485 research outputs found

    Bayesian Maps: probabilistic and hierarchical models for mobile robot navigation

    Get PDF
    What is a map? What is its utility? What is a location, a behaviour? What are navigation, localization and prediction for a mobile robot facing a given task ? These questions have neither unique nor straightforward answer to this day, and are still the core of numerous research domains. Robotics, for instance, aim at answering them for creating successful sensori-motor artefacts. Cognitive sciences use these questions as intermediate goals on the road to un- derstanding living beings, their skills, and furthermore, their intelligence. Our study lies between these two domains. We first study classical probabilistic ap- proaches (Markov localization, POMDPs, HMMs, etc.), then some biomimetic approaches (Berthoz, Franz, Kuipers). We analyze their respective advantages and drawbacks in light of a general formalism for robot programming based on bayesian inference (BRP). We propose a new probabilistic formalism for modelling the interaction between a robot and its environment : the Bayesian map. In this framework, defining a map is done by specifying a particular probability distri- bution. Some of the questions above then amount to solving inference problems. We define operators for putting maps together, so that " hierarchies of maps " and incremental development play a central role in our formalism, as in biomimetic approaches. By using the bayesian formalism, we also benefit both from a unified means of dealing with uncertainties, and from clear and rigorous mathematical foundations. Our formalism is illustrated by experiments that have been implemented on a Koala mobile robot

    Incremental learning of Bayesian sensorimotor models: from low-level behaviours to large-scale structure of the environment

    Get PDF
    International audienceThis paper concerns the incremental learning of hierarchies of representations of space in artificial or natural cognitive systems. We propose a mathematical formalism for defining space representations (Bayesian Maps) and modelling their interaction in hierarchies of representations (sensorimotor interaction operator). We illustrate our formalism with a robotic experiment. Starting from a model based on the proximity to obstacles, we learn a new one related to the direction of the light source. It provides new behaviours, like phototaxis and photophobia. We then combine these two maps so as to identify parts of the environment where the way the two modalities interact is recognisable. This classification is a basis for learning a higher level of abstraction map that describes the large-scale structure of the environment. In the final model, the perception–action cycle is modelled by a hierarchy of sensorimotor models of increasing time and space scales, which provide navigation strategies of increasing complexities

    Towards hierarchical blackboard mapping on a whiskered robot

    Get PDF
    The paradigm case for robotic mapping assumes large quantities of sensory information which allow the use of relatively weak priors. In contrast, the present study considers the mapping problem for a mobile robot, CrunchBot, where only sparse, local tactile information from whisker sensors is available. To compensate for such weak likelihood information, we make use of low-level signal processing and strong hierarchical object priors. Hierarchical models were popular in classical blackboard systems but are here applied in a Bayesian setting as a mapping algorithm. The hierarchical models require reports of whisker distance to contact and of surface orientation at contact, and we demonstrate that this information can be retrieved by classifiers from strain data collected by CrunchBot's physical whiskers. We then provide a demonstration in simulation of how this information can be used to build maps (but not yet full SLAM) in an zero-odometry-noise environment containing walls and table-like hierarchical objects. © 2012 Elsevier B.V. All rights reserved

    Learning cognitive maps: Finding useful structure in an uncertain world

    Get PDF
    In this chapter we will describe the central mechanisms that influence how people learn about large-scale space. We will focus particularly on how these mechanisms enable people to effectively cope with both the uncertainty inherent in a constantly changing world and also with the high information content of natural environments. The major lessons are that humans get by with a less is more approach to building structure, and that they are able to quickly adapt to environmental changes thanks to a range of general purpose mechanisms. By looking at abstract principles, instead of concrete implementation details, it is shown that the study of human learning can provide valuable lessons for robotics. Finally, these issues are discussed in the context of an implementation on a mobile robot. © 2007 Springer-Verlag Berlin Heidelberg

    Recent Advances in Multi Robot Systems

    Get PDF
    To design a team of robots which is able to perform given tasks is a great concern of many members of robotics community. There are many problems left to be solved in order to have the fully functional robot team. Robotics community is trying hard to solve such problems (navigation, task allocation, communication, adaptation, control, ...). This book represents the contributions of the top researchers in this field and will serve as a valuable tool for professionals in this interdisciplinary field. It is focused on the challenging issues of team architectures, vehicle learning and adaptation, heterogeneous group control and cooperation, task selection, dynamic autonomy, mixed initiative, and human and robot team interaction. The book consists of 16 chapters introducing both basic research and advanced developments. Topics covered include kinematics, dynamic analysis, accuracy, optimization design, modelling, simulation and control of multi robot systems

    Autonomous robot systems and competitions: proceedings of the 12th International Conference

    Get PDF
    This is the 2012’s edition of the scientific meeting of the Portuguese Robotics Open (ROBOTICA’ 2012). It aims to disseminate scientific contributions and to promote discussion of theories, methods and experiences in areas of relevance to Autonomous Robotics and Robotic Competitions. All accepted contributions are included in this proceedings book. The conference program has also included an invited talk by Dr.ir. Raymond H. Cuijpers, from the Department of Human Technology Interaction of Eindhoven University of Technology, Netherlands.The conference is kindly sponsored by the IEEE Portugal Section / IEEE RAS ChapterSPR-Sociedade Portuguesa de Robótic
    corecore