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Abstract

Robust and reliable navigation systems are required before robots will join us in the
real world. The major problem in creating robotic systems which can navigate reliably
is that of forming a representation of an arbitrary environment which can provide re-
liable localisation information. Mobile robot localisation encompasses the conflicting
tasks of accurate local position estimation and efficient global localisation. This the-
sis documents a multi-level spatial representation which is specifically designed to

facilitate multiple navigation strategies and to solve the conflicting localisation tasks.

The three levels of spatial representation are directly inspired by three levels of bi-
ological organism's navigation systems: those of honeybees, rats and humans. The
three levels are: visual landmarks, local space profiles and indirect landmarks, or dis-
ambiguating features. Visual landmarks allow for low-level navigation strategies ancd
provide accurate local position information and a unique representation for place dis-
crimination, but matching at this level of representation is expensive. Local space
profiles are a minimalistic representation of the extent of local space surrounding a
mobile robot and as such cannot provide unambiguous localisation information, but
is lightweight and comparatively cheap to match. The level of disambiguating fea-
tures seeks to actively search out discriminating features in snapshots of the sensory
view at places in an attempt to define the feature which most successfully discrimi-
nates between the two places. Methods for acquiring multi-level representations of
places in the environment are developed as well as methods for constructing topolog-

ical maps with transitions and cycles.

The visual landmark representation is shown to provide accurate local position esti-
mation and inefficient, but accurate, global localisation in a topological map. The mid-

level representation of local space profiles can constrain the global localisation search
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Chapter 1

Overview

For most of the past few decades robots have been restricted to manufacturing plants,
research labs or other highly controlled areas. Today we are seeing the emergence
of robots in our everyday environments, our work, our homes and our playgrounds.
[n order for robots to function in the real world, it is usually necessary for them to
move about the environment in a meaningful manner. Office assistant or tour guide
robots must move through complex, dynamic environments reliably to fulfill their
given tasks, Robot pets, to interact more meaningfully with humans, must move more
freely about our homes. Thus navigation is a crucial behaviour which underpins mo-
bile robot functionality in almost all application areas, and its current limitations are

also a major restriction in robot placement in the real world.

Tour guide robots have been tested in various museums around the world, but usually
have to be monitored and cannot perform complex tours in dynamic environments
for extended periods of time. Robot pets are cute and amusing, but cannot do more
than wander around blindly at this stage. Robust and reliable navigation systems are
needed for robots to perform unsupervised tasks throughout their active life. The
research field of mobile robot navigation is concerned with developing robot systems
that can autonomously perform navigation tasks reliably over an extended period of

time,



2 - Overview
1.1 Mobile Robot Navigation

The problem of mobile robot navigation can be broken into three subcomponents;
mapping, localisation and planning. It is now a relatively easy task for a robot to
plan and physically execute a path between two points in a known environment, the
challenge now is to form an internal representation of the robot's environment and
with this representation, work out where in the environment the robot is currently
located. This involves two sub-components of the navigation task: that of mapping

and localisation.

Traditional approaches to mobile robot mapping and localisation predominantly try
to map out the total environment in order to navigate in it successfully, building com-
plete two or even three dimensional spatial maps from recorded sensor data (Moravec
and Elfes, 1985; Thrun, Burgard and Fox, 1998). Robots can then, given they know
their own location, plan and execute any trajectory within the map. Recently robotic
navigation systems inspired by successful biological systems, have concentrated on
extracting only the necessary information from sensors to achieve specific navigation

tasks such as homing to a place.

1.1.1 Multiple Levels of Spatial Representation

When thinking about the navigation task, and in particular our own navigation strate-
gies, itis clear that it is necessary to employ a variety of different strategies for different
situations. No one strategy will successfully work in all situations, and each different
strategy may require different sensory cues, levels of processing and spatial memory
to work. Spatial memory refers to the internal views of the spatial characteristics of
the environment that organisms form in order to interact with the environment. This
decomposition of navigation is reflected in the literature (see Chapter 2) where a large
number of navigation systems have been proposed, each solving a specific, or small

group of navigation tasks, by forming specific spatial representations of the world.

An example of employing different navigation strategies can be observed in a situa-
tion as simple as a person moving down a corridor and passing through a particular
door. Navigation along the corridor simply involves keeping to the center of the cor-

ridor and moving forward. A complete internal representation of the corridor and the






1 Overview

location within its internal map representation. Only when it's current location is
known can it plan a path to the goal position. This form of localisation requires a
search of the entire internal map to find the most likely location in the map from
which the robot captured the current sensor data. Because the entire map must

be searched this procedure is computationally expensive.

2. Local Positioning: the robot system must accurately identify and maintain an es-
timate of its position relative to some local reference frame in order to perform
precise navigation movements. This form of localisation requires a fine search
of a localised area within the internal map, in order to precisely identify the
most likely location from which the robot captured the current sensor data. This

search is locally constrained and therefore can be performed relatively cheaply.

[n order to perform global localisation efficiently, the robot system'’s internal represen-
tation of the world must be sparse in order for the localisation task to be computa-
tionally tractable. In order to perform accurate local position estimation, the internal
representation must be fine enough to provide enough positional cues to execute pre-

cise navigational behaviours,

An additional problem in mobile robot localisation is how to represent the robot’s
belief that it is in a particular location. Obviously the degree to which a robot is certain
it is in a specific location is going to affect it's navigation behaviour. By introducing
multiple levels of spatial representation, the representation of this belief is complicated
and a method for combining the various levels of localisation into a central belief is
required. The conflict between global localisation and local positioning highlights the

need for multiple levels of spatial memory.

The kidnapped robot problem is often used as a bench mark for mobile robot localisa-
tion systems to evaluate their ability to solve the above challenges. In such a situation
the robot is navigating through a pre-mapped environment with a high belief of its lo-
cation, when it is suddenly kidnapped. The robot is subsequently released at another
location in the map with the belief it is still at the original location. The task for the
localisation system is to recognise it has been moved and subsequently re-localise its
position within its internal map. This involves adjusting the robot’s belief in the pres-

ence of conflicting sensor data, performing global localisation and recovering accurate


















10 Review of Mobile Robot Navigation

as homing and route following. These approaches are directly inspired by experimen-
tal results from the biological sciences. The chapter ends with a summary of the key
concepts covered in this chapter and reiterates the current problems in the field of

maobile robot localisation.

2.1 What is Navigation?

[n order to construct a system that can navigate successfully, it is important to define
exactly what navigation is, and what this means in the context of robotics. It is more
50, given that mobile robot literature has in the past, referred to anumber of seemingly
different robot behaviours under the the same banner as navigation. Franz and Mallot

(2000) provide a discussion of the definition of navigation in regard to robotic systems.

Navigation historically refers to the guidance of ocean going vessels. The word navi-
gation itself is derived from Latin, navis: ship, and agere: to drive. In this context the

process of navigation has three steps:

1. Determine the ships position on a chart.
z. Relate the current position to destination,

3. Set course of the ship.

(Levitt and Lawton, 1990) describe the same process in robotics, defining navigation

as answering the three questions:

l. “Where am [?"
2. "Where are other places with respect to me?"

3. "How do I get to other places from here?”

Franz and Mallot (2000) argue that many biological organisms are able to navigate
without answering all of these questions. Instead the only question that needs answer-

ing is "How do I reach the goal?". This demands a broader definition of navigation:

Navigation is the process of determining and maintaining a course or tra-

jectory to a goal location (Franz and Mallot, 2000).
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Figure 2.1: The components and tools of the navigation task.

e Localisation: the process of determining a robot’s current position relative to the

internal map, from current sensor readings of the local environment.

e Planning: path planning based on the internal knowledge the robot has about its

own state, the map, and its desired behaviour.

For a robot that is navigating through a dynamic environment, continually re-evaluating
its internal state, goals and sensory view, these sub-tasks must work interdependently
to produce successful navigation behaviour. Figure 2.1 illustrates this relationship
between the subcomponents. In this figure the behavioural subcomponents are illus-

trated using the grey filled ovals,

As mentioned earlier, the three sub-tasks rely on internal knowledge in order to func-

tion. Mapping, localisation and planning all require internal representations of the
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current environment and the previously learnt/experienced environment. These two
representations can be referred to as the current sensory view and the map and their rela-
tionship to the functional components is shown in Figure 2.1 as the rectangular boxes,
The current sensory view is an abstraction of the raw sensor data representing the
current environment. The map is an internal abstraction of multiple previous sensory
views of the environment. In general the level of abstraction involved in both rep-
resentations has strong consequences in the degree of navigation competence a robot
can achieve. For example, being in possession of a highly detailed map, such as a
floor plan, allows a robot to plan to navigate anywhere within the floor plan. While
only knowing if one has reached a goal or not, such as in the search behaviour de-
scribed above, will only allow navigation to a single place, with almost no planning

in between.

The Components of Hierarchical Navigation Systems

By redefining navigation as above, Franz and Mallot (2000) move away from the tra-
ditional decomposition of the navigation process, saying, in reference to local naviga-

tion:

.. this notion of navigation does not imply that the current location must
be recognised, nor that a map-like representation must be used to find the

goal (Franz and Mallot, 2000).

This definition only requires the subcomponents recognise goal and move in free space,
rather than the traditional mapping, localisation and planning. It also argues against

the need for an internal map.

But this is not the case. The local navigation behaviours can be described as simpli-
fied instances of the mapping, localisation and planning view of navigation. Taking
the simplest of the local navigation behaviours, i.e Search, as the case in point, it can
be shown that all the traditional components of navigation are present. Mapping is
present because the robot must still define some relation between its own internal
representation of the goal and its current sensory input. It does not matter that the
‘map” only distinguishes between “found goal” and “have not found goal” in the

simplest case. Localisation is present as a decision as to the robot's location based
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Figure 2.2: Localisation in a multiple strategy navigation system

on the internal representation and its current sensory input must be made. For the
Search behaviour, this could be just the decision "I am not at the goal yet”. Planning is
present since once having made a decision as to its location the robot performs certain
actions to reach its goal. In the case of "I have not reached the goal yet” this could be

to simply move in a random direction.

Navigation systems which display different navigation behaviours then, do not neces-
sarily have different sub-components. In addition, all need internal representations of
the current sensory view and the internal map. These sub-components and represen-
tations, however, might be simplified and might only exist implicitly in the navigation

behaviour rather than explicitly in the robot’s reasoning.

2.1.3 A Consistent Framework for Navigation Strategies

This important distinction as described above, although seeming insignificant and se-
mantic, allows the various navigation behaviours, including the two major categories
of local navigation and way-finding, to share common behavioural subcomponents.
This common behavioural framework means that multiple navigation behaviours in a
robot can help reinforce the robot’s knowledge about mapping, localisation and plan-

ning, and can contribute to more successful navigation behaviour by the robot.

Consider the case of a robot navigating down a corridor to a particular door employ-

ing two navigation strategies. Strategy 1 uses odometry to estimate the distance trav-
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elled down the corridor, with the robot reaching the goal by travelling the known
distance between the start location and the goal door location. Strategy 2 uses door
and office number recognition to form a topological map, with the goal being reached
when it detects a door with the correct office number. Both strategies will work in the
right situations, each having a form of internal representation and associated mapping
and localisation behaviours. In general the office number recognition solution would
be superior due to the noise inherent in odometry measurements. But what would
happen if the office numbers were removed and all doors looked identical? The robot
would then not be able to identify the correct door. However by combining the door
recognition and odometry navigation strategies, the robot would be able to locate a
door at approximately the correct distance down the corridor. - This solution requires
the robot to have multiple spatial maps of the same environment, or a spatial repre-
sentation which facilitates the use of different strategies, and also for the combination

ol localisation information extracted from both navigation strategies.

[n a robot that exhibits multiple navigation strategies then, it is desirable for it to have
a common behavioural framework for navigation strategies and it also must have the
capacity for multiple levels of internal representation for both the current Sensory view
and also the internal map. Figure 2.2 shows multiple navigation strategies and levels
of internal representation for the localisation component of navigation. The general
idea is that a robot captures different forms of spatial representation from the current
sensory view, and can use these multiple levels to form maps from which localisa-
tion can be performed. The localisation process can then be occurring at different
levels, with each using different cues from the environment and information passing
between levels, resulting in an agent with more robust and reliable knowledge about

it's position in it's environment.

2.2 Navigation as a Robotic Behaviour

Navigation, as described above, is a complex behaviour, with interdependent subcom-
ponents operating on a number of levels. To achieve robust and reliable navigation a
mobile robot system must model the complexity and multi-level representations of bi-

ological organisms. Given that robot and biological systems are inherently different,
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2.3 Biological Analogies in Robotics

successfully navigate with and around humans. Biological navigation systems have
these qualities as well as being successful at navigation. There are also examples
of biological systems with relatively simple computational components that can per-
form complex and robust navigation behaviours. Bees for example, perform complex
takeoff, route following, goal detection and landing procedures with limited compu-
tational resources. It is hoped by further studying biological organisms, successful,

low-cost behavioural algorithms can be developed.

Throughout this thesis, the navigation problem is considered from a biological view-
point, with biological systems capable of equivalent navigation behaviour inspiring
solutions to particular problems. At a deeper design level, another important lesson
can be gained from the study of biological organisms. The development of biological
solutions are dependent on the past evolutionary pathway, with the development of
new structures and algorithms dependent on the existing functionality. Likewise with
robot systems the choice or availability of sensors and processing capability leads to
certain representations, algorithms and behaviours being more appropriate than oth-
ers,

Another lesson for robot researchers comes from the field of ethology. Biological sys-
tems do not exist by themselves. They form part of a complicated eco-system and are
highly evolved to fill an ecological niche. As such they cannot be viewed as separate
from their environment. For robotic systems, this means when designing robotic sys-
tems, not only think about what behaviours the robot should be capable of but also
what environment will the robot exist in, and how does this impact on the robots de-
sired behaviours, Obviously a robot relying on a passive vision system will not be
much use if it is required to work in dark environments. More subtly, a robot navigat-
ing by extracting certain features from the environment, will not be able to function in

environments where those features are sparse.

However it must be remembered that robots are not biological organisms. Robot sub-
systems have not evolved in parallel, they have been been specifically designed and
built for varying tasks, which may or may not include the task at hand. Robotic sys-
tems also suffer from a low knowledge base when compared to biological systems.
As mentioned in Section 2.2 robots do not have the deep level of semantic knowledge

about the world that some biological organisms have. They do not have the wide array















26 Review of Mobile Robot Navigation

global environment, the sum of the products of corresponding cells is calculated. In
general, global localisation in evidence grid based approaches, involves the matching
of current sensor data with all possible positions in the global grid. Thus the compu-
tational cost of localisation in evidence grids grows with the size of the environment

and the granularity of the grids,

As an example, say a particle filter (see Chapter 8) based localisation system using a
metric map, could perform local position estimation with 1000 particles in time 7y =
l0m s, taking 0.0 1ms to evaluate the probability of each particle. Particle filters attempt
to approximate the Probability Distribution Function (PDF) of the robot position over
the space of robot poses by importance based resampling of a set of sample poses,
or particles. Given a grid cell granularity of 10em and 1deg, a 10 x 10m map would
require 3,600,000 matches to perform an exhaustive global localisation search, again

taking 0.01ms to evaulate the probability of each grid cell:
gridsize = 3,600,000 = 100 % 100 % 360

resulting in a computation time of 36s and a ratio of global localisation to local position

estimation time of*

36, 000
—_— = 3,60
T 00

Global localisation in a metric map may not require an exhaustive search space, but
the computation requirements for global localisation grow quickly. In addition, if each
cell in the metric map requires only 1 byte for storage, the metric map would require

~ 3M B of memory.

Thus scalability is a problem in all metric map approaches, whether the representa-
tion be evidence grids, collections of line segments, or geometrically correct maps of

landmarks or features.

Topological Maps

Topological maps are typically coarse, graph like representations of the environment.

[n these representations, nodes correspond to significant places in the environment
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Figure 2.4: An example topological map of the Robotic Systems Laboratory, showing
exact metric transitions a), and metrically incorrect transitions

space. This implementation of a topological map does not address the global locali-
sation as individual places are not unique, but it does eliminate odometry errors hy

periodically resetting an odometric counter.

In comparison to the metric map example, a topological map with a node density of
| per 1m* would require 100 matches to perform an exhaustive global localisation
search. Matching computation time is 100 x 77s, where Ty is the time taken to match
one instance of a given topological representation. The value of 7} is dependent on the
computation costs of the particular topological representation used. The ratio between
local position estimation and global localisation in such a topological map is

1007

L
I['f'

which is much less than the equivalent metric ratio.

[n general the matching time cost for instances of topological representations are ex-

pensive, with 77 > Txs, however as the size of the map grows the spareness of repre-






30 Review of Mobile Robot Navigation

robot is started in an unknown position and must localise itself in the map. Position
tracking is needed for accurate navigation and path planning tasks. On closer inspec-
tion the accuracy required for the navigation and path planning tasks is only needed
relative to the local environment. Examples include navigating around an obstacle
or positioning the robot near a docking station. As long as the robot has an accurate
position estimate relative to a local point in the environment, it does not need metric

information about the rest of the map.

Limiting the Localisation Search Space

Given that a major problem in navigation is efficient global localisation, it is desirable
to limit the required computation as much as possible when performing such a task.
One method of doing this is by reducing the localisation search space in the map.
In fact once the global position has been estimated, the tasks of initial local position
estimation and subsequent position tracking are just localisation in a vastly reduced
search space, The traditional approach to this problem has just been to assume that the
robot has a rough estimate as to its location and search local space for fine positioning,

This assumption is invalid in the kidnapped robot problem.

Recently efforts have been made to overcome this problem in a more satisfying man-
ner. Dellaert, Fox, Burgard and Thrun (1999) use a particle filter to subsample potential
locations of the robot from a grid based metric map. The samples can then be shifted
to areas in which it is likely that the robot is positioned according to current sensor
data. In practice however, it takes a large number of samples to effectively cover a
large environment and the scalability problem arises once more. This led Jensfelt,
Wijk, Austin and Andrsson (2000) to propose several augmentations to the algorithm
to more efficiently search the localisation space, Further discussion on this topic is

provided below,

Another approach is to construct a topological map using metric maps of particular
locations (Courtney and Jain, 1994). Metric localisation tasks can then be constrained
by first localising on the topological map, and accumulated error on the metric level
is eliminated due to the decomposition of the metric representation. Of course in this
approach, two separate searches must take place, one on the topological level and one

on the metric level.
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The only distinction between landmarks and features that this research makes is that
landmarks are unique to one specific location in the environment, whereas a specific

feature may occur at a number of locations throughout the environment,

Selecting Landmarks and Features

What makes a distinct landmark? When are features appropriate and when are land-
marks? Recent work has lent towards letting the robot select appropriate landmarks
rather than humans defining them. An example of this is found in Thrun's (1998)
description of a landmark learning algorithm. This algorithm, called Bayesian Land-
mark Learning (Bal.L), let a neural network extract landmarks from visual images of
the environment, by minimising the error in position estimation of the robot. Thrun
(1998) found that a variety of landmarks were found, including, doors, dark spots,
wall colour, hallways, and blackboards. In one spot the almost invisible (to humans)

change in illumination of an otherwise visually sparse wall was chosen as a landmark.

By introducing different levels of uncertainty into the robot's position estimate, Thrun
(1998) found they could manipulate the characteristics of landmarks chosen. By in-
troducing high levels of position estimation uncertainty, and thus forcing the robot to
solve the global localisation problem, the algorithm would tend to select landmarks
such as wall colour that differentiate large portions of the environment. If the net-
work was trained with low levels of position estimation uncertainty then the algo-

rithm tends to select local features such as doors or hallways.

This study shows that the appropriateness of landmarks depends on the task at hand.
Global localisation requires distinet landmarks in order to differentiate places while
local position tracking can be achieved using local features. Of course over time the
observation of a specific set of features in a particular configuration can lead to global
localisation, but in general, encountering distinct landmarks achieves this much more

efficiently.

The Matching Problem

The matching problem is the problem of comparing the current sensory view with a

robot’s internal map representation to perform localisation. This process is performed
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noisy and ambiguous data. One of the biggest criticisms of early navigation systems
was their inability to handle uncertainty in the robot's understanding of the environ-
ment. This meant that there was no strategy for integrating sensor measurements over
time, nor for recovering from incorrect localisation estimates and no means to main-
tain multiple hypotheses as to the robot position. This problem can be stated as the

problem of a robot maintaining an internal belief as to its own current position.

The previous description of purposive robotic behaviour identifies point to point navi-
gation as a goal of this research. An internal representation of belief as to where a robot
is located in the environment should be able to inform decisions as to whether this goal
has been reached. This decision typically can not explicitly be made with traditional
topological representations. Topological representations are typically driven by be-
havioural based methods of navigation. In these approaches the sensor data drives
the robot control towards a goal state (Khatib, 1985) (Latombe, 1991) (Arkin, 1998). Be-
haviour based robot architectures typically have a behaviour arbitration system which

makes it difficult to define just when a goal has been accomplished.

This section looks at internal belief representation in metric based maps and how such

representations impact on the localisation task,

Gaussian Estimations

A common method for representing the internal belief of a robot's location within
an internal map is using a Gaussian Probability Density Function (PDF). The mean
of the Gaussian PDF represents the estimate of the robot's position in the environ-
ment while the variance represents the uncertainty associated with that measure. The
noise evident in a system is likely to be composed of noise from many small sources
(Maybeck, 1979). A Gaussian probability density closely approximates the summation

of'many small sources of noise, regardless of the shape of the constituent densities.

The Kalman filter is a recursive algorithm for the optimal estimation of linear 5ys-
tem’s which assumes that noise in the system is Gaussian and white (Maybeck, 1979).

Maybeck (1979) describes the key characteristics of a Kalman filter by stating;

..[a Kalman filter] processes all available measurements, regardless of their

precision, to estimate the current value of the variables of interest, with use
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robot poses or feature observations; Uhlmann (1998) with the use of covariance inter-
section; and Dissanayake, Durrant-Whyte and Bailey (2000) by removing unnecessary
features from the state vector. Jensfelt (2001) suggest a hierarchical form of SLAM
which attempts to reduce the complexity of the state vector by breaking the map into
a number of smaller more manageable sub maps based on the notion of gateways.
While all approaches provide some relief from the map scaling problem, it's effects

are only delayed and not eradicated.

Another characteristic of Kalman Filter based SLAM approaches is that all map pa-
rameters are estimated relative to a global coordinate system. As a robot moves away
from the starting point the uncertainty associated with the robot's position accumu-

lates and is reflected in subsequent feature acquisition and position estimation.

While most approaches to SLAM have relied on range sensors such as sonar or laser,
Davidson and Murray (2002) report an approach to SLAM which uses an active vision
sensor, This approach uses a corner detector to identify map features and estimates
the features position in three dimensional space. Like Dissanayake et al. (2000) a min-
imal amount of map parameters are maintained. Davidson and Murray (2002) also
introduce the idea of incorporating sparse prior knowledge into maps to reduce the

problem of increasing uncertainty in the world coordinate system.

The particle filter approach to localisation is not suitable for the SLAM problem. Es-
timation of map parameters by a search through the space of all possible maps is
computationally intractable for all but the smallest of maps. Proponents of the parti-
cle filter have performed SLAM using scan-matching to build a map and the particle

filter approach to perform localisation (Thrun, Burgard and Fox, 2000).

SLAM attempts to perform map acquisition and maintenance concurrently with local-
isation. SLAM accentuates the conflict between local position estimation and global
localisation by introducing additional computational and representational require-
ments. Current approaches to SLAM highlight the map scaling problem and reinforce

the need for hierarchical representations.
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that this is because of the unsupervised nature of PCA and report a supervised liner
feature extractor which takes advantage of odometric knowledge between image sam-

pling to produce better robot position estimates.

Vlassis, Terwijn and Krose (2002) report the use of particle filter position estimation
in a panoramic image PCA feature map. To overcome the problem of in-optimal sam-
pling of the PDF the use of auxiliary particles are proposed. Auxiliary particles are
targeted towards the region of the PDF where the prior distribution and the obser-
vation likelihood distribution overlap. This targeting of sampling is similar to that

proposed by Jensfelt et al. (2000).

Yagi, Hamada, Benson and Yachida (2000) use a panoramic camera to perform alter-
nate pose estimation and map generation with no knowledge of robot motion. The
azimuth angle of vertical edges is analysed to obtain a least squares estimate of robot
pose and map configuration. This form of SLAM operates in real time on a small map
and produces accurate local position estimations with an error of ~ 10em. The map
generation step incorporates knowledge about the reliability of map feature estimates
in relation to the magnitude of the change in azimuth. Global localisation is not at-

tempted.

Panoramic vision based SLAM has also been reported by (Drocourt, Delahouche,
Marhic and Cleretin, 2002). In this approach, stereo panoramic sensors provide lo-
cation estimations of vertical line features. Like the SLAM approaches reported previ-
ously, this approach focuses on local position estimation and does not mention global

localisation.

Ulrich and Nourbakhsh (2000) use colour panoramic vision to build topological maps
of indoor and outdoor environments. Places in the topological map are represented by
image histograms detailing the colour composition of panoramic images from specific
locations in the environment. Place recognition is achieved by forming similar his-
tograms of the current panoramic scene and performing matching and a unanimous
voting categorisation technique. This method results in very reliable place recogni-
tion performance, for very little computational expense, but does not allow for local

position estimation within places. The topological map is manually constructed.

Several other panoramic vision based approaches to mobile robot localisation are re-

ported later in this chapter under the section detailing biomimetic approaches,
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which is communicated by dancing bees rather than a measure of true distance. In this
experiment honeybees found food after flying through a tunnel which induced exag-
gerated visual odometry. Upon returning to the hive the honeybees communicated
the location of the food source to hive mates. The tunnel was removed thus reducing
the image motion along the route to the food source. The hive mates now travelled

exaggerated distances seeking the food source,

Learnt Routes

Such path integration, even using visual odometry, will accumulate excessive error
over long distance navigation. Srinivasan et al. (1997) report that odometry is “reset”
along the route when prominent landmarks are encountered. In fact Collett (1996)
suggests that recognising landmarks along the way trigger the recall of associated
goal vectors. Thus at each prominent landmark a new goal vector is obtained and the

computation of distance is recommenced.

The construction of routes with segments triggered by visual stimuli is supported by a
honeybee maze learning experiment by Zhang, Bartsch and Srinivasan (1996). In this
experiment bees learnt to navigate mazes by following colour marks. Trained bees
could then navigate through novel mazes by following the marks, and could even
follow marks of different colours though with less success. In addition, bees could
navigate learnt mazes when the colour marks had been removed, although again,
were not as proficient as when the colour marks where present. This suggests that not
only were the bees remembering colour cues but were also acquiring at least a set of

motor commands defining the correct sequence of turns through the maze.

Zhang, Lehrer and Srinivasan (1999) go on to investigate the learning of multiple
routes by honeybees. If a bee is foraging for food at more than one site, it needs to
not only memorise a separate sequence of landmarks for each site, but must be able to
retrieve from memory the set of landmarks appropriate for each route. They trained
honeybees on two routes using two distinct sets of three visual landmarks. The results
showed that honeybees can indeed store visual stimuli for more than one route at a
time, In addition, when exposed to a landmark from a set of stimuli from a particular
route, this triggered recall of the other two landmarks in the set. The associative re-

call of landmarks was largely independent of the sequence in which they were learnt.
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Figure 2.6: Maze used for learning in Tolman's (1948) experiment. Rats learnt to
follow the path A,B,C,D,EF to the goal G. Figure from O'Keefe and Nadel (1978).

L3

Figure 2.7: Maze used for testing in Tolman's (1948) experiment. The majority of
rats choose the path which led straight to the goal located neat the light source at H.
Figure from O'Keefe and Nadel (1978).

same start position A and the food reward was still positioned at the same location.
Upon release the majority of the rats proceeded down the arm of the maze pointing
directly at the goal. The rats were going to the place associated with the food reward
rather than making a particular response to current visual stimuli. Tolman (1948) con-
cluded this was evidence for an internal cognitive map, although there was a light
source positioned at H which weakens this conclusion. This idea is developed further

by (O'Keefe and Nadel, 1978) and they report further experiments supporting this
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Figure 2.8; Experimental setup used by Ramos (2000) to test spatial reorientation
cues in rats. The numbers label extra-maze visual stimuli.
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Figure 2.9: Room with visual stimuli covered by curtain which maintains the general
geometry of the room (Ramos, 2000).

concludes that the rats were navigating using extra-maze visual stimuli as navigation
cues, Continuing the experiment, the extra-maze landmarks were eliminated from
the experimental environment. A white curtain was hung along the walls of the room,
covering all distinct individual visual landmarks but still displaying the same room
shape (Figure 2.9). Further testing showed that rats could still locate the food reward

in the absence of all visual landmarks, the success rate for finding the food dropping

Figure 2.10: Room with visual stimuli covered by curtain which changes the general
geometry of the room (Ramos, 2000),
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each lateral visual field. When the robot is moving down the center of the corridor the
optic flow is equal to each side, if it is closer to one wall, then the optic flow in that
lateral field is greater than the opposing field so the robot steers to the center. The im-
plementation of the centering approach is simplified by a single camera sensor facing

forward with a wide field of view and an active gaze stabilising system.

This type of navigation is found only to be suitable in corridor environments. When
operating in open areas the centering behaviour tended to make the robot move to-
wards walls or into corners, as this type of motion also acts to balance the optic flow
fields to each side. Therefore Coombs and Roberts (1992) suggest that an additional
forward looking obstacle avoidance behaviour needs to be used in conjunction with

the current approach,

Path Integration

Honeybees use visual odometry for path integration as well. Srinivasan, Chahl, We-
ber, Venkatesh, Nagle and Zhang (1999) describe a system which uses a centering
behaviour, similar to the one above, in conjunction with visually mediated odometry.
This system computes the distance travelled along a path by integration the image mo-
tion in the lateral fields over time. Of course the distance computed is not an actual
distance measure, but a measure of the image motion experienced to travel a certain
distance along a particular path. Provided the robot travels over the same path, mis-
sions of the same length can repeatedly be performed. If, for example, the distance
between the two walls of the corridor were doubled, the robot would traverse twice

as far, as the perceived image motion would be halved for a set distance.

Guidance

The use of visual landmarks to perform guidance navigation is popular in biomimetic
literature. Bianco and Zelinsky (1999) stands out by mimicking the Turn Back and
Look flights of bees and wasps to evaluate landmarks. In order to learn a place Bianco
and Zelinsky's (1999) robot first selects potential landmarks from the visual scene at
the goal location by an adapted interest operator (Moravec, 1977; Mori, Matsumoto,

Shibata, Inaba and Inoue, 1995). Then the robot makes a series of short movements in
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ever increasing arcs while facing back at the goal location and tracking the potential
landmarks. Landmarks which track well over this movement are considered reliable.
The area from which these landmarks can be recognised form a navigation field, inside
which the robot can successfully be guided back to the goal position. Guidance is
achieved by moving so as to reduce the error in image space between the landmarks’

current and reference positions.

This approach could perform homing from within the navigation field, which was a
pie slice shape with the vertex at the goal and approximately 30 degrees wide and up
to 10 meters deep. If the robot was located outside this field, then it could not find its

way to the goal location.

Recognition-Triggered Response

Although not directly mentioning the inspiration of bees in their motivation, Gaussier,
Joulain, Zrehen, Banquet and Revel (1997) propose a biologically inspired system ca-
pable of the recognition-triggered response behaviour evident in bees. From a cen-
tral goal position, the robot moved around the local environment and captured 4
panoramic image views at four places surrounding the goal. Features are extracted
from these views by collapsing intensity values for each column of the panoramic im-
ages into a 1 dimensional intensity histogram. The derivative of this signal and its

local maxima and minima are used to define the places.

Gaussier et al. (1997) then use PerAc, a neuro-computation architecture, to perform

recognition-triggered responses to navigate towards the goal. PerAc consists of:

an action level (a hardwired pathway able to play the role of a reflex mech-
anism) and a perception level trying to recognise particular situations and
to associate them with the correct action through an associate or a rein-

forcement learning rule (Gaussier et al., 1997).

Given a current panoramic view of the environment, the robot when trying to home
to the goal location, tries to recognise the distinct place closest to the current view. If a
place view recognition occurs, then this triggers the action of moving to the goal in the

direction associated with the recognised place. With just the four different views and
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Experiments with visually mediated odometry combined path following with path in-
tegration, All way-finding strategies required a local navigation behaviour in addition

to the recognising of places.

Gaspar, Winters and Santos-Victor (2000) present a navigation system which explic-
itly makes use of this combination of simple strategies and notes the emergence of
a powerful navigation system. In their system panoramic visual images are used to
create what the authors call a topological map, but is more like a learnt route with
places spaced 50cm apart and each place being represented with a panoramic image.
The images’ eigenspace are used to reduce matching in localisation, but the search is
restricted to local position estimates as this method is sensitive to perceptual aliasing.
In the route, transitions are specified by one of two navigation behaviours: corridor
following or visual path following. Corridor following is achieved by picking out line
segments where the wall meets the floor. This process is simplified by converting the
warped panoramic image into a birds eye view, in which these lines are straightened.
Visual path following is realised by tracking features in the birds eye view images.
Features are corner points defined by the intersection of long edge segments. Corners
provide more accurate information, while long edge segments track more reliably.
Recognition of a particular place along the route which requires visual path follow-
ing, triggers the recall of a set of features and a desired trajectory. In this way the robot
can move accurately in special situations such as navigating through doorways or

through cluttered environments. At the moment the user must initialise the features,

This system illustrates the importance of multiple navigation strategies in mobile
robots. Although in this experiment strategies were switched in specific situations,
so only one had exclusive control at a particular time, in general simultaneous activa-

tion of strategies is desirable,

2.8 Summary

The general theme throughout this literature review has been that navigation sys-
tems depend on an interplay between their internal representations and their navi-
gation strategies. In traditional robotic systems, there has been a predominance of fine

grained representations and high level navigation strategies. Biomimetic approaches
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Chapter 3

Multi-Level Spatial Representation

This thesis proposes a multi-level spatial memory for mobile robot localisation. It is
directly inspired by the three levels of navigation behaviour shown by honeybees, rats
and humans: recognition triggered responses and visual homing in honeybees, spa-
tial orientation and navigation using the a sense of space in rats, and the ability to pair
this sense of space with disambiguating landmarks in humans. The increase in knowl-
edge required in these navigation tasks directly relates to the amount of distinct visual
information extracted from the environment and thus influences the organism's per-
formance of the global localisation task. The level of abstraction needed in each level
of navigational ability is inversely proportional to the accuracy of position estimation.
Therefore a successful solution must have low level navigation strategies to navigate
accurately and also must have higher levels to perform global localisation in large,
visually ambiguous environments. These navigation behaviours need three distinct

levels of internal spatial knowledge:

1. precise and distinct features in the local environment with which to perform

position estimation;

2. general features in local environment which may be similar between some places

but are easily extracted from sensory views;

3. specific areas of sensory scene which disambiguate between similar places.

Section 3.1 further motivates the proposed multi-level spatial memory solution to the

mapping and localisation problem and introduces some issues involved in such an
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Spatial Knowledge Representation Biological Advantages
Inspiration
Precise distinct features ‘Unique visual Honeybees  Accurate local position
landmarks estimate
General, easy to extract Extent of local Rats Guide global localisa-
features space tion search
Disambiguating features Distinct image re- Humans Eliminate spatial alias-
glons ing

Table 3.1: The three levels of spatial representation

approach. Section3.2 provides details of the chosen sensor, a panoramic camera. Ini-
tial details of each level of spatial memory proposed in this research are described in
Sections 3.3, 3.4and 3.5. A solution for the integration of multiple levels of represen-
tation is introduced in Section 3.6. Integration of the levels of representation is needed
for the robot to form an internal belief as to its location and also to help restrict the
global localisation search space. Section 3.7 provides a brief introduction of the robot
hardware, software and sensor platform that is used in this research to validate the

proposed multi-level representation for spatial memory:.

Section 3.8 provides a summary of the proposed representation and restates the pri-
mary objectives of this research with regards to the multi-level representation This
section and indeed the chapter concludes by listing the key contributions of our re-

search to the field of mobile robot localisation.

3.1 Multi-Level Spatial Representation for Mobile Robot Lo-

calisation

By building topological maps which incorporate these three spatial representations

into the idea of places, the following can be achieved:

I. accurate position tracking in local navigation;,

2. the global localisation search can be reduced by targeting matching towards sim-

ilar areas;

3. perceptual aliasing can be eliminated by directly choosing disambiguating fea-

tures from conflicting places on a global level.
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Chapter 2 introduced the concept that the choice of sensor in a robot localisation 5ys-
tem directly impacts the choice of internal abstraction with which the robot system
represents the external environment. In order to form a representation from which it
is possible to accurately estimate the local position of a robot, the sensor must pro-
vide sufficient positional information from the environment. Range sensors such as
laser range finders provide accurate positional information (Dellaert, Fox, Burgard
and Thrun, 1999) (Jensfelt et al., 2000). Vision sensors have not typically been used
to provide accurate positional information for the mobile robot localisation task, al-

though the information is present in the visual scene (Davidson and Murray, 2002).

Representations that allow a unique description of places in the environment require
a sensor that provides a rich source of information from the environment, from which
unique properties of specific places can be extracted. In typical environments, range
data and thus range sensors, cannot provide enough information from the environ-
ment to form such unique representations. Vision as a sensor captures a wide variety
of information from the environment and therefore can be used as a source from which

unique representations can be extracted.

To perform the competing tasks of local position estimation and global localisation,
a sensor must be chosen which provides both accurate position information and the
level of detail necessary to extract unique representations of locations in the environ-

mernt.

The choice of sensor is also related to the desired behaviour of the agent. A sen-
sor must perceive enough of the environment to accomplish a given task, using the
available computational power. As mentioned above, the choice of sensor also im-
pacts on the map representation in a navigation system. Because the choice of sensor
is crucial to the success of the overall system, it makes sense to find inspiration in
successful navigation systems such as biological systems. Biological systems have de-
veloped complex navigation systems while being tightly constrained by evolution on

the "choice’ of sensors and processing power.
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more complex navigation, requiring more indepth knowledge about the environment
such as 3D object reconstruction and semantic classification, more complex sensors,

and integration between sensors is needed.

Panoramic Vision

The implementation of successful robot navigation systems, is limited by the cur-
rent computation paradigm and the associated computational power, Vision systems
which can reconstruct 3D objects in real time are starting to appear but the underly-
ing semantic classification and reasoning to use these objects in intelligent navigation
is still not available. Likewise, sensor integration for basic sensing is achievable but
the integration between sensors, actuators and a semantic reasoning level is still a
long way off. Without an underlying system which is capable of integrating multi-
modal senses and internal knowledge, complex reasoning and planning behaviours,
and complex navigation tasks on the level that humans are able to display are un-

achievable.

Therefore it makes sense to chose sensors which fit in with the current level of artificial
reasoning capability and computing power, and use sensing and navigation strategies
from biological organisms which posses a nervous system with a comparable limit to

real-time reasoning and computation,

The sensor used should also be able to capture all information necessary to form the
required levels of spatial representation. One sensor which provides all this infor-
mation without requiring extensive sensor fusion or active attention direction is the
panoramic vision sensor. This sensor provides a 360 degree visual image of the envi-
ronment using one camera. This is achieved by pointing a normal video camera at a
conical mirror as shown in Figure 3.1. The raw sensor data is then a view of the en-
tire environment but in a polar coordinate form about the axis of the camera. Vertical
lines in the environment are converted into radial lines in the warped panoramic im-
age, but horizontal lines become distorted and are hard to recognise. In this warped
view, it is hard to track visual features as even rigid motion causes non-linear defor-
mations in the image space. Point features, such as those identified by the Kanade-
L.ucas-Tomasi (KLT) tracker (Lucas and Kanade, 1981) can be tracked successfully in

a warped panoramic image stream (Strelow, Mishler, Singh and Herman, 2001), but
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Figure 3.1: Panoramic sensor configuration.

such features are not unique in the image. The lack of uniqueness in the representa-
tion of KLT features means that individual features cannot be uniquely identified and
recognised on revisiting a location in the environment. This failure could lead to er-
rors in global localisation and possible data association problems. Appearance based
visual landmarks have a unique representation, and although tracking in a warped
panoramic image stream is possible using deformable templates, recognition of such

landmarks when revisiting learnt places in the environment is difficult to achieve.

An example warped image is shown in Figure 3.2. This image can be dewarped in
software to form a more recognisable image, and one in which visual features can be
tracked more reliably. An example dewarped panoramic image is shown in Figure 3.3.
Notice that the resolution in panoramic images is greatly reduced and is not even
throughout the entire image. Additional information on the panoramic sensor used in

this research is presented in Section 3.7,
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Figure 3.3: An example of a panoramic image, dewarped by software.

The present system uses these dewarped images as the main sensory data for nav-
igation. In addition to this visual sensor, the navigation system receives odometric

information from the encoders in the wheel motors of the robot platform.

3.3 Low Level: Unique Visual Landmarks

Unique visual landmarks will be used for accurate local positioning relative to a learnt
place. A set of such landmarks will also be used as the low level representation for

individual places in a topological map. The selection of landmarks for place represen-
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Figure 3.4: A set of visual landmarks representing a place in a topological map.

tation is crucial for the performance of the system. By choosing unique landmarks,
the representation of individual places will be more distinct and localisation between
places will be easier. But by using unique landmarks instead of features, the cost of
matching increases as mentioned in Chapter 2, and therefore strategies to reduce the

amount of matching are necessary.

The selection of landmarks also determines the coarseness of the topological map.
The larger the area in the environment represented by a place, the coarser (and sub-
sequently less complex) the topological map can be. But this coarseness might come
at the cost of local position accuracy. In general visual landmarks representing objects
close to the robot location provide accurate local positioning information but can only
be recognised in a small area of the environment. Landmarks which are from objects
located far from the robot can be recognised over a greater area but do not allow for

accurate position information.

3.3.1 Landmarks in Panoramic Images

Panoramic images allow for landmarks to be selected from all directions surrounding
the robot. This large field of view increases the possibility of selecting useful land-

marks and also adds to the reliability and accuracy of local positioning. By ensuring
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Figure 3.5: An example of unique visual landmarks in a panoramic image.

the set of landmarks representing a place are distributed throughout the panoramic
image, the robot can minimise triangulation error and can also handle occlusion of
landmarks due to dynamic objects moving through the visual field. For ease of match-
ing, landmarks in this system are small, square image regions. Figure 3.4 illustrates
the use of a set of landmarks in representing a place in a topological map. An example

of landmarks in a panoramic image can be seen in Figure 3.5.

3.3.2 Automatic Landmark Selection

Landmarks must be acquired automatically, and should be selected according to their
ability to contribute to place recognition and local positioning. This system primarily
[ocuses on selecting landmarks which allow for reliable place recognition as the use
of the panoramic sensor and its triangulation ability should provide for reasonably
accurate local position estimation. When learning a place, a panoramic image is cap-
tured from the reference position and the automatic landmark process begins. The
selection process involves first a static phase where potential landmarks are extracted
based on their local uniqueness, and a second, dynamic phase, where there recogni-
tion reliability is evaluated over a series of movements about the reference position,
This dynamic evaluation is directly inspired by the Turn Back and Look behaviour in

bees and wasps, and first applied to biomimetic robots by (Bianco and Zelinsky, 1999).

3.3.3 Landmark Matching and Localisation

In a system using visual landmarks, localisation becomes a process of locating the vi-

sual landmarks of a particular place in the current sensory view. Global localisation
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in a topological map is the process of finding the set of landmarks associated with a
particular place which have the best match with regions of the current image. Local
positioning involves using the position of matched landmarks in the current image to
estimate the robot pose relative to the associated place’s reference position. Because
landmarks are unique visual patterns, each landmark must be matched against the en-
tire image in order to find the best match. Given that landmarks are initially selected
on the basis of a measure of local uniqueness, it would be interesting to experiment
with matching reference landmarks with areas of high local uniqueness in the current
image, similar to the work of (Sim and Dudek, 1999), and evaluating the cost/benefit
of such a approach. Particle filters specific to individual places can integrate the land-

marks observations over time to provide more robust position estimation.

This system uses a set of unique visual landmarks automatically selected from panoramic
images of the environment to represent places in the topological map. Automatic vi-
sual landmark selection allows the selection of locally unique features in the environ-
ment which leads to a more unique place representation than finding generic features
such as doors, walls etc. The use of a panoramic image sensor, as well as the land-
mark selection process allows for a greater coverage of the environment for each learnt
place. The combination of panoramic sensing and unique landmarks also allows for
more accurate local positioning. The details of the implementation of this level of spa-
tial representation can be seen in Chapter 4, and the associated localisation process in

Chapter 8.

3.4 Mid Level: Local Space

Knowledge of the extent of local space can be used to restrict the global localisation
search. Places in the topological map can be eliminated from the matching process if
the extent of open space in the robots local environment is not similar to their own,
Local space is a useful cue in this process as it is necessary for obstacle avoidance
and motion planning and therefore must be calculated anyway. In addition, once
global localisation has been achieved, knowledge of local space can be used to provide
additional local position information if required. It also has the opportunity to provide

extra metric information if more complex spatial representations are to be formed.
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Figure 3.6: Local Space around a robot can be represented as a histogram.

corresponds to radial directions about the robot platform a sense of space along these
radial directions can easily be evaluated by finding a free space boundary throughout
the panoramic image. This is equivalent to finding the ground plane in the panoramic
image, an easy approximation of which can be obtained by using colour cues. This can
be done in a variety of methods but for ease of implementation, the current system will

use carpet colour matching, the details of which are given in Chapter 5.

The resolution that a view of open space requires depends on what we are using it for.
For the current task of limiting the localisation search by matching with local space
profiles, the resolution can be relatively low. If in addition to matching with the local
space profiles, the open space information was being used to provide local position
information then the required resolution would be greater. In this system, for speed of
matching between two local space profiles, the resolution of the local space measure-
ment has been limited to sixteen discrete directions about the robot platform, which
can be represented as a histogram. Figure 3.6 shows an example of a low (eight direc-
tions) resolution view of open local space about a robot platform, and its associated

local space histogram.,
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3.4.2 Local Space Profiles of Places

Rather than representing each place with a unique local space histogram, it is possible
to instead associate them with a local space primitive, This means that a quick search
can be performed against the limited set of local space primitives rather than match-
ing a current local space profile against each place in the topological maps local space
profile. Then computational resources in the global localisation search can be targeted
to those places which are associated with currently activated local space primitives,
An example of local space primitives being associated with places in a topological
map is given in Figure 3.7. In this example the environment is simple and only two
local space primitives are needed. For more general environments more primitives
will be required but their number will not grow in proportion to the size of the map.
Environments incorporating large regions of open space can be categorised by a local
space profile with maximum depth measures in all directions. The use of such a set of
primitives depends on their ability to successfully categorise the local space profiles
of places in the topological map. If the set of primitives can successfully group sim-
ilar places together then they can make a useful contribution to the localisation task.
If the set of primitives do no contribute significantly to the localisation task, then it
would be better to represent each place with a unique local space profile. Experiments

evaluating the contribution of local space primitives are presented in Chapter 5.

In the current system, a sense of open local space is used to constrain the global locali-
sation search. The search is restricted to places which have a similar local space profile
as the current sensory view. The use of panoramic images simplifies the detection of
local space. In the future, higher resolution local space profiles could be used to aid

local position estimation,

Figure 3.7 shows places in a topological map with a local space profile representation.
It also shows how a set of primitives could be used to classify local space profiles to
limit the global localisation search. When performing localisation, the local space pro-
file of the current panoramic view could be matched against the local space histograms
for each place or the set of local space primitives. The results of the matching process

could be used to restrict the global localisation search,
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Figure 3.7: Mid level place representation: associating places with local space primi-
tives.

3.5 High Level: Disambiguating Features

In problematic cases the situation can arise in which neither the defining set of visual
landmarks nor the shape of the local space can differentiate one place from another.
A solution to this would be to define another type of feature with which to classify
places. But what happens when this feature again is in-discriminable between places?
At some point the addition of feature classifications will start to provide diminishing
returns. In fact the combination of unique visual places with a sense of local space will
be enough to globally localise in most cases. When this isn't the case and a decision
between two or more places is needed urgently, a direct comparison of both places can
be made, and specific differences between places can be used to make the localisation
decision. This is inspired by the emergence in humans of the use of indirect landmarks
to spatially reorient themselves, The appearance of this ability is correlated with that
of the ability to produce language containing the exact information needed to solve the
task. In this system, a search of the visual scene at similar places is made and regions
of the image are identified which contain the exact information necessary to solve the

task. This requires that complete visual scenes of each place are stored when they are
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Figure 3.9: The levels of spatial memory in the topological map.

chapter, this belief must be able to form and maintain multiple hypotheses. Previ-
ous systems have used particle filters to approximate the Probability Density Func-
tion of the robot’s position over a map. This system uses this method, but adapts it
for a multi-level representation. The key problems in applying a particle filter to a
topologically based, multi-level representation is in distributing the particles sensi-
bly throughout the system and forming a current belief and maintaining that belief in

transitions between places.

3.6.1 Guiding the Localisation Search

In this system individual particles will measure the probability of the robot being in
a specific pose relative to a particular place in the topological map. Particles must

be initially distributed throughout likely places. This choice of likely places is deter-
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mined by the matching of local space profiles. But simply distributing particles based
on the relative activation of these local primitives is not desirable because of the large
computational cost involved in matching the current sensory view with the landmark
sets of each likely place. A maximum number of places that can be matched within
the real time constraints of localisation needs to be defined, and the distribution of
particles restricted to this number of places. Alternatively, distribute them further in
accordance with the local place primitives and perform matching with time switch-
ing, matching more likely places more often than less likely places. In this way no
information is lost. Figure 3.10 illustrates the distribution of particles in the multi-
level map, assuming there are only enough computational resources for matching the
current scene against two distinct places per time step. In this figure particles are dis-
tributed randomly throughout the two places which have the the most similar local
space profile when compared to the current scene, as determined by the local space

primitives,

3.6.2 Maintaining an Internal Belief

Not only is there a need for distributing the particles throughout likely places, but
there is also a need for evaluating the single most likely place that the robot is at any
given moment. This evaluation is the robots internal belief as to where it is in rela-
tion to its spatial knowledge about the environment, But given that the information
that is available is a sample driven approximation to a probability density function,
how should this instantaneous position estimation be achieved? Should it be simply
the location of the sample with the highest probability? Should it be the mean po-
sition of all samples? Obviously with such a multi-modal distribution such as robot
localisation there is no trivial solution, and a heuristic solution suitable to most cases
should be applied. In this system, as sensor observations are based on observed sets of
landmarks representing places, there is a separation between position in terms of the
places in the topological map and position in terms of local positioning within those
places. Local position estimation is therefore taken to be the most probable position of

all locally sampled positions,

Another issue that arises because of the segmentation of the environment into distinct

places is that of passing knowledge about position between nodes in the topological
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Figure 3.10: Distribution of particles throughout places based on local space match-
ing.

graph. If there is a strong belief that a robot is in a particular position in relation to
a particular place, this shown by a large amount of particles grouped tightly together
about that position. If the robot leaves that place and makes a transition to an adjacent
node in the place graph, then how can the position estimation information be passed
to the next place? To a certain degree this will be achieved by sampling new particles
at places determined by matching of the local space primitives. Relying on this alone
however, will result in loss of the adjacency information captured by the topological
map. Therefore some sampling at a position in the adjacent place given by the place
transition information is desirable. Exactly how and when the re-sampling to adjacent
places is achieved is left to the implementation details described in Chapter 8. In this

way, position estimation is resolved on a place by place basis, which helps to limit
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computation, but still allows for exploration of new hypotheses and the passing of

strong hypotheses between adjacent places on the map.

3.7 Robot System

This section details the hardware and software configuration of the robot system used
in this thesis. A description of the hardware used in this system is given, in partic-
ular details of the Nomad XR4000 mobile robot and the panoramic vision sensor are
presented. Then very general details of the software architecture is given and some
design considerations are discussed. The environment in which real world robot ex-

periments are performed is also discussed.

3.7.1 Nomad XR4000 Mobile Robot

Ihe Nomad XR4000 is a maobile robot platform manufactured by Nomadic Technolo-
gies. A picture of the XR4000 robot is given in Figure 3.11. The panoramic vision Sys-
tem can be seen mounted on the top of the robot, The Nomad XR4000 has a plethora
of other sensors which will not be used in the present system, such as a laser range

finder, a web camera, as well as ultra-sonic and infra-red sensors,

The robot has holonomic drive and odometry measurements can be accessed in mil-
limetres for motion along the = and y axes, and milli-radians about the axis of rotation.
Access of all robot state information and control of robot motion in both position and
velocity modes is achieved through the use of Nomadic Technologies nrobot control

software,

The XR4000 has two on-board 750MHz CPU'’s running the Linux operating system,
one of which has the robot control software running on it. The two CPU's are con-
nected by a standard network connection. The network is also linked via a hub to a

wireless Ethernet transmitter,

3.7.2 Panoramic Sensor

The panoramic vision sensor used in this system is shown in Figure 3.12. It is mounted

in the center on the top of the mobile robot at the height of ~ 1400mm (from the lens of
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Figure 3.11: The Nomad XR4000 mobile robot by Nomadic Technologies.

the camera to the floor). The panoramic vision sensor is made up of a standard Sony
CCD video camera pointed at the peak of a hyperboloidal mirror. The video cam
era can then capture a reflected image which covers 360 degrees of the surrounding

environment. An example image from the video output is shown in Figure 3.2,
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Figure 3.12: The panoramic visual sensor mounted on the mobile robot.

The hyperboloidal mirror shape was chosen due to the simplification of image pro-
cessing it provides. Our research is not overly concerned with image quality, resolu-
tion or calibration of cameras. A panoramic image with sufficient resolution to track
visual landmarks over small translations is all that is necessary. Camera calibration is
not required as the local position estimation system depends solely on the radial angle

ol observations which is invariant in panoramic vision sensors.

The optical qualities of the sensor (Yamazawa et al., 1995) used in our research is
shown in Figure 3.13. If the image space is defined in polar coordinates (r, #) and
a cylindrical coordinate frame about the mirror's central axis as (/2,6, %), then the

hyperboloidal mirror can be defined as:
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Figure 3.15: Software distribution over the two processors.

in the image depends on the elevation of the point in space. This transformation is
completed in software. A look-up table, constructed using Equations 3.3 and 3.4, is
used to speed this process up. The resulting cylindrical panoramic image repeats a
small portion of the warped image. The left and right extremes of the image both
portray the same area of the environment. This characteristic is intentional as it aids
in tracking landmarks which move beyond the horizontal borders of the panoramic

image,

3.7.3 Software Configuration

The main ideas in this thesis are directed towards mobile robot localisation. As was

discussed in Chapter 2 localisation is a sub-component of the broader robot behaviour
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Figure 3.16: A map of the experimental environment.

typically not been applied to such an open area.

Figure 3.16 shows a map of the environment with the gross dimensions marked. This
fam)

grid based map was constructed using a mapping and localisation system developed

by Sebastian Thrun and colleagues of Carnegie Mellon University (Thrun, Beetz, Ben-

newitz, Burgard, Cremers, Dellaert, Fox, ahnel, Rosenberg, Roy, Schulte and Schulz,
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e [ixtension of automatic selection of visual landmarks in panoramic images: the selec-
tion of visual landmarks using a Turn Back and Look behaviour is extended for
use with a panoramic sensor and depth estimates of visual landmarks are made

using a form of bearing only Simultaneous Localisation and Mapping (SLAM).

¢ Geometric landmark sensor models for hypothesis evaluation: An ellipsoid-line in-
tersection model is developed to evaluate the likelihood a given observation of
a landmark in a panoramic image was made from a sample robot state. This
effectively lets the system assign a value to the probability that the current ob-

servations were made from a hypothesised position in the internal map.

e Accurate local positioning in a topological map: visual landmarks are used to not
only define places in a topological map but also to provide for accurate local
positioning in conjunction with a particle filter based probabilistic position esti-

mator.

e Division of probabilistic global localisation search by topological mapping: By using
a set of unique landmarks to represent places, this allows for localisation on a
topological level by matching landmark sets, thus restricting the global localisa-

tion search to areas defined by places in map.

e Multiple cues for restricting global localisation search: the mid-level of the spatial
memory representation can be used as a cue for restricting the global localisation
search. By incorporating cues with low matching costs the global localisation

process can be made more efficient,

e Loss and recovery of localisation belief: a method of maintaining a central localisa-
tion estimate is developed, which can detect when localisation is lost, and trigger

relocalisation.

e A solution to the kidnapped robot problem: the current system goes a long way to-
wards solving the kidnapped robot problem. Accurate local positioning can be
achieved through observations of visual landmarks; the loss of position tracking
can be detected through monitoring the robot’s belief in it's estimate; relocalisa-

tion can be achieved by the restricted global localisation search.
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Figure 4.1: An example of visual landmarks in a panoramic image.

the use of the dynamic landmark selection phase to produce an estimate of landmark
depth is described and experiments to validate these estimates are presented. Finally,
Section 4.7 provides a discussion and summary of the issues associated with imple-

menting the low-level visual landmark representation.

4.1 Automatic Visual Landmark Selection

The process of landmark selection is aimed at producing a set of landmarks which
are unique, maximise the area of the environment the place represents, and allow for
accurate local positioning, This means that landmarks must be reliable, strongly iden-
tifiable, and they must be distributed throughout the image. They also must be able
to withstand image variance due to temporal and translational distortions. Bianco
and Zelinsky (1999) proposed a method which selects landmarks based on their static
uniqueness and their dynamic reliability. This approach has been extended to incor-
porate the advantages of the panoramic sensor. In this system, visual landmarks are

1616 pixel regions in the grey-scale panoramic image.

An example of visual landmarks in a panoramic image is shown in Figure 4.1, Of
course for a mobile robot to act autonomously it must have a method for extracting
these landmarks automatically. Figure 4.2 shows the process this system uses to auto-
matically select visual landmarks. An image is captured from the reference position,
from which 32 static landmarks are selected. These landmarks are then tracked and
evaluated for their reliability over a Turn Back and Look (TBL) movement in the dy-
namic phase. The 16 most reliable landmarks are selected to represent the place as a

l[andmark set.
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Figure 4.2: The process of automatic visual landmark selection.

The two phases of landmark selection, static and dynamic, are described in the follow-
ing sections. The static phase is meant to ensure landmarks are distinct in their local
region of the visual scene and as such are strongly identifiable. The dynamic phase is
meant to select landmarks which are reliable and recognisable over a large area, and
this characteristic is tested by comparing the range over which static and dynamic
landmarks can be recognised. Landmarks should be recognisable in the presence of
varying illumination conditions and a method of achieving this and some results are
presented. By associating a depth with landmarks, more accurate local position esti-

mates can be formed and a method for doing this is described in Section 4.6,

4.2 Static Landmark Selection

Static landmarks are selected from a static scene on the basis of their local uniqueness.
Two examples of landmarks are shown in Figure 4.3. Image a) shows a landmark
which is similar to its surroundings and subsequently useless for localisation or nav-
igation task. Image b) on the other hand shows a landmark which is distinct when
it is compared to the image region immediately surrounding it. Obviously an auto-
matic landmark selection system should pick out landmarks which are locally unique,
similar to that displayed in image b) as opposed to image a). In this system local
uniqueness is defined as the degree to which the landmark template differs from the

area of the image immediately surrounding the landmark. This approach is based on
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Figure 4.3: Examples of landmarks. The landmark in image a) is unreliable and has
a low local uniqueness. The landmark in image b) is more reliable and has a higher
local uniqueness. Figure from Bianco and Zelinsky (1999).

the "The Valley Method' proposed by Mori et al. (1995) to generate attention tokens
in a scene, which in turn appears to be an instance of a Moravec interest operator
(Moravec, 1977) applied to feature tracking. Bianco and Zelinsky (1999) adapt this
method for the present task of automatic selection of landmarks. When evaluating an
image region as a potential landmark, two panoramic images are captured, the land-
mark template in the first image is matched with its surrounding region in the second
image using correlation matching. Because the scene is static the only difference be-
tween the two images are those introduced by camera noise. In this case a standard
Sum of Absolute Differences correlation algorithm has been used for the matching

Process;

M-1N-1

SAD= 3" Y " |Iy - Tyl (4.1)

1={] IJ'_—.U

where a template 7' of pixel size M < N is being correlated with an image region [ of
the same size. It is worthwhile noting here that normalised correlation matching is not
desirable here as the process is trying to identify the magnitude of differences within
regions of the same scene. Normalised correlation, which uses the mean intensity of

pixels in an image to eliminate illumination effects in the correlation process, would
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Figure 4.4: Examples of distortion matrices from the landmarks in Figure 4.3. The
matrix in a) is from local correlation matching around the unreliable landmark, the
matrix in b) from the reliable landmark. The horizontal axes denote the matrix result-
ing from matching the 16 x 16 pixel template over a 32 x 32 pixel search window. The
vertical axes shows the SAD correlation value for each match. Figure from Bianco
and Zelinsky (1999).

tend to exaggerate all differences. A formula for normalised correlation is given in

Equation 4.3.

Figure 4.4 shows the correlation results obtained by matching each 1616 pixel land-
mark template, from the images in Figure 4.3, on a 3232 search window centered
on the original template. The unreliable landmark produces the image distortion ma-
trix shown in image a) which is uniformly low meaning that the landmark correlated
highly with its surrounding image region. In the distortion matrix in image b), the
more reliable landmark produces a valley corresponding to where the landmark tem-
plate was matched with itself, thus having a high correlation (low distortion). By
comparing the depth of this valley in relation to the surrounding distortion, a mea-
sure of how unique the landmark is in its local region can be obtained. In practice this
measure is the ratio of the minimum global matching distortion to the local minimum
(from the match of the landmark and the sixteen surrounding values). This idea is
illustrated in Figure 4.5 where the local minimum is located in the region highlighted
by the grey square, and the global minima is shown as the bottom of the valley. More

formally local uniqueness is defined by:

r=1-g/g 4.2)
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Figure 4.5 Finding a measure of landmark reliability: ratio of the global minimum
(valley) and the surrounding local minimum (from the area covered by the grey
square. Figure b) is a over head view of the surface in a). Figure a) from Bianco
and Zelinsky (1999).

where r is the reliability of the landmark, g is the distortion of the landmark matched
with itself, and ¢’ is the minimum matching distortion from the surrounding circle of
pixels. Given that g should only result in distortion due to noise, then the higher the
distortion of the minimum of the surrounding templates, the steeper the valley in the
distortion matrix and subsequently the more unique the local template should be. An

example of this concept is shown in Figure 4.5.

[n order to select the 32 static landmarks that the system uses, two panoramic images
are captured from the reference position and an exhaustive search over all possible
image regions is carried out to select the 32 image regions or landmark templates

which have the highest measure of local uniqueness as determined above.

By dividing the panoramic image into four sectors, roughly corresponding to forward,
back left and right, and selecting an equal number of landmarks from each sector,
the resulting landmark set is distributed throughout the image. This assists in local
position estimation as well as ensuring the visibility of some landmarks when parts of

the visual field are occluded,
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Figure 4.7: TBL movement algorithm on vision processing CPU

Bianco and Zelinsky (1999) first implemented this behaviour on a mobile robot using
anormal camera configuration and moving in arcs away from the goal position while
facing back at the potential landmarks. In this system the movement has been ex-
tended to take into account the greater field of view of the panoramic camera system.
The differences in the TBL. movements between the two systems can be seen in Fig-

ure 4.6.

In the current system dynamic landmark selection is accomplished using the method
illustrated in Figure 4.7, This computation occurs on the CPU dedicated to vision pro-
cessing and localisation. The ovals shaded grey denote stages where communication
with the CPU hosting the robot controller occurs. Basically the system initiates the
IBL movement then enters a cycle of capturing the panoramic image and tracking

landmarks until the TBL movement has finished.

By selecting landmarks which track reliably throughout the TBL move, a landmark set

with greater reliability and coverage about the reference position can be selected.

4.3.2 Landmark Tracking

Ihe reliability of landmarks is determined by locating the landmarks throughout the
IBL movement by correlation template matching, and averaging their correlation

measures over the entire movement. Template matching over this movement is achieved









4.4 Recognising Landmark Sets

Figure 4.8: An example of landmarks selected to represent a place using static and
dynamic landmark selection.

ple of the landmark set selected by this process is given in Figure 4.8,

4.4 Recognising Landmark Sets

The reason for learning a representation of a place is so that the robot can recognise it
when it revisits the place. Therefore the best way to evaluate potential methods of ac-
quiring the representation is to measure the degree to which those representations can
be recognised. It is important to have an understanding of how these representations
will be used, and as such methods for recognising landmark sets in panoramic im-
ages are presented here. These recognition methods can also provide some empirical

evidence as to suitability of the representation.

The basic method to perform landmark recognition in a panoramic image, is to search
the panoramic image for regions containing a similar spatial pattern, that is regions
which appear similar to the landmark template. The algorithm should identify the
region which is most similar to the landmark template and also it should preferably
do this in the shortest amount of time. Although the speed of landmark recognition
is not critical to system performance, as landmarks can be tracked at great speed after
they are recognised, it is a behaviour whose execution frequency will grow as more
places are added to a topological map. Thus a fast recognition rate for multiple places

is desirable but not at the expense of recognition performance.

Two methods, brute force template matching and pre-matching feature extraction
are investigated. The advantages, disadvantages and the tradeoffs of these two ap-

proaches are discussed.
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Landmark Recognition Performance over TBL Mova: brite force vs pre—extraction of features
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Figure 4.9: Landmark set recognition performance over a sequence of images com-
paring the brute force search approach versus that of extracting features before
matching. The images used in this experiment were captured over a Turn Back and
Look path, the high peaks in the brute force graph correspond to the robot passing
over the reference position of the place.

44.1 Brute Force Landmark Template Matching

A brute force search involves comparing every possible region within the image to the
landmark templates to identify the region which looks the most like each template. It
will find the image regions which is most similar, pixel to pixel, to each of the tem-
plates. This is computationally expensive. The normalised cross correlation method
described in Equation 4.3 is used to perform the template matching. This matching
identifies the correlation value and the z, y position of the best match in the image
for each landmark. A landmark set recognition measure is obtained by averaging the
correlation values of all the landmarks. To evaluate its recognition performance and
computational intensity, brute force template matching was applied to images cap-
tured during a TBL. movement. A pre-learnt landmark set was matched with each

of the 300 images in the sequence and the average correlation of the landmarks was
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Figure 4,10: Time taken for landmark recognition comparing the brute force search
approach versus that of extracting features before matching. The graph shows the
time taken for each approach when matching a landmark set with a number of im-
ages. This is analogous to matching 1 image with a number of landmark sets as
would happen in global localisation.

recorded. The results are shown in Figure 4.9 by the blue line. The peaks in the graph
correspond to the where the images in the sequence correspond to the robot passing

over the reference position of the place.

The time taken for the computation of a brute force search was measured by perform-
ing the search on 1 image with a varying number of places to search for. Figure 4.10
shows that a brute force search (blue line) takes approximately 700ms for each land-
mark set. The linear nature of this relationship means that brute force searches quickly

becomes computationally unacceptable as the number of places increases.
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Figure 4.11: Pre-matching feature extraction

44.2 Pre-matching Feature Extraction

Brute force searching is computationally expensive because of the large amount of
template matching required per landmark set. One way to reduce this computational
load is to extract features from the visual scene and then match these features with
the landmark sets. This method requires additional processing initially to extract the
features, but matching time per landmark set can be drastically reduced. The concept

behind pre-matching feature extraction is shown in Figure 4.11.

The features that this system uses are those obtained by applying Mori et al.'s (1995)
Valley method. This is applied when selecting static landmarks and can be used again

to extract likely features,

T'he recognition performance of matching pre-extracted features from an image with
the landmark templates from a learnt landmark set is shown in Figure 4.9. Features
were extracted from each image in the sequence by applying the Valley operator and
selecting those features with a higher local "'uniqueness’. These extracted features were

then matched against the landmark sets templates using normalised cross correlation
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matching as above. The features which best matched the landmark template were

recorded and their average correlation gave the measure of recognition performance.

The green dashed line shows the recognition performance of matching with 64 pre-
extracted features, while the maroon dashed and dotted line shows that of matching
with 244 features. It can be seen that neither plot of extracted features can compare
with the recognition performance of the brute force search. In addition, whereas it
would be thought that extracting more features would lead to greater recognition per-

formance, this was not the case.

Computation time for pre-extracted feature matching was measured in the same way
as for the brute force approach, except that time measurements include both feature
extraction and matching times. Figure 4.10 displays the results of this experiment,
with the yellow dashed line representing the time taken for extracting and matching
32 features, the maroon dotted line 64 features and the green dashed and dotted line
224 features. It can be seen that although there is a substantial penalty for the ini-
tial extraction (approximately 1500ms) the subsequent matching of landmark sets is
achieved much faster than for the brute force approach. In fact even with this penalty,
pre-extracted feature matching becomes the faster option when matching 5 or more

landmark sets.

Unfortunately the computation saving of matching pre-extracted features is made ir-
relevant by its poor recognition performance. The importance of being able to recog-
nise a learnt place far out-weights that of doing it quickly. The nature of the feature
extraction used in static landmark selection must be too volatile when subjected to
small changes in the visual scene. Although these landmarks are selected for their re-
liability under small translations, it obviously does not guarantee that the underlying
feature extraction method is similarly reliable under those circumstances. The use of a
different method of selecting features might solve this problem, but any new methods
would have to be shown to be as recognisable and computationally inexpensive as
well. In our research we have decided to persist with a brute force search and later
investigate other methods for reducing landmark set recognition time by constraining
the amount of landmark sets to be searched, rather than by constraining the search

time itself.
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Figure 4.13: An example panoramic image from the recognition experiment captured
at 15:00.

Figure 4.14: An example panoramic image from the recognition experiment captured
at 20:00.

can be attributed to the higher distortion of landmarks located on the sides of the
corridor (closer to robot), when compared to those at the end of the corridor (further
away). From this result it can be seen that including a dynamic landmark phase in the
automatic landmark selection process increases the area surrounding the reference

position from which the landmark set can be recognised.

4.5.2  Robust Landmark Correlation under Changing Illumination

Next, the effect of changes of illumination on the system's performance was investi-
gated. A place was learnt at 15:00, and the selected landmarks stored. The landmark
recognition phase was carried out immediately after learning and again at 20:00 that
evening, using the same set of learnt landmarks. Again the results given are for a
2=z meter section of the corridor centered on the learnt place, and the measurements

taken at 20cm intervals. Sample images from the robot during the 15:00 run and the
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Frame 1

Frame 3

Figure 4.16: Non-normalised (SAD) correlation landmark tracking

tracking is lost quickly due to the rapidly diminishing illumination in the scene. The
same sequence is shown in Figure 4.17, this time normalised cross correlation was
used for the template matching and it can be seen that landmark tracking was suc-

cessfully maintained.

4.6 Dynamic Landmark Selection with Depth Estimation

Kknowledge of the depth of landmarks in the environment is valuable for robot locali

sation as is shown in the proliferation of range sensor based robotic solutions. Obtain-
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Frame 1

Frame 3

Figure 4.17: Normalised correlation landmark tracking.

ing range from a monocular visual sensor is a difficult problem and becomes worse
with the low resolution of the panoramic images used in this system. When looking to
solve this problem, inspiration can again be taken from a biological solution. Not only
has the TBL movement of wasps been interpreted as a way of selecting landmarks
which are stable in the visual field, it has also been suggested that they use this flight
to extract depth information about the environment. In the same way, a robot making
a I'BL move can use this exploration of the environment to extract depth information

about potential landmarks.

While performing the TBL move and tracking landmarks, a form of bearing only Si-
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observation Jacobian <7/, becomes:

= '1 - .,I?I.r'.h.. dh .SrfiL :Krf:, 8ch ) l
VA= gE fs T - BB - (.1

with ¢ being the observed angle of the landmark at the present time. The filter can
be initialised using the knowledge of the exact reference location of the robot, initial
observations of the landmarks and associated noise (resolution of panoramic sensor),

and an initial estimate of landmark depth and variance.

X=10000 ...d 4% ... 0 (4.12)

The iterative estimation of the system state can then proceed and continue through-
out the TBL movement. The general idea of the filter is to iteratively use a sequence
of observations of the angle to a particular landmark in conjunction with odometric
measurements to produce successively better and better estimates of the landmark’s
angle and depth from the original reference position. While doing this the Kalman
filter also estimates the uncertainty of the estimates by incorporating process noise in
the computations. Process noise in this case includes the noise in angle measurements
caused by the low resolution of the panoramic images and the error in odometric mea-

surements due to wheel slippage.

The relationship which drives the filter is that between the observation angle of a
given landmark ¢; from the robot’s current position and the landmark’s depth and
and angle from the reference position, ¢; and ~,. This relationship is defined by the

equation:

1;81m("yq) = |
¢; = tan™! a9k 1 Or + ¢y (4.13)
dicos(;) = xp

where ¢, is the noise associated with the observation.

The values of the observation Jacobian 7/, (Equation 4.11) then become:

5 disin(vi) = yr (4.14)

bap ~ (dicos(y) — zp)? + (disin(vi) — yn)?
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Figure 4.18: Simulation resulis of landmark depth and variance estimation over the
Turn Back And Look (TBL) movement. Part a) shows the actual positions of land-
marks in the simulation; part b) the state of the system at the beginning of the TBL
move, depth estimate and variance are at the initial values; b) completed X-axis
phase of TBL movement; ¢) completed TBEL movement.

were averaged over 10 trials. The uncertainty measures for landmark depth in the

covariance matrix were initialised to 700 for all trials.

The results of this experiment can be seen in Figure 4.20. This graph shows the ac-
tual depths of landmarks plotted against the estimation error. As expected the accu-

racy of estimates for landmarks with short depths is much better than those of long
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Figure 4.19: Actual position of landmarks and the TBL movement used to evaluate
depth estimation accuracy.
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Figure 4.20: Error in depth estimation of landmarks for various initial depths.
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Figure 4.21: Variance of depth estimation of landmarks for various initial landmark
depths.

depths. The importance of choosing a suitable initial depth value can also be seen.
Landmark estimation using an initial depth estimate of 100 can converge accurately
for short landmark depths but are bad for medium and long depths. Initial estimates
of 300 or 500 seem to perform quite well for short and medium depths, but the error
grows rapidly afterwards. The results for an initial estimate of 700 are surprising, the
graph showing accurate estimates for landmarks with a short depth, the error growing

through medium depth landmarks and then contracting again for longer landmarks.

As these estimates have associated uncertainty regions, the results must be interpreted
in conjunction with the size of theses uncertainties. Figure 4.21 shows the correspond-
ing variance measures for each of the plots in Figure 4.20. Again, for landmarks with a
short depth the variances are very low, showing that no matter what the initial depth

estimate is the filter can converge on the correct estimate with high certainty.

The plot of the variance associated with an initial depth of 100 shows that the variance
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does not grow in conjunction with the error measure. This is probably because the
filter makes a wrong estimate early in the iteration cycle and because of the depth of
the landmark and small amount of information that can be gained from changes in
observation, it can not recover. Whatever, the reason, this mismatch between error
and variance argues against initialising the filter with short depth estimates. At the
other end, initialising long landmarks with a depth of 700 gives an accurate estimate
with very high uncertainty. The accuracy in depth estimation of distant landmarks is
mainly luck, due to the initial depth being close to actual depth. With landmarks at
this range there is not enough information to be gained from observations to either
move the estimate from its initial value or to decrease the uncertainty in that estimate,
but this is to be expected due to relatively high uncertainty in the observation input,
The variance associated with the moderate initialisation values of depth grow along
with the error which is a desirable characteristic. If these estimates are going to be

used it is necessary to know how much trust to place in them.

Figure 4.21 gives the indication that all the variance plots are starting to level off after
landmarks pass a depth of about 600. This again reinforces the limit of the filter to gain
information from landmarks located it depths greater than this. [nterpreting these two
graphs in conjunction it would seem it best to use an initialisation depth of about 3-
5 times the extent of the observation movement from the reference position. Also it
seems that there is little information to be gained from landmarks greater than 6-7

times this distance.

[t is interesting to note that for estimation accuracy it is desirable to spread landmarks
throughout the possible range of angles. Landmark configurations where they are
bunched around a single angle, such as that shown in Figure 4.22, provided signifi-
cantly worse depth estimates. This is not because the landmarks contribute to each
others depth estimation directly, but rather because the Kalman filter is achieving
mapping and localisation simultaneously as the name SLAM implies. Not only is the
filter estimating landmark positions, it is also estimating the position of the robot from
which the observations are being taken. When landmarks are bunched together there
is less information available to correct the robot position, and errors in the odome-
(ry can accumulate. Subsequently, observations from an uncertain position cannot

provide as much information on landmark location as those from a certain position.
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Figure 4,22: An example of a configuration of landmarks which results in poor depth
estimates.

Landmark position estimation with a small amount of landmarks suffers from the

same fate.

Simulation results from the system show the filters ability to converge to the correct
result, although for landmarks at greater depths this process can be slow. The accuracy
of the estimate depends on both the depth of the landmark in relation to the size of
the TBL. movement and the resolution of the sensor which measures the angle to the

landmarks.

Of course the uncertainty region is not exactly modelled as it should really be sort of a
parallelogram bounded by the angle uncertainty. Modelling uncertainty with ellipses,

however is much easier to implement and seems acceptable to the system needs.

4.6.3 Real World Landmark Depth Estimation

The method described above for estimating landmark depth while performing the
TBL movement was implemented on the Nomad XR4000 mobile robot. The compu-
tation cycle for depth estimation is shown in Figure 4.23. First the filter is initialised
using an assumed depth and covariance and the landmark angle observations from
the static landmark selection phase. All landmark depths are set to 2500cm as an ini-

tial estimate with a variance of 2500cm. The variance of the landmark angle is deter-
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Figure 4.23: Computation cycle on vision processing CPU for estimating landmark
depth during the TBL movement,

mined by the resolution of the panoramic sensor which is approximately 0.9444 pixels
per degree. The program then sends a signal to the robot controller to initiate the TBL
movement and the the iterative estimation of the landmarks' positions begin. The TBL

movement extends 50¢m from the reference position and the robot moves at 20¢m /s.

The current odometry is read from the robot controller and a panoramic image is cap-
tured. Landmarks are located in each image frame using the tracking algorithm de-
scribed in Table 4.1, The odometry, the observed radial angles to the landmarks in the
landmark set and their associated measures of noise are used as input to update the

Kalman filter as described in the preceding section.

Ihis estimation process is repeated until the robot controller reports that the TBL
movement is complete. When this occurs, the estimated position of the landmarks

can be read from the state vector of the filter.

The cycle of capturing the panoramic image, tracking the 32 landmarks and estimating
the depth takes on average 135m.s (Pentium II 750). With the panoramic image capture
and unwarping taking 6.5ms, landmark tracking 25 — 75ms, and the depth estimate

7ms, the tracking time varying with the size of the search window.
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The main difficulty in implementing this algorithm in the real world is of course the
noise associated with real world sensing. The noise introduced into the system with
each sensor reading must be estimated in order for the filter to correctly incorporate
the observation information into the system state. For example consider the situa-
tion where during landmark tracking a particular landmark is occluded and tracking
is lost, resulting in incorrect landmark angle information being input into the filter.
By associating an appropriately high level of noise with the incorrect angle measure-
ments, the filter can place less weight on such observations and rely more on earlier,
less noisy observations. The two sources of noise in this system are the sensing of
landmark angle from the panoramic images and the odometry readings from the robot

controller.

Landmark Angle Observation

The observation of the radial angle of landmarks is achieved by matching landmark
templates with the current panoramic image. The landmark tracking algorithm used
in this system was presented in Table 4.1. The location of the landmark along the = axis
of the image can easily be converted in to an angle measurement. The noise assigned
to these measurements is related to the value of the landmark_match as defined in
Table 4.1, which represents the correlation match between the landmark template and
region of the current image where the landmark was located. This value is assigned a

noise level according to the following formula:

B

if wal < 0.5 then wval = 0.5,

¢ = ((1 =val)r + 7 /180)* (4.19)

where ¢ is the noise variance associated with the observation and val the landmark
matching value. The value of val is limited at 0.5 because this is the correlation level
for matching with a random background. The first term of the right hand side of the
equation converts | — val into a proportion of = radians. This is then added to the
error inherent in the resolution of panoramic sensor (approximately 1 degree). The

result is then squared to produce the noise variance. Thus the variance approaches
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(7/2)* when landmark correlation is poor and (7 /180)? when landmark correlation is

perfect.

Although the above method for weighting the importance of angle observations does
take into consideration errors in tracking where tracking performance degrades grace-
fully, it does not fully insure against the problem of data association. The data asso-
ciation problem is that of mapping sensor data with real world objects. In this case
it can be a problem if a region in visual field that is not a representation of the ac-
tual landmark is significantly similar to that of the landmark template. This situation
could cause the system to produce an incorrect landmark angle observation which has

a high matching value and subsequently a low noise estimate,

Data association is a common problem in estimation approaches such as the Kalman
filter, and no direct attempt to address it is made in this system. However, the chances
of the problem in the first place occurring, and secondly affecting the outcome are

reduced for the following reasons:

e Landmarks are visual templates and are initially chosen for their locally unique
dppearance in the static selection process. Visual templates are much less likely
to fall victim to the data association problem than features such as corner regions
as each template can be distinct. The static selection process further limits the
chance that image regions of similar appearance will be located in the immediate

vicinity of the landmark.

» Landmark tracking begins on the known landmark location so initialisation is

not a problem.

e If an instance of the data association problem does occur there is likely to be
some degradation in tracking performance due to the nature of the landmarks
(visual templates). Although this degradation may not be sufficient for the S5YS-
tem to correctly estimate the noise associated with the observation, part of the
dynamic selection process is to choose the landmarks which track best over the
IBL movement. Therefore landmarks which suffer from a data association prob-

lem are less likely to be chosen in the final landmark set than those which do not.

These reasons do not entirely eliminate the data association problem, however it sub-

stantially alleviates its affect on landmark position estimation in this system.
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Odometry Readings

The reading of odometry measurements from the wheel encoders are another source
of noise in the landmark depth estimation process. Odometry error due to wheel
slippage is not likely to be a great factor in this case due to the limited range of the
TBL movement. A greater source of noise is the delay between obtaining a odometry
reading and capturing the image. Although these two events happen in succession
(Figure 4.23) the odometry reading must travel from the computer hosting the robot
controller to the computer hosting the vision processing and so time delays between
readings can occur. This system contains no time stamping of sensor readings but re-
lies on noise estimates to allow for measurements to be combined accurately. Counter
acting this delay is the fact the robot moves slowly (20em/s) and the TBL movement

is comprised of constant velocity movements.

The time taken for an odometry request to be sent and answered is ~ 40ms. Assuming
that the communication overhead on sending and receiving the odometry request are
equal this results, on average, in a ~ 20ms delay between capturing the odometry

information and the call to initiate capture of the panoramic image.

Odometry noise has been set to 0.01 for translation measurements under translation
and 0.10 for translation measurements under rotation. Although this noise level may
seem low given the delay between the odometry reading and image capture the fol-
lowing results seem to validate these levels. It is unknown whether tighter coupling
of these measurements would have an affect of landmark position estimation in light

of the greater amounts of noise being introduced by the landmark angle observations.

4.6.4 Artificial Landmark Results

Since visual landmarks can be composed of visual representations of objects from dif-
ferent depths, it can be difficult to determine a ground truth of selected landmarks,
and therefore difficult to validate the depth estimation procedure. Manually selected

artificial landmarks, on the other hand, can be constructed to provide this validation.

Artificial landmarks were constructed in an otherwise visually sparse corridor envi-
ronment as shown in Figul‘ﬁ 4.24. The entirety of each landmark lay on a single planar

surface (corridor wall) and as such the ground truth of landmark position could be
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Figure 4.25: Artificial Landmarks

measured,

Landmarks lay on the parallel surfaces of the corridor wall, equidistantly spaced at
a height of 140em. The corridor was 140em wide and the robot was positioned ap-
proximately in the center of the corridor and surrounding landmarks. To ensure land-
mark positions were measurable, landmarks were manually identified in the reference

panoramic image. The landmarks chosen for this experiment are shown in Figure 4.25.

Once the landmarks were identified the robot performed the TBL movement. captur-
ing images and performing the iterative landmark position estimation. Because of the

confined space in the corridor the TBL movement was shortened across the r axis.

Obviously the tracking task in this experiment is somewhat simplified with such vi-

sually distinct landmarks, leading to more reliable input to the depth estimation filter.
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This advantage was counteracted by the proximity of the landmarks to the panoramic
sensor, which caused a high level of distortion of landmarks due to the translation of

the panoramic sensor while the robot performed the TBL movement.

¥ 10" Artificial Landmark Depth Estimation
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Figure 4.26: Estimated landmark depth and variance from artificial landmarks

Figure 4.26 shows the results of estimating landmark depth using the artificial land-
marks. The estimated landmark positions are shown by the small circles and the as-
sociated variances by the encircling ellipses. The two parallel lines show the walls of
the corridor while the large circle shows the initial position of the mobile robot. The
path the robot travelled while performing the TBL movement is shown by the cross
shaped lines at the center of the robot. It can be seen that the estimates correspond
closely to the walls of the corridor, all estimates are within 4 10¢m of the actual posi-
tion of the landmarks. A video of this experiment is included in the CD-ROM which

accompanies this thesis.

4.6.5 Real World Results

The landmark depth estimation filter was applied to real world data. The context and
dimensions of the room in which the experiments were conducted is shown if Fig-

ure 4.27. Figure 4.28 shows the results of one such experiment. The initial robot posi-
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Figure 4.27: Location of real world landmark acquisition experiments.

tion from which the landmarks where selected is shown by the red circle in the center
of the room and the landmarks positions and variance by the surrounding squares and
ellipses. The line within the red circle represents zero degrees (z axis in robot coordi-
nate system) from the reference position. The TBL movement extended 500mm from
this reference position, moving along the robot’s = and y axes, Initial landmark depth
estimates were set at 2500mm. Approximately 1000 frames were processed through-
out the TBL movement. The room is approximately 7 x 10 meters in area. Sub-figure
a) shows the initialisation of the filter before the start of the TBL movement: b) shows
the landmark depth estimation after the completion of the TBL movement: and ¢)
shows the landmarks which were then selected to form the reference landmark set
to represent the place based on their landmark tracking performance throughout the
IBL movement. Manual inspection showed the landmarks were estimated to within
roughly £500mm, with the exception of those landmarks in the doorway which were

within 1000mm.

The selected static landmarks that were used in this experiment are those shown in
Figure 4.29. With the nature of visual landmarks being such that they can contain
objects from different depths, the estimation process is much noisier than with a sim-
ulated system, and a measurement of ground truth can be equally hard to obtain. The
results here provide a good estimate of landmark depth as well as a variance mea-
surement in accordance to the noisy nature of the landmarks used. For example the
landmarks shown in the doorway have templates which include pixels from both the

door frame and the corridor behind with the depth estimate lying in between and
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Figure 4.28: Real world landmark depth estimation experiment 1. The place's ref
erence position is shown by the red circle, landmark position estimates and their
variances are displayed as blue boxes and green ellipses. The TBL motion is shown
in blue. The figures show landmark depth estimates a) before TBL move (initialised
to 2500mm), b) after TBL move. Landmarks selected to represent the place because
of their reliable tracking performance are shown in ¢).
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Figure 4.30: Reference landmarks selected after TBL move in real world depth esti
mation experiment 1,

the variance covering both. The reference landmarks which were subsequently se-
lected because of their reliable tracking performance throughout the TBL movement

are shown in Figure 4.30.

Figure 4.31 shows the results of another real world landmark depth estimation exper-
iment, this time with the reference place being closer to the walls of the room. Again
sub-figure a) shows the initialisation of the filter before the start of the TBL, movement:
b) shows the landmark depth estimation after the completion of the TBL movement:
and ¢) shows the landmarks which were then selected to form the reference landmark
set to represent the place based on their landmark tracking performance throughout
the TBL movement. The results show the system can estimate landmark depths at a
range of depths. The static landmarks used in this experiment are shown in Figure 4.32
and the chosen reference landmarks in Figure 4.33.

Figure 4.34 shows the results of real world landmark depth estimation in the presence
of occlusion. In this experiment the system selected and estimated landmark positions

from the same reference position used in the experiment displayed in Figure 4.32. The
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Figure 4.31: Real world landmark depth estimation experiment 2. The place's ref
erence position is shown by the red circle, landmark position estimates and their
variances are displayed as blue boxes and green ellipses. The TBL motion is shown
in blue. The figures show landmark depth estimates a) before TBL move (initialised
to 2500mm), b) after TBL. move. Landmarks selected to represent the place because
of their reliable tracking performance are shown in ¢).
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igure 4.33: Reference landmarks selected after the TBL movement in real world
depth estimation experiment 2,

reference position and the estimated landmark positions are shown in part a), while
the static landmarks used in this experiment are shown in part b). During the TBL
movement a person walked at normal pace back and forth along the path displayed
by the thick black line. The path of the person caused the landmarks in the bottom
right of the figure to be repeatedly occluded from the panoramic vision sensor. This
in turn caused a repeated loss in tracking for the affected landmarks and the intro-
duction of high levels of noise into the Kalman filter. The results show that although
the landmarks were not estimated as accurately as before, the system still provides
a consistent estimate and through manual confirmation it was observed that the true

position of landmarks still lay within the ellipse denoting the estimate uncertainty.

This result in addition to the results presented above involving estimation of automat-
ically selected landmarks demonstrate the systems ability to provide a usable estimate
of landmark depth. This estimate can subsequently be used as additional information

to the problem of mobile robot localisation which will be addressed in Chapter 8.
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Figure 4.34; Estimated landmark depth and variance in the presence of occlusion.
Part a) shows the position of estimated landmarks and the path of the dynamic object
responsible for occlusion in the visual field during the TBL. movement. Part b) shows
the static landmark set used in this experiment.

4.7 Summary

This chapter has a presented a low-level representation for spatial knowledge based
on visual landmarks. Implementation details of automatic landmark selection and
recognition were reported. This chapter has not addressed the localisation system of
the proposed system, rather solely concentrating on the acquisition of visual landmark
sets as a place representation. The use of this level of representation for localisation is

left to Chapter 8,

This chapter presented the following main ideas were developed:

e Automatic Visual Landmark Selection: Visual landmarks are distinct and can pro-
vide a rich source of information to the localisation task. The task of selecting

landmarks to form a representation about a reference position must be auto-
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and a probabilistic approach to combining different techniques is introduced. Local
space detection results from image sequences are then presented, and a comparison
to ground truth is made to evaluate carpet matching techniques. Section 5.2 presents
a representation for local space profiles which is compact and allows for fast rotation
invariant matching. Section 5.3 discusses categorising local space profiles to constrain
the localisation search. Finally, Section 5.4 provides a summary and discussion of the

implementation issues involved in forming a local space representation,

5.1 Local Space Detection

In order to use knowledge of local open space to aid in localisation, the robot must
have a sensing method. The panoramic visual sensor seems to be ideal for this task
providing rich visual information from the surrounding environment. However, it
is monocular vision and any attempt to recover a sense of local space must detect
the depth of visible objects. As shown in Chapter 4 the extraction of the depth of
points in a monocular panoramic scene can be achieved, however it requires time
and computation therefore it is not applicable to evaluation of the entire visual scene.
This extraction of depth information is not a trivial problem and could command a
research project in its own right, The problem is the same as that of detecting obstacles
in obstacle avoidance for local navigation which needs to be solved for any mobile
robot system to be successful. Acknowledging this fact, this research seeks to find a
passable solution which highlights the advantages of using such a sense of local space
in localisation, without providing a general solution to this particular problem. Also,
it must be noted that the proposed solution, which uses carpet detection techniques,
is limited to environments in which the ground plane has a constant and consistent

colour.

Determining Local Space with Monocular Visual Sensors

The detection of open space is akin to that of obstacle detection.

Horswill (1993) describe a mobile robot, Polly, which used a monocular camera to per-
form online obstacle detection and avoidance. To accomplish this the system detects

the ground plane by forming a Radial Depth Map (RDM) of the area visible in the
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Figure 5.1: An example of carpet in panoramic images,

plexity of the environment to rigid structures. In this system, the desire to detect free
space both in structured corridors and in cluttered rooms led to the choice of ground

plane detection through carpet matching to achieve measurement of local space.

3.1.1 Carpet Matching

Carpet matching is an imprecise and location specific method of detecting the extent of
local space surrounding the robot. When using a panoramic sensor in the environment
shown in Figure 5.1 it becomes even more so. The low resolution in the panoramic im-
age means that any distinguishing patterns in the carpets spatial frequency are lost.
Further more the blurring of colours results in the carpet being virtually indistinguish-
able from the walls using standard pixel or region matching techniques. In addition,
variations in lighting cause dramatic changes in carpet appearance and again can lead

to confusion of carpet with the walls and other surfaces.

Average Pixel Colour Matching

One method for detecting regions of carpet in panoramic images is to calculate an av-
erage pixel colour for carpet. By finding the absolute difference between this average
pixel and the colour of each pixel in a panoramic image, a measure of how similar

each pixel is to the colour of carpet can be made.

Figure 5.2 shows the results of performing this absolute difference calculation on ex-
ample panoramic images. Two examples are presented: a) an image captured in a
large room and b) an image captured at a T-intersection of an office corridor. The

average carpet pixel for each image was taken from the region contained within the
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Image 1 Template

Image 1 SAD Intensity (Using Image 1 Template)
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Figure 5.2: Carpet matching using average pixel colour from identified carpet re
gion. Two examples of carpet matching in panoramic images using this technique
are given: a) image captured from a large room and matching results; b) image cap
tured ata T-intersection in a corridor and matching results. In both cases the average
carpet pixel was calculated from a template (red box) taken from the captured Image,
High intensity pixels in the matching results represents a high correlation with the
average carpet pixel.
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red boxes on the normal panoramic images. The intensity plots under each example
image show the average pixel differences. A low pixel difference results in a brighter
intensity while high pixel differences are shown with darker intensities. The results
show that the matching with carpet regions in both images, produce widely varying
results. The intensity levels tends to vary with illumination of the carpet and non-
carpet regions. The difficulty in the carpet detection is to correctly identify carpet
regions irrespective of illumination changes while limiting the false detection of non-

carpet regions.

These examples stress the obvious point that an average pixel carpet measure will only
be representative of carpet under a particular illumination level. Figure 5.3 shows the
difficulties of trying to match carpet regions using an average carpet pixel that was
calculated from example carpet pixels from different images. The carpet matching
intensity plots are from the same panoramic image examples contained in Figure 5.2
but in each case the absolute difference calculation was performed with the average
carpet pixel from the other image. The intensity plot in Figure 5.3 a) was produced
by finding the absolute difference between the panoramic image in Figure 5.2 a) and
the average pixel derived from the red boxed region in Figure 5.2 b). These results
further highlight the inappropriateness of using illumination variant approaches to

carpet matching,

Normalised ¢’ Colour Space Matching

Stepan and Kurlich (2001) reported a successful carpet matching system which used
a colour space model of carpet to detect carpet regions. The objective was to build a

model of carpet which is independent off the level of illumination in the image.

A colour space model of the colour of carpet can be constructed using carpet colour
samples from panoramic images. 1¢ colour space is used as the image obtained from
the video capture device is in /2(; B3 format. The process of normalising an R/ B value
makes one of the values redundant, thus leaving only R colour. Converting an R/ B

pixel to a normalised K¢/ one is done as follows:
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Image 1 Template

Image 1 SAD Intensity (Using Image 2 Template)
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?'if__-‘,LII'l‘ 2.3: Larpet matching using average pixel colour from identified carpet region
in another image. Part a) shows an intensity plot produced by performing an abso
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lute difference calculation on image 2 using the average carpet pixel colour from the
template in image 1. Part b) shows the results of matching image 2 with the average
pixel colour from the template in image 1.
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Figure 5.4: Normalised R{ colour space of carpet regions from panoramic images.
The red dimension lies along the horizontal axis, while the green lies along the ver
tical.
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The colour model is made by sampling pixels of carpet regions from panoramic im-
ages and using then to construct an approximation of the probability distribution for
carpet colour over the normalised KRG colour space. In implementation, this means
populating a 255 x 255 (representing /(¢ values) by incrementing the appropriate cell
for each example carpet pixel. The resultant matrix is then convolved with a Uniform

3 x 3 pixel kernel' and normalised to hold an integer value between 0 and 255.

I 1 1
K=]1 1 1 (5.2)
[ 1 1

The value in a particular #¢ cell then provides a measure of the likelihood that the
colour associated with that cell is an instance of carpet colour. Figure 5.4 shows the

normalised RG colour model of carpet constructed from sections of carpet from sam-

'Gaussian kernels and kernels of varying sizes were tried but a Uniform kernel of size 3 = 3 proved
superior for carpet matching given the small pixel sample size used to construct the colour model
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ple panoramic images. The sections of carpet were identified by hand over a small

number of training images captured from different locations in the environment.

Using the colour space model of carpet, the probability of each pixel in a panoramic
image being the colour defined by the carpet colour model can be calculated in two

easy .t-.;t(-%ps,'

1. Convert pixel to normalised R¢ form

2. Look up the value associated with that (7 pixel in the carpet colour model

The results of applying this method to example panoramic images are shown as in-
tensity plots in Figure 5.5. A high pixel intensity level reflects that the corresponding
pixel in the panoramic image is likely to be the colour of carpet. Again there are two
examples and the original panoramic images are given above the intensity plots. At
first glance this does not seem to be much of an improvement on the results from
matching with an averaged pixel value, with many regions that are obviously not car-
pet being strongly identified as carpet. This is true, but it is also the case that all carpet

regions have been identified correctly irrespective of the level of illumination.

Carpet Boundary Detection

The carpet detection results gained from matching pixels with a ¢ colour model of
carpet show that it is not sufficient to simply use carpet colour to form a reliable esti-
mation of local free space. As mentioned earlier, Gaskett et al. (2000) use an additional
heuristic rule to enhance carpet matching performance. In that case, the detection of a
non-carpet region disqualified regions above it from being identified as carpet regions.
A similar approach is taken in this research. It is assumed that a change in colour gra-
dient defines the transition between carpet and non-carpet regions. The detection of
such a transition can then be used to detect the boundary between two different sur-
faces in the image. The first such transition detected, working on the image in vertical
columns from the bottom up, can be assumed to be the transition between carpet and

non-carpet regions,

This does not help us when walls that look like carpet start from the very bottom of

the image and extend upwards through the entire vertical visual field. Another rule
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Image 1

Image 2 Colour Space Intensity
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Figure 5.5: Carpet matching using R¢ colour space model of carpet colour. The top
images show the panoramic images and the bottom images show the intensity plots
of detected carpet reglons.
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Image 1 Boundary Gradient

Boundary Intensity Plot
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a) Image 2 Boundary Gradient

Boundary Intensity Plot

Figure 5.6: Carpet detection using a gradient boundary. The top images in part a)
and part b) show the detected boundary regions in each pixel column as white dots,
I'he red lines show the defined horizon in the panoramic images. The bottom images
show the carpet detection intensity plots produced based on gradient detection,



5.1 Local Space Detection 149

Table 5.1: Detecting the gradient boundary in a panoramic image

== dLeration
for each pixel column ¢ in Image /[
gradient_found = FALSE
ro= 0
-- iterate rows from bottom upwards
while r < image.horizon and gradient.found = FALSE do
mag = abs(I(r,e) — I(r—1,¢))
if mag > gradientthreshold then
gradient_found = TRUE

gradient row = r
gradient_mag = mag
end
end
if gradient_found = TRUFE then
gradient_row(e) = gradientrow
gradient_mag(c) = gradient_mag
end
end

is introduced that states there must be such a transition before the height in the image
which corresponds to the horizon in the visual field. It should be noted that no regions
of carpet lying on a flat plane along which the robot is translating should ever appear
above the horizon. In this way sections of wall which would otherwise be detected as

carpet regions due to their similarity with carpet can be avoided.

Figure 5.6 shows two example panoramic images. The top images in both sub-figures
a) and b) are overdrawn with detected gradients in white and with the image horizon
in red. It can be seen that most boundaries between carpet and non-carpet regions
have been correctly identified. There are problems with extremes of illumination as

seen in the dark corridor of the second panoramic image.

In this case gradient detection was achieved by performing an absolute difference cal-
culation on vertically adjacent pixels in every column in the image. Starting from the
bottom and proceeding upwards, the first such gradient detected above a threshold
value was defined to be the carpet boundary. If no gradient above the threshold is
found before reaching the image horizon then that pixel column is assumed to have
no carpet regions. Any pixels above horizon line can be said with absolute certainty

to not be carpet pixels. Gradient boundary detection is shown in algorithmic form in
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3

Figure 5.7: A sequence of five panoramic images from a stationary camera
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Panoramic Image

Figure 5.8: Average pixel carpet matching using occupancy grids and Bayesian prob-
ability theory. The initial probability grid from frame 1 and the accumulated proba-
bility after frame 5.

are shown in Figures 5.8, Figure 5.9 and Figure 5.10 respectively. It can be seen that al-
though there is no great improvement of carpet region detection over the sequence for
any of the methods, most noise associated with the use of a single image is eliminated,

especially in the gradient detection approach.

Using the Bayes update formula, the occupancy grid can not only be updated over
time, but also within the one time step with probabilities from multiple sensor modal-
ities. Therefore the probability of a given cell in the occupancy grid can be updated by

multiple carpet detection methods.

Figures 5.11 and 5.12 shows the occupancy grids formed by combining the results of

colour matching and the gradient search. Again the probability that a cell is occupied
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Panoramic Image

Figure 5.9: Colour space carpet matching using occupancy grids and Bayesian prob
ability theory. The initial probability grid from frame 1 and the accumulated proba
bility after frame 5.

is shown by the intensity levels in the figure, Dark pixels represent regions which
are occupied while lighter regions represent free space. Two single image examples
are shown, The top image in each figure is the original panoramic image. Next are
the results of applying the colour space model, the gradient detection, and finally
the combination of both methods through the Bayes update formula. It can be seen
that even with the combination of the two sources of information that some mistakes
are still made. In particular the example in Figure 5.12 shows that the carpet region
located in the darkest corridor is not detected well, This is due to the lack of colour

and gradient information available from the excessively dark pixels.

The combined information can then applied over the sequence of images shown in
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Panoramic Image

Occupancy Grids

Figure 5.10: Gradient boundary carpet detection using occupancy grids and
Bayesian probability theory. The initial probability grid from frame 1 and the ac
cumulated probability after frame 5.

Figure 5.8. The results of combining two methods of carpet detection over the image
sequence are shown in Figure 5.13, which combines average carpet pixel and gradient
detection and Figure 5.14, which combines carpet colour space model and gradient
detection. Figure 5.13 shows higher probabilities than Figure 5.14 but also has more
false positive carpet carpet identifications. Combining the colour space and gradient
detection methods over a sequence of images provides the best carpet region detection
results, The various methods of carpet detection described previously are empirically

evaluated in the following section.
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Figure 5.11: Combining gradient boundary detection and carpet colour space model
mat h1n;1 using Bayesian probability theory.
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Figure 5.12: Combining gradient boundary detection and carpet colour space model
matching using Bayesian probability theory.

57
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FPanoramic Im;-ig_:;l‘

Figure 5.13: Combining average pixel matching and gradient boundary carpet de
tection techniques over time. Occupancy grids from frames 1 and 5 in the image
sequence are shown.

52.1.3 Evaluating Local Space Detection

[t is difficult to compare the results of the various carpet matching methods by visual
inspection alone. An objective measure is needed to determine which method per-
torms the best. The results of each carpet matching method can be compared with the
ground truth, The ground truth, while difficult to obtain exactly, can be approximated
by visual inspection and manually identifying carpet regions in panoramic images. In
order to enable comparison with the output of the carpet matching methods described
above, the ground truth can be represented as an occupancy grid with carpet/non-
carpet regions known with absolute certainty. Figure 5.15 gives an example of a a)

panoramic image and b) the associated manually identified occupancy grid.
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Figure 5.14: Combining colour space matching and gradient boundary carpet detec
tion techniques throughout an image sequence.Occupancy grids from frames 1 and
5 in the image sequence are shown.

A comparison of a carpet matching occupancy grid and the ground truth can then
be made by subtracting one grid from the other, with the absolute difference being
a measure of the similarity between the two. This process highlights the differences
between the two grids and identifies regions of false positives as well as false nega-
tives. Figure 5.16 shows the results of performing this subtraction on occupancy grids
produced by applying the carpet matching methods of a) colour space matching, b)

gradient detection and ¢) both colour space and gradient detection.

Summation of the absolute differences from all cells in the grid gives a quantitative
measure of how closely a result matched the ground truth. More specifically the dit

ference ¢ between the ground truth grid ¢“7 and the example result grid ("' is given
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b)

Figure 5.15: Ground truth of carpet matching: a) the panoramic image and b) the
manually identified occupancy grid denoting the ground truth of known carpet re
gions in the image. White pixels represent absolute certainty of carpet regions.

" Method Total: ¢ | Average: ¢/N
| After1 image [
- Ave. pixel 'I' - 5498865 127
Colour Model 3025180 70
Gradient 1618066 37
Grad. & Ave. pixel 1454562 33
Grad, & Colour model 1595560 36
After 5 images
| Ave. pixel - 5000955 115
Colour Model 2617984 60
Gradient 1473617 34
Grad. & Ave. pixel 1406868 32
Grad. & Colour model 1323679 30 |

[able 5.2: Carpet matching performance: total and average pixel value of image sub
traction between known and estimated results for different carpet detection meth
ods.
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Figure 5.16: Image subtraction of carpet matching results with ground truth: occu
pancy grids showing subtraction of ground truth with the carpet matc hing results of
a) colour space, b) gradient detection, and ¢) colour space and gradient detection

=1
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where N is the number of cells in the grid. Table 5.2 presents the values of ¢ produced
by applying Equation 5.5 to the occupancy grid results of the various methods of car-
pet matching discussed previously. From the data presented in the table, it can be
seen that the combination of a colour matching and the gradient detection produces
the best results, with the gradient detection method seemingly making the greater

contribution. It is surprising that colour matching using the average pixel method
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and that of the colour space method produce such similar results. Remembering that
the average pixel method is limited to conditions of constant illumination it is clear

that colour space matching is superior.

Combining a colour based carpet matching approach with a heuristic rule limiting the
extent of possible carpet regions in the local space produce the best estimates of free
local space. In this case the preferred methods are colour space matching and gradient
detection. It should still be clear that it is easy to imagine situations where carpet
detection methods would fail, and as long as the system consistently mis-classifies the
region in question there should not be be any significant affect on the current systems

applicability to the localisation problem.

Local Space Detection under Occlusion

The above results have, for the most part, shown carpet detection in a static environ-
ment. Carpet detection estimates from sequences of images were combined over time
to combat noise in the panoramic sensor, however the environment was essentially
static during these sequences. Mobile robots on the other hand, should operate in
the dynamic environment of the real world. Changes in the sensed environment can
come from two sources (excluding sensor noise), that of objects that are visible mov-
ing within the environment, and that of motion of the mobile robot itself, causing the

viewpoint of the sensor to change in respect to the environment.

When objects move about in the environment, the instantaneous view of local space
changes to reflect the movement. For example when a person walks past the panoramic
sensor the carpet is occluded from view for a brief period of time. A local space es-
timate taken during that time will result in non-carpet regions being identified in the
image displaying the person. This detection of the moving object in the scene is nec-
essary for obstacle avoidance but for robot localisation it produces a problem. The
change in the perception of free local space due to dynamic objects occluding carpet
regions could cause the system to mis-localise when revisiting that region of the envi-
ronment. Therefore for the task of localisation it is preferable to maintain an estimate

of local space which is insensitive to the presence of moving objects.

The promulgation of local space estimates through time using Bayesian probability
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Figure 5.17: Occlusion in local space detection.
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theory provides this insensitivity. Temporary observations of non-carpet regions due
to moving objects need to overcome the previous observations of carpet regions be-
fore they begin to affect the occupancy grid. In this way a stable view of the local
environment can be maintained in the presence of dynamic objects. Figure 5.17 shows
the results of an experiment where a person walks past the robot. The local space
occupancy grid is not dramatically affected. Three panoramic images and the asso-
ciated occupancy grids are shown from the beginning middle and end of a sequence
in which a person walks acrodd the field of view. The locations of the person in the
panoramic images are highlighted in red. The middle image and grid show that the
occupancy grid can be insensitive to the presence of moving objects although the bot-
tom image and grid displays a noticeable change due to the moving object. This is
because the gradient between the carpet and the object was strong in this region, caus-
ing a strong input into the occupancy grid. It is not clear if the local space occupancy
grid will be insensitive to all object motion through the visual scene. Typically mov-
ing objects are quite small in relation to the size of the visual field and as such do not
deform the view of local space dramatically. This sort of anomaly could be countered
by introducing a saturation into the occupancy grid which additionally reinforces de-
tected carpet regions over time, providing more protection from moving obstacles. Of
course this protection does not help in the case when a section of the environment
permanently changes causing prolonged exposure to contradicting sensor data, such
as when a desk is moved. Permanent deformation in the environment would lead to
inconsistent local space views over time. For robot localisation, this would require the
acquisition of a new view of local space to replace the old view stored in the internal

map representation.

Local Space Detection during Motion

The second cause of change to the local space surrounding a mobile robot is due to the
robot’s own movement. Detecting changes in local space due to ego-mation is desir-
able since it reflects movement from one area of the environment to another and pro-
vides valuable information to the task of localisation. Changes due to ego-motion can
be detected using our system as the steady, constant motion typical of maobile robots

produces a similarly steady and consistent change in the perception of local space. The
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Figure 5.18: Path of robot during local space detection experiment

continual reinforcement of changing areas in the visual field produce lasting change

in the occupancy grids.

Figure 5.18 displays the path of the mobile robot over a short movement through a
large room, starting from the red circle in the center of the room and finishing up at
the location denoted by the blue circle. The total distance travelled in this experiment
was approximately 1 meters. During this movement panoramic images were captured

and the extent of local space was estimated.

Figure 5.19 shows the panoramic images captured at the start (top) and finish (bottom)
of the robot path as well as the associated local space occupancy grids. The direction of
motion is indicated by the red line. It can be seen that the robot movement causes the
carpet region in the left side of the panoramic view to contract as the robot approaches
the wall, This is reflected in the local space results where a similar contraction is seen
in the detected carpet regions of the occupancy grid. The difference between the two
occupancy grids can be calculated by image subtraction. Figure 5.20 shows the results
of subtracting the occupancy grid from the start of the move from the occupancy grid
at the end of the move. The result is noisy but definite regions of difference are de-
fined . Our approach to carpet detection therefore can produce occupancy grids which

reflect the change in carpet regions due to robot ego-motion.
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Figure 5.19: Occupancy grids of local space at the beginning and end of short move
ment. The red line indicated the direction of movement.

2.2 Local Space Representation

[he results in the previous sections demonstrate that the system is capable of pro-
ducing a reasonable estimate of the extent of local free space surrounding the mobile

robot. The estimate can handle fluctuations in the level of illumination, it can be pro-
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Figure 5.20: Subtraction of start and end move occupancy grids. The high intensity
pixels show regions of difference.

mulgated through time, and can cope with dynamic objects moving through the visual
scene and also with visual changes due to ego-motion. After producing such an esti-
mate of local space, the question becomes how can this knowledge be used to aid the

mapping and localisation tasks?

The desire to extract an estimate of the extent of local space surrounding a mobile robot
comes from the need to form representations of places in the environment which can
be used to constrain the global localisation search. To achieve this goal the represen-
tation of local space must first and foremost be simple enough to enable fast matching
between instances of local space estimates. Of secondary importance is the degree to
which individual instances are distinct from each other. This contrasts with the low
level landmark representation where distinctness of landmarks is the most important
concern and speed of matching was sacrificed. Indeed, when used in conjunction the
two levels of representation can be used to quickly constrain the global localisation
search to a subset of places within which the richer representation can be used to lo-

calise.

5.2.1 Histograms of Local Space

A simple way to represent the extent of local space surrounding a mobile robot is to
use a histogram. The horizontal axis can represent discrete steps in the radial angle
from the robot while the vertical axis can represent the extent of free space along the
associated angle. By using a histogram, a one dimensional vector can be used to repre-

sent a particular local space profile, which dramatically simplifies the matching task.
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Table 5.3: Building a Local Space Histogram from an Occupancy Griel
24 | : | X

initialisation
r.step = 20
ystep = 1
iteration
for each column z x z.step in Grid &
free.space = TRUE
y = 0
iterate rows from bottom upwards
while free_space is TRUFE do
p = [ind_ave_pizeliin_cell(I,x,y, x_step, y_step)
if p < threshold then
free space = FALSE
end
vy = Yy + y-step
end
histogram[z] = y — y_step
end

Figure 5.21: Occupancy grid divided into a 16 cell histogram,

Anoccupancy grid can be converted into a histogram by detecting continuous columns
of free space. Table 5.3 gives the algorithm which fits a histogram to a particular in

stance of a local space occupancy grid. The horizontal (z) axis of the occupancy grid is
divided into a number of discrete columns of size size,. The intensity of pixel regions
within each column z is then checked starting from the bottom of the grid (y = 0) and
proceeding upwards with y increasing by steps of size,. If the average intensity of
these regions within a particular column falls below a threshold then the magnitude
of the local space histogram at cell z is set to the value of y. The resulting histogram
then represents a particular profile of local space. In our system the histogram has 16
cells, each of which condenses the pixel intensity from 20 pixel columns in the occu-

pancy grid. The division of the occupancy grid into a 16 cell histogram is shown in
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Figure 5.21.

Figure 5.22 shows two examples of local space histograms calculated from occupancy
grids. It can be seen that the histogram makes a good fit with the occupancy grid.
Although part b) shows that if the occupancy grid is wrong, or there are regions of
high uncertainty, the histogram will also be inaccurate. As long as the local space is
mis-identified consistently, this will have no affect on the using local space information
in localisation tasks. When used to represent a particular place in the environment, the
histograms formed by the method described, are said to capture the places local space

profile.

The stages in local space detection are shown in Figure 5.23. The final form of repre-
sentation for the local space profile is the one dimensional vector of size 16 containing

the local space histogram.

5.2.2 Local Space Matching

In order to use the information contained in local space histograms for mobile robot
localisation it is necessary to compare two instances of histograms and produce a mea-
sure of their similarity, This is the equivalent of the matching task between landmark
templates and panoramic images. However in this case the matching is between two

one dimensional vectors.

A Sum of Absolute Differences (SAD) can be used to produce a measure of similarity
between two vectors. It must be remembered, however, that the cells of the local space
histogram represent the radial angles of the robot. Therefore the rotation of the robot
will affect the profile of the histogram, meaning two views of local space captured
from the same position in the environment but from a different orientation would

result in a shift in the local space histogram.

In using knowledge of local space to constrain a localisation search it is beneficial if the
matching process is invariant to orientation. Two local space views from environments
with similar free space could then be matched irrespective of the orientation from

which the two views were captured.

Figure 5.24 shows how rotation invariance in the matching process can be achieved. A

SAD calculation is performed on every possible orientation of one of the histograms
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Local Space Occupation Grid and Histogram

Figure 5.22: Local space histograms
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Figure 5.23: Stages in extraction of a local space profile.
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Figure 5.24: Rotation invariant matching of local space histograms

with respect to the other. Given two histograms H', H?, this is achieved by construct-
ing a vector of size 2N — 1 by repeating //* such that H? = Hf n,¥i < N. This

repeated histogram H?* can then used to produce vectors of size N of the form:

ﬁdU”.N——”,m{l“.N}”ﬁMugUV—2,_EW—3}JW_1“V—l.”WV—Q]
(5.6)

which represent all possible orientations of H?, where T; {i ...j} denotes the vector of

size N from [? to H?.

A measure ¢ which quantifies the correlation between H' and [* can then be com-
puted:
minlig (SAD(H,%i{i...i+ N}))

e r
MAX * N (5:7)

where M AX is the maximum value possible for cells in the histogram, denoting that
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Table 5.4: Local space histogram matching results

Match Local Space Profiles | Result
1 &2 0.91
1 &3 0.78
2 & 3c) 0.76

carpet has been detected up to the image horizon,

Using this matching method different instances of local space histograms can be com-
pared. Figures 5.25 and 5.26 shows three panoramic images together with their ex-
tracted occupancy grids and local space histograms. The panoramic images and his-
tograms shown in a) and b) are views captured from roughly the same position in
space but view b) was captured after rotating the robot 180 degrees. View c¢) is from a

position three meters away.

Each of the local space histograms presented in Figure 5.25 were matched with each
other used the matching technique described above. The results from this matching
are shown in Table 5.4. From this table it can be seen that the local space histograms
from views a) and b) correlate very well, whereas matching views a) or b) with view )
does not produce such a high correlation measure. This result shows the ability of the
local space histogram matching process to successfully discriminate between like and
unlike views as well as demonstrating the rotation invariant property of the matching

pProcess,

5.3 Local Space Detection and Localisation

In our research we can construct profiles of local space and can compare these profiles
using the matching method previously described. In order to use these ideas to sim-
plify the global localisation task it is necessary to categorise the profiles. If the local
space profiles associated with places in a topological map and a current view of local
space can be categorised in groups, then the computation resources needed for brute
force landmark set matching can be targeted to appropriate places. In this local space

profiles can be used to constrain the global localisation search space.

lo illustrate this concept Figure 5.27 shows a mobile robot path through an office envi-
ptrig g
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Image 1

Local Space Profile 1

Figure 5.25: Example panoramic images and local space histograms. Views a) and b
were captured at the same position in the environment but are oriented 180 degrees
from one another.
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Image 3

Figure 5.26: Example panoramic images and local space histograms. Image c) is from
a location three meters away from those in Figure 5.25

I Ui '_:‘ )

Al

R

S e

Place |

Figure 5.27: Map showing the nine places in the environment where local space
profiles were obtained.
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ronment. The path is displayed as a green line and the position of the robot is shown
at some points along the path by a red circle. The robot started in the large room at
the bottom of the map and travelled up the corridor at 20m/s. Throughout this move-
ment panoramic images were captured and every tenth frame was logged, resulting in
an image sequence of 300 images. The local space profiles associated with the image
sequence were extracted using the techniques we have developed. A video of this im-
age sequence and the extracted local space profiles is included on the CD-ROM which

accompanies this thesis.

Six places were manually chosen at 50 image intervals along the path, with the local
space profile detected at each place forming a topological map of the robot's path. The
positions of these places are displayed as red circles in the map. The panoramic images
and local space profiles of each of the six places are shown in Figures 5.28 and 5.29. It
can be seen from the map that a number of the identified places would contain views
of local space which are quite similar, especially in the corridor section of the robot's
path. If a robot retracing the route perceived a current local space profile which was
similar to a corridor, the subsequent localisation search could be limited to regions in
the map which shared a similar local space profile. In fact the structured environment
of the typical office building, there is a limited set of local space profiles which might

be encountered.

5.3.1 Local Space Primitives

A set of commonly seen configurations of local space can be defined as the local space
primitives for a particular environment. These primitives can then help to classify
sections of the environment and improve the efficiency of the global localisation task.
Specifying the set of local space profiles that should constitute the set of primitives
requires consideration. In general the chosen primitives should divide the set of places
which form the topological map in such a way as to minimise the average localisation
search time. This means that there should be an equal distribution of the number of
places associated to each local space primitive, and that the number of local space
primitives is sufficiently low so that the computation saved by reducing the search
low-level search space does not exceed the extra cost associated with matching the

current local space profile with the primitive set. In this research a set of primitives
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Place 2

Place 3

Figure 5.28: Local space profiles of places 1, 2 and 3



5.3 Local Space Detection and Localisation g o 177

Place 5

Place 6

Figure 5.29: Local space profiles of places 4, 5 and 6



178 Mid Level Representation: Local Space Profiles

r
i,

Figure 5.30: Regions of different local space: 1) corridor, 2) T-intersection, 3) turn, 4),
dead-end, 5) cross roads, 6) doorway, 7) open space, 8) corner, and 9) wall,

was chosen by hand as the environment of predominantly structured corridors and
rooms provided strict delimitation between possible local space profiles. The different
types of local space in this environment is illustrated in Figure 5.30. In general it would
be beneficial for the system to learn and maintain a set of local space primitives based

on the criteria mentioned above and its perception of the explored environment.

The set of local space primitives used in this system corresponds to the areas shown
in Figure 5.30 and are shown in Figure 5.31. It includes local space profiles common
to every office environment. While human distinctions between such areas as inside a
small office and at a dead and of a corridor (areas labelled number 4 in figures) might
be lost by this level of discretisation and the choice of representation (eg only open

space), it does provide a useful division of the search space.

5.3.2 Matching Primitives

Local space primitives can then be used to categorise views of local space that are per-
ceived in the environment. A set of histograms representing the primitives identified
above can be matched against the views of local space extracted from image sequences

in an attempt to categorise the environment through which the robot moves. This
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Figure 5.31: An example set of local space primitives from an office environment

(Figure 5.30).
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Local space profiles along path matched with primitives
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Figure 5.32: Local space profiles extracted from images along a path matched with
local space primitives.

matching can be performed using the technique introduced earlier for local space pro-
files except that the profile to be matched needs to be normalised. This process resizes
the magnitude of cells in the histogram to be matched to be consistent with those in
the primitives,

Figure 5.32 shows the results of matching the local space profiles extracted from the
robot path shown in Figure 5.27 and a subset of primitives identified above. The graph
shows the correlation results for matching the 300 images in the sequence with prim-
itives representing the identified categories in the environment. The vertical black
dotted lines represent where the chosen places along the path occur in the image se-

quence.

From this figure it can be seen that while the sections of the path that correspond to

corridor regions match highly with the corridor primitive, the results from the section
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of path in the large room are not so clear. Both the open space primitive and the
doorway primitive are matched well here and no definitive result can be identified.
This is due to the cluttered nature of the room and the noise in the local space detection
process. It is difficult for a discretised approach such as using local space primitives to
recover from such problems. It can also be problematic when a place is located on the
boundary between two primitives. For example when does a T-intersection become a

corridor?

A reduction in the number of primitives helps to overcome these problems. How-
ever this reduces the benefits that such a representation brings to the localisation task.
Changing the nature of the representation itself could also improve primitive match-
ing results. For example local space could be represented simply by one value through
summing the magnitude of cells in the local space histogram. This value can be discre-
tised to categorise the views of local space. This approach , while allowing for noise in
local space measurements, would suffer from the discretisation of the categories not

being reflected in the system perception of local space.

A clustering approach, where the system forms categories of local space itself would
be the best solution to these problems, by attempting to form categories of local space
profiles based on real differences in the perception of local space from past experi-
ences. This solution though is beyond the scope of this thesis and is only mentioned

as a consideration for further work.

5.3.3 Matching Places

One method of categorisation which truly represents the sensor data and is easy to
implement is to simply make each view of local space its own category. That is each
place in the topological map has its own profile of local space and no explicit attempt
to categorise them further is pursued. This has the benefit of each place retaining
the distinctive features of its own profile and subsequently the discretisation problem
does not occur. Of course this approach does mean that in the matching process, the
entire set of local space profiles which represent places in the topological map must be
compared with the current view of local space. Places which correlate well with the
current view can then be used to perform localisation using the low-level representa-

tion. This approach is similar to that of Matsumoto et al. (1997) who matched entire
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Local space profiles along path matched with place profiles
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Figure 5,33 Local space profiles extracted from images along a path matched with
the profiles of the places identified in Figure 5.27.

panoramic images to perform localisation in a sequence of captured panoramic views.

Figure 5.33 shows the results of matching the local space profiles of places in the topo-
logical map with those obtained from the image sequence captured during the robot
path. The correlation results for the six places in the path are displayed. Again the dot-

ted black vertical lines show where the places are located in the 300 image sequence.

As with the matching results for primitives, the first thing that becomes apparent from
the plot is that the local space profiles from the corridor section of the environment are
distinct from the rest and are consistently similar with each other. Unlike the primi-
tive results, the section of the path where the robot was inside the room shows distinct
peaks and it could be imagined that some sort of discrimination between local space
profiles could be made. Also, the plot of results for each place peaks at the image in

the sequence from where the profile for that place was extracted. This could mean
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that the local space profiles could limit the localisation search down to one place in
the topological map. This optimism should be tempered by noting the fall-off of cor-
relation results surrounding the peaks. This shows that the the defining features of
the local space profiles which produce the peaks disappear quickly as the robot leaves
the reference position from where the place was captured. This phenomenon is par-
ticularly evident in the plot of the first place in the path which peaks at the first image.
The dramatic decrease in correlation performance after the peak in this case can be
attributed to the image being the first captured, and therefore having an occupancy
grid which is not as certain and more susceptible to change than those from images

further down the path.

5.3.4 Computation Constraints

The advantages of abandoning attempts at categorisation must be balanced against
the computation costs of performing one matching calculation for every place in the
topological map. The purpose of having multiple levels of spatial representation was
so that computationally cheap representations could provide approximate localisa-
tion estimates for more expensive levels. Thus the computation costs of forming a
local space representation of the environment should not outweigh the computation

savings made by the constraints it imposes on the low-level localisation search.

Figure 5.34 shows the computation time involved in matching primitives compared
to that of matching places. The dotted red line represents the time in milli-seconds
that the system takes to match a set of nine primitives with an instance of a local
space profile as a function of the number of places in the topological map. The solid
blue line shows the computation time for matching an instance of a local space profile
with the set of profiles associated with the places in the map. It can be seen that the
computation time for matching primitives is constant regardless of the size of the map,
whereas the computation time for matching places increase linearly with the size of

the map.

Although the plots of computation time would suggest that the system should use
the local space primitives to categorise local space profiles, it should be noted that the
time scale of these computations is relatively small when compared to the expense of

other parts of the system. A plot of the time taken to capture and unwarp a panoramic
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Figure 5.34: Time taken for matching local space profiles against the number of
places in a topological map.

image is included in the figure to give a relative scale to the time measurements. We
can see that the map must contain at least 40 places before the time taken for matching
places exceeds that of capturing and unwarping the panoramic image. It should be
remembered that the time taken to perform a brute force landmark template search on
a4 panoramic image is approximately 700m.s. Given that matching with places allows
for greater discrimination between places in the topological map and therefore can fur-
ther restrict the localisation search, the extra cost in local space matching computation

time that is accrued will be made up during landmark localisation.

[n this research local space profiles are used to restrict the global localisation search by

storing individual profiles for each place in the topological map.
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e Categorising Local Space Profiles: by categorising local space profiles, places in a
topological map which are represented by instances of local space profiles can
likewise be categorised. The perception of a particular category of local space
profile can then constrain the localisation search to places which have a similar
local space profile. The concept of local space primitives was introduced as a
way to categorise local space profiles. This categorisation can be contrasted by
using individual instances of local space profiles to represent places in the en-
vironment. An experiment comparing local space recognition when using local
space primitives versus the use of matching individual places was carried out.
Matching via places provided much higher recognition rates than matching with
primitives. Although using primitives resulted in a large reduction in the local
space matching cost, the savings were insignificant compared to the subsequent
savings that matching with places would provide by more tightly constraining

the low level localisation search.

The use of local space profiles as a mid level representation of spatial memory is in-
tended to reduce the computation costs involved at localisation at lower levels of the
representation. To do this the process of extracting such a profile from sensor data

should be robust and efficient.

The ground plane detection methods used in this system as a basis to form an abstrac-
tion of the extent of local space are inherently unreliable and often produce incorrect
results. The use of probabilistic reasoning to combine noisy information and promul-
gatean occupancy grid estimate over time helps to overcome this problem. The result-
ing occupancy grids however, are still subject to some inaccuracies, but for the most
part a stable representation of the space surrounding the mobile robot is maintained.
Possible improvements to this process would include using a more discriminatory
colour space with which to build the model of the colour of carpet and introducing

existing methods of detecting the ground plane as another information source.

The reduction of the occupancy grid form of representation to that of a local space his-
togram allows for fast and efficient matching of local space profiles. This reductionism
assumes that the savings it brings to local space profile matching process outweighs
the loss of detail in the local space measure. This loss of detail will have an effect

on the degree to which a representation of local space can constrain the localisation
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search. A detailed study of the costs and benefits of minimalist in the representation

versus the savings in localisation computation needs to be undertaken.

A study of this sort should also include any potential benefits of categorising profiles
of local space might provide the localisation search. The notion of primitives intro-
duced in this chapter did not appear to provide any benefits when compared with the
use the local space profiles of all places in the topological map. Another categorisa-
tion method based on the robot’s own experience of the environment might be able to

maximise the trade-off between matching time and potential localisation savings.

In summary this chapter has detailed the implementation of local space profiles as a
representation of spatial memory. Reasonably reliable estimates of the extent of lo-
cal space are able to be made and can be successfully compared with each. The use
of such a representation to constrain the localisation search at lower levels of spatial
memory appears promising although by no means is the current implementation the
most efficient one. Experiments applying the idea of local space profiles to the task of

mobile robot localisation are reported in Chapter 8.
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Chapter 6

High-Level Representation:

Disambiguating Features

The previous two chapters have described two different visual cues that are used for
mobile robot localisation. Both cues provide information which can be used to solve
the localisation task. It is still possible however, for the robot system to encounter
situations in the environment, when either or both of these cues fail to provide enough
information to perform the localisation task. Adding extra cues would temporarily
solve this problem, although again pathological cases would still exist. Rather than
continually adding cues when faced with a lack of localisation information, it makes
sense to instead actively seek out what are the defining features of a given area in the

environment.,

As mentioned in Chapter 2, the search for a disambiguating feature is inspired by the
use of indirect landmarks by adult humans to perform spatial reorientation. When
humans perform this task, they use all their semantic, episodic and linguistic knowl-
edge to define rules for reorientation. Unfortunately robot systems do not have such a
wealth of knowledge from which to generate rules to discriminate between places in

the environment.

Because of this any such method for extracting disambiguating features will be limited
by the knowledge available to the robot system. In this case the knowledge available
to the robot system about places in the environment is limited to a panoramic image

captured from various locations in the environment. No semantic knowledge about
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i
b) Image /.

Figure 6.1: An example of two panoramic images from two distant but visually sim-
ilar areas in the environment.

the opposing image. This can be expressed as:

dy, = correlate(Tyy, 12) 6.1)

where d, , is the discriminatory ability of the template 7' at location (z,y) in /. The
output of the correlation function is a value between zero and one which signifies the
correlation value of the region in [, which is most similar in appearance to the tem-
plate. Low values of d,, indicate the template in question has a high discriminatory

ability.

Using this method the discriminatory ability of all potential templates in a panoramic
image can be calculated by evaluating . , for all values of 2,y and all potential tem-
plate widths and depths. The template which produces the minimum correlation

value is the feature in the image which most discriminates the image from the other.

Figure 6.2 shows the disambiguating feature extracted by comparing image ] to image
2. The identified disambiguating feature is shown by the red rectangle in part a) of the

figure, while the region of image 2 which is most similar to the template is shown in
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Figure 6.2: The disambiguating feature from image /; (a), and its most similar match
in image /» (b)

part b). Visual inspection shows that these regions are quite dissimilar and can be

used to successfully disambiguate image 1 from image 2.

This search over all possible templates and template sizes is of course prohibitively
expensive. This method would greatly benefit from attentional cues and semantic
knowledge about the content of images which could target computational resources
to potential disambiguating features. The present method however does demonstrate
the ability of a comparative search to correctly identify disambiguating features in

pairs of panoramic images.

6.2 Disambiguating Features for Place Discrimination

Once a disambiguating feature has been extracted it it can be used for the purpose of
discriminating between two places in a topological map. Given a panoramic image
from an unknown location, a decision as to which of the two places in the map it was
most probable to have been captured from can be made by comparing the current

image with the disambiguating feature. If the disambiguating feature of one place
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a)

Figure 6.3: The disambiguating feature from image /; (a), and its most similar match
in image /1, (b)

can be found with a high level of certainty within the current image, then it is more
probable that the image was captured from that particular place in the topological

map.

Given a panoramic image /¢ captured from an unknown location in the environment
and two places in a topological map, place discrimination can be achieved by first
extracting the disambiguating features from each of the places’ reference images when
compared to the other. Figure 6.2 shows the identified disambiguating feature ., of
place 1 when compared to the reference image from place 2, while Figure 6.3 shows
the identified disambiguating feature d? , of place 2 when compared to the reference

image from place 1.

Both disambiguating features can then be matched against /- producing a value of
how well the templates correlated with regions of the current image. The place as
sociated with the disambiguating feature which has the higher correlation value with
the current image is identified as the more likely place from which [ was captured.
Figure 6.4, part a) shows an example image /- which is similar to /, and 7,. Part b)

shows the region in image /- which is most similar to the feature d,. .. while part ¢)
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Figure 6.4: An example of using disambiguating features to perform place discrimi-
nation. Part a) shows an image /¢ captured from an unknown location in the envi
ronment. Part b) shows the best match of d, , with I, part ¢) the best match of L
with [

shows the region most similar to feature «*

o T

Matching /.- and d;. , produced a max-
imum correlation value of 0.93 while matching /- and d; , produced a maximum of
0.%1. Using this method it can be concluded that the image /- was more likely to have

been captured closer to the location of image /; than image /,.

Although this method of place discrimination works well in the example presented
above and demonstrates the applicability of finding discriminating features, it is in
general not very reliable. Failure to successfully discriminate arise because of the lack
of the simple method for choosing disambiguating features. Although the features do

discriminate between the panoramic view captured from the reference position, the
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Chapter 7
Topological Maps

This chapter details a method for constructing topological maps using the multiple
levels of place representation described in previous chapters. As introduced in Chap-
ter 2 topological maps are typically coarse, graph like representations of the envi-
ronment. In these representations nodes correspond to significant places in the envi-
ronment while edges in the graph correspond to transitions between places. In this
system, places are represented by the three levels of spatial memory: those of visual
landmarks, local space profiles and disambiguating features. The previous chapters
presented the details of how to form a representation of a place. This chapter aims
to introduce methods of deciding when to add a place to the topological map, and of

representing the connections between places.

The outline of this chapter is as follows: Section 7.1 details how to construct a simple
topological map. This includes a method of deciding when to learn a new place as well
as describing a way to record the transitions between learnt places. Section 7.2gives
an example of a topological map constructed using the methods described. Finally,
Section 7.3 provides a discussion and summary of the issues involved in building a

topological map.

7.1 Building Topological Maps

A topological map of the robot environment can be constructed by learning a series

of places along a path and associating them with information which describes the
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Iigure 7.1: Map of learnt places (black filled squares) in corridor environment and
actual robot position along an example path (grey path).

transitions between places. Figure 7.1 shows an example topological map constructed
in the corridors of the Robotic Systems Lab at the Australian National University. The
environment is a typical corridor environment, containing regular doors, windows
and light fittings but little else. It contains 15 learnt places over a 25 meter long path.
The black squares along the grey path denote the locations along the path where places
where learnt. From this map it is evident that a topological map representation must

contain two types of information:

e Place Representation: each node in the topological map represents a place in the
environment. A topological map therefore must contain the spatial representa-
tions of each place that has been learnt. This information facilitates the recogni-
tion of places when revisiting areas of the map. As mentioned above the chosen
place representation of this system is the multi-level spatial representation intro-

duced in earlier chapters.

e Transitions Between Places: In order for the map to reflect the topology of place lo-

cations which exists in the real world environment, the map must contain infor-
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of a place which also is important for recognition performance.

A change in the perceived local space profile associated with the second level of place
representation might also signify that the robot is entering a significantly different sec-
tion of the environment, thus warranting a new node in the topological map. This is
important considering the desire to constrain the global localisation search by means
of the local space profile. If the local space profile changes dramatically within a given
place this could lead to miss-constraints in such a search. The need to include this level
in node addition determination is countered however by the possibility of adding
places to the map which contain similar landmark sets. In general the appearances of
a set of visual landmarks and the local space profile for a given section of the environ-
ment are independent and it would be problematic to attempt to form a relationship

between the two for the purposes of determining recognition failure.

Landmark Recognition Performance (LRP)

[n our research, recognition failure in terms of adding a new place to the topological
map, is determined solely by the loss of landmark set recognition, The recognition of
landmarks sets was mentioned in Chapter 4 and the brute force matching approach
is used in this section to demonstrate landmark recognition performance. It must
be noted that landmark set recognition and topological map construction presuppose

localisation, which will be discussed in the next chapter.

As stated in Chapter 2, mobile robot navigation is a behaviour made up of the si-
multaneously operating sub-components of planning, localisation and mapping. It is
almost impossible to strictly separate the components into sequential chapters as is
attempted here, without some mention of components yet to be covered. Therefore in
this chapter localisation and landmark recognition will be assumed although details

of these procedures will be left until later.
The average landmark correlation measure for a set of landmarks can be used a mea-
sure of landmark set recognition. This measure can be stated more formally as:

N-1

LRPy = | Y (locatelm(l;, ) | /N (7.1)

1=0



7.1 Building Topological Maps 201

where, LRFP, is the landmark recognition performance of place p in image ¢, NV is
the number of landmarks in a landmark set, and locatelm(j, i) returns the correlation
measure of the best match of landmark /; in image i. Landmarks /; being elements of

the landmark set represented place p.

Suppose a robot has globally localised and is certain it is within a particular place in
the topological map. That is to say the landmark set recognition measure for this place
is greater than all other places in the map. The identified place can then be called the

Most Likely Place (MLP).

Thresholding LRP

A simplistic approach to the use of landmark set recognition as a determinant to
adding nodes to the map would be to learn a new place when the robot moves through
the environment in such a way as to cause the landmark set recognition measure for
the most likely place to fall below an arbitrary threshold. This of course means that
the likelihood of being in all other places within the map is also below this threshold.
Matsumoto, Inaba and Inoue (1997) apply a threshold to image acquisition in their
view-sequence approach to mobile robot localisation. A new view is acquired along a
route when the correlation between the current panoramic image and the last stored

panoramic view drops below a set threshold level.

In the context of our research such an approach makes an undesirable assumption.
It assumes, falsely, that landmark recognition performance for all landmarks will de-
grade gracefully as the robot moves away from the place where the landmarks were
captured, decreasing to a common background level. Background LRP level is the
matching result achieved between a set of landmarks and an arbitrary environment,
where chance similarities provide a steady level of LRP although the actual landmarks
are not necessarily visible. With this assumption it is necessary to nominate a thresh-
old level which is above the chance level of recognition performance, and ensure that

landmark sets above this level are defining a unique section of the environment.

Figure 7.2 shows an example of landmark recognition performance for the topological
map presented in Figure 7.1. The figure displays the LRP produced when the set of

landmarks associated with place five in the map (fifth black square from the bottom)
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Figure 7.2: The landmark set recognition performance for the landmarks associated
with place 5 over the robot path,

are matched with the approximately 700 panoramic images captured over the robot
path. The distinct peak in the LRP graph for place five (around image 190) is a result
of the robot passing over the position in the environment from where place five was
learnt. As the robot moves away from this position the LRP measure quickly decreases
and levels off at approximately 0.7. Using a threshold value of slightly above 0.7, the
LRP could be used to trigger the acquisition of a new place when the LRP falls past

the assigned threshold.

This method, although attractive in its simplicity, suffers from the false assumption
mentioned above. The fact is that not all places show the same LRP behaviours and
setting a threshold level can be problematic. A landmark set which includes land.-
marks which remain in view over a large area of the environment, such as those at a
tar distance will produce much higher back ground LRP levels than those with close

landmarks which quickly distort under translation.

This phenomenon is illustrated in Figure 7.3. In this fieure the [.RP lots from places
[ g g P P
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Landmark Set Recognition Performance for Places 5 & 6
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Figure 7.3: The landmark set recognition performance for the landmarks associated
with places 5 (blue) and 6 (red) over the robot path.

five (blue) and six (red) in the topological map are shown. Again, the peaks of both
places are evident, but what is surprising is the difference between the background
levels of both places. Whereas the the background level of place five can again be
seen as about 0.7, place six has a background LRP level of approximately 0.8. If the
threshold for learning a new place was set at slightly above 0.7 then a new place would
never be learnt after place six had been included in the topological map. Setting a
threshold significantly higher than 0.8 would result in a map that is very dense and

ultimately prove un-scalable.

This example highlights this problem particularly well due to of the nature of the en-
vironment where the topological map was made. The office corridor along which the
map was built has very few distinguishing features and the most interesting land-
marks lie at the ends of the corridor. This sparse visual environment results in land-
mark sets which contain landmarks that can be seen along the majority of the corridor

and therefore produce a high level of background LRP.
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Landmark Recognition Performance over Robot Path
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Figure 7.4: The landmark set recognition performance for the 15 places over the robot
path.

This large difference in background LRP levels will not be seen in all environments
and maps and it is impossible to predict when such problems will occur, and what
level the background LRP should be. Therefore it is impossible to set a static thresh-
old level to determine when to learn a new place which will function reliably over
arbitrary environments. Figure 7.4 presents the LRP of the 15 places in the example
topological map to demonstrate the unpredictability of LRP background levels over a
larger region. It is hard to trace individual places LRP levels in this figure, however
the varying levels of background LRP are evident. The flat region of the graph be-
tween images 400-500 is caused by the robot turning on the spot, which produces a

constant LRP.

The variance in the background level of landmark set recognition means that a thresh-

old is not sufficient to determine when to learn new places.
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Background LRP Levels

An adaptive threshold which varies with the level of background LRP would seem to
be an ideal solution for determining when to learn a new place. This process would
require the background levels to be known in advance. Only when the highest level of
background LRP is known for a given area of the environment can a suitable threshold
level be set. Of course it is impossible to know the background levels before encoun-
tering the region, therefore the decision of when to learn a new place can be macde
only when the background level has been detected. This means that only when the
LRP of the landmark set associated with the most likely place has been found to have
decayed to its background level will a new place be learnt. This changes the deter-
mination process slightly from that of thresholding to one of detecting when the LRP

measures for a place has reached background levels.

The difficulty in detecting when the LRP is at background levels is that no prior knowl-
edge can be assumed. If a place has just been learnt, there is no past history of what
a landmark set's background LRP level is. Also, although in this example we are as-
suming that all landmark sets are being monitored for their recognition performance,
when the map gets significantly bigger more efficient localisation methods are needed
since it will not be possible to track all the sets of landmarks all the time. Therefore a
stored recent history of a places LRP can not be assumed, even if it is already part of

the topological map.

From the LRP graphs presented, it can be seen that background LRP levels remain
at a constant level, although there is considerable noise. The background naise level
evident in locations along the path adjacent to any given learnt place is the same for
those locations that are distant from the places reference position. If immediately after
learning a place the LRP background level for that place is detected and recorded,
then this level can be used later to estimate an appropriate threshold level for node
acquisition in the topological map. The steps involved in deciding whether to learn a

new place are as follows:

1. Find Most Likely Place: use landmark template matching to find a place in the

map at which the robot is most likely to be given the current sensor readings.

9 Set threshold: set the LRP threshold for determining whether a new node should
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Figure 7.5: Instantaneous slope measurerments for place 5 over the robot path.

One way to detect a background level of LRP is to monitor the gradient slope of the
LRP between samples. From the graphs above, it can be seen that the LRP peaks
sharply in areas associated with places reference positions, but is reasonably constant
at other times. In general it can be said that sections of the LRP graph which have
a zero slope are representative of background LRP levels. If while monitoring the
LRP performance at a given place, the slope between recent measurements is approx-

imately zero, the system determines that the LRF performance is at background level.

Figure 7.5 shows the instantaneous slope of the LRP for place five as illustrated in
Figure 7.2. The data in the plot was obtained by simply taking the absolute value of
the result of subtracting the LRP of every image in the sequence from the LRP from

the previous image:
g = “,H.P,' — LHH_N (7.2)

where, s, is the instantaneous slope of the LRP function at image i, and [; denotes the

LRP performance at image ¢.
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Figure 7.6: Raw and filtered Landmark Recognition Performance (LRP) for place 5
over the robot path. The black circle indicates when a new place would be learnt.

Although a peak in this graph is evident it is still noisy. This reflects the noise in the
LRP measurements. This noise can be partially alleviated by applying an averaging
filter to the LRP information. This filter averages the LRP measurements over the last
N readings:

0 ALRE. )

'--":' — o
LRP: v (7.3)

with the size of N depending on the velocity of the robot and the rate of data sampling,

The results of applying the averaging filter to place five's LRP data is shown in Fig-
ure 7.6. The raw LRP measurements are illustrated by the blue line while the filtered
measurements are shown in red. Filtering provides a much soother view of the LRP
and a peak can clearly be seen at the same position as the one in the LRP graph, al-

beit delayed due to the windowing affect of the filter, The slope of the filtered LRP
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Slope of Landmark Recognition Parformance for Place 5
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Figure 7.7: Raw and filtered slope measurements for place 5 over the robot path. The
slope measurements are calculated from a window over the filtered LRP.

measurements can then be calculated, Given that the instantaneous slope can still re-

flect local minima, the slope measurements used are those observed over the sampling

window:
s; = |LRP! —= LRP!_x| (7.4)

where, &, is the slope of the LRP function between images captured at steps : andi- N

and LR P! denotes the filtered LRP performance at image .

The output from Equation 7.4 can then then be filtered again to further remove any
local minima in the slope function:
N
/ Z_;'_-u(""l'—.i)

g = 5
Y N (7.5)

The results of applying Equations 7.4 and 7.5 to the LRP performance for place five
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Figure 7.8: Raw and filtered LRP measurements for place 6 over the robot path,

are shown in Figure 7.7 by the blue and red lines respectively. A threshold can then
be used on the smoothed slope value to determine when the LRP reaches background
levels. The threshold limit used in our experiments was 0.0075. The difference be-
tween thresholding on the slope and thresholding on the LRP measurements is that

the slope values are independent of the actual background level of the LRP

Assuming that the process of detecting background LRP levels began at the top of the
peak (simulating learning a new place), and continued along the image sequence, the
above process with the given threshold will detect background levels of LRP at the
point in the graph denoted by the black circle in Figures 7.6 and 7.7. The robot can use
this method of detecting background levels of LRP to trigger the acquisition of a new

place in the topological map.

To demonstrate that this method of determining when to learn a new place in the
topological map is independent of the levels of background LRP, Figures 7.8 and 7.9
show the raw and filtered LRP performance and slope for place six in the topological

map,
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Figure 7.9: Raw and filtered slope measurements for place 6 over the robot path.

The last step to the process of determining the level of LRP at which a new place
should be learnt is to provide a default level beyond which the threshold should not
drop. A LRP performance measure below this default level is considered too poor
to be reliable even though the background level has not been detected. If the LRP
performance for a place falls below the default level the robot system treats the default
value as the background level. Also to handle the change in slope at peaks and newly
acquired places, it is assumed that if the LRP performance is above a maximum level,
then it can not be considered to be a background reading. The default LRP background
level in this system is empirically set at 0.7, while the default maximum is 0.85. Only

if the LRP is between these two default levels do the above criteria apply.

Figure 7.10 shows the filtered slope measurements for all 15 places over the entire im-
age sequence. In comparison to Figure 7.4 it can be seen that the peaks in the slope
measurements representing places along the path are higher relative to the noise con-

tained in the background levels than the corresponding peaks in the LRP data.

The LRP of places 13 and 14 in the topological produce unconvincing filtered slope
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Figure 7.10: The filtered slope for the 15 places over the robot path.

results. The filtered LRP and slope measurements of these two places are shown in
Figures 7.11 and 7.12 respectively. Inspection of the LRP results show that both places
still have peaks associated with the reference position of each place. The peaks how-
ever are quite broad and therefore produce low slope measurements. This would indi-
cate that the landmark sets selected to represent these two places are not unique and
can produce a high LRP measure throughout a broad area of the environment. The
particular area of the environment which is represented by places 13 and 14 contains
filing cabinets which produces very strong and regular features. When applying this
method of acquiring new places in a topological map, such low slope values would
result in the acquisition of more places. Whether this is a desirable characteristic in
topological map construction is left for further work. Our method is not completely
reliable, The slope at which the LRP decays as the robot system moves away from the
reference position will vary from place to place, although it should always be signif-

icant when compared to the background levels. The sample rate at which the robot
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Filtered Landmark Recognition Parformance for Places 13 and 14
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Figure 7.11: Filtered LRP for place 13 and 14.

captures the panoramic images and thus produces LRP measurements also affects the
rate of change of the LRP. The direction of motion of the robot and even if the robot is

moving also plays a part.

The major drawback for our method is that the LRP slope is measured over a temporal
window rather than a spatial one. The measurements and subsequent decisions are
made based on measurements captured over a temporal window irrespective of how
the robot is moving through space. In this example all the robot movements were
made at a constant velocity and either directly away from places or directly towards
them. Our system accepts this limitation, noting that the detection of background
levels of will only occur directly after learning a place and that motion in a topological
map will usually be between nodes within the map. A modification that attempts
to solve these issues for the purpose of LRP background detection is that the robot
ignores LRP readings from a stationary robot, or where a robot is undergoing purely

rotational motion.
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Figure 7.12: The filtered slope for the places 13 and 14

Figure 7.13: Location of place acquisition experiments.

Example Place Acquisition

This section presents an example of the robot system deciding when to learn a new

place. Figure 7.13 shows a map of a large room in the the ANU laboratory in which

the robot must build a topological map. Figure 7.14 shows a short path (green dots)
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Figure 7.14: An example of place acquisition in a topological map constructed by
a robot system operating in a real world environment. Three places were acquired
over a short robot path. The robot path is shown by the green dots originating from
place 1.

the robot system traversed. While moving along the path the robot was building a
topological map using the place acquisition criteria described above. Three places
were learnt along the path, shown by the red circles and text in the illustration. At
each of these positions, the robot system performed a Turn Back and Look movement
and acquired a new place in the topological map. This was an online experiment, with

the robot autonomously, in real time, deciding when to acquire new places.

Figure 7.15 shows the flow of control that the robot system uses to perform a move-
ment while constructing a topological map. The variable DEFAULT. BG refers to the
default background LRP level. In this experiment, DEFAULT. BG was set to 0.7 and the

filtered slope threshold level was set at 0.005.

The value of the LRP and its associated slope were logged as the robot traversed the
path. Figure 7.16 shows the raw (blue line) and filtered (red line) LRP performance of
the most likely place for each each image captured along the path. Each black circle
identifies where the robot system decided to learn a new place. Figure 7.17 shows the
raw and filtered slope associated with the LRP measurements. Again the black circles

identify where new places were learnt.

The three places were each acquired in different circumstances, which are detailed

below:
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Figure 7.15: The flow of control in the robot system when deciding weather to learn

a new place.

Place 1. The robot starts by trying to localise itself with its existing knowledge.

Not being able to localise itself in an empty map, the robot learns the first place.

This is identified as place 1 in the figures, The robot attempts localisation again

and identifies that place 1 is the place in its map that the robot is the MLP.
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Figure 7.16: The Landmark Recognition Performance for the most likely place while
building the example topological map. The black circles denote when along the robot

path each place was acquired.

e Place 2: From place 1 the robot proceeds to move, monitoring its landmark recog-
nition performance and trying to estimate the background LRP level. As the
robot moves away from place 1 the LRP levels falls away as the current view of
the landmarks distort. The slope remains relatively stable until it starts falling
around the 120th image in the sequence where the LRF graph starts to bottom
out. It never reaches the slope threshold level however as the filtered LRFP level
falls below the default background level first. This observation causes the robot
system to stop and start the acquisition of place 2. The Localisation procedure

now identifies place 2 as the MLP.

e Place 3: The robot system recommences its path traversal while monitoring the
LRP for place 2 and estimating the background LRP as previously described.
The slope of the filtered LRP graph eventually falls below the slope threshold

level and the triggers the acquisition of place 3.
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Figure 7.17: The slope of the filtered LRP measurements of the most likely place
while building the example topological map. The black circles denote when each
place was learnt.

Using this scheme the robot system can decide when to learn new places and add
nodes to it's topological map. This approach differs to Matsumoto et al.’s (1997) in
that an adaptive correlation threshold level for place acquisition is used rather than a

constant threshold.

Other Possible Methods

As hinted in the previous section another way to decide when to learn a new place
s to monitor the landmark recognition performance background levels with respect
to the distance the robot is away from the reference position from which the current
most likely place was learnt. This would eliminate the need to assume that the robot
always heads directly away from a learnt place in the topological map at a constant

velocity while sampling sensor data at a constant rate,

Another possible method is to learn a new place when the position estimation within
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Figure 7.18: The geometry of a transition in a topological map. Two places 5, and 5y
are connected by the transition /s .5, .

Figure 7.19: Transitions defined from place 2 in the topological map.

Figure 7.19 gives an example of transitions defined according to the implementation
details described above. The topological map that is used was learnt in the example
in the previous section. In the figure the transitions originating from place 2 can be
seen. The transition connecting place 2 to place 1 is an example of a reverse transition,
defined when place 2 was learnt, and is very accurate. The connection from place
2 to place 3 is less accurate due to the errors in odometry and position estimation
introduced by the rotation in the robots position along the path between places 2 and
3. Although the direction is slightly off, following the transition from place 1 would

still position the robot in a location from which it would be able to recognise place 3.
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Figure 7.20: An example of a cycle in a topological map. The robot at point R relative
to place ) has detected a connection between places 5 and S» but does not know
the spatial relationship between the two,

7.1.3 Transitions and Cycles

This method of defining transitions works when adding a new node in the topological
map depends on knowledge of the relative position of one place to the other. The
method fails when a cycle is detected in the graph. Consider the case when a robot is
moving away from place 5, and encounters a previously learnt place 5,, when there is
no existing transition connecting the two. The encounter is detected, when the LRP for
place 5; becomes higher than that of S, thus signifying a change in the MLP that the
robot is occupying in the topological map. The fact that there is no existing connection
between the two means that although the robot has an estimate of its current position
relative to place 5y, it has no knowledge of the relative position of either place with
respect to the other. This situation will most likely occur when the robot detects a
cycle in the graph, or when it is connecting two previously disconnected sections of

the topological map.

Figure 7.20 shows an example of when a cycle is detected and illustrates the problem
of the two places not sharing a common frame of reference. In this figure, the robot /7
has moved along the vector m away from place 5;. It has now recognised the land-
mark set from place S, but has no idea where it is in relation to the reference position
from where place 5, was learnt. Therefore the transition from 5) to S, can not be

defined.

One approach is to try and infer the spatial relationship between the two places by
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’

Figure 7.21: The geometry of defining a transition between pre-existing places in a
topological map. S; and S are two pre-existing places in a topological map, while
P, and P, are local position estimates from the reference positions of 5, and 52 re-
spectively.

summing the transition vectors of the nodes in the topological graph which create
the cycle. This has two problems: first it assumes a cycle does exist and that the two
nodes do not belong to two separate and disconnected sub-graphs; and second, it
assumes that there are no odometry errors. The individual connections are relative
and contain levels of error which when summed might produce drastic inconsistencies
in the topology of the map, especially when dealing with a large number of nodes in

the connecting path.

A better approach that does not rely on the connecting path, is to directly discover the
spatial relationship between the two nodes and use this relationship to calculate the

transitions between the two places.

In order to successfully calculate the transition between S, and S;, by discovering the
spatial relationship between the two places, the robot must first localise itself within
S,. By continuing its movement and observing the angles of landmarks the robot
system can produce a local position estimate, the details of how this is achieved are
presented in the next chapter. Also by using odometry to keep track of its movement

while between places, the robot now has three vectors which when combined define
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the spatial relationship of the two places: @ the initial local position estimate from
place 5;; @ the odometric vector maintained while local positioning is attempted:;

and @ the local position estimate from 5,.

Figure 7.21 illustrates the situation further and identifies the three vectors . # and
w'. In the figure F and F; are the two points between which the robot is relying on
solely odometric information. Given that S;, S, and the odometry measurements are
all relative to different frames of reference it is impossible to calculate 15,5,y without
first resolving the differences in coordinate systems. From here on the notation A will
refer to point or vector Ag with respect to coordinate system B. Therefore, the three

vectors as they stand can be more correctly defined as:
W}Si, #-ﬁu! i 52

where the super scripts 5 and S, refer to the coordinate systems relative to places
S and S respectively, and O refers to the odometric frame of reference. With this
notation the transition can be defined as follows:

;1-."-;1

gy =T + 75 - @ (7.8)

It should be noted here that the frames of reference of the last two known vectors
are different to those used to define the transition, If I'y(x) is a linear transformation
which rotates a point « through an angle of ¢, then vectors @ and @ can be converted
to 51 's reference frame as required by Equation 7.8:

71.',‘!'] . ﬂ)‘ﬁl --‘. ,’I:,I.‘(-U*h.“) - I'}i(_{(-“’ﬁgJ (79)

(.‘1‘1 -).',"l‘-_;;)

where o and /7 are the respective difference between coordinate systems of 5 relative

to @, and S relative to S,. The two angles can be calculated as follows:

Q= ﬁ;’: - 0 (7.10)

8= (05 +a) - ();";_j (7.11)
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where, as above 6} refers to the robot's orientation ¢ at point F with respect to the

coordinate system 5;.

In this way the transition from $; to 5; can be defined. The reverse transition can
then be calculated in the same manner as calculating the reverse transition for newly
acquired places presented above. Because the calculation of cycle transitions is based

on odometry between local position estimates, the odometric error is small.

Implementing this on the robot system requires the robot to be able to be able to
localise within a place, and also to decide when a reliable local estimate has been
achieved, The details of localisation will be discussed in the next chapter, but for now
local positioning will be assumed, with the proviso that it takes a number of sample
observations for a reliable estimation. An example of forming a cyclical connection in

a real world topological map is presented in the next section.

7.2 An Example Topological Map

This section presents a topological map constructed using the place acquisition and
transition definition methods described in the previous two sections. The map was
learnt in a large room in the Robotic Systems Laboratory at the Australian National
University. The robot system traversed a predefined path while attempting to learn
a topological map. The resulting map is shown in Figure 7.22. This figure shows
the robot path in green, the places learnt along the path in red, and the transitions
which connect the places in blue. The orientation at which places were learnt is shown
by the red lines radiating from the center of each place circle, with the longer line

representing the angle of the robot facing forward.

The graph shows that places were learnt along the path at semi-regular intervals and
transitions were defined which link each node in the graph with its adjacent nodes. A
cycle was detected between place 5 and place 1, and the resulting transitions success-

fully capture the relative spatial relationship between those two places.

Although this is a relatively small topological map, the methods used here can be used
to build arbitrarily large maps. The methods of place acquisition and transition defi-
nition are not directly dependent on the size of the map. In practice however, both of

these processes depend on successful localisation within the map., effectively limiting
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Figure 7.22: An example topological map constructed in a real world environment,
The robot started at the location labelled place 1 and moved along the green path,
acquiring new places in the map along the way. Places are shown by the red circles
with the reference orientation shown by the red lines (longer line facing forward)
and transitions between places by the blue arrows. Note that a cycle was detected as
the robot leaves place 5 and the corresponding transitions were correctly defined,

the map to the number of places with which it can localise within the necessary real-
time constraints. A larger map constructed using the previously described methods is

presented in Chapter 9.
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7.3 Summary

This chapter presented a method with which to build topological maps using the place
representation described in earlier chapters. Topological maps need to hold represen-
tations of places and the transitions between those them. Place representations allow
for the robot system to recognise places when revisiting them, while transitions allows
for navigation between places in the environment. The two main steps in construct-
ing a topological map, apart from forming a representation of individual places, is

deciding when to learn a new place, and defining transitions connecting places.

Determination of when to learn a new place can be achieved by monitoring how well
the robot system recognises its current environment. When the robot no longer recog-
nises its current environment a new place is added to the topological map. A method
was presented for making this determination using the level of Landmark Recognition

Performance (LRP) and the notion of background levels of recognition.

Transitions can be defined by simple geometric calculations in conjunction with global
localisation and local position estimation. Detecting cycles in the topological graph
cause complications to these calculations, however methods were described which
successfully overcame these problems by working out the spatial relationship between

the two connecting places.

Together, these two processes allow the construction of topological maps, and a small
example of such a map constructed by our robot system operating in a real world

environment was presented.

The topological maps constructed using the methods detailed in this chapter can be
used to experimentally verify the place representations and localisation concepts which

are central to this thesis.

As discussed above, the addition of nodes using the back ground detection method
suffers from monitoring the LRP over time, rather than through space. To truly detect
when the background level of recognition performance, some account of velocity, both
speed and direction, and the data sampling rate must be taken into consideration. A
tighter integration of the three sub-components of navigation: mapping, localisation
and path planning, would lead to place acquisition determination methods which pro-

duce topological maps with a more descriptive and efficient topology.
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Figure 8.1: Location of local position estimation experiments.

8.1 Local Positioning Within Places

Approaches to the robot navigation problem which use topological maps typically
can not provide accurate position information within places in the map: either a robot
is "at” a particular place or it is not. In order to develop a topological map based
localisation system which can approach the accuracy given by metric maps, the robot
system must be able to locate itself relative to the reference position of places within
the map. We refer to this process as local positioning within places in the topological

map.

This section reports on three methods of local position estimation within a learnt place:
odometric, heuristic and probabilistic. All three experiments involve the robot learn-
ing a place in the center of the same room (Figure 8.1) as reported in the previous
chapter and then subsequently estimating position along a path of captured images
originating at the learnt place and following the typical TBL path described in Chap-
ter 4. Odometric positioning is used as a ground truth here as the motion of the path
is insufficient to introduce any significant odometric error. It can be appreciated how-
ever, that odometric positioning will not be useful for positioning on longer motion
paths. Sensor based localisation approaches (e.g. the heuristic and probabilistic ap-
proaches) do not suffer from these problems. The robot path as determined from odo-

metric position estimation is shown in Figure 8.2.

lhe goal of the local positioning experiments described below is to successfully deter-
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Figure 8.3: Radial contraction position algorithm: vector, v, produced from a single
landmark pair, (};, ;).

This heuristic localisation method grew out observation of data during the execu-
tion of a homing behaviour that uses sensor data to drive the robot to a desired
state (Bianco and Zelinsky, 1999) (Collett, 1996). The algorithm uses the contrac-
tion/expansion of the observed radial displacement between pairs of landmarks to
estimate the position of the current robot state relative to a reference state. The gen-
eral idea is that if the radial displacement between a landmark pair is larger in image
I than image 2, then image 1 must have been captured at a location closer to the land-
marks in the direction of the bisecting angle. The sensor gives the radial angles of
located landmarks from a landmark set. Let this observation be denoted [, — ly...L,,
where /; is the observed radial angle of landmark i. Given the two observations L.,
captured from a reference position &, and L. from the current position /., then the

problem is to estimate the translation vector V from . to B..

This can be done by summing the contraction vectors, 7;, for every possible landmark
pair (/;,1;) in the landmark set. A contraction vector is the translation vector needed
to cancel the change in radial displacement within a landmark pair between the two

observations. An example is given in figure 8.3. More formally, &; is composed of
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Figure 8.5: Prediction phase of the Condensation algorithm. Particles are initially
grouped around a known position. After a noisy motion input, the particles are
distributed according to the stochastic noise and deterministic drift in the motion
model.

algorithm, the following steps are applied:

1. Re-sample: For each particle ":: " in 57, select a random particle sY) from S, ;.
This re-sampling is done with replacement and probability of selecting .‘E), is

given by )

2. Predict: For each particle .‘3';“:) in S/ predict a new state s in S, by applying the

motion model.

3. Measure: For each particle s in &, evaluate the probability rrE” using the sensor

model.

The motion model describes the dynamics of the system to predict the state of a par-
ticle after an action has been taken. This model incorporates deterministic drift and
stochastic noise into the predictions, capturing the noisy nature of odometric sensors
used in this system. Figure 8.5 demonstrates what happens to particles when an ac-
tion is taken by the robot system. In this illustration the robot system is a mobile
robot which starts at a known position, in this case the origin of the drawn coordinate
system, and moves to the right. The accompanying particle filter diagrams show the

particles initially tightly grouped about the origin, denoting that the initial position is
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Figure 8.6: Measurement and re-sampling steps of the Condensation algorithm, Par-
ticles distributed randomly condense about a hypothesis after an observation has
been made. Particles condense around a hypothesis by resampling the particle set
according to the probability of making the current observations given the particle's
state,

known. After the move the particles are spread out in an arc which approximates the
probability density function of the robot position in the presence of noise introduced

by the errors in rotational and translation motion of the mobile robot.

Ihe sensor model is used to calculate the probability that a given particle correctly
describes the system state based on the current observation. Figure 8.6 demonstrates
how a sensor model and re-selection of probable particles can be used to maintain
state identification in a particle filter system. In this illustration the pose of the robot is
initially unknown. Accordingly, the particles used to represent the probability distri-
bution function of the robot's position are randomly distributed throughout the space
defined by the coordinate system. When the robot makes an observation the sensor
model can be used to measure the probability that a robot system in state described
by each individual particle could have made such an observation. Particles represent-
ing robot states which have a high probability of making the current observation have
more more chance of being reselected in the re-sampling phase of the Condensation

algorithm. This is shown in the figure by the set of particles, after incorporating the
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Figure 8.7: The particle filter approach to mobile robot localisation can represent
multi-modal distributions in the presence of ambiguous observations.

observation, condensing around the correct position in the coordinate system.

Another feature of particle filters are that they can represent multi-modal hypotheses
when the sensor information is ambiguous. Figure 8.7 illustrates this case. Initially the
robot position is unknown and the particles are distributed randomly throughout the
sample space. After making an observation the probability of making such an obser-
vation is calculated for each particle and the most likely particles are re-sampled. In
this example, however, they are two positions (e.g. two doorways) which are equally
likely to result in the current observation and this is reflected in the bi-modal dis-
tribution of the resulting particle set. In this way, bi-modal and even multi-modal

probability density functions can be represented by particle filters.

The Condensation algorithm in its simplest form suffers from the likelihood of not
exploring crucial parts of the probability distribution and the inability to recover from
these types of errors. Jensfelt, Wijk, Austin and Andrsson (2000) propose augmen-
tations of Condensation which overcome these limitations with sampling techniques
such as random sampling and planned sampling. In our research the state space is
restricted to to the space about individual places, so the space will be covered by an
initial random distribution. To ensure good particles are re-sampled, this system au-
tomatically re-samples particles which have an observed probability greater than the

mean plus the variance. A standard holonomic motion model is used in the prediction
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Figure 8.9: The assumed depth sensor model finds the probability that the two lines
formed by the current and reference observations intersect at the assumed depth of
landmarks from the reference position.

sample particle represented the robot pose (z,y),, then from standard geometry the
intersection (z, y)7 of the two lines formed by the reference and current observations

can be calculated as follows:

Yp—rptant
tany—tanitaony (8 ]4)

tany(yp=aptand)

U [ tan~y—tant

The depth from the reference position at which the current observation intersects with

the reference observation is then:
dh = /23 + 4} .15)

This value can then be substituted into Equation 8.13 to discover the probability of

making the current observation from the sample particle’s hypothetical pose.

Figure 8.9 shows the assumed depth line intersection model. In this figure the blue
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A problem with the Assumed Depth Line Intersection Modal
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Figure 8.10: The assumed depth line intersection probability calculation is inaccurate
when the observation lines approach parallel.

circles represent the place reference position from which the initial observations of
landmarks where made, and the hypothetical robot position of the particle being eval-
uated. The blue lines denote the initial and current observations from the the respec-
tive positions. The red curve shows the Gaussian probability distribution centered
around the assumed depth while the intersection point of the two observations and

the resulting probability value is shown by the green line.

Obviously by using an assumed depth in this model, the calculated probability will
not reflect the true relationship between the current observation and the actual land-
mark position. This highlights the importance of depth estimation in the landmark

acquisition process.

Another problem of using a simple geometric model of the observations can be seen
in Figure 8.10. A problem occurs when the reference and current observations are
parallel. In this situation there will either be no intersection between the two lines or

the intersection will be infinite. In fact for particles which have a robot close close to
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Figure 8.11: An example mobile robot localisation task. The robot has learnt two
landmarks from a reference position, and now must perform localisation based on
the current observations of the landmarks.

this figure landmark one has been observed at an angle of = /2 radians. The surface
of the graph represents the probability that a robot at a given (z, y) pose in the state
space observed landmark 1 at an angle of /2 radians. The reference position, actual
and assumed landmark location and the actual robot position are shown by the differ-
ent colour circles. The current observation produces probability high at the assumed
landmark depth position, This reflects the fact that at these locations it is more likely
to observe the landmark at the assumed position at the angle of 7 /2 radians than any

other position in the state space.

The peak of this graph lies far from the actual robot position, occurring in the states

from which it is more likely to observe the landmark at it's assumed depth rather
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Figure 8.12: The probability distribution produced when applying the assumed
depth sensor madel over the range of all possible rabot positions given the current
observation of landmark 1 at 90 deg,

than it's actual depth. This highlights the fact that an estimation of depth is necessary
to provide accurate position information to the robot system. The slope of the graph
surrounding the peak is also quite shallow reflecting the high variance in the Gaussian
distribution. The high variance can assist in alleviating the problem of assumed depth,
but subsequently limits the resolution of any positional information the model can
produce.

Figure 8.13 shows the results of applying the sensor model to the same example but
incorporates the observation of two landmarks. The output of the sensor model for the
two landmarks is combined using Equation 8.12. The combination of the probabilities
from the two observations reduces the area from where it is most likely to explain the
observations, By incorporating more observations into the sensor model, the area of
likelihood can be reduced still further. The problem of an assumed landmark depth is

still a problem, as the probability peak is still not located near the actual robot position.

Finally, Figure 8.14 shows the PDF produced by the assumed depth line intersection
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Figure 8.13: The probability distribution produced when applying the assumed
depth sensor model over the range of all possible robot positions given the current

observations of landmark 1 at 90 deg and landmark 2 at 45 deg.

sensor model with one landmark when the reference and the current observations are

parallel. In this case the intersection between the two lines is undefined and the al-

ternative sensor model described by Equation 8.16 is used. If the observation was

made from the area surrounding the reference position then this model would cor-

rectly identify the most likely robot poses. However in this case the actual robot posi-
tion is located well outside the identified likely region.

Estimated Depth Line Intersection

The estimated depth line intersection sensor model is similar to the assumed depth

model except it takes advantage of the information about the depth of landmarks pro-

duced by the Turn Back and Look movement. The probability of making an observa-



248 Local Position Estimation

PDF for Assumed Depth Line Intersection Sensor Model when Reference and Current Observations are Parallal

Position

g ) f o Landmark
] : 2 Actual; ——*
5 001 . ; Assumad

@ Reforence - 4

s Actual .. Positien g

= 0.005, Robot. . .

§

a.

100

Y Paosition

X Paosition

Figure 8.14: The alternate probability distribution used when the lines representing
the current and reference observations are parallel.

tion from a sample robot pose is given by:

_‘I'.’

Vore?

Frip =

where ¢, is the intersection depth of the current observation o with the reference

observation, and d and & are the estimated depth and depth variance of the landmark.

The estimated depth model still suffers from the problem which occurs when the lines
formed by the reference and current observations approach parallel. The alternative

model is again applied when this situation occurs.

Figure 8.15 shows the results of applying the estimated depth sensor model to the sam-
ple robot environment illustrated in Figure 8.11 and observing one landmark, Again a
similar result from that of the assumed depth model can be seen, except that the peak
region now covers the actual robot position. This is because the estimated depth of the

landmark is much closer than the assumed depth. The slope of the graph in the peak
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Figure 8.15: The probability distribution produced when applying the estimated
depth sensor model over the range of all possible robot positions given the current
observation of landmark 1 at 90 deg.

regions is also greater due to the decreased variance in the landmark depth estimate

when compared to the assumed depth.

The results incorporating two landmark observations using the estimated depth sen-
sor model are shown in Figure 8.16. The combination of the two landmarks cause a
single peak near the actual robot position. Additional landmark observations would
strengthen this peak and further eliminate regions in the state space from where it

would be unlikely to make such observations.

Ellipsoid and Line Intersection

A more sophisticated geometric model for the observation intersection is to model the
reference observation as an ellipsoid defined by the landmark estimate from the Turn
Back and Look movement. This means that the model incorporates the uncertainty

in the initial angle observation as well as in the depth estimate. The perimeter of the
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EI'-‘igure 8.16: The probability distribution produced when applying the estimated
depth sensor model over the range of all possible robot positions given the current
observations of landmark 1 at 90 deg and landmark 2 at45deg,

ellipse defined by the landmark position estimate represents the variance along the
depth and angle axes of the estimate. In order to produce a probability measure of
making a particular observation from a given sample state, the ellipse can be over-
layed with a two dimensional Gaussian distribution centered on the landmark posi-
tion and scaled to the respective variance measures of the depth and angle axes. The
resulting three dimensional surface is not a true ellipsoid, but is referred to as an el-
lipsoid to distinguish it from the two dimensional ellipse. The surface of the ellipsoid
can then be used as a probability measure of the landmark being in the area surround-
ing the estimated landmark location in two dimensional space. If an observation from
a particle hypothesising a particular robot pose intersects with the ellipsoid, then the

probability of making the observation can be given by the highest point of the ellipsoid
surface through the cross section defined by the observation line.

Lhe situation is seen more clearly in Figure 8.17. In this figure the reference and current

robot positions are shown by the blue circles. The estimated position of the landmark
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Figure 8.17: The ellipsoid line intersection sensor model takes advantage of the land-
mark position uncertainty ellipse estimated during the TBL movement to calculate
the probability of making an observation from a particular position in the robot state
space.

after the TBL movement and its associated ellipsoid is shown by the contour plot along
the line representing the reference observation. The line representing the current in-
tersects the ellipsoid and the line segment between the two intersection points defines

a cross section of the three dimensional entity.

Figure 8.18 shows a close up of the ellipsoid and the various contours of the ellipsoid
can be seen more clearly. It is obvious that the maximum probability of making the
observation does not lie on the major or minor axes of the underlying ellipse. This
highlights the need for the three dimensional representation of the probability distri-

bution. Also, modelling the landmark probability distribution in this fashion elimi-
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Ellipsoid Line Intersection Model Close Up
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Figure 8.18: A close up of the ellipsoid line intersection showing intersection points
and the probability distribution within the ellipse.

nates the problem of parallel reference and current observations that are evident in

the two line intersection models.

Figure 8.19 displays the cross section of the ellipsoid surface defined by the intersect-
ing line segment. The maximum probability value in this cross section is used as the

probability measure for making the current observation from the sample robot pose.

This sensor model requires the calculation of the intersection points of a ray, defined
by the sample robot pose and the angle of the current observation, and an ellipsoid
defined by the estimated landmark depth and the angle from the reference position
and associated variances. The maximum probability of the intersecting line segment

must be found in order to produce a probability measure for the observation. This can
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Figure 8.19: The cross section of the ellipsoid probability distribution along the line
segment formed by intersection of the current observation and the landmark uncer-

tainty ellipse.

be achieved in three steps using known geometric techniques:

1. Transform the ellipse and ray to a coordinate system where the ellipse is a unit

circle.
2. Find the intersection of the transformed ray and the unit circle.

3. Overlay a two dimensional Gaussian distribution over the unit circle and calcu-

late the maximum probability over the intersecting line segment.

By transforming the ellipse into a unit circle the intersection and probability calcula-
tions are greatly simplified. The specifics of the calculations involved in these three
steps are presented below.

Let there be an ellipse ¢ defined by the parameters (z, y, a, b, 7). where the point (r, y)

denotes the center of the ellipse; the values a and b the magnitude of the major and

minor axes; and ~ represents the orientation of the major axis. Similarly, let there be a
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Figure 8.20: The transformation of a) the line ellipse intersection problem into that
of a b) line unit circle intersection.

ray r defined by (z,y, 8) where the point (,y) is the origin of the ray which points in

direction 6,
The ellipse can be transformed into a unit circle by the following three steps:
1. Translate back to the origin by (— ., —y.).

¢. Rotate the ellipse by —+ so the major axes are aligned to the X axis of the coordi-

nate system.

3. Re-scale the major and minor axes by a and b respectively.

This process leaves the ellipse with the parameters (2=0y=0,a=1b= 1,9 =
0) which describes the unit circle. The parameters defining the ray can be similarly

transformed by first performing the translation and rotation transformations:

ol cos(—y) =—sin(— T, Te
" (=) (—=7) B 8.18)
Uy sin(~y)  cos(=y) Uy Ue
and:
=6+~ (8.19)

Since scaling along both axes by different factors will affect the orientation of the new
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circle by:

4/- =B+ VBT=1AC
A - ' (8.28)
2A
T T, + X146z,
[y = = (8.29)
v /. Yy + X H/vesy,
T o, + X8z,
[y = o (8.30)
y yr + X ~/vedy,

2

where X /v and X ~** are the positive and negatives roots of the quadratic equation:
and /, and /; are the intersection points of the ray and the unit circle. Of course these
are not always defined, if the expression 5% — 1A¢ in the quadratic is less than zero

there are no intersection points and if it equals zero there is only one intersection point,

If there are two intersection points defined, then the probability of making the original
observation can be measured by overlaying a Gaussian distribution over the unit circle
and finding the maximum level of the distribution along the line segment defined by
the two intersection points. This is accomplished by populating a two dimensional
array with a discretised Gaussian distribution and finding the maximum probability
value in the cells of the array which lie along the line segment. Geometrically this
can be accomplished by finding the the maximum value of the Gaussian distribution
at intervals along the line segment. At any position along the line the value of the

Gaussian distribution is defined as:

l L((.'1'1+1!‘i.l.]?+[y]+nldll)}l‘")
‘_," p Y

v(t) = (8.31)

2pio?

where v(1) is the value of the Gaussian at the /" interval along the line segment. The
value of the Gaussian depends on the distance of the point at the interval from the
center of the unit circle. If there are two intersection points, the maximum of this

value over the interval gives the probability of the observation:

Phie = maz(0(0), ..., v(v/(v2 — 22 (2 — ;0)B)); (8.32)
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Figure 8.21: The probability distribution which results from applying the ellipsoid
line intersection sensor model over the range of all possible robot positions given the
current observation of landmark 1 at 90 deg.

In the case where there are either zero or 1 intersection points:

Prit =0 (8.33)

This probability value can then be used as an estimate of the probability that the given
ray representing an observation of a particular landmark was made from a sample

robot pose, irrespective of where the sample pose lies in the robot position state space.

The results of applying the ellipsoid line intersection sensor model over all position
states in the robot position state space are shown in Figure 8.21. The surface of the
graph shows the probability of observing landmark 1 at an angle of pi/2 radians from
an (z,y) robot pose. The peak regions of this plot are similar to the results produced
by the estimated depth line model, which is to be expected due to the large difference

between the reference and current observation angles.

The benefits of using the ellipsoid line intersection model can be appreciated when the
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FDF for Ellipsoid Line Intersection Sensor Model when Reference and Current Observations are Parallel
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Figure 8.22: The probability distribution produced as a result of applying the el-
lipsoid line intersection sensor model over the range of all possible robot positions
given an observation of landmark 1 which is parallel with the reference observation.

lines defined by the reference and observation angles approach parallel. Figure 8.22
illustrates such a case. The ellipsoid line intersection model returns the correct proba-
bility distribution even when the two observation lines are parallel, thus marking an
improvement on the sometimes incorrect alternate model necessary when applying

the line intersection models described above.

Ellipsoid and Arc Intersection

The ellipsoid line intersection model incorporates the uncertainty of the reference ob-
servation angle into the observation probability calculations but fails to take the cur-
rent observation uncertainty into account. The reliability of the current landmark ob-
servation angle depends on the resolution of the panoramic sensor and on the land-
mark template matching correlation value, as described in Chapter 4. A sensor model

which aims to accurately represent the observation probability distribution should in-
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Figure B8.23: The proposed ellipsoid arc intersection sensor model to measure the
probability of making a particle observation from a given position in the robot posi
tion state space. The ellipsoid and the arc capture the uncertainty in the landmark
location and the sensor observation respectively.

corporate all forms of uncertainty in the model.

Figure 8.23 illustrates the situation when incorporating the current observation uncer-
tainty into the sensor model, The noise in the current observation can be represented
as an arc centered on the observation angle and displayed as a sector radiating out
from the hypothesised robot position. It is unclear as to how best to represent the cur-
rent observations probability distribution within the sector, as the uncertainty intro-
duced by the resolution of the camera would suggest a uniform distribution between
the limits of accuracy while the matching uncertainty could be modelled as a varying

Gaussian distribution.
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The detection of intersecting regions and the combination of the ellipsoid and sector
probability distributions is also computationally expensive and difficult. The calcu-
lations need to be performed for each particle in the particle filter at each step of the
sense-localise-move cycle, and thus speed of computation is important, It is question-
able how much additional accuracy such a complex model will introduce compared
to the ellipsoid line intersection model, which depends on the uncertainty in the land-

mark estimate to model the entire noise in the system.

For these reasons this system employs the ellipsoid line intersection sensor model in
the particle filter to solve the local positioning problem within places in the topological
map. The uncertainty introduced by the observations is incorporated after the inter-
section calculation when the probability of making an observation is multiplied by the

landmark template matching correlation measure as described by Equation 8.10.

8.1.5 Local Positioning Experiments

Using the holonomic motion model and the various sensor models as defined above,
the particle filter can now be applied to the mobile robot local positioning problem.
The experimental setup is the same as for the heuristic local positioning method. A
place was learnt in the center of a large room (Figure 8.1). From this reference position
the robot then traversed a path identical to the Turn Back and Look path used in place
acquisition. During this move the images were captured and logged along with odo-
metric readings, Using this data and the particle filter, the rohot system attempts to
perform local position estimation continually along the path and the results are com-
pared to the odometric ground truth. By performing this experiment, the particle filter
approach can be compared to the heuristic method and other known grid based meth-
ods. In addition the various sensor models can be evaluated for their contribution to

local position estimation in the real world,

Implementation Issues

Implementing the particle filter system described above to operate on a real world
mobile robot introduces some uncertainty and timing issues which are not present in

the purely geometric models described above. In the real world system sensor data
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Figure 8.24: The flow of control when performing local positioning on the mobile
robot system. The grey shaded functions involve communication across the local
area network,

from the panoramic camera and robot odometry are sampled at different instances in

time and trying to associate one with the other can be problematic.

Figure 8.24 shows the flow of control when the robot system is performing local posi-
tion estimation using the particle filter approach. It can be seen that the processes by
which the panoramic and the odometric sensor data are sampled are in serial, thereby
introducing a time delay between the two sensor modalities. In addition the odomet-
ric data must be requested from the robot controller which is operating on a separate
processor. This communication over a local area network introduces additional timing
delays which further complicates any attempt to temporally synchronise the sensor

data.
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Rather than enforce hard real time constraints on the sensor sampling process, we
assume that the time delay between sampling the two sensor modalities is itself a
form ol uncertainty in the local position estimation system and can be overcome by
the high levels of uncertainty already present in the system or by adding additional

uncertainty to the motion and sensor models to factor in this extra source of noise.

Initialisation of Orientation

All the geometric models used to reward robot poses hypothesised by individual par-
ticles are sensitive to the orientation of the robot, Obviously a small change in the
orientation of the robot will result in a dramatic change in the sensor model response.
This means that the particle set distribution must explore potential orientations in the
state space thoroughly to produce accurate tracking results. In order to reduce the
need for an excessive number of particles to facilitate the orientation search, an initial-
isation phase can be used to approximate the robot's orientation before local position

estimation begins.

Landmarks which have tracked well in the current image provide information about
the robots orientation. In general, within the area surrounding a place's reference
position the observation angle to a particular landmark does not change dramatically
due to translation from the reference position. Any significant changes, therefore are a
result of rotation, and can therefore be used to initialise the local positioning system'’s

orientation estimate. The current system performs this initialisation as follows:

Let A be the set of landmarks from a landmark set such that each landmark in the set
has a template matching correlation measure with the current image of greater than a
threshold value. This ensures only accurately tracked landmarks are selected. In our
research this value was set at (.85, Then the initial orientation #, is set to the average
difference between the current observed radial angle of landmarks in set A with the

reference angles of landmarks in set A:

(7 (07 - 03)) (8.34)

14,

by =

where, n is the number of elements in set A, and ¢. and ¢!, refer to the current and

reference angles to landmark 7 respectively.
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Figure 8.25: Locations of images along the TBL odometric path

The particle set used to explore the state space of robot positions can then be initialised
with a Gaussian distribution around the orientation #,. By using this initialisation
strategy the range in the orientation axis of the local position search space can be
reduced. Particles can then be concentrated on exploring the X and Y axes of the

search space.

Experimental Setup

An experiment was carried out using images and odometry captured during a TBL
movement. The path originated from the reference position of a previously learnt
place. Figure 8.25 shows the odometry from the robot path along with locations along
the path at which panoramic images of interest were captured. Figure 8.26 shows
the estimated positions of the landmarks from the reference position and a panoramic
image with the reference landmark templates. Using this information together with

images captured along the path and the sensor models described previously, the robot
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Reference Landmark Set

Figure 8.26: The setup of the local positioning experiments. The estimated land
mark positions relative to the learnt place and the reference landmark set are also
displayed,

performs local position estimation for each of the approximately 500 sensor samples

along the path,

Throughout the sequence of images the landmark templates are tracked and their ob-
served radial angle and the odometry at each corresponding sample point form the in-
put to the particle filter performing local position estimation. Examples of the tracked
landmarks at different locations along the path are included in Figure 8.27. The av-
erage landmark template correlation value of the landmark set for each image in the
path is presented in Figure 8.28. The landmark tracking performance peaks when the
images in the sequence correspond to locations along the path which are close to the
reference position.

For each experimental run, the 2000 particles in the particle set were initially randomly
distributed around the reference position in a Gaussian distribution with a variance

of 100mm. The local position estimate at each iteration of the particle filter, was said
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Figure 8.27: Tracked landmarks at identified locations along the TBEL motion path.
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Landmark Set Tracking Reliability over Local Path
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Figure 8.28: The Landmark Landmark Recognition Performance (LRP) for reference
landmark set over the path traversed by the robot.

to be the robot pose represented by the particle in the particle set with the highest

probability as measured by the sensor model,

Ihe local position estimation using the particle filter approach was applied to the path
described above. On three separate trials, the three different sensor models were eval-

uated for their value to local position estimation.

Assumed Depth Sensor Model Results

Figure 8.29 shows the local position estimation results using the assumed depth line
intersection sensor model. The estimate is noisy and continuously jumps around, al-
though the basic shape of the TBL movement can be observed. The noise in the po-
sition estimate is as bad as that in the estimate provided by the heuristic approach,
Unlike the heuristic approach however, by incorporating the odometric information

into the position estimate as occurs using the particle filter approach, the scale of the
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Figure 8.29: The estimated local position along the TBL path using probabilistic al-
gorithm and assumed landmark depths.

robot movement is kept, and the estimated path is not as skewed, The noise present
in the estimated path can be attributed to the simplicity of the assumed depth sensor

model and the method used for obtaining a position estimate from the particle set.

The assumption that landmarks representing a particular place are all at a constant
depth means that the robot pose probability distribution defined by such a model is
not always correct and can be inconsistent between samples. In addition, the large
depth variance that such an assumption necessitates results in large areas of the state
space being rewarded for a given observation. These two problems lead to a particle
set that is distributed over a large area and has associated particle probability values

that vary greatly.

Figure 8.30 shows the particle set distribution produced by the assumed depth sensor
model for various observations over the initial X axis movement of the robot path. The
particles are initially distributed around the reference position as shown by the yellow

cloud of points. The distribution then moves along the .\" axis due to the introduction
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Particle Set Distribution for Assumed Depth Line Intersection Sensor Modal

300 i
Obs 0
Obs 30
Obs 35
Obs 40
200+ Obs 45
L Obs 50
100 F

Y Position (mm)
(=]
I
]

=100

-200

~300 : ! : ! * )
-100 0 100 200 300 400 500 600

X Position (mm)

Figure 8.30: The particle set distribution for various observations during the as-
sumed depth sensor model local positioning experiment.

of the odometry information. The assumed depth sensor model does not condense the
particle set distribution towards a local position estimate. As a result the underlying
distribution is inconsistent, thereby causing the measure of the particle containing the
highest probability in the set to jump around between iterations of the particle filter
cycle,

Although the sensor model does not condense the particle set, it can be observed that
the particle set does not continuously expand as would occur if the sensor model was
contributing no information at all. The particle set distribution does expand in one
instance in the figure, at observation 45, This is because between observation 40 and
45 the sensor sampling rate decreased sharply and a large amount of noise was in-
troduced into the system, as there was a large time period when no sensor data was

incorporated into the filter.

Imprecise geometric modelling leads to the errors in the sensor model as shown in

Figure 8.31. Observations from the various identified images along the TBL motion
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Observation d) Observation e)

Figure 8.31: Example observations from the local positioning experiment using the
assumed depth sensor model. The images show the observations of landmarks in
the landmark set from the most likely particle. The landmarks are shown at their
assumed depth. The length of the landmark observation lines reflect the contribution
(o the particle’s probability measure,
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path are shown. The observation diagrams show the landmark observation angles
from the robot pose associated with the particle with the highest probability measure,
Ihe coordinate system is centered about the reference position of the learnt place. The
landmarks are drawn as ellipses at the assumed depth and variance, The length of
the landmark observation lines is proportional to the contribution of the particular
landmark to the particles probability measure. This contribution is dependent on the

output of the sensor model and also the template matching correlation value.

It can be seen that at various points along the robot path that it is difficult to identify
a single robot pose from which it is possible to observe all landmarks at the assumed
depths. This inability to identify one clear, small region of being the most likely cur-
rent robot pose, leads to the diffuse and inconsistent local position estimation evident

when using the assumed depth line intersection model.

Estimated Depth Sensor Model Results

Figure 8.32 shows the results of using the estimated depth line intersection sensor for
local position estimation. The accuracy of the position estimate is clearly superior
than the assumed depth model. Knowledge of the landmark depths allows the sensor
model to produce tighter more consistent robot pose probability distributions. This
allows the particle set distribution to condense on the correct robot pose hypothesis
and brings stability to the choice of most likely particle. Some error in the position

estimate exists but the size and scale of the motion is preserved.

The relatively noise free results produced above are due to the sensor model condens-
ing the particle set around a stable and small probability peak in the state space. The
improvement in the particle set distribution is shown in Figure 8.33. The particle set
is initially distributed around the reference position. At observations 30, 35 and 40 the

particle set has condensed to a stable circular area approximately 50mm in diameter.

This distribution spreads out due to the period of motion without sensor data prior
to observation 45. This expansion is reversed by observation 50 although it appears
the estimate condenses around an incorrect sample pose state, This may be due to an
insufficient number of particles in the particle set to model the large motion between

delayed observation samples without missing critical parts of the underlying proba-
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Figure 8.32: The estimated local position along the TBL path using probabilistic al-
gorithm and estimated landmark depths.

bility distribution. The condensation about an incorrect point is evident in the plot
of local position estimation, the estimated Y position jumps from 0 to approximately
50mm. The resulting estimate does not increase in error, this infers that the sensor

model is correctly constraining the local position estimation process,

Figure 8.34 shows example observations from the most likely particle for various im-
ages along the path. The length of the landmark observation lines denote the con-
tribution to the particle’s probability measure. In this model all reasonable landmark

measurements make a contribution, resulting in equal lengths in the observation lines,

It is evident the estimated depth sensor model provides a more accurate, tighter, and

more stable local position estimate than that obtained using the assumed depth sensor

model.



272 L.ocal Position Estimation
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Figure 8.33: The particle set distribution for various observations during the esti-
mated depth sensor model local positioning experiment.

Ellipsoid Sensor Model Results

Figure 8.35 shows the result of estimating the local position of the mobile robot system
using the ellipsoid line intersection sensor model. The figure shows that the use of the
ellipse model produces an accurate, stable local position estimates when compared to
the other two models which are based on simple line intersections. The more complex
geometric model allows the sensor model to tightly constrain the underlying robot po-
sition probability distribution, especially when observations are made that are parallel

to the reference observations.

The sampled probability distribution produced by the particle filter in conjunction
with the ellipsoid sensor model at various points of time is presented in Figure 8.36.
The initial distribution is randomly spread about the reference position. As the robot
moves along the X axis, the ellipsoid sensor model tightly constrains the particle dis-

tribution into a small region of the underlying robot pose probability function. This
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Observation d) Observation e)

Figure 8.34: Example observations from the local positioning experiment using the
estimated depth sensor model. The images show the observations of landmarks in
the landmark set from the most current most probable particle. The landmarks are
shown at their estimated depth. The length of the landmark observation lines reflect
their contribution to the particles probability measure.
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Figure 8.35: The estimated local position along the TBL path using probabilistic al-
gorithm and the ellipsoid line intersection model

identified area accurately reflects the true position of the mobile robot as it traversed

the path.

The expansion of the particle set due to the prolonged absence of sensor data between
observations 40 and 45 is present, but is curtailed by the improved sensor model, and
the sampled distribution of the expanded set condenses onto the correct robot pose by

observation 45.

The ability of the ellipsoid sensor model to closely discriminate between hypothesised
robot poses when incorporating current observations into the local position estimate
is shown in Figure 8.37. The figure shows several example observations from var-
ious positions along the robot path. The observations from each figure are plotted
from the particle which has been identified as the most likely mobile robot pose by
the sensor model. The length of the lines representing the landmark observations are
proportional to the observations contribution towards the particle’'s probability mea-

sure. When compared to the observations from the previous two models it is apparent
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Figure 8.36: The particle set distribution for various observations during the ellip-
soid line intersection sensor model local positioning experiment,

that the current model discriminates more finely between observation angles, as there
are fewer long observation lines for the ellipsoid model. This shows that the cur-
rent model only rewards the most probable observations, thus leading to more tightly
constrained probability distributions and ultimately a more accurate local position es-

timate,

The ability of the ellipsoid sensor model to more finely discriminate between compet-
ing robot pose hypotheses produces a more accurate robot pose probability distribu-
tion and therefore the particle filter condenses around a more accurate local position

estimate than the previous two sensor models.

Sensor Model Comparison

The superiority of the ellipsoid line intersection sensor model compared to the as-

sumed depth and estimated line intersection sensor models is shown in Figure 8.38.
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Observation a)

Observation d) Observation e)

Figure 8.37: Example observations from the local positioning experiment using the
ellipsoid line intersection depth sensor model. The images show the observations of
landmarks in the landmark set from the most current most likely particle. The land-
marks are shown at their estimated depth with the uncertainty ellipse surrounding

them. The length of the landmark observation lines reflect the contribution to the
particle s probability measure
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Figure 8.38: Error in the combined X and Y location estimate for the three sensor
models.

The error of the local position estimate at each image captured along the example
path for each of the three sensor modes is shown. The error (distance of «, y estimate
from the corresponding =, y odometry measurement) of the assumed depth model is
plotted in green, the estimated depth model in blue and the ellipsoid model in red.
The error in the local position estimate obtained with the ellipsoid model appears to
reach a peak of approximately 40mm (if outliers are removed) with a mean error of

approximately 30mm, which is about half that of its nearest rival.

The peaks in the error plot that can be observed around the 45t image in the robot
path are associated with the expansion of the particle distribution in all sensor models

that occurred due to the delay in sensor sampling discussed above.

Figure 8.39 shows the individual X and Y axes components of the ellipsoid sen-
sor model error measurement presented in Figure 8.38. The increases in error occur

mainly along the axis of current motion, The first part of the robot path consisted of
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Figure 8.39: The separate X and Y error components for the ellipsoid line model
local position estimates.

motion solely along the X axis, whereas the second half of the path involved mostly
Y axis motion. In the axes error plots the X axis error can be seen to grow predomi-
nantly in the first half of the path, the Y axis in the second half. This implies that the
direction of robot motion was estimated accurately, and there was some error in the
estimated distance travelled along that direction. An elongated particle filter distri-
bution supports this implication. This result suggests that the ellipsoid model tightly
controls the direction of motion and the orientation from which the robot makes the

observations,

This idea is called into question when the orientation estimation error is investigated.
Figure 8.40 shows the orientation estimation error for each of the three sensor models
used in the local position estimation process. The green plot shows the error in the as-
sumed depth model orientation error, the blue line that of the estimated depth model
and the red line that of the ellipsoid sensor model. The two simple line intersection

model produce orientation estimates which are near the constant odometry orienta-
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Figure 8.40: Orientation estimate error for the three sensor models,

tion measure of (deg throughout the entire path, whereas the orientation estimate

error produced by the ellipsoid model varies greatly in comparison.

This error is alleviated when it is combined with the steering angle estimate, although
the error remains large when compared to the orientation error of the other two mod-
els. The oscillation in orientation could be caused by the continually adjustment of the
steering angle by the robot controller to obtain a straight translation, which would not
be reflected in the odometric observation measurements, although steering changes
of up to 10 — 15deg do seem excessive. This result is strange and it is not currently
explained satisfactorily. The fluctuation in steering and observation angles observed
in the ellipsoid model, and its inherent sensitivity to orientation results in accurate

position estimation of the more easy to validate » and y parameters.
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Figure 8.41: An example of tracked landmarks in an unoccluded and an occluded
panoramic image. 180 degrees of the image Is occluded by white noise.

[.ocal Positioning under Occlusion

A robot system performing local position estimation in dynamic environments must
be able to overcome the problem of landmarks becoming occluded by moving objects.
If a moving object passes between the panoramic sensor and the physical landmark in
the environment, the landmark tracking process for that particular landmark is inter-
rupted and potentially incorrect observation data will be introduced into the estima-
t1on process.

To perform robust local position estimation we need overcome the noise introduced
by occlusion. Our research attempts to handle the problem of occlusion by evenly dis-
tributing landmarks throughout the image and by incorporating the template match-
ing correlation reliability (Chapter 4) into the probability calculations of the sensor

model, as defined previously.

In order to test the ability to estimate a mobile robot's local position in the presence of
visual scene occlusion, experiments similar to the local positioning r-:.x[_)c:r'irm-:nts were

performed with altered input images. Areas in the panoramic images captured over
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Figure 8.42: The Landmark Recognition Performance (LRP) for the normal and oc-
cluded image sets.

an example robot path were drawn over with white noise prior to landmark tracking,
thereby eliminating views of the majority of landmarks and causing false observation
angles to be reported. White noise was used in order for the landmark tracking system
to have no chance in detecting a landmark anywhere near its original position, which
might happen in the real world when a small moving object temporarily occludes a

landmark from view.

A region of 180 deg of the panoramic images was over drawn with white noise. An
example is shown in Figure 8.41. The white noise region occludes three quarters of
the landmarks used to represent the learnt place, leaving only four landmarks from
one sector of the visual field visible. The average landmark tracking correlation per-
formance for occluded versus non-occluded images over the robot path is shown in
Figure 8.42. The LRP performance for the occluded image set is very poor, not rising
above the 0.7 mark where the performance for non-occluded images does not fall be-

low the 0.75 mark. An LRP of 1.0 means perfect correlation for all landmarks in the
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Unoccluded Observation Occluded Observation

Figure 8.43: An example observation produced by landmark tracking in an unoc
cluded and occluded image. The observation lines of occluded landmarks are short
due to poor tracking results.
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Figure 8.44: The estimated local position along the TBL path using probabilistic al
gorithm and the ellipsoid line intersection model with an occluded image set.
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Figure 8.45: A comparison of the error in local position estimate using the ellipsoid
line intersection sensor model over normal and occluded image sets.

landmark set. An observation using poor landmark tracking results is presented in
Figure 8.43. There are only four reliable landmark observations from which to base
the local position estimate, the occluded landmark observations are all at an angle

which disagree with the displayed robot pose.

The results of performing local position estimation with the occluded image set are
shown in Figure 8.44. Although the local position estimate is noisier than when using
non-occluded images, the basic shape of the movement was estimated correctly. In
fact the error in the occluded local position estimate is comparatively equal to that
of non-occluded position estimation. These results show that the current system can
perform accurate local position estimate even in the presence of large scale continuous
occlusion, provided that a small number of landmarks can still reliably be observed.
The number of landmarks necessary to maintain accurate local position estimation
varies on the orientation and depth of the landmarks. In general, three landmarks

from distinct sectors of the environment is sufficient for accurate position estimation.
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l.ocal l’n.'-;ilimling and the Data Association Problem

The data association problem in mobile robot localisation is the problem of matching
sensory perceptions with internal representations of the environment. In particular,
the difficulty lies in associating the current sensory data with the correct portion of the
internal representation. Localisation methods which use abstracted features to rep-
resent the environment are especially susceptible to this problem as they can contain

many ambiguous situations.

Our research uses a visual landmark representation which actively seeks unique land-
mark templates therefore incorrect data association is less of a problem. The problem
might still occur in situations where there is a sparse visual scene. A data association
problem could occur in the matching process between the places landmark set and the
current panoramic view, when an incorrect landmark observation is made with a high
recognition measure. For incorrect position tracking results to occur, not only would
a number of landmarks in a set have to be strongly mis-matched, but the pattern in
which they are distributed throughout the visual scene would have to be consistent
with the reference observations. Therefore it is highly unlikely that an odd occurrence
of mis-matching landmarks with a high correlation measure will significantly affect

the process of local position estimation in the current system.

The ability of the current system to perform local position estimation in the face of data
mis-association was tested by manually inducing incorrect landmark tracking over the
example path. Mis-associated landmarks were reported to have high correlation levels
in incorrect regions of the visual scene. Figures 8.46 and 8.47 show an example of land-
mark tracking and the resulting observation when five landmarks from the landmark
set were mis-associated. The observation image shows that unlike the mis-matched
observations seen in the occlusion experiment, the observations lines are consistently
long, representing the high confidence the system has in these observations. By con-
sistently returning high correlation measures for incorrectly matched landmarks, the
local position estimation process is subject to ambiguous and misleading information,

as is seen in the data association problem.

Figure 8.48 shows the results of estimating the robot position when five landmarks

consistently report mis-associated observations. Although there is noise, especially
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Imagu with Correct Data Assoclation

Image with Data Mis-association

Figure 8.46: An example of tracked landmarks with and without data mis-

association. The five landmarks across the top of the image are mis-associated.

Observation without and with data mis-association

Figure 8.47: An example of data mis-association showing the resulting observation
image. The long observation lines which do not intersect with the correct landmarks

are observations of mis-associated landmarks.

28
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Local Position Estimation with 5 Landmarks Incorrectly Recognised
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Figure 8.48: The estimated local position along the TBL path where 5 landmarks are
incorrectly tracked through the entire path..

away from the center of the movement, the general path of the robot has been esti-
mated well. The estimation error is shown in Figure 8.49 along with the results for
experiments with one and three landmarks being mis-associated. The error is consid-
erably greater than when there are no data mis-associations, growing to a maximum of
about 12em. The peaks in the error plot correlate with locations along the path when
the robot is most distant from the reference position. This suggests that data mis-
association accentuates the reduction in position information available as the robot
leaves the area immediately surrounding the reference position. This leads to an in-
ability to constrain the particle set and a noisier position estimates at the extremes of

the TBL movement,
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Figure 8.49: A comparison of the error in local position estimate when 1, 3 and 5
landmarks suffer from data mis-association.

8.2 Position Tracking Between Places

The previous section showed how it is possible for a mobile robot system using visual
landmarks in panoramic sensors to accurately localise relative to the reference position
of a learnt place. An accurate local position estimate allows a robot to perform precise
navigation tasks within the area surrounding the learnt place. In order for a mobile
robot system to be useful it needs to be able to navigate to places beyond that covered
by a single learnt place in a topological map. This means navigating between places

in the topological map while maintaining a position estimate.

The benefits of topological mapping derive from their sparse representation. A prob-
lem associated with a spare representation is that it can be difficult to implement such
a representation which captures the relationships between each place in the map on
a global reference frame. The desirability of maintaining a global frame of reference

is questionable as preserving the accuracy of such a reference frame over large dis-
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tances can is a difficult problem in itself. In topological maps position estimates can
only be made relative to the reference positions of places in the map. The problem of
maintaining a position estimate while navigating between places in a topological map
means that at some stage during the movement between two particular places, a robot

must conceptually switch its localisation reference frame from one place to another,

Passing Position Estimates Between Places

A mobile robot moving away from a learnt place 5; performs local position estimation
relative to the reference position of that place. As it approaches another place in the
map, 5, the landmark recognition performance for S, will be decreasing while that
for place S; will be increasing. At some point during the movement, the landmark
recognition performance for landmarks representing place 5, will rise above that of
51, signalling that the robot is now more likely to be nearer to place S;. At this stage
it has a local position estimate relative to the reference position of 5;. The task now is
to transform the position estimate so it is relative to place 5;, which is now providing

more reliable landmark tracking information.

The key to making this transformation is the existence of a transition 75, 5, between
the two places. Of course if this particular path has not been travelled before, there
will not be an existing transition and one must be defined according to the method
described in Chapter 7. Assuming that there is already an existing transition, or that
one has just been defined, the position estimate can now be passed between places

using the spatial information contained in the transition definition,

Figure 8.50 illustrates the situation further. At the moment when the robot system
decides to switch its localisation reference frame from place 5; to place 55, the robot
is at point P, the robot pose P relative to the reference frame defined by 5;. The
problem is to calculate a value for 77°2, the robot pose P in relation to the reference
frame defined by place S;. The new pose can be calculated as follows;

I S0} .*-'?.-'Hf”' £ £

= | (8.35)

i , S1M0 COSCY i ,
) P53 7} Py . gt

where « is the difference in angle between the two coordinate systems defined by 5
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T(S1<-252)

Figure 8.50: The geometric relationship of passing a position estimate between two
connected places in the topological map.

and 5;:
a=v — (y3—m/2) (8.36)

remembering Ts, 5, = (d;,v1) and T's,, 5, = (d3,72) as presented in Chapter 7. This
allows S, to be defined in terms relative to 5; as:
T dycasy,

= (8.37)

Y 5 dysiny;

In this fashion a position estimate relative to one place can be passed to another place

using the spatial relationship defined by the transition information,

Once a local position estimate has been transformed to be relative to the place to-
wards which the robot is travelling, the particles in the particle filter can be distributed
around this estimate. By spreading the particle distribution about the estimated po-
sition any errors contained within the previous estimate relative to the first place or
in the transition information are overcome. The robot proceeds with local position

tracking relative to to the new place, until another place transition has been detected.
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Map of Places and Transitions

Place 2 Reference Image

Figure 8.51: The topological map used in the position passing experiment. The tran-
sitions between the two places are drawn in blue. The two place’s landmarks are
shown in images captured from the place’s reference positions.

A Real World Example of Local Position Passing

The passing of local position estimates between places has been implemented on a
real world mobile robot. An experiment which displays the robot's ability to track its

position between two places is presented.

Figure 8.51 shows a topological map with two places connected by known transitions.

Panoramic images containing the reference landmark set for each place in the topo-
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Figure 8.52: A robot path from place 1 to place 2 in topological map.

logical map are also shown,

In this experiment the mobile robot executed a path from place 1 to place 2. The path
followed is shown in Figure 8.52. In traversing this path, the robot performs landmark
recognition on the landmark sets of each of the two places. At the start of the path the
landmark set for place 1 is recognised more strongly, whereas the landmarks of place 2
perform better towards the end of the path, as the robot approaches place 2. The LRP
for both places over the complete robot path is presented in Figure 8.53. Due to this
difference in tracking performance, it makes sense to estimate the local position of the
robot using the landmark set which produces the best recognition results. The goal of
this experiment was to successfully track the robot’s position over the complete path

using local position estimates relative to each place.

Figure 8.54 shows the state of the system in various locations along the example path.
In these images, the place with the higher Landmark Recognition Performance (LRP)
is drawn as a red circle, and the local position is subsequently estimated relative to
that place. Initially the landmarks describing place 1 have the higher LRP and thus
the robot position is at first estimated relative to place 1's reference position. The
estimated path taken relative to place 1 is shown by the black dots in part a) of Fig-
ure 8.54, while the particle filter particle set distribution is plotted by the green dots.
At the point where the LRP performance of place 2 rises above that of place 1's, the
position estimate relative to place 1 is transformed to be relative to place 2 using the

transition information, and a particle filter for local position estimation in place two
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Figure 8.53: The Landmark Recognition Performance of the two places from images
captured during the traversal of the path.

is initialised as shown in part b) of the figure. The green blob is the particle set of
poses relative to place 2 distributed about the transformed position estimate. Part c)
of the figure shows the state of the system at the next step, where the particle set has

condensed down to a correct estimate of the robot's local position relative to place 2.

Figure 8.55 shows the input to the particle filters from the panoramic sensor and land-
mark tracking system prior to and immediately after the passing of the position esti-
mate between the two places. The top two images in the figure show the landmark
tracking results of the landmarks belonging to place 1, and the observations they form
when used in the sensor model. The bottom two images of the figure show that af-
ter the system has detected the switch to place 2, the system is now using landmark

observations derived from the landmark tracking results of place 2's landmark set.

Using this method, position tracking was maintained over the entire path that the

robot system traversed. The complete estimated path is shown in Figure 8.56.
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b
a) Close Up
b) _ Close Up
o
c) Close Up

Figure 8.54: Position passing between places in the tC)pUlUt_’,i(_'"cﬂ map. Part a) shows
the estimated path the robot travelled relative to place 1. At this stage the LRP per
formance for place 1 is higher than for place 2. Part b) shows the moment after the
LRP for place 2 rose above that of place 1 and the particle set is now redistributed
around the passed position estimate relative to place 2. Place ¢) shows a few steps
later, the particle distribution condensing around the correct estimate.
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Observation from Place 1

Observation from Place 2,

Figure 8.55: Tracked landmarks and observations of the two landmark sets from the
two places at the image in the sequence when the need for position passing occurs.
T'he observations are drawn from the estimated robot position.
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Figure 8.56: The complete estimated path between the two places in the topological
map. The path contains estimates relative to both place 1 and place 2.

Position Tracking in a Small Topological Map

The local positioning experiments that have been presented have all been conducted
with very short movements. These experiments demonstrated the potential accuracy
of the local positioning system. However for such short movements odometric mea-
surements by themselves can provide similar accuracy if the initial position is known.
To test the ability of our system to maintain an accurate local position estimate in the
face of drifting odometry measurements, it is necessary to perform experiments with
longer and cyclical paths. An experiment of this scope is detailed and the systems
position tracking estimation results are compared to those produced using only odo-

metric measurements.

In this experiment the measure of robot position ground truth has been provided by
a laser range sensor and metric map based localisation system (Thrun, Beetz, Ben-
newitz, Burgard, Cremers, Dellaert, Fox, ahnel, Rosenberg, Roy, Schulte and Schulz,
2000). This "ground truth” has a granuality of 10¢m and it has been observed to pro-
duce erroneous measures of up to 20em, although almost all measurements are within
the 10cm limit. Interpretation of our system's local position estimation performance

should therefore allow for the possibility of errors in the ground truth measure.

A topological map containing a cycle was captured in a large room. The locations at

which each of the five places were learnt and the transitions between the places are
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Figure 8.57: A small topological map of five places containing a cycle used for the
position tracking experiment.

Figure 8,58: The path travelled by the robot in the position tracking experiment. The
robot travels around the map four times.

shown in Figure 8,57,

After the map was learnt, the robot then traversed a cyclical path visiting each place
in the topological map numerous times. The path travelled originated from place 1 in
the map and followed the route shown in Figure 8.58. The displayed path completed
the full circuit described by the topological map four times, travelling approximately
25m in total, During path execution the robot continuously recorded odometric infor-
mation and panoramic images. Over the extent of the path 4100 images and odometric

measurements were logged. The final position of the robot after the path was complete
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Figure 8.60: The estimated path travelled by the robot. The position estimation pro-
cess used both odometric and panoramic vision sensor data.

is shown near Place 1 by the small blue circle.

The odometry measurements captured over the path are plotted in Figure 8.59 relative
to the initial starting position at place 1. The odometry initially follows the travelled
path quite closely but eventually the accumulated error in the odometry measure
ments causes the estimated path to skew significantly from the true path. The odo-
metrically estimated final position of the robot is shown by the blue circle. The final
position is about 50¢m away from that indicated by the true path plot. This result
clearly demonstrates the need for additional sensor data to correct the accumulating

odometric error.
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Figure 8.61: The error in position estimation from the true path from the estimated
and odometric paths.

The results of performing position tracking over the cyclical path are shown in Fig-
ure 8.61, The black dots in this figure show the estimated position of the robot at each
point along the path. The green dot shows the position estimate of the robot at the
end of the path. After the entire 25/m path is complete the position estimate produced
by the current system is approximately 15¢m from the ground truth location. This can
be compared to the error of approximately 50cm for the final odometric estimate. The

mean error of the our system'’s local position estimation over the path is 17.06¢m.

Although the estimated path is noisy it does not suffer from the drift seen in the odo-
metric results. If the robot was to continue traversing the cycle in the topological map,
the odometric estimate would continue to grow, whereas as the error in the estimate
produced by our system would be maintained at the same level. The noise in the
estimate is introduced by poorly tracked landmarks and the inaccuracies of passing
position estimates between places. It can be seen however that the error in the local
position estimate is bounded, with certain sections of the topological map, especially
around place 2 providing very accurate position estimates, At these places, the system
uses accurate landmark tracking information to correct and constrain the distribution

ol the particle set representing the robot’s position estimate.

The ground truth measure is subject to an error of approximately 10em itself, so it
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association were IJI'(‘S(.‘.HI'(‘.('I.

s Position Tracking: A method of passing position estimates between places to
achieve local position tracking along a path was introduced. A position tracking
experiment throughout a topological map demonstrated the systems ability to
overcome odometric drift and produced estimation results within a 15 — 20em

error of the metric map based “ground truth” measure.

The particle filter approach to mobile robot localisation allows for the approximation
of arbitrary robot position probability density functions. This is important in the case
of the local position estimation in the current system as the noisy sensor informa-
tion can produce non-Gaussian distributions. When applied to the restricted area sur-
rounding the reference position from which a place was learnt, it can provide very
accurate position estimates despite the noisy and often inconsistent information pro-
vided by landmark observations. The 4emn accuracy in the local position estimate is
quite remarkable given the low resolution of the vision sensor and the loose coupling
of odometric and visual sensor data. The accuracy is achieved through the discrim-
inatory ability of the ellipsoid-line intersection sensor model and the particle filter's
propensity for condensing about the correct estimate. The chosen sensor model bal-
ances the computation cost of particle evaluation and the ability to model the process

noise in the system.

Position estimation between places was less accurate but was robust to errors due to
odometric drift. The accuracy of position estimation within places necessarily is de-
pendent on the distance from the reference position as the more accurate measure in
a landmark’s position estimate is its angle from the reference position rather than the
depth measurement. This results in a range of achievable position accuracy as the
robot moves between places in the topological map. It should be assumed that a robot
that needs to perform very accurate measurements near a particular location in an
environment, would learn a place of that location, thus maximising the potential posi-
tion estimate accuracy. Although the initial location of landmarks within a panoramic
image are computationally expensive, position tracking can be maintained close to

real time by tracking landmarks through the image sequence.
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Chapter 9

Global Localisation

Global localisation is the process of locating a robot in an internal map from an un-
known start position. In our research this means localising to a particular learnt
place in the topological map. In this chapter the global localisation problem is in-
vestigated and a solution is proposed involving the use of the low-level landmark
based place representation. To globally localise the robot system must match the cur-
rent panoramic view with the landmark sets of all places in the topological map. The
results of this matching can be used to discriminate between places on the basis of
recognition performance. The method for this solution is described and experimen-
tal results on place discrimination are presented. A high place discrimination ability
reflects the uniqueness of individual places defined by sets of visual landmarks and
validates the underlying low-level representation. Experiments combining the results
of global localisation and local position estimation are reported. The computation
costs involved in the process of global localisation using the low-level representation
are expensive. The global localisation search space can be constrained by the mid-level
representation of local space profiles and computational costs reduced. In attempt to
achieve continuous global localisation and local position estimation, a method for the
detection and recovery of local position estimation is developed. Using these methods
for continuous global localisation and local position estimation, the kidnapped robot

problem can be solved.

Section 9.1 briefly reviews the matching of landmark sets with panoramic images to

perform place recognition. Section 9.2 reports experiments that investigate the use of
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Landmark Recognition Performance (LRP) over Cyclical Path

1500
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Figure 9.1; Landmark Recognition Performance (LRF) over the example path from
the position tracking experiment.

P=5S | (LRP(CyS;) =maz(LRP(CyS)),...,LRP(C,SN)))  (9.1)

where P is the identified most likely place at time ¢, and LEP(C}, S;) is the LRP
measure gained when matching the landmark set of place 5 with that of the current

panoramic image ;.

Identifying the MLP in this fashion works well for maps which contain places where
the panoramic visual scene is similar across the whole map. Figure 9.1 shows the
LLRP performance of all places in the topological map used in the position tracking
experiment over a cyclical path for all images captured throughout the path. The LRP
plot for each place produces a regular peak, corresponding to the locations along the
cyclical path when the robot captured images near the reference position of each place.
The place with the highest measure of LRP can be easily identified as the MLP in the
topological map at any point along the example path. This result is achieved due to
the “uniqueness” of the landmark set for each place despite the fact that all sets were

acquired from the same general area in the environment.

This performance is due in part to the similarity of the visual scene from all places
in the topological map. Given the highly unstructured and visually dense nature of
panoramic images captured in the large room, the robot had plenty of interesting land-

marks to select. Additionally, potential landmarks are unlikely to be repeated in such
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Figure 9.2: Topological map of the test environment for the place discrimination
experiment. The 50 acquired places are shown in red, while the transitions between
places are shown in blue.
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Figure 9.3: Example landmark sets and visual scenes from the reference position of
places in the topological map: Places 1, 2, 9, 16, 23,
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P37

P43
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P50

Figure 9.4: Example landmark sets and visual scenes from the reference position of
places in the topological map: Places 29, 37, 43, 44, 50.
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Figure 9.5: Example path which traverses the topological map used in the place
discrimination experiment. The 50 places in the topological map are shown in red
while the path the robot system travelled is displayed in green,
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Figure 9.6: The LRP of each of the 50 places in the topological map over the example
path.

jority of the path, there are only a couple of places where no peaks are apparent. We

can further refine our proposed method for MLP identification.

There is one other measure which is readable available and which impacts greatly on

identification of likely places which we have so far ignored. The background LRP
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LARF Surface Over Path and Map Space

Figure 9.7: The LRF surface of each of the 50 places in the topological map over the
example path,

level for each place that was detected and recorded at the time of place acquisition. If
the LRP measure for a particular place is subtracted from the background LRP level
for that place, then the resulting quantity gives an indication as to the strength of
the LRP measure irrespective of the background levels. This is particularly helpful
when comparing LRP of places with differing background levels. The formulation for

identifying the MLP then becomes:

Ce?; = -,.Jf'“"((' ' ,‘-,‘I-) A Ic,'fﬂbh‘.}*

B=S8 | (@ =maz(Q),...,QN)) (9.2)

where again /5 is the identified most likely place at time ¢, and LR P(C}, S;) is the LRP

measure gained when matching the landmark set of place 5 with that of the current

bgLRP

panoramic image ¢, and now 5; is the background LRP level for place S;, and
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Figure 9.8: The difference between the LRP and the background LRF levels for each
of the 50 places in the topological map over the example path.

¢! is the difference between the measured LRP and the background level for place i at

time 1.

Applying this new formulation for MLP identification to the images captured during

the motion path gives the results shown in Figure 9.8. This is shown as a surface over
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Difference between LRF and Background LRP Surface Over Path and Map Space
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Figure 9.9: The difference between the LRP and the background LRP levels for each
of the 50 places in the topological map over the example path.

the image and map space in Figure 9.9. When compared to the results produced by
LRP measurements, most of the existing peaks have been strengthened and new peaks
have emerged giving an overall better indication of the MLP at each stage along the
path. In the surface plot, the magnitude of background peaks and troughs has been
reduced. Using this method of place discrimination for exhaustive global localisation,

the MLP can be correctly identified over 100% of the images in the path.

This improvement is difficult to see due to the large number of places. The improve-
ment gained by incorporating the background LRP levels can be seen when comparing
two places from locations in the map with disparate visual scenes. Figure 9.10 shows
the LRP of places 2 and 43 over the example path, Place 2 represents a location in the
environment which is in the large room, as shown in Figure 9.2, place 43 on the other
hand, was acquired in a corridor environment. The LRP figure shows that although
both places display peaks in the plots of their own performance at the correct locations

along the path, the background LRP level of place 43 nearly overwhelms the peak LRP
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Figure 9.10: LRP of places 2 and 43 over the example path,

level produced by place 2.

In comparison, Figure 9.11 shows the difference between the LRP measurements and
the background LRP levels for each of the two places. Now it can be seen that both
places form a peak even when compared to the other place, the new formulation over-

comes the differences in background LRP levels between the two places.

Global localisation can be achieved throughout the topological map by matching the
current panoramic view with the landmark sets from all places in the topological map.
The uniqueness of individual landmark sets throughout the entire topological map in
conjunction with knowledge about the background recognition levels can successfully
identify the MLP from which a robot makes an observation of the environment. The
uniqueness of the visual landmark representation can be demonstrated by matching
each places’ landmark set with the panoramic image captured from the reference posi-
tion of all other places in the map. Figures 9.12 and 9.13 show that only when matching
a reference landmark set with the place's reference image is a high correlation result

achieved.
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Figure 9.11: The difference between the LRP and the background LRP levels for
places 2 and 43 over the example path.

9.3 Combining Global Localisation and Local Positioning

Local Positioning can be used in conjunction with the topological map to estimate
the robot's position along a route through a map without initial knowledge as to the
robot’s position. The global localisation system can be used to identify the MLP at each
step along the route. Within the MLP the local position of the robot can be estimated,

tracked and passed to the next identified MLP,

In smaller maps with landmark sets that were captured in visually dense environ-
ments global localisation and local position tracking can be carried out to produce a
reasonable position estimate. When the robot is executing long paths through a dy-
namic and visually sparse environment however, the robot can become lost, with the
particle set distribution, and subsequently the position estimate, diverging from the
ground truth position. The nature of the Condensation algorithm which is used to

control the distribution of particles in the particle set does not consistently recover
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Figure 9.12: The LRP levels for each of the 50 places in the topological map when
matched with the places’ reference images.

position tracking automatically. When this situation occurs, the robot system must be
able to first detect that it has become lost, and second, take steps to recover position

tracking.

9.3.1 Detecting Loss of Position Tracking

The robot can detect a loss of position tracking by monitoring its belief as to where it
is in the topological map. The robot's belief as to where it is in the topological map is
fully represented by the entire distribution of the particle set. The samples approxi

mate the probability distribution of the robot’s possible position over the area around
the current MLP's reference position. Any attempt to calculate a confidence measure
of the robot's local position estimate should depend on the diffusion of the particle
set. Such a calculation is problematic in real time. Alternatively, the probability of the

most likely particle in the particle set can be used as an instantaneous measure the sys-
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Difference between LRP and Background LRP Surface: Places vs Reference Images
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Figure 9.13: The difference between the LRP and the background LRP levels for each
of the 50 places in the topological map when matched with the places’ reference
lmages.

tem’s belief in it's position estimate without significant additional computation. This
probability measure is normalised, so the confidence measure relies instead on the raw
sensor model output of the most likely particle. This measurement is the output of the
sensor model given the current sensory view and the hypothesised robot position as

provided by the most likely particle.

Figure 9.14 shows the robot movement between two places in a topological map that
was used in the position passing experiment in Chapter 8. Figure 9.17 shows the raw
sensor model output for local position estimates along the motion path. The sensor
model output is at a high level when the robot makes observations close to the refer-
ence position of place 1. The output level decreases as the robot moves away from the
reference position. It increases again as the robot approaches the reference position
of place 2. This reflects the accuracy of local position information as the observation

location moves away from the reference location.
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Figure 9.15: Maximum sensor model output for local position estimates along the
example robot path.
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of 200mm. This step attempts to recover from the situation where the particle set
has mistakenly condensed into a tight region of the state space, close to the true

robot position, and cannot recover through process noise alone,

2. Random Redistribution: If the local redistribution step does not bring the '
above the threshold, the robot redistributes the particle set randomly throughout
the MLP. This redistribution is Gaussian and is centered on the place's reference
position and has a variance if 1m. A redistribution of with a variance of 1m
should ensure a thorough search of the region in the environment represented

by the place, given the distance between places in acquired topological maps.

Position tracking is considered to be recovered when the sensor model output of the
most likely particle rises above the threshold value, or the second stage of particle
redistribution has occurred, and the count of consecutive observations of lost position

tracking is reset.

Figure 9.16 shows an example of position tracking and the two step recovery pro-
cess. The figure shows position estimation and particle set distribution along the path
between the two places from the position passing experiment. Initially the position
estimate had been manually set to create a situation where the robot is “lost”. Part
a) shows the lost position estimate and particle set. The robot detects this loss and
redistributes the particles in the local area as shown in part b). After the robot is still
lost the particle set as shown in part ¢) is redistributed randomly throughout the area
surrounding the reference position. Finally the particle set condenses about a more

accurate position estimate as shown in part d).

Figure 9.17 shows the sensor model output for the position loss and recovery sequence
presented above. Initially the out put is essentially zero as the robot is lost, and re-
distributes the particle set. At image five in the sequence the particle set has been
randomly redistributed , and a particle reports improvement in the sensor model out-
put. After that, however it drops briefly as the position estimate is passed between the
places in the map, and then grows steadily as the robot approaches the second place

in the path.

The robot can detect losses in position tracking within places and also recover to form

another sensible local position hypothesis.
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Figure 9.16: Loss and Recovery of Position Tracking: a) position tracking is lost; b)
robot attempts to recover by redistributing particles around the local area: ¢) robot
attempts to recover by randomly redistributing particles throughout place; d) posi-
tion tracking has been recovered,

9.3.3 Global Localisation and Local Positioning Experiment

The combination of global localisation and local positioning with loss of tracking and
recovery was applied to the path through the large topological map shown in Fig-
ure 9.5. The position estimation results are presented in Figure 9.18. Position estima-
tion over the large topological map is noisy however the general path shape can still
be observed. Loss of position tracking occurs on several occasions but is recovered
each time. The location along the path in at which position tracking was lost are high-

lighted in Figure 9.18 by light blue boxes. The final position estimate at the end of the
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Figure 9.17: Maximum sensor model output for position loss and recovery,

path lies within 15¢m of the ground truth measurement. When position tracking is
maintained the confidence measure is above the loss of tracking threshold and the po-
sition estimate stays within a maximum error of approximately 30¢m. Errors in some
sections of the estimated path cause the error to move above 1m but the robot always
recognises that tracking has been lost and takes action that causes eventual recovery

of the position estimate.

9.3.4 Computation Costs

The process of global localisation using landmark set matching is computationally ex-
pensive. As reported in Chapter 4, matching just one landmark set with one panoramic
image takes 700ms on a Pentium Il 750m H = processor. To match all 50 places in the
current topological map this results in a total computation time of 35s. This is unac-
ceptable, even given the non-critical real time constraints this research placed on the
global localisation task. In order to make the system usable and provide timely re-

sponses to tasks involving human-robot interaction, this computation time must be
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where position tracking is poor,
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Figure 9.19: A topological map containing local space profiles in the representation
for each place.

Ihe local space profiles which represent each of the 10 places in the topological map
are shown in Figures 9.20 and 9.21. Each local space profile is displayed as a histogram
overlaid on a panoramic image captured at the reference position of the associated
place. The local space profiles representing the places in the map can be grouped into

three broad categories:

 images captured in the large room and containing a representation of large open

spaces:

* images captured around the doorway between the room and the corridor, dis-

playing open areas and constricted regions:

e images captured in the corridor representing restricted open space except in the

axis of the corridor,

By comparing local space profiles of the current sensor view with the local space pro-
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Figure 9.20: The local space profiles of places 1-5 in the topological map.
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Figure 9.21: The local space profiles of places 6-10 in the topological map.
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files if those places in the topological map, the global localisation search space can be

at least restricted to places within one of the three categories.

Local Space Matching for Global Localisation

After learning the topological map shown in Figure 9.19, the robot traversed the map
following the displayed path. For each image captured along this path the local space
profiles were extracted and matched against the local space profiles of the ten places

in the topological map.

Figure 9.22 shows the results of matching the local space profiles. Each line in the
graphs shows the matching performance of one place in the topological map. The
results are grouped into the three broad place categories. Part a) shows the matching
results for places one to four, part b) places five and six, and place ¢) places seven to

ten.

In general the results show the three categories of local space. There are even rough
peaks at the location along the path where each place was learnt. In order to sub-
stantiate the local space profiles ability to discriminate between places it is useful to

compare the results to those gained from landmark set matching discrimination.

Figure 9.23 shows the Landmark Recognition Performance (LRP) over the example
path for each of the landmark sets representing the 10 places in the topological map.
The LRP results are also divided into the three categories for comparison with the
local space results. The LRP provides a better measure for discriminating between
places, and it is unclear that the best local space matching results always coincide
with the best LRP results. It is clear that the local space matching results do provide

information pertinent to constraining the global localisation search.

Computational Benefits of Local Space Matching

The local space matching results can be used to constrain the landmark based global
localisation search. The results must be categorised in a qualitative fashion in order
to identify which places in the map to search further. A simple way to do this is to
use sets of places which are above a given threshold for local space matching. If this

was a static threshold, many occasions could occur where the noisy local space sensor
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Figure 9.22: Local space profile matching along the example path. Places are grouped
into plots with similar response curves.
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Figure 9.23: Landmark Recognition Performance along example path. Flaces are
grouped in plots by similarity of the local space profile.
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Figure 9.24: Correct place inclusion in local space set for global localisation.

correct place is quite low (~ 60%) when B is zero. This is equivalent to identifying the
MLP purely by the local space matching results. From this it can be seen that it is not
possible to rely solely on the local space profile matching for global localisation. The
percentage of sets which include the correct place rises quickly however, as the value

of B increases and levels of at above 99% at around the value of 0.1,

The set inclusion percentage must be balanced against the global localisation compu-
tation costs which grow as the size of the set increases. Figure 9.25 shows the cumu-
lative number of places included in the sets (%% over the example path for a range of
lower limit values. At each image in the path, the size of the set (" was evaluated
for each value of B and this size was summed over the image path. The plot shows
that the growth in total required computation presented by the cumulative set size is
almost linear and the slope of the relationship depends on the value of the lower limit

B.

Figure 9.26 shows the average set size for the various values of the lower limit B. This

relationship is also linear with the size of 4, meaning that as B increases the size of
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Figure 9.25: Cumulative number of places in the local space set during global local-
isation over the example path for various lower bounds to the local space matching
limit.

the set (7% increases proportionally.

Given that there is a sharp plateau of set inclusion percentage and that the computa-
tion cost increases linearly, it is clear that the value of B must be chosen before the
set inclusion plateauing effect reduces the contribution of any additional computation
caused by increasing set size. Therefore in our system the value of A is set to 0.075
which gives a set inclusion percentage of 98%, and a average set size of 4.01. These
values can be compared with the a full search of the global localisation space which
has 100% set inclusion and an average set size of 10. By using the second level of
spatial representation, that of local space primitives, the search space of global local-
isation can be reduced approximately 60% at the cost of less than 2% in set inclusion

performance.

[n terms of total computation savings generated by the use of a local space representa-

tion, the benefits can be calculated by comparing the cost of global localisation using
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Figure 9.26: Average local space set size during global localisation for various lower
bounds to the local space matching limit.

landmark recognition for all places in the topological and the cost of global localisa-
tion on the constrained place set plus the additional cost of performing the local space

matching,

Given that the cost of matching for one place using local space profiles is less than Tims
when comparing it to the cost of matching landmark sets , 700m.s per landmark set, the
additional costs involved with local space matching of places in the topological map
are negligible when compared to the savings. Total computation savings derived from
the use of the local space representation then, can also be estimated at approximately

60,

9.4.2 Continuous Global Localisation

The knowledge gained from the local space profiles can be used in conjunction with

the particle filter system to provide continuous global localisation and local position-
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ing. In order to achieve this the mobile robot system must perform the following three

steps:

L. Constrain the Search Space: as described previously, the localisation search space
of all places in the topological map must be restricted in order for the localisation

process to approach computational tractability.

2. Perform Global Localisation: Identify potential places in the map that the robot is

most likely to be at at this particular moment in time,

3. Perform Local Position Estimation: use the global localisation information to dis-
tribute particle filter samples to appropriate places in the topological map to

perform local position estimation.

This process can be used iteratively to provide continuous localisation, However it is
desirable to make a distinction between the localisation upon initialisation of naviga-

tion, and that of localisation with a prior estimation of robot position.

Active Place Set

A subset of places can be defined in the topological map in order to restrict the global
localisation search. Membership of this set can be determined using the local space
profile representation. This set of likely places is named the active place set. Global
localisation using landmark recognition is performed with members of the active place
set. In addition to the set of places (-{" identified by local space matching, the active
place set, A, contains as members the MLP from the last iteration 13—, and its closest
adjacent place as defined by the transition information, [7*,. The complete active

place set can then be defined as:
=G uB_uUPBZ (9.5)

The previous MLP is added to the set identified by local space matching to provide
stability to the local place estimate in the presence of noisy local space estimates that
occur when moving objects temporarily occlude large portions of the panoramic cam-
era’'s visual field. The place associated with the closest transition is also included in

order to detect when the current local position estimate passes into the domain of an
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adjacent place in the map that may not have been identified by the local space match-

ing process.

Examples of active place sets constructed by applying local space matching and Equa-
tion 9.5 to real world localisations situations are shown in Figure 9.27. Each of the
figures show a topological map and the active place sets derived from observations
made at places along a path. Places which are included in the active place sets are
drawn in green, whereas the places which are excluded from the set are in red. The
positions from which the sensory views which produced the active place sets where
taken are displayed in yellow. It can be seen that all identified active place sets include
the places closest to the position from which the sensory views were captured. The ac-
tive set in Part a) contains only two places , thus providing a significant computational
saving for the subsequent localisation task, while part b) only managed to restrict the

active place set to six places. Part ) identifies three potential places.

[t should be noted that the active place sets in a) and c) are from locations along the
path which are close to particular places, thus providing definite place matching re-
sults and subsequently small active place sets. The location from which the active
place set in part b) was produced is closer to the center of two places, thus providing

a weaker matching result and a large active place set.

Initial Global Localisation

If a mobile robot system has been turned-on or if the robot has detected it has become
lost, it is necessary to perform global localisation with no prior knowledge as to the
robot's location in relation to the topological map. The robot must make a full search

of the places in the active place set to successfully localise itself.

If computation resources are scarce, or there is a need for the robot to immediately
move, the robot could make an almost random guess as to likely places and proceed
with the global localisation process as from a known position. In our system we as-
sume that it is acceptable for the robot to initially perform global localisation at less

than real time rate.

To accomplish the initial global localisation step, the robot system simply matches the

landmark sets of each place in the active place set, the place with the highest LRP is
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Figure 9.27: Three examples of global localisation and local position estimation using
the local space profiles to constrain the global localisation search.
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able to further limit the active place set. While the measure for local position confi-
dence is high then the MLP is assumed to be correct and only the MLP and the adjacent

place need to be searched for their LRP:
-lr !’f’;’; { .a-]'lf';f" L]l(”l 1‘11‘. s ,j‘t—l L IJ\'___}l

where P/} is the sensor model output of the most probable local position estimate in
the most likely place P, T"" is the local position estimate threshold and 4, is the

resulting active place set.

If local position tracking has been lost then the active place set must be redefined to
ensure the localisation system explores the places in the set constructed by the local

space matching results:

if PLE > THF then A= BiuPB-UPFZ,

where B, is a sub set of places from the set G{°.

The formation of set B depends on the computational resources that are available.
Obviously the more places that are contained in set B, the greater the chance that the
MLP will be correctly identified and the position tracking regained. Conversely, the
less places in B the faster the landmark recognition for each place can be performed
and another sensor observation can be captured. In such a small map, as used in our

examples, B was set to contain all elements from .

Figure 9.28 shows the flow of control in the proposed system when continuous global

localisation and local position estimation are performed.

Figure 9.29 shows a sequence of continuous global localisation and local position esti-
mation using a restricted global localisation search space. This figure shows example
b) from Figure 9.27, where the active place set has incorrectly identified the MLP. In
the current figure, the places in the topological map are shown in red, places in the
active place set in green , the particle set also in green, and the actual current robot
position in yellow. In part a) the robot attempted to perform local position estima-
tion in an incorrect place, and the system detected a loss of position tracking. Part b)
shows the system redistributing particles about the local current estimate. After this

strategy fails, local space matching is performed to produce a new active set and the
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Figure 9.28: The flow of control when performing continuous mobile robot global
localisation and local position estimation.

system performs a restricted global localisation search. This produces a correct MLP,
and the position estimates are redistributed about this new place, as shown in part c)
of the figure. Part d) shows the state of the system after the next observation, when

the particle set condenses around a new, more accurate local position estimate.

During this process, the size of the set of places upon which landmark template match-
ing is performed did not rise above 3, compared to a maximum of 10 for unconstrained

global localisation.
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Figure 9.29: Continuous global localisation and local position estimation when the
initial position estimate is wrong. The particle set representing the robots current
belief in its location is shown in green, while the actual location is drawn in yellow.

9.5 Disambiguating Similar Places

All landmark or feature based localisation systems will encounter situations where
the localisation information provided by the underlying spatial representation will
be ambiguous. An obvious example of this is a robot system in a featureless corri-
dor environment, Given a spatial memory based on a finite number of representation
modalities, a corridor can be imagined where all the modalities could fail to provide

unambiguous localisation information. Instead of relying on predefined landmarks or
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features to guide the localisation process, it can be useful in these pathological cases
to actively search for discriminating features with which to eliminate localisation am-
biguities. Chapter 6 introduced a method for extracting disambiguating features from
panoramic snap-shots of places in a topological map and to use these features to dis-

criminate between places for the purposes of mobile robot localisation.

Our method is expensive and unreliable however, and is not ready for application toa
working mobile robot localisation system. In the present case, the use of distinct visual
landmarks to perform place discrimination is successful in a vast majority of instances
and the addition of the third level of spatial memory to the localisation process does
not significantly improve localisation performance. Chapter 6 briefly discusses some
options for improving the contribution of this level of spatial representation, but for
now, its inclusion is only to highlight the need for actively searching for discriminating

features,

Although our system does not attempt to use the third level of disambiguating fea-
tures in the reported localisation experiments, it is useful to describe the basic steps
of integrating a such a level of spatial representation into the existing mobile robot

localisation system:

I. Detect an Ambiguity in Localisation: a method of detecting the ambiguity aris-
ing from the lower levels of spatial representation is needed to trigger the dis-
ambiguation process. In the present system, this would involve the Landmark
Recognition Performance of two or more places being equal. Of course given
the expense of such a step, there should be some continuous time period during
which an ambiguity is detected before it is reported. This would eliminate the
need to perform disambiguation when the cause of the ambiguity is temporal in
nature, such as dynamic objects occluding the visual scene or loss of landmark

t.t‘ac:kirlg,

2. Decide Whether to Disambiguate: not every ambiguous situation requires disam-
biguation before purposive navigation can be achieved. A system which uses
disambiguating features needs to be able to decide when such an action is ap-
propriate and when navigation in ambiguous cireumstances is acceptable. A

suggestion for making this determination could consider the potential expense
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of mis-planned routes when an ambiguous localisation is accepted.

3. Perform Disambiguation: Finally the method of disambiguating features can be
used to discriminate between ambiguous places in the topological map. Local

position estimation and position tracking can then proceed as normal.

Our mobile robot system does not use the disambiguating features level of spatial
representation for the reasons listed previously. A truly robust localisation system,
however, would require a method for performing location discrimination like that of
disambiguating features to actively search for discriminating features in pathological

situations.

9.6 The Kidnapped Robot

The kidnapped robot problem, as introduced in Chapter 1, remains an open problem

in contemporary mobile robot localisation systems. The problem restated is:

... given a robot system which has a strong belief in its location within an internal
map of the environment, “kidnap” the robot by transporting it to another location in
the environment, without the robot being aware of the translocation. The robot now
must realise it has been “kidnapped”, and further re-localise itself within it's internal

map ...

This problem is equivalent to relocalising a lost robot, with the additional nuisance of
the robot moving instantaneously from a known location in the map to an unknown
without any odometric or clues to the transition. A robust solution to this problem

remains elusive due to the various sub-problems which must be first solved:

1. Detection of Loss of Position Tracking
2. Global Relocalisation

3. Recovery of Position Tracking

The global relocalisation step has proven to be the most intractable, especially in envi-
ronments where large maps are necessary and systems that have real time constraints

on robot response.
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The previous experimental results in this chapter have addressed the sub-components
of the kidnapped robot problem. It has been shown that the multi-level spatial rep-
resentation can be used to perform recovery of loss from position tracking as well as

global localisation with a constrained search space.

9.6.1  Multi-Level Spatial Memory and the Kidnapped Robot

The multi-level spatial memory approach to global localisation can be applied to the
kidnapped robot problem in the same way it was used to re-localise a lost robot. Local
positioning using the low-level representation can be used to form a strong belief that
the the robot is in a particular location in the topological map. Upon kidnapping and
release in another location, the robot can detect a loss of position tracking and can
attempt to re-localise using first the local space representation to constrain the global
search and then the landmark representation to select a MLP and initialise position
tracking,

An experiment to test the systems ability to solve the kidnapped robot problem, given
a topological map and a set of panoramic images and odometric measurements from

an example path through the map, involves the following steps:

I. Identify a start position along the path, where the robot will be positioned prior
to the kidnapping, and a release position along the path from where the robot will

be released after kidnapping.

2. For the first 5 frames (frames 0—4) from the start position localise the robot within
the topological map. A frame refers to a sensor data sample from a particular

location along the example path.

3. After frame 4, the robot is kidnapped. Continue localisation, but present the

sensor data associated with the release position along the robot path.

4. During the next 10 frames (frames 5 — 14) perform localisation. The system
should detect that local position estimation has been lost and attempt to re-

localise and regain local position estimation.

The frame number refer to the frames prior to and after the kidnapping. Initially 5

frames are taken from the start position to ensure the robot is localised with a strong
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internal believe. After kidnapping and release at the release position, the robot must
experience 5 continuous frames of low sensor model output to trigger relocalisation
and another two to attempt global re-localisation. The remaining two frames allow

the particle filter to start condensing about an estimate.

After frame 14 the identified MLP and the estimated local position within that place
can be compared with the ground truth measures to evaluate the robot’s performance
in solving the kidnapped robot problem. In addition the benefit of constraining the
global localisation search space can be determined by recording the size of the active

place set during the relocalisation process.

Figure 9.30 shows the results of applying our localisation system to a kidnapped robot
situation. In this situation the robot started in a location near place 1 at the bottom
of the topological map, was kidnapped then released near place 9, which is close to
the doorway between the large room and the corridor environment. In the images
presented in the figure the localisation state of the system is shown after incorporating
the sensor data for a given frame. In particular in each image, places in the topological
map are shown by green circles for places wlthiﬁ the current active place set and red
for those without. The particle set distribution for the identified MLP is shown by
the spread of green points, and the current estimated position as determined by the
most likely particle is shown by the blue point. The yellow point represents the actual
current location of the robot as determined by the ground truth measures. The frames
shown in the figure correspond to the steps taken in solving the mobile robot problem
outlines above, Frame 0 shows the system upon initial localisation about the start
position; frames 4 and 5 before and after the kidnapping occurs; frames 11,12 and 13
when the robot has detected a loss in position tracking relative to place 1, performs
global localisation and redistributes the particle set about the new most likely place

(place 9), and condenses about the new position estimate.

In this example our system correctly identified the most likely place of release after the
kidnapping and the final position estimate was 15.62¢m distant from the ground truth
measure. The active place set during initial localisation was of size 21, and during the
relocalisation process it reached size 31. This represents a global localisation search
through 62% of the topological map during relocalisation. Although the estimated

local position was accurate just 3 frames after relocalisation in this example, the con-
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Figure 9.30: An example of the system solving an instance of the kidnapped robot
problem. In all images, places in the active place set are drawn in green, the particle
setis in green also, the estimated position in blue and the actual position in vellow.
Frame 0 shows initial global localisation; frame 4: a strong position estimated has
been achieved: frame 5: the robot has been kidnapped and released: frame 11 the
robot has lost position tracking tracking; frame 12: the robot performs relocalisation;
frame 13: the system has recovered position tracking.
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was correctly identified.

Ihe size of the average active place set is comparable to that suggested by the local
space experiments using a smaller map presented earlier, resulting in global localisa-
tion computation savings of approximately 60%. This is surprising giving the similar-
ity of large extents of the current map and may represent a bound on potential saving
using the local space matching approach with the current threshold levels. It holds
sufficient promise that refinement of this method or the introduction of other cheap
but ambiguous matching methods could further reduce the global localisation search

space.

I'he average error in the resulting local position estimate of 29.12em is high, however
it must be remembered that this is only the third estimate after relocalisation has oc-
curred and the local position tracking system could be still converging on a better
estimate. Within the area surrounding a place's reference position there will be some
fluctuation of achievable position estimation accuracy as the information available

varies with distance from the reference position.

Our results indicate that the kidnapped robot problem is solvable and that the multi-
level spatial memory representation can reduce the computation costs involved in re-
localisation. The computation time required for the current system to perform posi-
tion tracking once global localisation has been been performed is approximately 1.5s.
Global localisation can be achieved on average in approximately 13.5s. These compus-
tation costs are still high for real time localisation for mobile robot navigation. Using
range based sensors and a metric map, position tracking can be achieved in millisec-
onds, far outperforming our current system. During the global localisation task, how-
ever, the matching task grows prohibitively, increasing with each additional grid cell
in the map space. In comparison, even with the expensive template matching of our
current system, the ratio between computation time in global localisation and position

tracking is very low:

Reiterating the example from Chapter 2, consider a particle filter based localisation

system using a metric map could perform position tracking with 1000 particles in
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representations could be used in conjunction to further reduce the global localisation

search space for a richer, more discriminatory representation.

Finally, the further development of a high level representation for active place discrim-
ination would be interesting. Only the active search for disambiguating features will
lead to reliable localisation. It is interesting that human ability to perform complex
spatial reorientation tasks is linked to the onset of linguistic and reasoning capabili-
ties. A topic for future work would be to investigate just what functional, semantic

and symbolic knowledge is required to perform such tasks.

The future work described here is addressed to the same underlying concepts as this
research as a whole: the representations of spatial knowledge that are essential for the
navigation tasks of mapping and localisation. This thesis has proposed a multi-level
representation of spatial knowledge and applied it to the problem of mobile robot
localisation with promising results. Multiple representations of spatial knowledge

facilitate the solving of the localisation problem.
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