting each odd sample as a linear combination of
some even samples, and subtracting it from the odd sample to form the prediction error. An up-
date step, on the other hand, updates the even samples by adding to them a linear combination of
the already modified odd samples. These two steps are iterated a number of times, using different
weights for the linear combination at each iteration. This can be put as [Rabbani and Joshi 2002]

dli = dl−1
i +

∑
k

pl(k)sl−1
k , l ∈ [1, 2, · · · , L], (4.23)

sli = sl−1
i +

∑
k

ul(k)dlk, l ∈ [1, 2, · · · , L], (4.24)

where pl(k) and ul(k) are the prediction and update weights at lth iteration, respectively. For the
5/3 filter bank, L = 1, p1 = −1

2 , u1 = 1
4 , while for the Daubechies 9/7 filter bank, L = 2, and

p1 = −1.586134342, u1 = −0.052980118,

p2 = +0.882911075, u2 = +0.443506852.
(4.25)

Upon completing all the lifting iterations, the output of the final prediction step is scaled by a
factor to form the high-pass subband, and that of update step is scaled by another factor to form
the low-pass subband. The inverse of DWT resulting from lifting scheme can be obtained by
undoing all the prediction and update steps in the reverse order.

To realize lossless compression based onDWT, integer-to-integer transform is desired. An im-
portant feature of lifting scheme is that it allows modifying lifting filters in any desired manner.
A forward integer-to-integer transform using lifting can be implemented by inserting quantizers
immediately after the calculations of every prediction and update terms. Such quantizers typ-
ically perform the operation of truncation or rounding to the nearest integer. The JPEG 2000
Part 1 applies the integer-to-integer 5/3 filter bank [Adams and Kossentni 2000] for the lossless
compression. The modified forward transform is given by

y(2k + 1) = x(2k + 1)−
⌊

x(2k) + x(2k + 2)

2

⌋
,

y(2k) = x(2k) +

⌊
y(2k − 1) + y(2k + 1) + 2

4

⌋
,

(4.26)

where y is the output sequence, and x is the input sequence.

4.6.3 Quantization

The JPEG 2000 Part 1 employs a midtread uniform quantizer, where the deadzone, i.e., the central
quantization interval, is twice as wide as the other intervals. Given the step size4b for a subband
b, the quantizer maps a wavelet coefficient yb(u, v) at location (u, v) to a quantization index
qb(u, v) as

qb(u, v) = sign(yb(u, v))

⌊
|yb(u, v)|
4b

⌋
. (4.27)

63 4.6 JPEG 2000

The step size 4b for each subband is specified in terms of a 5-bit exponent, εb, and an 11-bit
mantissa, µb, as

4b = 2−εb
(

1 +
µb
211

)
. (4.28)

At the decoder, the dequantized value ỹb(u, v) can be obtained by

ỹb(u, v) =

{
0, ifqb(u, v) = 0,

(qb(u, v) + δb)4b, ifqb(u, v) 6= 0,
(4.29)

where 0 ≤ δb < 1 is a reconstruction parameter, and is often set to 1
2 .

4.6.4 Entropy Coding

The entropy coding in JPEG 2000 is based on the embedded block coding with optimised trun-
cation (EBCOT) algorithm proposed by Taubman [2000]. After quantization, each subband is
partitioned into small rectangular blocks, called codeblocks, and each codeblock is encoded in-
dependently. The coefficients in a codeblock are bitplane encoded to create embedded bitstream.
Further, each codeblock is divided into stripes, where a stripe consists of four rows, except the
last stripe with possibly less than four. For each bitplane in a stripe, the coding is carried out in
three passes with the option of truncating the bit stream at the end of each pass. However, only the
cleanup pass is performed for the first nonzero bitplane. This multipass coding approach enables
optimized embedding of the bitstream where the information reduces the distortion most is en-
coded first. The three coding passes include significance propagation pass, magnitude refinement
pass, and cleanup pass. During the significance propagation pass, only the bits of the coefficients
with known significant immediate neighbours are encoded. The reason is that the neighbours of
coefficients that are found significant in previous bitplane are most likely to become significant
in the current one. In the second pass, the bits corresponding to the coefficients that have been
found significant in the previous bitplane are encoded. All bits not encoded during the first two
passes are encoded in the cleanup pass. As such, each coefficient bit in a bitplane is encoded only
in one of the three passes.

The coder used in the JPEG 2000 is known as the MQ-coder [Taubman 2000] which is an
implementation of context-based adaptive arithmetic coding. The probability of a binary symbol
is estimated from a context formed from its current significance state, as well as the significance
states of its immediate eight neighbours corresponding to the current and previous bitplanes.
The MQ-coder can choose from 18 different adaptive probability context models. Nine of these
contexts are used significance coding during the significance propagation and cleanup passes,
five are used for sign coding, three are used for magnitude refinement pass, and one is used for
run-length coding typically used in the cleanup pass. The relevant model adaptively estimates the
probability distribution of the bit to be coded, and the arithmetic coder assigns a representation of
suitable length accordingly. Each codeblock employs an MQ-coder to generate a single codeword
for the entire codeblock.

The arithmetic encoding process creates a sequence of nested intervals in the form Φ(S) =
[αk, βk), k = 0, 1, · · · , N , where S is the source sequence, 0 ≤ αk ≤ αk+1, and βk+1 ≤ βk ≤
1 [Said 2003]. Using an alternative representation of the interval [α, β) as |b, l〉, where b = α
and l = β − α, the intervals result from the arithmetic coding are defined recursively by [Jelinek

4.7 CCSDS Recommendation for Data Compression 64

1968]

Φ0(S) =|b0, l0〉 = |0, 1〉,
Φk(S) =|bk, lk〉 = |bk−1 + c(sk)lk−1, p(sk)lk−1〉, k = 1, 2, · · · , N.

(4.30)

In (4.30), p(sk) is the probability, and c(sk) is the cumulative probability of symbol sk. The
codeword developed by this recursive interval partitioning maps the entire source sequence to
a subinterval of [0, 1). The final codeword is usually determined as the shortest decimal num-
ber in the subinterval, and represented by the shortest binary fraction. The decoded sequence is
determined by the code value v̂ of the compressed sequence.

4.6.5 Bit Stream Organization

The arithmetic coding of bitplanes in the JPEG 2000 is referred to as Tier-1 coding. The com-
pressed data results from this coding stage is subject to the Tier-2 coding stage, where they are
organized into units known as packets and layers [Rabbani and Joshi 2002; Taubman and Mar-
cellin 2002]. Each DWT resolution level of a tile is partitioned into rectangular regions called
precincts. The precinct partition at a given resolution induces a partitioning of the subbands at the
same resolution level. We know that each subband is also partitioned into codeblocks. A precinct
may consist of multiple codeblocks, and its boundary coincides with a codeblock boundary. The
purpose of precinct is to organize codeblocks based on their spatial and resolution groupings. It
makes it easier to access the wavelet coefficients for a particular spatial region of an image.

In order to manage a large number of codeblocks in the compressed bit stream, the JPEG 2000
uses layers to represent image quality incrementally. All of the codeblocks from all subbands and
components of a tile contribute compressed data to each layer. Each codeblock contributes a
number of coding passes (or none) to a specific layer. Thus, the coded data of each codeblock is
distributed over one or more layers in the code stream.

The compressed data belonging to a specific tile, component, resolution, layer, and precinct
is organized into a packet. A group of packets, one from each precinct of each resolution level,
makes up a layer. The final bit stream of the JPEG 2000 is a succession of layers. Each layer
successively and monotonically increases the image quality.

4.7 CCSDS Recommendation for Data Compression

Data compression problem is an important issue for the remote sensing systems that acquire data
using on-board cameras. Along the development of technologies for acquiring data at tens, hun-
dreds, or thousands of wavelengths, it is essential to employ image compression to match the
available on-board storage, and downlink transmission bandwidth. While the JPEG 2000 or its
predecessor, the JPEG, are the standard techniques for image compression, they are more suitable
for ground systems. On the other hand, the CCSDS has beenworking toward developing standards
for space data handling [CCSDS 2017a] since 1982. Among these, two most recent standards for
space data compression, namely the new recommended standard CCSDS-122 [CCSDS 2017b]
for monoband image, and CCSDS-123 [CCSDS 2012] for lossless compression of multispectral
and hyperspectral images.

65 4.8 Summary

4.7.1 CCSDS-122

In the new image data compression (IDC) recommended standard, CCSDS-122, a number of
differences compared to the JPEG 2000 are pointed out. In particular, the CCSDS-122 recom-
mended standard specifically targets use aboard spacecraft, and focuses on lower-complexity in
both software and hardware implementations. The technique described in the CCSDS-122 can be
used to achieve both lossless and lossy compression of 2D (or monoband) spatial image data. The
compressor consists of two functional components, the DWT and the bit plane encoder (BPE). As
the recommended decorrelation transform, the DWTmakes use of the 9/7 floating point filters for
lossy compression, and the 9/7 integer filters for the lossless compression. Following the DWT,
the wavelet coefficients are either rounded to the nearest integers for lossy compression, or scaled
using weight factors in the case of lossless compression.

The BPE processes the wavelet coefficients in blocks of 8 × 8 coefficients. Each block com-
prises of coefficients from the lowest resolution image, and all the subbands at different resolu-
tions. A block roughly corresponds to a localized region in the original image.The blocks are then
grouped into segments, each segment can be processed independently. Further, 16 consecutive
blocks within a segment are gathered in a gaggle for entropy coding.

4.7.2 CCSDS-123

The standard is intended for onboard lossless compression of multispectral and hyperspectral
images. The encoder in the CCSDS-123 is also structured in two functional parts, namely the
predictor and encoder. The predictor uses an adaptive linear prediction method to provide an
estimate of the current pixel based on the previously scanned pixels. Given an original pixel
xi,j,k, at spatial location (i, j) and component k, and its predicted value x̃i,j,k, the error ei,j,k =
xi,j,k − x̃i,j,k is computed, and then mapped to a non-negative integer, called mapped prediction
residual. The predicted pixel value x̃i,j,k is estimated based on the nearby pixels in the current
spectral band and P preceding bands. Two prediction modes, namely full and reduced modes,
are possible depending on whether both spectral and spatial neighbours are considered, or only
spectral ones are considered. In particular, the neighbouring pixels are combined to produce a
local sum σi,j,k. To improve the accuracy of the prediction, the difference between the local sum
and its corresponding scaled original pixel is tracked and stored in a local difference vector, Ui,j,k
for some previous pixels. The local difference vector is further scaled through an inner product
with an adaptive weight vector to produce a weighted local difference. Finally, the local sum σi,j,k
and the weighted local difference are employed to obtain a scaled predicted pixel value x̃i,j,k.

The second part, the encoder, encodes the mapped prediction residuals on a sample or block
adaptive approach. Under the sample adaptive approach, eachmapped prediction residual is coded
using variable length codeword. Using the block adaptive approach, the mapped prediction resid-
uals are grouped into blocks, which are then encoded independently.

Further details on the implementations of these two recommended standards and their perfor-
mance evaluations can be found in [García-Vilchez and Serra-Sagristà 2009; Blanes et al. 2014].

4.8 Summary

In this chapter we discussed some essential components, common techniques in hyperspectral
data compression. We began with the description of an entropy coding technique. The Huffman

4.8 Summary 66

coding produces variable length, optimum prefix codes for a given source model. Its coding and
decoding processes are discussed in detail. Two quantization approaches, namely scalar quanti-
zation and vector quantization, are discussed, where more focus is put on uniform scalar quan-
tizer. Two popular predictive coding methods, the DPCM and CALIC, and their extensions to
hyperspectral image compression are described. Transform coding plays a key role in data com-
pression. The common transforms, such as DCT, KLT, PCA, subband coding, and DWT lead
to state-of-the-art compression methods that are applicable to hyperspectral image compression.
We also investigated the new image compression standard JPEG 2000, and two CCSDS image
compression standards for remote sensing images with single or multiple bands.

Chapter 5
Sparse Representation Based Lossy Hy-
perspectral Image Compression

5.1 Introduction

Hyperspectral imaging, as a part of mainstream remote sensing, has been an area of active re-
search, development and application recently. Modern hyperspectral sensors have spectral reso-
lutions covering up to several hundred bands. The transmission and storage of the resultant large
volume of data collected by such sensors require data compression to be an essential feature of
systems incorporating hyperspectral sensors. In hyperspectral data compression, finding an ap-
propriate model for the data is the heart of the problem. Sparsity based models have been widely
adopted as the choice of models in this field. These models assume that the signal or image vec-
tors usually lie in a combination of subspaces, where each subspace is spanned by a few elements
from a set of basis vectors. Using sparsity based models, many types of signals can be sparsely
represented through linear transforms. A common goal in such a transform is to find a set of basis
vectors that span the vector space of input signals so that some criterion of optimality, such as
decorrelation and sparseness, can be met. Indeed, this type of approach leads to the state-of-the-
art image compression standards such as JPEG and its successor JPEG 2000.

A common transform coding strategy is applying a linear transform to a signal or image vector
x ∈ RM as b = WTx, where the matrix W ∈ RM×K consists of the basis vectors, and b ∈ RK

is the coefficient vector. This type of transform is referred to as decomposition or analysis. On
the other hand, the linear transform in sparse representation [Olshausen and Field 1997] takes the
superposition or synthesis approach. It is based on learning a dictionary using a set of training
data. The dictionary is learned in a way such that it yields sparse structures in the transform
domain. Simply put, a signal or image vector x is modelled as x = Dα, where the columns
in D ∈ RM×K correspond to a set of learned dictionary atoms, and α ∈ RK is the coefficient
vector.

Using adaptive dictionaries and sparsity as an á priori, sparse representation has found many
applications in vision tasks such as image classification [Bahrampour et al. 2016, and references
therein]; image denoising, deblurring, inpainting [Elad et al. 2010]; image restoration [Mairal
et al. 2008a]. Compression of a specific family of images, or more general images using sparse
representation can be found in [Bryt and Elad 2008; Skretting and Engan 2011; Shao et al. 2014].
In [Huo et al. 2012; Wu et al. 2014; Ülkü and Töreyin 2014 2015], various lossy hyperspectral
data compression methods using sparse representation are presented.

In this chapter, we present a study on developing a lossy hyperspectral image compression
framework based on sparse representation. A preliminary work on this topic appears in [Wang

5.2 Background and Related Work 68

and Celik 2016], and part of the work in this chapter is published in [Wang and Celik 2017].
The dictionary in the sparse representation is learned either in the original pixel domain or in the
multi-scale pixel domain. The former exploits the spectral redundancy in a hyperspectral image,
and the latter both the spatial and spectral redundancies. We employ online dictionary learning
algorithm for dictionary learning, and orthogonal matching pursuit algorithm for sparse coding.
The final bit stream is formulated by applying quantization and entropy coding of the nonzero
components in the sparse coefficients. The performance of the proposed method is evaluated and
compared to two wavelet transform based methods, namely, JPEG 2000 and 3D-SPIHT.

We intend to make the following contributions in this chapter. A hyperspectral data compres-
sion framework incorporating sparse representation is developed, implemented, and also evalu-
ated against two of the state-of-the-art existing methods. The experimental results show that the
proposed methods are competitive in terms of rate-distortion performance to the other approaches
considered in this thesis. This indicates the effectiveness of sparse representation in exploiting
the spectral correlations in hyperspectral images for data compression.

The rest of this chapter is organized as follows. Section 5.2 presents a brief overview of
the dictionary learning problem, and some related work in data compression based on sparse
representation. The proposed lossy compression framework for hyperspectral image is given in
Section 5.3. The proposed compression approach is evaluated experimentally in Section 5.4, and
finally, Section 5.5 includes some concluding remarks.

5.2 Background and Related Work

5.2.1 Dictionary Learning

Following the work by [Mairal et al. 2009], the dictionary learning problem is formulated as

argmin
D,α

1

N

N∑
i=1

(
1

2
||xi −Dαi||22 + λS (αi)

)
, (5.1)

where xi ∈ RM ,αi ∈ RK for 1 ≤ i ≤ N , and D ∈ RM×K (M < K) is an overcomplete
dictionary. S() is a sparsity inducing regularizer such as `1-norm or `0-pseudo norm, and finally,
λ is a regularization parameter. The aim of dictionary learning in (5.1) is to reduce the error in
representing each sample x while inducing sparsity in its coefficient α.

The optimization problem in (5.1) is not convex considering both D andα varying. However,
it is convex with respect to either one of the two variables while the other one is fixed. This results
in an iterative two-step strategy, namely sparse coding and dictionary learning, is commonly
applied to solve (5.1) [Mairal et al. 2009; Aharon et al. 2006].

Sparse coding: This step refers to finding the coefficient vectors when a dictionary D is
given. Sparse coding is solved in a separable manner where for each sample x, its coefficient
vector α can be found independently of the other samples. A greedy algorithm such as matching
pursuit [Mallat and Zhang 1993] or orthogonal matching pursuit [Davis et al. 1997] can be applied
when `0-norm is used to induce sparsity in the coefficient vectors. Efficient algorithms, such as
basis pursuit [Chen et al. 2001] and LARS-Lasso algorithm [Efron et al. 2004] have also been
proposed for `1 normalization setting in (5.1).

Dictionary learning: In dictionary learning (or update) step, the coefficient vectors are known
and the optimization problem (5.1) becomes quadratic in terms of D. An analytic solution of the

69 5.2 Background and Related Work

quadratic problem, known as method of optimal direction (MOD), was introduced by [Engan
et al. 1999]. Although efficient, MOD may suffer from relatively high computational complex-
ity which involves matrix inversion. Rather than using matrix inversion, the K-SVD algorithm
developed by [Aharon et al. 2006] performs the dictionary update atom by atom in a simple and
efficient process. Both MOD and K-SVD algorithms access the whole training data at each itera-
tion. Hence, these methods may become impractical in terms of speed and memory requirements
when the training data is very large. In such a setting, online dictionary learning [Mairal et al.
2009] becomes advantageous. Online dictionary learning algorithm is based on stochastic gradi-
ent algorithms [Bottou and Bousquet 2008], which allow training dictionaries from large data sets,
and is able to achieve fast convergence with low expected cost and good trained result. This leads
us to use online dictionary learning in modelling hyperspectral data using sparse representation,
where the number of training samples used for dictionary learning can easily exceed millions.

5.2.2 Related Work

Sparse representation has found some applications in image compression problem, both in specific
and general image compressions. Bryt and Elad [2008] proposed a method for the compression
of facial images using the K-SVD dictionary learning [Aharon et al. 2006]. The dictionary is
employed in the sparse approximation of image patches following the geometric alignment of
facial images. This method shows that sparse representation based compression scheme could
outperform the state-of-the-art wavelet based compression methods, such as JPEG 2000, for some
specific types of images. Shao et al. [2014] demonstrates the compression of fingerprint images
by constructing overcomplete dictionaries using a number of different algorithms including the K-
SVD. The results show that the K-SVD based compression method achieves similar performance
to that of JPEG 2000, or superior performance at high compression ratios.

A general image compression scheme using trained dictionaries is presented in [Skretting and
Engan 2011]. This compression scheme explores training dictionaries using different algorithms,
as well as in different input domains, namely, pixel andwavelet domains. On comparing the results
to DCT and wavelet based schemes, the dictionary based scheme is superior to JPEG (DCT based)
and slightly inferior to JPEG 2000.

Hyperspectral image consists of high degree of redundancies both in spectral and spatial do-
mains, which are amenable for sparse modelling. In [Huo et al. 2012; Wu et al. 2014; Ülkü
and Töreyin 2014], sparse representation based hyperspectral image compression frameworks are
proposed. The basic idea in [Huo et al. 2012] is to learn a dictionary using a selected band, and
the rest of the bands are approximated using the learned dictionary. This approach results in the
need to transmit the selected band to the decoder for reproducing the dictionary. A number of
issues are raised regarding this approach. These include: i) how to choose the band to be used
for training a dictionary; and ii) the possibility of updating the dictionary after the sparse coding
of each band. Wu et al. [2014] developed a hyperspectral data compression method based on the
double sparsity model introduced in [Horev et al. 2012]. Besides transmitting the compressed
bit stream, this approach also transmits information about the dictionary itself. This is done by
sparse coding the dictionary using a predefined one, such as DCT. Ülkü and Töreyin [2014 2015]
presented another hyperspectral data compression framework using sparse representation. Online
dictionary learning algorithm is used in their framework, while the K-SVD dictionary learning
algorithm is used in [Huo et al. 2012; Wu et al. 2014]. The authors in [Ülkü and Töreyin 2014
2015] compare the performance of the proposed scheme with a predictive lossy compression and

5.2 Background and Related Work 70

JPEG 2000, showing some competitive results. However, the bit rates under their framework are
within 0.7 bits per sample.

Similar to sparse representation, a linear mixture model

X = Φβ + ε (5.2)

has been used in [Du and Chang 2004, and references therein] for hyperspectral image compres-
sion with target detection and classification as the main optimal compression criteria. In (5.2),
Φ is a dictionary of approximation elements, β consists of decomposition coefficients and ε is
the model error. When the dictionary in (5.2) represents the endmembers, that is the spectral
signatures of the various material components in the scene, the resulting coefficients indicate the
material abundances of their corresponding pixels. Thus, these coefficients are often used for
target detection or classification. To determine the endmembers for a linear mixture model dic-
tionary, a priori of the targets in the data is often needed. An unsupervised process is proposed
in [Du and Chang 2004] to learn the target information from the data to formulate the dictionary
Φ without a priori information. The number of dictionary elements, or spectral signatures, is
usually much smaller than the number of spectral bands in hyperspectral images. Thus, signif-
icant compression can be achieved. Moreover, using this type of compression information, the
abundance coefficients can be directly used in the applications of target detection or classification
without utilizing the entire hyperspectral image cube.

Compared to linear mixture model described above, the sparse representation model does
not assume the data lie in the space spanned by a number of endmembers in a linear mixture
dictionary. Instead, the sparse representation dictionary is trained to adapt to the data to some
degree, so that it is possible for several dictionary elements to represent a single type of material.
We can view this scenario as forming a subspace to represent a spectral signature instead of using
a single endmember. In fact, this type of flexibility may be more advantageous considering the
fact that hyperspectral image pixels are hardly pure in most scenes. Another advantage of sparse
representation based method is that unlike other coefficient vectors result from a transform such
as wavelet, sparse representation coefficients have not only energy compacting feature, they can
be used as other types of feature in various tasks such as classification [Charles et al. 2011].

Apart from the work discussed above, a number of highly efficient compression methods has
been developed for hyperspectral image and other remote sensing data. These techniques include
transform based coding, vector quantization, predictive coding and others [Motta et al. 2009;
Penna et al. 2007]. Since sparse representation based compression method is closely related to
transform based coding approaches, we compare the proposed method with some representative
transform based techniques, where we chose JPEG 2000 and 3D SPIHT. Typically, the develop-
ment of a transform based compression algorithm for hyperspectral data involves separate spectral
and spatial decorrelations. A commonly applied transform in this regard is the DWT. This type of
approaches leads to a number of successful hyperspectral image compression techniques. These
include but not limited to 3D-SPIHT [Kim et al. 2000], three-dimensional set partitioned embed-
ded block (3D-SPECK) [Tang et al. 2003a], and three-dimensional tarp coding (3D-TARP) [Wang
et al. 2004]. Further, the part 2 of JPEG 2000 standard supports multi-component transform to
be applied to high dimensional images, including hyperspectral image. It has been shown that
JPEG 2000 plus a spectral decorrelation, such as PCA or DWT, could achieve rate-distortion
performance superior to other wavelet based methods [Du and Fowler 2007; Fowler and Rucker
2007].

71 5.3 Sparse Representation Based Hyperspectral Image Compression

Using dictionary based sparse coding, we represent a high dimensional data in a lower dimen-
sional space of a few active dictionary atoms. Similar to PCA, this is a type of dimensionality
reduction. The difference is in sparse representation, the dimensionality of dictionaries is usually
higher than that of input pixels, and only a few of the dictionary atoms are activated to represent
one pixel. Using PCA, however, almost all of the principle components (PCs) in the transform
matrix are used to represent a pixel. (Note that the transform matrix here may be formed by all of
the PCs or a subset of the PCs of the data.) In another words, PCA allows us to capture pairwise
correlations while sparse representation is not restricted to pairwise.

5.3 Sparse Representation Based Hyperspectral Image Compression

In this section, we discuss the details on applying sparse representation in modelling hyperspectral
data, and the overall structure of the proposed lossy compression framework. A common issue in
the sparse representation based data compression methods is the choice of online or offline dic-
tionary training. The difference lies in whether to include (online training) the dictionary in the
compressed bit stream or not (offline training). We adopt a hybrid approach in our framework.
In the hybrid approach, we first train a base dictionary offline, then update the base dictionary
using the data to be compressed. This approach requires transmitting the updated dictionary to
the decoder. To reduce the overhead of transmitting the updated dictionary, we transmit only the
difference between the base and updated dictionaries. As in [Horev et al. 2012], we may also
set the base dictionary as a pre-defined one, such as DCT. However, the base dictionaries in our
method are pre-trained due to the following considerations. Firstly, the remote sensing data is
often acquired over the same region during different time periods. Therefore, it is feasible to train
a dictionary on the previously acquired data, and then use it as the base dictionary in encoding of
an input data. At the decoder, a dictionary is constructed using the same base dictionary and the
transmitted difference between the base and updated ones at the encoder. Secondly, the overhead
of transmitting a dictionary is reduced by sending the difference between the base and updated
dictionaries. Lastly, the dictionary can be conveniently updated. Compared to training a dictio-
nary without a pre-trained base dictionary, the hybrid approach can reduce the computational cost
in the encoder substantially.

A block diagram of the proposed lossy compression framework is given in Figure 5.1. The
framework consists of three main processes: dictionary training, data compression, and data de-
compression. The following subsections discuss each process in details.

5.3.1 Dictionary Training

The main task at this stage is to train a dictionary offline using a set of training samples from
a hyperspectral data set. The learned dictionary is then considered as the base dictionary for
the subsequent data compression stage. Training a representative dictionary is crucial for the
overall performance of the compression method. We consider using online dictionary learning
algorithm [Mairal et al. 2010] to train a dictionary. It is computationally prohibitive to learn
a dictionary using batch based training method, such as K-SVD, when a data set has a large
quantity of samples. Compared to batch based training method, online dictionary learning has
the advantage of being capable of handling large data sets.

5.3 Sparse Representation Based Hyperspectral Image Compression 72

Figure 5.1: The proposed hyperspectral image lossy compression framework based on dictionary and
sparse coding.

The dictionary learning problem in our approach is set using matrix form as follows.

argmin
D,A

1

2
||X−DA||2F subject to ||αi||0 ≤ µ, 1 ≤ i ≤ N, (5.3)

where each column in matrix X ∈ RM×N represents one of the training samples, and the corre-
sponding column in sparse matrixA ∈ RK×N is the coefficient vector. The parameter µ indicates
the maximum number of nonzero components in each coefficient vector. The optimal criterion
in Problem (5.3) is the least squared error for representing each input signal, and ||αi||0 ≤ µ is
the sparsity constraint on the coefficient vectors. The dictionary D ∈ RM×K consists of atoms
(i.e. columns) that have unit `2-norms. Furthermore, D is overcomplete, that is the number (i.e.,
K) of atoms is greater then the number (i.e.,M) of dimensions of an input data. The reason for
desiring an overcomplete dictionary is its flexibility in modelling an input structure, as well as
greater robustness in the case of noise [Olshausen and Field 1997].

Online dictionary learning algorithm [Mairal et al. 2010] learns a dictionary through a number
of iterations. At each iteration, one training sample (or a small group of samples) is drawn and its
sparse decomposition is computed over the dictionary learned during the previous iteration. This
is followed by a dictionary update step where a new dictionary is computed based upon the sparse
decompositions computed in previous iterations and the current dictionary. In the dictionary
update step, each atom in the dictionary is updated sequentially by minimizing the quadratic error
in (5.3), while keeping the other atoms and the coefficient matrixA fixed. This learning process is
a stochastic approximation approach that aims at obtaining sufficient statistics by aggregating the
past information during each iteration. The statistics are then utilized to minimize an expected
cost function. This approach often yields faster convergence with a sufficiently good expected
cost.

In (5.3), the dimension of pixel vectors, i.e., M , decides the size of dictionary atoms in D.
Since we expect the learned dictionary to be overcomplete, i.e. K = cM, c > 1, consequently

73 5.3 Sparse Representation Based Hyperspectral Image Compression

the number of atoms, K, is set according toM . On the other hand, the dimension of coefficient
vectors is dependent on the valueK. When it comes to encoding the sparse coefficient matrix A
in data compression stage, the larger the value of K becomes, the more negative impact it gives
in the resulting bit rate. The choice of an optimal value for K is mostly done experimentally in
related works.

As the trained dictionaries are going to be applied in hyperspectral image compression, they
should be learned in such a way that can exploit the correlations in the input data. There exists
significant correlations between consecutive bands in a hyperspectral image. A decorrelation in
the spectral domain is usually an important step in other hyperspectral image compression meth-
ods including 3D-SPIHT and JPEG 2000. To exploit the spectral redundancies in a hyperspectral
image, we train a dictionary in the spectral domain and refer to it as spectral dictionary (SD).
More concretely, an SD is trained on data set X, where X = {xi}Ni=1,xi ∈ RM ,M is the number
of bands in hyperspectral image, and N is the total number of training pixels. For hyperspectral
images, it is common for N to be large.

On the other hand, the neighbouring pixels in a hyperspectral image usually consist of similar
materials. Thus, hyperspectral images possess not only a high degree of spectral correlations, it
also has rich spatial correlation among neighbouring pixels. In order to train a dictionary that ex-
ploits both spatial and spectral correlations, we employed dictionaries learned in wavelet domain.
This is achieved by applying a wavelet decomposition to a hyperspectral image in the spatial do-
main, followed by training the dictionary using the spectral wavelet coefficients. We refer to this
type of dictionary as multiscale spatial-spectral dictionary (MSSD). Further details on MSSD
learning are given in the following subsection.

5.3.1.1 Multiscale Spatial Spectral Dictionary Learning

Multiscale analysis of images has taken a prominent role in image processing during the last sev-
eral decades. Several different families of multiscale decompositions of 2D images have been
proposed and developed. They include Laplacian Pyramid, Wavelet decomposition, Wavelet
Packet decomposition, and advanced multiscale decompositions such as Counterlets, Curvelets,
Bandlets, and more. In this work, we applied discrete wavelet decomposition, or DWT, for our
purpose.

Any spectral band, B, of a hyperspectral image can be viewed as a 2D image. We apply DWT
toB to obtain the corresponding wavelet coefficients. In wavelet domain, these coefficients can be
organized into a collection of images, also referred to as subbands, at different scales and orienta-
tions (horizontal, vertical and diagonal). Figure 4.6 on Pg. 55 shows the three-level DWT of image
‘Lena’. Specifically, given the number of decomposition levels, S, we decompose each hyperspec-
tral band image independently. This process results in 3S + 1 subbands for each hyperspectral
band, and they are denoted as LL0, LH0, HL0, HH0, LH1, . . . ,HL3S , HH3S , respectively. We
group the same subbands from all the hyperspectral bands and formulate hyperspectral images of
different scales and orientations in wavelet domain. A sub-dictionary is then trained on each of
these subband hyperspectral images, and subsequently, 3S + 1 sub-dictionaries are trained.

Through multiscale dictionary learning, we aim to achieve decorrelations in both spatial and
spectral domains. The spatial decorrelation is achieved by wavelet decomposition of each hyper-
spectral band, and the spectral decorrelation is obtained via sparse coding the spectral wavelet
coefficients using the MSSDs. This approach offers a number of flexible options due to the mul-
tiscale nature of DWT. These include the number of decomposition levels, the choices of wavelet

5.3 Sparse Representation Based Hyperspectral Image Compression 74

filters, and the ways to group subbands, such as according to the orientation or decomposition
level etc., to train dictionaries. In this thesis, we investigated the following options.

1. Limit the number of decomposition levels, in order to reduce the number of dictionaries to
be trained.

2. Group each subband hyperspectral image to train a sub-dictionary. This allows the alloca-
tion of more bits to the more significant subbands.

3. Two choices of wavelet filters, namely 5/3 filter bank and 9/7 filter bank, are applied for
reversible and irreversible DWT, respectively. These two choices are commonly applied
as standard filter banks in other DWT based hyperspectral image compression schemes.
Some details of the above filters were also discussed in Sections 4.5.4 and 4.6.2. Tables 5.1
and 5.2 show the corresponding coefficients.

Table 5.1: Coefficients for 5/3 Filter Bank
Low-pass filter High-pass filter

n g[n] n h[n]

0 3
4 0 1

±1 1
4 ±1 −1

2
±2 −1

8

Table 5.2: Coefficients for 9/7 Filter Bank
Low-pass filter High-pass filter

n g[n] n h[n]

0 0.602949018236 0 0.557543526229
±1 0.266864118443 ±1 -0.29635881557
±2 -0.078223266529 ±2 -0.028771763114
±3 -0.016864118443 ±3 0.045635881557
±4 0.026748757411

5.3.1.2 Dictionary Atom Sorting

The dictionaries applied in our compression framework are overcomplete and unstructured. This
is in contrast to the bases in Fourier or wavelet transforms, where they are well ordered in terms
of frequency, and hence, have intuitive physical interpretations. To enforce similar interpretations
for the dictionary atoms, Li et al. [2013] proposed a solution by generalizing the concept of fre-
quency for overcomplete dictionaries. The proposed solution is based on the observation that the
magnitudes of coefficients at a certain frequency f in transforms such as Fourier or wavelet are
proportional to 1/f [Field 1987]. That is, small magnitudes are more common then the larger
ones. Thus, Li et al. [2013] sorts the atoms in an overcomplete dictionary in a way such that
the magnitudes of the sparse coefficients are in descending order. In this manner, the indexes of
atoms can be interpreted as frequencies. Specifically, the above sorting algorithm proceeds in the
following steps:

75 5.3 Sparse Representation Based Hyperspectral Image Compression

Step 1 Determine the order of the active atoms for each training sample by sorting them according
to the magnitudes of the sparse coefficients in descending order;

Step 2 Record all the orders of the activated atoms and obtain an average frequency order;
Step 3 Sort the atoms in the dictionary in an ascending order based on their frequency orders.

The main purpose of dictionary atom sorting discussed above is to impose a similar under-
standing of the atoms in terms of frequency to that of Fourier or wavelet bases. In DCT or DWT
based data compression, the data can be well approximated using the low frequency coefficients,
and the high frequency ones can be discarded. However, in our sparse representation based ap-
proach, the number of coefficients during sparse coding can be controlled using parameters, such
as the maximum number of nonzero coefficients. Thus, using a sorted dictionary has not shown
a significant impact on the compression performance of hyperspectral data.

5.3.2 Hyperspectral Image Compression

Given a learned dictionary D, and a hyperspectral image X, the proposed method also performs
the following tasks.

Sparse coding: we find the sparse representation matrixA forX using OMP. This problem is
set as in (5.3) with the dictionary fixed. OMP, as shown in Algorithm 2 on Pg. 26, is a greedy al-
gorithm based onmatching pursuit [Mallat and Zhang 1993] that refines the signal approximation
with an iterative procedure. At each iteration, the current residual is decomposed by projecting
the signal on each dictionary atom in D, and selecting the atom that minimizes the residual. Once
an atom is selected at each iteration, the signal is orthogonally projected to the span of the current
selected atoms, and the residual is recomputed for the next iteration. The iteration stops when the
number of nonzero coefficients satisfies the prescribed threshold, i.e., the value µ. Note that the
residual monotonically decreases at each iteration. The computational complexity of the sparse
coding using OMP can be estimated based on the number of input pixel vectors, the number of
dictionary atoms and the number of nonzero coefficients, which is O(NKµ). The major com-
putational cost at each iteration comes from finding the coefficients corresponding to the current
selected atoms, which involves inversion of matrix comprised of the selected dictionary atoms.

As an example, Figure 5.2 (a) illustrates the sparse coefficients of a few hyperspectral image
pixels. The dictionary is learned from the hyperspectral image Lunar Lake, and its size is 224×
448. The sparse coding is done using µ = 6, i.e., the maximum number of nonzero coefficients in
each sparse representation is 6. We can see that for pixel 66 (the number indicates the column
number in the first band of the subcube being used), the atoms being activated during the sparse
coding are with indexes 59, 170, 209, 264, 383, 416. We then compared in Figure 5.2 (b) the first
two activated atoms with the original pixel. In this case, the first atom (with index 59) activated
is more similar to the original pixel than the second atom (with index 170) being activated. We
further compared the original pixels with the reconstructed ones in Figure 5.2 (c) – (f), where we
used two different µ values of 1 and 6. From these comparison, we can see that when the value µ
increases, the reconstructed pixels fit more closely to the original ones.

Quantization and entropy coding: Due to the nature of sparse coding, matrix A is sparse.
In order to transmit matrix A to the decoder, we first employ a common sparse matrix represen-
tation scheme index-value pair to represent matrix A. That is, for each nonzero component in
A, we record its position information (row and column indexes), and the nonzero value itself by
traversing the matrix in a certain order such as row-major or column-major. We need to compress

5.3 Sparse Representation Based Hyperspectral Image Compression 76

(a) (b)

(c) µ = 1 (d) µ = 6

(e) µ = 1 (f) µ = 6

Figure 5.2: (a) Sparse coefficients of 4 hyperspectral image pixels after sparse coding using µ = 6, (b)
Comparison of two dictionary atoms and a hyperspectral image pixel, (c), (d), (e), (f) Comparisons of two
original hyperspectral image pixels and their reconstructed ones using sparse coding with µ = 1 and 6,
respectively.

77 5.3 Sparse Representation Based Hyperspectral Image Compression

Figure 5.3: The process of hyperspectral image compression using dictionary and sparse coding

Algorithm 8: Encoding the sparse representation matrix A

Input: Sparse representation matrix A
Output: Bit streams for dense coefficient matrix V ∈ Rµ×N , and the corresponding row

index matrix I ∈ Nµ×N

1 begin
2 V← 0, I← 0
3 A← Convert A to an 1D array
4 Store the nonzero coefficients and their array indexes of A in V and I, respectively
5 V← Scalar quantize V

/* Difference coding of I */
/* N is the number of elements in I */

6 for i = 2 to N do
7 I[i] = I[i]− I[i− 1]
8 Entropy code V
9 Entropy code I

the position information without any loss to recover the matrix A at decoder. Figure 5.3 gives an
illustration of this process. If we encode the position information without any further processing,
the overhead of this part in the compressed bit stream could be significant. However, the constraint
we applied in our sparse coding (see problem formulation in (5.3)) is ||αi||0 ≤ µ. This means the
number of nonzero components in each column of A is less than or equal to µ. Moreover, each
column of A must have a few nonzero components, except the case where the input sample is a
zero vector. Thus, the sparse matrix A is simply turned into a vector with the nonzero coefficients
and their corresponding one-dimensional position indexes. The position indexes were encoded
first using difference coding followed by entropy coding. For entropy coding, Huffman coding
(details are given in Section 4.2) was employed in the implementation. Algorithm 8 depicts the
process of encoding of matrix A.

A uniform midrise scalar quantizer was used in our experiments. This is out of the consider-
ation of not to quantize small coefficient values to zero. As we increase the number of nonzero
entries in the sparse coefficients, some of the entries become smaller. If a uniform midtread quan-
tizer is used, some of these smaller coefficient entries are quantized to zero, and subsequently, it
increases the reconstruction error. The step size ∆ in our uniform midrise quantizer was chosen

5.3 Sparse Representation Based Hyperspectral Image Compression 78

Algorithm 9: A uniform scalar quantizer for forward and inverse quantization
Input: V, ∆, bin_size, threshold t, indicator q (if q is TRUE, it is a forward quantization;

otherwise, it is a inverse quantization.)
Output: V

1 begin
2 for each element v of V do
3 if q is TRUE then
4 y = b |v|−t∆ c+ 1
5 if y > bin_size then
6 y = bin_size
7 v = sign(v) ∗ y
8 else
9 y = |v| ∗∆ + t

2
10 v = sign(v) ∗ y

according to the dynamic range of the nonzero components of sparse coefficients. That is,

∆ =
sign(max{V}) ∗ 2dlog2 |max{V}|e − sign(min{V}) ∗ 2dlog2 |min{V}|e

bin_size
, (5.4)

where

sign(x) =

{
1 x ≥ 0

−1 x < 0,

and bin_size is the number of distinct values in the quantizer. The forward and inverse quantizers
were implemented as in Algorithm 9.

Coding the DC component: The mean value, referred to as DC component hereafter, of
each data sample is removed before sparse coding. Subsequently, an overhead of lossy coding of
the DC component occurs. In this thesis, the DC component is coded using predictive coding.
Prediction can be viewed as a context modelling technique of very low model cost that is highly
effective under the assumption of smoothness [Wu andMemon 1997]. Following the work in [Wu
and Memon 1997], a simplified gradient-adjusted predictor plus context modelling of prediction
error is applied in the coding of the DC component. We describe the method in the following.

For example, given the following context, predict the pixel value of p.

x7 x8 x9 x10 x11

x6 x3 x2 x4

x5 x1 p =?

79 5.3 Sparse Representation Based Hyperspectral Image Compression

In order to predict the value of p, we first estimate the gradients in horizontal, vertical, and
three diagonal directions as in (5.5). We may apply a weight vector in (5.6) as the scaling factors
on different directional gradients. The pixel value is predicted by the neighbour which gives
the minimum gradient. The method is summarized in more details as follows. (Note that, a, b
in (5.5), (5.7) are values set according to the priority of different orientations, and 0 ≤ c < 1.)

Step 1 Estimate the gradients of the intensity function at the pixel in question as (5.5).

d =


x1 − x5		x2 − x3		x3 − x6		x4 − x2
x1 − x3		x2 − x9		x3 − x8		x4 − x10
x1 − x6		x2 − x8		x3 − x7		x4 − x9
x1 − x2		x2 − x10		x3 − x9		x4 − x11

|x1 − ax5+bx2
5 | |x2 − ax3+bx10

5 | |x3 − ax6+bx9
5 | |x4 − ax2+bx11

5 |

 (5.5)

In (5.5), the first row estimates the gradients of the intensity function at horizontal direction,
the second row at vertical direction, the third and fourth rows at two diagonal directions,
and the last row at a weak diagonal direction.

Step 2 Find the row number r (1 ≤ r ≤ 5 in (5.5)) with the minimum value in the multiplication
of dw; w, as in (5.6), is a weight vector;

w = (w1w2w3w4)T (5.6)

Step 3 Predict the pixel value p in question by

p̂ =



x1 if r = 1

x2 if r = 2

x3 if r = 3

x4 if r = 4

bax1+bx2
5 + cc if r = 5

(5.7)

Step 4 Compute the prediction error as the mean value of row r, where r is determined in Step 3;
Step 5 Context modelling of prediction error — Gradients characterize the relationships between

the predicted pixel and its surrounding to some extent only. Context modelling of pre-
diction errors can exploit higher order structures such as textures and local activity in an
image for further compression gains [Wu and Memon 1997]. Wu [1997] has proposed an
effective way of context modelling by estimating only the conditional expectations using
the corresponding sample means within a context. Due to its effectiveness and low model
cost, we adopted this approach in context modelling of the prediction errors as in Step 4.
The prediction error sequence is then divided into a number of smaller sequences based on
the context models obtained. In this way, the standard deviation within each smaller group
is reduced, and compression gain can be achieved during the entropy coding stage.

We have, so far, discussed only the interior pixels. The boundary pixels need to be treated
specifically, and many different options can be applied. For instance, A pixel, excluding the first
two ones, at the first row can be predicted using its immediate two previous pixels; the pixels at
second row can be predicted using the previous neighbours from the first and second rows etc.

The inverse of predictive coding is simply the inverse operations of the various prediction rules
applied in the forward operation. Especially, for the interior pixels, the forward and the inverse
operations are identical.

5.4 Experiments 80

5.3.3 Decompression

Decompression stage consists of the following operations.

1. The inverse operation of entropy coding. It is the Huffman decoding in our implementation.
2. The inverse quantization. In our experiment, we adopted the approach presented in Algo-

rithm 9.
3. Construct the approximated sparse representation matrix Â according to the recovered

sparse coefficients and their corresponding array indexes.
4. Approximate the dictionary D̂ as D̂ = D+D′′, whereD is the base dictionary (offline) and

D′′ is the approximation to the difference between original updated and base dictionaries.
5. Reconstruct the hyperspectral image as

X′ = D̂Â, (5.8)

6. Resume the DC component to X′ in order to obtain the final reconstructed hyperspectral
image X̂.

5.4 Experiments
To evaluate the proposedmethod, a compression framework is implemented. For dictionary learn-
ing and sparse coding, we used SPAMS (v2.5) [Mairal et al. 2009], an open source optimization
toolbox for sparse estimation. The compressed bit stream mainly consists of three parts. These
include the DC component, the quantized nonzero components of the coefficient vectors and their
position information (only the row indexes) in A. The DC component is compressed using JPEG
2000 lossless coding. The quantized nonzero components and position information are encoded
using a Huffman coder. The experiments are run on a PC with Intel R©Core R©i7-3770 CPU @
3.40GHz with 7.8 GB memory.

5.4.1 Experimental Data Sets

The data sets used in the experiments are mainly AVIRIS images. They are grouped as follows.

Group 1 The first three data sets are the ones used in [Du and Fowler 2007], and they are termed as
Cuprite I, Jasper Ridge, and Moffet Field I here. Figure 5.4 shows the grey scale images of
the three data sets. These data sets are commonly used as benchmark data for hyperspectral
image compression in the related works. The sizes of the images are 512× 512. The data
is available online from https://aviris.jpl.nasa.gov/data/free_data.html.

Group 2 The next three data sets, named Indian Pines, University of Pavia, and Salinas, are com-
monly used for the task of hyperspectral image classification. Their respective sizes are
145 × 145 × 200, 610 × 340 × 103, and 512 × 217 × 204 after removing some noise
bands. The data is available online from https://engineering.purdue.edu/~biehl/
MultiSpec/. Further details of these three data sets are given in Chapter 6.

Group 3 The last group of data sets is obtained at https://aviris.jpl.nasa.gov/alt_locator/.
These data sets are radiance data stored in 16 bit signed integers with 224 bands. The dic-
tionaries concerned in this thesis are trained on these data sets using cropped sub-cubes
of size 1024 × 512 × 224. The site names used in this thesis for these data sets are listed
below, together with their respective file names and the scopes of the training and testing

 https://aviris.jpl.nasa.gov/data/free_data.html
https://engineering.purdue.edu/~biehl/MultiSpec/
https://engineering.purdue.edu/~biehl/MultiSpec/
https://aviris.jpl.nasa.gov/alt_locator/

81 5.4 Experiments

sub-cubes. For instance, “Train: 51 - 1074; 51 - 562; 1 - 224” in the following list means
this sub-cube starts at row (or line) 51, column (or sample) 51, and ends at row 1074, col-
umn 562 including all the bands, i.e., 224 bands. Further, the sub-cube was used only for
training a dictionary. When a sub-cube was used for compression, it is indicated as “Test”.
The images of some of these data sets are displayed in Figure 5.6.

a) Lunar Lake (f090819t01p00r06 — Train: 51 - 1074; 51 - 562; 1 - 224. Test: 1537 -
2048; 51 - 562; 1 - 224);

b) Moffett Field II (f080611t01p00r07— Train: 51 - 1074; 51 - 562; 1 - 224. Test: 1025
- 1536; 51 - 562; 1 - 224);

c) Bay Area I (f140418t01p00r08 — Train: 1 - 1024; 51 - 562; 1 - 224. Test: 1025 -
1536; 51 - 562; 1 - 224);

d) Bay Area II (f141124t01p00r08 — Test: 51 - 562; 51 - 562; 1 - 224);
e) Bay Area III (f140528t01p00r16 — Test: 100 - 611; 512 - 1023; 1 - 224);
f) Cuprite II (f090819t01p00r11 — Test: 51 - 562; 51 - 562; 1 -224);
g) Cuprite III (f080611t01p00r06 — Train: 51 - 1074; 51 - 562; 1 - 224);

(a) (b) (c)

Figure 5.4: Grayscale images of Group 1 data sets (a) Cuprite I, (b) Jasper Ridge, and (c) Moffett Field I.

(a) (b) (c)

Figure 5.5: False colour images of Group 2 data sets (a) Indian Pines, (b) University of Pavia (cropped),
and Salinas (cropped)

5.4 Experiments 82

5.4.2 Experiment Setup

The numerical results to be presented use an MSE based distortion measure, which is signal to
noise ratio (SNR), as well as two measures of data quality. The SNR is computed as

SNR = 10 log10(σ2/MSE), (5.9)

where

MSE =
1

MN

M−1∑
i=0

N−1∑
j=0

(xi,j − x̂i,j)2, (5.10)

σ2 is the variance of input signal, and computed as

σ2 =
1

MN

M−1∑
i=0

N−1∑
j=0

(xi,j −X), (5.11)

where X is the mean value of X.
The two qualitymeasures include spectral anglemapper (SAM) for evaluating spectral fidelity,

and anomaly detection based spatial correlation coefficient (ρ) for data analysis purpose. The
SAM measures the similarity between two vectors by computing the angle between them, i.e.,

SAM(x, x̂) = arccos
xTx̂

‖x‖2‖x̂‖2
. (5.12)

The SAM distortions were evaluated in terms of

• pSAM — the largest SAM distortion;
• µSAM — the mean of SAM;
• σSAM — the standard deviation of SAM

in degrees over the entire data set.
The data quality measure with regard to anomaly detection is based on the anomaly detector

described in Section 2.2.2 on Pg. 15. An anomaly in a hyperspectral image is likely a target, and its
spectral signature is usually very different from those of its background. It is important to preserve
such information in the lossy compression of hyperspectral images for data analysis purpose.
To obtain a measure of such quality of the reconstructed data, we considered the detection map
from the original data to be the ground truth, and the one resulting from the reconstructed data
was compared to it. The detection maps for the original and reconstructed data were computed
using (2.6) on Pg. 16. The similarity of these two maps was then measured using the spatial
correlation coefficient, ρ, which is computed as

ρ(Y, Ŷ) =

∑
i

∑
j (yi,j −Y)(ŷi,j − Ŷ)√∑

i

∑
j (yi,j −Y)2

∑
i

∑
j (ŷi,j − Ŷ)2

, (5.13)

where Y, Ŷ are the detection maps for the original and reconstructed data, respectively, 0 ≤ ρ ≤
1, and the similarity increases when ρ increases to 1.

The rate measurements are taken as bits per pixel per band (bpppb). The rate control in the
experiments is achieved by setting the maximum number of nonzero coefficients during sparse
coding.

83 5.4 Experiments

The compression performances on the selected experimental data sets are compared to those
using 3D-SPIHT and JPEG 2000 with a multicomponent transform, both are embedded wavelet
based coders. For JPEG 2000 multicomponent, PCA and DWT are chosen for spectral decorre-
lation, and they are termed PCA+JPEG2000 and DWT+JPEG2000, respectively. The 3D-SPIHT
implementation we use is QccPack (http://qccpack.sourceforge.net) [Fowler 2000]. We
use Kakadu version 7.7 (http://kakadusoftware.com), which has an implementation of Part
2 of JPEG 2000 standard. For both 3D-SPIHT and JPEG 2000, we use the Cohen-Daubechies-
Feauveau 9-7 filter with symmetric extension. The quantization step size used in JPEG 2000 is
10−5.

With a fixed dictionary, the efficiency of sparse coding is fundamental to the data represen-
tation based on the given dictionary. Hence, besides the data compression performance, we also
present the performance of sparse coding by giving some experimental results on the MSE cor-
responding to the sparsity of the coefficient vectors.

For data sets in Group 1 and Group 2, the dictionary training and compression were performed
on the same data sets, and hence, the trained dictionaries were included in the compressed bit
streams. For data sets in Group 3, however, the dictionary training and compression were con-
ducted on different sub-cubes. In this case, the base dictionaries were updated according to the
data to be compressed, and the difference between the base and updated dictionaries were trans-
mitted to the decoder.

5.4.3 Results of Experiments and Discussion

This section demonstrates the compression performance of the proposed framework. The perfor-
mance is inspected on various aspects, such as compression performance, comparison between
the effectiveness of base and updated dictionaries, the bit distribution, and computational com-
plexity. We discuss results that illustrate each of these separately in the following subsections.

5.4.3.1 Compression Performance

The comparisons of rate-distortions and other quality measures using various compression meth-
ods are illustrated in Tables 5.3, 5.5, and 5.6. In these tables, the SNR, spectral fidelity, and
spatial correlation coefficients are compared for DWT+JPEG2000, PCA+JPEG2000, 3D-SPIHT,
the sparse representation based method using spectral dictionary (SRSD), and using multi-scale
spectral dictionary (MSSD).

Due to the high computational cost in dictionary training, it is desirable to employ dictionar-
ies trained offline in the proposed compression framework. However, in order to compare the
performance of the proposed method with the DWT or PCA coupled with JPEG 2000, we trained
spectral dictionaries using each of the 3 sets of data in Group 1, namely, Cuprite I, Jasper Ridge
and Moffett I, used in [Du and Fowler 2007]. The data sets were then compressed using their
corresponding dictionaries, respectively. The resulting performance is shown in Table 5.3, where
it is compared to the results using PCA+JPEG2000 and DWT+JPEG2000. We observe from Ta-
ble 5.3 that the sparse representation based methods perform inferior to both DWT+JPEG2000
and PCA+JPEG2000 at lower bit rates. Note that the performance is compared on all the criteria
that these methods are evaluated on. At higher bit rates (> 0.25 bpppb), both SRSD and MSSD
perform similar or slightly better than DWT+JPEG2000, while PCA+JPEG2000 performs the
best on the evaluated criteria.

http://qccpack.sourceforge.net
http://kakadusoftware.com

5.4 Experiments 84

Table 5.3: Compression Performance of Various Methods for Group 1 Data Sets

0.10 bpppb 0.25 bpppb 0.50 bpppb 1.0 bpppb

DWT PCA SRSD MSSD DWT PCA SRSD MSSD DWT PCA SRSD MSSD DWT PCA SRSD MSSD

Cuprite I

SNR 38.7 44.4 32.7 33.4 43.1 47.9 41.5 43.7 46.7 50.4 47.1 47.3 51.0 54.0 50.0 49.7
ρ 0.62 0.65 0.27 0.56 0.74 0.69 0.66 0.66 0.74 0.65 0.69 0.71 0.79 — 0.72 0.69
pSAM 1.43 0.94 7.20 5.12 0.61 0.59 1.92 1.92 0.33 0.37 0.92 0.98 0.32 — 0.62 0.55
µSAM 0.44 0.25 0.91 0.61 0.28 0.17 0.33 0.25 0.19 0.13 0.17 0.17 0.12 — 0.13 0.13
σSAM 0.13 0.04 0.20 0.36 0.06 0.02 0.07 0.07 0.13 0.01 0.02 0.03 0.02 — 0.01 0.01
SNR 28.9 36.8 26.2 24.3 34.5 43.0 35.5 36.4 39.2 46.5 42.4 42.4 44.8 50.3 46.1 45.7

Jasper ρ 0.63 0.95 0.41 0.51 0.90 0.91 0.81 0.77 0.94 0.90 0.86 0.80 0.95 — 0.93 0.86
Ridge pSAM 4.38 2.37 9.74 3.89 1.71 0.66 5.09 5.81 0.95 0.34 1.39 3.75 0.90 — 0.91 2.94

µSAM 1.47 0.62 1.94 1.99 0.81 0.32 0.68 0.59 0.48 0.21 0.31 0.32 0.26 — 0.21 0.22
σSAM 0.56 0.17 0.66 1.27 0.27 0.07 0.20 0.23 0.14 0.05 0.07 0.08 0.06 — 0.04 0.05

Moffett I

SNR 29.7 37.5 26.2 25.0 35.5 43.6 35.9 36.7 40.2 47.0 43.0 42.6 45.5 50.9 46.5 46.2
ρ 0.57 0.74 0.35 0.48 0.68 0.43 0.58 0.62 0.77 0.77 0.68 0.68 0.86 — 0.79 0.80
pSAM 2.66 1.77 9.30 1.24 1.17 0.67 4.42 3.50 0.54 0.23 3.47 2.72 0.99 — 3.38 0.30
µSAM 1.21 0.52 1.81 1.70 0.66 0.28 0.60 0.53 0.40 0.19 0.27 0.29 0.22 — 0.18 0.20
σSAM 0.48 0.15 0.53 1.12 0.21 0.07 0.20 0.23 0.11 0.05 0.06 0.08 0.05 — 0.03 0.04

DWT: DWT+JPEG2000; PCA: PCA+JPEG2000; SRSD: sparse representation using SD; MSSD: sparse representation using multi-scale SD.
—: For PCA+JPEG2000, only up to 54 principle components were used due to the line restrictions on giving the transform matrix in demo version of Kakadu 7.7. Thus
the results for PCA+JPEG2000 at bit rate 1.0 were not presented here.
Dictionary sizes: i) SRSD for all three data sets: 224∗448; MSSD for all three data sets: 224∗448 for the LL component, and 224∗269 for the LH, HL, HH components.

Recall that only a few of the dictionary atoms are chosen to represent one pixel in sparse
representation, while in PCA, essentially all of the principle components in the transform matrix
are used to represent a pixel. This could be one of the reasons why the methods based on sparse
representation perform poorly at lower bit rates, where usually only a couple of dictionary atoms
are chosen for representing an input sample.

Although MSSD is expected to improve the performance of SRSD, due to the cost of trans-
mitting the multiple dictionaries, the performance gain is likely traded off. In particular, the
performance of MSSD at lower bit rates is very limited as the dictionaries make up a significant
fraction of the final bit stream. At higher bit rates, however, the effect becomes less significant.
To illustrate the impact of transmitting the dictionaries in MSSD, we compared the performance
of MSSD from Table 5.3 to the one where the dictionaries were not transmitted (MSSD-). These
results are shown in Table 5.4. The dictionaries used for MSSD (in Tables 5.3 and 5.4) were
224 × 448 for the wavelet LL component, and 224 × 269 for the 3 other components (only one
level of DWT was considered here).

Table 5.5 shows the results for the compression of the data sets in Group 3. For Bay Area
I and Bay Area II, an SD or MSSD learned on a sub-block of Bay Area I is used as the base
dictionary; For Lunar Lake and Moffett Field II data, SDs or MSSDs trained on the sub blocks
of these two data are employed as the base dictionaries, respectively. The data sets being com-
pressed in the experiments are chosen as a sub cube of 512 × 512 × 224 excluding the data for
training dictionaries. For multi-scale dictionaries in wavelet domain, only one level of wavelet
decomposition is considered due to the overhead of transmitting the information on updated dic-
tionaries. In Table 5.5, the performance of SRSD is comparable or better (at higher bit rates) than
that of DWT+JPEG2000 in terms of SNR. However, the improved performance on SNR does
not necessarily translate to other quality criteria, especially in the case of spectral fidelity for the
strongest distortion pixel, i.e., pSAM. The method of MSSD improves on most of the assessment
criteria, except pSAM, compared to SRSD for most of the data sets considered. However, this is
not the case for Moffett II data set. One possible reason for this scenario is that this particular data

85 5.4 Experiments

Table 5.4: Compression Performance of MSSD with or without the Dictionaries Being Transmitted
0.1 bpppb 0.25 bpppb 0.5 bpppb 1.0 bpppb

MSSD MSSD- MSSD MSSD- MSSD MSSD- MSSD MSSD-

Cuprite I

SNR 33.4 36.6 43.7 44.8 47.3 47.7 49.7 50.2
ρ 0.56 0.56 0.66 0.67 0.71 0.71 0.69 0.76
pSAM 5.12 2.54 1.92 1.45 0.98 0.81 0.55 0.54
µSAM 0.61 0.50 0.25 0.22 0.17 0.17 0.13 0.13
σSAM 0.36 0.22 0.07 0.05 0.03 0.02 0.01 0.01
SNR 24.3 28.0 36.4 38.1 42.4 42.9 45.7 46.1

Jasper ρ 0.51 0.68 0.77 0.75 0.80 0.79 0.86 0.84
Ridge pSAM 3.89 5.0 5.81 4.92 3.75 3.55 2.94 2.94

µSAM 1.99 1.46 0.59 0.49 0.32 0.30 0.22 0.21
σSAM 1.27 0.69 0.23 0.16 0.08 0.07 0.05 0.04

Moffett I

SNR 25.0 28.2 36.7 38.7 42.6 43.4 46.2 46.8
ρ 0.48 0.47 0.62 0.58 0.68 0.68 0.80 0.81
pSAM 1.24 1.70 3.50 3.66 2.72 2.52 0.30 0.27
µSAM 1.70 1.34 0.53 0.44 0.29 0.27 0.20 0.19
σSAM 1.12 0.64 0.23 0.16 0.08 0.07 0.04 0.04

The results for MSSD are the same as in Table 5.3.
MSSD-: The dictionaries were not included in the bit stream.

set features mainly of urban area, where wavelet decomposition is not able to exploit the spatial
redundancies in the scene adequately.

Compared to the others, PCA+JPEG2000 outperforms the other methods on all assessment
criteria by considerable margin. One of the main reasons that the method SRSD performs worse
than PCA+JPEG2000 is that it exploits only spectral correlations, while both spectral and spatial
correlations are exploited in PCA+JPEG2000. After sparse coding using a dictionary, the sparse
representation coefficients are highly sparse and it makes it challenging to further exploit spatial
correlations within a band using SRSD. Although MSSD does exploit both spatial and spectral
redundancy in hyperspectral images, the extent in the case of spatial redundancy is limited to very
few wavelet decomposition levels due to the transmission overhead of dictionary.

The advantage of MSSD is that it offers a certain degree of flexibility. On one hand, the
flexibility could be in terms of the choices for dictionaries. It is possible to train a dictionary
for each component, or train a single dictionary on different components combined together. For
instance, we can train a dictionary for the LL component, and train another dictionary on the rest of
the components combined. In our experiments, we observed that individually trained dictionaries
for different wavelet components gave better compression performance than using the ones trained
on combined components. On the other hand, the flexibility could also be bit allocations. Using
MSSD, we can allocate bits to the wavelet components according to their importance or relevance.
In our experiments, more bits were allocated to the LL components than others. This is done by
assigning differentµs, i.e., themaximumnumber of nonzero coefficients, for different components
in sparse coding. For example, if µ = 6 for the sparse coding of the LL component, we can assign
µs that are less than 6 for the other components.

Compared to the data sets in Groups 1 and 3, the data sets in Group 2 are extensively used in
hyperspectral image classification, as labelled data samples exist for these data (Chapter 6 presents
the details). Since the hyperspectral images in this group feature land covers such as agriculture
and urban area, they present different image features from those in Groups 1 and 3. As such, we
investigated the compression performance of various methods for the three hyperspectral images
in Group 2. The results are compared in Table 5.6. A notable difference from the experiments on
two other groups of data is that the dictionaries for data sets in Group 2 were initialized using the

5.4 Experiments 86

Table 5.5: Compression Performance of Various Methods for Group 3 Data Sets

0.2 bpppb 0.4 bpppb 0.6 bpppb

DWT PCA SRSD MSSD SPIHT DWT PCA SRSD MSSD SPIHT DWT PCA SRSD MSSD SPIHT

SNR 34.4 45.6 32.0 34.9 25.5 39.5 48.5 39.6 41.8 30.3 42.8 50.0 42.8 45.1 33.9
ρ 0.47 0.81 0.31 0.46 0.28 0.61 0.88 0.45 0.52 0.32 0.67 0.88 0.57 0.59 0.37

Bay pSAM 4.37 1.08 13.7 7.41 10.1 2.05 0.80 6.87 4.36 4.44 1.34 0.78 5.79 2.95 2.84
Area I µSAM 0.71 0.21 0.91 0.64 1.98 0.41 0.15 0.38 0.30 1.17 0.28 0.13 0.27 0.21 0.78

σSAM 0.32 0.05 0.70 0.38 0.66 0.15 0.03 0.22 0.15 0.38 0.09 0.02 0.13 0.07 0.23
SNR 29.6 40.3 29.1 31.7 21.2 34.3 43.2 37.4 38.4 25.1 37.1 44.6 40.3 40.7 28.0
ρ 0.56 0.82 0.53 0.47 0.49 0.66 0.88 0.59 0.51 0.49 0.71 0.88 0.63 0.53 0.53

Bay pSAM 5.66 1.56 5.96 5.82 13.3 3.01 1.44 2.75 4.64 7.85 2.14 1.42 1.77 3.54 4.58
Area II µSAM 1.27 0.39 1.23 1.02 3.07 0.75 0.28 0.48 0.48 2.03 0.55 0.23 0.35 0.37 1.49

σSAM 0.49 0.11 0.45 0.36 0.95 0.26 0.06 0.14 0.13 0.57 0.17 0.05 0.08 0.09 0.40
SNR 36.2 46.5 35.8 38.7 25.7 40.9 48.9 41.6 43.9 29.5 43.6 50.3 45.3 46.1 32.4
ρ 0.55 0.76 0.47 0.63 0.49 0.66 0.80 0.59 0.64 0.59 0.72 0.81 0.67 0.57 0.60

Lunar pSAM 3.39 0.86 4.90 2.22 7.62 1.67 0.84 1.41 1.09 4.21 1.10 0.83 0.85 0.93 2.67
Lake µSAM 0.54 0.17 0.55 0.40 1.65 0.32 0.13 0.28 0.22 1.12 0.24 0.11 0.19 0.17 0.81

σSAM 0.17 0.03 0.15 0.12 0.39 0.09 0.02 0.06 0.05 0.29 0.05 0.02 0.03 0.03 0.20

Cuprite II

SNR 39.0 47.7 38.8 39.9 27.4 43.5 50.0 43.8 44.9 31.7 46.0 51.3 46.1 47.2 34.7
ρ 0.84 0.94 0.72 0.74 0.35 0.83 0.95 0.71 0.75 0.46 0.81 0.95 0.67 0.77 0.51
pSAM 3.34 1.14 5.44 6.98 8.75 1.58 1.05 4.11 3.67 4.36 1.05 1.04 2.06 2.99 3.30
µSAM 0.40 0.16 0.32 0.32 1.36 0.24 0.12 0.21 0.19 0.87 0.19 0.10 0.17 0.15 0.64
σSAM 0.13 0.02 0.14 0.15 0.30 0.06 0.02 0.07 0.06 0.21 0.04 0.01 0.04 0.03 0.15

Moffett II

SNR 24.3 31.5 25.3 25.0 17.9 28.8 37.4 33.9 31.6 21.4 32.2 41.7 38.1 34.6 24.2
ρ 0.84 0.93 0.86 0.61 0.75 0.85 0.91 0.96 0.78 0.74 0.89 0.90 0.96 0.77 0.75
pSAM 12.7 8.59 16.8 30.7 17.9 7.31 8.29 7.33 26.0 13.6 4.93 8.27 5.00 22.5 9.88
µSAM 2.47 1.12 1.84 2.02 4.77 1.50 0.57 0.68 0.96 3.41 1.02 0.34 0.43 0.66 2.54
σSAM 0.76 0.33 0.86 0.89 1.44 0.41 0.16 0.29 0.39 0.92 0.27 0.09 0.14 0.28 0.70

DWT: DWT+JPEG2000; PCA: PCA+JPEG2000; SRSD: sparse representation using SD; MSSD: sparse representation using multi-scale SD; SPIHT: 3D-SPIHT.
ρ: spatial correlation coefficient; pSAM: SAM distortion for the strongest anomalous pixel; µSAM, σSAM: mean and standard deviation of SAM over entire data set;
(SAM related values are in degrees.)
For PCA+JPEG2000, only up to 54 principle components were used due to the line restrictions on giving the transform matrix in demo version of Kakadu 7.7. Thus
the results at bit rate 0.6bpppb for PCA+JPEG2000 should be slightly worse than using all or optimal number of principle components.
Dictionary sizes: SRSD – The dictionaries for all the data sets were of size 224 ∗ 448; MSSD dictionaries for all the data sets were 224 ∗ 448 for all the components.

labelled samples, and trained over the entire data. In particular, the dictionaries were initialized
using a certain fraction of the labelled samples from each class. Although the PCA+JPEG2000
mostly outperformed the other methods, it performed inferior to SRSD on Indian Pines data set.
A possible reason is that performing DWT on this particular data set failed to exploit adequately
the spatial correlations among the pixels.

5.4.3.2 The Comparison of Base and Updated Dictionaries

In sparse representation, a dictionary is learned so that it adapts to the training data optimally.
It is prohibitive to learn a dictionary for each newly acquired hyperspectral image both compu-
tationally and out of bit rate considerations in data compression. In the proposed approach, this
problem is addressed by updating a base dictionary, where the base dictionary is trained offline
using previously obtained hyperspectral images from the same region. Thus, using the proposed
framework, the first step is to update the base dictionary using the data to be compressed. This
is effective since the base dictionary is obtained using the hyperspectral image from a similar
region. This assumption was verified in our experiments. After a small number of iterations,
the base dictionary can be updated to a well adapted one to represent the current data. Table 5.7
shows the reconstruction performance comparisons between the base and updated dictionaries.
In this particular case, the base dictionary was trained using Bay Area I, and the compression was
performed using Bay Area II and Bay Area III data sets, respectively. The updated dictionaries

87 5.4 Experiments

Table 5.6: Compression Performance of Various Methods for Group 2 Data Sets

0.20 bpppb 0.40 bpppb 0.60 bpppb 1.0 bpppb

DWT PCA SRSD MSSD DWT PCA SRSD MSSD DWT PCA SRSD MSSD DWT PCA SRSD MSSD

SNR 26.7 27.8 31.4 27.9 29.8 31.5 33.8 30.7 32.7 34.3 35.3 32.4 37.2 — 37.2 34.9
ρ 0.73 0.39 0.78 0.64 0.76 0.75 0.83 0.67 0.84 0.79 0.85 0.68 0.93 — 0.86 0.74

Indian pSAM 4.51 5.73 4.25 7.00 3.30 5.22 3.62 4.32 2.18 5.08 3.25 4.19 0.92 — 2.87 3.83
Pines µSAM 1.32 1.17 0.74 1.06 0.93 0.76 0.56 0.78 0.67 0.55 0.48 0.64 0.40 — 0.39 0.49

σSAM 0.33 0.32 0.32 0.55 0.20 0.19 0.25 0.39 0.12 0.15 0.20 0.32 0.06 — 0.14 0.22
SNR 26.3 27.1 23.6 23.2 30.3 30.8 27.1 26.1 32.6 32.9 28.7 28.9 35.8 36.2 30.3 31.6
ρ 0.91 0.88 0.65 0.67 0.96 0.86 0.78 0.70 0.97 0.89 0.79 0.71 0.98 0.96 0.86 0.77

University pSAM 22.6 20.7 29.5 25.3 12.8 12.6 28.5 22.9 9.79 9.86 26.7 20.5 6.39 6.40 22.8 17.9
of Pavia µSAM 1.80 1.66 2.17 2.28 1.16 1.10 1.46 1.64 0.90 0.86 1.21 1.20 0.63 0.60 0.99 0.87

σSAM 1.23 1.12 1.20 1.45 0.77 0.72 0.85 1.11 0.59 0.56 0.72 0.77 0.41 0.39 0.61 0.55

Salinas

SNR 37.8 43.6 38.7 39.4 41.7 46.0 42.4 42.7 44.1 47.5 43.6 44.1 47.2 — 45.4 45.4
ρ 0.93 0.98 0.92 0.66 0.94 0.98 0.94 0.68 0.95 0.98 0.94 0.74 0.97 — 0.93 0.78
pSAM 6.15 3.48 9.01 30.0 3.16 3.36 4.29 28.9 2.04 3.35 3.96 27.7 1.12 — 3.62 26.7
µSAM 0.50 0.27 0.43 0.38 0.33 0.21 0.29 0.27 0.25 0.17 0.25 0.24 0.18 — 0.21 0.20
σSAM 0.23 0.08 0.22 0.27 0.12 0.06 0.12 0.17 0.08 0.05 0.08 0.14 0.05 — 0.05 0.12

DWT: DWT+JPEG2000; PCA: PCA+JPEG2000; SRSD: sparse representation using SD; MSSD: sparse representation using multi-scale SD.
—: For PCA+JPEG2000, only up to 54 principle components were used due to the line restrictions on giving the transform matrix in demo version of Kakadu 7.7. Thus
the results for PCA+JPEG2000 at bit rate 1.0 were not presented here.
Dictionary sizes: i) Indian Pines – SRSD: 200 ∗ 828; MSSD: 200 ∗ 600 for the LL component, and 200 ∗ 360 for the LH, HL, HH components. ii) University of Pavia –
SRSD: 103 ∗ 288 MSSD: 103 ∗ 206 for the LL component, and 103 ∗ 165 for the LH, HL, HH components. iii) Salinas – SRSD: 204 ∗ 384 MSSD: 204 ∗ 408 for the LL
component, and 204 ∗ 327 for the LH, HL, HH components.

Table 5.7: Performance Comparison of the Base and Updated Dictionaries
Bay Area II Bay Area III

Bit Rate SNR ρ µSAM SNR ρ µSAM

Base D
0.25

22.9 0.26 2.48 20.7 0.37 3.08
Updated D 32.8 0.50 0.79 34.8 0.58 0.55

Base D
0.35

24.2 0.35 2.06 22.4 0.35 2.52
Updated D 35.4 0.54 0.59 38.2 0.67 0.41

were trained for 500 iterations given the base dictionary. As a result, all the performance criteria
were significantly improved using the updated dictionary.

5.4.3.3 Tuning Dictionary Learning Parameters

We expect that the larger the dictionary size is, the better the compression performance becomes.
This is due to the increase in representative capacity of a dictionarywhen the size grows. However,
a larger dictionary could raise the following challenges in sparse representation based hyperspec-
tral image compression.

1. It increases the dimension of the coefficient vectors, which results in increased bits for
encoding the wider range of position indexes, as well as encoding more information on the
dictionary.

2. The demands for both computational and available training data size increase in learning
a larger dictionary. On the other hand, the impact of larger dictionary on the compression
performance was not significant in our experiments. This is shown in Figure 5.7, where
we hardly observe any significant difference of SNR performance using different sizes of
dictionary.

5.5 Conclusion 88

Table 5.8: Bit Allocation for Various Components using SRSD
0.25 bpppb 0.5 bpppb 1.0 bpppb

Coefficient Position Other Coefficient Position Other Coefficient Position Other

Cuprite I 0.47 0.39 0.14 0.48 0.46 0.06 0.50 0.46 0.04
Jasper Ridge 0.44 0.41 0.15 0.46 0.47 0.07 0.49 0.47 0.04

Moffett I 0.43 0.43 0.14 0.44 0.49 0.07 0.47 0.48 0.05

The numerical values are in ×100%.
Coefficient: sparse coefficients; Position: position indexes; Other: the remaining components.

In the proposed framework, the difference between the base and updated dictionaries is en-
coded in the bit stream. Thus, it is more advantageous to employ a smaller dictionary than a
larger one. For these reasons, we mostly chose the parameter c (the ratio between the size and the
dimension of the dictionary atoms) as 2 ≤ c ≤ 4 to achieve a balance among SNR performance,
bit rate and computational complexity.

Different values for sparsity inducing parameter µ during the stage of dictionary training (see
Eq. (5.3)) may have different effects on sparse coding, and consequently, on compression per-
formance. Some experiment results in this regard are presented in Figure 5.8. For the results
in Figure 5.8, the dictionaries were trained using µ = 10, 12, 16, respectively. The dictionaries
were then used to compress a sub cube of Bay Area I. In Figure 5.8 (a), the dictionary size is
224× 672, and in Figure 5.8(b), it is 224× 896. Although the compression performances using
various values for µ are similar to one another, it is observed that the lower the value of µ is, the
slightly higher the SNR value for lower bit rates are. At the same time, the growth rates of SNR
values at higher bit rates become lower than those with higher µ values.

5.4.3.4 The Drawbacks of the Proposed Method

The compression results for SRSD andMSSD presented in this section were obtained from a naive
implementation of the proposed approach. Hence, the results are still not optimal. Besides the
implementation issues, there exist a number of overheads in the bit stream. The encoding of the
position indexes for the nonzero coefficients is prominent as such an overhead. Table 5.8 shows
the bit allocations for different components in the final bit stream. The bit stream mainly consists
of sparse coefficients, their corresponding position indexes, the DC component and dictionary
information. It is evident that the position indexes make up a significant portion of the bit stream.
However, we believe this information can be compressed more efficiently, which might result in
better SNR to bit rate performance.

Compared to other transform based methods, the computational cost of sparse coding is rela-
tively high. Table 5.9 shows the performance of sparse coding for some data sets using different
sizes of dictionaries. The performance of sparse coding of each data set is measured for sparsity
constraint, i.e., the number of nonzero coefficients µ, and the resulting MSE, pSAM, ρ, bit rate,
and time. If µ remains constant, then the values for MSE decrease when larger dictionaries are
used. However, this also results in increased bit rates and more time for sparse coding. The per-
formance for pSAM and ρ gets better when µ increases. The dictionary size, however, shows little
effect on these criteria.

89 5.5 Conclusion

Table 5.9: Sparse Coding Performance for 3 Selected Data Sets using SRSD
µ = 4 µ = 8 µ = 12

Size MSE pSAM ρ Bit Rate Time MSE pSAM ρ Bit Rate Time MSE pSAM ρ Bit Rate Time

Cup- c = 2 136.02 1.31 0.67 0.32 2.13 52.17 0.81 0.69 0.62 3.46 34.67 0.64 0.71 0.94 4.69
rite I c = 3 127.63 1.35 0.48 0.33 3.10 49.85 0.79 0.69 0.64 4.66 32.58 0.55 0.69 0.96 6.24

c = 4 120.15 0.91 0.68 0.35 4.06 48.20 0.46 0.71 0.65 6.09 31.20 0.34 0.71 1.00 7.82
Moff- c = 2 236.69 3.76 0.63 0.33 2.13 67.50 3.46 0.71 0.61 3.22 40.31 3.40 0.78 0.90 4.39
ett II c = 3 206.20 3.58 0.70 0.34 3.07 62.63 2.61 0.66 0.63 4.62 37.92 2.04 0.81 0.93 6.38

c = 4 193.25 3.68 0.71 0.35 4.06 59.44 3.02 0.77 0.65 6.11 36.33 2.61 0.84 0.96 7.89
Jasper c = 2 208.13 2.89 0.84 0.34 2.13 60.21 1.26 0.87 0.64 3.21 35.19 0.94 0.92 0.95 4.38
Ridge c = 3 187.86 2.76 0.86 0.35 3.07 55.77 1.30 0.88 0.66 4.64 33.04 0.64 0.93 0.98 6.22

c = 4 175.04 3.01 0.87 0.36 4.10 53.27 1.23 0.90 0.67 6.10 31.85 0.71 0.94 1.00 8.37

Size: the parameter related to dictionary size. Given a dictionary of size n× k, k = cn.
Time is in seconds using MATLAB 2014b implementation; Bit Rate: in bpppb.

5.5 Conclusion

Sparse representation models a set of data based on dictionary and sparse coding. The dictionary
is learned in a way that adapts well to the data, and a sample in the data can be represented by just
a few dictionary atoms. This type of transform often lends itself as a good candidate to the pur-
pose of data compression due to its data compaction character. On the other hand, hyperspectral
image compression presents its own challenges and demands methods beyond the existing data
compression approaches designed for regular images. This chapter presents an investigation of a
lossy hyperspectral image compression scheme based on sparse representation. In the proposed
scheme, a hyperspectral data cube is modelled using a learned dictionary via sparse coding. The
dictionaries are acquired by updating a base dictionary trained offline, or learning a new dictionary
online from the data. In particular, two types of dictionaries – spectral dictionary and multi-scale
spectral dictionary – are designed in order to exploit the rich correlations, respectively, in spec-
tral or both spatial and spectral domains in hyperspectral images. In addition, various aspects of
data compression, such as quantization and entropy coding, predictive coding, are investigated to
formulate a feasible hyperspectral image compression framework. Despite the simplicity in im-
plementing the framework itself, the experimental results compare favourably with some of the
state-of-the-art compression methods, such as JPEG 2000 with multiple component couples with
DWT or PCA, and 3D-SPIHT. The following conclusions are made.

1) The spectral dictionaries in SRSDmethod are effective for hyperspectral data compression,
and could lead to competitive results compared to 3D-SPIHT and JPEG 2000 coupled with
DWT.

2) Compared to SRSD, the dictionaries inMSSD exploits both spatial and spectral correlations
in hyperspectral images. However, the benefit of this approach is often reduced due to the
overhead of encoding the dictionaries.

3) Although training a data adaptive dictionary is computationally expensive, especially in the
context of an encoder, it is feasible to incorporate a dictionary update step with a base dictio-
nary trained offline. This could not only reduce the computational demand for dictionary
training, but also reduce the overhead of dictionary transmission. If the base dictionary
is trained offline from the data previously obtained in a similar region, a new dictionary
can be learned with very little cost compared to learning the dictionary without such base
dictionary.

5.5 Conclusion 90

A notable appeal of the proposed framework is that different approaches may be taken in learn-
ing a dictionary using sparse representation. For example, a task driven dictionary can be learned
with a specific task in mind, such as classification or target detection. Under this scenario, besides
energy compaction feature, the sparse coefficients might embody other features, e.g., discrimina-
tive, than energy compaction feature only. Such features can be exploited in other hyperspectral
data processing problems. With this notion, the following chapter explores hyperspectral image
classification based on sparse representation.

91 5.5 Conclusion

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 5.6: Grayscale images of Group 3 data sets used for dictionary training and for compression. Dic-
tionary training: (a), (b) Bay Area I; (d), (e) Lunar Lake; (g), (h) Moffett Field II; (j), (k) Cuprite III;
Compression: (c) Bay Area II; (f) Lunar Lake; (i) Moffett Field II; (l) Cuprite II.

5.5 Conclusion 92

(a) (b)

Figure 5.7: Rate-distortion curves for the SRSD compression of sub cubes from data sets (a) Lunar Lake
and (b) Moffett Field II using different dictionary sizes — SD2 : 224 × 448; SD3 : 224 × 672; SD4 :
224 × 896. The results for SD2 here slightly differ from those in Table 5.5 due to the difference between
the numbers of iterations used for dictionary update.

(a) (b)

Figure 5.8: Rate-distortion curves for the compression of sub cubes from Bay Area I using various values
of µ: (a) Dictionary size: 224 × 672, (b) Dictionary size: 224 × 896. (The results shown in this figure
were obtained by using the base dictionaries only.)

Chapter 6
SparseRepresentationBasedHyperspec-
tral Image Classification

6.1 Introduction

Hyperspectral imaging is concerned with the measurement, analysis, and interpretation of spectra
acquired from a given scene at a short, medium or long distance by an airborne or spaceborne
sensor [Plaza et al. 2009a]. The information contained in hyperspectral data allows characteri-
zation, identification, and classification of materials in land, water, environment, and the atmo-
sphere [Green et al. 1998; Goetz 2009]. The reflectance spectrum in hyperspectral data can be
used to distinguish among a large range of land surface cover materials [Goetz et al. 1985]. With
the recent advances of data acquisition technologies in geoscience and remote sensing, the spatial
and spectral resolutions become higher. This leads to various applications of these data [Green
et al. 1998], and active research in hyperspectral image processing. One of such applications and
research is the hyperspectral image classification where pixels in hyperspectral image are assigned
to one of a known set of classes. Intensive work has been done in the remote sensing community
to develop effective classifiers for hyperspectral image [Fauvel et al. 2013].

Among the previous approaches, support vector machines (SVMs) [Schölkopf and Smola
2001] have become a powerful tool for supervised hyperspectral image classification [Mercier
and Lenon 2003; Melgani and Bruzzone 2004; Fauvel et al. 2008]. The SVMs based on the
spectral signatures of the classes often produce results with noisy looking classification maps.
This shortcoming is overcome by using the contextual information in the classifiers, based on the
fact that hyperspectral image pixels are often surrounded by those of the same class. Methods
that exploit both spectral and spatial features are developed to further improve the hyperspectral
image classification performance. In [Camps-Valls et al. 2006], a family of composite kernels
is constructed to combine spatial and spectral information. It provides enhanced classification
performance compared to the approaches using only the spectral or spatial information. A simple
yet effective way to embed spatial characters in spectral pixel vectors is to consider for each pixel
the features of its neighbouring ones. This is often done by using moving windows or filters
applied to each spectral band. The filtered hyperspectral image pixels are then used to train a
classifier.

In spite of the advances made in hyperspectral image classification, challenges still exist. One
such challenge is the high dimensionality of hyperspectral image. As long as the number of
training sets is limited, the abundant spectral or spatial information does not necessarily lead to
high classification accuracy due to the Hughes effects [Hughes 1968]. It is desirable to distinguish
a small number of spectral bands as the discriminative factor for the pixels belong to the same

6.1 Introduction 94

class. As such, sparsity based models naturally fit into this purpose. These models assume that the
signal vectors lie in a combination of independent or dependent subspaces, where each subspace
is spanned by a few elements from a set of basis vectors (here the term basis is used in a broader
sense that the basis vectors are not necessarily orthogonal to each other). Using sparsity models,
many types of signals can be sparsely represented through linear transforms. A common goal in
such a transform is to find a set of vectors that span the vector space of input signals so that some
criterion of optimality, such as discrimination or sparsity, can be met.

Sparse representation has found applications in hyperspectral image processing, and com-
pression with encouraging results. Chen et al. [2011a] introduced a sparsity-based approach to
classify hyperspectral image, where a test pixel is represented by a few training samples from a
structured dictionary. The test pixel is then labelled as the class whose training samples yield the
minimum reconstruction error in representing the test pixel. The classification performance is
further improved by incorporating the contextual information in formulating the sparse recovery
optimization problem.

While the dictionary in [Chen et al. 2011a] is formulated by the set of training samples,
Soltani-Farani et al. [2013] is able to train a structured dictionary that incorporates both spec-
tral and spatial characteristics of training hyperspectral image data. The sparse coefficients were
obtained for the hyperspectral image samples through sparse coding using the learned dictionary.
This is followed by training the SVMs using the sparse coefficients for classification. Both [Chen
et al. 2011a] and [Soltani-Farani et al. 2013] utilize the joint sparsity [Tropp et al. 2006] in sparse
coding or dictionary learning to combine spectral and contextual information. By incorporating
additional structured sparsity priors such as Laplacian and group sparsity [Sun et al. 2014 2015;
Qian et al. 2013], or adopting nearest subspace classification coupled with nonuniform regular-
ization approach [Li and Du 2014; Li et al. 2014; Li and Du 2015], the sparse representation based
hyperspectral image classifiers can be enhanced.

Wang and Celik [2017] investigates the lossy compression of hyperspectral image based on
sparse representation with encouraging results. A special point of interest in [Wang and Celik
2017] is that the authors argued that the sparse coefficients could be used as feature vectors for
hyperspectral image processing, such as classification. In such cases, the decoded sparse coef-
ficients in the lossy compression framework can be analysed without reconstructing the original
hyperspectral data. This is advantageous in terms of obtaining optimal bit rates in storing hyper-
spetral data on a remote sensor.

Nearest neighbour (NN) and k-nearest neighbour (kNN) [Blanzieri and Melgani 2008] clas-
sifiers are simple nonparametric ones in the sense that they do not assume any prior of the input
features. Given an unlabelled sample, the classification is carried out by consulting within a set of
labelled reference samples. In particular, kNN finds the k training samples that are closest to it.
Various strategies can then be applied for the decision making process. Zou et al. [2015] proposed
a sparse representation-based nearest neighbour (SRNN) classifier. The NN classifier is applied to
the sparse coefficients obtained in the way similar to that of [Chen et al. 2011a]. The SRNN is also
extended to utilize class-specific sparse coefficients, as well as to impose smoothness constraint
in the neighbourhood of a pixel during sparse coding.

In this chapter, we propose a classification approach for hyperspectral image that utilizes
sparse representation. The proposed method starts with learning a dictionary that induces sparsity
in the representation coefficients, whileminimizes the reconstruction error. In order to incorporate
the contextual characteristics into the spectral sparse coefficients, we enforce smooth variations

95 6.2 Related Work

in the neighbourhood of pixels by applying a local filter on sparse coefficients. These contextual
sparse coefficients are then used for two simple classifiers, namely SVMs and kNN, for their ro-
bustness and simplicity. The distinction between our approach and the existing methods is that
the spatial correlation is considered in the sparse coefficient domain in our strategy, while in the
previous classifiers, it is considered in the original pixel domain.

The contributions of our work in this chapter are twofold. Firstly, we showed that sparse
representation could be used as an effective way to extract features that were both sparse and dis-
criminative; the characteristic of sparsity allows us to address the problem of high dimensionality
in hyperspectral image, and the discriminative feature leads to good performance in the classifi-
cation of hyperspectral image. Secondly, the contextual information can be incorporated into the
spectral features by applying a local mean filter in the sparse coefficient domain instead of in the
original pixel domain. This approach yields a similar or better classification performance in terms
of accuracy compared to other sparse representation based classifiers of hyperspectral image.

The remainder of this chapter is organized as follows. Section 6.2 introduces a number of
hyperspectral image classifiers. Section 6.3 gives details of the proposed method. Experimental
evaluation of various methods are reported in Section 6.4, and finally, Section 6.5 concludes the
chapter.

6.2 Related Work

The previous work on classification of hyperspectral image is vast [Plaza et al. 2009a; Fauvel
et al. 2013]. The purpose of this section is to introduce a number of selected hyperspectral image
classifiers that are closely related to our work. The main focus is on SVM, kNN, and sparse
representation based classifiers.

6.2.1 SVM Classification Approach

SVMs are considered as excellent classifiers for hyperspectral image due to their capacity to han-
dle relatively few training samples and high dimensional input space, as well as the limited effort
required for the design (or training) process [Melgani and Bruzzone 2004; Camps-Valls et al.
2006; Fauvel et al. 2008]. The technique involves a search of an optimal hyperplane that sepa-
rates different classes.

6.2.1.1 SVM Formulation

The SVM was first introduced as a supervised binary classifier [Boser et al. 1992; Cortes and
Vapnik 1995]. Given a labelled training data set {(x1, y1), · · · , (xN, yN)}, where xi ∈ RM ,
yi ∈ {−1,+1} for i = 1, · · · , N , an SVMbinary classifier tries to find a hyperplane that separates
the two classes. Let us consider the following cases [Vapnik 1999; Melgani and Bruzzone 2004].

(1) Linear SVM: For linear SVM, the optimal case is that the two classes are linearly sep-
arable. That is, it is possible to find a hyperplane that separates the two classes without errors.
Assume such a hyperplane is defined by a vector w ∈ RM and a bias b ∈ R. Then the classifi-
cation of a test sample can be determined by the sign of the discriminant function (or separating
hyperplane)

f(x) = w · x + b, (6.1)

6.2 Related Work 96

where the symbol · indicates the vector dot product. Further, w and b satisfy

yi(w · x + b) > 0, i = 1, 2, · · · , N, (6.2)

in order to find such a hyperplane.
With the above formulation, the SVM attempts to find an optimal hyperplane that maximizes

the distance between the closest training sample and the separating hyperplane. Such a distance is
often set to 1/‖w‖, hence, the margin between two classes becomes 2/‖w‖. The optimal hyper-
plane can then be found by solving the following convex quadratic programming (QP) problem

argmin
w

1

2
‖w‖2, s.t. yi(w · xi + b) ≥ 1, i = 1, 2, · · · , N, (6.3)

where ‘s.t.’ stands for ‘subject to’. The linearly constrained optimization problem in (6.3) is
usually solved through its Lagrangian dual problem

argmax
αi


N∑
i=1

αi −
1

2

N∑
i=1

N∑
j=1

αiαjyiyj(xi · xj)

 ,

s.t.
N∑
i=1

αiyi = 0 andαi ≥ 0, i = 1, 2, · · · , N,

(6.4)

where αi, i = 1, 2, · · · , N , is the Lagrange multiplier, and solved using QP methods. Accord-
ingly, the discriminant function (6.1) becomes

f(x) =
∑
i∈S

αiyi(xi · x) + b, (6.5)

where S is the subset of training samples with nonzero Lagrange multipliers, and these training
samples are called support vectors.

The optimal case is, however, not always true for real world data. In the case that the two
classes are not linearly separable, the concept of optimal separating hyperplane can be generalized
to the solution of

argmin
w,ξi,b

{
1

2
‖w‖2 + C

N∑
i=1

ξi

}
, (6.6)

subject to

yi(w · xi + b) ≥ 1− ξi, i = 1, 2, · · · , N, (6.7)
ξi ≥ 0, i = 1, 2, · · · , N, (6.8)

where ξi, i = 1, 2, · · · , N , are the slack variables, and C is the regularization parameter. The
larger the C value is, the higher the penalty associated to the misclassified samples becomes. The
same Lagrange formulation above can be applied to (6.6), and the Lagrange multipliers αi are
found by solving (6.4) with slightly different constraints

0 ≤ αi ≤ C, i = 1, · · · , N,
N∑
i=1

αiyi = 0.
(6.9)

97 6.2 Related Work

(2) Nonlinear SVM – Kernel Method: The linear discriminant functions in the previous
case can be generalized to the category of nonlinear discriminant functions. The idea is to map
the data to a higher dimensional space through a nonlinear transform, where a separation between
two classes can be found in the transformed domain following the method of linear SVM. Given
a nonlinear mapping function Φ(·) that usually maps to a higher dimensional (Hilbert) space
Φ : RM 7→ H, the nonlinear SVM kernel method solves the dual problem as the one defined in
(6.4) by replacing the dot product xi · xj with Φ(xi) · Φ(xi). The kernel method allows us to
define a kernel functionK,

K(xi,xj) = Φ(xi · xj), (6.10)

such that the nonlinear SVM can be formulated using only the kernel function, without comput-
ing Φ(x) and the dot products in the transformed space explicitly. With the kernel method, the
problem (6.4) becomes

argmax
αi


N∑
i=1

αi −
1

2

N∑
i=1

N∑
j=1

αiαjyiyjK(xi,xj)

 , (6.11)

under constraints (6.9). The discriminant function f(x) is then expressed as

f(x) =
∑
i∈S

αiyiK(xi,x) + b. (6.12)

Different kernel functions lead to different SVMs. Some popular kernel functions are: linear —
K(xi,xj) = xi·xj , polynomial —K(xi,xj) = ((xi·xj) + 1)d, d ∈ z+, or radial basis function
(RBF) —K(xi,xj) = exp(−‖xi − xj‖2/2σ2), σ ∈ R+.

6.2.1.2 SVMs for Hyperspectral Image Classification

SVMs generally implement the idea of mapping the input vectors into a high dimensional feature
space through some nonlinear functions, and construct an optimal hyperplane in this space [Vap-
nik 1999]. Unlike lower dimensional spaces such as 3D Euclidean space, it is difficult to establish
the properties of high dimensional space, hence, the behaviour of data in it [Jimenez and Land-
grebe 1998].

One of the characteristics of hyperspectral space, as discussed in [Jimenez and Landgrebe
1998; Melgani and Bruzzone 2004], is that the increase in dimensionality makes the hyperspace
almost empty such that data has a tendency to concentrate close to the tails of the distribution.
Thus, it is likely that the data is in the proximity of decision boundaries of information classes.
SVM based approach, from the geometric point of view, finds a hyperplane that is close to the
decision boundaries. This is indicative of the potentials of SVMs for hyperspectral image clas-
sification. Further, due to the geometrical nature of SVMs, the methodology does not rely on
the statistical distributions of the information classes over the entire hyperspace. This is an ap-
pealing property of SVMs compared to the statistical classifiers. In the latter case, the number of
required training samples grows exponentially with the increase of dimension, in order to obtain
accurate density estimation. On the other hand, SVMs do not require density estimation. Hence,
the approach of SVMs is less sensitive to to data with an increasing dimension. This often leads
to a satisfactory classification performance of SVMs even in the case of small number of training
data.

6.2 Related Work 98

Hyperspectral data often consists of multiple classes, and thus the SVMs need to be extended
for such cases. This is usually done by combining several binary classifiers. Two such popular
strategies are one against all and one against one [Hsu and Lin 2002]. Assume that the number
of distinct classes is T in a given data.

One against all: T binary classifiers, one for each class, are trained. Themth classifier is trained
from all of the samples in themth class with positive labels, and all the other samples with
negative labels. The class of a test sample x is determined by the class whose discriminant
function yields the largest value.

One against one: T (T − 1)/2 binary classifiers are constructed where each one is trained on
data from one pair of classes. The classification of a test sample x can be determined by a
voting strategy: each binary classifier between classes i and j votes for the class of x to be
either i or j; in the end, x belongs to the class whose number of votes is maximum.

6.2.2 Sparse Representation Based Classification Approach

Sparse representation has found a variety of applications in hyperspectral image processing. These
include but are not limited to unmixing [Iordache et al. 2011 2014], classification [Chen et al.
2011a; Soltani-Farani et al. 2013; Sun et al. 2015; Zou et al. 2015], denoising [Zhao and Yang
2015; Lu et al. 2016], anomaly and target detection [Xu et al. 2016; Chen et al. 2011b]. In partic-
ular, the following approaches to the classification of hyperspectral image are the main concern
of this thesis.

The basic sparsity model for hyperspectral image proposed by [Chen et al. 2011a] assumes that
a test sample can be modelled as a linear combination of a few training samples in the same class.
To exploit the spatial correlation across neighbouring pixels, the joint sparsity model is applied
in [Chen et al. 2011a] to achieve a small neighbourhood of a pixel of interest sharing a common
sparsity pattern. That is, hyperspectral image pixels in a small neighbourhood are approximated
by a linear combination of a few common dictionary atoms. A generalized OMP algorithm, called
simultaneous OMP (SOMP) [Chen et al. 2011a] is employed to solve the aforementioned joint
sparsity model, i.e.,

argmin
A

‖X−DA‖F s.t. ‖A‖row,0 ≤ µ, (6.13)

where µ is the number of non-zero rows. Under this joint sparsity model, a dictionary is formu-
lated by training samples from each class. Given a test pixel, we first find the corresponding sparse
coefficient vector using the structured dictionary. The sparse coefficients corresponding to each
class are then used to compute the residuals, i.e., reconstruction errors. The class of the test pixel
is determined by the class which gives the minimum residual. A similar idea appears in [Li and
Du 2014], where a nearest subspace classification method, coupled with the distance-weighted
Tikhonov regularization [Tikhonov and Arsenin 1977], is developed. In this classifier, each test
sample is approximated using the training samples from the same class independently. While this
nearest subspace classifier relies on the spectral information only, it is enhanced in [Li et al. 2014]
by exploiting the spatial characteristic of a test sample as well.

Structured dictionaries are also employed in Charles et al. [2011]; Soltani-Farani et al. [2013]
for the classification of hyperspectral image data. The difference is that the dictionary in [Charles
et al. 2011] is formed by a number of training samples from each class, and in [Soltani-Farani
et al. 2013] the dictionary is trained using the training samples. The sparse coefficients are then
used as feature vectors for training SVM classifiers. While the classification method in [Charles

99 6.2 Related Work

et al. 2011], termed SDL, is a simple demonstration of an application of sparse coefficients as
discriminative features, Soltani-Farani et al. [2013] improved the SDL to incorporate the contex-
tual information in the dictionary learning. In [Soltani-Farani et al. 2013], two approaches are
taken to learn a dictionary that exploit both spectral and spatial correlations among the pixels for
classification of hyperspectral image. One is to learn a contextual dictionary (CDL), and the other
is to learn a spectral-contextual dictionary (SCDL). The CDL transforms the hyperspectral image
pixels x1,x2, · · · ,xN into contextual representation c1, c2, · · · , cN . The pixels in contextual do-
main are obtained for each pixel, taking the first moment, or the concatenation of first and second
moment. The dictionaries are then trained in the contextual domain. The SCDL trains a struc-
tured dictionary on a contextual group pixels, where the contextual groups are non-overlapping
image patches form each band. The sparse coefficients obtained from both CDL and SCDL are
then used to train SVMs for the classification of hyperspectral image.

6.2.3 KNN Classification Approach

The kNN classification is a powerful non-parametric technique for pattern recognition [Cover and
Hart 1967]. The basic assumption of this approach is that the pixels close to each other in a feature
space tend to belong to the same class. As a non-parametric method, the kNN classifiers do not
rely on the analysis of statistical distribution of the feature space. Instead, they simply employ a
decision rule to assign a class to a test sample.

Given a set ofN training dataX = {xi ∈ RM}, and labels yi ∈ {ω1, ω2, · · · , ωT } for each of
the data points, to classify a test sample x, the kNN classifier first finds the k nearest neighbours
of x in X according to a distance metric d. Among these k neighbours, we have

∑T
i=1 ki = k,

where ki is the number of training samples from class ωi. At this point, a majority voting rule

Class(x) = ωi, where i = argmax
i

ki (6.14)

can be applied to determine the class of x.
Hyperspectral image classification concerns pixel classification, and the pixels spatially close

to each other usually consist of the same or similar land cover materials. This is consistent with
the basic assumption of the kNN classifiers. Another appealing factor of kNN based approaches
is that they need very few parameter tuning, and thus reduce the requirement of large number
of training samples, especially for high dimensional input feature spaces such as hyperspectral
image. Variant kNN rule based classification approaches exist in the literature. To address the
influence of the outliers in kNN classifiers, Mitani and Hamamoto [2006] explores the use of
local mean vectors. Given a test sample, a local mean vector is computed for each class using its
k nearest neighbours in the same class. The distances from the test sample to these class specific
mean vectors are then computed to determine the membership of the test sample, which is the
class whose mean vector is the closest.

Blanzieri and Melgani [2008] proposed a variant of kNN based on the SVM classification
principle in order to further exploit the discriminative power in the k nearest neighbours. The
main idea in [Blanzieri and Melgani 2008] is to partition the entire transformed feature space
through a group of local maximal margin hyperplanes. This means that an SVM is built over the
neighbourhood of a test sample, and the neighbourhood is found in the transformed feature space.
This approach results in the combination of locality and search for a large margin separating
hyperplane.

6.3 The Proposed Sparse Representation Based Classifiers 100

Figure 6.1: The diagram of the proposed classification framework. X – the HSI data after preprocessing;
D – the dictionary; A – the matrix consists of the sparse coefficients; CSC – contextual sparse coefficients;

The kNN classifier is extended to a sparse representation based NN classifier (SRNN) [Zou
et al. 2015]. SRNN first finds the sparse coefficient for a test sample using all the training samples.
The k nearest neighbours are found as those training samples corresponding to the k largest com-
ponents in the sparse coefficient. The majority voting rule in (6.14) is then applied to determine
the class. Similarly, the local mean vector kNN in [Mitani and Hamamoto 2006] is extended by
using the sparse coefficient for each class, where the average of the k largest components are used
for the majority voting [Zou et al. 2015].

6.3 The Proposed Sparse Representation Based Classifiers
In this section, we discuss the details on applying sparse representation for the classification of
hyperspectral data in our proposed methods. Figure 6.1 shows the diagram of the proposed frame-
work. It consists of major components such as preprocessing, dictionary training, sparse coding,
contextual processing, and training the classifier. The preprocessing involves removing the mean
from, and the normalization of each spectral vector. That is, each spectral vector has zero mean
and `2-norm of 1 after the preprocessing. We discuss the remaining components as follows.

6.3.1 Dictionary Training

Training a representative dictionary is crucial for the overall performance of the sparse repre-
sentation based classification method. To harness the rich spectral information in hyperspectral
image, we train dictionaries in the spectral domain and refer to it as spectral dictionary (SD). The
dictionary learning problem in our approach is

argmin
D,α

1

N

N∑
i=1

(
1

2
‖xi −Dαi‖22 + λ‖αi‖1

)
. (6.15)

The optimization problem (6.15) is not convex as both D and α vary. However, it is convex with
respect to either one of the two variables, while the other one is fixed. This results in an iterative
two-step strategy [Mairal et al. 2009; Aharon et al. 2006], namely sparse coding and dictionary
update, being commonly applied to solve (6.15).

Dictionary update: The ODL algorithm [Mairal et al. 2010] is applied to update a dictionary
in this thesis. ODL algorithm learns a dictionary through a number of iterations. During each
iteration, one training sample (or a small group of samples) is drawn and its sparse decomposi-
tion is computed over the dictionary learned during the previous iteration. This is followed by a

101 6.3 The Proposed Sparse Representation Based Classifiers

dictionary update step where a new dictionary is computed based upon the sparse decompositions
obtained in previous iterations and the current dictionary. This learning process is a stochastic
approximation approach in view of obtaining sufficient statistics by aggregating the past informa-
tion during each iteration. The statistics are then utilized to minimize an expected cost function.
This approach often yields faster convergence with a sufficiently good expected cost.

Sparse coding: Given a vector x ∈ RM and a dictionary D ∈ RM×K , sparse coding finds
the coefficient vector α ∈ RK — with á priori of sparsity, i.e., only a few of the components in
α are non-zero, so that x ≈ Dα. Sparse coding is solved in a separable manner, where for each
sample x, its coefficient vector α can be found independently of the other samples. The Lasso,
or basis pursuit [Chen et al. 2001],

argmin
αi

1

2
‖xi −Dαi‖22 + λ‖αi‖1, (6.16)

is an efficient approach to solve the sparse coding. The penalty term in (6.16) is an `1-norm.
Instead of a penalty, a constraint, such as `0-norm, can be added to solve the problem of sparse
coding, that is

argmin
αi

1

2
‖xi −Dαi‖22, s.t. ‖αi‖0 ≤ µ, (6.17)

where `0-norm is used to induce sparsity in the coefficient vectors, and µ is the maximum num-
ber of non-zero components in the sparse coefficients. A greedy algorithm such as matching
pursuit [Mallat and Zhang 1993] or orthogonal matching pursuit (OMP) [Davis et al. 1997]
solves (6.17) efficiently.

6.3.2 Hyperspectral Image Classification Using Contextual Sparse Coefficients

Given the trained dictionary D, we find the sparse representation matrix A for X using OMP
algorithm. This problem is set as (6.17), and the parameter µ indicates the maximum number
of non-zero components in the coefficients. OMP is a greedy algorithm based on matching pur-
suit [Mallat and Zhang 1993] that refines the signal approximation with an iterative procedure.
At each iteration, the current residual is decomposed by projecting the signal on each dictionary
atom in D, and selecting the atom that minimizes the residual. Once an atom is selected at each
iteration, the signal is orthogonally projected to the span of the current selected atoms, and the
residual is recomputed for the next iteration. The iteration stops when the number of non-zero
coefficients satisfies the prescribed threshold, i.e., the value µ, or a specified maximum number
of iterations is reached.

The primary reason we choose the sparse coding problem as (6.17) is that we have more
flexibility in the sparsity of the coefficients. The sparsity level in the sparse coefficients has impact
on the classification performance as demonstrated in Section 6.4.

In the training process of an SD, the spectral information in the hyperspectral image pixels is
considered independently of each other. However, it is important to incorporate the spatial corre-
lation among the pixels close to each other in order to improve the classification performance of
hyperspectral image. This is due to the fact that neighbouring hyperspectral image pixels usually
consist of similar materials. In our approach, we first trained a spectral dictionary without taking
any spatial information into account. A contextual filter was then applied in the sparse coefficient
domain to incorporate spatial information for the classification. Suppose αx,y is a component

6.4 Experiments 102

in any coefficient vector α corresponding to a dictionary atom, where x and y are the spatial
coordinates. The contextual transform of αx,y, denoted by cx,y, is computed as

cx,y =
1

PQ

bP
2
c∑

p=−bP
2
c

bQ
2
c∑

q=−bQ
2
c

ωx+p,y+qαx+p,y+q, (6.18)

where PQ is the predetermined filter (or window) size, and ωx+p,y+q is the weight associated
with the neighbour corresponding to the coordinates. In our experiment, we assigned the same
weight of 1 to all the neighbours. After performing the contextual transform for all the sparse
coefficient vectors, we obtain the contextual sparse coefficient (CSC) ci corresponding toαi, i =
1, 2, · · · , N , respectively.

Compared to the original sparse coefficient vectorα, the contextual transform yields smooth-
ing effect within the local neighbourhood due to the nature of the applied filter. This smoothing
effect can be interpreted as the influence of a particular dictionary atom has over a small neigh-
bourhood of a hyperspectral image pixel in the original input domain, i.e., the domain before the
sparse coding is applied. Recall that for αi ∈ RK , whereK is the number of atoms in the dictio-
nary, each component in αi corresponds to an atom. Therefore, the contextual transform with a
smoothing filter forces the hyperspectral image pixels in a small neighbourhood to adopt a simi-
lar sparsity pattern by having the same dictionary atoms to be activated in the sparse coefficient
domain. However, the c will be less sparse than the α in general, i.e. more nonzero coefficients
in the average.

To evaluate the discriminant character of such contextual sparse coefficients for the classifi-
cation of hyperspectral image, the CSCs are applied as feature vectors for training two classifiers,
namely, CSCSVM and CSCNN.

In CSCSVM, the SVMs are trained on the training CSCs and their corresponding labels. We
used the one-against-one strategy for multi-class classification using SVMs. Under such strategy,
multiple SVMs are trained to model all possible pairwise classifications. Given a test sample,
each SVM carries out a binary classification for one pair of classes, and the final decision is taken
on the basis of “maximum voting” rule. The implementation LIBSVM in [Chang and Lin 2011]
was used in our experiments.

The kNN classifier in CSCNN chooses the k nearest samples from all the training samples,
and assigns a label to the test sample by a majority voting rule. The distance measure used in our
experiment is the cosine similarity based spectral angle mapper (SAM),

dis(x, ci) = SAM(x, ci) = arccos
xT ci

‖x‖2‖ci‖2
, (6.19)

where x is a test sample, and ci, i = 1, . . . , L (L is the number of training samples).

6.4 Experiments

6.4.1 Data Set Description

Three data sets1 are considered in our experiments: the Indian Pines data set acquired by the
AVIRIS sensor, 200 bands with 145 × 145 pixels; the University of Pavia data set acquired by

1The data sets are freely available at:http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_
Remote_Sensing_Scenes.

http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes.
http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes.

103 6.4 Experiments

Table 6.1: The Ground Truth Classes in AVIRIS Indian Pines and the Training and Test Sets for Each Class

Class Samples

No. Name Train Test

1 Alfalfa 6 40
2 Corn-notill 144 1284
3 Corn-mintill 84 746
4 Corn 24 213
5 Grass-pasture 50 433
6 Grass-trees 75 655
7 Grass-pasture-mowed 3 25
8 Hay-windrowed 49 429
9 Oats 2 18
10 Soybean-notill 97 875
11 Soybean-mintill 247 2208
12 Soybean-clean 62 531
13 Wheat 22 183
14 Woods 130 1135
15 Buildings-Grass-Trees-Drives 38 348
16 Stone-Steel-Towers 10 83

Total 1043 9206

Reflective Optics System Imaging Spectrometer (ROSIS-03) optical sensor, 103 bands with 610×
340 pixels; and the AVIRIS Salinas data set, 204 bands with 512 × 217 pixels. Note that the
number of bands indicated above is after the removal of some noisy channels.

The number of training samples chosen for Indian Pines data set was around 10% of the la-
belled samples from each class, and the remaining 90% was used as testing samples. The infor-
mation about ground truth classes, and the number of training and testing samples are given in
Table 6.1. For University of Pavia and Salinas data sets, around 5% of the labelled samples from
each class was chosen for training, and the remaining as testing data. The relevant information
regarding these two data sets are shown in Tables 6.2 and 6.3, respectively.

Table 6.2: The Ground Truth Classes in ROSIS University of Pavia and the Training and Test Sets for Each
Class

Class Samples

No. Name Train Test

1 Asphalt 274 6357
2 Meadows 270 18379
3 Gravel 196 1903
4 Trees 262 2802
5 Metal sheets 133 1212
6 Bare soil 266 4763
7 Bitumen 188 1142
8 Bricks 257 3425
9 Shadows 116 831

Total 1962 40814

6.4 Experiments 104

Table 6.3: The Ground Truth Classes in AVIRIS Salinas and the Training and Test Sets for Each Class
Class Samples

No. Name Train Test

1 Broccoli-green-weeds_1 102 1907
2 Broccoli-green-weeds_2 186 2540
3 Fallow 98 1988
4 Fallow-rough-plow 76 1318
5 Fallow-smooth 134 2544
6 Stubble 198 3761
7 Celery 179 3400
8 Grapes-untrained 282 10989
9 Soil-Vinyard-develop 249 5954
10 Corn-senesced-weeds 164 3120
11 Lettuce-romaine-4wk 61 1007
12 Lettuce-romaine-5wk 104 1823
13 Lettuce-romaine-6wk 60 856
14 Lettuce-romaine-7wk 63 1007
15 Vinyard-untrained 257 7011
16 Vinyard-vertical-treils 116 1691

Total 2329 51800

6.4.2 Experiment Design

In this section, the various classification strategies are compared. These include SVM with
an RBF kernel (SVM), SVM applied to contextual data (CSVM) with an RBF kernel [Camps-
Valls et al. 2006], joint sparsity model using SOMP [Chen et al. 2011a], CDL [Soltani-Farani
et al. 2013], SCDL [Soltani-Farani et al. 2013], spectral dictionary learning for sparse coding
(SDL) [Charles et al. 2011], and our approaches (CSCNN, CSCSVM). The classification per-
formances were evaluated according to the accuracy for each class, the overall accuracy (OA) –
the ratio of the number of accurately classified pixels to the total number of test pixels, the av-
erage accuracy (AA) – the average of the accuracies for each class, and the kappa (κ) statistic –
the degree of agreement between different observers. These measures were computed using the
confusion matrix. In particular, the κ is a measure of agreement or accuracy. The analysis is
based on the difference between the actual agreement and the chance (or random) agreement. It
indicates the extent to which the percentage correct values of a confusion matrix are due to true
agreement versus chance agreement. For example, a κ value of 0.91 can be interpreted as the
observed classification is 91% better than the one resulting from chance. All the classification
results were obtained by taking the averages over 5 runs, and for each run, the training and testing
samples were selected randomly.

The results for SOMP were obtained by setting the `p-norm for p =∞, the sparsity level to 5,
and the neighbourhood window size to 5× 5. The setting of these parameters were guided by the
work in [Chen et al. 2011a]. For SDL, the dictionary is trained by solving (6.15) with an `1 reg-
ularizer, and the sparse coding is done by (6.16). For the SVM with RBF kernel and CSVM with
RBF kernel basedmethods, five-fold cross validations were carried out to select the parameters for
RBF kernel within the search spaces of γ ∈ {2−10, 2−9, . . . , 23} and C ∈ {2−2, 2−1, . . . , 215}.
The CDL, SCDL, and CSCSVM results were produced by training the SVMs with linear ker-
nels. The reason linear kernels could perform well is that due to the overcomplete dictionaries
used in sparse representations, the sparse coefficients are usually in higher dimensions than the
original pixel vectors. The parameter for linear kernels were selected within the search space of

105 6.4 Experiments

Table 6.4: Classification Performance for Indian Pines Data Set using Various Classifiers
Class SVM CSVM SOMP CDL SCDL SDL CSCNN1 CSCSVM2

1 60.00 92.00 81.50 85.50 94.00 32.50 89.03 99.00
2 75.81 96.45 88.08 89.70 94.67 65.70 91.82 97.94
3 71.39 95.74 82.33 86.27 94.34 52.31 92.54 98.98
4 56.71 92.96 72.30 85.63 95.02 33.71 96.17 97.75
5 90.48 96.12 94.73 95.10 96.91 87.07 95.75 97.37
6 93.95 97.98 96.70 97.37 99.15 93.86 95.17 98.72
7 73.60 93.60 88.80 88.00 100.0 57.60 63.21 97.60
8 95.80 99.77 98.83 99.39 100.0 96.92 99.91 99.95
9 38.89 70.00 62.22 43.33 87.78 17.78 56.67 91.11
10 70.35 93.37 90.15 85.05 95.20 57.83 89.93 96.71
11 81.65 97.19 94.69 92.63 97.36 73.15 94.34 98.95
12 74.01 95.25 80.83 81.51 89.72 61.88 94.73 98.23
13 96.39 98.58 98.36 97.92 99.13 95.41 100.0 99.34
14 93.81 98.93 98.45 97.80 99.88 92.70 97.27 99.10
15 55.98 96.95 80.40 88.79 96.84 53.28 93.20 98.28
16 93.25 90.36 94.22 92.29 93.25 90.36 80.38 92.77
OA 80.59 96.61 91.21 91.41 96.53 72.57 94.03 98.41
AA 76.38 94.08 87.66 87.89 95.83 66.38 89.38 97.61
κ 0.778 0.961 0.899 0.902 0.961 0.685 0.932 0.982

All the numerical results for the classification, excluding the ones for κ, are in percentage.
1 Dictionary training parameter λ = 0.00217, sparse coding parameter µ = 10.
2 Dictionary training parameter λ = 0.0117, sparse coding parameter µ = 7.

C ∈ {2−2, 2−1, . . . , 215} with five-fold cross validations.
The neighbourhood window size for methods CSVM, CDL, SCDL, CSCNN, and CSCSVM

that involve contextual grouping was chosen by running cross validations among three options of
5× 5, 7× 7, and 9× 9 pixels with the pixel in question is in the centre.

For approaches SDL, CDL, and SCDL, the parameters concerned in the dictionary training
process were tuned as in [Charles et al. 2011; Soltani-Farani et al. 2013]. That is, the regularization
parameter λ was chosen by running cross validations among the values {0.1, 1, 10, 100}. The
dictionary size, i.e., the number of dictionary atoms, was selected from {1

2 ,
1
4 ,

1
8 ,

1
16}, the fractions

to the number of training samples for each class. For example, if the fraction is 1
2 , the dictionary

size for the Indian Pines data set is at least 522, and for the Pavia University data set is at least 981.
In our approaches, the dictionary size is set as c × r, where c is the number of classes, and r is
the number of atoms for each class. We choose r from the set {24, 32, 40}, and the regularization
parameter λ from the range of {10−3, 10−2, 10−1, 100, 101}. When a particular class has fewer
training samples than the value of r, the number of dictionary atoms for that class is set to the
number of training samples available. For all the sparse representation based approaches that need
learning a dictionary, only the training samples were used to initialize or to learn the dictionaries,
and subsequently, the testing samples were not seen at all during the dictionary training.

6.4.3 Experimental Results

6.4.3.1 Classification Results of Various Approaches

Table 6.4 shows the classification results of different approaches for Indian Pines data set. Both
CSCNN and CSCSVM demonstrated competitive performance among the methods considered.
In particular, CSCSVM produced similar or slightly better results compared to CSVM and SCDL,
and consistent superior performance compared to the remaining approaches. Similar observations

6.4 Experiments 106

Table 6.5: Classification Performance for University of Pavia Data Set using Various Classifiers
Class SVM CSVM SOMP CDL SCDL SDL CSCNN CSCSVM

1 83.84 96.34 70.59 91.85 96.12 88.92 98.05 98.87
2 87.02 98.87 93.14 96.54 99.02 84.57 99.16 98.33
3 75.49 93.08 94.67 86.73 96.91 76.00 93.09 98.43
4 96.55 98.79 96.65 97.15 98.99 95.83 96.34 98.44
5 99.62 99.97 99.98 99.97 99.93 99.74 99.10 99.95
6 84.35 98.78 90.74 95.48 99.40 87.67 83.24 99.29
7 90.56 99.19 99.37 96.97 99.40 82.54 98.13 99.77
8 85.68 94.12 93.24 82.66 96.22 69.68 84.36 98.15
9 98.58 98.80 86.11 98.46 99.98 100 99.84 98.75
OA 86.93 97.83 89.90 94.26 98.33 85.44 94.87 98.62
AA 89.08 97.55 91.61 93.98 98.44 87.22 94.59 98.89
κ 0.831 0.971 0.867 0.924 0.978 0.813 0.931 0.982

For both CSCNN and CSCSVM, dictionary training parameter λ = 0.0117, sparse
coding parameter µ = 7.

may also be made with the classification performances for University of Pavia and Salinas data
sets, as shown in Tables 6.5 and 6.6, respectively. The values of parameters used to obtain the
results in Tables 6.4, 6.5, and 6.6 are: i) the regularization parameter for dictionary training λ =
0.0117 for CSCSVM, and λ = 0.00217 for CSCNN; ii) the sizes of the dictionaries are restricted
to the maximum of 32 atoms for each class; iii) the number of non-zero components in sparse
coding µ = 7.

Both SDL and CSCSVM take similar approaches in dictionary learning and sparse coding.
The main difference is that SDL uses the sparse coefficients as the feature vectors for SVM, while
CSCSVM incorporates the contextual information with the sparse coefficients before training the
SVM classifiers. This leads to the significantly improved classification performance of CSCSVM
over SDL for all three data sets used. Comparing among SOMP, CDL, SCDL, CSCSVM, and
CSCNN, the difference is that SOMP, CDL and SCDL utilize the contextual information before
the sparse coding stage or during the dictionary learning, while CSCSVM and CSCNN employ
spectral information only for training the dictionary, and apply contextual information in the spec-
tral sparse coefficients. The comparable classification performances we obtained for these meth-
ods are indicative that similar discriminative character can be achieved by adding the contextual
information in the original hyperspectral image pixel domain or in the sparse coefficient domain.
At this point, one may wonder what difference can these two approaches make. Let us examine
the classification maps of different approaches, shown in Figure 6.2 (these are the classification
maps for the first run for each method), especially the closely performing SCDL and CSCSVM.
The classification errors for CSCSVM and CSCNN occur mostly along the neighbouring pixels
from two different classes. However, the same claim can not be made for SCDL and other meth-
ods. This implies applying the contextual information in the (spectral) sparse coefficient domain
could better enforce the neighbouring pixels to demonstrate similar features. Note that contextual
grouping or joint sparsity strategies usually assume that the scenes for classification consist of
homogeneous areas of the same materials or species. The classification errors among neighbour-
ing pixels from different classes can be reduced by a better contextual grouping approach, such
as segmentation.

Given the limited number of different classes to be identified in a scene, and the differing
number of training samples, we aim at constructing the dictionaries by selecting the same or sim-

107 6.4 Experiments

Table 6.6: Classification Performance for Salinas Data Set using Various Classifiers
Class SVM CSVM SOMP CDL SCDL SDL CSCNN CSCSVM

1 99.08 99.90 100.0 99.50 99.90 99.87 99.99 100.0
2 99.44 99.85 99.96 99.08 99.94 99.58 100.0 100.0
3 97.96 99.24 99.67 99.38 99.08 94.69 99.97 100.0
4 98.85 97.89 98.09 96.71 99.20 99.30 97.49 99.23
5 98.48 99.70 98.24 99.50 98.48 99.26 99.03 99.84
6 99.74 99.96 99.95 99.96 99.91 99.79 99.78 100.0
7 99.65 99.73 99.89 98.93 99.86 99.72 99.98 100.0
8 83.32 95.94 85.77 91.79 97.73 79.30 99.03 97.49
9 99.54 99.92 99.84 99.93 99.31 99.75 98.79 100.0
10 95.62 98.75 97.59 97.85 97.96 96.10 99.34 99.92
11 97.36 99.88 99.90 98.71 97.74 97.56 99.84 100.0
12 99.79 99.96 99.28 99.99 99.61 99.96 99.77 100.0
13 99.32 99.58 98.86 99.25 98.29 99.21 98.51 100.0
14 97.66 99.68 99.42 98.05 97.80 96.19 98.56 99.94
15 72.26 96.55 87.79 94.81 98.31 69.58 95.45 97.79
16 98.91 99.81 99.57 99.68 99.30 98.98 100.0 100.0
OA 91.95 98.43 94.93 97.05 98.78 90.75 98.78 99.13
AA 96.06 99.15 97.74 98.32 98.90 95.55 99.10 99.64
κ 0.910 0.983 0.944 0.967 0.986 0.897 0.986 0.990

For both CSCNN and CSCSVM, dictionary training parameter λ = 0.0117, sparse
coding parameter µ = 7.

ilar number of atoms from each class. This is not the case in [Chen et al. 2011a], where the
dictionaries are constructed by using all the training samples. The advantage of our approach lies
in a better control of the size of the dictionary, and satisfactory classification results could still
be achieved using smaller dictionaries. Moreover, the imbalance among classes with consider-
able difference in the number of available training samples (e.g., the ‘oat’ and ‘soybean_mintill’)
could be adjusted to some degree. While we prefer the dictionary to be overcomplete in sparse
representations, a dictionary with smaller size means a smaller dimension in the resulting sparse
coefficients, and subsequently, a reduced computational complexity.

6.4.3.2 Classification Performance on Varying Parameters for the Proposed Methods

In order to observe the effect of the regularization parameter λ on the classification performance,
we ran experiments using various values for λ during the dictionary training. The classifica-
tion performances using these dictionaries in CSCSVM and CSCNN are reported in Figures 6.3
and 6.4, where the results are for dictionary sizes ofK = 307 andK = 387, respectively. Differ-
ences in the order of 10−3 are most common for all three criteria considered, and the maximum
differences are limited by 10−2. When the value of λ is fixed, the changes in the performances
with respect to µ are similar for the OA, AA and κ, with some exceptions. For example, in Fig-
ure 6.3, when µ = 11, for both dictionary sizes considered, the values for both OA and κ increased
from those at µ = 7, but this is not the case for AA. The reason is that although the performances
for the majority of classes were consistent, they were not for a few of them (specifically, the class
‘oat’ for Indian Pines data set). It is also notable that for both CSCNN and CSCSVM, the per-
formances are the same for λ = 1.17, 1.17 × 101, irrespective of the dictionary sizes. Overall,
the performance at λ = 1.17 × 10−2 for K = 387 showed more consistency compared to the
others. Further, Figures 6.3 and 6.4 show that CSCSVM achieves approximately 3% higher OA
than CSCNN does. However, the performance criteria AA for CSCNN is far worse than that

6.4 Experiments 108

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 6.2: Indian Pines images: (a) False-colour image of original scene; (b) Ground truth. Classification
maps: (c) SVM; (d) CSVM; (e) SOMP; (f) CDL; (g) SCDL; (h) SDL; (i) CSCNN; (j) CSCSVM. (The
figure is best viewed in colour.)

of CSCSVM. This is primarily due to the very poor classification accuracies of CSCNN on two
classes, namely, ‘Grass-pasture-mowed’ and ‘Oats’, which have fewer training samples.

As mentioned earlier, the discrepancy between OA and AA is mainly due to the poor class
accuracies of a few classes. This is made clear in Figure 6.5, where we illustrate the class ac-
curacies for 6 of the 16 labelled classes available in the Indian Pines data set (see Table 6.1 on
Pg. 103 for the ground truth). Among the selected classes, ‘Grass-pasture-mowed’ and ‘Oats’ have
relatively smaller number of labelled samples with 28 and 20, respectively. On the other hand,
‘Soybean-mintill‘ has the most number of labelled samples. The remaining three classes are ‘Al-
falfa’, ‘Corn-notill’ and ‘Stone-Steel-Towers’. Among the selected classes, ‘Stone-Steel-Towers’
is the only non-vegetation or non-plant class. Figure 6.5 shows that the class accuracies for ‘Oats’
and ‘Stone-Steel-Towers’ are significantly worse than the others, and very sensitive to the density
of the sparse coefficients. The class accuracy for ‘Grass-pasture-mowed’ is better than the two
previous ones, and less sensitive to the differing values of µ. All other classes including the ones
not shown here were classified with a similar accuracies above 97%, and robust to varying µs.

One may attribute the reason for poor classification accuracies for the class ‘Oats’ to the
a smaller number of training samples available. Comparing it with the class ‘Grass-pasture-
mowed’, both of them have similar number of training samples. However, the accuracies for
the class ‘Grass-pasture-mowed’ are higher than those of the class ‘Oats‘. This means besides
the lack of training samples, it is possible that there are some other factors which cause an inac-
curate classification of the class ‘Oats’. One of such factors could be a strong spectral similarity
between two or more types of land covers. These are within the same category or across different
categories. For example, in the case of the class ‘Stone-Steel-Towers’, the spectral character of
this class might be difficult to be distinguished from one of the vegetation classes in the Indian
Pines data set to another. Further investigation needs to be done in order to gain clarification.

The comparison of results for CSCSVM using different sizes of dictionaries, together with
using varying number of non-zero components, is presented in Figure 6.6. When we increase
the dictionary size from 24 atoms for each class to 40 atoms, all the performance criteria consid-

109 6.5 Conclusion

ered yield slight improvements in the order of 10−3. We also observe from both Figure 6.3 and
Figure 6.6 that for a given dictionary, when the number of non-zero components µ increases, the
OA and κ increase for the lower range of µ in general. However, the growth rate is higher for
smaller µs than for larger ones. The growth range is approximately within the number of atoms
per class. That is, if the dictionary size is limited to 32 atoms per class, the growth range is within
approximately 32. Recall that the number of non-zero components indicates the density in the
sparse coefficients. When the number of non-zero components increases, the reconstruction error
decreases, as it is the optimization objective in our dictionary learning problem. However, the
discriminative character of the sparse coefficients does not necessarily increase linearly with re-
spect to the increasing density in the sparse coefficients. For example, in Figure 6.6, the minimum
OA is 98.47% at µ = 3, and the maximum OA is 98.89% at µ = 31. There is an increase of only
0.42% for OA when the density is increased by 28. This is because, as more dictionary atoms
are activated in the sparse coding, some of the activated dictionary atoms might introduce noise
which reduces the ability of the sparse coefficients to distinguishes between different classes.

Table 6.7: The Running Time for Dictionary Training using Various λs.
λ 0.00117 0.00217 0.0117 0.117 1.17 11.7
Time (s) 151.9605 98.8643 35.2542 12.5843 6.7474 5.8157

A main advantage of online dictionary learning algorithm is its ability to converge rapidly
while minimizing the expected cost. However, dictionary training is usually a time consuming
process even if the algorithm is optimized. Table 6.7 shows the empirical time for training dic-
tionaries for Indian Pines data set using different values for λ, while the number of iterations is
limited to 500, and dictionary size is 32 atoms for each class. A general guideline we followed in
our experiments is that the higher the value λ is, the faster the dictionary converges. Moreover,
the classification performance in terms of OA increases in general, when the value of λ increases
within a certain range.

6.5 Conclusion
Despite the advances in hyperspectral image classification techniques, challenges, such as high
dimensionality and limited number of labelled samples, still exist. This chapter investigates hy-
perspectral image classification based on sparse representations. The main idea is to build dis-
criminative feature vectors in the sparse coefficient domain for hyperspectral image classification
through sparsity model. Under the proposed strategy, a hyperspectral image is modelled using a
learned dictionary via sparse coding. Only the spectral information is considered during the dic-
tionary learning stage. The spatial correlation is incorporated into the sparse coefficients through
contextual neighbourhood grouping and local mean filter. The contextual sparse coefficients are
then used to train two basic classifiers SVM and kNN. The effectiveness of such an approach is
demonstrated by the experimental results on a number of hyperspectral images. In particular, the
SVM with linear kernels perform very well because the sparse representation is able to transform
the data into linearly separable space. This shows that other linear classifiers, such as linear dis-
criminant analysis (LDA), can also perform well using our classification approach. Furthermore,
the results also show that our approach offers a certain degree of flexibility in obtaining satisfac-
tory classification performance through varying sizes of dictionaries and varying number of non-

6.5 Conclusion 110

zero components in the sparse coefficients. This is advantageous in the case of limited number
of labelled samples. As future work, we will investigate more accurate approaches for contex-
tual grouping of neighbourhood pixels, and will apply sparse representations to semi-supervised
classification of hyperspectral images.

111 6.5 Conclusion

K = 307 K = 387

(a) (d)

(b) (e)

(c) (f)

Figure 6.3: The classification performance of CSCSVM for Indian Pines data set using various regulariza-
tion parameter λs. The dictionary sizeK = 307 for the first column, andK = 387 for the second column.
(a), (d) The overall accuracy; (b), (e) The average accuracy; (c), (f) The κ.

6.5 Conclusion 112

K = 307 K = 387

(a) (d)

(b) (e)

(c) (f)

Figure 6.4: The classification performance of CSCNN for Indian Pines data set using various regularization
parameter λs. The dictionary sizeK = 307 for the first column, andK = 387 for the second column. (a),
(d) The overall accuracy; (b), (e) The average accuracy; (c), (f) The κ.

113 6.5 Conclusion

λ = 0.0117 λ = 1.17

(a) (b)

(c) (d)

Figure 6.5: The selected class accuracies of CSCSVM for Indian Pines data set using different regulariza-
tion parameters. The class number and name pairs are: (1, ‘Alfalfa’); (2, ‘Corn-notill’); (7, ‘Grass-pasture-
mowed’); (9, ‘Oats’); (11, ‘Soybean-mintill’); (16, ‘Stone-Steel-Towers’). (a)K = 307, λ = 1.17× 10−2;
(b)K = 307, λ = 1.17. (c)K = 387, λ = 1.17× 10−2; (d)K = 387, λ = 1.17.

6.5 Conclusion 114

λ = 0.0117 λ = 0.117

(a) (d)

(b) (e)

(c) (f)

Figure 6.6: The classification performance of CSCSVM for Indian Pines data set using various dictionary
sizes. SD_24, SD_32, SD_40 are dictionaries with 24, 32, and 40 atoms for each class, respectively. The
regularization parameter λ = 0.0117 for the first column, and λ = 0.117 for the second column. (a), (d)
The overall accuracy; (b), (e) The average accuracy; (c), (f) The κ.

Chapter 7
Conclusion

7.1 Summary

In this thesis we set out to explore incorporating sparse representation with hyperspectral image
compression. The goal is to find that such an approach is effective, to extend the mechanism
to hyperspectral image classification, and ultimately, to various hyperspectral image processing
tasks. The key idea is that sparse representation should be able to discover the latent structures
in hyperspectral images through dictionary learning and sparse coding. Surrounding this main
theme, our work is carried out in two aspects.

The first aspect is developing a lossy hypespectral image compression framework that is based
on sparse representation. Two approaches are taken for dictionary learning. The first one is learn-
ing a dictionary in the spectral domain of a hyperspectral image, and the second is in the multi-
scale spectral domain. Given the learned dictionary, the sparse coefficients of a hyperspectral
image are found by sparse coding. The compression scheme using spectral dictionaries is found
to be very effective in terms of exploiting the spectral correlations in the hyperspectral images.
It turns out that this approach can almost achieve similar performance as the JPEG 2000 multi-
component coupled with DWT. The difference is that the former exploits the spectral redundancy
only, while the latter exploits both spatial and spectral redundancies. The second approach ex-
plores learning a dictionary in the wavelet domain. This method is able to reduce the spectral
redundancy, as well as the spatial one. However, both approaches suffer from the overheads of
dictionary learning and encoding of the dictionary information. The overheads can be reduced
by utilizing a pre-learned dictionary for training a new one. This method is effective if the base
dictionary is chosen properly. In the case of hyperspectral images, there are often images avail-
able, obtained from a similar location, and thus a base dictionary can be learned from previously
obtained data.

The second aspect is applying the sparse coefficients for hyperspectral image classification.
The discriminative feature of the sparse coefficients is enhanced by incorporating contextual infor-
mation. Simple classifiers such as SVMs and kNN trained on these contextual sparse coefficients
lead to excellent classification performance. As the sparse coefficients in the lossy compression
and classification are the same, it provides an alternate way of avoiding the dictionary encoding
in the compression framework. However, this is only feasible if the complete reconstruction is
not necessary.

7.3 Conclusion 116

7.2 Future Work

The methods presented in this thesis allow a few avenues for future research. They are described
below either as improvements to the current work, or further questions.

• An imminent future work is to incorporate a way of effectively exploiting the spatial cor-
relations with the current SRSD approach. A viable solution is to consider the contextual
information in the learning of a spectral dictionary.
• The dictionary learning approach in the current lossy compression framework is primarily
data compression oriented, and thus, there is a lack of mechanisms for information preserv-
ing. That is, reducing the data volume might sacrifice some vital information in hyperspec-
tral images, such as the sub-pixel information in anomaly or target detection. Thus, it is
desirable to have a dictionary learning approach that could minimize not only the recon-
struction error, but also the loss of information. The related research question in this aspect
becomes how to achieve a good balance in information preserving and data compression
using sparse representation.
• An efficient coding of the sparse coefficients will improve the compression performance in
the current work. The investigation of extending the bit plane coding to the sparse coeffi-
cients is a possible way to achieve this goal.
• The hyperspectral image classification approach in this thesis demonstrates the effective-
ness of supervised classification based on sparse representation. A desired addition to the
current work is a solution to the problem of unbalanced number of available training sam-
ples for each class at the dictionary training stage. In addition, owing to the lack of labelled
data, unsupervised or semi-supervised classification methods are necessary. The exten-
sion of sparse representation to the semi-supervised or unsupervised hyperspectral image
classification is another research area to pursue.
• Parallel processing is always an integral part in hyperspectral image processing, including
compression. In the context of sparse representation based approaches, parallel processing
could reduce the computational demand of dictionary learning and sparse coding. Accel-
erator based parallel computing for sparse representation is a future work that we intend to
focus on.

7.3 Conclusion

Sparse representation, or sparse coding with an overcomplete dictionary, provides a strategy that
resembles the one employed by the receptive field of simple cells in mammalian primary visual
cortex [Olshausen and Field 1997]. Dictionary learning algorithms are able to discover the un-
derlying structure of input signals or images by attempting to find the sparse coefficients for them.
The resulting coefficients are not only sparse, they also possess a higher degree of statistical in-
dependence that leads to more efficient representations.

This thesis has thus focused on the ideas of applying sparse representation to hyperspectral im-
age compression and classification. We have developed a lossy hyperspectral image compression
framework that is based on sparse representation. We have also explored designing of hyper-
spectral image classifiers using dictionary learning and sparse coding. The main theme has been
exploiting the rich spatial and spectral information in hyperspectral images for data compression
and further data analysis. To this, the theory and methods of sparse representation turn out to

117 7.3 Conclusion

be direct and effective. It is our hope that future work will generalize or expand the work in this
thesis to the processing and analysis of broader types of signals and images.

7.3 Conclusion 118

Bibliography

Adams, M. D. and Kossentni, F. (2000). Reversible integer-to-integer wavelet transforms for
image compression: performance evaluation and analysis. IEEE Transactions on Image Pro-
cessing, 9(6):1010–1024.

Aharon, M., Elad, M., and Bruckstein, A. (2006). K-SVD: An algorithm for designing overcom-
plete dictionaries for sparse representation. IEEE Trans. Sig. Proc., 54(11):4311 – 4322.

Akhtar, N., Shafait, F., and Mian, A. (2014). Sparse spatio-spectral representation for hyperspec-
tral image super-resolution. In Fleet, D., Pajdla, T., Schiele, B., and Tuytelaars, T., editors,
Computer Vision - ECCV 2014. Lecture Notes in Computer Science, volume 8695, pages 63–
78. Springer, Cham.

Antonini, M., Barlaud, M., Mathieu, P., and Daubechies, I. (1992). Image coding using wavelet
transform. IEEE Transactions on Image Processing, 1(2):205–220.

Bach, F., Jenatton, R., Mairal, J., and Obozinski, G. (2012). Optimization with sparsity-inducing
penalties. Found. Trends Mach. Learn., 4(1):1–106.

Bachmann, C. M., Donato, T. F., Lamela, G. M., Rhea, W. J., Bettenhausen, M. H., Fusina, R. A.,
Bois, K. R. D., Porter, J. H., and Truitt, B. R. (2002). Automatic classification of land cover
on smith island, VA, using HyMAP imagery. IEEE Transactions on Geoscience and Remote
Sensing, 40(10):2313–2330.

Bahrampour, S., Nasrabadi, M., Ray, A., and Jenkins, W. (2016). Multimodal task-driven dictio-
nary learning for image classification. IEEE Transactions on Image ProcessingI, 25(1):24–38.

Baizert, P., Pickering, M., and Ryan, M. (2001). Compression of hyperspectral data by spa-
tial/spectral discrete cosine transform. In IGARSS 2001 - IEEEGeoscience and Remote Sensing
Symposium, volume 4, pages 1859–1861.

Beerten, J., Blanes, I., and Serra-Sagristà, J. (2015). A fully embedded two-stage coder for hy-
perspectral near-lossless compression. IEEE Geoscience and Remote Sensing Letters.

Benediktsson, J. A., Palmason, J. A., and Sveinsson, J. R. (2005). Classification of hyperspec-
tral data from urban areas based on extended morphological profiles. IEEE Transactions on
Geoscience and Remote Sensing, 43(3):480–491.

Benediktsson, J. A., Pesaresi, M., and Amason, K. (2003). Classification and feature extraction
for remote sensing images from urban areas based on morphological transformations. IEEE
Transactions on Geoscience and Remote Sensing, 41(9):1940–1949.

Bertsekas, D. P. (1999). Nonlinear Programming. Athena Scientific, 2nd edition.
Bioucas-Dias, J. M. and Nascimento, J. (2012). Hyperspectral unmixing based on mixtures of
dirichlet components. IEEE Trans. Geosci. Remote Sensing, 50(3):863–878.

Bioucas-Dias, J. M., Plaza, A., Dobigeon, N., Parente, M., Du, Q., Gader, P., and Chanussot,
J. (2012). Hyperspectral unmixing overview: Geometrical, statistical, and sparse regression-
based approaches. IEEE Journal of Selected Topics in Applied Earth Observations and Remote
Sensing, 5(2):354–379.

Blanes, I., Magli, E., and Serra-Sagrista, J. (2014). A tutorial on image compression for optical
space imaging systems. IEEE Geoscience and Remote Sensing Magazine, 2(3):8–26.

Blanzieri, E. and Melgani, F. (2008). Nearest neighbor classification of remote sensing images
with the maximal margin principle. IEEE Transactions on Geoscience and Remote Sensing,
46(6):1804–1811.

Boardman, J. W., Kruse, A., and Green, R. O. (1995). Mapping target signatures via partial
unmixing of AVIRIS data. In Proc. JPL, Airborne Earth Science Workshop, pages 23–26.

Borengasser, M., Hungate, W. S. ., and Watkins, R. (2007). Hyperspectral Remote Sensing Prin-
ciples and Applications. CRC Press.

Boser, B. E., Guyon, I. M., and Vapnik, V. N. (1992). A training algorithm for optimal margin
classifiers. In Proceedings of the Fifth Annual Workshop on Computational Learning Theory,
COLT ’92, pages 144–152, New York, NY, USA. ACM.

Bottou, L. and Bousquet, O. (2008). The tradeoffs of large scale learning. Advances in Neural
Information Processing Systems, 20:161–168.

Boyd, S. and Vandenberghe, L. (2004). Convex Optimization. Cambridge University Press, New
York, NY, USA.

Broadwater, J., Banerjee, A., and Berlina, P. (2011). Kernel methods for unmixing hyperspectral
imagery. In Prasad, L. B. S. and Chanussod, E. J., editors, Optical Remote Sensing Advances
in Signal Processing and Exploitation, pages 247–269. New York: Springer.

Bryt, O. and Elad, M. (2008). Compression of facial images using K-SVD algorithm. Journal of
Visual Communication & Image Representation, 19:270 – 282.

Camps-Valls, G., Gomez-Chova, L., Muñoz-Marí, J., Vila-Francís, J., and Calpe-Maravilla, J.
(2006). Composite kernels for hyperspectral image classification. IEEE Geoscience and Re-
mote Sensing Letters, 3(1):93–97.

Camps-Valls, G., Tuia, D., Gomez-Chova, L., Jiménez, S., and Malo, J. (2012). Remote Sensing
Image Processing. Morgan & Claypool Publishers.

CCSDS (2012). The consultative committee for space data systems, lossless multispectral &
hyperspectral image compression. https://public.ccsds.org/Pubs/123x0b1ec1.pdf.
Accessed 2017-10-2.

CCSDS (2017a). The consultative committee for space data systems. https://public.ccsds.
org/default.aspx. Accessed 2017-10-3.

CCSDS (2017b). The consultative committee for space data systems, image data com-
pression, recommended standard, issue 2. https://public.ccsds.org/Publications/
BlueBooks.aspx. Accessed 2017-10-3.

Chang, C.-C. and Lin, C.-J. (2011). LIBSVM: A library for support vector machines. ACM Trans.
Intell. Syst. Technol., 2(3):27:1–27:27.

Chang, C.-I. (2007a). Hyperspectral imaging systems. In Chang, C.-I., editor, Hyperspectral
Data Exploitation: Theory and Application, pages 19–59. John Wiley & Sons, Inc.

Chang, C.-I. (2007b). Overview. In Chang, C.-I., editor,Hyperspectral Data Exploitation Theory
and Applications, chapter 1. Johan Wiley & Sons, Inc.

Chang, C.-I. (2013). Hyperspectral Data Processing: algorithm design and analysis. JohnWiley
& Sons, Inc., Hoboken, NJ.

Charles, A., Olshausen, B., and Rozell, C. (2011). Learning sparse codes for hyperspectral im-
agery. IEEE Journal of Selected Topics in Signal Processing, 5(5):963 – 978.

120

https://public.ccsds.org/Pubs/123x0b1ec1.pdf
https://public.ccsds.org/default.aspx
https://public.ccsds.org/default.aspx
https://public.ccsds.org/Publications/BlueBooks.aspx
https://public.ccsds.org/Publications/BlueBooks.aspx

Chen, G. and Qian, S. E. (2011). Denoising of hyperspectral imagery using principal compo-
nent analysis and wavelet shrinkage. IEEE Transactions on Geoscience and Remote Sensing,
49(3):973–980.

Chen, S., Donoho, D., and Saunders, M. (2001). Atomic decomposition by basis pursuit. SIAM
Review, 43(1):129 – 159.

Chen, Y., Nasrabadi, N. M., and Tran, T. D. (2011a). Hyperspectral image classification using
dictionary-based sparse representation. IEEE Transactions on Geoscience and Remote Sensing,
49(10):3973–3985.

Chen, Y., Nasrabadi, N. M., and Tran, T. D. (2011b). Sparse representation for target detection in
hyperspectral imagery. IEEE Journal of Selected Topics in Signal Processing, 5(3):629–640.

Christopoulos, C., Skodras, A., and Ebrahimi, T. (2000). The JPEG 2000 still image coding
system: An overview. IEEE Trans. on Consum. Electron., 46(4):1103–1127.

Clark, R. N. (1999). Spectroscopy of rocks andminerals, and principles of spectroscopy. In Rencz,
A. N., editor,Manual of Remote Sensing, Volume 3, Remote Sensing for Earth Sciences, pages
3–58. John Wiley & Sons, Inc.

Corson, M. R., Korwan, D. R., Lucke, R. L., Snyder, W. A., and Davis, C. O. (2008). The
hyperspectral imager for the coastal ocean (HICO) on the international space station. In IGARSS
2008 - IEEE International Geoscience and Remote Sensing Symposium, volume IV, pages 101–
104.

Cortes, C. and Vapnik, V. (1995). Support-vector networks. Mach. Learn., 20(3):273–297.
Cover, T. and Hart, P. (1967). Nearest neighbor pattern classification. IEEE Trans. Inf. Theor.,
13(1):21–27.

Craig, M. D. (1994). Minimum-volume transforms for remotely sensed data. IEEE Trans. Geosci.
Remote Sensing, 32:542–552.

Daubechies, I. (1988). Orthonormal bases of compactly supported wavelets. Commun. Pure Appl.
Math., 41:909–996.

Daubechies, I. and Sweldens, W. (1998). Factoring wavelet transforms into lifting steps. Journal
of Fourier Analysis and Applications, 4(3):247–269.

Davis, G., Mallat, S., and Avellaneda, M. (1997). Adaptive greedy approximation. Constructive
Approximation, 13:57–98.

Do, M. N. and Vetterli, M. (2005). The contourlet transform: an efficient directional multireso-
lution image representation. IEEE Transactions on Image Processing, 14(12):2091–2106.

Dobigeon, N., Moussaoui, S., Coulon, M., Tourneret, J. Y., and Hero, A. O. (2009). Joint bayesian
endmember extraction and linear unmixing for hyperspectral imagery. IEEE Trans. Sig. Proc.,
57(11):4355–4368.

Donoho, D. L. (1999). Wedgelets: Nearly minimax estimation of edges. The Annals of Statistics,
27(3):859–897.

Donoho, D. L. and Johnstone, J. M. (1994). Ideal spatial adaptation by wavelet shrinkage.
Biometrika, 81(3):425–455.

Dragotti, P., Poggi, G., and Ragozini, A. (2000). Compression of multispectral images by
three-dimensional SPIHT algorithm. IEEE Transactions on Geoscience and Remote Sensing,
38(1):416–428.

Du, Q. and Chang, C. I. (2004). Linear mixture analysis-based compression for hyperspectral
image analysis. IEEE Transactions on Geoscience and Remote Sensing, 42(4):875 – 891.

121

Du, Q. and Fowler, E. (2007). Hyperspectral image compression using JPEG2000 and principle
componenet analysis. IEEE Geoscience and Remote Sensing Letters, 4(2):201–205.

Efron, B., Hastie, T., Johnstone, I., and Tibshirani, R. (2004). Least angle regression. The Annals
of Statistics, 32(2):407–499.

Eismann, M. T., Stocker, A. D., and Nasrabadi, N. M. (2009). Automated hyperspectral cueing
for civilian search and rescue. Proceedings of the IEEE, 97(6):1031–1055.

Elad, M. (2010). Sparse and Redundant Representations: From Theory to Applications in Signal
and Image Processing. Springer Publishing Company, Incorporated, 1st edition.

Elad, M. and Aharon, M. (2006). Image denoising via sparse and redundant representations over
learned dictionaries. IEEE Transactions on Image Processing, 15(12):3736–3745.

Elad, M., Figueiredo, M., and Ma, Y. (2010). On the role of sparse and redundant representations
in image processing. Special Issue on Applications of Sparse Representation and Cpmressive
Sensing, Proceesings of the IEEE, 98(6):972 – 982.

Elmasry, G., Kamruzzaman, M., Sun, D.-W., and Allen, P. (2012). Principles and applications of
hyperspectral imaging in quality evaluation of agro-food products: A review. Critical Reviews
in Food Science and Nutrition, 52(11):999–1023.

Engan, K., Aase, S., and Husøy, J. (1999). Method of optimal directions for frame design. In
Proc. ICASSP ’99 (Phoenix, USA), pages 2443–2446.

Engan, K., Skretting, K., and Husøy, J. (2007). Family of iterative LS-based dictionary learning
algorithms, ILS-DLA, for sparse signal representation. Digital Signal Processing, 17(1):32 –
49.

Farrand, W. H., Singer, R. B., and Merényi, E. (1994). Retrieval of apparent surface reflectance
from AVIRIS data: A comparison of empirical line, radiative transfer, and spectral mixture
methods. Remote Sensing of Environment, 47(3):311–321.

Fauvel, M., Benediktsson, J. A., Chanussot, J., and Sveinsson, J. R. (2008). Spectral and spatial
classification of hyperspectral data using SVMs andmorphological profiles. IEEE Transactions
on Geoscience and Remote Sensing, 46(11):3804–3814.

Fauvel, M., Tarabalka, Y., Benediktsson, J. A., Chanussot, J., and Tilton, J. C. (2013). Advances in
spectral— spatial classification of hyperspectral images. Proceedings of the IEEE, 101(3):652–
675.

Field, D. J. (1987). Relations between the statistics of natural images and the response properties
of cortical cells. J. Opt. Soc. Am. A, 4(12):2379–2394.

Fowler, J. (2000). Qccpack: an open-source software library for quantization, compression, and
coding. In Proc. SPIE, volume 4115, pages 294–301.

Fowler, J. and Rucker, J. (2007). 3D wavelet-based compression of hyperspectral imagery. In
Chang, C. I., editor, Hyperspectral Data Exploitation: Theory and Applications, pages 379–
407. John Wiley & Sons, Inc.

Fu, W. J. (1998). Penalized regressions: The bridge versus the lasso. Journal of Computational
and Graphical Statistics, 7(3):397–416.

Gall, D. L. and Tabatabai, A. (1988). Sub-band coding of digital images using symmetric short
kernel filters and arithmetic coding techniques. In ICASSP-88, International Conference on
Acoustics, Speech, and Signal Processing, pages 761–764 vol.2.

Gao, L., Du, Q., Zhang, B., Yang, W., and Wu, Y. (2013). A comparative study on linear
regression-based noise estimation for hyperspectral imagery. IEEE Journal of Selected Topics

122

in Applied Earth Observations and Remote Sensing, 6(2):488–498.
García-Vilchez, F. and Serra-Sagristà, J. (2009). Extending the CCSDS recommendation for
image data compression for remote sensing scenarios. IEEE Trans. Geosci. Remote Sensing,
47:3431–3445.

Geladi, P. L. M., Grahn, H. F., and Burger, J. E. (2007). Multivariate images, hyperspectral
imaging: Background and equipment. In Grahn, H. F. and Geladi, P., editors, Techniques and
Applications of Hyperspectral Image Analysis. John Wiley & Sons, Ltd.

Gersho, A. and Gray, R. M. (1991). Vector Quantization and Signal Compression. Kluwer
Academic Publishers, Norwell, MA, USA.

Goetz, A. F. H. (2009). Three decades of hyperspectral remote sensing of the earth : A personal
view. Remote Sensing of Environment, 113:S5–S16.

Goetz, A. F. H., Vane, G., Solomon, J. E., and Rock, B. N. (1985). Imaging spectrometry for
earth remote sensing. Science, 228(4704):1147–1153.

Goyal, V. (2001). Theoretical foundations of transform coding. IEEE Signal Processing Maga-
zine, 18(5):9–21.

Green, R. O., Conel, J. E., Margolis, J. S., Carrere, V., Bruegge, C. J., Rast, M., and Hoover, G.
(1990). In-flight validation and calibration of the spectral and radiometric characteristics of the
airborne visible/infrared imaging spectrometer. In Proc. SPIE 1298, Imaging Spectroscopy of
the Terrestrial Environment.

Green, R. O., Conel, J. E., and Roberts, D. A. (1993). Estimation of aerosol optical depth, pressure
elevation, water vapor, and calculation of apparent surface reflectance from radiance measured
by the airborne visible/infrared imaging spectrometer (AVIRIS) using a radiative transfer code.
In Proc. SPIE 1937, Imaging Spectrometry of the Terrestrial Environment.

Green, R. O., Eastwood, M. L., Sarture, C. M., Chrien, T. G., Aronsson, M., Chippendale, B. J.,
Faust, J. A., Pavri, B. E., Chovit, C. J., Solis, M., Olah, M. R., and Williams, O. (1998). Imag-
ing spectroscopy and the airborne visible / infrared imaging spectrometer (AVIRIS). Remote
Sensing of Environment, 65(3):227–248.

Guanter, L., Kaufmann, H., Segl, K., Foerster, S., Rogass, C., Chabrillat, S., Kuester, T., Holl-
stein, A., Rossner, G., Chlebek, C., Straif, C., Fischer, S., Schrader, S., Storch, T., Heiden, U.,
Mueller, A., Bachmann, M., Mühle, H., Müller, R., Habermeyer, M., Ohndorf, A., Hill, J., Bud-
denbaum, H., Hostert, P., van der Linden, S., Leitão, P., Rabe, A., Doerffer, R., Krasemann,
H., Xi, H., Mauser, W., Hank, T., Locherer, M., Rast, M., Staenz, K., and Sang, B. (2015).
The EnMAP spaceborne imaging spectroscopy mission for earth observation. Remote Sens.,
7(7):8830–8857.

Guha, T. and Ward, R. (2012). Learning sparse representations for human action recognition.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 34(8):1576–1588.

Haboudane, D., Miller, J. R., Pattey, E., Zarco-Tejada, P. J., and Strachan, I. B. (2004). Hyper-
spectral vegetation indices and novel algorithms for predicting green LAI of crop canopies:
Modeling and validation in the context of precision agriculture. Remote Sensing of Environ-
ment, 90(3):337–352.

Harvey, A. R., Lawlor, J., McNaught, A. I., Williams, J. W., and Fletcher-Holmes, D. W. (2002).
Hyperspectral imaging for the detection of retinal disease. In Proceedings of the SPIE, volume
4816, pages 325–335.

Horev, I., Bryt, O., and Rubinstein, R. (2012). Adaptive image compression using sparse dic-

123

tionaries. In 2012 19th International Conference on Systems, Signals and Image Processing
(IWSSIP), pages 592–595.

Hsu, C. W. and Lin, C. J. (2002). A comparison of methods for multiclass support vector ma-
chines. IEEE Transactions on Neural Networks, 13(2):415–425.

Huffman, D. A. (1952). A method for the construction of minimum-redundancy codes. Proceed-
ings of the IRE, 40(9):1098–1101.

Hughes, G. (1968). On the mean accuracy of statistical pattern recognizers. IEEE Transactions
on Information Theory, 14(1):55–63.

Hughes, J. M., Rockmore, D. N., and Wang, Y. (2013). Bayesian learning of sparse multiscale
image representations. IEEE Trans. Image Processing, 22(12):4972–4983.

Huo, C., Zhang, R., Yin, D., Wu, Q., and Xu, D. (2012). Hyperspectral data compression using
sparse representation. In Hyperspectral Image and Signal Processing: Evolution in Remote
Sensing (WHISPERS), 2012 4th Workshop on, pages 1– 4.

Iordache, M. D., Bioucas-Dias, J. M., and Plaza, A. (2011). Sparse unmixing of hyperspectral
data. IEEE Transactions on Geoscience and Remote Sensing, 49(6):2014–2039.

Iordache, M. D., Bioucas-Dias, J. M., and Plaza, A. (2014). Collaborative sparse regression for
hyperspectral unmixing. IEEE Transactions on Geoscience and Remote Sensing, 52(1):341–
354.

Jelinek, F. (1968). Probablistic Information Theory. McGraw Hill.
Jenatton, R., Mairal, J., Obozinski, G., and Bach, F. (2010). Proximal methods for sparse hier-
archical dictionary learning. In Proceedings of the 27th International Conference on Machine
Learning, ICML’10, pages 487–494.

Jimenez, L. O. and Landgrebe, D. A. (1998). Supervised classification in high-dimensional space:
geometrical, statistical, and asymptotical properties of multivariate data. IEEE Transactions
on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 28(1):39–54.

Kang, J., Gabbouj, M., and Kuo, C. (2013). Sparse/DCT (S/DCT) two-layerd representation of
prediction residuals for video coding. IEEE Transactions on Image Processing, 22(7):2711–
2722.

Kaukoranta, T., Franti, P., and Nevalainen, O. (1999). Reduced comparison search for the exact
GLA. In Proceeding of Data Compression Conference, IEEE Coupter Society.

Kelly, E. J. (1986). An adaptive detection algorithm. IEEE Transactions on Aerospace and
Electronic Systems, AES-22(2):115–127.

Keshava, N. and Mustard, J. F. (2002). Spectral unmixing. IEEE Signal Processing Magazine,
19(1):44–57.

Kim, B., Xiong, Z., and Pearlman, W. (2000). Low bit-rate scalable video coding with 3-D set
partitioning in hierarchical trees (3-D SPIHT). IEEE Transactions on Circuits and Systems For
Video Technology, 10(8):1374–1387.

Kruse, F. A., Boardman, J. W., and Huntington, J. F. (2003). Comparison of airborne hyper-
spectral data and EO-1 Hyperion for mineral mapping. IEEE Transactions on Geoscience and
Remote Sensing, 41(6):1388–1400.

Kwan, C., Ayhan, B., Chen, G., Wang, J., Ji, B., and Chang, C.-I. (2006). A novel approach
for spectral unmixing, classification, and concentration estimation of chemical and biological
agents. IEEE Transactions on Geoscience and Remote Sensing, 44(2):409–419.

Landgrebe, D. A. (1999). Information extraction principles and methods for multispectral and

124

hyperspectral image data. In Chen, C., editor, Information Processing for Remote Sensing,
pages 3–38. Worls Scientific Publishing Company.

Lee, H., Younan, N., and King, R. (2002). Hyperspectral image cube compression combining
JPEG2000 and spectral decorrelation. In IEEE Geoscience and Remote Sensing Symposium
(IGARSS’02), volume 6, pages 3317–3319.

Li, C.-G., Lin, Z., and Guo, J. (2013). Bases sorting: Generalizing the concept of frequency for
over-complete dictionaries. Neurocomputing, 115(Supplement C):192 – 200.

Li, S., Yin, H., and Fang, L. (2012). Group-sparse representationwith dictionary learning formed-
ical image denoising and fusion. Biomedical Engineering, IEEE Transactions on, 59(12):3450–
3459.

Li, W. and Du, Q. (2014). Gabor-filtering-based nearest regularized subspace for hyperspectral
image classification. IEEE Journal of Selected Topics in Applied Earth Observations and Re-
mote Sensing, 7(4):1012–1022.

Li, W. andDu, Q. (2015). Adaptive sparse representation for hyperspectral image classification. In
2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), pages 4955–
4958.

Li, W., Tramel, E.W., Prasad, S., and Fowler, J. E. (2014). Nearest regularized subspace for hyper-
spectral classification. IEEE Transactions on Geoscience and Remote Sensing, 52(1):477–489.

Linde, Y., Buzo, A., and Gray, R. M. (1980). An algorithm for vector quantizer design. IEEE
Transactions on Communications, COM-28(1):84–95.

Lloyed, S. P. (1982). Least squares quantization in PCM. IEEE Trans. Inf. Theor., 28(2):127–135.
Lu, T., Li, S., Fang, L., Ma, Y., and Benediktsson, J. A. (2016). Spectral – spatial adaptive
sparse representation for hyperspectral image denoising. IEEE Transactions on Geoscience
and Remote Sensing, 54(1):373–385.

Ma, W. K., Bioucas-Dias, J. M., Chan, T. H., Gillis, N., Gader, P., Plaza, A. J., Ambikapathi, A.,
and Chi, C. Y. (2014). A signal processing perspective on hyperspectral unmixing: Insights
from remote sensing. IEEE Signal Processing Magazine, 31(1):67–81.

Magli, E., Olmo, G., and Quacchio, E. (2004). Optimized onboard lossless and near-lossless com-
pression of hyperspectral data using CALIC. IEEE Geoscience and Remote Sensing Letters,
1(1):21–25.

Mahmood, A., Robin, A., and Sears, M. (2017). Modified residual method for the estimation of
noise in hyperspectral images. IEEE Trans. Geosci. Remote Sensing, 55(3):1451–1460.

Mairal, J., Bach, F., and Ponce, J. (2014). Sparse modeling for image and vision processing.
Foundations and Trends in Computer Graphics and Vision, 8(2-3):85–283.

Mairal, J., Bach, F., Ponce, J., and Sapiro, G. (2009). Online dictionary learning for sparse coding.
In 26th International Conference on Machine Learning, Montreal, Canada.

Mairal, J., Bach, F., Ponce, J., and Sapiro, G. (2010). Online learning for matrix factorization and
sparse coding. Journal of Machine Learning Research, 11:19–60.

Mairal, J., Elad, M., and Sapiro, G. (2008a). Sparse representation for color image restoration.
Image Processing, IEEE Trans. On, 17(1):53–69.

Mairal, J., Sapiro, G., and Elad, M. (2008b). Learning multiscale sparse representations for image
and video restoration. Multiscale Modeling & Simulation, 7(1):214–241.

Mairal, J. and Yu, B. (2012). Complexity analysis of the Lasso regularization path. In Langford, J.
and Pineau, J., editors, Proceedings of the 29th International Conference on Machine Learning

125

(ICML-12), pages 353–360, New York, NY, USA. ACM.
Mallat, S. (2008). AWavelet Tour of Signal Processing, Third Edition: The SparseWay. Academic
Press, 3rd edition.

Mallat, S. and Zhang, Z. (1993). Matching pursuit with time-frequency dictionaries. IEEE Trans-
actions on Signal Processing, 41(12):3397–3415.

Manolakis, D., Marden, D., and Shaw, G. A. (2003). Hyperspectral image processing for auto-
matic target detection applications. Lincoln Laboratory Journal, 14(1):79–116.

Meer, F. D. V. D. and de Jong, S. M., editors (2001). IMAGING SPECTROMETRY: Basic Prin-
ciples and Prospective Applications (Remote sensing and digital image processing, Vol 4).
Dordrecht etc.: Kluwer Academic.

Melgani, F. and Bruzzone, L. (2004). Classification of hyperspectral remote sensing images with
support vector machines. IEEE Transactions on Geoscience and Remote Sensing, 42(8):1778–
1790.

Mercier, G. and Lenon, M. (2003). Support vector machines for hyperspectral image classifica-
tion with spectral-based kernels. In 2003 IEEE InternationalGeoscience and Remote Sensing
Symposium, IGARSS 2003., volume 1, pages 288–290.

Mitani, Y. and Hamamoto, Y. (2006). A local mean-based nonparametric classifier. Pattern
Recogn. Lett., 27(10):1151–1159.

Motta, G., Rizzo, F., and Storer, J. A., editors (2009). Hyperspectral Data Compression. Springer-
Verlag.

Moussaoui, S., Hauksdottir, H., Schmidt, F., Jutten, C., Chanussot, J., Brie, D., Doute, S., , and
Benediktsson, J. A. (2008). On the decomposition of data hyperspectral data by ica and bayesian
positive source separation. Neurocomputing, 71:2194–2208.

NASA (2018). Remote sensors. https://earthdata.nasa.gov/user-resources/
remote-sensors. 2018-01-12.

NASA JPL (2015). AVIRIS. http://aviris.jpl.nasa.gov/aviris/index.html. 2015-04-08.
Nasrabadi, N. M. (2014). Hyperspectral target detection : An overview of current and future
challenges. IEEE Signal Processing Magazine, 31(1):34–44.

Olshausen, B. A. and Field, D. (1997). Sparse coding with an overcomplete basis set: A strategy
employed by V1? Vision Research, 37(23):3311 – 3325.

Osborne, M. R., Presnell, B., and Turlach, B. A. (2000). A new approach to variable selection in
least squares problems. IMA Journal of Numerical Analysis, 20(3):389–403.

Pati, Y. C., Rezaiifar, R., and Krishnaprasad, P. S. (1993). Orthogonal matching pursuit: recursive
function approximation with applications to wavelet decomposition. In Proceedings of 27th
Asilomar Conference on Signals, Systems and Computers, volume 1, pages 40–44.

Pearlman,W., Islam, A., Nagaraj, N., and Said, A. (2004). Efficient, low-complexity image coding
with a set-partitioning embedded block coder. IEEE Transactions on Circuits and Systems for
Video Technology, 14(11):1219–1235.

Penna, B., Tillo, T., Magli, E., and Olmo, G. (2007). Transform coding techniques for lossy
hyperspectral data compression. Geoscience and Remote Sensing, IEEE Transactions on,
45(5):1408–1421.

Pickering, M. and Ryan, M. (2001). Efficient spatial-spectral compression of hyperspectral data.
IEEE Transactions on Geoscience and Remote Sensing, 39(7):1536–1539.

Pickering, M. and Ryan, M. (2006). An architecture for the compression of hyperspectral imagery.

126

https://earthdata.nasa.gov/user-resources/remote-sensors
https://earthdata.nasa.gov/user-resources/remote-sensors

InMotta, G., Rizzo, F., and Storer, J. A., editors,Hyperspectral Data Compression, pages 1–34.
Springer.

Plaza, A., Benediktsson, J. A., Boardman, J. W., Brazile, J., Bruzzone, L., Camps-valls, G.,
Chanussot, J., Fauvel, M., Gamba, P., Gualtieri, A., Marconcini, M., Tilton, J. C., and Tri-
anni, G. (2009a). Recent advances in techniques for hyperspectral image processing. Remote
Sensing of Environment, 113:S110–S122.

Plaza, J., Hendrix, E. M. T., García, I., Martín, G., and Plaza, A. (2012). On endmember identi-
fication in hyperspectral images without pure pixels: A comparison of algorithms. Journal of
Mathematical Imaging and Vision, 42(2-3):163–175.

Plaza, J., Plaza, A., Perez, R., and Martinez, P. (2009b). On the use of small training sets for
neural network-based characterization ofmixed pixels in remotely sensed hyperspectral images.
Pattern Recognition, 42(11):3032–3045.

Qian, S. (2004). Hyperspectral data compression using a fast vector quantization algorithm. IEEE
Transactions on Geoscience and Remote Sensing, 42(8).

Qian, Y., Ye, M., and Zhou, J. (2013). Hyperspectral image classification based on structured
sparse logistic regression and three-dimensional wavelet texture features. IEEE Transactions
on Geoscience and Remote Sensing, 51(4):2276–2291.

Rabbani, M. and Joshi, R. (2002). An overview of the JPEG 2000 still image compression stan-
dard. Signal Processing: IMage Compression, 17(1):3–48.

Ravn, C., Skibsted, E., and Bro, R. (2008). Near-infrared chemical imaging (nir-ci) on pharma-
ceutical solid dosage forms-comparing common calibration approaches. Journal of Pharma-
ceutical and Biomedical Analysis, 48(3):554–561.

Reed, I. S. and Yu, X. (1990). Adaptive multiple-band CFAR detection of an optical pattern with
unknown spectral distribution. IEEE Transactions on Acoustics Speech and Signal Processing,
38(10):1760–1770.

Rizzo, F., Storer, J., and Carpentieri, B. (2005). Overlap and channel errors in adaptive vector
quantization for image coding. Information Sciences, 171(1-3).

Roger, R. and Cavenor, M. (1996). Lossless compression of AVIRIS images. IEEE Transactions
on Image Processing, 5(5):713–719.

Rubinstein, R., Zibulevsky, M., and Elad, M. (2008). Efficient implemetation of the K-SVD algo-
rithm and the Batch-OMP method. Technical Report CS-2008-08, Technion – Israel Institute
of Technology, Haifa, Israel.

Said, A. (2003). Arithmetic coding. In Sayood, K., editor, Lossless compression handbook, pages
101–152. Academic Press.

Said, A. and Pearlman, W. (1996). A new, fast, and efficient image codec based on set partition-
ing in hierarchical trees. IEEE Transactions on Circuits and Systems For Video Technology,
6(3):243–250.

Sallee, P. and Olshausen, B. A. (2003). Learning sparse multiscale image representations. Adv.
Neural Inf. Process. Syst., 15:1327–1334.

Sayood, K. (2005). Introduction to Data Compression, Third Edition (Morgan Kaufmann Series
in Multimedia Information and Systems). Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA.

Schaepman, M. E. (2009). Imaging spectrometers. In Warner, T. A., Nellis, M. D., and Foody,
G. M., editors, The SAGE Handbook of Remote Sensing, pages 166–178. SAGE Publication

127

Ltd.
Schölkopf, B. and Smola, A. J. (2001). Learning with Kernels: Support Vector Machines, Regu-
larization, Optimization, and Beyond. MIT Press, Cambridge, MA, USA.

Shao, G., Wu, Y., A, Y., Liu, X., and Guo, T. (2014). Fingerprint compression based on sparse
representation. IEEE Transactions on Image Processing, 23(2):489 – 501.

Shapiro, J. (1993). Embedded image coding using zerotrees of wavelet coefficients. IEEE Trans-
actions on Signal Processing, 41(12):3445–3462.

Shaw, G. A. and Burke, H. K. (2003). Spectral imaging for remote sensing. Lincoln Laboratory
Journal, 14(1):3–28.

SKA (2015). Square kilometre array. https://www.skatelescope.org/. 2018-01-10.
SKA SA (2015). The SKA project. http://www.ska.ac.za/about/project.php. 2015-06-
03.

Skretting, K. and Engan, K. (2010). Recursive least squares dictionary learning algorithm. IEEE
Transactions on Signal Processing, 58(4):2121–2130.

Skretting, K. and Engan, K. (2011). Image compression using learned dictionaries by RLS-DLA
and compared with K-SVD. In Acoustics, Speech and Signal Processing (ICASSP), 2011 IEEE
International Conference on, pages 1517–1520.

Soltani-Farani, A., Rabiee, H. R., and Hosseini, S. A. (2013). Spatial-aware dictionary learning
for hyperspectral image classification. Geoscience and Remote Sensing, IEEE Transactions on,
53(1):527–541.

Sun, X., Nasrabadi, N. M., and Tran, T. D. (2015). Task-driven dictionary learning for hyperspec-
tral image classification with structured sparsity constraints. IEEE Transactions on Geoscience
and Remote Sensing, 53(8):4457–4471.

Sun, X., Qu, Q., Nasrabadi, N. M., and Tran, T. D. (2014). Structured priors for sparse-
representation-based hyperspectral image classification. IEEEGeoscience and Remote Sensing
Letters, 11(7):1235–1239.

Tang, X., Cho, S., and Pearlman, W. (2003a). 3D set partitioning coding methods in hyperspectral
image compression. In The International Conference on Image Processing, In Proceedings of,
volume 2, pages 239–242, Barcelona, Spain.

Tang, X. and Pearlman, W. (2006). Three-dimensional wavelet-based compression of hyperspec-
tral images. InMotta, G., Rizzo, F., and Storer, J. A., editors,Hyperspectral Data Compression,
chapter 10, pages 273–308. Springer.

Tang, X., Pearlman, W. A., and Modestino, J. W. (2003b). Hyperspectral image compression
using three-dimensional wavelet coding. In Proc. SPIE Volume 5022, pages 5022 – 5022 – 11.

Taubman, D. (2000). High performance scalable image compression with EBCOT. Image Pro-
cessing, IEEE Trans. On, 9(7):1158–1170.

Taubman, D. S. and Marcellin, M. W. (2002). JPEG 2000: standard for interactive imaging.
Proceedings of the IEEE, 90(8):1336–1357.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal
Statistical Society. Series B (Methodological)., 58(1):267–288.

Tikhonov, A. and Arsenin, V. (1977). Solutions of ill-posed problems. Johan Wiley & Sons, Inc.
Tropp, J. A., Gilbert, A. C., and Strauss, M. J. (2006). Algorithms for simultaneous sparse ap-
proximation: Part i: Greedy pursuit. Signal Process., 86(3):572–588.

Ülkü, I. and Töreyin, B. (2014). Lossy compression of hyperspectral images using online learning

128

https://www.skatelescope.org/
http://www.ska.ac.za/about/project.php

based sparse coding. In Computational Intelligence for Multimedia Understanding (IWCIM),
2014 International Workshop on, pages 1–5.

Ülkü, I. and Töreyin, B. (2015). Sparse representations for online-learning-based hyperspectral
image compression. Applied Optics, 54(29):8625–8631.

Vapnik, V. N. (1999). An overview of statistical learning theory. IEEE Transactions on Neural
Networks, 10(5):988–999.

Vetterli, M. and Kovacevic, J. (1995). Wavelet and Subband Coding. Prentice Hall.
Wang, H. and Celik, T. (2016). Sparse representation based lossy hyperspectral data compres-
sion. In 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), pages
2761–2764.

Wang, H. and Celik, T. (2017). Sparse representation-based hyperspectral data processing: Lossy
compression. IEEE Journal of Selected Topics in Applied Earth Observations and Remote
Sensing, 10(5):2036–2045.

Wang, Y., Rucker, J., and Fowler, J. (2004). Three-dimensional tarp coding for the compression
of hyperspectral images. Geoscience and Remote Sensing Letters, IEEE, 1(2):136–140.

Wei, Q., Bioucas-Dias, J., Dobigeon, N., and Tourneret, J. Y. (2015). Hyperspectral and multi-
spectral image fusion based on a sparse representation. IEEE Transactions on Geoscience and
Remote Sensing, 53(7):3658–3668.

Winter, M. E. (1999). N-FINDR: an algorithm for fast autonomous spectral end-member de-
termination in hyperspectral data. In Proc. SPIE Vol 3753, Imaging Spectrometry V, pages
266–275.

Wu, Q., Zhang, R., and Wang, F. (2014). Hyperspectral data compression using double sparsity
model. In 2014 Workshop on Hyperspectral Image and Signal Processing (WHISPERS).

Wu, X. (1997). Lossless compression of continuous-tone images via context selection, quantiza-
tion, and modeling. IEEE Transactions on Image Processing, 6(5):656–664.

Wu, X. and Memon, N. (1997). Context-based, adaptive, lossless image coding. IEEE Transac-
tions on Communications, 45(4):437–444.

Wu, X. and Memon, N. (2000). Contex-based lossless interband compression — extending
CALIC. IEEE Transactions on Image Processing, 9(6):994–1001.

Xu, Y., Wu, Z., Li, J., Plaza, A., and Wei, Z. (2016). Anomaly detection in hyperspectral images
based on low-rank and sparse representation. IEEE Transactions on Geoscience and Remote
Sensing, 54(4):1990–2000.

Yokoya, N., Yairi, T., and Iwasaki, A. (2012). Coupled nonnegative matrix factorization unmixing
for hyperspectral and multispectral data fusion. IEEE Transactions on Geoscience and Remote
Sensing, 50(2):528–537.

Zare, A., Bolton, J., Gader, P., and Schatten, M. (2008). Vegetation mapping for landmine de-
tection using long-wave hyperspectral imagery. IEEE Transactions on Geoscience and Remote
Sensing, 46(1):172–178.

Zhao, Y. Q. and Yang, J. (2015). Hyperspectral image denoising via sparse representation and
low-rank constraint. IEEE Transactions on Geoscience and Remote Sensing, 53(1):296–308.

Zhou, M., Chen, H., Paisley, J., Ren, L., Li, L., Xing, Z., Dunson, D., Sapiro, G., and Carin,
L. (2012). Nonparametric bayesian dictionary learning for analysis of noisy and incomplete
images. IEEE Transactions on Image Processing, 21(1):130–144.

Zou, J., Li, W., and Du, Q. (2015). Sparse representation-based nearest neighbor classifiers for

129

hyperspectral imagery. IEEE Geoscience and Remote Sensing Letters, 12(12):2418–2422.

130

	Declaration
	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	List of Algorithms
	List of Acronyms
	Acronyms
	Introduction
	Problem Motivation
	Problem Statement and Research Objectives
	Overview of Methodology
	Contribution of The Thesis
	Notation
	Organisation of The Thesis

	Hyperspectral Imaging
	Imaging Spectroscopy
	Reflectance and Radiance
	Sensors

	Hyperspectral Image Processing
	Endmember Extraction and Hyperspectral Unmixing
	Target Detection in Hyperspectral Images

	Summary

	Sparse Representation
	Problem Formulation
	1-Norm Based Formulation
	0-Norm Based Formulation
	Sparsity and Geometric View of Norms
	Summary

	Sparse Coding
	Matching Pursuit
	Orthogonal Matching Pursuit
	Homotopy Method
	Basis Pursuit
	Summary

	Dictionary Learning
	The Method of Optimal Directions
	The K-SVD Algorithm
	Online Dictionary Learning
	Some Examples of Dictionaries
	Summary

	Hyperspectral Image Compression
	The Architecture of Hyperspectral Data Compression
	Entropy and Huffman Coding
	Entropy
	Huffman Coding

	Quantization
	Scalar Quantization
	Uniform and Nonuniform Quantizers
	Vector Quantization

	Predictive Coding
	DPCM
	CALIC

	Transform Coding
	Karhunen-Loève Transform
	Discrete Cosine Transform
	Subband Coding
	Discrete Wavelet Transform
	Bitplane and Significance-Map Coding
	Set Partitioning in Hierarchical Trees
	3D Wavelet Based Compression of Hyperspectral Images

	JPEG 2000
	Pre-Processing
	DWT
	Quantization
	Entropy Coding
	Bit Stream Organization

	CCSDS Recommendation for Data Compression
	CCSDS-122
	CCSDS-123

	Summary

	Sparse Representation Based Lossy Hyperspectral Image Compression
	Introduction
	Background and Related Work
	Dictionary Learning
	Related Work

	Sparse Representation Based Hyperspectral Image Compression
	Dictionary Training
	Multiscale Spatial Spectral Dictionary Learning
	Dictionary Atom Sorting

	Hyperspectral Image Compression
	Decompression

	Experiments
	Experimental Data Sets
	Experiment Setup
	Results of Experiments and Discussion
	Compression Performance
	The Comparison of Base and Updated Dictionaries
	Tuning Dictionary Learning Parameters
	The Drawbacks of the Proposed Method

	Conclusion

	Sparse Representation Based Hyperspectral Image Classification
	Introduction
	Related Work
	SVM Classification Approach
	SVM Formulation
	SVMs for Hyperspectral Image Classification

	Sparse Representation Based Classification Approach
	KNN Classification Approach

	The Proposed Sparse Representation Based Classifiers
	Dictionary Training
	Hyperspectral Image Classification Using Contextual Sparse Coefficients

	Experiments
	Data Set Description
	Experiment Design
	Experimental Results
	Classification Results of Various Approaches
	Classification Performance on Varying Parameters for the Proposed Methods

	Conclusion

	Conclusion
	Summary
	Future Work
	Conclusion

	Bibliography

