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Abstract 

Robust and reliable navigation systems are required before robots will join us in the 

real world. The major problem in creating robotic systems which can navigate reliably 

is that of forming a representation of an arbitrary environment which can provide re­

liable localisation information. Mobile robot localisation encompasses the conflicting 

tasks of accurate local position estimation and efficient global localisation. This the­

sis documents a multi-level spatial representation which is specifically designed to 

facilitate multiple navigation strategies and to solve the conflicting localisation tasks. 

The three levels of spatial representation are directly inspired by three levels of bi­

ological organism's navigation systems: those of honeybees, rats and humans. The 

three levels are: visual landmarks, local space profiles and indirect landmarks, or dis­

ambiguating features. Visual landmarks allow for low-level navigation strategies and 

provide accurate local position information and a unique representation for place dis­

crimination, but matching at this level of representation is expensive. Local space 

profiles are a minimalistic representation of the extent of local space surrounding a 

mobile robot and as such cannot provide unambiguous localisation information, but 

is lightweight and comparatively cheap to match. The level of disambiguating fea­

tures seeks to actively search out discriminating features in snapshots of the sensory 

view at places in an attempt to define the feature which most successfully discrimi­

nates between the two places. Methods for acquiring multi-level representations of 

places in the environment are developed as well as methods for constructing topolog­

ical maps with transitions and cycles. 

The visual landmark representation is shown to provide accurate local position esti­

mation and inefficient, but accurate, global localisation in a topological map. The mid­

level representation of local space profiles can constrain the global localisation search 
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of lower levels of representation by 60%. By combining the visual landmark and local 

space representations, a system which performs continuous local position estin1ation 

and global localisation is produced. This system is applied to the kidnapped robot 

problem in a topological map with 100% local position estimation recovery. 
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1 

Chapter 1 

Overview 

For most of the past few decades robots have been restricted to manufacturing plants, 

research labs or other highly controlled areas. Today we are seeing the emergence 

of robots in our everyday environments, our work, our homes and our playgrounds. 

In order for robots to function in the real world, it is usually necessary for them to 

move about the environment in a meaningful manner. Office assistant or tour guide 

robots must move through complex, dynamic environments reliably to fulfill their 

given tasks. Robot pets, to interact more meaningfully with humans, must move more 

freely about our homes. Thus navigation is a crucial behaviour which underpins mo­

bile robot functionality in almost all application areas, and its current limitations are 

also a major restriction in robot placement in the real world. 

Tour guide robots have been tested in various museums around the world, but usually 

have to be monitored and cannot perform complex tours in dynamic environments 

for extended periods of time. Robot pets are cute and amusing, but cannot do more 

than wander around blindly at this stage. Robust and reliable navigation systems are 

needed for robots to perform unsupervised tasks throughout their active life. The 

research field of mobile robot navigation is concerned with developing robot systems 

that can autonomously perform navigation tasks reliably over an extended period of 

time. 



2 Overview 

1.1 Mobile Robot Navigation 

The problem of mobile robot navigation can be broken into three subcomponents: 

mapping, localisation and planning. It is now a relatively easy task for a robot to 

plan and physically execute a path between two points in a known environment, the 

challenge now is to form an internal representation of the robot's environment and 

with this representation, work out where in the environment the robot is currently 

located. This involves two sub-components of the navigation task: that of mapping 

and localisation. 

Traditional approaches to mobile robot mapping and localisation predominantly try 

to map out the total environment in order to navigate in it successfully, building com­

plete two or even three dimensional spatial maps from recorded sensor data (Moravec 

and Elfes, 1985; Thrun, Burgard and Fox, 1998) . Robots can then, given they know 

their own location, plan and execute any trajectory within the map. Recently robotic 

navigation systems inspired by successful biological systems, have concentrated on 

extracting only the necessary information from sensors to achieve specific navigation 

tasks such as homing to a place. 

1.1.1 Multiple Levels of Spatial Representation 

When thinking about the navigation task, and in particular our own navigation strate­

gies, it is clear that it is necessary to employ a variety of different strategies for different 

situations. No one strategy will successfully work in all situations, and each different 

strategy may require different sensory cues, levels of processing and spatial memory 

to work. Spatial memory refers to the internal views of the spatial characteristics of 

the environment that organisms form in order to interact with the environment. This 

decomposition of navigation is reflected in the literature (see Chapter 2) where a large 

number of navigation systems have been proposed, each solving a specific, or small 

group of navigation tasks, by forming specific spatial representations of the world. 

An example of employing different navigation strategies can be observed in a situa­

tion as simple as a person moving down a corridor and passing through a particular 

door. Navigation along the corridor simply involves keeping to the center of the cor­

ridor and moving forward. A complete internal representation of the corridor and the 
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relative position of the person moving along it is not necessary. But the person must 

perceive the existence of doors and must be able to distinguish the goal door from oth­

ers along the corridor. After detecting the door the person must have some strategy for 

passing through it (assuming it is open), for example by focusing on the door frame on 

one side of the opening and plotting a trajectory relative to that frame. If the opening is 

very small, the person might also place part of their body against the frame to provide 

more accurate position information. These different navigational strategies require 

different internal spatial representations of the environment. So even seemingly sim­

ple navigation tasks can require multiple navigation strategies and also multiple levels 

of internal representation about the environment and also the mobile agent's location 

within it. 

1.1.2 Biological Inspiration 

The above example highlights the insights which can be gained from observing suc­

cessful biological navigation systems. Even simple biological systems such as hon­

eybees are capable of performing complex and precise navigation behaviours with 

comparatively simple computational mechanisms. This thesis aims to use such sys­

tems as inspiration when designing practical robotic systems, while remembering the 

limitations inherent in current robotic systems and sensors. 

1.1.3 The Localisation Problem 

Multiple navigation strategies and multiple levels of spatial representation require 

multiple levels of localisation. A system must be able to perform localisation on the 

various levels of spatial representation in order to trigger the appropriate navigation 

behaviour. In the example above, the corridor navigation behaviour requires localisa­

tion to a corridor like environment, while the door entry behaviour requires corridor 

and door recognition, plus an estimate of the robot's position relative to the two door 

jambs. 

The need for multiple levels of internal representation and their localisation equivalent 

is highlighted by the two conflicting extremes of the mo bile robot localisation problem: 

l. Global Localisation: the robot system must be able to identify its current general 
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location within its internal map representation. Only when it's current location is 

known can it plan a path to the goal position. This form of localisation requires a 

search of the entire internal map to find the most likely location in the map from 

which the robot captured the current sensor data. Because the entire map must 

be searched this procedure is computationally expensive. 

2. Local Positioning: the robot system must accurately identify and maintain an es­

timate of its position relative to some local reference frame in order to perform 

precise navigation movements. This form of localisation requires a fine search 

of a localised area within the internal map, in order to precisely identify the 

most likely location from which the robot captured the current sensor data. This 

search is locally constrained and therefore can be performed relatively cheaply. 

In order to perform global localisation efficiently, the robot system's internal represen­

tation of the world must be sparse in order for the localisation task to be computa­

tionally tractable. In order to perform accurate local position estimation, the internal 

representation must be fine enough to provide enough positional cues to execute pre­

cise navigational behaviours. 

An additional problem in mobile robot localisation is how to represent the robot's 

belief that it is in a particular location. Obviously the degree to which a robot is certain 

it is in a specific location is going to affect it's navigation behaviour. By introducing 

multiple levels of spatial representation, the representation of this belief is complicated 

and a method for combining the various levels of localisation into a central belief is 

required. The conflict between global localisation and local positioning highlights the 

need for multiple levels of spatial memory. 

The kidnapped robot problem is often used as a bench mark for mobile robot localisa­

tion systems to evaluate their ability to solve the above challenges. In such a situation 

the robot is navigating through a pre-mapped environment with a high belief of its lo­

cation, when it is suddenly kidnapped. The robot is subsequently released at another 

location in the map with the belief it is still at the original location. The task for the 

localisation system is to recognise it has been moved and subsequently re-localise its 

position within its internal map. This involves adjusting the robot's belief in the pres­

ence of conflicting sensor data, performing global localisation and recovering accurate 
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local position estimation. 

1.2 Principle Objectives 

This thesis proposes to develop a biologically inspired robot localisation system which 

facilitates the use of multiple navigation strategies by representing the world using 

different levels of spatial memory. The various levels of spatial representation and 

subsequent potential navigation strategies should be inspired by navigation and spa­

tial representation methods in both robotic and biological systems. 

In particular the proposed system should use multiple levels of spatial representation 

to: 

1. Solve the conflicting localisation problems of global localisation and local position esti­

mation. To do so the multiple levels of spatial representation must enable efficient 

global localisation while maintaining accurate local position estimation. 

2. Maintain a central belief as to the robots position within its internal map. This central 

belief should reflect the localisation information produced by the various levels 

of spatial representation. 

3. Solve the kidnapped robot problem. The kidnapped robot problem is largely un­

solved and can be used as an ultimate test for practical mobile robot localisation 

systems. 

By using multi-level spatial representation and localisation, a navigation system can 

operate in the real world, robustly and reliably, switching navigation strategies ac­

cording to the situation. In doing so the goal of robots joining us in our everyday 

environments is nearer. The primary focus of this thesis will be on the required levels 

of internal representation or spatial memory of a robot, and how multiple levels can 

work together to allow for accurate and efficient localisation. 
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1.3 Outline 

This chapter has provided an overview of the main concepts that will be be developed 

in this thesis and a preview of the main objectives that this thesis seeks to achieve. The 

remainder of this chapter outlines chapter by chapter the contents of the rest of this 

thesis . 

• Mobile Robot Navigation 

The concepts involved in navigation and the state of present research in this 

field are presented in Chapter 2. In particular details of the general navigation 

problem and a hierarchy of navigation behaviours is identified. The idea of nav­

igation as a robotic behaviour and what can realistically be achieved in this area 

is discussed. A brief description of robot systems as biological analogies is pre­

sented and the design philosophy behind the current approach is defined. From 

there, some background in the field of mobile robot mapping and localisation is 

presented and examples from biological and robotic systems are described. 

• Multi-Level Spatial Representation 

This leads to the proposal of the multi-level spatial memory as a solution for the 

mapping and localisation problem in Chapter 3. Specific details of a three level 

system are introduced and motivated. The three levels of representation are: 

visual landmarks, local space profiles and disambiguating features. In addition 

the robot system which is used in experiments validating the proposed multi­

level spatial representation is briefly introduced .. 

• Visual Landmarks 

Chapter 4 presents the details of representing places in a topological map by 

visual landmarks from panoramic images. Landmarks are chosen to represent 

a place by identifying potential landmarks from a static image and evaluating 

their tracking performance over a biologically inspired Turn Back and Look 

movement. Visual landmarks are selected which are locally unique and can be 

reliably recognised over the area surrounding the reference position from which 

the place is learnt. A method for estimating the depth of landmarks is also pre-
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sented and experimental results validating the depth estimation as well as land­

mark recognisability are reported. 

• Local Space Profiles 

The details of the proposed second level of spatial representation are presented 

in Chapter 5. A method for determining the extent of local space surrounding 

the robot from a panoramic image is presented. The profile of local space from 

a given panoramic image can be used to represent the local space surrounding 

a particular place in a topological map. A method for inexpensive matching 

between local space profiles is also presented. 

• Disambiguating Features 

Disambiguating features can be used to discriminate between two places in a 

topological map in pathological localisation situations. A panoramic image cap­

tured from the reference position where the place was learnt provides a snap 

shot memory from which disambiguating features can later be extracted. Chap­

ter 6 describes the process of extracting these features from two panoramic im­

ages, and using them to discriminate between places in a topological map. 

• Topological Maps 

Chapter 7 describes a method for constructing topological maps using the mul­

tiple levels of spatial representation presented earlier. In particular the chapter 

deals with when to acquire a new place in the topological map and how to form 

transitions between nodes in the topological map. Experiments verify the sys­

tem's ability to construct topological maps including the detection of cycles in 

the topological graph structure, denoting circular routes in the physical environ­

ment. 

• Local Positioning 

Chapter 8 describes how the multi-level spatial representation can be used to 

perform mobile robot local position estimation within topological maps. A method 

of accurately estimating local position within places is presented and experimen­

tally validated. The estimate can then be passed between places in the topologi­

cal map using the transition information to achieve position tracking. An exper-
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iment validates position tracking and the systems ability to overcome odometric 

drift. 

• Global Localisation 

Chapter 9 describes how the multi-level spatial representation can be used to 

solve the the conflicting problems of global localisation and local position es­

timation. Global localisation can be solved with the visual landmark level of 

representation, although this proves to be computationally expensive. The sec­

ond and third levels of spatial representation can be used to restrict the global 

localisation search space, drastically reducing the computation costs, and im­

proving the efficiency of the global localisation search. A method of combining 

local position estimation with global localisation is introduced and the complete 

system is successfully applied to the kidnapped robot problem. Experimental 

results supporting these methods are reported. 

• Conclusions 

To conclude this thesis, Chapter 10 summarises the contributions and key points 

of this thesis in addition to some ideas for further work. 
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Chapter 2 

Review of Mobile Robot Navigation 

The field of mobile robot navigation literature is wide and varied, with the topics 

of path planning, localisation and navigation forming large sub-disciplines of their 

own. This chapter aims to introduce the field of mobile robot navigation, focusing 

on the two sub-components of mapping and localisation, and discuss the approach 

the proposed system will take in designing a solution. A brief background in tradi­

tional approaches to these problems is given and examples of biological and biometric 

approaches are reported. 

Section 2.1 details the general navigation problem and identifies a hierarchy of naviga­

tion behaviours. Section 2.2 explores the idea of navigation as a robotic behaviour and 

discusses what can realistically be achieved. Section 2.3 provides a brief description 

of robot systems as biological analogies. Section 2.4 describes the philosophy used in 

this thesis when designing a solution to the localisation problem. Section 2.5 briefly 

describes some of the more common approaches to navigation and details the recent 

advances in those areas. In particular the use of topological maps versus metric maps 

is discussed. In addition, the topic of probabilistic reasoning is introduced as a way 

of representing a robot's internal beliefs and allowing for simultaneous multiple hy­

potheses. Section 2.6 the navigation systems of various levels of biological organisms 

are presented, specifically honeybees, rats and humans. Their spatial memory and 

methods of localisation and mapping are discussed in relation to the level of navi­

gation behaviour they exhibit. Section 2. 7 goes on to report several biomimetic ap­

proaches to mobile robot navigation which exhibit simple navigational strategies such 
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as homing and route following. These approaches are directly inspired by experimen­

tal results from the biological sciences. The chapter ends with a summary of the key 

concepts covered in this chapter and reiterates the current problems in the field of 

mobile robot localisation. 

2.1 What is Navigation? 

In order to construct a system that can navigate successfully, it is important to define 

exactly what navigation is, and what this means in the context of robotics. It is more 

so, given that mobile robot literature has in the past, referred to a number of seemingly 

different robot behaviours under the the same banner as navigation. Franz and Mallot 

(2000) provide a discussion of the definition of navigation in regard to robotic systems. 

Navigation historically refers to the guidance of ocean going vessels. The word navi­

gation itself is derived from Latin, navis: ship, and agere: to drive. In this context the 

process of navigation has three steps: 

1. Determine the ships position on a chart. 

2. Relate the current position to destination. 

3. Set course of the ship. 

(Levitt and Lawton, 1990) describe the same process in robotics, defining navigation 

as answering the three questions: 

1. "Where am I?" 

2. "Where are other places with respect to me?" 

3. "How do I get to other places from here?" 

Franz and Mallot (2000) argue that many biological organisms are able to navigate 

without answering all of these questions. Instead the only question that needs answer­

ing is "How do I reach the goal?" . This demands a broader definition of navigation: 

Navigation is the process of determining and maintaining a course or tra­

jectory to a goal location (Franz and Mallot, 2000). 
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Navigation Behaviour 
Local Navigation 
Search 

Direction-following 

Aiming 

Guidance 

Way-finding 
Recognition triggered 
response 
Topological navigation 

Survey navigation 

Behavioural Prerequisite 

Goal recognition 

Align course with local direction 

Keep goal in front 

Attain spatial relation to the sur­
rounding objects 

Association sensory pattern-action 

Route integration, route planning 

Embedding into a common reference 
frame 
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Navigation Competence 

Finding the goal without active 
goal orientation 
Finding the goal from one direc­
tion 
Finding a salient goal fro m a 
catchment area 
Finding a goal defined by its re­
lation to the surroundings 

Following fixed routes 

Flexible concatenation of route 
segments 
Finding paths over novel terrain 

Table 2.1 : Franz and Mallot's (2000) hierarchy of navigation behaviours. 

Using this definition, therefore, the only requirements for navigation are to be able to 

move in free space and to determine whether or not the goal has been reached. Nav­

igation then, incorporates all spatial behaviours that include motion with reference 

to a goal location, and excludes other behaviours such as exploration, foraging, ob­

stacle avoidance or course stabilisation. Furthermore Franz and Mallat (2000) divide 

navigation behaviours into two groups: local navigation and way-finding. 

Local navigation only requires the recognition of one goal location. The robot chooses 

its actions based on the current sensory input and internal state, without needing rep­

resentations of places or objects that lie beyond the sensory horizon. Way-finding by 

comparison, requires the recognition of several places and representation of places be­

yond the sensory horizon. Within these categories lie navigation behaviours of various 

complexity and competences. In the next section, Franz and Mallot's (2000) navigation 

behaviour hierarchy is described. 

2.1.1 Navigation Behaviour Hierarchy 

When discussing navigation and navigation behaviours it is useful to classify the dif­

ference between strategies in a hierarchy of increasing complexity and competences. 

This also allows for comparison of biological and traditional robotic navigations sys­

tems. The categorisation of navigation behaviours into local navigation and way­

finding described above lead Franz and Mallat (2000) to extend Trullier, Wiener, Berthoz 
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and Meyer's (1997) navigation hierarchy as shown in Table 2.1. Local navigation in­

cludes such behaviours as search, direction following, aiming and guidance, listed in 

increasing order of competence. Way finding is divided into three levels: recognition 

triggered response, topological navigation and survey navigation. A robot at a given 

level of local navigation or of way-finding has all the navigation competences of the 
lower levels in that group, but if an agent is capable of way-finding, that does not au­

tomatically mean that it is proficient at all levels of local navigation. The individual 

navigation behaviours are described in the following sections. 

Search 

Search is the simplest form of navigation. It entails searching for the goal position, 

and as such only requires the robot to be able to move and to recognise the goal area. 

Obviously this type of navigation is not efficient and an agent can take a long time to 

randomly encounter the goal. Due to the light amount of information needed during 

navigation this strategy can be used as a backup when all other strategies fail. 

Direction-following and path integration 

Direction-following requires the robot to follow a course determined by some locally 

available instructions. This direction may be extracted from external cues such as a 

landmark, or internal cues such as a compass. Using direction-following then, an 

agent can navigate to a goal if it is on the path and can accurately extract direction 

information. If a robot is not on the path or deviates from the path due to noisy data, 

then this type of navigation will fail. If the distance to the goal is also known, a robot 

can use path integration (odometry) to determine whether it has passed the goal loca­

tion without detection and should adopt another navigation strategy. Also if a robot 

using path integration deviates from a trail, it can return to its original position as long 

as the path integration has not been disrupted. 

Aiming 

Aiming is similar to direction following, but involves navigating towards a specific 

goal or beacon and does not require the robot to follow a specific trail to the goal. As 



2 .1 What is Navigation? 13 

long as the robot can perceive the beacon then the robot can navigate towards it. A 

goal location then, has a catchment area or navigation field surrounding it, in which 

the beacon can be perceived. Goal locations are limited to those locations which have 

a suitable beacon. 

Guidance 

If a suitable beacon is not present at a goal location, a robot can use other features in the 

surrounding environment to guide its movements towards the goal. This guidance is 

provided by the relation between the current perceptual view and a memorised view 

of surrounding landmarks or features. By moving so as to make these two views the 

same, the robot is in fact navigating towards the goal location. 

Recognition-triggered response 

The previous three navigation strategies are all local strategies. These methods only 

work when the information needed to navigate to the goal position lies within the 

current sensory horizon. Recognition-triggered responses associate current sensory 

information with an action to perform. Actions are typically local navigation strate­

gies, connecting the place where the response was triggered to a local goal position. By 

building a sequence of these recognition-triggered responses, robots can form routes 

incorporating a number of locations. It is important to note that this form of way­

finding does not involve knowledge of the future route, simply the triggering of a 

particular action given the current sensory information. If any of the local navigation 

strategies employed at places along the route fail, then the robot must resort to a sim­

pler strategy, such as search, until its perception of the environment triggers another 

response. If the robot has a number of goal locations, each one must have its own 

route and associated recognition/response representation of places, and no integra­

tion between routes is possible. 

Topological navigation 

Topological navigation allows for route integration by building a spatial representa­

tion of places along routes independent of goals. If the robot can detect that a place 
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is common to two or more routes then it can pass from one route to another, thus 

reaching a goal along a previously untravelled route. The integration of routes in this 

fashion forms a topological map of the environment. The robot can then navigate to a 

goal location by planning a path through the integrated routes. 

Survey Navigation 

Topological navigation though, does not allow novel route generation. Using such a 

navigation strategy the robot must travel along segments of previously learnt routes. 

In order to generate novel routes, learnt places must be embedded into a common 

frame of reference. This requires the spatial relationships between all learnt places to 

be available to the robot from any given place. In survey navigation, this information 

is available, allowing the robot to plan novel routes through previously unvisited ar­

eas of the environment by inferring potential connections between places from their 

embedded spatial relationships. 

2.1.2 The Components of Navigation 

Assuming that a navigation hierarchy exists, and that various levels of competence 

can be observed in biological organisms, it is necessary to identify the functional sub­

components necessary in order for navigation strategies to work. In particular what 

are the components which are common across all navigation strategies? By identi­

fying such common components, a better understanding of how different navigation 

strategies are related and how it might be possible to switch between the strategies is 

reached. 

The Components of Traditional Navigation Systems 

The process described by the initial nautical definition of navigation, and the tradi­

tional definition in the field of mobile robotics , can be divided easily into three sub­

tasks: mapping, localisation and planning. 

• A1apping the acquisition and maintenance of an internal representation of knowl­

edge about the spatial characteristics of the environment. 
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Navigation 
Actuators 

Internal 
Representation 

(Map) 

Current Sensory View 

Sensors 

Figure 2.1: The components and tools of the navigation task. 

15 

• Localisation: the process of determining a robot's current position relative to the 

internal map, from current sensor readings of the local environment. 

• Planning path planning based on the internal knowledge the robot has about its 

own state, the map, and its desired behaviour. 

For a robot that is navigating through a dynamic environment, continually re-evaluating 

its internal state, goals and sensory view, these sub-tasks must work interdependently 

to produce successful navigation behaviour. Figure 2.1 illustrates this relationship 

between the subcomponents. In this figure the behavioural subcomponents are illus­

trated using the grey filled ovals. 

As mentioned earlier, the three sub-tasks rely on internal knowledge in order to func­

tion. Mapping, localisation and planning all require internal representations of the 
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current environment and the previously learnt/ experienced environment. These two 

representations can be referred to as the current sensory view and the map and their rela­

tionship to the functional components is shown in Figure 2.1 as the rectangular boxes. 

The current sensory view is an abstraction of the raw sensor data representing the 

current environment. The map is an internal abstraction of multiple previous sensory 

views of the environment. In general the level of abstraction involved in both rep­

resentations has strong consequences in the degree of navigation competence a robot 

can achieve. For example, being in possession of a highly detailed map , such as a 

floor plan, allows a robot to plan to navigate anywhere within the floor plan. While 

only knowing if one has reached a goal or not, such as in the search behaviour de­

scribed above, will only allow navigation to a single place, with almost no planning 

in between. 

The Components of Hierarchical Navigation Systems 

By redefining navigation as above, Franz and Mallat (2000) move away from the tra­

ditional decomposition of the navigation process, saying, in reference to local naviga­

tion: 

.. . this notion of navigation does not imply that the current location must 

be recognised, nor that a map-like representation must be used to find the 

goal (Franz and Mallat, 2000) . 

This definition only requires the subcomponents recognise goal and move in free space, 

rather than the traditional mapping, localisation and planning. It also argues against 

the need for an internal map. 

But this is not the case. The local navigation behaviours can be described as simpli­

fied instances of the mapping, localisation and planning view of navigation. Taking 

the simplest of the local navigation behaviours, i.e Search, as the case in point, it can 

be shown that all the traditional components of navigation are present. Mapping is 

present because the robot must still define some relation between its own internal 

representation of the goal and its current sensory input. It does not matter that the 

"map " only distinguishes between "found goal" and "have not found goal" in the 

simplest case. Localisation is present as a decision as to the robot's location based 
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Figure 2.2: Localisation in a multiple strategy navigation system 

on the internal representation and its current sensory input must be made. For the 

Search behaviour, this could be just the decision "I am not at the goal yet". Planning is 

present since once having made a decision as to its location the robot performs certain 

actions to reach its goal. In the case of "I have not reached the goal yet" this could be 

to simply move in a random direction. 

Navigation systems which display different navigation behaviours then, do not neces­

sarily have different sub-components. In addition, all need internal representations of 

the current sensory view and the internal map. These sub-components and represen­

tations, however, might be simplified and might only exist implicitly in the navigation 

behaviour rather than explicitly in the robot's reasoning. 

2.1.3 A Consistent Framework for Navigation Strategies 

This important distinction as described above, although seeming insignificant and se­

mantic, allows the various navigation behaviours, including the two major categories 

of local navigation and way-finding, to share common behavioural subcomponents. 

This common behavioural framework means that multiple navigation behaviours in a 

robot can help reinforce the robot's knowledge about mapping, localisation and plan­

ning, and can contribute to more successful navigation behaviour by the robot. 

Consider the case of a robot navigating down a corridor to a particular door employ­

ing two navigation strategies. Strategy 1 uses odometry to estimate the distance trav-
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elled down the corridor, with the robot reaching the goal by travelling the known 
distance between the start location and the goal door location. Strategy 2 uses door 
and office number recognition to form a topological map, with the goal being reached 
when it detects a door with the correct office number. Both strategies will work in the 
right situations, each having a form of internal representation and associated mapping 
and localisation behaviours. In general the office number recognition solution would 
be superior due to the noise inherent in odometry measurements. But what would 
happen if the office numbers were removed and all doors looked identical? The robot 
would then not be able to identify the correct door. However by combining the door 
recognition and odometry navigation strategies, the robot would be able to locate a 
door at approximately the correct distance down the corridor. · This solution requires 
the robot to have multiple spatial maps of the same environment, or a spatial repre­
sentation which facilitates the use of different strategies, and also for the combination 
of localisation information extracted from both navigation strategies. 

In a robot that exhibits multiple navigation strategies then, it is desirable for it to have 
a common behavioural framework for navigation strategies and it also must have the 
capacity for multiple levels of internal representation for both the current sensory view 
and also the internal map. Figure 2.2 shows multiple navigation strategies and levels 
of internal representation for the localisation component of navigation. The general 
idea is that a robot captures different forms of spatial representation from the current 
sensory view, and can use these multiple levels to form maps from which localisa­
tion can be performed. The localisation process can then be occurring at different 
levels , with each using different cues from the environment and information passing 
between levels, resulting in an agent with more robust and reliable knowledge about 
it's position in it's environment. 

2.2 Navigation as a Robotic Behaviour 

Navigation, as described above, is a complex behaviour, with interdependent subcom­
ponents operating on a number of levels. To achieve robust and reliable navigation a 
mobile robot system must model the complexity and multi-level representations of bi­
ological organisms. Given that robot and biological systems are inherently different, 
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design and computationally wise, what level of navigation functionality can realisti­

cally be expected from robots? 

On a basic level, all the navigation strategies previously described can be achieved 

by mobile robots. Given a particular environment, a particular navigation strategy 

and a particular choice of internal representation, robot systems can be built that can 

successfully navigate for most of the time within those environments. The problem 

is moving to more general or large scale environments, where single strategies and 

internal representations will not always work. By adding more strategies and inter­

nal representations it is proposed that a mobile robot will be able to function more 

robustly and more reliably in more generalised, larger environments, but adds addi­

tional computation costs to the navigation process. Given the real time constraints of 

navigating a mobile robot in the real world, computation must be kept to a minimum 

and internal representations that do not scale well with the size of the environment 

are not appropriate. 

The bulk of computation in navigation systems is in the continuous processes of in­

terpretation of sensory data and localisation. In robotic systems, localisation is the 

computationally intensive task of matching the current sensory view to the internal 

map. The current position is determined by the location in the map which matches 

best with the current view. Therefore the choice of internal representations greatly 

affects the efficiency of the localisation process. 

Another problem that arises when developing robotic navigation systems is that of 

the robot maintaining a belief of where it is. How does a robot interpret the results of 

matching and decide where it is located in it's internal map? A related question is how 

does it change it's belief if it is wrong? Biological organisms are excellent at forming a 

belief, acting appropriately and switching t_o alternate hypotheses when necessary. 

Biological navigation systems, and in particular those of humans, do not exist in the 

knowledge vacuum that robotic systems do. Humans have access to a level of knowl­

edge and structure of their environment far above that of a robotic system. This 

leads to far more complex navigation cues and representations, which leads to a more 

generic navigation system. A form of knowledge representation is needed to combine 

localisation information from different navigation strategies over time to form a belief 

of current position, while continuously forming and maintaining alternate hypothe-
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ses. 

In addition, biological systems exist in a highly goal driven and purposive organism. 

Bees can navigate from their hive to flowers and back again. Success can be measured 

by collecting pollen and delivering it to the larvae in the hive. The bee has knowledge 
(not necessarily explicit knowledge) of when these things are complete. A robot with a 

particular mission in an office environment, has very limited understanding of when 

the goal is complete, excluding any hardwired flags that are programmed in. For 

example for a mission of navigating to a particular office and deliver a verbal message 

requires significant knowledge aside from that required by simple navigation to be 

able to achieve the task. In this research, the navigation task to be performed by the 

robot, in absence of sematic knowledge, is point to point navigation within an internal 

map. 

2.3 Biological Analogies in Robotics 

Robot systems have traditionally been anthropormorphised by popular culture. When 

people imagined robots of the future they inevitably imagined human like creatures 

such as C3P0 from Star Wars. Even when robotic helpers were not humanoid they in­

variably took the shape of other familiar creatures such as dogs and cats. Recently, af­

ter decades of exposure to non-humanoid robots such as factory robots, there has been 

a resurgence of research directed towards humanoid and biologically inspired robots 

in general. There are several reasons for this persistence in the anthropomorhication 

of robotics, ranging from aesthetics and psychology to imitation and functionality: 

1. Human expectation of appearance and behaviour of "intelligent systems". 

2. Facilitation of human-robot interaction. 

3. Robots should operate in the real world which is designed and built for humans 

and their companions. 

4. Biological systems can accomplish the desired task so why not imitate them? 

All these reasons hold true when considering artificial navigation systems. Mobile 

robots must navigate in our environment, they must behave predictably in order to 
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successfully navigate with and around humans. Biological navigation systems have 

these qualities as well as being successful at navigation. There are also examples 

of biological systems with relatively simple computational components that can per­

form complex and robust navigation behaviours. Bees for example, perform complex 

takeoff, route following, goal detection and landing procedures with limited compu­

tational resources. It is hoped by further studying biological organisms, successful, 

low-cost behavioural algorithms can be developed. 

Throughout this thesis, the navigation problem is considered from a biological view­

point, with biological systems capable of equivalent navigation behaviour inspiring 

solutions to particular problems. At a deeper design level, another important lesson 

can be gained from the study of biological organisms. The development of biological 

solutions are dependent on the past evolutionary pathway, with the development of 

new structures and algorithms dependent on the existing functionality. Likewise with 

robot systems the choice or availability of sensors and processing capability leads to 

certain representations, algorithms and behaviours being more appropriate than oth­

ers. 

Another lesson for robot researchers comes from the field of ethology. Biological sys­

tems do not exist by themselves. They form part of a complicated eco-system and are 

highly evolved to fill an ecological niche. As such they cannot be viewed as separate 

from their environment. For robotic systems, this means when designing robotic sys­

tems, not only think about what behaviours the robot should be capable of but also 

what environment will the robot exist in, and how does this impact on the robots de­

sired behaviours. Obviously a robot relying on a passive vision system will not be 

much use if it is required to work in dark environments. More subtly, a robot navigat­

ing by extracting certain features from the environment, will not be able to function in 

environments where those features are sparse. 

However it must be remembered that robots are not biological organisms. Robot sub­

systems have not evolved in parallel, they have been been specifically designed and 

built for varying tasks, which may or may not include the task at hand. Robotic sys­

tems also suffer from a low knowledge base when compared to biological systems. 

As mentioned in Section 2.2 robots do not have the deep level of semantic knowledge 

about the world that some biological organisms have. They do not have the wide array 
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of multi-modal cognitive information that biological systems experience and cannot 

be expected to perform at similar levels until this type of knowledge is available to 

them. Therefore, while it can be extremely useful to draw inspiration from successful 

biological systems, it must be remembered that there are inherent design differences 

between robotic and biological systems, which can limit the applicability of biologi­
cally inspired solutions, and also limit the degree of functionality that robotic systems 

can achieve. 

2.4 Philosophy of Approach 

In the construction of complex systems such as the navigation systems for robots, a 

consistent design philosophy can lead to more complete, internally consistent and 

ultimately superior solutions. Also the formation and application of such a design 

philosophy itself can provide novel insights into the system under construction. 

In the system under consideration, just as the behavioural algorithms can imitate those 

of successful biological systems, so the current design approach can take inspiration 

from the ultimate designer, nature. 

In looking for a solution to navigation then, it is important to view the system as a 

whole, incorporating its environment and its evolutionary history. The biological so­

lution, for example, is dependent on the particular organisms physical structure, the 

type of sensors available, its level of knowledge about the environment it is in, and its 

own behavioural and instinctual predispositions. In robotics, this means identifying 

available (and suitable) hardware, sensors, existii-ig software, as well as the nature of 

the desired behaviour and the environment in which the robot is to exist. From there 

individual subcomponents of the system can be designed that work within the limita­

tions, and utilise the advantages of the existing system. Subcomponents of the system 

should also be designed with knowledge that they are interdependent behaviours and 

each contribute to the success or failure of the others. 

This research then, aims to develop a solution to the navigation problem that follows 

this design philosophy, using interdependent subcomponents designed with respect 

to the system as a whole to produce a successful navigation system. 
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2.5 Traditional Navigation 

Traditional navigation approaches have concentrated on producing robots capable of 

exhibiting movement above all other considerations. Concerns such as mapping and 

localisation were largely ignored in deference to building systems that could move 

from point A to point B. Maps and starting location were considered a priori knowl­

edge, and operational environments were limited to single rooms or corridor environ­

ments. These assumptions and limitations lead to navigation methods that relied on 

large amounts of sensor data and computationally expensive matching algorithms for 

localisation. 

Recently, the short-comings ofthese ·approaches when confronted with large complex 

environments has led to the emergence of mapping and localisation as important re­

search areas. The questions being how to form efficient representations of large scale 

maps and how to best search those maps when localising. These questions are exam­

ined in detail with respect to mobile robot literature, and two general forms of maps 

have been identified, namely metric maps and topological maps. Contemporary re­

search in this field is looking at forming hierarchical maps and integrating the two 

approaches, and some of this recent work is reported. 

2.5.1 Mapping and Localisation 

Robot localisation using self-made maps in arbitrary environments is an enduring 

problem for the field of mobile robotics. Solving this problem involves matching an in­

ternal representation of the world which has been abstracted/ interpreted from sensor 

data, with an internal representation of the current view of the world which again, is 

abstracted/interpreted from sensor data. Accurate solutions have been found by con­

straining the basic problem, such as by introducing a priori information (pre-existing 

maps), using artificial landmarks, limiting the size of the environment, or reducing 

the required localisation accuracy. These approaches try to limit the complexity of the 

matching task between the environment and the map, by limiting the complexity of 

one or the other. Typically limiting the complexity of the environment results in scala­

bility problems while limiting the complexity of the map results in coarse localisation 

accuracy. 
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Sensors and Map Representation 

Representations which have a low level of abstraction (close to the sensor level) typ­

ically require a large amount of information to map the environment, and also have 

high computation cost associated with the matching for localisation. On the other 

hand, representations which have a high level of abstraction require less storage and 

matching, but require a lot of computation and complexity to form the level of ab­

straction from the raw sensor data, first when acquiring the map , and second, when 

localising. They also can abstract the view of the environment to such a degree that 

details which uniquely identify the current robot position can be lost. Thus the type of 

sensors used, the data representation and data matching methods are crucial for the 

tasks of mapping and localisation. 

There are traditionally two opposing approaches for mapping: metric versus topolog­

ical (Borenstein, Everett and Feng, 1996). Metric maps form highly detailed, low level 

representations of the environment, while topological maps try to abstract information 

into a less data intensive, semantically meaningful form. 

Metric Maps 

Metric maps try to capture the exact two or three dimensional structure of the envi­

ronment. They are easily comprehensible by humans and are similar to maps we use 

in our everyday lives such as street directories, architectural plans and atlases. This 

is not surprising as their use in robot navigation originated from when maps were as­

sumed to be known, and humans provided the maps to robots. For example compare 

the maps of the robotics laboratory at the Australian National University in Figure 2.3, 

an architectural drawing and a metric map constructed from laser data captured on a 

mobile robot (map produced by Thrun, Beetz, Bennewitz, Burgard, Cremers, Dellaert, 

Fox, ahnel, Rosenberg, Roy, Schulte and Schulz's (2000) mapping system). 

Metric maps provide a fine level of representation and can therefore be used to track 

the position of the robot accurately. The amount of information such maps contain 

however can limit the scale of the maps, and increases the difficulty of the global 

localisation task. Also when constructing metric maps the accrual of odometry errors 

can lead to large distortions in the spatial representation. 
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Figure 2.3: Metric maps of the Robotic Systems Laboratory. Part a) shows a architec­
tural drawing, part b) a map constructed from laser range finder data. 
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Metric maps are typically constructed using range information from sensors such as 

sonar and laser range finders . Range sensors provide accurate range information from 

which accurate metric maps can be constructed and accurate local robot position esti­

mates made. Range sensors and metric maps, however, are often incapable of perceiv­

ing and representing details in the environment which can provide important cues for 

the global localisation task. 

An example of metric maps are the evidence grids proposed by Moravec and Elfes 

(1985) . In this approach maps are constructed from sonar data by evaluating the prob­

ability that each grid cell in the map is occupied or vacant. Over time the evidence 

for each cell builds up as more and more sensor data is processed. When performing 

localisation by matching between a current local map and the pre-built map of the 
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global environment, the sum of the products of corresponding cells is calculated. In 

general, global localisation in evidence grid based approaches, involves the matching 

of current sensor data with all possible positions in the global grid. Thus the compu­

tational cost of localisation in evidence grids grows with the size of the environment 

and the granularity of the grids. 

As an example, say a particle filter (see Chapter 8) based localisation system using a 

metric map, could perform local position estimation with 1000 particles in time TM = 
l0ms, taking 0.0lms to evaluate the probability of each particle. Particle filters attempt 

to approximate the Probability Distribution Function (PDF) of the robot position over 

the space of robot poses by importance based resampling of a set of sample poses, 

or particles. Given a grid cell granularity of 10cm and 1 deg, a 10 x 10m map would 

require 3,600 ,000 matches to perform an exhaustive global localisation search, again 

taking 0.0lms to evaulate the probability of each grid cell: 

gridsize = 3,600,000 = 100 X 100 X 360 

resulting in a computation time of 36s and a ratio of global localisation to local position 

estimation time of: 

36,000 _ 
3 6 10 - ' 00 

Global localisation in a metric map may not require an exhaustive search space, but 

the computation requirements for global localisation grow quickly. In addition, if each 

cell in the metric map requires only 1 byte for storage, the metric map would require 

r-_,, 3M B of memory. 

Thus scalability is a problem in all metric map approaches, whether the representa­

tion be evidence grids, collections of line segments, or geometrically correct maps of 

landmarks or features. 

Topological Maps 

Topological maps are typically coarse, graph like representations of the environment. 

In these representations, nodes correspond to significant places in the environment 
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while edges in the graph correspond to transitions between places. Example topo­

logical maps are shown in Figure 2.4 , both with exact metric transitions (a) , and with 

metrically incorrect but still functional transitions (b) . Topological maps, theoretically, 

scale well with the size of the environment and lend themselves well to graph based 

path planning and navigation. They typically have a coarse representation which lim­

its the accuracy of position tracking and in practice do not scale efficiently due to 

the problems of discriminating between nodes (Thrun, Gutmann, Fox, Burgard and 

Kuipers, 1998). While the coarse spatial representation limits the local positioning ac­

curacy, it conversely simplifies the global localisation task, that is, localising the robot 

from an unknown start position. In practice however it is hard to find a representation 

which uniquely identifies each place, and such representations are usually complex 

or time consuming to extract, and localisation can become time consuming. Because 

topological maps define the transitions relative to each place, the odometry error does 

not accrue, and when navigating from the map odometry estimates can be reset at the 

recognition of each place. 

Topological maps typically use rich, data intensive sensors such as vision. The rich­

ness of data captured by a sensor such as vision allows the robot system to extract 

an internal representation from the environment that uniquely identifies the location 

from which the sensor data was captured. As mentioned above the ability to form 

unique representations of locations in the environment is crucial to the concept of 

topological mapping. 

A good example of topological maps is presented by Kuipers and Byun (1991). Form­

ing one level of the spatial semantic hierarchy, the topological map is constructed of 

distinctive places connected by distinctive travel paths. It is proposed that distinctive 

places are determined by a distinctiveness measure defined on a subset of sensory fea­

tures which are maximised at the place. When the robot is in the neighbourhood of 

the place, it can use the distinctiveness measure to perform a hill climbing search and 

so move towards the distinctive place. 

Just as distinctive places are maximised over a two dimension area, distinctive paths 

can be identified by a distinctiveness criterion which defines a set of one dimensional 

points. Thus Kuipers and Byun (1991) report the ability to be able to navigate down 

the mid-line of a corridor and along the edge of a room, but cannot navigate in open 
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Figure 2.4: An example topological map of the Robotic Systems Laboratory, showing 
exact metric transitions a) , and metrically incorrect transitions 

space. This implementation of a topological map does not address the global locali­

sation as individual places are not unique, but it does eliminate odometry errors by 

periodically resetting an odometric counter. 

In comparison to the metric map example, a topological map with a node density of 

1 per 1 m2 would require 100 matches to perform an exhaustive global localisation 

search. Matching computation time is 100 x Ty s, where Tr is the time taken to match 

one instance of a given topological representation. The value of Tr is dependent on the 

computation costs of the particular topological representation used. The ratio between 

local position estimation and global localisation in such a topological map is 

lOOTr = lOO 
Tr 

which is much less than the equivalent metric ratio. 

In general the matching time cost for instances of topological representations are ex­

pensive, with Tr > TM, however as the size of the map grows the spareness of rep re-
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sentation overcomes the initial overheads: 

(2 .1) 

for large values of map size N, where Gr and GM are the granularity of the topological 

and metric map representations. 

Typical topological localisation would result in a robot position estimation accuracy 

of less than lm2
. The memory requirements also depend on the chosen topological 

representation. 

Topological maps scale better with the size of the environment than metric maps, but 

have high matching overheads and are comparatively inaccurate. 

Integration of Topological and Metric Maps 

Since both topological and metric maps have their disadvantages recently research has 

started to examine integrating the two approaches to take advantage of the strengths 

of both approaches. For example the topological system reported above (Kuipers and 

Byun, 1991) was just one level of a spatial semantic hierarchy. Below the topological 

representation, was a path following control mechanism, reminiscent of the local nav­

igation strategies, while at the highest level was a metric representation, which was 

refined over time as the robot familiarised itself with the environment. Following this, 

Thrun, Gutmann, Fox, Burgard and Kuipers (1998) report an approach to mapping 

which uses a topological map to correct for large odometric errors in a metric map, 

under a common statistical framework. Asoh and Matsui (1999) take this idea further, 

directly integrating topological and metric maps. Both these latter approaches how­

ever, still generate fine grained maps, and as such suffer from the scalability problems 

discussed above, while Kuipers and Byun (1991) does not address global localisation 

problems at all. 

Rather than focusing on combining the two methods, it makes sense to look at what 

each approach gives us and how that contributes to the goal of autonomy in mobile 

robots. As mentioned above, topological maps give good scalability and simplify 

global localisation if places are sufficiently unique. Metric maps, by contrast, pro­

vide accurate position tracking. Global localisation is needed in the case where the 
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robot is started in an unknown position and must localise itself in the map. Position 

tracking is needed for accurate navigation and path planning tasks. On closer inspec­

tion the accuracy required for the navigation and path planning tasks is only needed 

relative to the local environment. Examples include navigating around an obstacle 

or positioning the robot near a docking station. As long as the robot has an accurate 

position estimate relative to a local point in the environment, it does not need metric 

information about the rest of the map. 

Limiting the Localisation Search Space 

Given that a major problem in navigation is efficient global localisation, it is desirable 

to limit the required computation as much as possible when performing such a task. 

One method of doing this is by reducing the localisation search space in the map. 

In fact once the global position has been estimated, the tasks of initial local position 

estimation and subsequent position tracking are just localisation in a vastly reduced 

search space. The traditional approach to this problem has just been to assume that the 

robot has a rough estimate as to its location and search local space for fine positioning. 

This assumption is invalid in the kidnapped robot problem. 

Recently efforts have been made to overcome this problem in a more satisfying man­

ner. Dellaert, Fox, Burgard and Thrun (1999) use a particle filter to subsample potential 

locations of the robot from a grid based metric map. The samples can then be shifted 

to areas in which it is likely that the robot is positioned according to current sensor 

data. In practice however, it takes a large number of samples to effectively cover a 

large environment and the scalability problem arises once more. This led Jensfelt, 

Wijk, Austin and Andrsson (2000) to propose several augmentations to the algorithm 

to more efficiently search the localisation space. Further discussion on this topic is 

provided below. 

Another approach is to construct a topological map using metric maps of particular 

locations (Courtney and Jain, 1994) . Metric localisation tasks can then be constrained 

by first localising on the topological map , and accumulated error on the metric level 

is eliminated due to the decomposition of the metric representation. Of course in this 

approach, two separate searches must take place, one on the topological level and one 

on the metric level. 
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2.5.2 Data, Features and Landmarks 

The above approaches to metric mapping involved creating maps of accurate two 

dimensional space and localisation was achieved by matching complete sensor data 

readings with that map. This led to scalability problems when robots were presented 

with large environments. Such representations which utilise the entire sensor view in 

both mapping and localisation can be found in topological mapping as well. An exam­

ple of this is Principle Component Analysis, where the entire sensory view at a place 

is analysed to find its maximally discriminating components of an image in relation 

to views of other places (Krase, Vlassis, Bunschoten and Motomura, 2001) . Another 

example is reported by Matsumoto, Inaba and Inoue (1997), who use raw, low reso­

lution panoramic images to represent places along a learnt route. Global localisation 

can be achieved by exhaustively matching a current panoramic view to a repository 

of stored views. 

Another way to approach this problem is to explicitly pick out distinctive informa­

tion from the sensory views and use this distinctive information to construct maps 

and provide localisation cues. In metric maps this means building maps with these 

distinctive features positioned precisely on a two dimensional map (Leonard and 

Durrant-Whyte, 1991a) Qensfelt and Christensen, 1999), and localising by detecting 

those features and calculating relative robot pose. In the case of topological maps, this 

information would be used to uniquely identify individual places, and localisation 

would occur by finding those particular distinctive features in the current view. 

This approach has traditionally been called landmark navigation. But inside that all­

encompassing title there are really two distinct methodologies. The first is to extract 

information that is truly unique to that area. This is analogous to representing a place 

using a monument such as the Eiffel tower, a truly distinct landmark. A location can 

be defined in relation to such a landmark or set of landmarks. This is true landmark 

navigation, and such unique regions of the environment can be referred to as land­

marks. Alternatively, distinctive features in the environment can be extracted which 

occur regularly in the environment, such as the identification of door frames , line seg­

ments , or comer points. In this case a location can be defined in relation a specific 

configuration of local features. These repeating regions shall be referred to as features 

and navigation using such cues as feature navigation. 
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The only distinction between landmarks and features that this research makes is that 

landmarks are unique to one specific location in the environment, whereas a specific 

feature may occur at a number of locations throughout the environment. 

Selecting Landmarks and Features 

What makes a distinct landmark? When are features appropriate and when are land­

marks? Recent work has lent towards letting the robot select appropriate landmarks 

rather than humans defining them. An example of this is found in Thrun's (1998) 

description of a landmark learning algorithm. This algorithm, called Bayesian Land­

mark Learning (BaLL), let a neural network extract landmarks from visual images of 

the environment, by minimising the error in position estimation of the robot. Thrun 

(1998) found that a variety of landmarks were found, including, doors, dark spots, 

wall colour, hallways, and blackboards. In one spot the almost invisible (to humans) 

change in illumination of an otherwise visually sparse wall was chosen as a landmark. 

By introducing different levels of uncertainty into the robot's position estimate, Thrun 

(1998) found they could manipulate the characteristics of landmarks chosen. By in­

troducing high levels of position estimation uncertainty, and thus forcing the robot to 

solve the global localisation problem, the algorithm would tend to select landmarks 

such as wall colour that differentiate large portions of the environment. If the net­

work was trained with low levels of position estimation uncertainty then the algo­

rithm tends to select local features such as doors or hallways. 

This study shows that the appropriateness of landmarks depends on the task at hand. 

Global localisation requires distinct landmarks in order to differentiate places while 

local position tracking can be achieved using local features. Of course over time the 

observation of a specific set of features in a particular configuration can lead to global 

localisation, but in general, encountering distinct landmarks achieves this much more 
efficiently. 

The Matching Problem 

The matching problem is the problem of comparing the current sensory view with a 

robot's internal map representation to perform localisation. This process is performed 
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irrespective of the level of representation: data, features or landmarks. 

Matching raw data in topological or appearance based representations such as en­

tire panoramic images (Matsumoto et al., 1997) is computationally expensive while 

matching with sparse data (Krase et al. , 2001) leads to ambiguity in localisation due to 

spatial aliasing and data association problems. 

A landmark representation can identify unique regions of the sensor data which helps 

eliminate spatial aliasing. A feature representation is less unique and data associa­

tion is a problem. The case for landmarks over features is not so cut and dry. The 

matching process upon which localisation depends is different for landmarks and fea­

tures. Features, such as door jams, can be identified in the current sensory view before 

matching occurs. Thus it is only necessary to match the current configuration of fea­

tures with the configuration of features in the map. Landmark matching on the other 

hand, requires all landmarks in the map to be matched against every possible position 

in the current sensory view. So while landmai-ks are distinct the matching process can 

be computationally prohibitive compared to feature matching, even when taking into 

account the extra processing involved in identifying features . 

An ideal situation would be to combine the attention attraction capabilities of features 

with the distinctiveness of landmarks. Sim and Dudek (1999) attempts to do this by 

identifying potential landmarks in a visual scene by detecting features comprised of 

dense regions of edge elements. Groups of landmarks are then selected based on the 

principle components analysis of potential landmarks from different viewpoints. Lo­

calisation then involves first extracting the edge density maxima features and match­

ing them with the landmark sets contained in the map. This approach to landmark 

selection and matching appears promising, but the experimental environment was 

very small and the system was not tested on a real robot, with associated real time 

localisation constraints. 

2.5.3 Internal Belief Representation 

Robots operate in real world environments and as such they have to deal with noisy 

sensor data. Localisation achieved by simply matching discrete sensor data at each 

time will result in poor estimates of robot position due to the errors introduced by 
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noisy and ambiguous data. One of the biggest criticisms of early navigation systems 

was their inability to handle uncertainty in the robot's understanding of the environ­

ment. This meant that there was no strategy for integrating sensor measurements over 

time, nor for recovering from incorrect localisation estimates and no means to main­

tain multiple hypotheses as to the robot position. This problem can be stated as the 

problem of a robot maintaining an internal belief as to its own current position. 

The previous description of purposive robotic behaviour identifies point to point navi­

gation as a goal of this research. An internal representation of belief as to where a robot 

is located in the environment should be able to inform decisions as to whether this goal 

has been reached. This decision typically can not explicitly be made with traditional 

topological representations. Topological representations are typically driven by be­

havioural based methods of navigation. In these approaches the sensor data drives 

the robot control towards a goal state (Khatib, 1985)(Latombe, 1991)(Arkin, 1998). Be­

haviour based robot architectures typically have a behaviour arbitration system which 

makes it difficult to define just when a goal has been accomplished. 

This section looks at internal belief representation in metric based maps and how such 

representations impact on the localisation task. 

Gaussian Estimations 

A common method for representing the internal belief of a robot's location within 

an internal map is using a Gaussian Probability Density Function (PDF). The mean 

of the Gaussian PDF represents the estimate of the robot's position in the environ­

ment while the variance represents the uncertainty associated with that measure. The 

noise evident in a system is likely to be composed of noise from many small sources 

(Maybeck, 1979). A Gaussian probability density closely approximates the summation 

of many small sources of noise, regardless of the shape of the constituent densities. 

The Kalman filter is a recursive algorithm for the optimal estimation of linear sys­

tem's which assumes that noise in the system is Gaussian and white (Maybeck, 1979) . 

Maybeck (1979) describes the key characteristics of a Kalman filter by stating: 

.. . [a Kalman filter] processes all available measurements, regardless of their 

precision, to estimate the current value of the variables of interest, with use 
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of (1) knowledge of the system and measurement device dynamics , (2) the 

statistical description of the system noises, measurement errors, and un­

certainty in the dynamics model, and (3) any available information about 

the initial conditions of the variables of interest. 
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Durrant-Whyte (1994) provides a guide to performing mobile robot pose tracking us­

ing a Kalman Filter. Using a Kalman filter Leonard and Durrant-Whyte (1991a) incor­

porated noisy observations of features into an estimate of robot pose, given an a priori 

estimate. An application of the Kalman filter to a mapping and localisation problem 

is presented in Chapter 4. 

The Kalman Filter approach to internal belief representation can handle noisy sensor 

data and produce an optimal estimate of local position, but assumes a relatively accu­

rate knowledge of the starting position. Therefore the use of Kalman filters for position 

estimation is not suitable for global localisation. Also if the position estimate diverges 

from the true position, it cannot re-localise as the distribution model is uni-modal. 

Summation of Gaussian PDF's can be used to model multi-modal distributions for 

pose tracking. Jensfelt and Christensen (1999) use a Gaussian PDF to represent the 

position of a mobile robot in a minimalistic metric feature map. As ambiguous sen­

sor data is introduced the system spawns off alternate hypotheses of robot location. 

These hypotheses also are characterised as Gaussian PDF. The summation of the Gaus­

sian PDF's for each hypothesis represents the mobile robot position PDF. An extended 

Kalman filter is used to update the multiple Gaussian hypotheses. As a new hypoth­

esis is created for every ambiguous sensor reading, the hypothesis tree becomes large 

and pruning is required. 

Jensfelt and Christensen (1999) use the multiple Gaussian hypotheses approach to per­

form global localisation. Detection of features in the sensor data generate robot pose 

hypotheses. The summation of the hypotheses ' Gaussian PDF's gives a global PDF. 

Due to the minimalistic features and careful management of the hypothesis tree, global 

localisation can be performed with a suitable exploration strategy. The minimalistic 

feature map, however, can result in long exploration routes before all sources of am­

biguity in robot localisation are eliminated. Jensfelt and Christensen (1999) also use a 

manually constructed map. 
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Arbitrary Probability Density Function Estimation 

Although the summation of multiple Gaussian PDF's can be used to construct an 

arbitrary PDF over a search space, this approach introduces extra problems such as 

hypothesis management to limit the amount of generated hypotheses. This can be 

avoided by attempting to represent the robot's position belief as a probability density 
function over the entire space of possible robot locations. Of course this problem is 

not tractable for real-world environments and some approximation of the probability 

density over the environment must be made in order for the technique to be useful for 

mobile robot localisation. 

Position probability grids discretise the environment and define an approximation of 

the PDF (Burgard, Fox, Henning and Schmidt, 1996). Each cell in a position proba­

bility grid represents the probability that the robot is in that particular location in the 

map. This representation is computationally expensive to update, as the probability of 

each cell must be calculated for every localisation step. The computational cost grows 

exponentially with the granularity of the grid. 

Particle filter approaches attempt to approximate the probability density function by 

use of sampling methods. The approximation is achieved by distributing samples or 

"particles" throughout the search space, and recursively reselecting with replacement 

those samples which the sensor model predicts are more likely based on current ob­

servations. This technique has been applied to mobile robot localisation in grid based 

maps by Dellaert, Fox, Burgard and Thrun (1999) using laser range data, and Dellaert, 

Burgard, Fox and Thrun (1999) using visual data, under the names of Monte-Carlo 

localisation and the Condensation algorithm (from Isard and Blake's (1998) work with 

computer vision) respectively Using this method allows for the formation of multi­

modal hypotheses as to the robots current position. One problem with pure particle 

filter approaches, is that the robot can still get centered on wrong hypotheses, and the 

sample re-selection does not allow for exploration of unseen areas of the probability 

density function. Jensfelt et al. (2000) propose some adjustments to this re-selection 

process to allow for the exploration of novel hypotheses. 

Global localisation using particle filter approaches is also problematic. A particle set 

of a size which allows for efficient position estimation generally cannot effectively 
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sample the extent of the search space when attempting global localisation. To perform 

global localisation effectively, the particle filter would have to sample from the major­

ity of cells in the grid map. In doing so, particle filter localisation would be reverting 

to a position probability approach. 

The tradeoff between accurate position tracking and efficient global localisation can 

be seen in both the multiple Gaussian hypothesis and the grid based particle filter ap­

proaches. The multiple Gaussian hypothesis approach attempts to simplify the match­

ing process (by reducing the number of hypotheses) using a minimalistic feature based 

method, while the sampled PDF approach of particle filters attempts to sample from 

a rich map representation. Both forms of location belief are dependent on the under­

lying internal representation. The dependence on a particular representation limits 

what is achievable in the conflicting tasks of accurate local position estimation and 

efficient global localisation. 

2.5.4 Simultaneous Localisation and Mapping (SLAM) 

Mapping and localisation are not independent. If a robot is constructing a map, it 

must be accurately localised in order to sensibly integrate current sensor data into 

an existing map representation. If a robot is to perform localisation, it must have a 

map representation in which to localise itself. Therefore to to operate in arbitrary 

environments, a robot system must perform the mapping and localisation behaviours 

concurrently. In contemporary mobile robot literature this process is referred to as 

Simultaneous Localisation and Mapping (SLAM). 

Smith, Self and Cheeseman (1987) performed SLAM using an extended Kalman Filter 

by modelling both the robot pose and the map parameters in the state vector. Obser­

vations of current sensor data were used to update the map parameters as well as the 

robot pose. A map could be extended by adding additional parameters to the state 

vector when exploring previously unseen regions of the environment. This approach 

does not scale well as each additional map feature adds an extra dimension to the 

filter. 

Many attempts have been made to reduce the complexity of Kalman Filter based 

SLAM: Leonard and Durrant-Whyte (1991b) restricted the filter update to "confirmed H 
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robot poses or feature observations; Uhlmann (1998) with the use of covariance inter­

section; and Dissanayake, Durrant-Whyte and Bailey (2000) by removing unnecessary 

features from the state vector. Jensfelt (2001) suggest a hierarchical form of SLAM 

which attempts to reduce the complexity of the state vector by breaking the map into 

a number of smaller more manageable sub maps based on the notion of gateways. 

While all approaches provide some relief from the map scaling problem, it's effects 

are only delayed and not eradicated. 

Another characteristic of Kalman Filter based SLAM approaches is that all map pa­

rameters are estimated relative to a global coordinate system. As a robot moves away 

from the starting point the uncertainty associated with the robot's position accumu­

lates and is reflected in subsequent feature acquisition and position estimation. 

While most approaches to SLAM have relied on range sensors such as sonar or laser, 

Davidson and Murray (2002) report an approach to SLAM which uses an active vision 

sensor. This approach uses a corner detector to identify map features and estimates 

the features position in three dimensional space. Like Dissanayake et al. (2000) a min­

imal amount of map parameters are maintained. Davidson and Murray (2002) also 

introduce the idea of incorporating sparse prior knowledge into maps to reduce the 

problem of increasing uncertainty in the world coordinate system. 

The particle filter approach to localisation is not suitable for the SLAM problem. Es­

timation of map parameters by a search through the space of all possible maps is 

computationally intractable for all but the smallest of maps. Proponents of the parti­

cle filter have performed SLAM using scan-matching to build a map and the particle 

filter approach to perform localisation (Thrun, Burgard and Fox, 2000). 

SLAM attempts to perform map acquisition and maintenance concurrently with local­

isation. SLAM accentuates the conflict between local position estimation and global 

localisation by introducing additional computational and representational require­

ments. Current approaches to SLAM highlight the map scaling problem and reinforce 

the need for hierarchical representations. 
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2.5.5 Panoramic Vision 

Panoramic vision is a sensor which is becoming popular in the field of mobile robotics. 

It is also the sensor of choice in our research and as such a brief review of panoramic 

vision in the literature is necessary. From our own experience we know that vision 

sensors provide a rich source of information for the localisation task. Single visual 

snapshots of most environments provide us with enough cues to localise. The ex­

tension of the visual scene to a panoramic view increases the amount of information 

available. This wealth of information has led to the application of panoramic vision 

sensors to the problem of mobile robot localisation. 

Panoramic Vision Sensors 

Real time panoramic vision can be achieved by a variety of means. Early methods 

included the use of fish-eye lenses (Cao, Oh and Hall, 1986) and conic (Yagi and 

Kawata, 1990) and spherical (Hong, Tan, Pinette, Weiss and Riseman, 1991) mirrors. 

More recently, more sophisticated mirror shapes have been suggested. (Yamazawa, 

Yagi and Yachida, 1995) propose a hyperboloidal mirror shape which has the optical 

property that all light rays which would pass through the focal point of the mirror 

are reflected by the mirror surface to pass through a second common focal point. By 

positioning the camera so its focal point is in this secondary location, the transfor­

mation from warped panoramic image to a cylindrical panorama image or common 

perspective image is simplified (Yamazawa et al., 1995) . 

Chahl and Srinivasan (1997) report a family of mirror shapes described by polyno­

mial functions which preserve a linear relationship between the changes in the angle 

of incidence and the angle of reflection in light rays striking the mirror surface. This 

property simplifies the image transformation and results in a constant angular resolu­

tion of elevation in the unwarped cylindrical panoramic image. 

These mirror shapes all produce polar camera images in which the pixel density per 

elevation angle increases with the radius of the polar image. This results in unwarped 

images which vary in image quality. (Conroy and Moore, 1999) have designed a mir­

ror shape which achieves spatial-resolution invariance over the unwarped image by 

ensuring pixel density in the polar image is constant irrespective of the angle of el-
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evation (Conroy and Moore, 1999) also design coaxial mirror shapes for panoramic 

stereo. The depth perception of these stereo systems, however, is very limited due to 

the small baseline between the two coaxial surfaces. 

Applications to Mobile Robotics 

There has been many applications of panoramic vision to the problem of mobile robot 

localisation. A few notable approaches are presented here. 

Matsumoto et al. (1997) use the entire unwarped image to build View-Sequence maps 

of routes through a corridor environment. Images are memorised when the correla­

tion of the current panoramic image with the last stored image falls below a thresh­

old. Localisation is achieved by matching the current panoramic image with the set of 

stored images. Although this matching process is expensive for global localisation, the 

panoramic image representation allows for navigation along the learnt route in both 

directions. 

Franz, Scholkopf, Mallat and Bulthoff (1998) used a similar appearance based ap­

proach using a pixel average of rings in an warped panoramic image to build a view 

graph of an environment. Matsui, Thompson and Asoh (2000) also has used a single 

ring in the warped panoramic image to perform correlation for mobile robot localisa­

tion. Both approaches took advantage of the wide field of view of panoramic images 

and their rotational invariance to extract a minimalistic representation of the environ­

ment. Localisation in these appearance based approaches is limited to the granularity 

of stored views and is susceptible to occlusion. 

Paletta, Frintrop and Hertzberg (2001) match overlapping segments of panoramic im­

ages with a view based map. This approach overcomes occlusion in the current image 

by matching each segment of the view and fusing the correlation results . Although oc­

clusion is overcome, this approach introduces additional matching requirements and 

adds further complexity to the global localisation task. 

To limit the complexity of the matching task, panoramic images can be reduced to 

a minimalistic representation through Principle Components Analysis (PCA) (Vlassis 

and Krose , 1999) . This reduction however often produces features with poor discrim­

inatory ability between robot positions. Vlassis, Bunschoten and Krose (2001) argue 
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that this is because of the unsupervised nature of PCA and report a supervised liner 

feature extractor which takes advantage of odometric knowledge between image sam­

pling to produce better robot position estimates. 

Vlassis, Terwijn and Krose (2002) report the use of particle filter position estimation 

in a panoramic image PCA feature map. To overcome the problem of in-optimal sam­

pling of the PDF the use of auxiliary particles are proposed. Auxiliary particles are 

targeted towards the region of the PDF where the prior distribution and the obser­

vation likelihood distribution overlap. This targeting of sampling is similar to that 

proposed by Jensfelt et al. (2000). 

Yagi, Hamada, Benson and Yachida (2000) use a panoramic camera to perform alter­

nate pose estimation and map generation with no knowledge of robot motion. The 

azimuth angle of vertical edges is analysed to obtain a least squares estimate of robot 

pose and map configuration. This form of SLAM operates in real time on a small map 

and produces accurate local position estimations with an error of"" 10cm. The map 

generation step incorporates knowledge about the reliability of map feature estimates 

in relation to the magnitude of the change in azimuth. Global localisation is not at­

tempted. 

Panoramic vision based SLAM has also been reported by (Drocourt, Delahouche, 

Marhic and Cleretin, 2002). In this approach, stereo panoramic sensors provide lo­

cation estimations of vertical line features. Like the -SLAM approaches reported previ­

ously, this approach focuses on local position estimation and does not mention global 

localisation. 

Ulrich and Nourbakhsh (2000) use colour panoramic vision to build topological maps 

of indoor and outdoor environments. Places in the topological map are represented by 

image histograms detailing the colour composition of panoramic images from specific 

locations in the environment. Place recognition is achieved by forming similar his­

tograms of the current panoramic scene and performing matching and a unanimous 

voting categorisation technique. This method results in very reliable place recogni­

tion performance, for very little computational expense, but does not allow for local 

position estimation within places. The topological map is manually constructed. 

Several other panoramic vision based approaches to mobile robot localisation are re­

ported later in this chapter under the section detailing biomimetic approaches. 
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This section has briefly reviewed the topic of panoramic vision for mobile robot lo­

calisation. It has highlighted the ability of panoramic vision to reduce the complexity 

of internal representations or increase accuracy of local position estimation due to the 

extent of the visual field . The underlying problem of conflict between the dual goals 

of local position estimation and global localisation has not been addressed. 

2.6 Biological Systems 

As mentioned in Chapter 1 the study of biological organisms can provide insights 

into the design of artificial systems. The study of biological navigation systems is 

especially advantageous as navigation is a behaviour seen in a wide variety of organ­

isms of differing complexity. It is also an example of terminal addition and as such 

the navigation behaviours can be seen to build upon each other as the complexity of 

biological organisms increase. By studying organisms of increasing complexity, the 

requirements for increasing navigation competences can be identified. For that reason 

the navigation behaviours, in particular spatial memory, mapping and localisation, of 

honeybees, rats and humans are presented below. 

2.6.1 Honeybee Navigation 

Honeybees are relatively simple organisms which are capable of a variety of sophisti­

cated navigation behaviours. Not only can they reliably navigate to and from a food 

source but they can communicate the direction and distance to such goal locations to 

other bees in their hive. What sort of internal representations do bees use to store this 

navigation information and how do they construct these maps and localise themselves 

from them? 

Visual landmarks 

There is a large amount of evidence to suggest that in addition to the path integration 

information of distance and direction to goal, bees memorise a sequence of visual 

images along a route (Collett, 1996). When traversing the route, a bee can compare the 

stored images with the current sensory image and set it's course appropriately. It does 
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this by using visual landmarks in three separate ways (Collett, 1996): 

l. Recognising scenes: if bees are kidnapped from their hive and released in a famil­

iar location, the bee will proceed to fly in the direction of the hive as though it 

had recalled a goal vector associated with the scene. 

2. Aiming at beacons: bees can approach distant goals by aiming for familiar land­

marks on or near a direct line from start location to finish. By following these 

beacons bees can move into an area close to the goal positions. 

3. Image matching. Once a bee gets close to the goal location, it can use stored im­

ages to guide them to the goal position by moving so as to align corresponding 

landmarks in the stored and current images. 

These three uses of visual landmarks correspond to the way-finding behaviour recognition­

triggered response, and the local navigation behaviours of aiming and guidance. Col-

lett (1996) suggests that the multiple strategies of landmark guidance 

... may have arisen by an opportunistic grafting of visual pattern learning 

onto pre-existing navigational and visuo-motor control mechanisms. 

Although these behaviours use a common representation of visual landmarks in stored 

images, different types of landmarks are more appropriate for different behaviours, 

and thus they are acquired in different ways. 

Turn Back and Look Flights 

It has been observed that honeybees, when leaving the hive or a feeding location for 

the first time, make a flight of small arcs looking back at the start position. These 

systematic manoeuvres have been called flights of learning, or tum back and look 

movements ((Lehrer, 1993; Zeil, Kelber and Voss, 1996; Collett and Zeil, 1996)). Zeil 

et al. (1996) provide a discussion of the structure and function of these flights with 

regard to the different navigation strategies bees employ. 

The structure of the flight appears consistent across a variety of species of bees and 

wasps (an example flight is shown in Figure 2.5. In the case of leaving the hive, these 
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Figure 2.5: The flight path of a typical Turn Back and Look flight. Figure from Zeil 
et al. (1996) . 

insects hover for a few seconds looking back at the hive entrance, then fly a series 

of ever increasing arcs moving away from the hive, while also gaining height at a 

consistent rate. The last part of the flight involves the bee circling the hive at a height 

of a few meters. 

While flying these arcs the honeybee keeps the start location in the lateral visual field 

so as to maintain a constant visual image of the hive, except for the extremes of the arc 

where the bee turns back the other way, momentarily capturing the hive in the high 

resolution ventral visual field, before it passes into the opposite lateral field. This has 

the added benefit of requiring only two goal vectors relative to the longitudinal axis 

of the bees body over the entire flight. At any stage during an arc the goal vector is 

approximately 45 degrees to 'the left or right of the bees current orientation. 

The full significance of these flights has not yet been determined but the evidence 

suggests that honeybees use these flights to do two things: 

First, they allow insects to inspect and record the local scene around a goal 

from distinct positions and along directions that are determined by celes­

tial or earth-based compass cues or by the bearing of close landmarks rel­

ative to the goal. Second, they allow insects to acquire information about 

the true distance of nearby landmarks (Zeil et al. , 1996) . 
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Collett (1996) proposed that the purpose of these flights is to learn about landmarks 

visible from the start location. The distance of landmarks from the goal location de­

termine how appropriate they are for the different navigation strategies. Landmarks 

that lie along the correct direction and are at relatively far distance from the goal will 

not change position in the visual field during these flights and as such can be used as 

homing beacons. Landmarks that are close to the goal, on the other hand, will move 

through the visual field as the bee moves, allowing for accurate guidance back to the 

goal location. 

Therefore up to three levels of landmarks are learnt. A general view of the local en­

vironment may be recorded for scene recognition. Distance landmarks may be learnt 

in association with goal vectors. Finally, close landmarks may be learnt for accurate 

positioning near the goal location. 

Path Integration 

Aiming behaviours work much better if they are used in conjunction with path-integration. 

If an organism has the ability to determine distance travelled in the direction to a goal, 

it can use this distance knowledge to cue other search behaviours at the appropriate 

time. Also in bees the direction and distance can be communicated to other bees in 

the hive via "dance" movements (Esch, Zhang, Srinivasan and Tautz, 2001) . 

Path integration in honeybees, as well as other flying insects, is complicated by wind 

patterns and load carrying. Bee flight can be hindered or assisted by the direction of 

the wind, and bees are loaded with pollen on return flights to the hive. Therefore such 

possible path integration methods such as counting wing-beats, energy consumption, 

and integrating airspeed are not reliable. 

By conducting experiments which eliminated these potential cues, Srinivasan, Zhang 

and Bidwell (1997) showed that honeybees can reliably measure short flight distances 

and they do so by analysing image motion. This visual odometry is primarily deter­

mined by motion in the lateral visual fields and information from the ventral field is 

only used in absence of other information. This use of lateral field image motion, al­

lows the bee to acquire a reliable odometric signal independent of the height the bee is 

flying at. Esch et al. (2001) showed that it is distance based on this total image motion 
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which is communicated by dancing bees rather than a measure of true distance. In this 

experiment honeybees found food after flying through a tunnel which induced exag­

gerated visual odometry. Upon returning to the hive the honeybees communicated 

the location of the food source to hive mates. The tunnel was removed thus reducing 

the image motion along the route to the food source. The hive mates now travelled 

exaggerated distances seeking the food source. 

Learnt Routes 

Such path integration, even using visual odometry, will accumulate excessive error 

over long distance navigation. Srinivasan et al. (1997) report that odometry is "reset" 

along the route when prominent landmarks are encountered. In fact Collett (1996) 

suggests that recognising landmarks along the way trigger the recall of associated 

goal vectors. Thus at each prominent landmark a new goal vector is obtained and the 

computation of distance is recommenced. 

The construction of routes with segments triggered by visual stimuli is supported by a 

honeybee maze learning experiment by Zhang, Bartsch and Srinivasan (1996) . In this 

experiment bees learnt to navigate mazes by following colour marks. Trained bees 

could then navigate through novel mazes by following the marks, and could even 

follow marks of different colours though with less success. In addition, bees could 

navigate learnt mazes when the colour marks had been removed, although again, 

were not as proficient as when the colour marks where present. This suggests that not 

only were the bees remembering colour cues but were also acquiring at least a set of 

motor commands defining the correct sequence of turns through the maze. 

Zhang, Lehrer and Srinivasan (1999) go on to investigate the learning of multiple 

routes by honeybees. If a bee is foraging for food at more than one site, it needs to 

not only memorise a separate sequence of landmarks for each site, but must be able to 

retrieve from memory the set of landmarks appropriate for each route. They trained 

honeybees on two routes using two distinct sets of three visual landmarks. The results 

shov1ed that honeybees can indeed store visual stimuli for more than one route at a 

time. In addition, when exposed to a landmark from a set of stimuli from a particular 

route, this triggered recall of the other two landmarks in the set. The associative re­

call of landmarks was largely independent of the sequence in which they were learnt. 
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That is they could follow a path marked by three landmarks independent of the or­

der in which the landmarks were presented. Zhang et al. (1999) suggest this could 

be because of the training method, as other experiments have shown the sequence of 

stimuli to be important (Collett, Fry and Wehner, 1993) . 

Honeybees have been shown to exhibit multiple navigation strategies. They use spe­

cific flights of learning to learn about the visual scene surrounding important loca­

tions. Visual landmarks are chosen for specific navigation tasks. Honeybees also pos­

sess sophisticated visual odometry mechanisms which can perform reliable path inte­

gration in adverse weather conditions and when carrying loads. These two abilities 

are used in conjunction to build routes from the hive to feeding sites using conspic­

uous landmarks along the way to reset the visual odometer. Multiple routes can be 

remembered simultaneously and exposure to a landmark from one route triggers an 

associative recall of all other landmarks and related goal vectors along that particular 

route. 

2.6.2 Rat Navigation 

Rats can display similar levels of local navigation and way-finding as honeybees but 

also have more complex internal representations of space which allow them to per­

form more complex navigational behaviour. 

Experiments have shown that rats are capable of all levels of the local navigation hi­

erarchy. Rats have been shown to use path integration and to be able to follow pher­

emone trails. They can follow routes and exhibit the guidance strategy to navigate to 

goal locations. 

Place Learning 

Rats are also capable of learning specific places in relation to the general environment 

and are capable of navigating straight to those places along untravelled paths. Tolman 

(1948) reports an experiment where rats where trained to navigate the maze shown in 

Figure 2.6. The rats had to follow the path from A through locations B,C,D,E,F in or­

der to reach food situated in location G. When training was complete, the maze was 

swapped with one shown in Figure 2.7. The rat was introduced to the maze at the 
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Figure 2.6: Maze used for learning in Tolman's (1948) experiment. Rats learnt to 
follow the path A,B,C,D,E,F to the goal G. Figure from O'Keefe and Nadel (1978). 

A 

Figure 2.7: Maze used for testing in Tolman's (1948) experiment. The majority of 
rats choose the path which led straight to the goal located neat the light source at H. 
Figure from O'Keefe and Nadel (1978). 

same start position A and the food reward was still positioned at the same location. 

Upon release the majority of the rats proceeded down the arm of the maze pointing 

directly at the goal. The rats were going to the place associated with the food reward 

rather than making a particular response to current visual stimuli. Tolman (1948) con­

cluded this was evidence for an internal cognitive map, although there was a light 

source positioned at H which weakens this conclusion. This idea is developed further 

by (O'Keefe and Nadel, 1978) and they report further experiments supporting this 
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hypothesis. 0 'Keefe and Burgess (1996) propose the hippocampus as the site in the 

brain where these cognitive maps reside. Rats which have lesions to the hippocampus 

are incapable of performing the above task, but can still successfully use landmarks 

to perform beacon homing. They call this locale learning, and describe navigation us­

ing this information as the cartographic strategy, which is equivalent to the survey 

navigation behaviour identified in Chapter 1. 

Geometric Shape of Environment as a Cue 

The above experiment does not prove that an explicit cartographic map of the envi­

ronment is being made. The experimental setup does not eliminate reasoning about 

path-integration or visual cues leading the rats to the food reward location. Bennett 

(1996) state that these two alternatives must be eliminated before the cognitive map 

explanation becomes necessary. 

Whether rats require explicit cognitive maps to exhibit this detour behaviour or not, 

they are performing a survey navigation strategy (see navigation hierarchy defined 

earlier) and require a more complex internal representation than bees do. Another 

situation which requires rats to use a survey navigation strategy is when they become 

disorientated (Cheng, 1986) . Rats were trained to dig for food in their cage at a specific 

location. This location was partially specified by the cage geometry (ie a rectangular 

cage has ambiguous locations, and fully specified by the presence of distinctive odours 

and patterns placed about the cage. Rats that have been disoriented were placed in 

the cage and then must reorient themselves and dig for food accordingly. Surprising 

Cheng (1986) found that rats rely primarily on the geometric information from the 

cage walls to spatially reorient themselves, disregarding the more accurate odour and 

pattern cues. 

This result is confirmed by Ramos (2000) . In this experiment rats learnt to navigate 

a four arm maze with an open room that was inside a visually complex environment 

as shown in Figure 2.8. Rats released in any arm learnt to navigate to the particular 

arm in which a food reward was located. The use of pheremone trail following, olfac­

tory detection of food or enacting a route sequence as possible navigation strategies 

was eliminated by experimental procedures such as rotating the maze between each 

trial and attaching inaccessible food rewards to each arm of the maze. Ramos (2000) 
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Figure 2.8: Experimental setup used by Ramos (2000) to test spatial reorientation 
cues in rats . The numbers label extra-maze visual stimuli. 
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Figure 2.9: Room with visual stimuli covered by curtain which maintains the general 
geometry of the room (Ramos, 2000). 

concludes that the rats were navigating using extra-maze visual stimuli as navigation 

cues. Continuing the experiment, the extra-maze landmarks were eliminated from 

the experimental environment. A white curtain was hung along the walls of the room, 

covering all distinct individual visual landmarks but still displaying the same room 

shape (Figure 2.9). Further testing showed that rats could still locate the food reward 

in the absence of all visual landmarks, the success rate for finding the food dropping 
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Figure 2.10: Room with visual stimuli covered by curtain w hich changes the general 
geometry of the room (Ramos, 2000). 
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from near 100 percent to around 80 percent. Only the deformation of the perceivable 

extra-maze environment (as shown in Figure 2.10) led to drastic reductions in the suc­

cess rate, the figure dropping to around 40 percent. 

This shows that the rats were not relying solely on visual landmarks in the extra-maze 

environment to reach the reward and led Ramos (2000) to state 
, 

the neurologically intact animals in our study did not use a guidance strat­

egy because their performance did not worsen significantly when the ex­

tramaze stimuli were eliminated. 

Furthermore, Ramos (2000) provides the explanation that the rats build a cognitive 

map of the environment and the shape of the perceivable environment plays an im­

portant part in this construction. Again it is debatable whether this is in fact proof 

of a cognitive map as such, or the use of multiple cues to perform guidance. In this 

case using the geometric shape of the perceivable environment as a "visual landmark" 

which guides the rat to the correct location. 

This distinction notwithstanding, Ramos (2000) concludes that: 

These findings favour the hypothesis that the geometric shape of the space 

that surrounds the animal is a behaviourally important component of the 

extramaze space influencing the orientation of the animals under condi­

tions that elicit the cartographic strategy. 

The fact that the degradation in performance due to covering the visual landmarks 

is minimal, and could be attributed to the slight change in the geometry of the room 

caused by the curtain, reinforces Cheng's (1986) conclusion that geometric information 

was the primary cue for spatial reorientation. Although in the absence of geometric 

information rats can still navigate using distinct landmarks, be they visual or olfactory. 

2.6.3 Human Navigation 

Humans can also spatially reorient themselves from geometric cues. Unlike rats, hu­

man adults can also use other distinctive cues to solve geometrically ambiguous sit­

uations. This is not surprising given the complexity of navigation tasks that we as 
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humans perform everyday. What is surprising is that human children suffer from 

the same reorientation limitations that rats exhibit. Hermer-Vazquez, Moffet and 

Munkholm (2001) present a review of these findings and present experiments detail­

ing the cognitive change in humans which can overcome these limitations. Inspired 

by Cheng's (1986) work on spatial reorientation in rats , Hermer-Vazquez et al. (2001) 

set out to investigate this process in humans. In particular they were interested in the 

emergence of human-specific cognitive traits through the evolutionary process ofter­

minal addition. Hermer-Vazquez et al. (2001) suggest that terminal addition provides 

a logical way for studying these cognitive traits: 

find a trait for which young children show the phylogentically older and 

more common mechanism but for which human adults show distinctive 

flexibility, and then study the developmental change in depth. 

In order to investigate the development of spatial reorientation the following exper­

iment was carried out. Humans of varying ages were shown where a reward was 

located in the experimental room. This room was rectangular with red boxes in each 

comer and one of the short walls was painted bright blue while all other walls were 

white. The reward was hidden under a box which was ambiguously specified by the 

geometry of the room, but could be distinctly specified by the geometry in conjunc­

tion with the bright blue wall. Subjects were introduced to environment, the blue wall 

was specifically pointed out and the reward location was revealed. Subjects were then 

disoriented by spinning about with their eyes closed. When they were told to stop 

spinning and told to locate the reward, their search patterns were observed. 

Human adults immediately search for the reward in the correct location. Young chil­

dren below the ages of 5-7 years, split their searches between the two geometrically 

ambiguous locations, ignoring the additional cue of the blue wall. These findings 

suggest that children below this age cannot spatially reorient themselves using indi­

rect landmarks such as the blue wall. Furthermore, the authors found a correlation 

between the ability to spatially reorient using indirect landmarks and the onset of spe­

cific language producing capabilities , namely the ability to specify verbally the exact 

information needed to solve the task. This correlation was also found in a movable 

object search task. Hermer-Vazquez et al . (2001) conclude that the development of hu­

man adult-like performance in these cognitive tasks is associated with the ability to 
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form linguistic representations of the information required to perform the tasks in a 

more flexible manner. 

2. 7 Biomimetic Systems 

By studying the navigation systems of biological organisms, solutions to mobile robot 

navigation have been proposed. This section looks at several of those solutions in­

spired by honeybees and rats and classifies them with relation to the navigation be­

haviour hierarchy. Of course robot navigation systems have been inspired by other 

organisms besides those discussed below and those systems exhibit behaviours cov­

ering almost all of the navigation hierarchy. For example, Lambrinos, Moller, Labhart, 

Pfeifer and Wehner (2000) have developed a navigation system based on the desert 

ant Cataglyphis which displays the navigation behaviours of systematic search, path 

integration and visual guidance. But for the most, biomimetic robots take their inspi­

ration from honeybees and rats, in part due to the extensive research undertaken with 

these animals, and also because of their navigational prowess and their use of vision 

as the primary sensor. 

2.7.1 Honeybee Inspired Robots 

Mobile robots which have navigation systems inspired by honeybees are popular be­

cause of the relatively simple neural structure of honeybees, and the promise of com­

putationally inexpensive algorithms that that simplicity implies. Researchers using 

bee inspired solutions are hoping to gain insights into the type of information re­

quired to do basic navigation tasks and also to test neuro-biological theories of bee 

behaviour. The section below details bee inspired systems according to their naviga­

tion competence. 

Path Following 

A robot system has been developed which can navigate along corridor environments 

using a centering behaviour inspired by bees (Coombs and Roberts, 1992) . The cen­

tering behaviour is achieved by the robot balancing the optic flow in the periphery of 
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each lateral visual field . When the robot is moving down the center of the corridor the 

optic flow is equal to each side, if it is closer to one wall , then the optic flow in that 

lateral field is greater than the opposing field so the robot steers to the center. The im­

plementation of the centering approach is simplified by a single camera sensor facing 

forward with a wide field of view and an active gaze stabilising system. 

This type of navigation is found only to be suitable in corridor environments. When 

operating in open areas the centering behaviour tended to make the robot move to­

wards walls or into corners, as this type of motion also acts to balance the optic flow 

fields to each side. Therefore Coombs and Roberts (1992) suggest that an additional 

forward looking obstacle avoidance behaviour needs to be used in conjunction with 

the current approach. 

Path Integration 

Honeybees use visual odometry for path integration as well. Srinivasan, Chahl, We­

ber, Venkatesh, Nagle and Zhang (1999) describe a system which uses a centering 

behaviour, similar to the one above, in conjunction with visually mediated odometry. 

This system computes the distance travelled along a path by integration the image mo­

tion in the lateral fields over time. Of course the distance computed is not an actual 

distance measure, but a measure of the image motion experienced to travel a certain 

distance along a particular path. Provided the robot travels over the same path, mis­

sions of the same length can repeatedly be performed. If, for example, the distance 

between the two walls of the corridor were doubled, the robot would traverse twice 

as far, as the perceived image motion would be halved for a set distance. 

Guidance 

The use of visual landmarks to perform guidance navigation is popular in biomimetic 

literature. Bianco and Zelinsky (1999) stands out by mimicking the Turn Back and 

Look flights of bees and wasps to evaluate landmarks. In order to learn a place Bianco 

and Zelinsky 's (1999) robot first selects potential landmarks from the visual scene at 

the goal location by an adapted interest operator (Moravec, 1977; Mori , Matsumoto , 

Shibata, Inaba and Inoue, 1995). Then the robot makes a series of short movements in 
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ever increasing arcs while facing back at the goal location and tracking the potential 

landmarks. Landmarks which track well over this movement are considered reliable. 

The area from which these landmarks can be recognised form a navigation field, inside 

which the robot can successfully be guided back to the goal position. Guidance is 

achieved by moving so as to reduce the error in image space between the landmarks' 

current and reference positions. 

This approach could perform homing from within the navigation field, which was a 

pie slice shape with the vertex at the goal and approximately 30 degrees wide and up 

to 10 meters deep. If the robot was located outside this field, then it could not find its 

way to the goal location. 

Recognition-Triggered Response 

Although not directly mentioning the inspiration of bees in their motivation, Gaussier, 

Joulain, Zrehen, Banquet and Revel (1997) propose a biologically inspired system ca­

pable of the recognition-triggered response behaviour evident in bees. From a cen­

tral goal position, the robot moved around the local environment and captured 4 

panoramic image views at four places surrounding the goal. Features are extracted 

from these views by collapsing intensity values for each column of the panoramic im­

ages into a 1 dimensional intensity histogram. The derivative of this signal and its 

local maxima and minima are used to define the places. 

Gaussier et al. (1997) then use Per Ac, a neuro-computation architecture, to perform 

recognition-triggered responses to navigate towards the goal. PerAc consists of: 

an action level (a hardwired pathway able to play the role of a reflex mech­

anism) and a perception level trying to recognise particular situations and 

to associate them with the correct action through an associate or a rein­

forcement learning rule (Gaussier et al., 1997). 

Given a current panoramic view of the environment, the robot when trying to home 

to the goal location, tries to recognise the distinct place closest to the current view. If a 

place view recognition occurs, then this triggers the action of moving to the goal in the 

direction associated with the recognised place. With just the four different views and 
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associated movements, the robot can successfully navigate to the goal location from 

anywhere in the surrounding open room environment. 

2.7.2 Rat Inspired Robots 

In addition to robot navigation systems mimicking the navigation behaviours of hon­

eybees, there has also been research directed at producing systems inspired by rat 

behaviour. Although there is no longer the close correlation between observed be­

haviours and implementable strategies that is evident in bee inspired systems, rat 

navigation studies have provided many insights for robot navigation behaviour. The 

main reason for this is the large body of evidence in rats for the hippocampus be­

ing the site of so called "place cells", specific cells in rats, and other animals, which 

fire when the rat encounters specific places in the environment (O 'Keefe and Nadel, 

1978) (Eichenbaum, Stewart and Morris, 1990) (Oliveira, Bueno, Pomarico and Gugliano , 

1997). This has led to the proposal of many topological map based systems in biomimetic 

literature. Building rat inspired robot navigation systems also allows neuro-physiologists 

to test hippocampal models of spatial learning and navigation behaviour. 

Modelling Hippocampal Function 

A simple model of hippocampal function with regard to place cells was proposed by 

Burgess, Reece and O'Keefe (1994) . In this model spatial reorientation is defined by 

the firing rates of several hippocampal place cells. These place cells correspond to ob­

served distances to walls in the environment. So a particular firing pattern over these 

places cells would define an open region of space in the rats field of view (approxi­

mately 220 degrees). This model is supported by rats spatial reorientation limitations 

described by Cheng (1986). 

This model was then tested on a mobile robot platform (Burgess, Donnett, Jeffrey and 

O'keefe, 1997). The robot in this study learnt places by first visually estimating the 

distance to surrounding walls. Then it used a competitive learning mechanism to 

select which place cells should be used to represent the observed distances. Using this 

representation of places and path integration, the robot could localise and navigate 

between places. 
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Topological Maps 

The more common approach to rat inspired robotic navigation systems is to use the 

idea of places cells in the hippocampus as sites for places in topological maps. An 

example of such a system is that of Bachelder and Waxman (1995) who used the con­

figuration of observed landmarks to define places in an open room. These places 

were learnt by a neural architecture in which place cells differentiated between sensor 

views gathered from different locations in the environment. Another level of the sys­

tem learnt the connections between place cells and associated them with movements. 

Although this system showed that indeed such places could be learnt and recognised, 

the environment in which the experiment was carried was quite artificial and it was 

not tested on a real robot. 

Mallat, Bulthoff, Georg, Scholkopf and Yasuhara (1995) use the idea of topological 

maps comprised of local views from places in the robot environment. The view graph 

is connected by vertices representing movement similar to Bachelder and Waxman 

(1995). The robot only operated in a maze environment and all junctions had there 

own distinctive markings. The robot could, after learning a maze consisting of 12 

places and 24 views, navigate between any pair of views by the shortest possible path. 

This approach was tested in more realistic environments by Franz et al. (1998). In this 

experiment a small robot navigated around a miniature town using a panoramic vi­

sion sensor. Views consisted of a one dimensional intensity vector from the panoramic 

image taken at a particular place. View nodes were connected by adjacency alone and 

did not hold any distance information. A place was only added to the view graph 

when the current view was sufficiently different to all other previously stored views 

in the view graph. This meant that no two nodes in the view graph were similar 

enough to cause recognition ambiguity. Although it did limit the areas of the environ­

ment in which the robot would learn places, therefore limiting subsequent navigation 

tasks. 

2.7.3 Combining Navigation Strategies 

From the biomimetic mobile robot navigation systems described above, it is obvious 

that to perform any useful behaviour it is necessary to combine navigation strategies. 
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Experiments with visually mediated odometry combined path following with path in­

tegration. All way-finding strategies required a local navigation behaviour in addition 

to the recognising of places. 

Gaspar, Winters and Santos-Victor (2000) present a navigation system which explic­

itly makes use of this combination of simple strategies and notes the emergence of 

a powerful navigation system. In their system panoramic visual images are used to 

create what the authors call a topological map, but is more like a learnt route with 

places spaced 50cm apart and each place being represented with a panoramic image. 

The images' eigenspace are used to reduce matching in localisation, but the search is 

restricted to local position estimates as this method is sensitive to perceptual aliasing. 

In the route, transitions are specified by one of two navigation behaviours: corridor 

following or visual path following. Corridor following is achieved by picking out line 

segments where the wall meets the floor. This process is simplified by converting the 

warped panoramic image into a birds eye view, in which these lines are straightened. 

Visual path following is realised by tracking features in the birds eye view images. 

Features are comer points defined by the intersection of long edge segments. Corners 

provide more accurate information, while long edge segments track more reliably. 

Recognition of a particular place along the route which requires visual path follow­

ing, triggers the recall of a set of features and a desired trajectory. In this way the robot 

can move accurately in special situations such as navigating through doorways or 

through cluttered environments. At the moment the user must initialise the features . 

This system illustrates the importance of multiple navigation strategies in mobile 

robots. Although in this experiment strategies were switched in specific situations, 

so only one had exclusive control at a particular time, in general simultaneous activa­

tion of strategies is desirable. 

2.8 Summary 

The general theme throughout this literature review has been that navigation sys­

tems depend on an interplay between their internal representations and their navi­

gation strategies. In traditional robotic systems, there has been a predominance of fine 

grained representations and high level navigation strategies. Biomimetic approaches 
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try to use parsimonious representations of the environment to execute simple naviga­

tion strategies. 

Traditional approaches grapple with the problem of computational tractability when 

localising in large scale maps. Current efforts are focused on reducing the compu­

tational expense of the matching phase in localisation in order to produce efficient 

global localisation. This can be done by finding efficient representations of spatial 

knowledge or by intelligently directing the global localisation search. Biomimetic ap­

proaches have implemented some simple navigation strategies, but now face the prob­

lem of imitating more complex navigation behaviours that are exhibited by biological 

organisms. True survey navigation has not been demonstrated in biomimetic systems, 

and the problem of embedding places in a topological map into a common frame of 

reference has not been attempted. Although it has not been proved that this level of 

cognitive map is present in biological systems either. 

In both approaches there appears to be an emergence of systems which attempt to 

integrate navigation behaviours into more robust and successful solutions. In tradi­

tional robotics this is seen by the integration of metric and topological maps and the 

introduction of hierarchical maps, while in biomimetics, the focus is on combining 

navigation strategies. It is interesting to note that traditional approaches seem to con­

centrate on integrating the internal representations, while biomimetic approaches try 

to integrate navigation strategies. By looking at the limitations of systems represent­

ing each side it is clear that both spatial representations and navigation strategies need 

to be integrated together to form successful navigation systems. 

The evolution of these systems is converging on the original goal of mobile robot nav­

igation: that of robots which have navigation abilities equivalent to those of humans. 

From evolution of the human navigation system, important insights into the integra­

tion of different levels of navigation strategies and internal representations can be 

gained. In particular the study of the cognitive abilities related to navigation tasks 

which develop under the evolutionary process of terminal addition can be used as a 

model from which integrated navigation systems can be designed. The progression of 

navigation ability from that exhibited by bees, to rats and finally humans is of partic­

ular note. The studies reported in Section 2.6 show spatial knowledge cues starting at 

landmarks for bees, progressing to a sense of open space at the expense of landmarks 
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in rats , and then the combination of this sense of space with landmarks in humans. 

The latter being linked to the onset of linguistic reasoning capability. Although these 

results can provide a starting point for robot navigation system design, a deeper un­

derstanding of the cognitive processes involved with navigation in mammals and hu­

mans need to be formed before robotic navigation systems with equivalent behaviour 

can be developed. 

The goal of this research is to implement a navigation system for a mobile robot that 

can robustly and reliably navigate around an office environment using a learnt map. 

Navigation in this case, in the absence of specific goals , means point-to-point naviga­

tion within the learnt map, allowing for accurate positioning within 5-l0cm of goal 

locations. Also the robot should be able to perform equally accurate localisation at 

any time should the situation arise, ie a dynamic obstacle moves close to the robot. 

The robot should also be able to recover from any localisation errors or failures such 

as the kidnapped robot problem. 

The selected environment means that there are still variations within it that require 

different navigation strategies (offices, corridors and open rooms). In particular maps 

must be created that have the necessary information to localise within these differ­

ent environments. Also the environment is of a sufficient size that intelligent search 

strategies in the localisation process must be utilised. 

The thesis will concentrate on the mapping and localisation components of navigation, 

in particular developing internal representations, or spatial memories, that limit the 

computational cost and enhance the reliability of these components. 
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Chapter 3 

Multi-Level Spatial Representation 

This thesis proposes a multi-level spatial memory for mobile robot localisation. It is 

directly inspired by the three levels of navigation behaviour shown by honeybees, rats 

and humans: recognition triggered responses and visual homing in honeybees, spa­

tial orientation and navigation using the a sense of space in rats, and the ability to pair 

this sense of space with disambiguating landmarks in humans. The increase in knowl­

edge required in these navigation tasks directly relates to the amount of distinct visual 

information extracted from the environment and thus influences the organism's per­

formance of the global localisation task. The level of abstraction needed in each level 

of navigational ability is inversely proportional to the accuracy of position estimation. 

Therefore a successful solution must have low level navigation strategies to navigate 

accurately and also must have higher levels to perform global localisation in large, 

visually ambiguous environments. These navigation behaviours need three distinct 

levels of internal spatial knowledge: 

1. precise and distinct features in the local environment with which to perform 

position estimation; 

2. general features in local environment which may be similar between some places 

but are easily extracted from sensory views; 

3. specific areas of sensory scene which disambiguate between similar places. 

Section 3.1 further motivates the proposed multi-level spatial memory solution to the 

mapping and localisation problem and introduces some issues involved in such an 
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Spatial Knowledge Representation Biological Advantages 
Inspiration 

Precise distinct features Unique visual Honeybees Accurate local position 
landmarks estimate 

General, easy to extract Extent of local Rats Guide global localisa-
features space tion search 
Disambiguating features Distinct image re- Humans Eliminate spatial alias-

gions ing 

Table 3.1: The three levels of spatial representation 

approach. Section3.2 provides details of the chosen sensor, a panoramic camera. Ini­

tial details of each level of spatial memory proposed in this research are described in 

Sections 3.3, 3.4 and 3.5 . A solution for the integration of multiple levels of represen­

tation is introduced in Section 3.6. Integration of the levels of representation is needed 

for the robot to form an internal belief as to its location and also to help restrict the 

global localisation search space. Section 3.7 provides a brief introduction of the robot 

hardware, software and sensor platform that is used in this research to validate the 

proposed multi-level representation for spatial memory. 

Section 3.8 provides a summary of the proposed representation and restates the pri­

mary objectives of this research with regards to the multi-level representation This 

section and indeed the chapter concludes by listing the key contributions of our re­

search to the field of mobile robot localisation. 

3.1 Multi-Level Spatial Representation for Mobile Robot Lo­

calisation 

By building topological maps which incorporate these three spatial representations 

into the idea of places, the following can be achieved: 

1. accurate position tracking in local navigation; 

2. the global localisation search can be reduced by targeting matching towards sim­

ilar areas; 

3. perceptual aliasing can be eliminated by directly choosing disambiguating fea­

tures from conflicting places on a global level. 



3.2 Sensor 63 

Perceptual aliasing is the problem of falsely categorising a percept due to ambiguous 

or incomplete perceptual input. Applied to the problem of mobile robot localisation 
' 

this means the possibility of mis-localising due to the similar appearance of samples 

of sensor data captured from different locations in the robot's environment. In mobile 

robot literature this is also referred to as the data association problem. 

A good choice of internal representation at each level would lead to cues from indi­

vidual levels contributing to the goals of other levels. For example a good choice of 

visual landmarks for maintaining accurate local positioning could also lead to good 

place level discrimination, while a mid level feature which captures some geometric 

information could contribute to accurate positioning. 

The specific representations chosen for this system are unique visual landmarks for 

localising between places and accurate positioning, a sense of local space for directing 

the global search, and distinct regions of images for ultimate disambiguation between 

places. These representations, their inspirations and their contributions to the mobile 

robot problem is given in Table 3.1. 

A system which is comprised of multiple levels of representations needs some way of 

combining the information from each level. In navigation systems such as this, this 

means that localisation as a whole must be distributed throughout the many levels, 

and must take into account information provided at all levels, while maintaining a 

central internal belief as to the robots current position. Approximations of probability 

densities have been used to maintain this belief in robotic systems and they can be 

applied to hierarchical problems Qensfelt, 2001) . This system will use a particle filter 

with samples distributed according to the information available from the levels of 

spatial knowledge. 

3.2 Sensor 

Sensors are used to perceive the environment. In general the more information a robot 

has about the environment, the better decisions and actions it can take to accomplish 

a goal or task. Decisions and actions, however, must be made in a timely fashion , 

therefore the amount of incoming sensor information and the degree to which it can 

be processed is limited by the computational power available. 
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Chapter 2 introduced the concept that the choice of sensor in a robot localisation sys­

tem directly impacts the choice of internal abstraction with which the robot system 

represents the external environment. In order to form a representation from which it 

is possible to accurately estimate the local position of a robot, the sensor must pro­

vide sufficient positional information from the environment. Range sensors such as 

laser range finders provide accurate positional information (Dellaert, Fox, Burgard 

and Thrun, 1999) Qensfelt et al., 2000) . Vision sensors have not typically been used 

to provide accurate positional information for the mobile robot localisation task, al­

though the information is present in the visual scene (Davidson and Murray, 2002). 

Representations that allow a unique description of places in the environment require 

a sensor that provides a rich source of information from the environment, from which 

unique properties of specific places can be extracted. In typical environments, range 

data and thus range sensors, cannot provide enough information from the environ­

ment to form such unique representations. Vision as a sensor captures a wide variety 

of information from the environment and therefore can be used as a source from which 

unique representations can be extracted. 

To perform the competing tasks of local position estimation and global localisation, 

a sensor must be chosen which provides both accurate position information and the 

level of detail necessary to extract unique representations of locations in the environ­

ment. 

The choice of sensor is also related to the desired behaviour of the agent. A sen­

sor must perceive enough of the environment to accomplish a given task, using the 

available computational power. As mentioned above, the choice of sensor also im­

pacts on the map representation in a navigation system. Because the choice of sensor 

is crucial to the success of the overall system, it makes sense to find inspiration in 

successful navigation systems such as biological systems. Biological systems have de­

veloped complex navigation systems while being tightly constrained by evolution on 

the 'choice ' of sensors and processing power. 
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Biological Sensors 

Almost all evolutionary pathways led to biological systems using vision as the dom­

inant sense involved in navigation. Ignoring the debate on which sense is easier to 

evolve, this raises the question why is vision as a sensor for navigation systems so 

common? The simple answer is vision sensors rely on a physical medium (light) which 

can represent very complex, dynamic, high resolution data about the environment 

with relatively low cost (compare this to the sense of smell, which relies on airborne 

molecules which simply have a distinct odour). Accepting that vision is the best sense 

for navigation, only brings up further questions, namely: 

• should vision be used in isolation? 

• what information needs to be extracted? 

• what vision sensor characteristics should be used? 

These questions need to be evaluated in the light of available computational resources 

and desired behaviours. A good way to do this is to compare biological organisms 

with simple vision systems to those with more complex vision systems. Insects have a 

relatively simple neural structure and limited processing capacity yet can still exhibit 

complex navigational behaviours. They do this by mainly relying on visual input 

from large (compared to overall body size), fixed position eyes with a large field of 

view, and very limited stereopsis. Biological organisms with more complex nervous 

systems (such as mammals) on the other hand, use vision sensors that have different 

combinations of high resolution, limited field of view, foveated visual attention, stere­

o psis, and are integrated with other senses to direct visual attention. Eyes with limited 

fields of view are usually combined with bodies with flexible necks and appropriate 

behaviour patterns to search the entire environment. 

From this it can be reasoned that computationally simple navigation can be achieved 

using simple sensors if they cover a large field of view. This navigation is limited 

however, by the resolution of the sensors and the lack of integration from other sensors 

and internal knowledge. From another point of view, the use of visual sensors with 

a large field of view can bypass the need for complex computation involving multi­

modal sensing and attention direction, given the goal of basic navigation tasks. For 
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more complex navigation, requiring n1ore indepth knowledge about the environment 

such as 3D object reconstruction and semantic classification, more complex sensors, 

and integration between sensors is needed. 

Panoramic Vision 

The implementation of successful robot navigation systems, is limited by the cur­

rent computation paradigm and the associated computational power. Vision systems 

which can reconstruct 3D objects in real time are starting to appear but the underly­

ing semantic classification and reasoning to use these objects in intelligent navigation 

is still not available. Likewise, sensor integration for basic sensing is achievable but 

the integration between sensors, actuators and a semantic reasoning level is still a 

long way off. Without an underlying system which is capable of integrating multi­

modal senses and internal knowledge, complex reasoning and planning behaviours, 

and complex navigation tasks on the level that humans are able to display are un­

achievable. 

Therefore it makes sense to chose sensors which fit in with the current level of artificial 

reasoning capability and computing power, and use sensing and navigation strategies 

from biological organisms which posses a nervous system with a comparable limit to 

real-time reasoning and computation. 

The sensor used should also be able to capture all information necessary to form the 

required levels of spatial representation. One sensor which provides all this infor­

mation without requiring extensive sensor fusion or active attention direction is the 

panoramic vision sensor. This sensor provides a 360 degree visual image of the envi­

ronment using one camera. This is achieved by pointing a normal video camera at a 

conical mirror as shown in Figure 3.1. The raw sensor data is then a view of the en­

tire environment but in a polar coordinate form about the axis of the camera. Vertical 

lines in the environment are converted into radial lines in the warped panoramic im­

age, but horizontal lines become distorted and are hard to recognise. In this warped 

view, it is hard to track visual features as even rigid motion causes non-linear defor­

mations in the image space. Point features , such as those identified by the Kanade­

Lucas-Tomasi (KLT) tracker (Lucas and Kanade, 1981) can be tracked successfully in 

a warped panoramic image stream (Strelow, Mishler, Singh and Herman, 2001), but 
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Figure 3.1: Panoramic sensor configuration. 
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such features are not unique in the image. The lack of uniqueness in the representa­

tion of KLT features means that individual features cannot be uniquely identified and 

recognised on revisiting a location in the environment. This failure could lead to er­

rors in global localisation and possible data association problems. Appearance based 

visual landmarks have a unique representation, and although tracking in a warped 

panoramic image stream is possible using deformable templates, recognition of such 

landmarks when revisiting learnt places in the environment is difficult to achieve. 

An example warped image is shown in Figure 3.2. This image can be dewarped in 

software to form a more recognisable image, and one in which visual features can be 

tracked more reliably. An example dewarped panoramic image is shown in Figure 3.3. 

Notice that the resolution in panoramic images is greatly reduced and is not even 

throughout the entire image. Additional information on the panoramic sensor used in 

this research is presented in Section 3.7. 
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Figure 3.2: An example of a warped panoramic image, captured by camera. 

Figure 3.3: An example of a panoramic image, dewarped by software. 

The present system uses these dewarped images as the main sensory data for nav­

igation. In addition to this visual sensor, the navigation system receives odometric 

information from the encoders in the wheel motors of the robot platform. 

3.3 Low Level: Unique Visual Landmarks 

Uniq ue visual landmarks will be used for accurate local positioning relative to a learnt 

place. A set of such landmarks will also be used as the low level representation for 

individual places in a topological map. The selection of landmarks for place represen-
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tation is crucial for the performance of the system. By choosing unique landmarks, 

the representation of individual places will be more distinct and localisation between 

places will be easier. But by using unique landmarks instead of features, the cost of 

matching increases as mentioned in Chapter 2, and therefore strategies to reduce the 

amount of matching are necessary. 

The selection of landmarks also determines the coarseness of the topological map. 

The larger the area in the environment represented by a place, the coarser (and sub­

sequently less complex) the topological map can be. But this coarseness might come 

at the cost of local position accuracy. In general visual landmarks representing objects 

close to the robot location provide accurate local positioning information but can only 

be recognised in a small area of the environment. Landmarks which are from objects 

located far from the robot can be recognised over a greater area but do not allow for 

accurate position information. 

3.3.1 Landmarks in Panoramic Images 

Panoramic images allow for landmarks to be selected from all directions surrounding 

the robot. This large field of view increases the possibility of selecting useful land­

marks and also adds to the reliability and accuracy of local positioning. By ensuring 
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Figure 3.5 : An example of unique visual landmarks in a panoramic image. 

the set of landmarks representing a place are distributed throughout the panoramic 

in1age, the robot can minimise triangulation error and can also handle occlusion of 

landmarks due to dynamic objects moving through the visual field. For ease of match­

ing, landmarks in this system are small, square image regions. Figure 3.4 illustrates 

the use of a set of landmarks in representing a place in a topological map. An example 

of landmarks in a panoramic image can be seen in Figure 3.5. 

3.3.2 Automatic Landmark Selection 

Landmarks must be acquired automatically, and should be selected according to their 

ability to contribute to place recognition and local positioning. This system primarily 

focuses on selecting landmarks which allow for reliable place recognition as the use 

of the panoramic sensor and its triangulation ability should provide for reasonably 

accurate local position estimation. When learning a place, a panoramic image is cap­

tured from the reference position and the automatic landmark process begins. The 

selection process involves first a static phase where potential landmarks are extracted 

based on their local uniqueness, and a second, dynamic phase, where there recogni­

tion reliability is evaluated over a series of movements about the reference position. 

This dynamic evaluation is directly inspired by the Turn Back and Look behaviour in 

bees and wasps, and first applied to biomimetic robots by (Bianco and Zelinsky, 1999) . 

3.3.3 Landmark Matching and Localisation 

In a system using visual landmarks, localisation becomes a process of locating the vi­

sual landmarks of a particular place in the current sensory view. Global localisation 
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in a topological map is the process of finding the set of landmarks associated with a 

particular place which have the best match with regions of the current image. Local 

positioning involves using the position of matched landmarks in the current image to 

estimate the robot pose relative to the associated place's reference position. Because 

landmarks are unique visual patterns, each landmark must be matched against the en­

tire image in order to find the best match. Given that landmarks are initially selected 

on the basis of a measure of local uniqueness, it would be interesting to experiment 

with matching reference landmarks with areas of high local uniqueness in the current 

image, similar to the work of (Sim and Dudek, 1999), and evaluating the cost/benefit 

of such a approach. Particle filters specific to individual places can integrate the land­

marks observations over time to provide more robust position estimation. 

This system uses a set of unique visual landmarks automatically selected from panoramic 

images of the environment to represent places in the topological map. Automatic vi­

sual landmark selection allows the selection of locally unique features in the environ­

ment which leads to a more unique place representation than finding generic features 

such as doors, walls etc. The use of a panoramic image sensor, as well as the land­

mark selection process allows for a greater coverage of the environment for each learnt 

place. The combination of panoramic sensing and unique landmarks also allows for 

more accurate local positioning. The details of the implementation of this level of spa­

tial representation can be seen in Chapter 4, and the associated localisation process in 

Chapter 8. 

3.4 Mid Level: Local Space 

Knowledge of the extent of local space can be used to restrict the global localisation 

search. Places in the topological map can be eliminated from the matching process if 

the extent of open space in the robots local environment is not similar to their own. 

Local space is a useful cue in this process as it is necessary for obstacle avoidance 

and motion planning and therefore must be calculated anyway. In addition, once 

global localisation has been achieved, knowledge of local space can be used to provide 

additional local position information if required. It also has the opportunity to provide 

extra metric information if more complex spatial representations are to be formed. 
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Matsumoto, Inaba and Inoue (2000) report a mobile robot system with a panoramic 

sensor which uses coarse depth information to guide exploration. The panoramic sen­

sor produces lateral depth estimates based on optic flow while a compact stereo vision 

system produces sparse disparity maps of the frontal view. These depth estimates are 

used to annotate a View-Sequenced Map for further exploration. This information, 

although pertinent, is not used in the localisation process. 

An alternative mid level representation providing a constraint on the global locali­

sation search space would be the colour band histrogram representation reported by 

Ulrich and Nourbakhsh (2000) and described breifly in Chapter 2. This approach pro­

vided efficient and effective place recognition using histograms of colour composition 

in panoramic images. Restricting the global localisation search space using this rep­

resentation could not, however, provide additional local position information. Unlike 

knowledge of the extent of local space surrounding a robot, this representation is not 

required for other navigation tasks such as obstacle avoidance, therefore would mean 

additional computational expense. 

In this system, when learning a place, a sense of local space is extracted from the 

current sensory view. This local space is matched with a set of local space primitives 

and an association is formed with the most similar local primitive. When localising 

the current view of local space is extracted from the sensory data and is compared 

with the set of primitives and the subsequent landmark matching process is limited 

to places with a similar local space primitive. This notion of local space primitives is 

inspired by the evidence of place cells in the rat's hippocampus being associated with 

measurements of open space (Burgess et al. , 1994). 

3.4.1 Determining Local Space 

The extent of open space around a mobile robot provides information crucial for mo­

tion planning involving obstacle avoidance. Since this information is being extracted 

from sensory data for other operation critical robot behaviours, it makes sense to take 

advantage of this spatial information when performing localisation. 

The use of panoramic vision as the primary sensor simplifies the task of determining 

local space immensely. Because the vertical axis in the dewarped panoramic image 
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corresponds to radial directions about the robot platform a sense of space along these 

radial directions can easily be evaluated by finding a free space boundary throughout 

the panoramic image. This is equivalent to finding the ground plane in the panoramic 

image, an easy approximation of which can be obtained by using colour cues. This can 

be done in a variety of methods but for ease of implementation, the current system will 

use carpet colour matching, the details of which are given in Chapter 5. 

The resolution that a view of open space requires depends on what we are using it for. 

For the current task of limiting the localisation search by matching with local space 

profiles, the resolution can be relatively low. If in addition to matching with the local 

space profiles, the open space information was being used to provide local position 

information then the required resolution would be greater. In this system, for speed of 

matching between two local space profiles, the resolution of the local space measure­

ment has been limited to sixteen discrete directions about the robot platform, which 

can be represented as a histogram. Figure 3.6 shows an example of a low (eight direc­

tions) resolution view of open local space about a robot platform, and its associated 

local space histogram. 
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3.4.2 Local Space Profiles of Places 

Rather than representing each place with a unique local space histogram, it is possible 

to instead associate them with a local space primitive. This means that a quick search 

can be performed against the limited set of local space primitives rather than match­

ing a current local space profile against each place in the topological maps local space 

profile. Then computational resources in the global localisation search can be targeted 

to those places which are associated with currently activated local space primitives. 

An example of local space primitives being associated with places in a topological 

map is given in Figure 3.7. In this example the environment is simple and only two 

local space primitives are needed. For more general environments more primitives 

will be required but their number will not grow in proportion to the size of the map. 

Environments incorporating large regions of open space can be categorised by a local 

space profile with maximum depth measures in all directions. The use of such a set of 

primitives depends on their ability to successfully categorise the local space profiles 

of places in the topological map. If the set of primitives can successfully group sim­

ilar places together then they can make a useful contribution to the localisation task. 

If the set of primitives do no contribute significantly to the localisation task, then it 

would be better to represent each place with a unique local space profile. Experiments 

evaluating the contribution of local space primitives are presented in Chapter 5. 

In the current system, a sense of open local space is used to constrain the global locali­

sation search. The search is restricted to places which have a similar local space profile 

as the current sensory view. The use of panoramic images simplifies the detection of 

local space. In the future, higher resolution local space profiles could be used to aid 

local position estimation. 

Figure 3.7 shows places in a topological map with a local space profile representation. 

It also shows how a set of primitives could be used to classify local space profiles to 

limit the global localisation search. When performing localisation, the local space pro­

file of the current panoramic view could be matched against the local space histograms 

for each place or the set of local space primitives. The results of the matching process 

could be used to restrict the global localisation search. 
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In problematic cases the situation can arise in which neither the defining set of visual 

landmarks nor the shape of the local space can differentiate one place from another. 

A solution to this would be to define another type of feature with which to classify 

places. But what happens when this feature again is in-discriminable between places? 

At some point the addition of feature classifications will start to provide diminishing 

returns. In fact the combination of unique visual places with a sense of local space will 

be enough to globally localise in most cases. When this isn 't the case and a decision 

between two or more places is needed urgently, a direct comparison of both places can 

be made, and specific differences between places can be used to make the localisation 

decision. This is inspired by the emergence in humans of the use of indirect landmarks 

to spatially reorient themselves. The appearance of this ability is correlated with that 

of the ability to produce language containing the exact information needed to solve the 

task. In this system, a search of the visual scene at similar places is made and regions 

of the image are identified which contain the exact information necessary to solve the 

task. This requires that complete visual scenes of each place are stored when they are 
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first learnt. By storing this information, revision of other levels of representation also 

becomes possible. 

In panoramic images, regions of difference can be identified by matching entire images 

over all possible rotations of the image. The area of greatest difference can then be 

matched with the panoramic image of the current sensory view. The representation of 

places at this level and an example of identifying a disambiguating feature is shown in 

Figure 3.8. Of course this type of comparison will be computationally expensive, but is 

only applied when the localisation based on the other levels of spatial representation 

fails. 

3.6 Integrating the Spatial Knowledge 

The previous sections have detailed individually the three levels of representation 

that the system uses to represent a place in the topological map. For any given learnt 

place, the map contains all three levels of representation as shown in Figure 3.9.This 

information is to be used for more accurate, efficient and reliable localisation, and 

ultimately navigation, behaviours. 

When using multiple levels of spatial representation, a framework for integrating the 

information between levels is needed. In addition, there must be some way of main­

taining an internal belief as to the robots current position. As noted in the previous 



3.6 Integrating the Spatial Knowledge 

Topological Map 

\ 
\ 

I 
I 
I 

P2 
0 

P3 
0 

-- ------- --- --- --- ------------ -------- -- --
P1 Represented by: 

I I r -------------------- - ---------------------1 
: Visual Landmark Set : 

Associated Local Space Primitive 

Panoramic Image 

~--------------------------- - - - ---- - ----- - ✓ 

Figure 3.9: The levels of spatial memory in the topological map. 

77 

chapter, this belief must be able to form and maintain multiple hypotheses. Previ­

ous systems have used particle filters to approximate the Probability Density Func­

tion of the robot's position over a map. This system uses this method, but adapts it 

for a multi-level representation. The key problems in applying a particle filter to a 

topologically based, multi-level representation is in distributing the particles sensi­

bly throughout the system and forming a current belief and maintaining that belief in 

transitions between places. 

3.6.1 Guiding the Localisation Search 

In this system individual particles will measure the probability of the robot being in 

a specific pose relative to a particular place in the topological map. Particles must 

be initially distributed throughout likely places. This choice of likely places is deter-
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mined by the matching of local space profiles. But simply distributing particles based 

on the relative activation of these local primitives is not desirable because of the large 

computational cost involved in matching the current sensory view with the landmark 

sets of each likely place. A maximum number of places that can be matched within 

the real time constraints of localisation needs to be defined, and the distribution of 

particles restricted to this number of places. Alternatively, distribute them further in 

accordance with the local place primitives and perform matching with time switch­

ing, matching more likely places more often than less likely places. In this way no 

information is lost. Figure 3.10 illustrates the distribution of particles in the multi­

level map, assuming there are only enough computational resources for matching the 

current scene against two distinct places per time step. In this figure particles are dis­

tributed randomly throughout the two places which have the the most similar local 

space profile when compared to the current scene, as determined by the local space 

primitives. 

3.6.2 Maintaining an Internal Belief 

Not only is there a need for distributing the particles throughout likely places, but 

there is also a need for evaluating the single most likely place that the robot is at any 

given moment. This evaluation is the robots internal belief as to where it is in rela­

tion to its spatial knowledge about the environment. But given that the information 

that is available is a sample driven approximation to a probability density function, 

how should this instantaneous position estimation be achieved? Should it be simply 

the location of the sample with the highest probability? Should it be the mean po­

sition of all samples? Obviously with such a multi-modal distribution such as robot 

localisation there is no trivial solution, and a heuristic solution suitable to most cases 

should be applied. In this system, as sensor observations are based on observed sets of 

landmarks representing places, there is a separation between position in terms of the 

places in the topological map and position in terms of local positioning within those 

places. Local position estimation is therefore taken to be the most probable position of 

all locally sampled positions. 

Another issue that arises because of the segmentation of the environment into distinct 

places is that of passing knowledge about position between nodes in the topological 
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Figure 3.10: Distribution of particles throughout places based on local space match­
ing. 
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graph. If there is a strong belief that a robot is in a particular position in relation to 

a particular place, this shown by a large amount of particles grouped tightly together 

about that position. If the robot leaves that place and makes a transition to an adjacent 

node in the place graph, then how can the position estimation information be passed 

to the next place? To a certain degree this will be achieved by sampling new particles 

at places determined by matching of the local space primitives. Relying on this alone 

however, will result in loss of the adjacency information captured by the topological 

map. Therefore some sampling at a position in the adjacent place given by the place 

transition information is desirable. Exactly how and when the re-sampling to adjacent 

places is achieved is left to the implementation details described in Chapter 8. In this 

way, position estimation is resolved on a place by place basis, which helps to limit 
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computation, but still allows for exploration of new hypotheses and the passing of 

strong hypotheses between adjacent places on the map. 

3. 7 Robot System 

This section details the hardware and software configuration of the robot system used 

in this thesis. A description of the hardware used in this system is given, in partic­

ular details of the Nomad XR4000 mobile robot and the panoramic vision sensor are 

presented. Then very general details of the software architecture is given and some 

design considerations are discussed. The environment in which real world robot ex­

periments are performed is also discussed. 

3.7.1 Nomad XR4000 Mobile Robot 

The Nomad XR4000 is a mobile robot platform manufactured by Nomadic Technolo­

gies. A picture of the XR4000 robot is given in Figure 3.11. The panoramic vision sys­

tem can be seen mounted on the top of the robot. The Nomad XR4000 has a plethora 

of other sensors which will not be used in the present system, such as a laser range 

finder, a web camera, as well as ultra-sonic and infra-red sensors. 

The robot has holonomic drive and odometry measurements can be accessed in mil­

limetres for motion along the x and y axes, and milli-radians about the axis of rotation. 

Access of all robot state information and control of robot motion in both position and 

velocity modes is achieved through the use of Nomadic Technologies nrobot control 

software. 

The XR4000 has two on-board 750MHz CPU's running the Linux operating system, 

one of which has the robot control software running on it. The two CPU's are con­

nected by a standard network connection. The network is also linked via a hub to a 

wireless Ethernet transmitter. 

3.7.2 Panoramic Sensor 

The panoramic vision sensor used in this system is shown in Figure 3.12. It is mounted 

in the center on the top of the mobile robot at the height of rv 1400mm (from the lens of 
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Figure 3.11: The Nomad XR4000 mobile robot by Nomadic Technologies. 

the camera to the floor). The panoramic vision sensor is made up of a standard Sony 

CCD video camera pointed at the peak of a hyperboloidal mirror. The video cam­

era can then capture a reflected image which covers 360 degrees of the surrounding 

environment. An example image from the video output is shown in Figure 3.2. 
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Figure 3.12: The panoramic visual sensor mounted on the mobile robot. 

The hyperboloidal mirror shape was chosen due to the simplification of image pro­

cessing it provides. Our research is not overly concerned with image quality, resolu­

tion or calibration of cameras. A panoramic image with sufficient resolution to track 

visual landmarks over small translations is all that is necessary. Camera calibration is 

not required as the local position estimation system depends solely on the radial angle 

of observations which is invariant in panoramic vision sensors. 

The optical qualities of the sensor (Yamazawa et al., 1995) used in our research is 

shown in Figure 3.13. If the image space is defined in polar coordinates (r, 0) and 

a cylindrical coordinate frame about the mirror 's central axis as (R, 0, Z), then the 

hyperboloidal mirror can be defined as: 

R2 z2 
- - -= -1 
a2 b2 (3.1) 
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z 

(3.2) 

The point in cylindrical space (0, 0, + c) is the focal point of the mirror, and (0, 0, -c) is 

the focal point of the camera. 

Using basic geometry the range of the vertical axis of a cylindrical panoramic image 

can be calculated by: 

r = ftan/3 

_ 1 ( (b 2 + c2
) cosa - 2bc) 

f3 = tan 
(b 2 - c2 ) cosa 

(3.3) 

( 0 < 8 < 7r) - ' - 2 (3.4) 

Using these equations the camera image can be transformed to a cylindrical panoramic 

image. Figure 3.14 shows this concept pictorially. The circles in the warped camera 

image are un-warped into horizontal rows in the cylindrical panoramic image. As 

the varying thickness of the rings in the camera image shows, the pixel resolution 
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Figure 3.14: Unwarping the panoramic image. 
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Figure 3.15: Software distribution over the two processors. 

in the image depends on the elevation of the point in space. This transformation is 

completed in software. A look-up table, constructed using Equations 3.3 and 3.4, is 

used to speed this process up. The resulting cylindrical panoramic image repeats a 

small portion of the warped image. The left and right extremes of the image both 

portray the same area of the environment. This characteristic is intentional as it aids 

in tracking landmarks which move beyond the horizontal borders of the panoramic 

in1age. 

3.7.3 Software Configuration 

The main ideas in this thesis are directed towards mobile robot localisation. As was 

discussed in Chapter 2 localisation is a sub-component of the broader robot behaviour 
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of navigation. As such the software developed for this thesis concentrates on solv­

ing the localisation problem and is not meant to provide a stand alone robot system 

capable of full autonomous navigation behaviour. Therefore to test the localisation 

software test harness programs were written to exercise the functions being tested in 

lieu of a fully functioning navigation system. 

This means that there is no overlying software or control architecture, such as be­

havioural or reactive architectures, controlling the mobile robot. In fact the system 

being developed is designed to become a component module in such a robot architec­

ture. As it stands the software configuration of the system is illustrated by Figure 3.15 . 

This diagram shows that the system software is split between the two processors: 

robot control on the process named Hyde, and vision processing, mapping and lo­

calisation on ]ekyl, with a client/ server communication link handling the information 

passing between the two. 

Harness programs are executed on ]ekyl and call functions from the vision processing, 

mapping and localisation modules as required. Robot state information and motion 

commands are requested by the communication client. The harness program provides 

all movement directions for the mobile robot and it does not rely on the information 

being computed by the localisation process. A path planning component would be 

necessary to close the loop, using the localisation estimates to produce true mobile 

robot navigation. 

3. 7.4 Experimental Environment 

In studying any type of system, biological or robotic , it is important to look at the 

environment the system will operate in. This section presents a short description of 

the environment in which a real world robotic systems will operate in order to exper­

imentally validate our research. 

In our research the majority of the real world robot experiments took place in the 

Robotic Systems Laboratory of the Australian National University. The environment 

is a typical office building with long visually sparse corridors connecting small offices. 

This environment is typical of mobile robot experiments in the literature. A feature of 

this environment is a relatively large open room. Localisation using vision sensors has 
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Figure 3.16: A map of the experimental environment. 

typically not been applied to such an open area. 

Figure 3.16 shows a map of the environment with the gross dimensions marked. This 

grid based map was constructed using a mapping and localisation system developed 

by Sebastian Thrun and colleagues of Carnegie Mellon University (Thrun, Beetz, Ben­

newitz, Burgard , Cremers, Dellaert, Fox, ahnel , Rosenberg, Roy, Schulte and Schulz, 
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2000) , and kindly donated to the Robotics Systems Laboratory of the Australian Na­

tional University. The large open room is in the bottom left of the map. 

The map has a grid size of 10cm and has proven very accurate and reliable at posi­

tion tracking over long paths. Our research, unless otherwise stated, uses this map 

and Thrun, Beetz, Bennewitz, Burgard, Cremers, Dellaert, Fox, ahnel, Rosenberg, Roy, 

Schulte and Schulz's (2000) localisation system as a measure of ground truth for real 

world mobile robot experiments. 

3.8 Summary 

This chapter has proposed a solution to the mobile robot navigation problem. This 

solution concentrates on the mapping and localisation components of navigation, in 

particular the problem of combining efficient global localisation with accurate local 

position tracking. Inspired from observations in biological systems of different com­

plexity this system proposes the use of a multi-level spatial representation which can 

over come the above problems. Accurate local positioning is achieved by using unique 

visual landmarks to orient the robot with respect to a local reference place. Efficient 

global localisation is achieved by directing the localisation search using a notion of 

local space. Problematic cases are resolved by directly searching for disambiguating 

features . Internal belief is maintained by using a form of probabilistic reasoning im­

plemented via a particle filter with special considerations to intelligently distribute 

particles throughout the representation. 

3.8.1 Goal 

The goal of our research, as stated in Chapter 1, is to build a localisation system fo r 

a mobile robot which solves the conflicting tasks of accurate local position estimation 

and global localisation. A problem which exemplifies the difficulty in this task is the 

kidnapped robot problem. 

The main concept of this thesis is to use a multi-level representation of spatial memory 

in order to achieve this goal. Our research uses biological inspiration to design suitable 

levels of representation: low level visual landmarks; mid-level local space profiles; 
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and high level disambiguating features. Existing practical methods of mapping and 

localisation are enlisted and built upon to implement a localisation system which takes 

advantage of these levels. 

The plan for reaching the goal is as follows: 

1. Map Representation: detail each level of spatial memory representation (Chap­

ters 4, 5, 6) . 

2. Map Construction: describe how maps can be be constructed using our represen­

tations for places in a topological map (Chapter 7). 

3. Local Position Estimation: the low-level representation of visual landmarks are 

used to provide accurate local position estimation (Chapter 8). 

4. Global Localisation: the low-level representation can also be used for global lo­

calisation. This process is computationally expensive. The higher levels of rep­

resentation, especially that of local space profiles, can be used to constrain the 

global localisation search and reduce computational complexity (Chapter 9) . 

5. Kidnapped Robot: the multi-level representation can be combined to perform con­

tinuous global localisation and local position estimation. This process is applied 

to the kidnapped robot problem (Chapter 9) . 

3.8.2 Key Contributions of Thesis 

The key contributions of this thesis in respect to the field of mobile robot navigation 

are: 

• Formalisation of multi-level spatial memory based on observed biological competences: 

this work notes significant levels of behavioural competences and spatial mem­

ory that have been observed in biological organisms and proposes a multi-level 

spatial representation for artificial agents which reflects this range in capability, 

and the evolution of cognitive behaviours under the effect of terminal addition. 

This evolutionary process refers to building complex behaviours on top of exist­

ing, simpler behaviours. This system takes advantage of this design process. 
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• Extension of automatic selection of visual landmarks in panoramic images: the selec­

tion of visual landmarks using a Turn Back and Look behaviour is extended for 

use with a panoramic sensor and depth estimates of visual landmarks are made 

using a form of bearing only Simultaneous Localisation and Mapping (SLAM) . 

• Geometric landmark sensor models for hypothesis evaluation: An ellipsoid-line in­

tersection model is developed to evaluate the likelihood a given observation of 

a landmark in a panoramic image was made from a sample robot state. This 

effectively lets the system assign a value to the probability that the current ob­

servations were made from a hypothesised position in the internal map. 

• Accurate local positioning in a topological map: visual landmarks are used to not 

only define places in a topological map but also to provide for accurate local 

positioning in conjunction with a particle filter based probabilistic position esti­

mator. 

• Division of probabilistic global localisation search by topological mapping: By using 

a set of unique landmarks to represent places, this allows for localisation on a 

topological level by matching landmark sets, thus restricting the global localisa­

tion search to areas defined by places in map. 

• Multiple cues for restricting global localisation search: the mid-level of the spatial 

memory representation can be used as a cue for restricting the global localisation 

search. By incorporating cues with low matching costs the global localisation 

process can be made more efficient. 

• Loss and recovery of localisation belief a method of maintaining a central localisa­

tion estimate is developed, which can detect when localisation is lost, and trigger 

relocalisation. 

• A solution to the kidnapped robot problem: the current system goes a long way to­

wards solving the kidnapped robot problem. Accurate local positioning can be 

achieved through observations of visual landmarks; the loss of position tracking 

can be detected through monitoring the robot's belief in it's estimate; relocalisa­

tion can be achieved by the restricted global localisation search. 
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These contributions allow for efficient global localisation and accurate local position­

ing. In doing so mobile robot systems can be built which can reliably localise them­

selves in the presence of problematic situations, and subsequently to realise robust 

navigation behaviour. The following chapters detail the specific implementation de­

tails and experimental validation of this solution. 
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Chapter 4 

Visual Landmarks for Low Level 

Representation 

This chapter details the implementation of the first level of spatial representation in­

troduced in Chapter 3: that of visual landmarks. Landmarks are distinct features of 

the environment whose presence in the sensory view can aid in the localisation task. 

Upon encountering a novel place in the environment, a mobile robot can form an ab­

straction of the location in the environment by selecting prominent landmarks from 

the sensory view from the reference position. A robot which subsequently observes 

these landmarks can infer that it is located near the reference position from which the 

abstraction was formed . By observing such distinct features a robot can also perform 

triangulation calculations in order to accurately determine their local position. 

The outline of this chapter is as follows: Section 4.1 describes the need for automati­

cally selecting a set of visual landmarks to form a low-level representation of a place 

in the environment, and a two step process to do so is outlined. Section 4.2 details the 

first step in this process, that of selecting static landmarks being selected on the basis of 

their local uniqueness. The second step , evaluating static landmarks over a dynamic 

motion phase, is reported in Section 4.3 . This dynamic motion phase is biologically 

inspired and is named the Turn Back and Look (TBL) phase as it mimics wasps turning 

back and looking at their hives before going on foraging flights . Section 4.4 presents 

a method of recognising landmark sets in sensory views, while Section 4.5 reports 

on experiments which test landmark recognition performance. Next, in Section 4.6, 
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Figure 4.1: An example of visual landmarks in a panoramic image. 

the use of the dynamic landmark selection phase to produce an estimate of landmark 

depth is described and experiments to validate these estimates are presented. Finally, 

Section 4.7 provides a discussion and summary of the issues associated with imple­

menting the low-level visual landmark representation. 

4.1 Automatic Visual Landmark Selection 

The process of landmark selection is aimed at producing a set of landmarks which 

are unique, maximise the area of the environment the place represents, and allow for 

accurate local positioning. This means that landmarks must be reliable, strongly iden­

tifiable, and they must be distributed throughout the image. They also must be able 

to withstand image variance due to temporal and translational distortions. Bianco 

and Zelinsky (1999) proposed a method which selects landmarks based on their static 

uniqueness and their dynamic reliability. This approach has been extended to incor­

porate the advantages of the panoramic sensor. In this system, visual landmarks are 

16 x 16 pixel regions in the grey-scale panoramic image. 

An example of visual landmarks in a panoramic image is shown in Figure 4.1. Of 

course for a mobile robot to act autonomously it must have a method for extracting 

these landmarks automatically. Figure 4.2 shows the process this system uses to auto­

matically select visual landmarks. An image is captured from the reference position, 

from which 32 static landmarks are selected. These landmarks are then tracked and 

evaluated for their reliability over a Turn Back and Look (TBL) movement in the dy­

namic phase. The 16 most reliable landmarks are selected to represent the place as a 

landmark set. 
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Reference Position 

· Capture Panoramic Image 

Select Static Landmarks 

Select Dynamic Landmarks 

I TBL Move I 

Landmark Set 

Figure 4.2: The process of automatic visual landmark selection. 

The two phases of landmark selection, static and dynamic, are described in the follow­

ing sections. The static phase is meant to ensure landmarks are distinct in their local 

region of the visual scene and as such are strongly identifiable. The dynamic phase is 

meant to select landmarks which are reliable and recognisable over a large area, and 

this characteristic is tested by comparing the range over which static and dynamic 

landmarks can be recognised. Landmarks should be recognisable in the presence of 

varying illumination conditions and a method of achieving this and some results are 

presented. By associating a depth with landmarks, more accurate local position esti­

mates can be formed and a method for doing this is described in Section 4.6. 

4.2 Static Landmark Selection 

Static landmarks are selected from a static scene on the basis of their local uniqueness. 

Two examples of landmarks are shown in Figure 4.3. Image a) shows a landmark 

which is similar to its surroundings and subsequently useless for localisation or nav­

igation task. Image b) on the other hand shows a landmark which is distinct when 

it is compared to the image region immediately surrounding it. Obviously an auto­

matic landmark selection system should pick out landmarks which are locally unique, 

similar to that displayed in image b) as opposed to image a) . In this system local 

uniqueness is defined as the degree to which the landmark template differs from the 

area of the image immediately surrounding the landmark. This approach is based on 
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a) b) 

Figure 4.3: Examples of landmarks. The landmark in image a) is unreliable and has 
a low local uniqueness. The landmark in image b) is more reliable and has a higher 
local uniqueness. Figure from Bianco and Zelinsky (1999). 

the 'The Valley Method' proposed by Mori et al. (1995) to generate attention tokens 

in a scene, which in turn appears to be an instance of a Moravec interest operator 

(Moravec, 1977) applied to feature tracking. Bianco and Zelinsky (1999) adapt this 

method for the present task of automatic selection of landmarks. When evaluating an 

image region as a potential landmark, two panoramic images are captured, the land­

mark template in the first image is matched with its surrounding region in the second 

image using correlation matching. Because the scene is static the only difference be­

tween the two images are those introduced by camera noise. In this case a standard 

Sum of Absolute Differences correlation algorithm has been used for the matching 

process: 

M-1 N- 1 

SAD= L L IIij - Tij l (4.1) 
i=O j=O 

where a template T of pixel size M x N is being correlated with an image region I of 

the same size. It is worthwhile noting here that normalised correlation matching is not 

desirable here as the process is trying to identify the magnitude of differences within 

regions of the same scene. Normalised correlation, which uses the mean intensity of 

pixels in an image to eliminate illumination effects in the correlation process, would 
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Figure 4.4: Examples of distortion matrices from the landmarks in Figure 4.3. The 
matrix in a) is from local correlation matching around the unreliable landmark, the 
matrix in b) from the reliable landmark. The horizontal axes denote the matrix result­
ing from matching the 16 x 16 pixel template over a 32 x 32 pixel search window. The 
vertical axes shows the SAD correlation value for each match. Figure from Bianco 
and Zelinsky (1999). 
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tend to exaggerate all differences. A formula for normalised correlation is given in 

Equation 4.3. 

Figure 4.4 shows the correlation results obtained by matching each 16 x 16 pixel land­

mark template, from the images in Figure 4.3, on a 32 x 32 search window centered 

on the original template. The unreliable landmark produces the image distortion ma­

trix shown in image a) which is uniformly low meaning that the landmark correlated 

highly with its surrounding image region. In the distortion matrix in image b), the 

more reliable landmark produces a valley corresponding to where the landmark tem­

plate was matched with itself, thus having a high correlation (low distortion) . By 

comparing the depth of this valley in relation to the surrounding distortion, a mea­

sure of how unique the landmark is in its local region can be obtained. In practice this 

measure is the ratio of the minimum global matching distortion to the local minimum 

(from the match of the landmark and the sixteen surrounding values) . This idea is 

illustrated in Figure 4.5 where the local minimum is located in the region highlighted 

by the grey square, and the global minima is shown as the bottom of the valley. More 

formally local uniqueness is defined by: 

'(' = 1 - g/g' (4 .2) 
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Figure 4.5: Finding a measure of landmark reliability: ratio of the global minimum 
(valley) and the surrounding local minimum (from the area covered by the grey 
square. Figure b) is a over head view of the surface in a). Figure a) from Bianco 
and Zelinsky (1999) . 

where r is the reliability of the landmark, g is the distortion of the landmark matched 

with itself, and g' is the minimum matching distortion from the surrounding circle of 

pixels. Given that g should only result in distortion due to noise, then the higher the 

distortion of the minimum of the surrounding templates , the steeper the valley in the 

distortion matrix and subsequently the more unique the local template should be. An 

example of this concept is shown in Figure 4.5. 

In order to select the 32 static landmarks that the system uses , two panoramic images 

are captured from the reference position and an exhaustive search over all possible 

image regions is carried out to select the 32 image regions or landmark templates 

which have the highest measure of local uniqueness as determined above. 

By dividing the panoramic image into four sectors, roughly corresponding to forward , 

back left and right, and selecting an equal number of landmarks from each sector, 

the resulting landmark set is distributed throughout the image. This assists in local 

position estimation as well as ensuring the visibility of some landmarks when parts of 

the visual field are occluded. 
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Figure 4.6: TBL paths for learning places with mobile robotic. Image a) is the robot 
motion path used by Bianco and Zelinsky (1999) and image b) the modified TBL 
phase for dynamic landmark selection with panoramic vision. 
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Landmarks selected for their static uniqueness are then evaluated for their dynamic 

reliability. In this phase the robot moves about the reference position from which the 

static landmarks were selected while observing the potential landmarks. By tracking 

the landmarks throughout this biologically inspired movement, the landmark's resis­

tance to changes in lighting and perspective can be measured. In this way landmarks 

which do not significantly distort from their original appearance during these move­

ments can be chosen to represent the place. 

4.3.1 Turn Back and Look Movement 

This series of movements about the reference position was inspired by insect be­

haviour and is termed the Tum Back and Look behaviour (Lehrer, 1993) (Collett, 1996) . 



98 Visual Landmarks for Low Level Representation 

Initiate TBL Movement 

Capture Panoramic Image 
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: Get TBL Status . i ·. 

No 
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Figure 4. 7: TBL movement algorithm on vision processing CPU 

Bianco and Zelinsky (1999) first implemented this behaviour on a mobile robot using 

a normal camera configuration and moving in arcs away from the goal position while 

facing back at the potential landmarks. In this system the movement has been ex­

tended to take into account the greater field of view of the panoramic camera system. 

The differences in the TBL movements between the two systems can be seen in Fig­

ure 4.6. 

In the current system dynamic landmark selection is accomplished using the method 

illustrated in Figure 4. 7. This computation occurs on the CPU dedicated to vision pro­

cessing and localisation. The ovals shaded grey denote stages where communication 

with the CPU hosting the robot controller occurs. Basically the system initiates the 

TBL movement then enters a cycle of capturing the panoramic image and tracking 

landmarks until the TBL movement has finished . 

By selecting landmarks which track reliably throughout the TBL move, a landmark set 

with greater reliability and coverage about the reference position can be selected. 

4.3.2 Landmark Tracking 

The reliability of landmarks is determined by locating the landmarks throughout the 

TBL movement by correlation template matching, and averaging their correlation 

measures over the entire movement. Template matching over this movement is achieved 
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Table 4.1: Expanding Search Window Landmark Tracking 

initialisation 
for each landmark i in landmark set 

sswi = 32 
( Xi, Yi) = static_landmark_position( i) 

end 
t = 0 
-- iteration 
for each image fram e at step t 

for each landmark i in landmark set 
if landmark_match( it-I) < threshold 
then 

end 

SSWi 

else 
SSWi + 2 

SSWi 32 
end 
landmark_match( it) 

t = t + l; 
end 

corr( imaget, templatei, Xi, Yi, sswi) 

using the normalised cross correlation template matching algorithm: 
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(4 .3) 

where a template T of pixel size M x N is matched with image region I of the same 

size, and cr1 and err are the standard deviations of I and T respectively. This equa­

tion produces a result between in the range of [0 .. 1] with 1 being perfect correlation. 

The normalised cross correlation process results in matching between image regions 

with the same mean intensity level reducing the affects of varying illumination. Land­

marks can then be tracked irrespective of lighting conditions resulting in more robust 

landmark recognition. 

Because the exact position of the landmark within the image is initially known and the 

robot is moving at slow speeds throughout the TBL movement, the process of locating 

landmarks in each frame can be sped up by tracking the landmarks within a specified 

search widow of the image, centered on the last known landmark location. The track­

ing algorithm (shown in Table 4.1) uses an expanding search window (ssw = size of 

the search window) centered on the landmarks last observed position (x-i, Yi)- Initially 
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the search window for each landmark is 32 pixels square and is centered around the 

image position determined by the results of the static landmark selection phase. 

Upon entering the iterative phase, if the matching value for any landmark falls below 

a threshold value then the size of the search window is increased by 2 pixels along the 

horizontal image axis. If the matching values subsequently rises above the thr eshold 

then the search window size is reset to 32. This means that if tracking is lost for any 

given landmark, the image region within which the landmark is matched grows until 

tracking is regained. This expanding search window is limited to 90 pixels, or a quar­

ter of the visual field, as any region of field likely to be of use as landmarks will not 

be displaced more than 90 degrees as a result of the small translations involved in the 

TBL movement. In our system the thr eshold value is set to 0.7. 

At some stage movement of the robot will cause tracked landmarks to pass beyond the 

edge of the image. Due to the panoramic nature of the sensor, and the overlap in the 

visual image, landmarks that pass beyond the left or right edges of the panoramic im­

age will already be in view in the opposite side of the image. Thus whenever a tracked 

landmark's search window goes beyond the edge of the image, the system automati­

cally checks the corresponding region on the opposite side. In this way tracking can 

be maintained even when landmarks pass beyond the edge of the current image. 

The cycle of capturing the panoramic image and tracking the 32 landmarks takes on 

average 129ms (Pentium II 750). With the panoramic image capture and unwarping 

taking 6.5ms and landmark tracking 25-75ms, the tracking time varying with the size 

of the search window. Throughout a TBL move the vision and landmark tracking 

system can process and log or display approximately 400 image frames. If dynamic 

landmark selection is run without image logging, approximately 1000 frames can be 

processed. For each landmark a reliability measure can be obtained by averaging 

the landmark's tracking results over this sequence of frames. This reliability measure 

can then be used to rank the 32 static landmarks in terms of resistance to distortions 

introduced by the TBL movement. 

Fron1 the 32 static landmarks, the four most reliable landmarks in each sector of the 

panoramic image, as determined by the dynamic selection phase are chosen. Land­

marks can simply be represented as x, y locations in the image. These 16 chosen land­

marks then form the landmark set which represents the place being learnt. An exam-
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Figure 4.8: An example of landmarks selected to represent a place using static and 
dynamic landmark selection . .... 

ple of the landmark set selected by this process is given in Figure 4.8. 

4.4 Recognising Landmark Sets 
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The reason for learning a representation of a place is so that the robot can recognise it 

when it revisits the place. Therefore the best way to evaluate potential methods of ac­

quiring the representation is to measure the degree to which those representations can 

be recognised. It is important to have an understanding of how these representations 

will be used, and as such methods for recognising landmark sets in panoramic im­

ages are presented here. These recognition methods can also provide some empirical 

evidence as to suitability of the representation. 

The basic method to perform landmark recognition in a panoramic image, is to search 

the panoramic image for regions containing a similar spatial pattern, that is regions 

which appear similar to the landmark template. The algorithm should identify the 

region which is most similar to the landmark template and also it should preferably 

do this in the shortest amount of time. Although the speed of landmark recognition 

is not critical to system performance, as landmarks can be tracked at great speed after 

they are recognised, it is a behaviour whose execution frequency will grow as more 

places are added to a topological map. Thus a fast recognition rate for multiple places 

is desirable but not at the expense of recognition performance. 

Two methods, brute force template matching and pre-matching feature extraction 

are investigated. The advantages , disadvantages and the tradeoffs of these two ap­

proaches are discussed. 
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Landmark Recogn ition Performance over TBL Move: brute force vs pre-extraction of features 

- Brute Force 
- 64 Features 
- 224 Features 
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Figure 4.9: Landmark set recognition performance over a sequence of images com­
paring the brute force search approach versus that of extracting features before 
matching. The images used in this experiment were captured over a Turn Back and 
Look path, the high peaks in the brute force graph correspond to the robot passing 
over the reference position of the place. 

4.4.1 Brute Force Landmark Template Matching 

A brute force search involves comparing every possible region within the image to the 

landmark templates to identify the region which looks the most like each template. It 

will find the image regions which is most similar, pixel to pixel, to each of the tem­

plates. This is computationally expensive. The normalised cross correlation method 

described in Equation 4.3 is used to perform the template matching. This matching 

identifies the correlation value and the x , y position of the best match in the image 

for each landmark. A landmark set recognition measure is obtained by averaging the 

correlation values of all the landmarks. To evaluate its recognition performance and 

computational intensity, brute force template matching was applied to images cap­

tured during a TBL movement. A pre-learnt landmark set was matched with each 

of the 300 images in the sequence and the average correlation of the landmarks was 
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Figure 4.10: Time taken for landmark recognition comparing the brute force search 
approach versus that of extracting features before matching. The graph shows the 
time taken for each approach when matching a landmark set with a number of im­
ages. This is analogous to matching 1 image with a number of landmark sets as 
would happen in global localisation. 
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recorded. The results are shown in Figure 4.9 by the blue line. The peaks in the graph 

correspond to the where the images in the sequence correspond to the robot passing 

over the reference position of the place. 

The time taken for the computation of a brute force search was measured by perform­

ing the search on 1 image with a varying number of places to search for. Figure 4.10 

shows that a brute force search (blue line) takes approximately 700ms for each land­

mark set. The linear nature of this relationship means that brute force searches quickly 

becomes computationally unacceptable as the number of places increases. 
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Figure 4.11 : Pre-matching feature extraction 

4.4.2 Pre-matching Feature Extraction 

Brute force searching is computationally expensive because of the large amount of 

template matching required per landmark set. One way to reduce this computational 

load is to extract features from the visual scene and then match these features with 

the landmark sets. This method requires additional processing initially to extract the 

features , but matching time per landmark set can be drastically reduced. The concept 

behind pre-matching feature extraction is shown in Figure 4.11. 

The features that this system uses are those obtained by applying Mori et al. 's (1995) 

Valley method. This is applied when selecting static landmarks and can be used again 

to extract likely features . 

The recognition performance of matching pre-extracted features from an image with 

the landmark templates from a learnt landmark set is shown in Figure 4.9. Features 

were extracted from each image in the sequence by applying the Valley operator and 

selecting those features with a higher local 'uniqueness '. These extracted features were 

then matched against the landmark sets templates using normalised cross correlation 
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matching as above. The features which best matched the landmark template were 

recorded and their average correlation gave the measure of recognition performance. 

The green dashed line shows the recognition performance of matching with 64 pre­

extracted features, while the maroon dashed and dotted line shows that of matching 

with 244 features. It can be seen that neither plot of extracted features can compare 

with the recognition performance of the brute force search. In addition, whereas it 

would be thought that extracting more features would lead to greater recognition per­

formance, this was not the case. 

Computation time for pre-extracted feature matching was measured in the same way 

as for the brute force approach, except that time measurements include both feature 

extraction and matching times. Figure 4.10 displays the results of this experiment, 

with the yellow dashed line representing the time taken for extracting and matching 

32 features, the maroon dotted line 64 features and the green dashed and dotted line 

224 features. It can be seen that although there is a substantial penalty for the ini­

tial extraction (approximately 1500ms) the subsequent matching of landmark sets is 

achieved much faster than for the brute force approach. In fact even with this penalty, 

pre-extracted feature matching becomes the faster option when matching 5 or more 

landmark sets. 

Unfortunately the computation saving of matching pre-extracted features is made ir­

relevant by its poor recognition performance. The importance of being able to recog­

nise a learnt place far out-weights that of doing it quickly. The nature of the feature 

extraction used in static landmark selection must be too volatile when subjected to 

small changes in the visual scene. Although these landmarks are selected for their re­

liability under small translations, it obviously does not guarantee that the underlying 

feature extraction method is similarly reliable under those circumstances. The use of a 

different method of selecting features might solve this problem, but any new methods 

would have to be shown to be as recognisable and computationally inexpensive as 

well. In our research we have decided to persist with a brute force search and later 

investigate other methods for reducing landmark set recognition time by constraining 

the amount of landmark sets to be searched, rather than by constraining the search 

time itself. 
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4.5 Landmark Reliability Experiments 

Landmark recognition experiments were carried out to determine the performance of 

the system under a variety of conditions described below. All experiments took place 

in the Electro-Technical Laboratory, Intelligent Systems Division, Tsukuba, Japan. The 

environment is a semi-structured corridor about 2.5 meters in width and over 15 me­

ters in length. All experiments consisted of an initial phase of learning a place by guid­

ing the robot to the desired place and initiating the automatic landmark selection soft­

ware. A subsequent phase of guiding the robot to several positions and attempting to 

locate the learnt landmarks gave the system's landmark recognition performance re­

sults. The results are averaged correlation results over the landmark set, with values 

from O to 1, with 1 representing perfect correlation of all learnt landmarks at a par­

ticular place in the environment. The desired recognition performance is to achieve 

high correlation results over the largest possible area, while still maintaining a unique 

set of landmarks. By having landmarks which can be recognised over a wide area, a 

coarser topological map can be built, meaning the system can cut back on the amount 

of storage and processing time needed for global localisation. High correlation within 

that area can allow more accurate positioning by landmark triangulation and can lead 

to navigation behaviours such as homing and moving between places. Normalised 

cross-correlation template matching is used to minimise the intensity differences be­

tween templates and search images due to changes in environmental illumination. 

4.5.1 Dynamic vs Static Landmarks 

First to establish the usefulness of the TBL phase in automatic landmark selection, a 

comparison of Landmark Recognition Performance (LRP) for a given place was made 

using landmarks selected by either solely static landmark selection or by both static 

and dynamic selection. In the place learning phase the most reliable static landmarks 

are stored in addition to the best dynamic landmarks. Both were used to localise 

within a 2 x 2 meter section of the corridor environment, centered on the place that 

was learnt. Measurements of landmark recognition performance were taken at 20cm 

intervals. 

The results of using static landmarks for recognition are shown in the first plot of 
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Figure 4.12: Landmark set recognition over a 2 x 2 meter area surrounding a learnt 
place. The graph on the left shows recognition using a set of statically selected land­
marks. The graph on the right shows recognition with a landmark set that has been 
selected using both the static and dynamic selection phases. X and Y axes show robot 
position in centimetres. 

Figure 4.12. The plot shows the average landmark correlation over the landmark set 

for various locations about the reference position. The static landmark set had 16 

individual landmarks, while the dynamic landmark set had 8 landmarks. A sharp 

peak is evident near the center, peaking at 0.79, but falling to around 0.50, just 40cm 

from the peak, and maintaining this to the edges of the graph. The second plot of 

Figure 4.12 shows the results when using dynamic landmarks. Again there is a peak 

near the center (0.86) but it is not nearly so sharp and drops less rapidly. At about 60cm 

from the peak with correlation values around 0.70, the slope of the graph decreases 

further and eventually falls to approximately 0.63 at the edges of the graph. 

Comparing the two graphs shows that the use of dynamic landmarks for recognition 

results in higher correlation measures over a greater area around the learnt place than 

when using static landmarks. The two different slopes observed in the dynamic graph 
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Figure 4.13: An example panoramic image from the recognition experiment captured 
at 15:00. 

Figure 4.14: An example panoramic image from the recognition experiment captured 
at 20:00. 

can be attributed to the higher distortion of landmarks located on the sides of the 

corridor (closer to robot) , when compared to those at the end of the corridor (further 

away) . From this result it can be seen that including a dynamic landmark phase in the 

automatic landmark selection process increases the area surrounding the reference 

position from which the landmark set can be recognised. 

4.5.2 Robust Landmark Correlation under Changing Illumination 

Next, the effect of changes of illumination on the system's performance was investi­

gated. A place was learnt at 15:00, and the selected landmarks stored. The landmark 

recognition phase was carried out immediately after learning and again at 20:00 that 

evening, using the same set of learnt landmarks. Again the results given are for a 

2 x 2 meter section of the corridor centered on the learnt place, and the measurements 

taken at 20cm intervals. Sample images from the robot during the 15:00 run and the 
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Figure 4.15: Landmark set recognition over a 2 x 2 meter area surrounding a learnt 
place in the presence of changing illumination. The graph on the left shows recog­
nition performance from images captured at 15:00. The graph on the right shows 
recognition performance from images captured at 20:00. The landmark set was learnt 
at 15:00. 

20:00 run are shown in figures 4.13 and 4.14 respectively to demonstrate the variance 

in illumination between trials. 

Figure 4.15 shows the results from the recognition experiments conducted with differ­

ing levels of illumination. Both peak at the same position in the graph with similar 

values (0.86, 0.87 respectively) and both follow the same two step slope described in 

the previous experiment, with values of around 0.63 at the edges of the graph. This 

shows that landmarks can be recognised in the presence of varying illumination con­

ditions. 

To further display the benefits of using the normalised cross correlation technique 

when performing template matching in the presence of varying illumination condi­

tions Figures 4.16 and 4.17 shows an example of landmark template tracking over 

three image frames. In Figure 4.16 the simple SAD correlation is used and landmark 
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Frame 1 

Frame 2 

Frame 3 

Figure 4.16: Non-normalised (SAD) correlation landmark tracking 

tracking is lost quickly due to the rapidly diminishing illumination in the scene. The 

same sequence is shown in Figure 4.17, this time normalised cross correlation was 

used for the template matching and it can be seen that landmark tracking was suc­

cessfully maintained. 

4.6 Dynamic Landmark Selection with Depth Estimation 

Knowledge of the depth of landmarks in the environment is valuable for robot locali­

sation as is shown in the proliferation of range sensor based robotic solutions. Obtain-
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Frame 1 

Frame 2 

Frame 3 

Figure 4.17: Normalised correlation landmark tracking. 

ing range from a monocular visual sensor is a difficult problem and becomes worse 

with the low resolution of the panoramic images used in this system. When looking to 

solve this problem, inspiration can again be taken from a biological solution. Not only 

has the TBL movement of wasps been interpreted as a way of selecting landmarks 

which are stable in the visual field, it has also been suggested that they use this flight 

to extract depth information about the environment. In the same way, a robot making 

a TBL move can use this exploration of the environment to extract depth information 

about potential landmarks. 

While performing the TBL move and tracking landmarks, a form of bearing only Si-
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multaneo us Localisation And Mapping (SLAM) can be used to make this estimation of 

landmark position. SLAM is usually implemented using sensors which supply bear­

ing and range information. In parallel with our research (Deans and Hebert, 2000) 

developed a panoramic bearing only SLAM system which uses the structure from 

motion technique of bundle adjustment to initialise a Kalman filter before the iterative 

estimation process can be performed. 

In our research SLAM problem is reformulated into estimating the depth and angle of 

each landmark (as opposed to (x, y) landmark position), from a local reference posi­

tion. The resulting estimates more directly reflect the uncertainty in the observations , 

and the local frame of reference eliminates the accumulation of uncertainty evident in 

SLAM using a global reference frame. Because of this reformulation, with a compara­

tively accurate first estimate of angle, a suitable initial approximation of depth allows 

for acceptable landmark position estimates without the need for batch processing be­

fore the iterative process can start. (Strelow et al., 2001) report an iterative structure 

from motion approach to position estimation which also uses this formulation and 

initialisation scheme. The fact our research estimates the position of landmarks from 

a known local reference point and the low resolution of the images also support this 

approach, with landmark depths being being virtually indistinguishable beyond acer­

tain depth. A speed-scale drift error in landmark position estimation, however, is still 

conceivable. 

I 

A common problem in Kalman filter SLAM approaches is that as a map grows and 

more features or landmarks are obtained, the dimensionality of the filter 's matrices 

grows accordingly and the problem can become computationally intractable. In the 

current system, the Kalman filter is only operative while performing the TBL move­

ment during place acquisition and therefore the number of dimensions stays low. This 

limitation means however, that the system cannot continue estimation when the place 

is being revisited. 
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4.6.1 Bearing Only Simultaneous Localisation and Mapping 

The current system uses a Kalman filter to estimate the state of the system in relation 

to reference point of the place to be learnt, with the state X defined as: 

(4.4) 

where, (xR, YR, 0R) describe the robot pose, while (di, 'Yi) describe the depth and angle 

of landmark i. The filter has the traditional prediction phase: 

X(k + llk) = f(..-Y(klk), U(k + 1)) 

P (k + ljk) = 'v fx(k)P(klk) 'v fx(k)T + Q (I< ) 

followed by an update phase: 

)[(k + llk + 1) = X(k + lj k) + W(k + 1) 

(z(k + 1) - H (.X(k + llk))) 

P (k + llk + 1) = P (k + llk) - W(k + 1) 

S(J{ + 1)1-f' T (k + 1) 

(4.5) 

(4.6) 

(4.7) 

(4.8) 

where U is the action performed, P is the covariance matrix, Q the process noise , W 

the Kalman gain , z the current observation, and H the expected observation. With 

W(k + 1) = P(k + llk) 'v hx(k)Ts- 1 (k + 1) (4 .9) 

S(k + 1) = '\Jhx(k)P(k + llk) 'v hx(k)T + R (k + 1) (4.10) 

where '\Jhx is the observation Jacobian and R (k + 1) the noise in the observation. In 

the current formulation, U ( k + 1) is the action peformed since last iteration as defined 

by the robot's odometric sensors, while z(k + 1) and H (X (k + llk)) are the current and 

expected observation angles of landmarks in the panoramic image. Subsequently the 
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observation Jacobian Vhx becon1es: 

(4.11) 

with ¢ being the observed angle of the landmark at the present time. The filter can 

be initialised using the knowledge of the exact reference location of the robot, initial 
observations of the landmarks and associated noise (resolution of panoramic sensor), 

and an initial estimate of landmark depth and variance. 

X = [ 0 0 0 0 . . . d~ , f . . . O] T ( 4.12) 

The iterative estimation of the system state can then proceed and continue through­

out the TBL movement. The general idea of the filter is to iteratively use a sequence 

of observations of the angle to a particular landmark in conjunction with odometric 

measurements to produce successively better and better estimates of the landmark's 

angle and depth from the original reference position. While doing this the Kalman 

filter also estimates the uncertainty of the estimates by incorporating process noise in 

the computations. Process noise in this case includes the noise in angle measurements 

caused by the low resolution of the panoramic images and the error in odometric mea­

surements due to wheel slippage. 

The relationship which drives the filter is that between the observation angle of a 

given landmark c/>i from the robot's current position and the landmark's depth and 

and angle from the reference position, d,i and ri · This relationship is defined by the 

equation: 

r1-.. _ _ 1 ( disin(,i) - YR) _ 0 '-Pi - tan d ( ) R + Ecp iCOS ri - XR 
(4.13) 

where Erp is the noise associated with the observation. 

The values of the observation Jacobian v hx (Equation 4.11) then become: 

6d> · , i 

(4.14) 
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8¢i dicos(1.i) - XR 
8x y - (dicos("f) - XR) 2 + (disin(1i) - YR )2 

(4.15) 

8cb · 
_ ,_ i = -1 
60R 

(4.16) 

8cb· 
I '/. (4.17) 

8¢.i (dicos(1i) - XR)(dicos(1.i)) + (d.isin(11.i) - YR)(disin(1-i)) 
61i (dicos(1.i) - XR)2 + (disin(1i) - YR) 2 

(4.18) 

This method for bearing only SLAM was implemented and experimentally verified , 

first in simulation and then on a real world mobile robotics system. 

4.6.2 Simulation Results 

A simulation of the bearing only SLAM system described above was implemented in 

Matlab to validate its ability to accurately estimate landmark position. The simulation 

was to estimate the position of eight landmarks over a TBL movement involving 400 

noisy landmark observations. 

Observations had an error of ±1 degree, while the odometry measures where within 

10% of the actual values. 

Figure 4.18 part a) shows an example of the setup of the simulated system. Landmarks 

are spread randomly about the reference position of the robot which is indicated by 

the filled circle at the center of the plot. The robot then moves in the cross shaped 

TBL pattern, which is shown by the solid line about the reference position. During the 

movement landmark observations are calculated geometrically and noise is added. 

The noisy observations are then incorporated into the filter. 

The results of landmark position estimation for this configuration of landmarks are 
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shown in parts b) , c) and d) of Figure 4.18. Plots of the estimated state are shown at 
the beginning (b), middle (c), and end (d) of the TBL movement. In each graph the 
position of the robot is again shown as the filled circle, the completed section of the 
robot TBL movement by the solid line, the landmarks estimated positions are shown 
by the labelled black points, the ellipses display the uncertainty of the estimation and 
the dotted lines the current observations. 

In graph b) the landmarks ' depth and angles are at their initial estimates as much the 
uncertainty associated with their depth is still very large. The system is initialised 
with variances of 300 in the depth estimate and 1 degree in the angle estimate. As 
the simulation progresses, and the filter encounters more observations from different 
locations the uncertainty and position of the landmarks can be seen to change (as seen 
in sub figures b) and c)). It is easy to see from the plots that the landmarks positions 
were all estimated quite well, with the estimates of landmarks closer to the robot being 
more accurate to those further away. This is due to the fact that for landmarks closer 
to the reference position, the movement along the TBL path causes greater change 
in the observed angle, than that of landmarks further away. Another thing to notice 
is that movements that are orthogonal to the direction of the landmark have much 
greater affect on landmarks' position and uncertainty estimates than that of parallel 
movements. The estimate in Landmark 1 in plot c) which lies in the direction of the 
movement along the x axis can be seen to still be quite uncertain , while the other 
landmark estimates have improved quite noticeably. 

The accuracy of the system's landmark position estimation was tested by comparing 
the actual and estimated position of landmarks at various depths from the reference 
position such as those shown in Figure 4.19. The system estimated landmark depth 
over a TBL move as in the previous experiment, while measuring the error between 
the actual and estimated landmark positions. As the ability of the filter to converge 
on the correct landmark depth depends on the initialisation of the depth estimate, 
this was done for four different initial landmark depth estimates of 100, 300, 500 and 
700. The units used for the measuring of distance is not important to the accuracy 
measure. What matters is that the distance depth estimates can be accurately achieved 
in relation to the size of the TBL movement. In this case the TBL movement extending 
to a maximum of 50 units from the reference position along all major axes. All results 
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Figure 4.18: Simulation results of landmark depth and variance estimation over the 
Turn Back And Look (TBL) movement. Part a) shows the actual positions of land­
marks in the simulation; part b) the state of the system at the beginning of the TBL 
move, depth estimate and variance are at the initial values; b) completed X-axis 
phase of TBL movement; c) completed TBL movement. 

were averaged over 10 trials. The uncertainty measures for landmark depth in the 

covariance matrix were initialised to 700 for all trials. 

The results of this experiment can be seen in Figure 4.20. This graph shows the ac­

tual depths of landmarks plotted against the estimation error. As expected the accu­

racy of estimates for landmarks with short depths is much better than those of long 
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Figure 4.19: Actual position of landmarks and the TBL movement used to evaluate 
depth estimation accuracy. 
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depths. The importance of choosing a suitable initial depth value can also be seen. 

Landmark estimation using an initial depth estimate of 100 can converge accurately 

for short landmark depths but are bad for medium and long depths. Initial estimates 

of 300 or 500 seem to perform quite well for short and medium depths, but the error 

grows rapidly afterwards. The results for an initial estimate of 700 are surprising, the 

graph showing accurate estimates for landmarks with a short depth, the error growing 

through medium depth landmarks and then contracting again for longer landmarks. 

As these estimates have associated uncertainty regions, the results must be interpreted 

in conjunction with the size of theses uncertainties. Figure 4.21 shows the correspond­

ing variance measures for each of the plots in Figure 4.20. Again, for landmarks with a 

short depth the variances are very low, showing that no matter what the initial depth 

estimate is the filter can converge on the correct estimate with high certainty. 

The plot of the variance associated with an initial depth of 100 shows that the variance 
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does not grow in conjunction with the error measure. This is probably because the 
filter makes a wrong estimate early in the iteration cycle and because of the depth of 
the landmark and small amount of information that can be gained from changes in 
observation, it can not recover. Whatever, the reason, this mismatch between error 
and variance argues against initialising the filter with short depth estimates. At the 
other end, initialising long landmarks with a depth of 700 gives an accurate estimate 
with very high uncertainty. The accuracy in depth estimation of distant landmarks is 
mainly luck, due to the initial depth being close to actual depth. With landmarks at 
this range there is not enough information to be gained from observations to either 
move the estimate from its initial value or to decrease the uncertainty in that estimate, 
but this is to be expected due to relatively high uncertainty in the observation input. 
The variance associated with the moderate initialisation values of depth grow along 
with the error which is a desirable characteristic. If these estimates are going to be 
used it is necessary to know how much trust to place in them. 

Figure 4.21 gives the indication that all the variance plots are starting to level off after 
landmarks pass a depth of about 600. This again reinforces the limit of the filter to gain 
information from landmarks located it depths greater than this. Interpreting these two 
graphs in conjunction it would seem it best to use an initialisation depth of about 3-
5 times the extent of the observation movement from the reference position. Also it 
seems that there is little information to be gained from landmarks greater than 6-7 
times this distance. 

It is interesting to note that for estimation accuracy it is desirable to spread landmarks 
throughout the possible range of angles. Landmark configurations where they are 
bunched around a single angle, such as that shown in Figure 4.22 , provided signifi­
cantly worse depth estimates. This is not because the landmarks contribute to each 
others depth estimation directly, but rather because the Kalman filter is achieving 
mapping and localisation simultaneously as the name SLAM implies. Not only is the 
filter estimating landmark positions, it is also estimating the position of the robot from 
which the observations are being taken. When landmarks are bunched together there 
is less information available to correct the robot position, and errors in the odome­
try can accumulate. Subsequently, observations from an uncertain position cannot 
provide as much information on landmark location as those from a certain position. 
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Figure 4.22: An example of a configuration of landmarks which results in poor depth 
estimates. 
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Landmark position estimation with a small amount of landmarks suffers from the 

same fate. 

Simulation results from the system show the filters ability to converge to the correct 

result, although for landmarks at greater depths this process can be slow. The accuracy 

of the estimate depends on both the depth of the landmark in relation to the size of 

the TBL movement and the resolution of the sensor which measures the angle to the 

landmarks. 

Of course the uncertainty region is not exactly modelled as it should really be sort of a 

parallelogram bounded by the angle uncertainty. Modelling uncertainty with ellipses, 

however is much easier to implement and seems acceptable to the system needs. 

4.6.3 Real World Landmark Depth Estimation 

The method described above for estimating landmark depth while performing the 

TBL movement was implemented on the Nomad XR4000 mobile robot. The compu­

tation cycle for depth estimation is shown in Figure 4.23. First the filter is initialised 

using an assumed depth and covariance and the landmark angle observations from 

the static landmark selection phase. All landmark depths are set to 2500cm as an ini­

tial estimate with a variance of 2500cm. The variance of the landmark angle is deter-
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Figure 4.23: Computation cycle on vision processing CPU for estimating landmark 
depth during the TBL movement. 

mined by the resolution of the panoramic sensor which is approximately 0.9444 pixels 

per degree. The program then sends a signal to the robot controller to initiate the TBL 

movement and the the iterative estimation of the landmarks' positions begin. The TBL 

movement extends 50cm from the reference position and the robot moves at 20cm/ s. 

The current odometry is read from the robot controller and a panoramic image is cap­

tured. Landmarks are located in each image frame using the tracking algorithm de­

scribed in Table 4.1. The odometry, the observed radial angles to the landmarks in the 

landmark set and their associated measures of noise are used as input to update the 

Kalman filter as described in the preceding section. 

This estimation process is repeated until the robot controller reports that the TBL 

n1ovement is complete. When this occurs, the estimated position of the landmarks 

can be read from the state vector of the filter. 

The cycle of capturing the panoramic image, tracking the 32 landmarks and estimating 

the depth takes on average 135ms (Pentium II 750). With the panoramic image capture 

and unwarping taking 6.5m. , landmark tracking 25 - 75ms, and the depth estimate 

7 m ,_ , the tracking time varying with the size of the search window. 
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The main difficulty in implementing this algorithm in the real world is of course the 

noise associated with real world sensing. The noise introduced into the system with 

each sensor reading must be estimated in order for the filter to correctly incorporate 

the observation information into the system state. For example consider the situa­

tion where during landmark tracking a particular landmark is occluded and tracking 

is lost, resulting in incorrect landmark angle information being input into the filter. 

By associating an appropriately high level of noise with the incorrect angle measure­

ments, the filter can place less weight on such observations and rely more on earlier, 

less noisy observations. The two sources of noise in this system are the sensing of 

landmark angle from the panoramic images and the odometry readings from the robot 

controller. 

Landmark Angle Observation 

The observation of the radial angle of landmarks is achieved by matching landmark 

templates with the current panoramic image. The landmark tracking algorithm used 

in this system was presented in Table 4.1. The location of the landmark along the x axis 

of the image can easily be converted in to an angle measurement. The noise assigned 

to these measurements is related to the value of the landmark_match as defined in 

Table 4.1, which represents the correlation match between the landmark template and 

region of the current image where the landmark was located. This value is assigned a 

noise level according to the following formula: 

if val < 0.5 then val = 0.5, 

E = ((1 - val) 1r + 1r /180)2 (4.19) 

where E is the noise variance associated with the observation and val the landmark 

matching value. The value of val is limited at 0.5 because this is the correlation level 

for matching with a random background. The first term of the right hand side of the 

equation converts 1 - val into a proportion of 1r radians. This is then added to the 

error inherent in the resolution of panoramic sensor (approximately 1 degree). The 

result is then squared to produce the noise variance. Thus the variance approaches 
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(1r /2) 2 when landmark correlation is poor and (1r / 1 0)2 when landmark correlation is 

perfect. 

Although the above method for weighting the importance of angle observations does 
take into consideration errors in tracking where tracking performance degrades grace­
fully, it does not fully insure against the problem of data association. The data asso­
ciation problem is that of mapping sensor data with real world objects. In this case 
it can be a problem if a region in visual field that is not a representation of the ac­
tual landmark is significantly similar to that of the landmark template. This situation 
could cause the system to produce an incorrect landmark angle observation which has 
a high matching value and subsequently a low noise estimate. 

Data association is a common problem in estimation approaches such as the Kalman 
filter, and no direct attempt to address it is made in this system. However, the chances 
of the problem in the first place occurring, and secondly affecting the outcome are 
reduced for the following reasons: 

• Landmarks are visual templates and are initially chosen for their locally unique 
appearance in the static selection process. Visual templates are much less likely 
to fall victim to the data association problem than features such as comer regions 
as each template can be distinct. The static selection process further limits the 
chance that image regions of similar appearance will be located in the immediate 
vicinity of the landmark. 

• Landmark tracking begins on the known landmark location so initialisation is 
not a problem. 

• If an instance of the data association problem does occur there is likely to be 
some degradation in tracking performance due to the nature of the landmarks 
(visual templates) . Although this degradation may not be sufficient for the sys­
tem to correctly estimate the noise associated with the observation, part of the 
dynamic selection process is to choose the landmarks which track best over the 
TBL movement. Therefore landmarks which suffer from a data association prob­

lem are less likely to be chosen in the final landmark set than those which do not. 

These reasons do not entirely eliminate the data association problem, however it sub­
stantially alleviates its affect on landmark position estimation in this system. 
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Odometry Readings 

The reading of odometry measurements from the wheel encoders are another source 

of noise in the landmark depth estimation process. Odometry error due to wheel 

slippage is not likely to be a great factor in this case due to the limited range of the 

TBL movement. A greater source of noise is the delay between obtaining a odometry 

reading and capturing the image. Although these two events happen in succession 

(Figure 4.23) the odometry reading must travel from the computer hosting the robot 

controller to the computer hosting the vision processing and so time delays between 

readings can occur. This system contains no time stamping of sensor readings but re­

lies on noise estimates to allow for measurements to be combined accurately. Counter 

acting this delay is the fact the robot moves slowly (20cm/ s) and the TBL movement 

is comprised of constant velocity movements. 

The time taken for an odometry request to be sent and answered is r--.; 40ms. Assuming 

that the communication overhead on sending and receiving the odometry request are 

equal this results, on average, in a r--.; 20ms delay between capturing the odometry 

information and the call to initiate capture of the panoramic image. 

Odometry noise has been set to 0.01 for translation measurements under translation 

and 0.10 for translation measurements under rotation. Although this noise level may 

seem low given the delay between the odometry reading and image capture the fol­

lowing results seem to validate these levels. It is unknown whether tighter coupling 

of these measurements would have an affect of landmark position estimation in light 

of the greater amounts of noise being introduced by the landmark angle observations. 

4.6.4 Artificial Landmark Results 

Since visual landmarks can be composed of visual representations of objects from dif­

ferent depths, it can be difficult to determine a ground truth of selected landmarks, 

and therefore difficult to validate the depth estimation procedure. Manually selected 

artificial landmarks, on the other hand, can be constructed to provide this validation. 

Artificial landmarks were constructed in an otherwise visually sparse corridor envi­

ronment as shown in Figure 4.24. The entirety of each landmark lay on a single planar 

surface (corridor wall) and as such the ground truth of landmark position could be 
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Figure 4.24: Artificial landmarks in corridor environment. 

Figure 4.25: Artificial Landmarks 

measured. 

Landmarks lay on the parallel surfaces of the corridor wall, equidistantly spaced at 

a height of 140cm. The corridor was 140cm wide and the robot was positioned ap­
proximately in the center of the corridor and surrounding landmarks. To ensure land­
mark positions were measurable, landmarks were manually identified in the reference 

panoramic image. The landmarks chosen for this experiment are shown in Figure 4.25 . 

Once the landmarks were identified the robot performed the TBL movement, captur­

ing images and performing the iterative landmark position estimation. Because of the 
confined space in the corridor the TBL movement was shortened across the x axis. 

Obviously the tracking task in this experiment is somewhat simplified with such vi­

sually distinct landmarks, leading to more reliable input to the depth estimation filter. 
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This advantage was counteracted by the proximity of the landmarks to the panoramic 

sensor, which caused a high level of distortion of landmarks due to the translation of 

the panoramic sensor while the robot performed the TEL movement. 
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Figure 4.26: Estimated landmark depth and variance from artificial landmarks 

Figure 4.26 shows the results of estimating landmark depth using the artificial land­

marks. The estimated landmark positions are shown by the small circles and the as­

sociated variances by the encircling ellipses. The two parallel lines show the walls of 

the corridor while the large circle shows the initial position of the mobile robot. The 

path the robot travelled while performing the TEL movement is shown by the cross 

shaped lines at the center of the robot. It can be seen that the estimates correspond 

closely to the walls of the corridor, all estimates are within ±10cm of the actual posi­

tion of the landmarks. A video of this experiment is included in the CD-ROM which 

accompanies this thesis. 

4.6.5 Real World Results 

The landmark depth estimation filter was applied to real world data. The context and 

dimensions of the room in which the experiments were conducted is shown if Fig­

ure 4.27. Figure 4.28 shows the results of one such experiment. The initial robot posi-
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Figure 4.27: Location of real world landmark acquisition experiments. 

tion from which the landmarks where selected is shown by the red circle in the center 

of the room and the landmarks positions and variance by the surroW1ding squares and 

ellipses. The line within the red circle represents zero degrees (x axis in robot coordi­

nate system) from the reference position. The TBL movement extended 500mm from 

this reference position, moving along the robot's x and y axes. Initial landmark depth 

estimates were set at 2500mm. Approximately 1000 frames were processed through­

out the TBL movement. The room is approximately 7 x 10 meters in area. Sub-figure 

a) shows the initialisation of the filter before the start of the TBL movement; b) shows 

the landmark depth estimation after the completion of the TBL movement; and c) 

shows the landmarks which were then selected to form the reference landmark set 

to represent the place based on their landmark tracking performance throughout the 

TBL movement. Manual inspection showed the landmarks were estimated to within 

roughly ±500mm, with the exception of those landmarks in the doorway which were 

within 1000mm. 

The selected static landmarks that were used in this experiment are those shown in 

Figure 4.29. With the nature of visual landmarks being such that they can contain 

objects from different depths , the estimation process is much noisier than with a sim­

ulated system, and a measurement of groW1d truth can be equally hard to obtain. The 

results here provide a good estimate of landmark depth as well as a variance mea­

surement in accordance to the noisy nature of the landmarks used . For example the 

landmarks shov1n in the doorway have templates which include pixels from both the 

door frame and the corridor behind with the depth estimate lying in between and 
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Figure 4.28: Real world landmark depth estimation experiment 1. The place 's ref­
erence position is shown by the red circle, landmark position estimates and their 
variances are displayed as blue boxes and green ellipses. The TBL motion is shown 
in blue. The figures show landmark depth estimates a) before TBL move (initialised 
to 2500mm) , b) after TBL move. Landmarks selected to represent the place because 
of their reliable tracking performance are shown in c). 
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Figure 4.29: Static landmarks used in real world depth estimation experiment 1. 

Figure 4.30: Reference landmarks selected after TBL move in real world depth esti­
mation experiment 1. 

the variance covering both. The reference landmarks which were subsequently se­
lected because of their reliable tracking performance throughout the TBL movement 
are shown in Figure 4.30. 

Figure 4.31 shows the results of another real world landmark depth estimation exper­
iment, this time with the reference place being closer to the walls of the room. Again 
sub-figure a) shows the initialisation of the filter before the start of the TBL movement; 
b) shows the landmark depth estimation after the completion of the TBL movement; 
and c) shows the landmarks which were then selected to form the reference landmark 
set to represent the place based on their landmark tracking performance throughout 
the TBL movement. The results show the system can estimate landmark depths at a 
range of depths. The static landmarks used in this experiment are shown in Figure 4.32 
and the chosen reference landmarks in Figure 4.33. 

Figure 4.34 shows the results of real world landmark depth estimation in the presence 
of occlusion. In this experiment the system selected and estimated landmark positions 
from the same reference position used in the experiment displayed in Figure 4.32. The 
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Figure 4.31: Real world landmark depth estimation experiment 2. The place's ref­
erence position is shown by the red circle, landmark position estimates and their 
variances are displayed as blue boxes and green ellipses. The TBL motion is shown 
in blue. The figures show landmark depth estimates a) before TBL move (initialised 
to 2500mm), b) after TBL move. Landmarks selected to represent the place because 
of their reliable tracking performance are shown in c). 
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Figure 4.32: Static landmarks used in real world depth estimation experiment 2. 

Figure 4.33: Reference landmarks selected after the TBL movement in real world 
depth estimation experiment 2. 

reference position and the estimated landmark positions are shown in part a) , while 

the static landmarks used in this experiment are shown in part b) . During the TBL 

movement a person walked at normal pace back and forth along the path displayed 

by the thick black line. The path of the person caused the landmarks in the bottom 

right of the figure to be repeatedly occluded from the panoramic vision sensor. This 

in turn caused a repeated loss in tracking for the affected landmarks and the intro­

duction of high levels of noise into the Kalman filter. The results show that although 

the landmarks were not estimated as accurately as before, the system still provides 

a consistent estimate and through manual confirmation it was observed that the true 

position of landmarks still lay within the ellipse denoting the estimate uncertainty. 

This result in addition to the results presented above involving estimation of automat­

ically selected landmarks demonstrate the systems ability to provide a usable estimate 

of landmark depth. This estimate can subsequently be used as additional information 

to the problem of mobile robot localisation which will be addressed in Chapter 8. 
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Figure 4.34: Estimated landmark depth and variance in the presence of occlusion. 
Part a) shows the position of estimated landmarks and the path of the dynamic object 
responsible for occlusion in the visual field during the TBL movement. Part b) shows 
the static landmark set used in this experiment. 
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This chapter has a presented a low-level representation for spatial knowledge based 

on visual landmarks. Implementation details of automatic landmark selection and 

recognition were reported. This chapter has not addressed the localisation system of 

the proposed system, rather solely concentrating on the acquisition of visual landmark 

sets as a place representation. The use of this level of representation for localisation is 

left to Chapter 8. 

This chapter presented the following main ideas were developed: 

• Automatic Visual Landmark Selection: Visual landmarks are distinct and can pro­

vide a rich source of information to the localisation task. The task of selecting 

landmarks to form a representation about a reference position must be auto-
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mated. 

• Static Landmark Selection: static landmarks were selected on the basis of their 
local uniqueness. The valley method can identify potential visual landmarks 

which are strongly recognisable. 

• Dynamic Landmark Selection: landmarks identified by the static landmark selec­
tion process are evaluated for their reliability throughout a Turn Back and Look 
movement. During this movement landmarks are tracked using normalised 
cross correlation template matching. 

• Landmark Set Recognition: Brute force template matching can be used to recog­
nise sets of landmarks in panoramic images, although this process is computa­
tionally expensive. Experiments demonstrated that the dynamic selection phase 
improves landmark recognition performance. 

• Landmark Depth Estimation: In addition to ensuring the selection of reliable land­
marks, the TBL movement can also be used to estimate the depth of landmarks 
from the reference position. A form of bearing only SLAM was presented which 
could accomplish. Results were presented from simulated landmark depth esti­

mation, artificial landmark estimation and real world experiments. These results 
showed that a depth estimate and its uncertainty can be estimated during the 
TBL movement. 

A landmark set representation of a particular place in the environment is desirable 
because of the benefits such a representation will have on the task of localisation. Dis­
tinct visual landmarks should aid the recognition process as landmark templates will 
be unique to sensory views captured from near the reference position. Knowledge of 
the angle and depth of landmarks in relation to the reference position will contribute 
to the accuracy of local positioning by providing additional information to triangu­
lation calculations. The validity of the ideas developed above, should therefore be 
discussed in relation to the localisation task and assessed by weather they contribute 
to or distract from the successful implementation of that task. 

The automatic selection of visual landmarks, while providing a workable representa­
tion of landmark sets is far from ideal. The current implementation is limited as to 
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what it defines as a "good" landmark. The initial process of feature extraction using 

the valley method is computationally expensive and the system would be benefited 

enormously by the use of a feature extraction method which could maintain landmark 

recognisability while becoming more computationally efficient. 

The dynamic selection phase could also be improved by a more intelligent selection 

landmark criteria. Because an estimate of landmark depth is being made concur­

rently with the dynamic evaluation procedure, this information could contribute to 

the choice of landmarks. Landmarks that are close to the reference position would 

provide more information to the local positioning task, whereas landmarks at greater 

depths would be recognisable from a greater area surrounding the reference position. 

A study of these competing needs is needed to determine the desirable depth of land­

marks. Also the combination of depth and reliability measures of landmarks in order 

to rank potential candidates is also an interesting question. 

The biggest problem in this implementation of landmarks as a representation for spa­

tial knowledge occurs in the landmark set recognition procedure. As detailed above 

the brute force recognition process is extremely computationally expensive which lim­

its the efficiency of the global localisation task. As more places are added to a topo­

logical map, more of the brute force searches will be required to perform global lo­

calisation and the required computation time will increase linearly. This, ironically 

highlights the need for a multi level spatial representation in mobile robot navigation, 

with the higher levels constraining the global localisation search in the lower levels. 

However the computation needed for a brute force search for just one landmark set 

already pushes the real time constraints of the problem. This problem will only be 

solved when a computationally inexpensive pre-matching feature extraction method 

is implemented which can maintain the recognition performance of landmark sets. 

The depth estimation process is the strong point of the landmark representation imple­

mentation and can only add to the localisation performance of depth ignorant systems. 

A more accurate depth measure could be obtained by improving the resolution in the 

panoramic image and by a more rigorous approach to enforcing real time controls on 

sensor measurement and data fusion. 

To end this chapter the proposed landmark representation should provide benefits to 

the localisation task although the expense of the landmark recognition process may 
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inhibit the applicability of this particular implementation. This problem, however, 
only highlights the need for a multi-level approach to spatial knowledge representa­
tion and these ideas can be verified in this system irrespective of the failure of this 
level of representation to meet the real time constraints of the task domain. 



Chapter 5 

Mid Level Representation: Local 

Space Profiles 
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This chapter details the implementation of the mid level of spatial representation for 

mobile robot localisation introduced in Chapter 3 based on the local space profiles 

concept. Information about the location of a robot can be derived from the amount 

of open space surrounding the robot. For example, the knowledge that there is open 

space to the front and to the back and no open space to both sides can inform the robot 

that it is in a corridor environment. Subsequent investigation into the robot's position, 

can then be directed with respect to this knowledge. 

A local space profile contains information about the extent of local space for a partic­

ular position in the environment. A view of the extent of open space surrounding a 

mobile robot will not be unique when compared to other views as can be imagined 

in a corridor environment. Thus a representation of local space is not meant to pro­

vide a unique solution to the mobile robot localisation task, rather to simply constrain 

the search to save computation in low-level landmark localisation. Thus the repre­

sentation of local space should be minimalistic and support fast comparisons between 

different viewpoints. 

The outline of this chapter is as follows . Implementation details of the mid level of spa­

tial representation are given. Section 5.1 describes the process of detecting the extent 

of local space surrounding a position in the environment from the panoramic visual 

sensor. First methods of detecting ground planes in panoramic images are discussed 
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and a probabilistic approach to combining different techniques is introduced. Local 
space detection results from image sequences are then presented, and a comparison 
to ground truth is made to evaluate carpet matching techniques. Section 5.2 presents 
a representation for local space profiles which is compact and allows for fast rotation 
invariant matching. Section 5.3 discusses categorising local space profiles to constrain 
the localisation search. Finally, Section 5.4 provides a summary and discussion of the 
in1plementation issues involved in forming a local space representation. 

5.1 Local Space Detection 

In order to use knowledge of local open space to aid in localisation, the robot must 
have a sensing method. The panoramic visual sensor seems to be ideal for this task 
providing rich visual information from the surrounding environment. However, it 
is monocular vision and any attempt to recover a sense of local space must detect 
the depth of visible objects. As shown in Chapter 4 the extraction of the depth of 
points in a monocular panoramic scene can be achieved, however it requires time 
and computation therefore it is not applicable to evaluation of the entire visual scene. 
This extraction of depth information is not a trivial problem and could command a 
research project in its own right. The problem is the same as that of detecting obstacles 
in obstacle avoidance for local navigation which needs to be solved for any mobile 
robot system to be successful. Acknowledging this fact, this research seeks to find a 
passable solution which highlights the advantages of using such a sense of local space 
in localisation, without providing a general solution to this particular problem. Also , 
it must be noted that the proposed solution, which uses carpet detection techniques, 
is limited to environments in which the ground plane has a constant and consistent 
colour. 

Determining Local Space with Monocular Visual Sensors 

The detection of open space is akin to that of obstacle detection. 

Horswill (1 993) describe a mobile robot, Polly, which used a monocular camera to per­
form online obstacle detection and avoidance. To accomplish this the system detects 
the ground plane by forming a Radial Depth Map (RDM) of the area visible in the 
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camera's field of view, and executes navigation strategies according to this map of lo­

cal space. The RDM is formed using an edge detector to detect texture in the visual 

scene, labeling regions in the image that contain texture as representing background 

objects, and those which contain no texture as belonging to the ground plane. 

Cheng and Zelinsky (1996) describe a similar robot system with a monocular camera 

which used template matching to detect carpet regions in the visual field, and thus 

identify the ground plane. A carpet template was stored and matched with the cur­

rent visual field using dedicated hardware and regions which are similar to carpet are 

identified. Using this approach, the mobile robot could perform exploration and goal 

seeking behaviours at quite high speeds without colliding with walls or other objects. 

The reliable performance of Cheng and Zelinsky' s (1996) ground plane detection was 

achieved due to the positioning of the camera and the resulting field of view. The 

Yamabico robot used in this research was low to the ground standing at no more than 

40cm. The camera was mounted on top and angled downwards at the carpet directly 

in front of the robot. In this way the depth of objects within the visual field was limited 

and high image resolution was maintained and the appearance of carpet within the 

field of view was quite consistent. 

The affect of a deeper and more extensive visual field was noted by Gaskett, Fletcher 

and Zelinsky (2000). Using the same same vision processing system, this time mounted 

on a Nomad200 mobile robot, Gaskett et al. (2000) used detected free space as input 

for the acquisition of wandering and visual serving behaviours through reinforcement 

learning. Since the camera was mounted at the greater height walls and tended to cor­

relate well with the carpet template, an additional constraint was added: anything 

above a non-carpet region in the image, must also be a non-carpet region. 

Stepan and Kurlich (2001) have taken carpet matching one step further, using detected 

carpet regions to build up occupancy grid maps of the environment. Their system uses 

monocular camera images which appear to be captured from a camera situated close 

to the floor similar to that of Cheng and Zelinsky (1996) . To combat the problem of 

obstacles and carpets sharing a similar appearance, they built up probability distribu­

tions in HSV colour space which modelled the carpet and non-carpet appearance in 

training images. Occupancy grids can then be constructed using Bayesian probabil­

ity, with the probability of a current image region being carpet being defined as the 
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similarity of its HSV measure to that of the models describing carpet and non-carpet 
regions. The map was maintained in 2 dimensional robot coordinates by transforming 
images from the the camera coordinate system to a floor coordinate system. 

This probabilistic approach marks a shift from pure obstacle avoidance to map build­
ing. This can be thought of as a shift from the detection of free space to the detection 
of local space. By maintaining an estimate of surrounding space through time, the 
presence of temporary, dynamic obstacles can be eliminated from representation de­
scribing the extent of local space. 

Determining Local Space using Panoramic Visual Sensors 

Panoramic cameras produce images with a lower resolution particularly in image re­
gions with a low angle of elevation, which is precisely where the presence of carpet is 
most likely. For this reason, the template matching approach to detecting free space 
is not common when using panoramic visual sensors. Alternatively researchers have 
tried to extract carpet boundaries through feature extraction. Yamazawa et al. (1995) 
used a panoramic sensor to detect obstacles and form a map of local space in the en­
vironment. This was accomplished by transforming the panoramic image into a floor 
plan perspective, and extracting line edges and direction from the resultant images 
using a differential operator. The elimination of radial lines from this process pro­
duced a floor map of the region. This type of feature extraction is obviously targeted 
towards environments which are highly structured and contain uninterrupted lines at 
the floor /wall boundary. 

Similarly, Gaspar et al. (2000) present a mobile robot system which uses panoramic 
vision to navigate through a highly structured environment. Again the panoramic 
image is transformed into a floor plan, or birds eye view image. From this image 
parallel lines are extracted and this produced an estimate of the edges of a corridor. 
From there the robot can steer along the middle of the corridor, resulting in a centering 
behaviour. This system assumed everything within the parallel lines is free space. 

It can be seen from these studies, that true detection of free space from a monocular 
camera is difficult to achieve. The carpet matching approach suffers from the non­
uniformity of carpet appearance while line extraction suffers from limiting the com-
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Figure 5.1: An example of carpet in panoramic images. 

plexity of the environment to rigid structures. In this system, the desire to detect free 

space both in structured corridors and in cluttered rooms led to the choice of ground 

plane detection through carpet matching to achieve measurement of local space. 

5 .1.1 Carpet Matching 

Carpet matching is an imprecise and location specific method of detecting the extent of 

local space surrounding the robot. When using a panoramic sensor in the environment 

shown in Figure 5.1 it becomes even more so. The low resolution in the panoramic im­

age means that any distinguishing patterns in the carpets spatial frequency are lost. 

Further more the blurring of colours results in the carpet being virtually indistinguish­

able from the walls using standard pixel or region matching techniques. In addition , 

variations in lighting cause dramatic changes in carpet appearance and again can lead 

to confusion of carpet with the walls and other surfaces. 

Average Pixel Colour Matching 

One method for detecting regions of carpet in panoramic images is to calculate an av­

erage pixel colour for carpet. By finding the absolute difference between this average 

pixel and the colour of each pixel in a panoramic image, a measure of how similar 

each pixel is to the colour of carpet can be made. 

Figure 5.2 shows the results of performing this absolute difference calculation on ex­

ample panoramic images. Two examples are presented: a) an image captured in a 

large room and b) an image captured at a T-intersection of an office corridor. The 

average carpet pixel for each image was taken from the region contained within the 



142 Mid Level Representation: Local Space Profiles 

Image 1 Tern plate 

Image 1 SAD Intensity (Using Image 1 Template) 

a) 
Image 2 Template 

Image 2 SAD Intensity (Using Image 2 Template) 
.,,,..,.,....,...,....,,.,...,,,,..,,,--. 

b) 

Figure 5.2: Carpet matching using average pixel colour from identified carpet re­
gion. Two examples of carpet matching in panoramic images using this technique 
are given: a) image captured from a large room and matching results ; b) image cap­
tured at a I -intersection in a corridor and matching results. In both cases the average 
carpet pixel was calculated from a template (red box) taken from the captured image. 
High intensity pixels in the matching results represents a high correlation with the 
average carpet pixel. 
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red boxes on the normal panoramic images. The intensity plots under each example 

image show the average pixel differences. A low pixel difference results in a brighter 

intensity while high pixel differences are shown with darker intensities. The results 

show that the matching with carpet regions in both images, produce widely varying 

results. The intensity levels tends to vary with illumination of the carpet and non­

carpet regions. The difficulty in the carpet detection is to correctly identify carpet 

regions irrespective of illumination changes while limiting the false detection of non­

carpet regions. 

These examples stress the obvious point that an average pixel carpet measure will only 

be representative of carpet under a particular illumination level. Figure 5.3 shows the 

difficulties of trying to match carpet regions using an average carpet pixel that was 

calculated from example carpet pixels from different images. The carpet matching 

intensity plots are from the same panoramic image examples contained in Figure 5.2 

but in each case the absolute difference calculation was performed with the average 

carpet pixel from the other image. The intensity plot in Figure 5.3 a) was produced 

by finding the absolute difference between the panoramic image in Figure 5.2 a) and 

the average pixel derived from the red boxed region in Figure 5.2 b) . These results 

further highlight the inappropriateness of using illumination variant approaches to 

carpet matching. 

Normalised RG Colour Space Matching 

Stepan and Kurlich (2001) reported a successful carpet matching system which used 

a colour space model of carpet to detect carpet regions. The objective was to build a 

model of carpet which is independent off the level of illumination in the image. 

A colour space model of the colour of carpet can be constructed using carpet colour 

samples from panoramic images. RG colour space is used as the image obtained from 

the video capture device is in RG B format. The process of normalising an RG B value 

makes one of the values redundant, thus leaving only RG colour. Converting an RG B 

pixel to a normalised RG one is done as follows: 
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Image 1 Template 
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a) 
Image 2 Template 

Image 1 SAD Intensity (Using Image 2 Template) 

b) 

Figure 5.3: Carpet matching using average pixel colour from identified carpet region 
in another image. Part a) shows an intensity plot produced by performing an abso­
lute difference calculation on image 2 using the average carpet pixel colour from the 
template in image 1. Part b) shows the results of matching image 2 with the average 
pixel colour from the template in image 1. 
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Figure 5.4: Normalised RC colour space of carpet regions from panoramic images. 
The red dimension lies along the horizontal axis, while the green lies along the ver­
tical. 
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(5.1) 

The colour model is made by sampling pixels of carpet regions from panoramic im­

ages and using then to construct an approximation of the probability distribution for 

carpet colour over the normalised RG colour space. In implementation, this means 

populating a 255 x 255 (representing RG values) by incrementing the appropriate cell 

for each example carpet pixel. The resultant matrix is then convolved with a Uniform 

3 x 3 pixel kernel1 and normalised to hold an integer value between O and 255. 

I<= 

1 1 1 

1 1 1 

1 1 1 

(5.2) 

The value in a particular RG cell then provides a measure of the likelihood that the 

colour associated with that cell is an instance of carpet colour. Figure 5.4 shows the 

normalised RG colour model of carpet constructed from sections of carpet from sam-

1Gaussian kernels and kernels of varying sizes were tried but a Uniform kernel of size 3 x 3 proved 
superior for carpet matching given the small pixel sample size used to construct the colour model 
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ple panoramic images. The sections of carpet were identified by hand over a small 
number of training images captured from different locations in the environment. 

Using the colour space model of carpet, the probability of each pixel in a panoramic 
image being the colour defined by the carpet colour model can be calculated in two 
easy steps: 

1. Convert pixel to normalised RG form 

2. Look up the value associated with that RG pixel in the carpet colour model 

The results of applying this method to example panoramic images are shown as in­
tensity plots in Figure 5.5. A high pixel intensity level reflects that the corresponding 
pixel in the panoramic image is likely to be the colour of carpet. Again there are two 
examples and the original panoramic images are given above the intensity plots. At 
first glance this does not seem to be much of an improvement on the results from 
matching with an averaged pixel value, with many regions that are obviously not car­
pet being strongly identified as carpet. This is true, but it is also the case that all carpet 
regions have been identified correctly irrespective of the level of illumination. 

Carpet Boundary Detection 

The carpet detection results gained from matching pixels with a RG colour model of 
carpet show that it is not sufficient to simply use carpet colour to form a reliable esti­
mation of local free space. As mentioned earlier, Gaskett et al. (2000) use an additional 
heuristic rule to enhance carpet matching performance. In that case, the detection of a 
non-carpet region disqualified regions above it from being identified as carpet regions. 
A similar approach is taken in this research. It is assumed that a change in colour gra­
dient defines the transition between carpet and non-carpet regions. The detection of 
such a transition can then be used to detect the boundary between two different sur­
faces in the image. The first such transition detected, working on the image in vertical 
columns from the bottom up, can be assumed to be the transition between carpet and 
non-carpet regions. 

This does not help us when walls that look like carpet start from the very bottom of 
the image and extend upwards through the entire vertical visual field. Another rule 
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Image 1 

a) 
Image 2 

b) 

Figure 5.5: Carpet matching using RC colour space model of carpet colour. The top 
images show the panoramic images and the bottom images show the intensity plots 
of detected carpet regions. 
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Image 1 Boundary Gradient 

Boundary Intensity Plot 

a) Image 2 Boundary Gradient 

Boundary Intensity Plot 

b) 

Figure 5.6: Carpet detection using a gradient boundary. The top images in part a) 
and part b) show the detected boundary regions in each pixel column as white dots . 
The red lines show the defined horizon in the panoramic images. The bottom images 
show the carpet detection intensity plots produced based on gradient detection. 
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Table 5.1: Detecting the gradient boundary in a panoramic image 

iteration 
for each pixel column c in Image I 

gradient_f ound = FALSE 

end 

r = 0 
-- iterate rows from bottom upwards 
while r < image_horizon and gradient_found 

end 

mag = abs(I(r, c) - I (r - 1, c)) 
if mag > gradient-1hreshold then 

gradient_f ound = TRUE 
gradient_row r 
gradienLmag = mag 

end 

if gradienLf ound 
gradient_r ow ( c) 
gradienLmag(c) 

end 

TRUE then 
gradient_row 
gradient_mag 

FALSE do 
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is introduced that states there must be such a transition before the height in the image 

which corresponds to the horizon in the visual field. It should be noted that no regions 

of carpet lying on a flat plane along which the robot is translating should ever appear 

above the horizon. In this way sections of wall which would otherwise be detected as 

carpet regions due to their similarity with carpet can be avoided. 

Figure 5.6 shows two example panoramic images. The top images in both sub-figures 

a) and b) are overdrawn with detected gradients in white and with the image horizon 

in red. It can be seen that most boundaries between carpet and non-carpet regions 

have been correctly identified. There are problems with extremes of illumination as 

seen in the dark corridor of the second panoramic image. 

In this case gradient detection was achieved by performing an absolute difference cal­

culation on vertically adjacent pixels in every column in the image. Starting from the 

bottom and proceeding upwards, the first such gradient detected above a threshold 

value was defined to be the carpet boundary. If no gradient above the threshold is 

found before reaching the image horizon then that pixel column is assumed to have 

no carpet regions. Any pixels above horizon line can be said with absolute certainty 

to not be carpet pixels. Gradient boundary detection is shown in algorithmic form in 
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Table 5.1. 

In summary, when assigning a pixel p(x, y) from a panoramic image a carpet proba­
bility measure P (p(x, y)), assuming gradient detection has already been applied, the 

following steps are applied: 

1. If pixel p is above the image horizon: 

p (p ( X, y) ) = Q 

2. If pixel plies below a detected gradient of magnitude 9mag then: 

P(p(x, y)) ex g mag 

3. If pixel plies above a detected gradient of magnitude gmag then: 

P(p(x, y)) ex 1 - g mag 

4. If pixel pis below the image horizon and no gradient was detected in p's column: 

P(p(x, y)) = C 

where C is a constant which reflects the uncertainty in columns in the image where 
no gradient boundaries have been detected, which may or may not contain carpet 
regions. In this system C is set to 0.3. 

The results of applying this method of carpet detection to panoramic images is shown 
in Figure 5.6. For two example images the resulting probabilities that pixels are in 
regions of carpet are shown as intensity plots. A clear boundary can be seen in both 
examples, and for the most the lighter pixels in the intensity plot correspond to car­
pet regions in the panoramic images. There are mis-classifications, particularly in the 
columns where no boundary was detected. However, the method is sufficiently accu­
rate for our research purposes. 
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5.1.2 Occupancy Grid of Local Space 

All the examples of carpet detection methods have been applied to single images. 

These images are noisy and sometimes lack the information necessary to correctly 

identify carpet regions. By promulgating these carpet estimates through time while 

incorporating new information a better and more robust method of carpet detection 

can be achieved. 

Similar to Stepan and Kurtich (2001), our research treats free space detection as an 

occupancy grid problem and uses Bayesian probability theory to maintain the free 

space estimate. In our research the occupancy grid represents the probability that a 

location in the 'grid ' of a panoramic visual scene is 'occupied ' by a carpet coloured 

pixel. It is important to note that the occupancy grid is in image space and not in 

physical space. The occupancy grid can be constructed using basic probability theory: 

Pnew(Occ) = P (Occ) PAcc(Occ) (5 .3) 

which states that the new probability of a cell in the occupancy grid being occupied, 

Pnew(Occ) , is the probability that is it occupied at this time period P (Occ) multi­

plied by the probability of it being occupied accumulated from past measurements, 

PAcc(Occ). 

Stepan and Kurtich (2001) uses the Bayesian rule 2 to recursively update the accumu­

lated probability each time a new sensor reading is obtained: 

P (0 ) 
_ P (Occ) PAcc(Occ) Ace' CC - ----------- - -------

P (Occ) PAcc(Occ) + (1 - P (Occ))( l - P.4cc(O cc)) 
(5.4) 

The carpet matching methods can be applied to a sequence of images and the infor­

mation of probable carpet regions can be accumulated over these images. Figure 5.7 

shows a sequence captured in the middle of a large room from a stationary posi­

tion. Each carpet matching method previously described was applied to this image 

sequence using Equations 5.3 and 5.4 to accumulate probabilities. The results of the 

average carpet pixel , colour space model and gradient methods after frames 1 and 5 

2as presented in (Press, 1989) 
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1 

2 

3 

4 

5 

Figure 5.7: A sequence of five panoramic images from a stationary camera 
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Panoramic Image 

1 
Occupancy Grids 

...,.,,....,.__,..---,-...,...,...,.,..,. 

1 

5 

Figure 5.8: Average pixel carpet matching using occupancy grids and Bayesian prob­

ability theory. The initial probability grid from frame 1 and the accumulated proba­

bility after frame 5. 
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are shown in Figures 5.8, Figure 5.9 and Figure 5.10 respectively. It can be seen that al­

though there is no great improvement of carpet region detection over the sequence for 

any of the methods, most noise associated with the use of a single image is eliminated, 

especially in the gradient detection approach. 

Using the Bayes update formula, the occupancy grid can not only be updated over 

time, but also within the one time step with probabilities from multiple sensor modal­

ities. Therefore the probability of a given cell in the occupancy grid can be updated by 

multiple carpet detection methods. 

Figures 5.11 and 5.12 shows the occupancy grids formed by combining the results of 

colour matching and the gradient search. Again the probability that a cell is occupied 
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Panoramic Image 

1 

1 

5 

Figure 5.9: Colour space carpet matching using occupancy grids and Bayesian prob­
ability theory. The initial probability grid from frame 1 and the accumulated proba­
bility after frame 5. 

is shown by the intensity levels in the figure. Dark pixels represent regions which 

are occupied while lighter regions represent free space. Two single image examples 

are shown. The top image in each figure is the original panoramic image. Next are 

the results of applying the colour space model , the gradient detection, and finally 

the combination of both methods through the Bayes update formula. It can be seen 

that even with the combination of the two sources of information that some mistakes 

are still made. In particular the example in Figure 5.12 shows that the carpet region 

located in the darkest corridor is not detected well. This is due to the lack of colour 

and gradient information available from the excessively dark pixels. 

The combined information can then applied over the sequence of images shown in 
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Panoramic Image 

1 
Occupancy Grids 

1 

5 

Figure 5.10: Gradient boundary carpet detection using occupancy grids and 
Bayesian probability theory. The initial probability grid from frame 1 and the ac­

cumulated probability after frame 5. 
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Figure 5.8. The results of combining two methods of carpet detection over the image 

sequence are shown in Figure 5.13, which combines average carpet pixel and gradient 

detection and Figure 5.14, which combines carpet colour space model and gradient 

detection. Figure 5.13 shows higher probabilities than Figure 5.14 but also has more 

false positive carpet carpet identifications. Combining the colour space and gradient 

detection methods over a sequence of images provides the best carpet region detection 

results. The various methods of carpet detection described previously are empirically 

evaluated in the following section. 
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Panoramic Image 

Colour Space Occupancy Grid 
,,,.,.,,.._ 

+ 
Gradient Boundary Occupancy Grid 

~ 
Combined Occupancy Grid 

Figure 5.11: Combining gradient boundary detection and carpet colour space model 
matching using Bayesian probability theory. 
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Panoramic Image 

+ 
Gradient Boundary Occupancy Grid 

~ 
Combined Occupancy Grid 

Figure 5.12: Combining gradient boundary detection and carpet colour space model 

matching using Bayesian probability theory. 
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Panoramic Image 

1 

Combined Occupancy Grids 

1 

5 

Figure 5.13: Combining average pixel matching and gradient boundary carpet de­
tection techniques over time. Occupancy grids from frames 1 and 5 in the image 
sequence are shown. 

5.1.3 Evaluating Local Space Detection 

It is difficult to compare the results of the various carpet matching methods by visual 

inspection alone. An objective measure is needed to determine which method per­

forms the best. The results of each carpet matching method can be compared with the 

ground truth. The ground truth, while difficult to obtain exactly, can be approximated 

by visual inspection and manually identifying carpet regions in panoramic images. In 

order to enable comparison with the output of the carpet matching methods described 

above, the ground truth can be represented as an occupancy grid with carpet/ non­

carpet regions known with absolute certainty. Figure 5.15 gives an example of a a) 

panoramic image and b) the associated manually identified occupancy grid. 
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Panoramic Image 

1 
Combined Occupancy Grids 

1 

5 

Figure 5.14: Combining colour space matching and gradient boundary carpet detec­
tion techniques throughout an image sequence.Occupancy grids from frames 1 and 
5 in the image sequence are shown. 
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A comparison of a carpet matching occupancy grid and the ground truth can then 

be made by subtracting one grid from the other, with the absolute difference being 

a measure of the similarity between the two. This process highlights the differences 

between the two grids and identifies regions of false positives as well as false nega­

tives. Figure 5.16 shows the results of performing this subtraction on occupancy grids 

produced by applying the carpet matching methods of a) colour space matching, b) 

gradient detection and c) both colour space and gradient detection. 

Summation of the absolute differences from all cells in the grid gives a quantitative 

measure of how closely a result matched the ground truth. More specifically the dif­

ference E between the ground truth grid (PT and the example result grid GR is given 
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a) 

b) 

Figure 5.15: Ground truth of carpet matching: a) the panoramic image and b) the 
manually identified occupancy grid denoting the ground truth of known carpet re­
gions in the image. White pixels represent absolute certainty of carpet regions. 

Method Total: E Average: E/ N 
After 1 image 

Ave. pixel 5498865 127 
Colour Model 3025180 70 
Gradient 1618066 37 
Grad. & Ave. pixel 1454562 33 
Grad . & Colour model 1595560 36 

After 5 images 
Ave. pixel 5000955 115 
Colour Model 2617984 60 
Gradient 1473617 34 
Grad. & Ave. pixel 1406868 32 
Grad. & Colour model 1323679 30 

Table 5.2: Carpet matching performance: total and average pixel value of image sub­
traction between known and estimated results for different carpet detection meth­
ods. 
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by: 

a) 

b) 

c) 

Figure 5.16: Image subtraction of carpet matching results with ground truth: occu­

pancy grids showing subtraction of ground truth with the carpet matching results of 

a) colour space, b) gradient detection, and c) colour space and gradient detection 

N -1 
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E = L 1cfT - cf I (5 .5) 
i=O 

where N is the number of cells in the grid. Table 5.2 presents the values of E produced 

by applying Equation 5.5 to the occupancy grid results of the various methods of car­

pet matching discussed previously. From the data presented in the table, it can be 

seen that the combination of a colour matching and the gradient detection produces 

the best results , with the gradient detection method seemingly making the greater 

contribution. It is surprising that colour matching using the average pixel method 
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and that of the colour space method produce such similar results. Remembering that 

the average pixel method is Hmited to conditions of constant illumination it is clear 

that colour space matching is superior. 

Combining a colour based carpet matching approach with a heuristic rule limiting the 

extent of possible carpet regions in the local space produce the best estimates of free 

local space. In this case the preferred methods are colour space matching and gradient 

detection. It should still be clear that it is easy to imagine situations where carpet 

detection methods would fail, and as long as the system consistently mis-classifies the 

region in question there should not be be any significant affect on the current systems 

applicability to the localisation problem. 

Local Space Detection under Occlusion 

The above results have, for the most part, shown carpet detection in a static environ­

ment. Carpet detection estimates from sequences of images were combined over time 

to combat noise in the panoramic sensor, however the environment was essentially 

static during these sequences. Mobile robots on the other hand, should operate in 

the dynamic environment of the real world. Changes in the sensed environment can 

come from two sources (excluding sensor noise), that of objects that are visible mov­

ing within the environment, and that of motion of the mobile robot itself, causing the 

viewpoint of the sensor to change in respect to the environment. 

When objects move about in the environment, the instantaneous view of local space 

changes to reflect the movement. For example when a person walks past the panoramic 

sensor the carpet is occluded from view for a brief period of time. A local space es­

timate taken during that time will result in non-carpet regions being identified in the 

image displaying the person. This detection of the moving object in the scene is nec­

essary for obstacle avoidance but for robot localisation it produces a problem. The 

change in the perception of free local space due to dynamic objects occluding carpet 

regions could cause the system to mis-localise when revisiting that region of the envi­

ronment. Therefore for the task of localisation it is preferable to maintain an estimate 

of local space which is insensitive to the presence of moving objects. 
-

The promulgation of local space estimates through time using Bayesian probability 



5.1 Local Space Detection 163 

Start Move 

Mid Move 

End Move 

Figure 5.17: Occlusion in local space detection. 
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theory provides this insensitivity. Temporary observations of non-carpet regions due 

to moving objects need to overcome the previous observations of carpet regions be­

fore they begin to affect the occupancy grid. In this way a stable view of the local 

environment can be maintained in the presence of dynamic objects. Figure 5.17 shows 

the results of an experiment where a person walks past the robot. The local space 

occupancy grid is not dramatically affected. Three panoramic images and the asso­

ciated occupancy grids are shown from the beginning middle and end of a sequence 

in which a person walks acrodd the field of view. The locations of the person in the 

panoramic images are highlighted in red. The middle image and grid show that the 

occupancy grid can be insensitive to the presence of moving objects although the bot­

tom image and grid displays a noticeable change due to the moving object. This is 

because the gradient between the carpet and the object was strong in this region, caus­

ing a strong input into the occupancy grid. It is not clear if the local space occupancy 

grid will be insensitive to all object motion through the visual scene. Typically mov­

ing objects are quite small in relation to the size of the visual field and as such do not 

deform the view of local space dramatically. This sort of anomaly could be countered 

by introducing a saturation into the occupancy grid which additionally reinforces de­

tected carpet regions over time, providing more protection from moving obstacles. Of 

course this protection does not help in the case when a section of the environment 

permanently changes causing prolonged exposure to contradicting sensor data, such 

as when a desk is moved. Permanent deformation in the environment would lead to 

inconsistent local space views over time. For robot localisation, this would require the 

acquisition of a new view of local space to replace the old view stored in the internal 

map representation. 

Local Space Detection during Motion 

The second cause of change to the local space surrounding a mobile robot is due to the 

robot's own movement. Detecting changes in local space due to ego-motion is desir­

able since it reflects movement from one area of the environment to another and pro­

vides valuable information to the task of localisation. Changes due to ego-motion can 

be detected using our system as the steady, constant motion typical of mobile robots 

produces a similarly steady and consistent change in the perception of local space. The 
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Figure 5.18: Path of robot during local space detection experiment 

continual reinforcement of changing areas in the visual field produce lasting change 

in the occupancy grids. 

Figure 5.18 displays the path of the mobile robot over a short movement through a 

large room, starting from the red circle in the center of the room and finishing up at 

the location denoted by the blue circle.The total distance travelled in this experiment 

was approximately 1 meters. During this movement panoramic images were captured 

and the extent of local space was estimated. 

Figure 5.19 shows the panoramic images captured at the start (top) and finish (bottom) 

of the robot path as well as the associated local space occupancy grids. The direction of 

motion is indicated by the red line. It can be seen that the robot movement causes the 

carpet region in the left side of the panoramic view to contract as the robot approaches 

the wall. This is reflected in the local space results where a similar contraction is seen 

in the detected carpet regions of the occupancy grid. The difference between the two 

occupancy grids can be calculated by image subtraction. Figure 5.20 shows the results 

of subtracting the occupancy grid from the start of the move from the occupancy grid 

at the end of the move. The result is noisy but definite regions of difference are de­

fined. Our approach to carpet detection therefore can produce occupancy grids which 

reflect the change in carpet regions due to robot ego-motion. 
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a) Start of Movement 

b) End of Movement 

Figure 5.19: Occupancy grids of local space at the beginning and end of short move­
ment. The red line indicated the direction of movement. 

5.2 Local Space Representation 

The results in the previous sections demonstrate that the system is capable of pro­

ducing a reasonable estimate of the extent of local free space surrounding the mobile 

robot. The estimate can handle fluctuations in the level of illumination, it can be pro-
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Figure 5.20: Subtraction of start and end move occupancy grids. The high intensity 

pixels show regions of difference. 
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mulgated through time, and can cope with dynamic objects moving through the visual 

scene and also with visual changes due to ego-motion. After producing such an esti­

mate of local space, the question becomes how can this knowledge be used to aid the 

mapping and localisation tasks? 

The desire to extract an estimate of the extent of local space surrounding a mobile robot 

comes from the need to form representations of places in the environment which can 

be used to constrain the global localisation search. To achieve this goal the represen­

tation of local space must first and foremost be simple enough to enable fast matching 

between instances of local space estimates. Of secondary importance is the degree to 

which individual instances are distinct from each other. This contrasts with the low 

level landmark representation where distinctness of landmarks is the most important 

concern and speed of matching was sacrificed. Indeed, when used in conjunction the 

two levels of representation can be used to quickly constrain the global localisation 

search to a subset of places within which the richer representation can be used to lo­

calise. 

5.2.1 Histograms of Local Space 

A simple way to represent the extent of local space surrounding a mobile robot is to 

use a histogram. The horizontal axis can represent discrete steps in the radial angle 

from the robot while the vertical axis can represent the extent of free space along the 

associated angle. By using a histogram, a one dimensional vector can be used to repre­

sent a particular local space profile, which dramatically simplifies the matching task. 
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Table 5.3: Building a Local Space Histogram from an Occupancy Grid 

initialisation 
x_step = 20 
y_st ep = 1 
-- iteration 
for each column x x x _step in Grid G 

f ree_space = TRUE 
y = 0 
-- iterate rows from bottom upwards 
while fr ee_space is TRUE do 

p = find _ave_pi xeLin_cell(I, x, y , x_step, y_step) 
if p < threshold then 

f ree_space = FALSE 
end 
y = y + y_step 

end 
histogram[ x] = y - y_step 

end 

Figure 5.21: Occupancy grid divided into a 16 cell histogram. 

An occupancy grid can be converted into a histogram by detecting continuous columns 

of free space. Table 5.3 gives the algorithm which fits a histogram to a particular in­

stance of a local space occupancy grid. The horizontal (x) axis of the occupancy grid is 

divided into a number of discrete columns of size sizex. The intensity of pixel regions 

within each column x is then checked starting from the bottom of the grid (y = 0) and 

proceeding upwards with y increasing by steps of si zey. If the average intensity of 

these regions within a particular column falls below a threshold then the magnitude 

of the local space histogram at cell x is set to the value of y. The resulting histogram 

then represents a particular profile of local space. In our system the histogram has 16 

cells, each of which condenses the pixel intensity from 20 pixel columns in the occu­

pancy grid. The division of the occupancy grid into a 16 cell histogram is shown in 
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Figure 5.21. 

Figure 5.22 shows two examples of local space histograms calculated from occupancy 

grids. It can be seen that the histogram makes a good fit with the occupancy grid. 

Although part b) shows that if the occupancy grid is wrong, or there are regions of 

high uncertainty, the histogram will also be inaccurate. As long as the local space is 

mis-identified consistently, this will have no affect on the using local space information 

in localisation tasks. When used to represent a particular place in the environment, the 

histograms formed by the method described, are said to capture the places local space 

profile. 

The stages in local space detection are shown in Figure 5.23. The final form of repre­

sentation for the local space profile is the one dimensional vector of size 16 containing 

the local space histogram. 

5.2.2 Local Space Matching 

In order to use the information contained in local space histograms for mobile robot 

localisation it is necessary to compare two instances of histograms and produce a mea­

sure of their similarity This is the equivalent of the matching task between landmark 

templates and panoramic images. However in this case the matching is between two 

one dimensional vectors. 

A Sum of Absolute Differences (SAD) can be used to produce a measure of similarity 

between two vectors. It must be remembered , however, that the cells of the local space 

histogram represent the radial angles of the robot. Therefore the rotation of the robot 

will affect the profile of the histogram, meaning two views of local space captured 

from the same position in the environment but from a different orientation would 

result in a shift in the local space histogram. 

In using knowledge of local space to constrain a localisation search it is beneficial if the 

matching process is invariant to orientation. Two local space views from environments 

with similar free space could then be matched irrespective of the orientation from 

which the two views were captured. 

Figure 5.24 shows how rotation invariance in the matching process can be achieved. A 

SAD calculation is performed on every possible orientation of one of the histograms 
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Image 

Local Space Occupation Grid and Histogram 

a) 
Image 

Local Space Occupation Grid and Histogram 

Figure 5.22 : Local space histograms 
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Capture Panoramic Image (RGB) 

Colour Model·Carpet Detection 

Fit Local Space Hi_stogram 

Figure 5.23: Stages in extraction of a local space profile. 
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Figure 5.24: Rotation invariant matching of local space histograms 
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with respect to the other. Given two histograms HI , H 2 , this is achieved by construct-

ing a vector of size 2N - 1 by repeating H2 such that Hl = Hl+N' Vi < N. This 

repeated histogram H 2 can then used to produce vectors of size N of the form: 

vo {O .. . N - l} , VI {l ... N } . . . VN- 2 {N - 2 ... 2N - 3} , VN- I {N - 1 ... 2N - 2} 

(5 .6) 

which represent all possible orientations of H2, where Vi { i ... j} denotes the vector of 

size N from Hl to HJ. 

A measure c which quantifies the correlation between HI and H 2 can then be com­

puted: 

min~7/(SAD(H1, vi {i .. . i + N})) 
c=l- MAX*N 

(5.7) 

where MAX is the maximum value possible for cells in the histogram, denoting that 
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Table 5.4: Local space histogram matching results 

Match Local Space Profiles Result 
1 & 2 0.91 
1&3 0.78 

2 & 3c) 0.76 

carpet has been detected up to the image horizon. 

Using this matching method different instances of local space histograms can be com­

pared. Figures 5.25 and 5.26 shows three panoramic images together with their ex­

tracted occupancy grids and local space histograms. The panoramic images and his­

tograms shown in a) and b) are views captured from roughly the same position in 

space but view b) was captured after rotating the robot 180 degrees. View c) is from a 

position three meters away. 

Each of the local space histograms presented in Figure 5.25 were matched with each 

other used the matching technique described above. The results from this matching 

are shown in Table 5.4. From this table it can be seen that the local space histograms 

from views a) and b) correlate very well, whereas matching views a) orb) with view c) 

does not produce such a high correlation measure. This result shows the ability of the 

local space histogram matching process to successfully discriminate between like and 

unlike views as well as demonstrating the rotation invariant property of the matching 

process. 

5.3 Local Space Detection and Localisation 

In our research we can construct profiles of local space and can compare these profiles 

using the matching method previously described. In order to use these ideas to sim­

plify the global localisation task it is necessary to categorise the profiles. If the local 

space profiles associated with places in a topological map and a current view of local 

space can be categorised in groups, then the computation resources needed for brute 

force landmark set matching can be targeted to appropriate places. In this local space 

profiles can be used to constrain the global localisation search space. 

To illustrate this concept Figure 5.27 shows a mobile robot path through an office envi-
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Local Space Profile 1 

a) 
Image 2 

Local Space Profile 2 

b) 

Figure 5.25: Example panoramic images and local space histograms. Views a) and b) 

were captured at the same position in the environment but are oriented 180 degrees 

from one another. 
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Local Space Profile 3 

c) 

Figure 5.26: Example panoramic images and local space histograms. Image c) is from 
a location three meters away from those in Figure 5.25 

Figure 5.27: Map showing the nine places in the environment where local space 
profiles were obtained . 
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ronment. The path is displayed as a green line and the position of the robot is shown 

at some points along the path by a red circle. The robot started in the large room at 

the bottom of the map and travelled up the corridor at 20m/ s. Throughout this move­

ment panoramic images were captured and every tenth frame was logged, resulting in 

an image sequence of 300 images. The local space profiles associated with the image 

sequence were extracted using the techniques we have developed. A video of this im­

age sequence and the extracted local space profiles is included on the CD-ROM which 

accompanies this thesis. 

Six places were manually chosen at 50 image intervals along the path, with the local 

space profile detected at each place forming a topological map of the robot's path. The 

positions of these places are displayed as red circles in the map. The panoramic images 

and local space profiles of each of the six places are shown in Figures 5.28 and 5.29. It 

can be seen from the map that a number of the identified places would contain views 

of local space which are quite similar, especially in the corridor section of the robot's 

path. If a robot retracing the route perceived a current local space profile which was 

similar to a corridor, the subsequent localisation search could be limited to regions in 

the map which shared a similar local space profile. In fact the structured environment 

of the typical office building, there is a limited set of local space profiles which might 

be encountered. 

5.3.1 Local Space Primitives 

A set of commonly seen configurations of local space can be defined as the local space 

primitives for a particular environment. These primitives can then help to classify 

sections of the environment and improve the efficiency of the global localisation task. 

Specifying the set of local space profiles that should constitute the set of primitives 

requires consideration. In general the chosen primitives should divide the set of places 

which form the topological map in such a way as to minimise the average localisation 

search time. This means that there should be an equal distribution of the number of 

places associated to each local space primitive, and that the number of local space 

primitives is sufficiently low so that the computation saved by reducing the search 

low-level search space does not exceed the extra cost associated with matching the 

current local space profile with the primitive set. In this research a set of primitives 
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Place 1 

Place 2 

Place 3 

Figure 5.28: Local space profiles of places 1, 2 and 3 
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Place 4 

Place 5 

Place 6 

Figure 5.29: Local space profiles of places 4, 5 and 6 
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Figure 5.30: Regions of different local space: 1) corridor, 2) T-intersection, 3) turn , 4) , 
dead-end, 5) cross roads, 6) doorway, 7) open space, 8) corner, and 9) wall. 

was chosen by hand as the environment of predominantly structured corridors and 

rooms provided strict delimitation between possible local space profiles. The different 

types of local space in this environment is illustrated in Figure 5.30. In general it would 

be beneficial for the system to learn and maintain a set of local space primitives based 

on the criteria mentioned above and its perception of the explored environment. 

The set of local space primitives used in this system corresponds to the areas shown 

in Figure 5.30 and are shown in Figure 5.31. It includes local space profiles common 

to every office environment. While human distinctions between such areas as inside a 

small office and at a dead and of a corridor (areas labelled number 4 in figures) might 

be lost by this level of discretisation and the choice of representation ( eg only open 

space), it does provide a useful division of the search space. 

5.3.2 Matching Primitives 

Local space primitives can then be used to categorise views of local space that are per­

ceived in the environment. A set of histograms representing the primitives identified 

above can be matched against the views of local space extracted from image sequences 

in an attempt to categorise the environment through which the robot moves. This 
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Figure 5.31: An example set of local space primitives from an office environment 

(Figure 5.30) . 
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local space primitives. 
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matching can be performed using the technique introduced earlier for local space pro­

files except that the profile to be matched needs to be normalised. This process resizes 

the magnitude of cells in the histogram to be matched to be consistent with those in 

the primitives. 

Figure 5.32 shows the results of matching the local space profiles extracted from the 

robot path shown in Figure 5.27 and a subset of primitives identified above. The graph 

shows the correlation results for matching the 300 images in the sequence with prim­

itives representing the identified categories in the environment. The vertical black 

dotted lines represent where the chosen places along the path occur in the image se­

quence. 

From this figure it can be seen that while the sections of the path that correspond to 

corridor regions match highly with the corridor primitive, the results from the section 
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of path in the large room are not so clear. Both the open space primitive and the 

doorway primitive are matched well here and no definitive result can be identified. 

This is due to the cluttered nature of the room and the noise in the local space detection 

process. It is difficult for a discretised approach such as using local space primitives to 

recover from such problems. It can also be problematic when a place is located on the 

boundary between two primitives. For example when does a T-intersection become a 

corridor? 

A reduction in the number of primitives helps to overcome these problems. How­

ever this reduces the benefits that such a representation brings to the localisation task. 

Changing the nature of the representation itself could also improve primitive match­

ing results. For example local space could be represented simply by one value through 

summing the magnitude of cells in the local space histogram. This value can be discre­

tised to categorise the views of local space. This approach , while allowing for noise in 

local space measurements, would suffer from the discretisation of the categories not 

being reflected in the system perception of local space. 

A clustering approach, where the system forms categories of local space itself would 

be the best solution to these problems, by attempting to form categories of local space 

profiles based on real differences in the perception of local space from past experi­

ences. This solution though is beyond the scope of this thesis and is only mentioned 

as a consideration for further work. 

5.3.3 Matching Places 

One method of categorisation which truly represents the sensor data and is easy to 

implement is to simply make each view of local space its own category. That is each 

place in the topological map has its own profile of local space and no explicit attempt 

to categorise them further is pursued. This has the benefit of each place retaining 

the distinctive features of its own profile and subsequently the discretisation problem 

does not occur. Of course this approach does mean that in the matching process, the 

entire set of local space profiles which represent places in the topological map must be 

compared with the current view of local space. Places which correlate well with the 

current view can then be used to perform localisation using the low-level representa­

tion. This approach is similar to that of Matsumoto et al. (1997) who matched entire 
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Figure 5.33: Local space profiles extracted from images along a path matched with 
the profiles of the places identified in Figure 5.27. 
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panoramic images to perform localisation in a sequence of captured panoramic views. 

Figure 5.33 shows the results of matching the local space profiles of places in the topo­

logical map with those obtained from the image sequence captured during the robot 

path. The correlation results for the six places in the path are displayed. Again the dot­

ted black vertical lines show where the places are located in the 300 image sequence. 

As with the matching results for primitives, the first thing that becomes apparent from 

the plot is that the local space profiles from the corridor section of the environment are 

distinct from the rest and are consistently similar with each other. Unlike the primi­

tive results, the section of the path where the robot was inside the room shows distinct 

peaks and it could be imagined that some sort of discrimination between local space 

profiles could be made. Also, the plot of results for each place peaks at the image in 

the sequence from where the profile for that place was extracted. This could mean 
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that the local space profiles could limit the localisation search down to one place in 

the topological map. This optimism should be tempered by noting the fall-off of cor­

relation results surrounding the peaks. This shows that the the defining features of 

the local space profiles which produce the peaks disappear quickly as the robot leaves 

the reference position from where the place was captured. This phenomenon is par­

ticularly evident in the plot of the first place in the path which peaks at the first image. 

The dramatic decrease in correlation performance after the peak in this case can be 

attributed to the image being the first captured, and therefore having an occupancy 

grid which is not as certain and more susceptible to change than those from images 

further down the path. 

5.3.4 Computation Constraints 

The advantages of abandoning attempts at categorisation must be balanced against 

the computation costs of performing one matching calculation for every place in the 

topological map. The purpose of having multiple levels of spatial representation was 

so that computationally cheap representations could provide approximate localisa­

tion estimates for more expensive levels. Thus the computation costs of forming a 

local space representation of the environment should not outweigh the computation 

savings made by the constraints it imposes on the low-level localisation search. 

Figure 5.34 shows the computation time involved in matching primitives compared 

to that of matching places. The dotted red line represents the time in milli-seconds 

that the system takes to match a set of nine primitives with an instance of a local 

space profile as a function of the number of places in the topological map. The solid 

blue line shows the computation time for matching an instance of a local space profile 

with the set of profiles associated with the places in the map. It can be seen that the 

computation time for matching primitives is constant regardless of the size of the map, 

whereas the computation time for matching places increase linearly with the size of 

the map. 

Although the plots of computation time would suggest that the system should use 

the local space primitives to categorise local space profiles, it should be noted that the 

time scale of these computations is relatively small when compared to the expense of 

other parts of the system. A plot of the time taken to capture and unwarp a panoramic 
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image is included in the figure to give a relative scale to the time measurements. We 

can see that the map must contain at least 40 places before the time taken for matching 

places exceeds that of capturing and unwarping the panoramic image. It should be 

remembered that the time taken to perform a brute force landmark template search on 

a panoramic image is approximately 700ms. Given that matching with places allows 

for greater discrimination between places in the topological map and therefore can fur­

ther restrict the localisation search, the extra cost in local space matching computation 

time that is accrued will be made up during landmark localisation. 

In this research local space profiles are used to restrict the global localisation search by 

storing individual profiles for each place in the topological map. 
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5.4 Summary 

This chapter has presented a mid level representation of spatial knowledge in the form 

of local space profiles. Implementation details were provided and discussed with a 

view towards using such a system for constraining the global localisation search space 

for lower levels of spatial representation. In particular the following key methods and 

ideas were developed: 

• Ground Plane Detection in Panoramic Images: detecting the ground plane using 

carpet detection in panoramic images is a difficult problem due to the poor reso­

lution inherent in the panoramic sensor. The carpet region detection methods of 

average carpet colour pixel matching, carpet colour space model matching and 

gradient boundary detection were implemented and examples of applying them 

to panoramic images were presented. 

• Occupancy Grids of Local Space: detected carpet regions can be represented as oc­

cupancy grids which provide a probabilistic measure of the presence of carpet 

in the panoramic image. Instances of occupancy grids are then combined using 

Bayesian probability theory and provide a mechanism for accumulating local 

space knowledge over time in addition to fusing the results of different methods. 

Using a ground truth measure of known carpet space in a panoramic image, it 

was found that the combination of carpet colour space model matching and gra­

dient boundary detection produced the most accurate carpet detection results. 

The robustness of the carpet detection system was also tested in the presence of 

moving objects in the visual scene and through ego-motion of the mobile robot. 

• Local Space Histograms: the knowledge about the extent of local space contained 

in occupancy grids can be abstracted to provide a simple, compact representa­

tion of local space. A method was presented to convert occupancy grids to one 

dimensional vectors with 16 values representing the extent of local space in 16 

sectors surrounding the mobile robot. 

• Matching Local Space Pron.Jes: the compact nature of the local space profile allows 

for fast efficient matching between individual instances. A rotation invariant 

matching method was presented. 
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• Categorising Local Space Profiles: by categorising local space profiles, places in a 

topological map which are represented by instances of local space profiles can 

likewise be categorised. The perception of a particular category of local space 

profile can then constrain the localisation search to places which have a similar 

local space profile. The concept of local space primitives was introduced as a 

way to categorise local space profiles. This categorisation can be contrasted by 

using individual instances of local space profiles to represent places in the en­

vironment. An experiment comparing local space recognition when using local 

space primitives versus the use of matching individual places was carried out. 

Matching via places provided much higher recognition rates than matching with 

primitives. Although using primitives resulted in a large reduction in the local 

space matching cost, the savings were insignificant compared to the subsequent 

savings that matching with places would provide by more tightly constraining 

the low level localisation search. 

The use of local space profiles as a mid level representation of spatial memory is in­

tended to reduce the computation costs involved at localisation at lower levels of the 

representation. To do this the process of extracting such a profile from sensor data 

should be robust and efficient. 

The ground plane detection methods used in this system as a basis to form an abstrac­

tion of the extent of local space are inherently unreliable and often produce incorrect 

results. The use of probabilistic reasoning to combine noisy information and promul­

gate an occupancy grid estimate over time helps to overcome this problem. The result­

ing occupancy grids however, are still subject to some inaccuracies, but for the most 

part a stable representation of the space surrounding the mobile robot is maintained. 

Possible improvements to this process would include using a more discriminatory 

colour space with which to build the model of the colour of carpet and introducing 

existing methods of detecting the ground plane as another information source. 

The reduction of the occupancy grid form of representation to that of a local space his­

togram allows for fast and efficient matching of local space profiles. This reductionism 

assumes that the savings it brings to local space profile matching process outweighs 

the loss of detail in the local space measure. This loss of detail will have an effect 

on the degree to which a representation of local space can constrain the localisation 
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search. A detailed study of the costs and benefits of minimalist in the representation 

versus the savings in localisation computation needs to be undertaken. 

A study of this sort should also include any potential benefits of categorising profiles 

of local space might provide the localisation search. The notion of primitives intro­

duced in this chapter did not appear to provide any benefits when compared with the 

use the local space profiles of all places in the topological map. Another categorisa­

tion method based on the robot's own experience of the environment might be able to 

maximise the trade-off between matching time and potential localisation savings. 

In summary this chapter has detailed the implementation of local space profiles as a 

representation of spatial memory. Reasonably reliable estimates of the extent of lo­

cal space are able to be made and can be successfully compared with each. The use 

of such a representation to constrain the localisation search at lower levels of spatial 

memory appears promising although by no means is the current implementation the 

most efficient one. Experiments applying the idea of local space profiles to the task of 

mobile robot localisation are reported in Chapter 8. 
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Chapter 6 

High-Level Representation: 

Disambiguating Features 

The previous two chapters have described two different visual cues that are used for 

mobile robot localisation. Both cues provide information which can be used to solve 

the localisation task. It is still possible however, for the robot system to encounter 

situations in the environment, when either or both of these cues fail to provide enough 

information to perform the localisation task. Adding extra cues would temporarily 

solve this problem, although again pathological cases would still exist. Rather than 

continually adding cues when faced with a lack of localisation information, it makes 

sense to instead actively seek out what are the defining features of a given area in the 

environment. 

As mentioned in Chapter 2, the search for a disambiguating feature is inspired by the 

use of indirect landmarks by adult humans to perform spatial reorientation. When 

humans perform this task, they use all their semantic, episodic and linguistic knowl­

edge to define rules for reorientation. Unfortunately robot systems do not have such a 

wealth of knowledge from which to generate rules to discriminate between places in 

the environment. 

Because of this any such method for extracting disambiguating features will be limited 

by the knowledge available to the robot system. In this case the knowledge available 

to the robot system about places in the environment is limited to a panoramic image 

captured from various locations in the environment. No semantic knowledge about 
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what the pixels in each image represent is assumed. One way to make discriminations 

between places based solely on this information is to use visual template matching to 

discover disambiguating regions in the image. On the surface this would appear to be 

just another form of visual cue to guide the localisation process, but in this case, the 

robot system is actively searching out features which allow one place to be discrimi­

nated from another. 

Panoramic images are captured from the reference position of each place in a topo­

logical map. These snapshots form the third level of spatial representation. In cases 

where the localisation information contained by lower levels of representation can not 

discriminate between the two places, localisation can be solved by extracting visual 

templates from one or both of the panoramic images which solve the localisation am­

biguity. 

This chapter describes how this system detects such disambiguating features between 

two panoramic images and then discusses how such features can be used to perform 

place discrimination. Finally a brief summary of the issues in this chapter is given. 

6.1 Detecting Disambiguating Features 

Environments which are visually sparse can result in topological maps which have 

places that contain similar panoramic views. Figure 6.1 shows two panoramic im­

ages which were captured at two distant locations in an environment but which share 

many similar features. A landmark based representation of these two places might 

include templates which are common to the corridor environment, leading to place 

discrimination errors. By actively searching for disambiguating features , these errors 

can be avoided. 

Disambiguating features can be extracted from two panoramic images by using the 

correlation template matching approach described in Chapter 4. Given two panoramic 

images, Ii and h, a visual template from Ii can be evaluated for its ability to discrim­

inate between the two images by performing a pixel by pixel correlation over possible 

regions of h . The worse the resulting correlation score, the better the template can 

discriminate between the two images. In other words, a feature provides good dis­

crimination between the two images if there are no similar regions of pixel patterns in 
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a) Image 11 

b) Image h 

Figure 6.1: An example of two panoramic images from two distant but visually sim­

ilar areas in the environment. 

the opposing image. This can be expressed as: 
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(6.1) 

where dx ,Y is the discriminatory ability of the template T at location ( x, y) in 11 . The 

output of the correlation function is a value between zero and one which signifies the 

correlation value of the region in 12 which is most similar in appearance to the tem­

plate. Low values of dx,y indicate the template in question has a high discriminatory 

ability. 

Using this method the discriminatory ability of all potential templates in a panoramic 

image can be calculated by evaluating dx,y for all values of x, y and all potential tem­

plate widths and depths. The template which produces the minimum correlation 

value is the feature in the image which most discriminates the image from the other. 

Figure 6.2 shows the disambiguating feature extracted by comparing image 1 to image 

2. The identified disambiguating feature is shown by the red rectangle in part a) of the 

figure, while the region of image 2 which is most similar to the template is shown in 



192 High-Level Representation: Disambiguating Features 

a) 

b) 

Figure 6.2: The disambiguating feature from image Ii (a) , and its most similar match 
in image h (b) 

part b) . Visual inspection shows that these regions are quite dissimilar and can be 

used to successfully disambiguate image 1 from image 2. 

This search over all possible templates and template sizes is of course prohibitively 

expensive. This method would greatly benefit from attentional cues and semantic 

knowledge about the content of images which could target computational resources 

to potential disambiguating features. The present method however does demonstrate 

the ability of a comparative search to correctly identify disambiguating features in 

pairs of panoramic images. 

6.2 Disambiguating Features for Place Discrimination 

Once a disambiguating feature has been extracted it it can be used for the purpose of 

discriminating between two places in a topological map. Given a panoramic image 

from an unknown location, a decision as to which of the two places in the map it was 

most probable to have been captured from can be made by comparing the current 

image with the disambiguating feature . If the disambiguating feature of one place 
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a) 

b) 

Figure 6.3: The disambiguating feature from image 12 (a), and its most similar match 

in image 11 (b) 
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can be found with a high level of certainty within the current image, then it is more 

probable that the image was captured from that particular place in the topological 

map. 

Given a panoramic image l e captured from an unknown location in the environment 

and two places in a topological map, place discrimination can be achieved by first 

extracting the disambiguating features from each of the places' reference images when 

compared to the other. Figure 6.2 shows the identified disambiguating feature ~ .y of 

place 1 when compared to the reference image from place 2, while Figure 6.3 shows 

the identified disambiguating feature cf; ,Y of place 2 when compared to the reference 

image from place 1. 

Both disambiguating features can then be matched against le producing a value of 

how well the templates correlated with regions of the current image. The place as­

sociated with the disambiguating feature which has the higher correlation value with 

the current image is identified as the more likely place from which le was captured. 

Figure 6.4, part a) shows an example image le which is similar to Ii and h . Part b) 

shows the region in image l e which is most similar to the feature d;; ,Y, while part c) 
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a) 

b) 

c) 

Figure 6.4: An example of using disambiguating features to perform place discrimi­
nation. Part a) shows an image l e captured from an unknown location in the envi­
ronment. Part b) shows the best match of d~ ,Y with l e, part c) the best match of d; ,Y 
with l e 

shows the region most similar to feature ~ ,y · Matching l e and d~ ,Y produced a max­

imum correlation value of 0.93 while matching le and d; ,Y produced a maximum of 

0. 1. Using this method it can be concluded that the image le was more likely to have 

been captured closer to the location of image Ii than image h. 

Although this method of place discrimination works well in the example presented 

above and demonstrates the applicability of finding discriminating features, it is in 

general not very reliable. Failure to successfully discriminate arise because of the lack 

of the simple method for choosing disambiguating features . Although the features do 

discriminate between the panoramic view captured from the reference position, the 
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method does not attempt to evaluate the feature 's distinctiveness or reliability in the 

presence of changes in perspective as does the local uniqueness measure and the Turn 

Back and Look movement of visual landmark selection. 

These failing can lead to the identification of disambiguating features which success­

fully discriminate between the snap shots of reference places but not between views 

captured from regions adjacent to reference places. 

6.3 Summary 

This chapter has proposed a third level of representation for spatial memory. This rep­

resentation involves storing complete panoramic images captured from the reference 

position of the place being acquired. The panoramic snapshots can then be used to 

perform place discrimination using disambiguating features when it is problematic to 

localise between places which appear similar at other levels of representation. This 

is analogous to the use of indirect landmarks in adult humans to resolve ambiguous 

spatial orientation problems. 

Although using this representation to perform localisation is expensive and unreli­

able it demonstrates how actively searching for features which discriminate between 

similar places could be used to perform localisation in the most pathological of cases. 

Additional cognitive pre-processing methods that direct attention and interpret the 

visual scene would, in combination with semantic knowledge about objects in the 

environment, would lead to faster more meaningful and more reliable methods for 

identifying disambiguating features . 
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Chapter 7 

Topological Maps 

This chapter details a method for constructing topological maps using the multiple 

levels of place representation described in previous chapters. As introduced in Chap­

ter 2 topological maps are typically coarse, graph like representations of the envi­

ronment. In these representations nodes correspond to significant places in the envi­

ronment while edges in the graph correspond to transitions between places. In this 

system, places are represented by the three levels of spatial memory: those of visual 

landmarks, local space profiles and disambiguating features. The previous chapters 

presented the details of how to form a representation of a place. This chapter aims 

to introduce methods of deciding when to add a place to the topological map, and of 

representing the connections between places. 

The outline of this chapter is as follows: Section 7 .1 details how to construct a simple 

topological map. This includes a method of deciding when to learn a new place as well 

as describing a way to record the transitions between learnt places. Section 7.2gives 

an example of a topological map constructed using the methods described. Finally, 

Section 7.3 provides a discussion and summary of the issues involved in building a 

topological map. 

7.1 Building Topological Maps 

A topological map of the robot environment can be constructed by learning a series 

of places along a path and associating them with information which describes the 
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Figure 7 .1: Map of learnt places (black filled squares) in corridor environment and 
actual robot position along an example path (grey path). 

transitions between places. Figure 7.1 shows an example topological map constructed 

in the corridors of the Robotic Systems Lab at the Australian National University. The 

environment is a typical corridor environment, containing regular doors, windows 

and light fittings but little else. It contains 15 learnt places over a 25 meter long path. 

The black squares along the grey path denote the locations along the path where places 

where learnt. From this map it is evident that a topological map representation must 

contain two types of information: 

• Place Representation: each node in the topological map represents a place in the 

environment. A topological map therefore must contain the spatial representa­

tions of each place that has been learnt. This information facilitates the recogni­

tion of places when revisiting areas of the map. As mentioned above the chosen 

place representation of this system is the multi-level spatial representation intro­

duced in earlier chapters. 

• Transitions Between Places: In order for the map to reflect the topology of place lo­

cations which exists in the real world environment, the map must contain infor-
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mation about the connections, or transitions, between learnt places. A transition 

defines how to move from one node or place in the map to another node. 

In the current system, a topological map is represented by an array of learnt places, 

each of which is accompanied by a list of transitions to adjacent places. 

7.1.1 Adding Nodes 

The example map above was formed by manually identifying locations in the envi­

ronment where the robot system should learn a place. This was done at fairly regular 

intervals with no significance being assigned to the chosen locations. In general it 

would be advantageous for the system to automatically identify when a new place 

should be learnt. A robot system which relies on user intervention every time it en­

counters a novel section of the environment can hardly be classified as an autonomous 

agent, and such a shortcoming would seriously limit a robot's performance in real 

world applications. 

The question is then, when should the system decide that a new node must be added 

to the topological map, and how should that determination be made? 

Naively, the answer to the first part of the question is that a new place should be 

learnt when the robot encounters a new area of the environment. Remembering that 

the robot is using a topological map to represent it's understanding of the environ­

ment, specifically that a particular representation is used to represent a place in the 

environment, the answer can be developed further: A new place should be added to 

the topological map at the point when the robot can no longer recognise its current 

location when compared to the representations of the places contained in its exist­

ing map. Incidently this also answers the second part of the question by predicating 

learning a new place with recognition failure. 

In a multi-level place representation such as this the question of determining recog­

nition failure is not straightforward. Given that the driving factor of our research is 

to produce a system which has a sparse map representation while allowing accurate 

localisation estimation, the addition of a new node should be determined by a loss 

of recognition in the representation level which provides the accuracy, that of visual 

landmarks. The visual landmark level also provides the most unique representation 
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of a place which also is important for recognition performance. 

A change in the perceived local space profile associated with the second level of place 
representation might also signify that the robot is entering a significantly different sec­
tion of the environment, thus warranting a new node in the topological map. This is 
important considering the desire to constrain the global localisation search by means 
of the local space profile. If the local space profile changes dramatically within a given 
place this could lead to miss-constraints in such a search. The need to include this level 
in node addition determination is countered however by the possibility of adding 
places to the map which contain similar landmark sets. In general the appearances of 
a set of visual landmarks and the local space profile for a given section of the environ­
ment are independent and it would be problematic to attempt to form a relationship 
between the two for the purposes of determining recognition failure. 

Landmark Recognition Performance (LRP) 

In our research, recognition failure in terms of adding a new place to the topological 
map, is determined solely by the loss of landmark set recognition. The recognition of 
landmarks sets was mentioned in Chapter 4 and the brute force matching approach 
is used in this section to demonstrate landmark recognition performance. It must 
be noted that landmark set recognition and topological map construction presuppose 
localisation, which will be discussed in the next chapter. 

As stated in Chapter 2, mobile robot navigation is a behaviour made up of the si­
multaneously operating sub-components of planning, localisation and mapping. It is 
almost impossible to strictly separate the components into sequential chapters as is 
attempted here, without some mention of components yet to be covered. Therefore in 
this chapter localisation and landmark recognition will be assumed although details 
of these procedures will be left until later. 

The average landmark correlation measure for a set of landmarks can be used a mea­
sure of landmark set recognition. This measure can be stated more formally as: 

(

N-1 ) 
LRP;p = ; (locatelm(lJ, i)) /N (7.1) 
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where, LR~P is the landmark recognition performance of place p in image i, JV is 

the number of landmarks in a landmark set, and locatelm(j , i) returns the correlation 

measure of the best match of landmark lj in image i . Landmarks lj being elements of 

the landmark set represented place p. 

Suppose a robot has globally localised and is certain it is within a particular place in 

the topological map. That is to say the landmark set recognition measure for this place 

is greater than all other places in the map. The identified place can then be called the 

Most Likely Place (MLP). 

Thresholding LRP 

A simplistic approach to the use of landmark set recognition as a determinant to 

adding nodes to the map would be to learn a new place when the robot moves through 

the environment in such a way as to cause the landmark set recognition measure for 

the most likely place to fall below an arbitrary threshold. This of course means that 

the likelihood of being in all other places within the map is also below this threshold. 

Matsumoto, Inaba and Inoue (1997) apply a threshold to image acquisition in their 

view-sequence approach to mobile robot localisation. A new view is acquired along a 

route when the correlation between the current panoramic image and the last stored 

panoramic view drops below a set threshold level. 

In the context of our research such an approach makes an undesirable assumption. 

It assumes, falsely, that landmark recognition performance for all landmarks will de­

grade gracefully as the robot move~ away from the place where the landmarks were 

captured, decreasing to a common background level. Background LRP level is the 

matching result achieved between a set of landmarks and an arbitrary environment, 

where chance similarities provide a steady level of LRP although the actual landmarks 

are not necessarily visible. With this assumption it is necessary to nominate a thresh­

old level which is above the chance level of recognition performance, and ensure that 

landmark sets above this level are defining a unique section of the environment. 

Figure 7.2 shows an example of landmark recognition performance for the topological 

map presented in Figure 7.1. The figure displays the LRP produced when the set of 

landmarks associated with place five in the map (fifth black square from the bottom) 
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Figure 7.2: The landmark set recognition performance for the landmarks associated 
with place 5 over the robot path. 

are matched with the approximately 700 panoramic images captured over the robot 
path. The distinct peak in the LRP graph for place five (around image 190) is a result 
of the robot passing over the position in the environment from where place five was 
learnt. As the robot moves away from this position the LRP measure quickly decreases 
and levels off at approximately 0. 7. Using a threshold value of slightly above 0. 7, the 
LRP could be used to trigger the acquisition of a new place when the LRP falls past 
the assigned threshold. 

This method, although attractive in its simplicity, suffers from the false assumption 
mentioned above. The fact is that not all places show the same LRP behaviours and 
setting a threshold level can be problematic. A landmark set which includes land­
marks which remain in view over a large area of the environment, such as those at a 
far distance will produce much higher back ground LRP levels than those with close 
landmarks which quickly distort under translation. 

This phenomenon is illustrated in Figure 7.3. In this figure the LRP plots from places 
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Figure 7 .3: The landmark set recognition performance for the landmarks associated 

with places 5 (blue) and 6 (red) over the robot path. 
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five (blue) and six (red) in the topological map are shown. Again, the peaks of both 

places are evident, but what is surprising is the difference between the background 

levels of both places. Whereas the the background level of place five can again be 

seen as about 0.7, place six has a background LRP level of approximately 0.8. If the 

threshold for learning a new place was set at slightly above 0. 7 then a new place would 

never be learnt after place six had been included in the topological map. Setting a 

threshold significantly higher than 0.8 would result in a map that is very dense and 

ultimately prove un-scalable. 

This example highlights this problem particularly well due to of the nature of the en­

vironment where the topological map was made. The office corridor along which the 

map was built has very few distinguishing features and the most interesting land­

marks lie at the ends of the corridor. This sparse visual environment results in land­

mark sets which contain landmarks that can be seen along the majority of the corridor 

and therefore produce a high level of background LRP. 
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Figure 7.4: The landmark set recognition performance for the 15 places over the robot 
path. 

This large difference in background LRP levels will not be seen in all environments 

and maps and it is impossible to predict when such problems will occur, and what 

level the background LRP should be. Therefore it is impossible to set a static thresh­

old level to determine when to learn a new place which will function reliably over 

arbitrary environments. Figure 7.4 presents the LRP of the 15 places in the example 

topological map to demonstrate the unpredictability of LRP background levels over a 

larger region. It is hard to trace individual places LRP levels in this figure , however 

the varying levels of background LRP are evident. The flat region of the graph be­

tween images 400-500 is caused by the robot turning on the spot, which produces a 

constant LRP. 

The variance in the background level of landmark set recognition means that a thresh­

old is not sufficient to determine when to learn new places. 
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Background LRP Levels 

An adaptive threshold which varies with the level of background LRP would seem to 

be an ideal solution for determining when to learn a new place. This process would 

require the background levels to be known in advance. Only when the highest level of 

background LRP is known for a given area of the environment can a suitable threshold 

level be set. Of course it is impossible to know the background levels before encoun­

tering the region, therefore the decision of when to learn a new place can be made 

only when the background level has been detected. This means that only when the 

LRP of the landmark set associated with the most likely place has been found to have 

decayed to its background level will a new place be learnt. This changes the deter­

mination process slightly from that of thresholding to one of detecting when the LRP 

measures for a place has reached background levels. 

The difficulty in detecting when the LRP is at background levels is that no prior knowl­

edge can be assumed. If a place has just been learnt, there is no past history of what 

a landmark set's background LRP level is. Also, although in this example we are as­

suming that all landmark sets are being monitored for their recognition performance, 

when the map gets significantly bigger more efficient localisation methods are needed 

since it will not be possible to track all the sets of landmarks all the time. Therefore a 

stored recent history of a places LRP can not be assumed, even if it is already part of 

the topological map. 

From the LRP graphs presented, it can be seen that background LRP levels remain 

at a constant level, although there is considerable noise. The background noise level 

evident in locations along the path adjacent to any given learnt place is the same for 

those locations that are distant from the places reference position. If immediately after 

learning a place the LRP background level for that place is detected and recorded, 

then this level can be used later to estimate an appropriate threshold level for node 

acquisition in the topological map. The steps involved in deciding whether to learn a 

new place are as follows: 

l . Find Most Likely Place: use landmark template matching to find a place in the 

map at which the robot is most likely to be given the current sensor readings. 

2. Set threshold: set the LRP threshold for determining whether a new node should 
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be added to the map . This is achieved by either 

(a) Setting an estimate according to the recorded LRP background levels of the 

most likely place determined when that particular place was learnt. 

(b) If the MLP is new, and no background level has been estimated set the 

threshold to a default low level. 

3. Evaluate LRP: Evaluate the LRP of places in the map. If the current most likely 

place is new and the threshold is still at the default level (the background level 

is not known), attempt to detect the background LRP for the most likely place. 

Continue evaluating LRP performance until: 

(a) Another place in the map becomes the MLP, in which case start over at step 

1. 

(b) The LRP of the most likely place falls below the threshold level. Proceed to 

step 4. 

(c) If a background level has been detected, store the value and proceed to step 

4. 

4. Learn A New Place: add a new node to the topological map and proceed in ac­

quiring a representation for that place as described in the previous chapters. If 

the robot is in continuous operation the system would then return to step 1 and 

continue to repeat the procedure. 

In this fashion new places can be added to the topological map when the LRP of the 

most likely places reaches its background level rather than an arbitrary threshold. 

Background LRP Detection 

The method for determining when to learn a new place depends on the ability of the 

robot to detect when the LRP for a particular place is at the background level. Since 

the method can not assume any historic LRP measurements, it must rely on current 

landmark recognition measurements or those from the recent history. The method 

should also be independent of the actual value of LRP as the background levels can 

change from place to place. 
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700 

One way to detect a background level of LRP is to monitor the gradient slope of the 

LRP between samples. From the graphs above, it can be seen that the LRP peaks 

sharply in areas associated with places reference positions, but is reasonably constant 

at other times. In general it can be said that sections of the LRP graph which have 

a zero slope are representative of background LRP levels. If while monitoring the 

LRP performance at a given place, the slope between recent measurements is approx­

imately zero , the system determines that the LRP performance is at background level. 

Figure 7.5 shows the instantaneous slope of the LRP for place five as illustrated in 

Figure 7.2. The data in the plot was obtained by simply taking the absolute value of 

the result of subtracting the LRP of every image in the sequence from the LRP from 

the previous image: 

(7.2) 

where , s.i is the instantaneous slope of the LRP function at image i , and 4 denotes the 

LRP performance at image i. 
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Figure 7.6: Raw and filtered Landmark Recognition Performance (LRP) for place 5 
over the robot path. The black circle indicates when a new place would be learnt. 

Although a peak in this graph is evident it is still noisy. This reflects the noise in the 
LRP measurements. This noise can be partially alleviated by applying an averaging 
filter to the LRP information. This filter averages the LRP measurements over the last 
N readings: 

~~o (LRPi- ·) LRP! = W J=O J 
i N (7.3) 

with the size of N depending on the velocity of the robot and the rate of data sampling. 

The results of applying the averaging filter to place five 's LRP data is shown in Fig­
ure 7.6. The raw LRP measurements are illustrated by the blue line while the filtered 
measurements are shown in red. Filtering provides a much soother view of the LRP 
and a peak can clearly be seen at the same position as the one in the LRP graph, al­
beit delayed due to the windowing affect of the filter. The slope of the filtered LRP 
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measurements can then be calculated. Given that the instantaneous slope can still re­

flect local minima, the slope measurements used are those observed over the sampling 

window: 

Si = JLRP[ - LRPf-NI (7.4) 

where , si is the slope of the LRP function between images captured at steps i and i - lV 

and LRPf denotes the filtered LRP performance at image i. 

The output from Equation 7.4 can then then be filtered again to further remove any 

local minima in the slope function : 

(7.5) 

The results of applying Equations 7.4 and 7.5 to the LRP performance for place five 
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Figure 7.8: Raw and filtered LRP measurements for place 6 over the robot path. 

are shown in Figure 7.7 by the blue and red lines respectively. A threshold can then 
be used on the smoothed slope value to determine when the LRP reaches background 
levels. The threshold limit used in our experiments was 0.0075. The difference be­
tween thresholding on the slope and thresholding on the LRP measurements is that 
the slope values are independent of the actual background level of the LRP. 

Assuming that the process of detecting background LRP levels began at the top of the 
peak (simulating learning a new place) , and continued along the image sequence, the 
above process with the given threshold will detect background levels of LRP at the 
point in the graph denoted by the black circle in Figures 7.6 and 7.7. The robot can use 
this method of detecting background levels of LRP to trigger the acquisition of a new 
place in the topological map. 

To demonstrate that this method of determining when to learn a new place in the 
topological map is independent of the levels of background LRP, Figures 7.8 and 7.9 
show the raw and filtered LRP performance and slope for place six in the topological 
map. 
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Figure 7.9: Raw and filtered slope measurements for place 6 over the robot path. 
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The last step to the process of determining the level of LRP at which a new place 

should be learnt is to provide a default level beyond which the threshold should not 

drop. A LRP performance measure below this default level is considered too poor 

to be reliable even though the background level has not been detected. If the LRP 

performance for a place falls below the default level the robot system treats the default 

value as the background level. Also to handle the change in slope at peaks and newly 

acquired places, it is assumed that if the LRP performance is above a maximum level , 

then it can not be considered to be a background reading. The default LRP background 

level in this system is empirically set at 0.7, while the default maximum is 0.85. Only 

if the LRP is between these two default levels do the above criteria apply. 

Figure 7.10 shows the filtered slope measurements for all 15 places over the entire im­

age sequence. In comparison to Figure 7.4 it can be seen that the peaks in the slope 

measurements representing places along the path are higher relative to the noise con­

tained in the background levels than the corresponding peaks in the LRP data. 

The LRP of places 13 and 14 in the topological produce unconvincing filtered slope 
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Figure 7.10: The filtered slope for the 15 places over the robot path. 

.. .. 

results. The filtered LRP and slope measurements of these two places are shown in 
Figures 7.11 and 7.12 respectively. Inspection of the LRP results show that both places 
still have peaks associated with the reference position of each place. The peaks how­
ever are quite broad and therefore produce low slope measurements. This would indi­
cate that the landmark sets selected to represent these two places are not unique and 
can produce a high LRP measure throughout a broad area of the environment. The 
particular area of the environment which is represented by places 13 and 14 contains 
filing cabinets which produces very strong and regular features . When applying this 
method of acquiring new places in a topological map, such low slope values would 
result in the acquisition of more places. Whether this is a desirable characteristic in 
topological map construction is left for further work. Our method is not completely 
reliable. The slope at which the LRP decays as the robot system moves away from the 
reference position will vary from place to place, although it should always be signif­
icant when compared to the background levels. The sample rate at which the robot 
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Figure 7.11: Filtered LRP for place 13 and 14. 

captures the panoramic images and thus produces LRP measurements also affects the 

rate of change of the LRP. The direction of motion of the robot and even if the robot is 

moving also plays a part. 

The major drawback for our method is that the LRP slope is measured over a temporal 

window rather than a spatial one. The measurements and subsequent decisions are 

made based on measurements captured over a temporal window irrespective of how 

the robot is moving through space. In this example all the robot movements were 

made at a constant velocity and either directly away from places or directly towards 

them. Our system accepts this limitation, noting that the detection of background 

levels of will only occur directly after learning a place and that motion in a topological 

map will usually be between nodes within the map. A modification that attempts 

to solve these issues for the purpose of LRP background detection is that the robot 

ignores LRP readings from a stationary robot, or where a robot is undergoing purely 

rotational motion. 
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Figure 7.12 : The filtered slope for the places 13 and 14 
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7m 

Figure 7.13: Location of place acquisition experiments. 

Example Place Acquisition 

This section presents an example of the robot system deciding when to learn a new 
place. Figure 7.13 shows a map of a large room in the the ANU laboratory in which 
the robot must build a topological map. Figure 7.14 shows a short path (green dots) 
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Figure 7.14: An example of place acquisition in a topological map constructed by 

a robot system operating in a real world environment. Three places were acquired 

over a short robot path. The robot path is shown by the green dots originating from 

place 1. 

215 

the robot system traversed. While moving along the path the robot was building a 

topological map using the place acquisition criteria described above. Three places 

were learnt along the path, shown by the red circles and text in the illustration. At 

each of these positions, the robot system performed a Tum Back and Look movement 

and acquired a new place in the topological map. This was an online experiment, with 

the robot autonomously, in real time, deciding when to acquire new places. 

Figure 7.15 shows the flow of control that the robot system uses to perform a move­

ment while constructing a topological map. The variable DEFAULT_ BG refers to the 

default background LRP level. In this experiment, DEFAULT__ BG was set to 0. 7 and the 

filtered slope threshold level was set at 0.005 . 

The value of the LRP and its associated slope were logged as the robot traversed the 

path. Figure 7.16 shows the raw (blue line) and filtered (red line) LRP performance of 

the most likely place for each each image captured along the path. Each black circle 

identifies where the robot system decided to learn a new place. Figure 7.17 shows the 

raw and filtered slope associated with the LRP measurements. Again the black circles 

identify where new places were learnt. 

The three places were each acquired in different circumstances, which are detailed 

below: 
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Figure 7.15: The flow of control in the robot system when deciding weather to learn 
a new place. 

• Place 1: The robot starts by trying to localise itself with its existing knowledge. 

Not being able to localise itself in an empty map, the robot learns the first place. 

This is identified as place 1 in the figures. The robot attempts localisation again, 

and identifies that place 1 is the place in its map that the robot is the MLP. 
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Figure 7.16: The Landmark Recognition Performance for the most likely place while 

building the example topological map. The black circles denote when along the robot 

path each place was acquired. 

217 

• Place 2: From place 1 the robot proceeds to move, monitoring its landmark recog­

nition performance and trying to estimate the background LRP level. As the 

robot moves away from place 1 the LRP levels falls away as the current view of 

the landmarks distort. The slope remains relatively stable until it starts falling 

around the 120th image in the sequence where the LRP graph starts to bottom 

out. It never reaches the slope threshold level however as the filtered LRP level 

falls below the default background level first. This observation causes the robot 

system to stop and start the acquisition of place 2. The Localisation procedure 

now identifies place 2 as the MLP. 

• Place 3: The robot system recommences its path traversal while monitoring the 

LRP for place 2 and estimating the background LRP as previously described. 

The slope of the filtered LRP graph eventually falls below the slope threshold 

level and the triggers the acquisition of place 3. 
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Figure 7.17: The slope of the filtered LRP measurements of the most likely place 
while building the example topological map. The black circles denote when each 
place was learnt. 

Using this scheme the robot system can decide when to learn new places and add 

nodes to it's topological map. This approach differs to Matsumoto et al. 's (1997) in 

that an adaptive correlation threshold level for place acquisition is used rather than a 

constant threshold. 

Other Possible Methods 

As hinted in the previous section another way to decide when to learn a new place 

is to monitor the landmark recognition performance background levels with respect 

to the distance the robot is away from the reference position from which the current 

most likely place was learnt. This would eliminate the need to assume that the robot 

always heads directly away from a learnt place in the topological map at a constant 

velocity while sampling sensor data at a constant rate. 

Another possible method is to learn a new place when the position estimation within 
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the current MLP in the topological map provides uncertain position information. As 

opposed to monitoring whether the landmark sets used to recognise a particular place 

are tracking well, an analysis of the uncertainty contained in a local position estimate 

derived from the landmark observations could be used to determine place acquisition. 

In other words, learning a new place could be triggered when the robot can no longer 

be certain about its local position estimate. This change in reasoning could lead to 

topological maps which allow for a greater level of position estimation accuracy. One 

foreseeable disadvantage of this would be creating fine grained maps of areas in the 

environment which do not provide much positional information, such as corridors. In 

these environments, a certain degree of uncertainty in position estimation is accept­

able as long as it can be resolved upon encountering unique regions. 

The ability to provide an uncertainty measure while estimating local position is depen­

dent on the method used. For example if the position estimate was being maintained 

by a Kalman Filter model, the uncertainty of the estimate could be obtained from the 

covariance matrix. In our research we use a particle filter approach to position esti­

mation, the details of which will be presented in the next chapter. This approach has 

significant benefits such as the ability to represent multi-modal distributions, but has 

the disadvantage of not providing an uncertainty estimate without costly data analysis 

on the spread of particles. Therefore a place acquisition approach which incorporates 

local positioning uncertainty is not attempted here. 

Our research accepts the reduction in position accuracy of the LRP analysis method in 

the anticipation of the anticipation of fast position estimation and a sparser topological 

map leading to more efficient global localisation. 

7.1.2 Defining Transitions 

In addition to storing a representation of locations in the environment, a topological 

map must also record the connections between adjacent nodes. Using these connec­

tions, the robot system can plan paths throughout the map, navigate between two 

adjacent nodes and also predict position estimates when moving between nodes. In 

this system, such connections are called transitions, and they are calculated every time 

a new node is added to the map. 
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Transitions between places (T5 i-+ 5J) are represented by a distance and heading mea­
sure ( d,,) defined relative to the learnt place's reference position. 

A transition is defined as a connection between two places in the topological map. 
When attempting to calculate heading and distance values for a transition it is as­
sumed that the robot system has a stable local position estimate in relation to the last 
most likely place the robot has visited. For example when moving away from a given 
place Si and making the decision to learn a new place Si+I, the robot system has an 
estimate of its position relative to place Si. 

If this assumption holds, a transition can be calculated using simple geometry. Given 
two places .51 and 82 the transition T(51 -+52) can be defined as follows: 

T(51-+52) = (d1,,1) 

= (✓xi+ Yi,tan- 1 
(~)) 

(7.6) 

where the place .52 is learnt at the coordinates ( x1, y1, 01) relative to the reference frame 
defined by.51 . Of course this only defines a one way transition from place 1 to place 2, 
T( 51 -+52 ). In order to maintain bidirectional connectivity within the topological map, 
more calculations must be performed to form the transition from place 2 back to place 
1: 

T(52-+51 ) = (d2,,2) 
(7.7) 

= (d1, (,1 - 01 ) + 1r) 

which provides a transition which is relative to the new places reference frame. It 
should be noted here that 01 is the angle of the x axis of place 82 's reference frame 
with respect to place .51 's reference frame. 

An example which illustrates Equations 7.6 and 7. 7 is given in Figure 7.18. When a 
new place is learnt, transitions are defined from the last visited place to the new place 
and vice versa. 
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Figure 7 .18: The geometry of a transition in a topological map. Two places S1 and S2 
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Figure 7 .19: Transitions defined from place 2 in the topological map. 
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Figure 7 .19 gives an example of transitions defined according to the implementation 

details described above. The topological map that is used was learnt in the example 

in the previous section. In the figure the transitions originating from place 2 can be 

seen. The transition connecting place 2 to place 1 is an example of a reverse transition, 

defined when place 2 was learnt, and is very accurate. The connection from place 

2 to place 3 is less accurate due to the errors in odometry and position estimation 

introduced by the rotation in the robots position along the path between places 2 and 

3. Although the direction is slightly off, following the transition from place 1 would 

still position the robot in a location from which it would be able to recognise place 3. 
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Figure 7 .20: An example of a cycle in a topological map. The robot at point R relative 
to place S1 has detected a connection between places S1 and S2 but does not know 
the spatial relationship between the two. 

7.1.3 Transitions and Cycles 

This method of defining transitions works when adding a new node in the topological 
map depends on knowledge of the relative position of one place to the other. The 
method fails when a cycle is detected in the graph. Consider the case when a robot is 
moving away from place S1 and encounters a previously learnt place Si, when there is 
no existing transition connecting the two. The encounter is detected, when the LRP for 
place S2 becomes higher than that of S1 thus signifying a change in the MLP that the 
robot is occupying in the topological map. The fact that there is no existing connection 
between the two means that although the robot has an estimate of its current position 
relative to place S1 , it has no knowledge of the relative position of either place with 
respect to the other. This situation will most likely occur when the robot detects a 
cycle in the graph, or when it is connecting two previously disconnected sections of 
the topological map. 

Figure 7.20 shows an example of when a cycle is detected and illustrates the problem 
of the two places not sharing a common frame of reference. In this figure, the robot R 

has moved along the vector m away from place S1 . It has now recognised the land­
mark set from place /:h but has no idea where it is in relation to the reference position 
from where place S2 was learnt. Therefore the transition from S1 to S 2 can not be 
defined. 

One approach is to try and infer the spatial relationship between the two places by 
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summing the transition vectors of the nodes in the topological graph which create 

the cycle. This has two problems: first it assumes a cycle does exist and that the two 

nodes do not belong to two separate and disconnected sub-graphs; and second, it 

assumes that there are no odometry errors. The individual connections are relative 

and contain levels of error which when summed might produce drastic inconsistencies 

in the topology of the map, especially when dealing with a large number of nodes in 

the connecting path. 

A better approach that does not rely on the connecting path, is to directly discover the 

spatial relationship between the two nodes and use this relationship to calculate the 

transitions between the two places. 

In order to successfully calculate the transition between Si and S2 , by discovering the 

spatial relationship between the two places, the robot must first localise itself within 

S2 . By continuing its movement and observing the angles of landmarks the robot 

system can produce a local position estimate, the details of how this is achieved are 

presented in the next chapter. Also by using odometry to keep track of its movement 

while between places, the robot now has three vectors which when combined define 
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the spatial relationship of the two places: 7? the initial local position estimate from 
place 51 ; -& the odometric vector maintained while local positioning is attempted; 
and w the local position estimate from 52 . 

Figure 7.21 illustrates the situation further and identifies the three vectors 7?, -& and 
w. In the figure P1 and P2 are the two points between which the robot is relying on 
solely odometric information. Given that 51 , 52 and the odometry measurements are 
all relative to different frames of reference it is impossible to calculate ~ 51 • S

2
) without 

first resolving the differences in coordinate systems. From here on the notation A{?; will 
refer to point or vector Ac with respect to coordinate system B. Therefore, the three 
vectors as they stand can be more correctly defined as: 

where the super scripts 51 and 52 refer to the coordinate systems relative to places 
5 1 and 52 respectively, and O refers to the odometric frame of reference. With this 
notation the transition can be defined as follows: 

(7.8) 

It should be noted here that the frames of reference of the last two known vectors 
are different to those used to define the transition. If Fr/> ( x) is a linear transformation 
which rotates a point x through an angle of ¢, then vectors -& and 7JJ can be converted 
to 5 1 's reference frame as required by Equation 7.8: 

(7.9) 

where a and f3 are the respective difference between coordinate systems of 51 relative 
to 0, and 5 1 relative to 5 2 . The two angles can be calculated as follows: 

(7.10) 

(7.11) 
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where, as above 0i~ refers to the robot's orientation 0 at point P1 with respect to the 

coordinate system S1 . 

In this way the transition from S1 to S2 can be defined. The reverse transition can 

then be calculated in the same manner as calculating the reverse transition for newly 

acquired places presented above. Because the calculation of cycle transitions is based 

on odometry between local position estimates, the odometric error is small. 

Implementing this on the robot system requires the robot to be able to be able to 

localise within a place, and also to decide when a reliable local estimate has been 

achieved. The details of localisation will be discussed in the next chapter, but for now 

local positioning will be assumed, with the proviso that it takes a number of sample 

observations for a reliable estimation. An example of forming a cyclical connection in 

a real world topological map is presented in the next section. 

7.2 An Example Topological Map 

This section presents a topological map constructed using the place acquisition and 

transition definition methods described in the previous two sections. The map was 

learnt in a large room in the Robotic Systems Laboratory at the Australian National 

University. The robot system traversed a predefined path while attempting to learn 

a topological map. The resulting map is shown in Figure 7.22. This figure shows 

the robot path in green, the places learnt along the path in red, and the transitions 

which connect the places in blue. The orientation at which places were learnt is shown 

by the red lines radiating from the center of each place circle, with the longer line 

representing the angle of the robot facing forward. 

The graph shows that places were learnt along the path at semi-regular intervals and 

transitions were defined which link each node in the graph with its adjacent nodes. A 

cycle was detected between place 5 and place 1, and the resulting transitions success­

fully capture the relative spatial relationship between those two places. 

Although this is a relatively small topological map, the methods used here can be used 

to build arbitrarily large maps. The methods of place acquisition and transition defi­

nition are not directly dependent on the size of the map. In practice however, both of 

these processes depend on successful localisation within the map, effectively limiting 
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• 3.5m • 

Close up of Map 

Figure 7 .22: An example topological map constructed in a real world environment. 
The robot started at the location labelled place 1 and moved along the green path, 
acquiring new places in the map along the way. Places are shown by the red circles 
with the reference orientation shown by the red lines (longer line facing forward) 
and transitions between places by the blue arrows. Note that a cycle was detected as 
the robot leaves place 5 and the corresponding transitions were correctly defined. 

the map to the number of places with which it can localise within the necessary real­
time constraints. A larger map constructed using the previously described methods is 
presented in Chapter 9. 
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7.3 Summary 

This chapter presented a method with which to build topological maps using the place 

representation described in earlier chapters. Topological maps need to hold represen­

tations of places and the transitions between those them. Place representations allow 

for the robot system to recognise places when revisiting them, while transitions allows 

for navigation between places in the environment. The two main steps in construct­

ing a topological map, apart from forming a representation of individual places, is 

deciding when to learn a new place, and defining transitions connecting places. 

Determination of when to learn a new place can be achieved by monitoring how well 

the robot system recognises its current environment. When the robot no longer recog­

nises its current environment a new place is added to the topological map. A method 

was presented for making this determination using the level of Landmark Recognition 

Performance (LRP) and the notion of background levels of recognition. 

Transitions can be defined by simple geometric calculations in conjunction with global 

localisation and local position estimation. Detecting cycles in the topological graph 

cause complications to these calculations, however methods were described which 

successfully overcame these problems by working out the spatial relationship between 

the two connecting places. 

Together, these two processes allow the construction of topological maps, and a small 

example of such a map constructed by our robot system operating in a real world 

environment was presented. 

The topological maps constructed using the methods detailed in this chapter can be 

used to experimentally verify the place representations and localisation concepts which 

are central to this thesis. 

As discussed above, the addition of nodes using the back ground detection method 

suffers from monitoring the LRP over time, rather than through space. To truly detect 

when the background level of recognition performance, some account of velocity, both 

speed and direction, and the data sampling rate must be taken into consideration. A 

tighter integration of the three sub-components of navigation: mapping, localisation 

and path planning, would lead to place acquisition determination methods which pro­

duce topological maps with a more descriptive and efficient topology. 
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The method of defining transitions was shown to work accurately. One disadvantage 
of our system is that it is static. Defined transitions are not refined , and no method 
of deleting or updating them has been attempted. Revision of transitions could easily 
be accomplished by weighting the transition estimates and adjusting them every-time 
the robot system attempts to navigate using the transition information. 

The implementation of a robot system which forms topological maps in real world 
environments highlights the difficulties inherent in the task, some of which have been 
discussed. Determining when to learn a new place, which seemingly is an 'easy' prob­
lem, quickly becomes complex. Indeed forming some comprehensive rules which 
maximise graph structure in terms of minimising the costs involved in mapping, lo­
calisation and path planning is an interesting research topic in itself. 

Future work in this area would involve investigating the relationship between the 
topological structure and the individual subcomponents of navigation applied to the 
task of determining when to learn a new place. This could lead to topological maps 
which support efficient and accurate localisation methods. 
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Chapter 8 

Local Position Estimation 

The process of localisation requires a robot to answer the question of "Where am I?" 

By defining a multi-level representation of spatial knowledge, it is hoped that robots 

will be be able to answer this question reliably and efficiently. As stated in Chapter 2, 

localisation has two distinct parts: global localisation and local position estimation. 

Global localisation is the process of identifying the Most Likely Place (MLP) of the 

robot over the entire internal map. This global estimate can be coarse as local posi­

tion estimation serves to refine and maintain the robots position from this localised 

region. Our research proposes to use the low-level representation of visual landmarks 

to perform both global localisation between places in the topological map, and local 

position estimation within particular places. The higher levels are there to 1) restrict 

the global localisation search, and 2) disambiguate between equally likely places. 

This chapter describes the process of local position estimation using visual landmarks 

in detail and reports supporting experimental results. Section 8.1 describes heuristic 

and probabilistic approaches to local position estimation within a place. Experimental 

results highlight the benefits of using probabilistic position estimation especially in 

conjunction with knowledge of landmark depth and an appropriate sensor model. 

Section 8.2 describes a method of passing the local position estimate between places 

to maintain position tracking as a robot navigates between nodes in the topological 

map. Section 8.3 provides a summary of using visual landmarks for local position 

estimation. 
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Figure 8.1: Location of local position estimation experiments. 

8.1 Local Positioning Within Places 

Approaches to the robot navigation problem which use topological maps typically 
can not provide accurate position information within places in the map: either a robot 
is "at" a particular place or it is not. In order to develop a topological map based 
localisation system which can approach the accuracy given by metric maps, the robot 
system must be able to locate itself relative to the reference position of places within 
the map. We refer to this process as local positioning within places in the topological 
map. 

This section reports on three methods of local position estimation within a learnt place: 
odometric, heuristic and probabilistic. All three experiments involve the robot learn­
ing a place in the center of the same room (Figure 8.1) as reported in the previous 
chapter and then subsequently estimating position along a path of captured images 
originating at the learnt place and following the typical TBL path described in Chap­
ter 4. Odometric positioning is used as a ground truth here as the motion of the path 
is insufficient to introduce any significant odometric error. It can be appreciated how­
ever, that odometric positioning will not be useful for positioning on longer motion 
paths. Sensor based localisation approaches (e.g. the heuristic and probabilistic ap­
proaches) do not suffer from these problems. The robot path as determined from odo­
metric position estimation is shown in Figure 8.2. 

The goal of the local positioning experiments described below is to successfully deter-
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Figure 8.2: Local positioning along TBL path using odometry. Axes are in mm. 

mine the path the robot travelled with no prior knowledge about the pose of the robot 

within the area surrounding the learnt place's reference position. The assumption that 

the initial pose is unknown makes odometry by itself unable to provide any useful 

localisation measure. 

8.1.1 Heuristic Position Estimator 

Typically navigation systems which employ topological maps to represent the envi­

ronment do not attempt to extract local position estimates relative to the reference 

position of places in the map. Instead they rely on simple recognition/ action pairings 

or homing behaviours which drive the robot to a place without knowledge of relative 

positioning. Such reactive behaviours often rely on a heuristic rule rather than explicit 

calculations and thus are referred to in this section as heuristic navigation systems. An 

example of such an algorithm is presented that attempts to extract a relative position 

estimation from the heuristic system. 
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LU) 

Figure 8.3: Radial contraction position algorithm: vector, Vij, produced from a single 
landmark pair, ( li, l j). 

This heuristic localisation method grew out observation of data during the execu­
tion of a homing behaviour that uses sensor data to drive the robot to a desired 
state (Bianco and Zelinsky, 1999) (Collett, 1996). The algorithm uses the contrac­
tion/ expansion of the observed radial displacement between pairs of landmarks to 
estimate the position of the current robot state relative to a reference state. The gen­
eral idea is that if the radial displacement between a landmark pair is larger in image 
1 than image 2, then image 1 must have been captured at a location closer to the land­
marks in the direction of the bisecting angle. The sensor gives the radial angles of 
located landmarks from a landmark set. Let this observation be denoted L = kJ ... ln , 

where li is the observed radial angle of landmark i. Given the two observations Lr, 

captured from a reference position Rr, and Le from the current position Re, then the 
problem is to estimate the translation vector V from Rr to R e. 

This can be done by summing the contraction vectors, 'Lij, for every possible landmark 
pair (li, l j) in the landmark set. A contraction vector is the translation vector needed 
to cancel the change in radial displacement within a landmark pair between the two 
observations. An example is given in figure 8.3. More formally, iij is composed of 
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Vij(mag) and Vij(dir) ,where, 

(8.1) 

(8.2) 

0c and 0r are the radial displacements of the landmark pair (4, lj) at R e and Rr respec­

tively. The magnitude of the contraction vector, 'Vij (mag), is then the change in the 

radial displacement and the direction 'Vij ( dir), is the angle bisecting the displacement. 

Summing the contraction vectors for every landmark pair, weighted by the reliability 

of the observation, gives the translation vector: 

n n 

V = LLVijWij (8.3) 

i=O j=O 

where 

(8.4) 

rel ( li) being a reliability measure of correctly locating landmark i as determined by the 

results of the normalised correlation template matching process. Template matching 

for landmark tracking was introduced in Chapter 4 which described acquiring a visual 

landmark representation of places in a topological map. 

The results from applying this algorithm to the captured TBL path are given in Fig­

ure 8.4 . As you would expect, this approach allows a general estimate of position but 

is not suitable for navigation tasks which require accurate positioning. The direction is 

slightly skewed, due to the irregular distribution of landmarks throughout the image 

and the simple vector weighting. The scale of results is unknown, although a simple 

scaling based on assumed depth of landmarks is given in Figure 8.4. The main prob­

lem is the sensitivity to noise as shown by the zig-zag nature of the estimated path. 

It is also vulnerable to false positives in landmark tracking, as the change in displace­

ment determines the magnitude of the vectors. These characteristics are typical of 

attractor-based methods and do not support accurate local positioning (Arkin, 1998) . 
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Figure 8.4: Local positioning along TBL path using heuristic algorithm 

The heuristic based method for local position estimation was the first attempt of our 
research to perform localisation within places in a topological map. 

8.1.2 Particle Filter Position Estimator 

The benefits of probabilistic reasoning in mobile robot localisation has been reported 
in Chapter 2. By using knowledge of past observations and ego-motion, the position 
of the robot can be represented as a probability distribution throughout state space of 
possible robot poses in the environment, allowing for multi-modal hypotheses. Par­
ticles filters have been used successfully to reduce the computational requirements of 
generating the distribution, by random sampling of the state space. The Condensation 
algorithm (Isard and Blake, 1998; Dellaert, Fox, Burgard and Thrun, 1999) is one such 
method, and is summarised below. A set of sampled states i 0

) ... s}n) (where n = the 
number of particles or samples used), and their associated probabilities (~o) ___ n-in)), 
are used to approximate the probability distribution at time t. At each iteration of the 
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Figure 8.5: Prediction phase of the Condensation algorithm. Particles are initially 

grouped around a known position. After a noisy motion input, the particles are 

distributed according to the stochastic noise and deterministic drift in the motion 

model. 

algorithm, the following steps are applied: 
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l. Re-sample: For each particle S~(i) in s ; , select a random particle s}~1 from St- I • 

This re-sampling is done with replacement and probability of selecting ~~1 is 

given by 1r}~1 . 

2. Predict: For each particle s/i) in s; predict a new state s}i) in St by applying the 

motion model. 

3. Measure: For each particle s?) in St , evaluate the probability 1r!i) using the sensor 

model. 

The motion model describes the dynamics of the system to predict the state of a par­

ticle after an action has been taken. This model incorporates deterministic drift and 

stochastic noise into the predictions, capturing the noisy nature of odometric sensors 

used in this system. Figure 8.5 demonstrates what happens to particles when an ac­

tion is taken by the robot system. In this illustration the robot system is a mobile 

robot which starts at a known position, in this case the origin of the drawn coordinate 

system, and moves to the right. The accompanying particle filter diagrams show the 

particles initially tightly grouped about the origin, denoting that the initial position is 
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Figure 8.6: Measurement and re-sampling steps of the Condensation algorithm. Par­
ticles distributed randomly condense about a hypothesis after an observation has 
been made. Particles condense around a hypothesis by resampling the particle set 
according to the probability of making the current observations given the particle's 
state. 

known. After the move the particles are spread out in an arc which approximates the 
probability density function of the robot position in the presence of noise introduced 
by the errors in rotational and translation motion of the mobile robot. 

The sensor model is used to calculate the probability that a given particle correctly 
describes the system state based on the current observation. Figure 8.6 demonstrates 
how a sensor model and re-selection of probable particles can be used to maintain 
state identification in a particle filter system. In this illustration the pose of the robot is 
initially unknown. Accordingly, the particles used to represent the probability distri­
bution function of the robot's position are randomly distributed throughout the space 
defined by the coordinate system. When the robot makes an observation the sensor 
model can be used to measure the probability that a robot system in state described 
by each individual particle could have made such an observation. Particles represent­
ing robot states which have a high probability of making the current observation have 
more more chance of being reselected in the re-sampling phase of the Condensation 
algorithm. This is shown in the figure by the set of particles, after incorporating the 
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observation, condensing around the correct position in the coordinate system. 

Another feature of particle filters are that they can represent multi-modal hypotheses 

when the sensor information is ambiguous. Figure 8. 7 illustrates this case. Initially the 

robot position is unknown and the particles are distributed randomly throughout the 

sample space. After making an observation the probability of making such an obser­

vation is calculated for each particle and the most likely particles are re-sampled. In 

this example, however, they are two positions (e.g. two doorways) which are equally 

likely to result in the current observation and this is reflected in the bi-modal dis­

tribution of the resulting particle set. In this way, bi-modal and even multi-modal 

probability density functions can be represented by particle filters. 

The Condensation algorithm in its simplest form suffers from the likelihood of not 

exploring crucial parts of the probability distribution and the inability to recover from 

these types of errors. Jensfelt, Wijk, Austin and Andrsson (2000) propose augmen­

tations of Condensation which overcome these limitations with sampling techniques 

such as random sampling and planned sampling. In our research the state space is 

restricted to to the space about individual places, so the space will be covered by an 

initial random distribution. To ensure good particles are re-sampled, this system au­

tomatically re-samples particles which have an observed probability greater than the 

mean plus the variance. A standard holonomic motion model is used in the prediction 
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T 

Figure 8.8: Components of a holonomic movement 

phase. A sensor model has been derived to suit the landmark based place represen­
tation. Below, the motion model and the sensor model are described in detail and 
experiments in local positioning are reported. 

8.1.3 Motion Model 

The motion model used is a standard position based holonomic motion model. Using 
two odometric measurements of robot position, a holonomic move can be defined 
which incorporates stochastic noise and deterministic drift and can be used to predict 
the actual movement of the mobile robot. A holonomic move between any two points 
can be said to made up of the four components shown in Figure 8.8, and listed below: 

• ¢1 : an initial steering rotation to the heading between the points, 

• T : a translation distance across the intervening distance 

• c/>2 : another steering rotation to the end steering position, 

• 0 : an orientation rotation to the required orientation position. 

Components can be adjusted for noise (sampled from the normal distribution) as fol­
lows: 

(8.5) 

(8.6) 
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(8 .7) 

(8.8) 

where normal ( x) returns a sample from the normal distribution between [ - 1 : 1] 

with variance x, and ai represents the levels of noise being introduced into the sys­

tem. In particular, a 1 noise in steering position while steering, ai noise in steer­

ing/ orientation position while translating, 08 noise in translation position while trans­

lating, a 4 noise in translation position while steering, and finally ({5, noise in orienta­

tion position while changing orientation. Given a sample state ,$_ 1 and a holonomic 

move ( ¢1 , T, ¢2 , 0), the motion model predicts an end state Si by applying the move­

ment ( ¢1, 'I', ¢2, 0) to S.i -1-

8.1.4 Sensor Model 

The sensor model is used to calculate the probability of making a particular obser­

vation given a sample of the system state as represented by individual particles in 

the particle filter. In our research the sensor model is derived to suit the landmark 

based place presentation. The panoramic sensor provides a wealth of information 

from the environment, while the place representation has an abstracted form. We 

treat the panoramic vision and landmark matching systems as a landmark sensor, and 

the sensor model calculates the probability of observations based on the lowest com­

mon level of abstraction between the learnt place and the sensor: that of the observed 

radial angles of landmarks. 

The sensor model's input consists of a robot state sample Si, the radial angles of land­

marks from the learnt place, OR, and radial angles of the observed landmarks from 

the current image Oc . For a particular observation Oc , there are o0 .. on angles, where 

n is the number of landmarks in a landmark set. The probability P ( <l: ), given state Si 

of observing angle ok , ok E Oc, 0 < k < n, is a mixed distribution composed from the 

following distributions: 
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• P rand : probability of the sensor returning a noisy random result. 

P rand = 1/360 deg (8.9) 

This value is basically there to ensure an incorrect landmark observation does 
not result in a zero probability for the sample state Si. 

• Pcorr: probability that at state Si, the sensor correctly observed landmark lk . If Si 
is the correct state, the intersection of the lines formed by the current observation 
from Si and the reference observation from SR should occur at the landmark's 
position in the environment. We determine the intersection between the refer­
ence and current observations as: 

(8.10) 

where, rel ( ok) is the matching correlation between the reference and current im­
ages for landmarklk, and P hit is the probability that the reference and current 
observations intersect at the location of the landmark. 

These distributions are combined by a weighted sum based on their relative impor­
tance (manually set based on experimental evidence): 

(8 .11) 

and then the product over the number of observations gives the final probability that 
the current observation was made at the sample state S( 

n 

P(O) = IJ P(ok) (8.12) 
k=O 

Using this process a particle filter can take inputs from the panoramic sensor and 
find and re-sample particles representing system states which are consistent with the 
current observations. 

This process depends on defining the probability, Fliit , that the current observation 
intersects with the appropriate landmark. Methods for calculating this probability 
depend on the complexity of the geometric model which is used to represent the land-
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mark position and the observations. Four methods of calculating this probability have 

been investigated: 

• Assumed Depth Line Intersection 

• Estimated Depth Line Intersection 

• Ellipsoid and Line Intersection 

• Ellipsoid and Arc Intersection 

Assumed Depth Line Intersection 

In the assumed depth sensor model the reference and current sensor observations, be­

ing radial angles of tracked landmarks, are geometrically modelled as lines extending 

from the center of the robot at the observed angle direction. In addition this method 

assumes that the system has no knowledge about the depth of the landmark along the 

ray from the reference position. This model is included to illustrate the importance of 

having an estimate of the depth of the landmarks in the position estimation task. 

The assumed depth line intersection sensor model seeks to find the probability that the 

reference and current observation rays intersect at the point in the environment where 

the landmark is located. In the absence of information about the depth of the land­

mark, this approach assumes that landmarks are at a constant depth and the probabil­

ity is calculated with this assumption. The probability is determined by the distance 

of the intersection of the two lines from the assumed landmark depth. If the two lines 

intersect at the assumed depth along the reference observation ray the probability of 

making such an observation is set to the maximum, otherwise the probability is de­

fined by a Gaussian distribution centered around the assumed depth. More formally 

this relationship can be defined as: 

(8.13) 

where dk is the intersection depth of the current observation 0c with the reference 

observation, and d and a are the assumed depth and variance of landmarks. 

If a landmark had an initial observation angle of , ,, a current observation of 0 and the 
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Figure 8.9: The assumed depth sensor model finds the probability that the two lines 
formed by the current and reference observations intersect at the assumed depth of 
landmarks from the reference position. 

sample particle represented the robot pose ( x, y )p, then from standard geometry the 
intersection (x, y)f of the two lines formed by the reference and current observations 
can be calculated as follows: 

Yp- Xptan0 ) 
tan')'-tan0tan')' 

tan,' (Yp - Xp t an0 ) 
tan')'-tan0 

(8.14) 

The depth from the reference position at which the current observation intersects with 
the reference observation is then: 

(8 .15) 

This value can then be substituted into Equation 8.13 to discover the probability of 
making the current observation from the sample particle's hypothetical pose. 

Figure 8.9 shows the assumed depth line intersection model. In this figure the blue 
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circles represent the place reference position from which the initial observations of 

landmarks where made, and the hypothetical robot position of the particle being eval­

uated. The blue lines denote the initial and current observations from the the respec­

tive positions. The red curve shows the Gaussian probability distribution centered 

around the assumed depth while the intersection point of the two observations and 

the resulting probability value is shown by the green line. 

Obviously by using an assumed depth in this model , the calculated probability will 

not reflect the true relationship between the current observation and the actual land­

mark position. This highlights the importance of depth estimation in the landmark 

acquisition process. 

Another problem of using a simple geometric model of the observations can be seen 

in Figure 8.10. A problem occurs when the reference and current observations are 

parallel. In this situation there will either be no intersection between the two lines or 

the intersection will be infinite. In fact for particles which have a robot close close to 
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the reference position, current observation which approach parallel with the reference 
observation will falsely return low probability values as two lines either do not inter­
sect, or intersect at a great distance from the assumed depth. This is particularly a 
problem when the robot is actually located at the reference position, when all current 
observation angles to landmarks are equal to the reference angles. It is not problem­
atic when the intersection of only one landmark in the landmark set is not defined as 
the probability of other landmark observations can overcome the problem. 

An ad hoc solution to this problem is to introduce an alternate model when the inter­
section is not defined. Such a distribution assumes that most situations where there 
are no intersections in the model occur around the reference position from which the 
place was learnt. Accordingly it calculates the probability of the observation from the 
distance of the sample robot pose to the reference position: 

1 _.!_(x~+Y~) 
D --- 2 a2 £hit= ~e 

V 21ro-2 (8.16) 

ensuring the sensor model returns a probability measure even when the intersection 
between the two lines is not defined. 

To further explain the various sensor models being discussed, it is advantageous to ap­
ply them to an example in the mobile robot domain. Figure 8.11 shows two landmarks 
being observed from both a reference position (0, 0) and the actual current position of 
the robot (0, 80). In this example it assumed that the robot's orientation is known, 
therefore limiting it to a two dimensional state space. 

With prior knowledge about the reference position and the reference observations, 
knowledge of the the robot's current position can be inferred from the current obser­
vation. The effect of the sensor models can then observed by applying them to all 
possible robot poses throughout the sample environment. It should be noted here that 
by applying the model over all possible poses, the system is in fact approximating the 
probability density function of the robot position over the state space of robot poses. 
In the particle filter approach to mobile robot localisation, each particle represents just 
one possible pose, so the PDF is only being sampled. 

Figure 8.12 shows the results of applying the assumed depth line intersection sensor 
model with an assumed depth of 40 units to the set of all possible robot poses. In 
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this figure landmark one has been observed at an angle of 1r / 2 radians. The surface 

of the graph represents the probability that a robot at a given ( x, y) pose in the state 

space observed landmark 1 at an angle of 1r / 2 radians. The reference position, actual 

and assumed landmark location and the actual robot position are shown by the differ­

ent colour circles. The current observation produces probability high at the assumed 

landmark depth position. This reflects the fact that at these locations it is more likely 

to observe the landmark at the assumed position at the angle of 1r / 2 radians than any 

other position in the state space. 

The peak of this graph lies far from the actual robot position, occurring in the states 

from which it is more likely to observe the landmark at it's assumed depth rather 
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than it's actual depth. This highlights the fact that an estimation of depth is necessary 
to provide accurate position information to the robot system. The slope of the graph 
surrounding the peak is also quite shallow reflecting the high variance in the Gaussian 
distribution. The high variance can assist in alleviating the problem of assumed depth, 
but subsequently limits the resolution of any positional information the model can 
produce. 

Figure 8.13 shows the results of applying the sensor model to the same example but 
incorporates the observation of two landmarks. The output of the sensor model for the 
two landmarks is combined using Equation 8.12. The combination of the probabilities 
from the two observations reduces the area from where it is most likely to explain the 
observations. By incorporating more observations into the sensor model, the area of 
likelihood can be reduced still further. The problem of an assumed landmark depth is 
still a problem, as the probability peak is still not located near the actual robot position. 

Finally, Figure 8.14 shows the PDF produced by the assumed depth line intersection 
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sensor model with one landmark when the reference and the current observations are 

parallel. In this case the intersection between the two lines is undefined and the al­

ternative sensor model described by Equation 8.16 is used. If the observation was 

made from the area surrounding the reference position then this model would cor­

rectly identify the most likely robot poses. However in this case the actual robot posi­

tion is located well outside the identified likely region. 

Estimated Depth Line Intersection 

The estimated depth line intersection sensor model is similar to the assumed depth 

model except it takes advantage of the information about the depth of landmarks pro­

duced by the Turn Back and Look movement. The probability of making an observa-

247 
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tion from a sample robot pose is given by: 

(8.17) 

where dk is the intersection depth of the current observation ok with the reference 
observation, and J and (J' are the estimated depth and depth variance of the landmark. 

The estimated depth model still suffers from the problem which occurs when the lines 
formed by the reference and current observations approach parallel. The alternative 
model is again applied when this situation occurs. 

Figure 8.15 shows the results of applying the estimated depth sensor model to the sam­
ple robot environment illustrated in Figure 8.11 and observing one landmark. Again a 
similar result from that of the assumed depth model can be seen, except that the peak 
region now covers the actual robot position. This is because the estimated depth of the 
landmark is much closer than the assumed depth. The slope of the graph in the peak 
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regions is also greater due to the decreased variance in the landmark depth estimate 

when compared to the assumed depth. 

The results incorporating two landmark observations using the estimated depth sen­

sor model are shown in Figure 8.16. The combination of the two landmarks cause a 

single peak near the actual robot position. Additional landmark observations would 

strengthen this peak and further eliminate regions in the state space from where it 

would be unlikely to make such observations. 

Ellipsoid and Line Intersection 

A more sophisticated geometric model for the observation intersection is to model the 

reference observation as an ellipsoid defined by the landmark estimate from the Turn 

Back and Look movement. This means that the model incorporates the uncertainty 

in the initial angle observation as well as in the depth estimate. The perimeter of the 
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Figure 8.16: The probability distribution produced when applying the estimated 

depth sensor model over the range of all possible robot positions given the current 

observations oflandmark 1 at 90 deg and landmark 2 at 45 deg. 

ellipse defined by the landmark position estimate represents the variance along the 

depth and angle axes of the estimate. In order to produce a probability measure of 

making a particular observation from a given sample state, the ellipse can be over­

layed with a two dimensional Gaussian distribution centered on the landmark posi­

tion and scaled to the respective variance measures of the depth and angle axes. The 

resulting three dimensional surface is not a true ellipsoid, but is referred to as an el­

lipsoid to distinguish it from the two dimensional ellipse. The surface of the ellipsoid 

can then be used as a probability measure of the landmark being in the area surround­

ing the estimated landmark location in two dimensional space. If an observation from 

a particle hypothesising a particular robot pose intersects with the ellipsoid, then the 

probability of making the observation can be given by the highest point of the ellipsoid 

surface through the cross section defined by the observation line. 

The situation is seen more clearly in Figure 8.17. In this figure the reference and current 

robot positions are shown by the blue circles. The estimated position of the landmark 
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after the TBL movement and its associated ellipsoid is shown by the contour plot along 

the line representing the reference observation. The line representing the current in­

tersects the ellipsoid and the line segment between the two intersection points defines 

a cross section of the three dimensional entity. 

Figure 8.18 shows a close up of the ellipsoid and the various contours of the ellipsoid 

can be seen more clearly. It is obvious that the maximum probability of making the 

observation does not lie on the major or minor axes of the underlying ellipse. This 

highlights the need for the three dimensional representation of the probability distri­

bution. Also, modelling the landmark probability distribution in this fashion elimi-
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Figure 8.18: A close up of the ellipsoid line intersection showing intersection points 
and the probability distribution within the ellipse. 

nates the problem of parallel reference and current observations that are evident in 
the two line intersection models. 

Figure 8.19 displays the cross section of the ellipsoid surface defined by the intersect­
ing line segment. The maximum probability value in this cross section is used as the 
probability measure for making the current observation from the sample robot pose. 

This sensor model requires the calculation of the intersection points of a ray, defined 
by the sample robot pose and the angle of the current observation, and an ellipsoid 
defined by the estimated landmark depth and the angle from the reference position 
and associated variances. The maximum probability of the intersecting line segment 
must be found in order to produce a probability measure for the observation. This can 



8.1 Local Positioning Within Places 

0.35 

0.3 

0.25 

g 
:.0 
Cll 
~ 0.2 
0.. 
C: 
.Q 
ca 
~ 0.15 
en 
.a 
0 

0.1 

0.05 

Cross-section of Current Observation Intersecting with the Landmark Estimate Ellipsoid 

Observation Probability 

' 

Intersection Points 

20 40 60 80 100 

Distance Along Current Observation Ray 
120 

Figure 8.19: The cross section of the ellipsoid probability distribution along the line 

segment formed by intersection of the current observation and the landmark uncer­

tainty ellipse. 

be achieved in three steps using known geometric techniques: 
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1. Transform the ellipse and ray to a coordinate system where the ellipse is a unit 

circle. 

2. Find the intersection of the transformed ray and the unit circle. 

3. Overlay a two dimensional Gaussian distribution over the unit circle and calcu­

late the maximum probability over the intersecting line segment. 

By transforming the ellipse into a unit circle the intersection and probability calcula­

tions are greatly simplified. The specifics of the calculations involved in these three 

steps are presented below. 

Let there be an ellipse e defined by the parameters (x, y , a, b, 1 ), where the point (x, y) 

denotes the center of the ellipse; the values a and b the magnitude of the major and 

minor axes; and I represents the orientation of the major axis. Similarly, let there be a 



254 Local Position Estimation 

aose-up of Elhps04d Lme lnte~ectJon Close-up of Urrt C1rde Line lnters&ctlon 

60 65 70 75 80 85 90 95 100 -4 -3 -2 -1 0 3 X Position 
X Position 

a) b) 

Figure 8.20: The transformation of a) the line ellipse intersection problem into that of ab) line unit circle intersection. 

ray r defined by ( x, y, 0) where the point ( x, y) is the origin of the ray which points in 
direction 0. 

The ellipse can be transformed into a unit circle by the following three steps: 

l. Translate back to the origin by (-xe, -ye). 

2. Rotate the ellipse by -1 so the major axes are aligned to the X axis of the coordi­
nate system. 

3. Re-scale the major and minor axes by a and b respectively. 

This process leaves the ellipse with the parameters (x = 0, y = 0, a = 1, b = 1, 1 = 
0) which describes the unit circle. The parameters defining the ray can be similarly 
transformed by first performing the translation and rotation transformations: 

( :~ ) ( 
and : 

cos( -1) 

sin( -1) 

-sin( -1) 

cos ( -1) ) ( ( :: ) ( :: ) ) 
0' = 0 - 1 

(8.18) 

(8.19) 

Since scaling along both axes by different factors will affect the orientation of the new 
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ray, an intermediatory step of defining another point at some distance d along the ray 

must be performed: 

( 
Xd ) = ( dc~s0' ) 
Yd dsin0' 

Using the extra point step three of the transformation is performed as follows: 

and finally: 

( 
Xr ) ( 1/ a O ) ( x: ) 
Yr O 1/b Yr 

I II 

0 t - I Yd - Yr = an 
x' - x" d r 

(8.20) 

(8.21) 

(8.22) 

(8.23) 

Now the ray has been transformed to a similar coordinate system as the unit circle 

a ray/ circle intersection can be performed to determine whether the observation ray 

intersects with the landmark estimation ellipsoid. If we let 

bx= cosB,by = sin0 (8.24) 

and 

(8.25) 

(8.26) 

(8.27) 

then the roots of the quadratic give the points where the ray intersects with the unit 
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circle by: 

Ii= 

x+I- = - B ± ✓B2 
- 4AC 

2A 

Local Position Estimation 

(8.28) 

(8.29) 

(8.30) 

where x +/ve and x-,ve are the positive and negatives roots of the quadratic equation; 
and Ii and / 2 are the intersection points of the ray and the unit circle. Of course these 
are not always defined, if the expression B2 

- 4AC in the quadratic is less than zero 
there are no intersection points and if it equals zero there is only one intersection point. 

If there are two intersection points defined, then the probability of making the original 
observation can be measured by overlaying a Gaussian distribution over the unit circle 
and finding the maximum level of the distribution along the line segment defined by 
the two intersection points. This is accomplished by populating a two dimensional 
array with a discretised Gaussian distribution and finding the maximum probability 
value in the cells of the array which lie along the line segment. Geometrically this 
can be accomplished by finding the the maximum value of the Gaussian distribution 
at intervals along the line segment. At any position along the line the value of the 
Gaussian distribution is defined as: 

(8.31) 

where v(t) is the value of the Gaussian at the tfh interval along the line segment. The 
value of the Gaussian depends on the distance of the point at the interval from the 
center of the unit circle. If there are two intersection points, the maximum of this 
value over the interval gives the probability of the observation: 

(8.32) 
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Figure 8.21; The probability distribution which results from applying the eJlipsoid 

line intersection sensor model over the range of a]] possible robot positions given the 

current observation of landmark 1 at 90 deg. 

In the case where there are either zero or I intersection points: 

(8.33) 

This probability value can then be used as an estimate of the probability that the given 

ray representing an observation of a particular landmark was made from a sample 

robot pose, irrespective of where the sample pose lies in the robot position state space. 

The results of applying the ellipsoid line intersection sensor model over all position 

states in the robot position state space are shown in Figure 8.21. The surface of the 

graph shows the probability of observing landmark I at an angle of pi/2 radians from 

an (x, y) robot pose. The peak regions of this plot are similar to the results produced 

by the estimated depth line model, which is to be expected due to the large difference 

between the reference and current observation angles. 

The benefits of using the ellipsoid line intersection mode] can be appreciated when the 
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Figure 8.22: The probability distribution produced as a result of applying the el­
lipsoid line intersection sensor model over the range of all possible robot positions 
given an observation of landmark 1 which is parallel with the reference observation. 

lines defined by the reference and observation angles approach parallel. Figure 8.22 
illustrates such a case. The ellipsoid line intersection model returns the correct proba­
bility distribution even when the two observation lines are parallel , thus marking an 
improvement on the sometimes incorrect alternate model necessary when applying 
the line intersection models described above. 

Ellipsoid and Arc Intersection 

The ellipsoid line intersection model incorporates the uncertainty of the reference ob­
servation angle into the observation probability calculations but fails to take the cur­
rent observation uncertainty into account. The reliability of the current landmark ob­
servation angle depends on the resolution of the panoramic sensor and on the land­
mark template matching correlation value, as described in Chapter 4. A sensor model 
which aims to accurately represent the observation probability distribution should in-
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Figure 8.23: The proposed ellipsoid arc intersection sensor model to measure the 
probability of making a particle observation from a given position in the robot posi­
tion state space. The ellipsoid and the arc capture the uncertainty in the landmark 
location and the sensor observation respectively. 

corporate all forms of uncertainty in the model. 
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Figure 8.23 illustrates the situation when incorporating the current observation uncer­

tainty into the sensor model. The noise in the current observation can be represented 

as an arc centered on the observation angle and displayed as a sector radiating out 

from the hypothesised robot position. It is unclear as to how best to represent the cur­

rent observations probability distribution within the sector, as the uncertainty intro­

duced by the resolution of the camera would suggest a uniform distribution between 

the limits of accuracy while the matching uncertainty could be modelled as a varying 

Gaussian distribution. 
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The detection of intersecting regions and the combination of the ellipsoid and sector 
probability distributions is also computationally expensive and difficult. The calcu­
lations need to be performed for each particle in the particle filter at each step of the 
sense-localise-move cycle, and thus speed of computation is important. It is question­
able how much additional accuracy such a complex model will introduce compared 
to the ellipsoid line intersection model, which depends on the uncertainty in the land­
mark estimate to model the entire noise in the system. 

For these reasons this system employs the ellipsoid line intersection sensor model in 
the particle filter to solve the local positioning problem within places in the topological 
map. The uncertainty introduced by the observations is incorporated after the inter­
section calculation when the probability of making an observation is multiplied by the 
landmark template matching correlation measure as described by Equation 8.10. 

8.1.5 Local Positioning Experiments 

Using the holonomic motion model and the various sensor models as defined above, 
the particle filter can now be applied to the mobile robot local positioning problem. 
The experimental setup is the same as for the heuristic local positioning method. A 
place was learnt in the center of a large room (Figure 8.1) . From this reference position 
the robot then traversed a path identical to the Tum Back and Look path used in place 
acquisition. During this move the images were captured and logged along with odo­
metric readings. Using this data and the particle filter, the robot system attempts to 
perform local position estimation continually along the path and the results are com­
pared to the odometric ground truth. By performing this experiment, the particle filter 
approach can be compared to the heuristic method and other known grid based meth­
ods. In addition the various sensor models can be evaluated for their contribution to 
local position estimation in the real world. 

Implementation Issues 

Implementing the particle filter system described above to operate on a real world 
mobile robot introduces some uncertainty and timing issues which are not present in 
the purely geometric models described above. In the real world system sensor data 
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Figure 8.24: The flow of control when performing local positioning on the mobile 
robot system. The grey shaded functions involve communication across the local 
area network. 

261 

from the panoramic camera and robot odometry are sampled at different instances in 

time and trying to associate one with the other can be problematic. 

Figure 8.24 shows the flow of control when the robot system is performing local posi­

tion estimation using the particle filter approach. It can be seen that the processes by 

which the panoramic and the odometric sensor data are sampled are in serial, thereby 

introducing a time delay between the two sensor modalities. In addition the odomet­

ric data must be requested from the robot controller which is operating on a separate 

processor. This communication over a local area network introduces additional timing 

delays which further complicates any attempt to temporally synchronise the sensor 

data. 
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Rather than enforce hard real time constraints on the sensor sampling process, we 
assume that the time delay between sampling the two sensor modalities is itself a 
form of uncertainty in the local position estimation system and can be overcome by 
the high levels of uncertainty already present in the system or by adding additional 
uncertainty to the motion and sensor models to factor in this extra source of noise. 

Initialisation of Orientation 

All the geometric models used to reward robot poses hypothesised by individual par­
ticles are sensitive to the orientation of the robot. Obviously a small change in the 
orientation of the robot will result in a dramatic change in the sensor model response. 
This means that the particle set distribution must explore potential orientations in the 
state space thoroughly to produce accurate tracking results. In order to reduce the 
need for an excessive number of particles to facilitate the orientation search, an initial­
isation phase can be used to approximate the robot's orientation before local position 
estimation begins. 

Landmarks which have tracked well in the current image provide information about 
the robots orientation. In general, within the area surrounding a place's reference 
position the observation angle to a particular landmark does not change dramatically 
due to translation from the reference position. Any significant changes, therefore are a 
result of rotation, and can therefore be used to initialise the local positioning system's 
orientation estimate. The current system performs this initialisation as follows: 

Let A be the set of landmarks from a landmark set such that each landmark in the set 
has a template matching correlation measure with the current image of greater than a 
threshold value. This ensures only accurately tracked landmarks are selected. In our 
research this value was set at 0.85. Then the initial orientation~ is set to the average 
difference between the current observed radial angle of landmarks in set A with the 
reference angles of landmarks in set A: 

(L~ (0h - 0}J) 0o=------ (8 .34) n 

where, n is the number of elements in set A, and (/,0 and 0k refer to the current and 
reference angles to landmark i respectively. 
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Figure 8.25: Locations of images along the TBL odometric path 

The particle set used to explore the state space of robot positions can then be initialised 

with a Gaussian distribution around the orientation (;b. By using this initialisation 

strategy the range in the orientation axis of the local position search space can be 

reduced. Particles can then be concentrated on exploring the _X and Y axes of the 

search space. 

Experimental Setup 

An experiment was carried out using images and odometry captured during a TBL 

movement. The path originated from the reference position of a previously learnt 

place. Figure 8.25 shows the odometry from the robot path along with locations along 

the path at which panoramic images of interest were captured. Figure 8.26 shows 

the estimated positions of the landmarks from the reference position and a panoramic 

image with the reference landmark templates. Using this information together with 

images captured along the path and the sensor models described previously, the robot 
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Estimated Landmark Positions from Reference Position 

Reference Landmark Set 

Figure 8.26: The setup of the local positioning experiments. The estimated land­
mark positions relative to the learnt place and the reference landmark set are also 
displayed. 

performs local position estimation for each of the approximately 500 sensor samples 
along the path. 

Throughout the sequence of images the landmark templates are tracked and their ob­
served radial angle and the odometry at each corresponding sample point form the in­
put to the particle filter performing local position estimation. Examples of the tracked 
landmarks at different locations along the path are included in Figure 8.27. The av­
erage landmark template correlation value of the landmark set for each image in the 
path is presented in Figure 8.28. The landmark tracking performance peaks when the 
images in the sequence correspond to locations along the path which are close to the 
reference position. 

For each experimental run, the 2000 particles in the particle set were initially randomly 
distributed around the reference position in a Gaussian distribution with a variance 
of 100mm. The local position estimate at each iteration of the particle filter, was said 
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a) 

b) 

c) 

d) 

e) 

Figure 8.27: Tracked landmarks at identified locations along the TBL motion path. 
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Figure 8.28: The Landmark Landmark Recognition Performance (LRP) for reference 
landmark set over the path traversed by the robot. 

to be the robot pose represented by the particle in the particle set with the highest 
probability as measured by the sensor model. 

The local position estimation using the particle filter approach was applied to the path 
described above. On three separate trials, the three different sensor models were eval­
uated for their value to local position estimation. 

Assumed Depth Sensor Model Results 

Figure 8.29 shows the local position estimation results using the assumed depth line 
intersection sensor model. The estimate is noisy and continuously jumps around, al­
though the basic shape of the TBL movement can be observed. The noise in the po­
sition estimate is as bad as that in the estimate provided by the heuristic approach. 
Unlike the heuristic approach however, by incorporating the odometric information 
into the position estimate as occurs using the particle filter approach, the scale of the 
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Figure 8.29: The estimated local position along the TBL path using probabilistic al­
gorithm and assumed landmark depths . 
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robot movement is kept, and the estimated path is not as skewed. The noise present 

in the estimated path can be attributed to the simplicity of the assumed depth sensor 

model and the method used for obtaining a position estimate from the particle set. 

The assumption that landmarks representing a particular place are all at a constant 

depth means that the robot pose probability distribution defined by such a model is 

not always correct and can be inconsistent between samples. In addition , the large 

depth variance that such an assumption necessitates results in large areas of the state 

space being rewarded for a given observation. These two problems lead to a particle 

set that is distributed over a large area and has associated particle probability values 

that vary greatly. 

Figure 8.30 shows the particle set distribution produced by the assumed depth sensor 

model for various observations over the initial ..,y axis movement of the robot path. The 

particles are initially distributed around the reference position as shown by the yellow 

cloud of points. The distribution then moves along the _X axis due to the introduction 
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Figure 8.30: The particle set distribution for various observations during the as­
sumed depth sensor model local positioning experiment. 

of the odometry information. The assumed depth sensor model does not condense the 

particle set distribution towards a local position estimate. As a result the underlying 

distribution is inconsistent, thereby causing the measure of the particle containing the 

highest probability in the set to jump around between iterations of the particle filter 

cycle. 

Although the sensor model does not condense the particle set, it can be observed that 

the particle set does not continuously expand as would occur if the sensor model was 

contributing no information at all. The particle set distribution does expand in one 

instance in the figure, at observation 45. This is because between observation 40 and 

45 the sensor sampling rate decreased sharply and a large amount of noise was in­

troduced into the system, as there was a large time period when no sensor data was 

incorporated into the filter. 

Imprecise geometric modelling leads to the errors in the sensor model as shown in 

Figure 8.31. Observations from the various identified images along the TBL motion 
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Observation a) 

Observation b) Observation c) 

Observation d) Observation e) 

Figure 8.31 : Example observations from the local positioning experiment using the 
assumed depth sensor model. The images show the observations of landmarks in 
the landmark set from the most likely particle. The landmarks are shown at their 
assumed depth. The length of the landmark observation lines reflect the contribution 
to the particle 's probability measure. 
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path are shown. The observation diagrams show the landmark observation angles 

from the robot pose associated with the particle with the highest probability measure. 

The coordinate system is centered about the reference position of the learnt place. The 

landmarks are drawn as ellipses at the assumed depth and variance. The length of 

the landmark observation lines is proportional to the contribution of the particular 

landmark to the particles probability measure. This contribution is dependent on the 

output of the sensor model and also the template matching correlation value. 

It can be seen that at various points along the robot path that it is difficult to identify 

a single robot pose from which it is possible to observe all landmarks at the assumed 

depths. This inability to identify one clear, small region of being the most likely cur­

rent robot pose, leads to the diffuse and inconsistent local position estimation evident 

when using the assumed depth line intersection model. 

Estimated Depth Sensor Model Results 

Figure 8.32 shows the results of using the estimated depth line intersection sensor for 

local position estimation. The accuracy of the position estimate is clearly superior 

than the assumed depth model. Knowledge of the landmark depths allows the sensor 

model to produce tighter more consistent robot pose probability distributions. This 

allows the particle set distribution to condense on the correct robot pose hypothesis 

and brings stability to the choice of most likely particle. Some error in the position 

estimate exists but the size and scale of the motion is preserved. 

The relatively noise free results produced above are due to the sensor model condens­

ing the particle set around a stable and small probability peak in the state space. The 

improvement in the particle set distribution is shown in Figure 8.33. The particle set 

is initially distributed around the reference position. At observations 30, 35 and 40 the 

particle set has condensed to a stable circular area approximately 50mm in diameter. 

This distribution spreads out due to the period of motion without sensor data prior 

to observation 45. This expansion is reversed by observation 50 although it appears 

the estimate condenses around an incorrect sample pose state. This may be due to an 

insufficient number of particles in the particle set to model the large motion between 

delayed observation samples without missing critical parts of the underlying proba-
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Figure 8.32: The estimated local position along the TBL path using probabilistic al­
gorithm and estimated landmark depths. 
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bility distribution. The condensation about an incorrect point is evident in the plot 

of local position estimation, the estimated Y position jumps from O to approximately 

50mm. The resulting estimate does not increase in error, this infers that the sensor 

model is correctly constraining the local position estimation process. 

Figure 8.34 shows example observations from the most likely particle for various im­

ages along the path. The length of the landmark observation lines denote the con­

tribution to the particle's probability measure. In this model all reasonable landmark 

measurements make a contribution, resulting in equal lengths in the observation lines. 

It is evident the estimated depth sensor model provides a more accurate, tighter, and 

more stable local position estimate than that obtained using the assumed depth sensor 

model. 
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Figure 8.33: The particle set distribution for various observations during the esti­
mated depth sensor model local positioning experiment. 

Ellipsoid Sensor Model Results 

Figure 8.35 shows the result of estimating the local position of the mobile robot system 

using the ellipsoid line intersection sensor model. The figure shows that the use of the 

ellipse model produces an accurate, stable local position estimates when compared to 

the other two models which are based on simple line intersections. The more complex 

geometric model allows the sensor model to tightly constrain the underlying robot po­

sition probability distribution, especially when observations are made that are parallel 

to the reference observations. 

The sampled probability distribution produced by the particle filter in conjunction 

with the ellipsoid sensor model at various points of time is presented in Figure 8.36. 

The initial distribution is randomly spread about the reference position. As the robot 

moves along the X axis, the ellipsoid sensor model tightly constrains the particle dis­

tribution into a small region of the underlying robot pose probability function. This 
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Figure 8.34: Example observations from the local positioning experiment using the 
estimated depth sensor model. The images show the observations of landmarks in 
the landmark set from the most current most probable particle. The landmarks are 
shown at their estimated depth. The length of the landmark observation lines reflect 
their contribution to the particles probability measure . 
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Figure 8.35: The estimated local position along the TBL path using probabilistic al­
gorithm and the ellipsoid line intersection model 

identified area accurately reflects the true position of the mobile robot as it traversed 

the path. 

The expansion of the particle set due to the prolonged absence of sensor data between 

observations 40 and 45 is present, but is curtailed by the improved sensor model, and 

the sampled distribution of the expanded set condenses onto the correct robot pose by 

observation 45 . 

The ability of the ellipsoid sensor model to closely discriminate between hypothesised 

robot poses when incorporating current observations into the local position estimate 

is shown in Figure 8.37. The figure shows several example observations from var­

ious positions along the robot path. The observations from each figure are plotted 

from the particle which has been identified as the most likely mobile robot pose by 

the sensor model. The length of the lines representing the landmark observations are 

proportional to the observations contribution towards the particle's probability mea­

sure. When compared to the observations from the previous two models it is apparent 



8.1 Local Positioning Within Places 

300 

200 

100 

E 
s 
C 
0 0 :;:::; 

·u5 
0 a.. 
>-

-100 

-200 

Particle Set Distribution for Ellipsoid Line Intersection Sensor Model 

.... ; : 

-- -
... , .•... - ~ .... . ... ,4., . : .... ,~ -

•• T"" ' . . . . . :· . . . . . . 

Obs0 
· Obs 30 

Obs 35 
• Obs 40 
• Obs 45 
• Obs 50 

-300'-----'-----'-----'------'-----'----___J'------'----.....I 
-100 0 100 200 300 400 500 600 

X Position (mm) 

Figure 8.36: The particle set distribution for various observations during the ellip­
soid line intersection sensor model local positioning experiment. 
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that the current model discriminates more finely between observation angles, as there 

are fewer long observation lines for the ellipsoid model. This shows that the cur­

rent model only rewards the most probable observations, thus leading to more tightly 

constrained probability distributions and ultimately a more accurate local position es­

timate. 

The ability of the ellipsoid sensor model to more finely discriminate between compet­

ing robot pose hypotheses produces a more accurate robot pose probability distribu­

tion and therefore the particle filter condenses around a more accurate local position 

estimate than the previous two sensor models. 

Sensor Model Comparison 

The superiority of the ellipsoid line intersection sensor model compared to the as­

sumed depth and estimated line intersection sensor models is shown in Figure 8.38. 
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Figure 8.37: Example observations from the local positioning experiment using the 
ellipsoid line intersection depth sensor model. The images show the observations of 
landmarks in the landmark set from the most current most likely particle. The land­
marks are shown at their estimated depth with the uncertainty ellipse surrounding 
them. The length of the landmark observation lines reflect the contribution to the 
particle 's probability measure. 
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Figure 8.38: Error in the combined X and Y location estimate for the three sensor 
models. 
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The error of the local position estimate at each image captured along the example 

path for each of the three sensor modes is shown. The error (distance of x, y estimate 

from the corresponding x, y odometry measurement) of the assumed depth model is 

plotted in green, the estimated depth model in blue and the ellipsoid model in red . 

The error in the local position estimate obtained with the ellipsoid model appears to 

reach a peak of approximately 40mm (if outliers are removed) with a mean error of 

approximately 30mm, which is about half that of its nearest rival. 

The peaks in the error plot that can be observed around the 45th image in the robot 

path are associated with the expansion of the particle distribution in all sensor models 

that occurred due to the delay in sensor sampling discussed above. 

Figure 8.39 shows the individual X and Y axes components of the ellipsoid sen­

sor model error measurement presented in Figure 8.38. The increases in error occur 

mainly along the axis of current motion. The first part of the robot path consisted of 
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Figure 8.39: The separate X and Y error components for the ellipsoid line model 
local position estimates. 

motion solely along the X axis, whereas the second half of the path involved mostly 

Y axis motion. In the axes error plots the X axis error can be seen to grow predomi­

nantly in the first half of the path, the Y axis in the second half. This implies that the 

direction of robot motion was estimated accurately, and there was some error in the 

estimated distance travelled along that direction. An elongated particle filter distri­

bution supports this implication. This result suggests that the ellipsoid model tightly 

controls the direction of motion and the orientation from which the robot makes the 

observations. 

This idea is called into question when the orientation estimation error is investigated. 

Figure 8.40 shows the orientation estimation error for each of the three sensor models 

used in the local position estimation process. The green plot shows the error in the as­

sumed depth model orientation error, the blue line that of the estimated depth model 

and the red line that of the ellipsoid sensor model. The two simple line intersection 

model produce orientation estimates which are near the constant odometry orienta-
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Figure 8.40: Orientation estimate error for the three sensor models. 
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tion measure of O deg throughout the entire path, whereas the orientation estimate 

error produced by the ellipsoid model varies greatly in comparison. 

This error is alleviated when it is combined with the steering angle estimate, although 

the error remains large vvhen compared to the orientation error of the other two mod­

els. The oscillation in orientation could be caused by the continually adjustment of the 

steering angle by the robot controller to obtain a straight translation, which would not 

be reflected in the odometric observation measurements , although steering changes 

of up to 10 - 15 deg do seem excessive. This result is strange and it is not currently 

explained satisfactorily The fluctuation in steering and observation angles observed 

in the ellipsoid model , and its inherent sensitivity to orientation results in accurate 

position estimation of the more easy to validate x and y parameters. 
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Unoccluded Image 

Occluded Image 

Figure 8.41: An example of tracked landmarks in an unoccluded and an occluded 
panoramic image. 180 degrees of the image is occluded by white noise. 

Local Positioning under Occlusion 

A robot system performing local position estimation in dynamic environments must 

be able to overcome the problem of landmarks becoming occluded by moving objects. 

If a moving object passes between the panoramic sensor and the physical landmark in 

the environment, the landmark tracking process for that particular landmark is inter­

rupted and potentially incorrect observation data will be introduced into the estima­

tion process. 

To perform robust local position estimation we need overcome the noise introduced 

by occlusion. Our research attempts to handle the problem of occlusion by evenly dis­

tributing landmarks throughout the image and by incorporating the template match­

ing correlation reliability (Chapter 4) into the probability calculations of the sensor 

model, as defined previously. 

In order to test the ability to estimate a mobile robot's local position in the presence of 

visual scene occlusion, experiments similar to the local positioning experiments were 

performed with altered input images. Areas in the panoramic images captured over 
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Figure 8.42: The Landmark Recognition Performance (LRP) for the normal and oc­
cluded image sets. 
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an example robot path were drawn over with white noise prior to landmark tracking, 

thereby eliminating views of the majority of landmarks and causing false observation 

angles to be reported. White noise was used in order for the landmark tracking system 

to have no chance in detecting a landmark anywhere near its original position, which 

might happen in the real world when a small moving object temporarily occludes a 

landmark from view. 

A region of 180 deg of the panoramic images was over drawn with white noise. An 

example is shown in Figure 8.41. The white noise region occludes three quarters of 

the landmarks used to represent the learnt place, leaving only four landmarks from 

one sector of the visual field visible. The average landmark tracking correlation per­

formance for occluded versus non-occluded images over the robot path is shown in 

Figure 8.42. The LRP performance for the occluded image set is very poor, not rising 

above the 0.7 mark where the performance for non-occluded images does not fall be­

low the 0.75 mark. An LRP of 1.0 means perfect correlation for all landmarks in the 
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Unoccluded Observation Occluded Observation 

Figure 8.43: An example observation produced by landmark tracking in an unoc­
cluded and occluded image. The observation lines of occluded landmarks are short 
due to poor tracking results. 
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Figure 8.44: The estimated local position along the TBL path using probabilistic al­
gorithm and the ellipsoid line intersection model with an occluded image set. 
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landmark set. An observation using poor landmark tracking results is presented in 

Figure 8.43. There are only four reliable landmark observations from which to base 

the local position estimate, the occluded landmark observations are all at an angle 

which disagree with the displayed robot pose. 

The results of performing local position estimation with the occluded image set are 

shown in Figure 8.44. Although the local position estimate is noisier than when using 

non-occluded images, the basic shape of the movement was estimated correctly. In 

fact the error in the occluded local position estimate is comparatively equal to that 

of non-occluded position estimation. These results show that the current system can 

perform accurate local position estimate even in the presence of large scale continuous 

occlusion, provided that a small number of landmarks can still reliably be observed. 

The number of landmarks necessary to maintain accurate local position estimation 

varies on the orientation and depth of the landmarks. In general, three landmarks 

from distinct sectors of the environment is sufficient for accurate position estimation. 
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Local Positioning and the Data Association Problem 

The data association problem in mobile robot localisation is the problem of matching 

sensory perceptions with internal representations of the environment. In particular, 

the difficulty lies in associating the current sensory data with the correct portion of the 

internal representation. Localisation methods which use abstracted features to rep­

resent the environment are especially susceptible to this problem as they can contain 

many ambiguous situations. 

Our research uses a visual landmark representation which actively seeks unique land­

mark templates therefore incorrect data association is less of a problem. The problem 

might still occur in situations where there is a sparse visual scene. A data association 

problem could occur in the matching process between the places landmark set and the 

current panoramic view, when an incorrect landmark observation is made with a high 

recognition measure. For incorrect position tracking results to occur, not only would 

a number of landmarks in a set have to be strongly mis-matched, but the pattern in 

which they are distributed throughout the visual scene would have to be consistent 

with the reference observations. Therefore it is highly unlikely that an odd occurrence 

of mis-matching landmarks with a high correlation measure will significantly affect 

the process of local position estimation in the current system. 

The ability of the current system to perform local position estimation in the face of data 

mis-association was tested by manually inducing incorrect landmark tracking over the 

example path. Mis-associated landmarks were reported to have high correlation levels 

in incorrect regions of the visual scene. Figures 8.46 and 8.47 show an example of land­

mark tracking and the resulting observation when five landmarks from the landmark 

set were mis-associated. The observation image shows that unlike the mis-matched 

observations seen in the occlusion experiment, the observations lines are consistently 

long, representing the high confidence the system has in these observations. By con­

sistently returning high correlation measures for incorrectly matched landmarks, the 

local position estimation process is subject to ambiguous and misleading information, 

as is seen in the data association problem. 

Figure 8.48 shows the results of estimating the robot position when five landmarks 

consistently report mis-associated observations. Although there is noise , especially 



8.1 Local Positioning Within Places 

Image with Correct Data Association 

Image with Data Mis-association 

Figure 8.46: An example of tracked landmarks with and without data mis­

association. The five landmarks across the top of the image are mis-associated. 

Observation without and with data mis-association 

Figure 8.4 7: An example of data mis-association showing the resulting observation 

image. The long observation lines which do not intersect with the correct landmarks 

are observations of mis-associated landmarks. 
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Figure 8.48: The estimated local position along the TBL path where 5 landmarks are 
incorrectly tracked through the entire path .. 

away from the center of the movement, the general path of the robot has been esti­

mated well. The estimation error is shown in Figure 8.49 along with the results for 

experiments with one and three landmarks being mis-associated. The error is consid­

erably greater than when there are no data mis-associations, growing to a maximum of 

about 12cm. The peaks in the error plot correlate with locations along the path when 

the robot is most distant from the reference position. This suggests that data mis­

association accentuates the reduction in position information available as the robot 

leaves the area immediately surrounding the reference position. This leads to an in­

ability to constrain the particle set and a noisier position estimates at the extremes of 

the TBL movement. 
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Figure 8.49: A comparison of the error in local position estimate when 1, 3 and 5 
landmarks suffer from data mis-association. 
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The previous section showed how it is possible for a mobile robot system using visual 

landmarks in panoramic sensors to accurately localise relative to the reference position 

of a learnt place. An accurate local position estimate allows a robot to perform precise 

navigation tasks within the area surrounding the learnt place. In order for a mobile 

robot system to be useful it needs to be able to navigate to places beyond that covered 

by a single learnt place in a topological map. This means navigating between places 

in the topological map while maintaining a position estimate. 

The benefits of topological mapping derive from their sparse representation. A prob­

lem associated with a spare representation is that it can be difficult to implement such 

a representation which captures the relationships between each place in the map on 

a global reference frame . The desirability of maintaining a global frame of reference 

is questionable as preserving the accuracy of such a reference frame over large dis-
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tances can is a difficult problem in itself. In topological maps position estimates can 

only be made relative to the reference positions of places in the map. The problem of 

maintaining a position estimate while navigating between places in a topological map 

means that at some stage during the movement between two particular places, a robot 

must conceptually switch its localisation reference frame from one place to another. 

Passing Position Estimates Between Places 

A mobile robot moving away from a learnt place S1 performs local position estimation 

relative to the reference position of that place. As it approaches another place in the 

map, S2 , the landmark recognition performance for S1 will be decreasing while that 

for place S2 will be increasing. At some point during the movement, the landmark 

recognition performance for landmarks representing place Si will rise above that of 

S1 , signalling that the robot is now more likely to be nearer to place ,'3-i. At this stage 

it has a local position estimate relative to the reference position of S1 . The task now is 

to transform the position estimate so it is relative to place S2 , which is now providing 

more reliable landmark tracking information. 

The key to making this transformation is the existence of a transition Ts1 +-+52 between 

the two places. Of course if this particular path has not been travelled before, there 

will not be an existing transition and one must be defined according to the method 

described in Chapter 7. Assuming that there is already an existing transition, or that 

one has just been defined, the position estimate can now be passed between places 

using the spatial information contained in the transition definition. 

Figure 8.50 illustrates the situation further. At the moment when the robot system 

decides to switch its localisation reference frame from place S1 to place S2 , the robot 

is at point P51 , the robot pose P relative to the reference frame defined by S1 . The 

problem is to calculate a value for P52 , the robot pose P in relation to the reference 

frame defined by place S2 . The new pose can be calculated as follows: 

where a is the difference in angle between the two coordinate systems defined by Si 
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Figure 8.50: The geometric relationship of passing a position estimate between two 
connected places in the topological map. 

a= 1 1 - ( 1 2 - rr /2) (8.36) 

remembering Ts 1 • S2 = ( d1, 1 1) and Ts2 • s1 = ( d2, 12 ) as presented in Chapter 7. This 

allows 5 1 to be defined in terms relative to S2 as: 

(8.37) 

In this fashion a position estimate relative to one place can be passed to another place 

using the spatial relationship defined by the transition information. 

Once a local position estimate has been transformed to be relative to the place to­

wards which the robot is travelling, the particles in the particle filter can be distributed 

around this estimate. By spreading the particle distribution about the estimated po­

sition any errors contained within the previous estimate relative to the first place or 

in the transition information are overcome. The robot proceeds with local position 

tracking relative to to the new place, until another place transition has been detected. 
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Map of Places and Transitions 

Place 1 Reference Image 

Place 2 Reference Image 

Figure 8.51 : The topological map used in the position passing experiment. The tran­
sitions between the two places are drawn in blue. The two place 's landmarks are 
shown in images captured from the place's reference positions. 

A Real World Example of Local Position Passing 

The passing of local position estimates between places has been implemented on a 

real world mobile robot. An experiment which displays the robot's ability to track its 

position between two places is presented. 

Figure 8.51 shows a topological map with two places connected by known transitions. 

Panoramic images containing the reference landmark set for each place in the topo-
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Figure 8.52: A robot path from place 1 to place 2 in topological map. 

logical map are also shown. 

In this experiment the mobile robot executed a path from place 1 to place 2. The path 

followed is shown in Figure 8.52. In traversing this path, the robot performs landmark 

recognition on the landmark sets of each of the two places. At the start of the path the 

landmark set for place 1 is recognised more strongly, whereas the landmarks of place 2 

perform better towards the end of the path, as the robot approaches place 2. The LRP 

for both places over the complete robot path is presented in Figure 8.53. Due to this 

difference in tracking performance, it makes sense to estimate the local position of the 

robot using the landmark set which produces the best recognition results. The goal of 

this experiment was to successfully track the robot's position over the complete path 

using local position estimates relative to each place. 

Figure 8. 54 shows the state of the system in various locations along the example path. 

In these images, the place with the higher Landmark Recognition Performance (LRP) 

is drawn as a red circle, and the local position is subsequently estimated relative to 

that place. Initially the landmarks describing place 1 have the higher LRP and thus 

the robot position is at first estimated relative to place l's reference position. The 

estimated path taken relative to place 1 is shown by the black dots in part a) of Fig­

ure 8.54 , while the particle filter particle set distribution is plotted by the green dots . 

At the point where the LRP performance of place 2 rises above that of place l's, the 

position estimate relative to place 1 is transformed to be relative to place 2 using the 

transition information, and a particle filter for local position estimation in place two 
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Figure 8.53: The Landmark Recognition Performance of the two places from images 
captured during the traversal of the path. 

is initialised as shown in part b) of the figure. The green blob is the particle set of 

poses relative to place 2 distributed about the transformed position estimate. Part c) 

of the figure shows the state of the system at the next step, where the particle set has 

condensed down to a correct estimate of the robot's local position relative to place 2. 

Figure 8.55 shows the input to the particle filters from the panoramic sensor and land­

mark tracking system prior to and immediately after the passing of the position esti­

mate between the two places. The top two images in the figure show the landmark 

tracking results of the landmarks belonging to place 1, and the observations they form 

when used in the sensor model. The bottom two images of the figure show that af­

ter the system has detected the switch to place 2, the system is now using landmark 

observations derived from the landmark tracking results of place 2's landmark set. 

Using this method, position tracking was maintained over the entire path that the 

robot system traversed. The complete estimated path is shown in Figure 8.56. 
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a) Close Up 

b) Close Up 

c) Close Up 

Figure 8.54 : Position passing between places in the topological map. Part a) shows 

the estimated path the robot travelled relative to place 1. At this stage the LRP per­

formance for place 1 is higher than for place 2. Part b) shows the moment after the 

LRP for place 2 rose above that of place 1 and the particle set is now redistributed 

around the passed position estimate relative to place 2. Place c) shows a few steps 

later, the particle distribution condensing around the correct estimate. 
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Tracked Landmark Set from Place 1 

Observation from Place 1 

Tracked Landmark Set from Place 2 

Observation from Place 2. 

Figure 8.55: Tracked landmarks and observations of the two landmark sets from the 
two places at the image in the sequence when the need for position passing occurs. 
The observations are drawn from the estimated robot position. 
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Figure 8.56: The complete estimated path between the two places in the topological 
map. The path contains estimates relative to both place 1 and place 2. 

Position Tracking in a Small Topological Map 

295 

The local positioning experiments that have been presented have all been conducted 

with very short movements. These experiments demonstrated the potential accuracy 

of the local positioning system. However for such short movements odometric mea­

surements by themselves can provide similar accuracy if the initial position is known. 

To test the ability of our system to maintain an accurate local position estimate in the 

face of drifting odometry measurements , it is necessary to perform experiments with 

longer and cyclical paths. An experiment of this scope is detailed and the systems 

position tracking estimation results are compared to those produced using only odo­

metric measurements. 

In this experiment the measure of robot position ground truth has been provided by 

a laser range sensor and metric map based localisation system (Thrun, Beetz, Ben­

newitz, Burgard, Cremers, Dellaert, Fox, ahnel, Rosenberg, Roy, Schulte and Schulz, 

2000) . This "ground truth" has a granuality of 10cm and it has been observed to pro­

duce erroneous measures of up to 20cm, although almost all measurements are within 

the 10cm limit. Interpretation of our system's local position estimation performance 

should therefore allow for the possibility of errors in the ground truth measure. 

A topological map containing a cycle was captured in a large room. The locations at 

which each of the five places were learnt and the transitions between the places are 
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Figure 8.57: A small topological map of five places containing a cycle used for the 
position tracking experiment. 

Figure 8.58: The path travelled by the robot in the position tracking experiment. The 
robot travels around the map four times. 

shown in Figure 8.57. 

After the map was learnt, the robot then traversed a cyclical path visiting each place 

in the topological map numerous times. The path travelled originated from place 1 in 

the map and followed the route shown in Figure 8.58. The displayed path completed 

the full circuit described by the topological map four times, travelling approximately 

2.Sm in total. During path execution the robot continuously recorded odometric infor­

n1ation and panoramic images. Over the extent of the path 4100 images and odometric 

measurements were logged. The final position of the robot after the path was complete 
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Figure 8.59: The path travelled by the robot according to odometric information. 

Figure 8.60: The estimated path travelled by the robot. The position estimation pro­

cess used both odometric and panoramic vision sensor data. 

is shown near Place 1 by the small blue circle. 
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The odometry measurements captured over the path are plotted in Figure 8.59 relative 

to the initial starting position at place 1. The odometry initially follows the travelled 

path quite closely but eventually the accumulated error in the odometry measure­

ments causes the estimated path to skew significantly from the true path. The ado­

metrically estimated final position of the robot is shown by the blue circle. The final 

position is about 50cm away from that indicated by the true path plot. This result 

clearly demonstrates the need for additional sensor data to correct the accumulating 

odometric error. 
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Figure 8.61: The error in position estimation from the true path from the estimated 
and odometric paths. 

The results of performing position tracking over the cyclical path are shown in Fig­

ure 8.61. The black dots in this figure show the estimated position of the robot at each 

point along the path. The green dot shows the position estimate of the robot at the 

end of the path. After the entire 25m path is complete the position estimate produced 

by the current system is approximately 15cm from the ground truth location. This can 

be compared to the error of approximately 50cm for the final odometric estimate. The 

mean error of the our system's local position estimation over the path isl 7.06crn. 

Although the estimated path is noisy it does not suffer from the drift seen in the odo­

metric results. If the robot was to continue traversing the cycle in the topological map , 

the odometric estimate would continue to grow, whereas as the error in the estimate 

produced by our system would be maintained at the same level. The noise in the 

estimate is introduced by poorly tracked landmarks and the inaccuracies of passing 

position estimates between places. It can be seen however that the error in the local 

position estimate is bounded, with certain sections of the topological map , especially 

around place 2 providing very accurate position estimates. At these places, the system 

uses accurate landmark tracking information to correct and constrain the distribution 

of the particle set representing the robot's position estimate. 

The ground truth measure is subject to an error of approximately 10cm itself, so it 
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is difficult to interpret the possible position tracking accuracy of the current system, 

especially given that the reported local position error remains relatively constant over 

the entire path. The local position estimation results over the TBL path suggest that 

an accuracy of less than 5cm is possible within an individual place. Of course as 

the robot moves between places, noise is introduced due to moving away from the 

reference positions and switching places and this accuracy is lost. Our system can 

achieve position tracking accuracy of within 15 - 20cm although much more accurate 

estimates can be achieved when the robot moves close to the reference positions of 

places in the map. 

8.3 Summary 

This chapter has described the application of the proposed multi-level spatial repre­

sentation for mobile robots to the problem of local position estimation. Methods for 

performing local position estimation were presented and experimentation validating 

our approach was performed. In particular the following results were achieved: 

• Particle Filter Approach to Local Position Estimation: The use of the particle filter 

state estimation approach to solve the mobile robot localisation problem was 

introduced. In comparison to other systems, this system attempts to use this 

approach with a topological representation and visual landmarks. 

• Geometric Sensor Model for Panoramic Vision Sensor: Novel sensor models for parti­

cle probability evaluation of varying geometric complexity were developed and 

evaluated. In particular the geometric models captured the sensor noise and 

geometric properties specific to the use of visual landmarks and the panoramic 

sensor. It was found that modelling the landmark uncertainty as an ellipsoid and 

the current observation as a ray produced the most accurate probability density 

functions while maintaining real time constraints. 

• Accurate Local Position Estimation in a Topological Representation: Using the ellipsoid­

line intersection sensor model local position estimation over a path within a 

given learnt place was achieved with an error of less than 4cm. Experiments 

confirming the systems robustness in the presence of occlusion and data mis-
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association were presented. 

• Position Tracking: A method of passing position estimates between places to 

achieve local position tracking along a path was introduced. A position tracking 

experiment throughout a topological map demonstrated the systems ability to 

overcome odometric drift and produced estimation results within a 15 - 20cm 

error of the metric map based "ground truth" measure. 

The particle filter approach to mobile robot localisation allows for the approximation 

of arbitrary robot position probability density functions. This is important in the case 

of the local position estimation in the current system as the noisy sensor informa­

tion can produce non-Gaussian distributions. When applied to the restricted area sur­

rounding the reference position from which a place was learnt, it can provide very 

accurate position estimates despite the noisy and often inconsistent information pro­

vided by landmark observations. The 4cm accuracy in the local position estimate is 

quite remarkable given the low resolution of the vision sensor and the loose coupling 

of odometric and visual sensor data. The accuracy is achieved through the discrim­

inatory ability of the ellipsoid-line intersection sensor model and the particle filter's 

propensity for condensing about the correct estimate. The chosen sensor model bal­

ances the computation cost of particle evaluation and the ability to model the process 

noise in the system. 

Position estimation between places was less accurate but was robust to errors due to 

odometric drift. The accuracy of position estimation within places necessarily is de­

pendent on the distance from the reference position as the more accurate measure in 

a landmark's position estimate is its angle from the reference position rather than the 

depth measurement. This results in a range of achievable position accuracy as the 

robot moves between places in the topological map. It should be assumed that a robot 

that needs to perform very accurate measurements near a particular location in an 

environment, would learn a place of that location, thus maximising the potential posi­

tion estimate accuracy. Although the initial location of landmarks within a panoramic 

image are computationally expensive, position tracking can be maintained close to 

real time by tracking landmarks through the image sequence. 
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The first goal of this research was to realise a mobile robot system which constructed a 

topological internal representation of its environment which allowed for accurate po­

sition estimation on par with contemporary metric map based systems. Given the lo­

cal position estimate accuracy which is achievable near the reference position of learnt 

places, it can be concluded that this goal has been achieved. It is easy to imagine 

that improvements to the resolution of the panoramic sensor and an introduction of 

a tighter synchronisation between the sensor measurements, that this accuracy could 

be improved. 

A minor draw back to local position estimation in terms of accuracy is the basic nature 

of the visual landmarks. The nature of visual landmarks themselves mean that they 

can capture the appearance of objects at different depths of the environment within 

a single template. This can lead to inaccurate initial depth estimates and noisy ob­

servations during local position estimation. A landmark identification system which 

selected regions of objects at a consistent depth would produce much more accurate 

results. 

This chapter has described methods for performing the task of local position estima­

tion. Experimental results have been presented which confirm the systems ability to 

perform accurate local position estimation in a topological map representation, using 

a noisy visual sensor. 
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Chapter 9 

Global Localisation 

Global localisation is the process of locating a robot in an internal map from an un­

known start position. In our research this means localising to a particular learnt 

place in the topological map. In this chapter the global localisation problem is in­

vestigated and a solution is proposed involving the use of the low-level landmark 

based place representation. To globally localise the robot system must match the cur­

rent panoramic view with the landmark sets of all places in the topological map. The 

results of this matching can be used to discriminate between places on the basis of 

recognition performance. The method for this solution is described and experimen­

tal results on place discrimination are presented. A high place discrimination ability 

reflects the uniqueness of individual places defined by sets of visual landmarks and 

validates the underlying low-level representation. Experiments combining the results 

of global localisation and local position estimation are reported. The computation 

costs involved in the process of global localisation using the low-level representation 

are expensive. The global localisation search space can be constrained by the mid-level 

representation of local space profiles and computational costs reduced. In attempt to 

achieve continuous global localisation and local position estimation, a method for the 

detection and recovery of local position estimation is developed. Using these methods 

for continuous global localisation and local position estimation, the kidnapped robot 

problem can be solved. 

Section 9.1 briefly reviews the matching of landmark sets with panoramic images to 

perform place recognition. Section 9.2 reports experiments that investigate the use of 



304 Global Localisation 

sets of visual landmarks in discriminating between places in a topological map for the 

task of global localisation. Section 9.3 explains combining global localisation results 

with position estimates to track a robots position as it travels through the environ­

ment. Section 9.4 describes the use of local space profiles, the second level of repre­

sentation, to restrict the global localisation search. Section 9.5 reports on the process of 

disambiguating between places when lower localisation estimates cannot distinguish 

between multiple hypotheses. Section 9.6 applies these localisation techniques to solve 

the kidnapped robot problem introduced in Chapter 2. Finally, Section 9. 7 presents a 

summary and discussion about localisation in systems with multi-level representa­

tions. 

9.1 Matching Places 

Global localisation in the low-level representation is a matter of matching sets of land­

marks, and their associated place, to the visual scene. A brute force search of land­

marks throughout the entire image is undertaken for each set of landmarks, produc­

ing a measure of Landmark Recognition Performance (LRP). The robot is initially as­

sumed to be in the place associated with the set of landmarks which have the highest 

average correlation in the current scene. Landmark set matching and LRP were dis­

cussed in detail in Chapter 4. 

9.2 Place Discrimination 

Place discrimination refers to the systems ability to discriminate between different 

places in the topological map when attempting to perform global localisation, with 

the goal of identifying the Most Likely Place (MLP) that the current visual view could 

have been captured from. This goal can be achieved by monitoring the LRP for all 

places in the topological map. An obvious method for identifying the most MLP is 

to nominate the place whose associated landmark set has the highest LRP measure. 

Stated more formally: 
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Figure 9.1: Landmark Recognition Performance (LRP) over the example path from 
the position tracking experiment. 

(LRP(Ct, Si)= max(LRP(Ct, Si), ... , LRP(Ct, SN))) 
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2000 

(9.1) 

where Pt is the identified most likely place at time t, and LRP(Ct, Si) is the LRP 

measure gained when matching the landmark set of place ~ with that of the current 

panoramic image Ct. 

Identifying the MLP in this fashion works well for maps which contain places where 

the panoramic visual scene is similar across the whole map. Figure 9.1 shows the 

LRP performance of all places in the topological map used in the position tracking 

experiment over a cyclical path for all images captured throughout the path. The LRP 

plot for each place produces a regular peak, corresponding to the locations along the 

cyclical path when the robot captured images near the reference position of each place. 

The place with the highest measure of LRP can be easily identified as the MLP in the 

topological map at any point along the example path. This result is achieved due to 

the "uniqueness" of the landmark set for each place despite the fact that all sets were 

acquired from the same general area in the environment. 

This performance is due in part to the similarity of the visual scene from all places 

in the topological map. Given the highly unstructured and visually dense nature of 

panoramic images captured in the large room, the robot had plenty of interesting land­

marks to select. Additionally, potential landmarks are unlikely to be repeated in such 
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an irregular environment. By comparing landmark sets from regions of the environ­

ment that are visually similar, this experiment does not validate the method in situa­

tions where places in the map have varying background LRP levels. The importance 

of background LRP levels for place acquisition in topological maps was discussed in 

Chapter 7. To validate the place discrimination ability of our method, experiments 

must be performed with a topological map which covers several areas of the environ­

ment which are visually disparate and contain visually sparse scenes. 

Figure 9.2 shows a large topological map which contains places located in disparate 

locations in the environment. The topological map contains 50 places, shown in red, 

connected by transitions which are shown in blue. In particular the visual scene from 

places acquired at locations inside the large room at the bottom of the map are very 

different to those located in the corridors. Figures 9.3 and 9.4 show landmark sets 

and visual scenes from the places marked in Figure 9.2. Note that the landmark set 

from corridor environments contain many landmarks which are likely to be repeated 

in such a visually sparse and regular environment. The entire data set of places in this 

topological map and paths throughout the map are included in the CD-ROM which 

accompanies this thesis. 

A robot executed a path which traversed the topological map, during which it con­

tinually logged odometry information and panoramic images. The path is shown in 

Figure 9.5. The LRP of each place in the topological map was calculated for every 

image captured along the example path, and is plotted in Figure 9.6. The figure is ob­

viously crowded as it contains the LRP plots of the 50 places in the topological map1 . 

The interesting feature is the peaks in the graph. Each peak represents the high points 

of individual place's LRP over the motion path. 

This result is presented in Figure 9.7 as a surface in image and map space. The LRP 

of each place is shown for every image along the path. The true path of the robot can 

be imagined as a diagonal line across the space. The plot of the LRP surface compares 

well with the true path. The background LRP noise can be seen by the troughs and 

peaks of the surface which do not lie along the true path. 

Overall the result is promising, landmark sets provide a unique response for the ma-

1 Each successive place is shown as a different colour plot. Unfortunately the plotting software only 
allowed 7 different colours so colours are repeated. The colour order from place 1 to place 7 is: blue, red, 
green, cyan, black, yellow, maroon. This is repeated every 7 places. 



9.2 Place Discrimination 

Figure 9.2: Topological map of the test environment for the place discrimination 

experiment. The 50 acquired places are shown in red , while the transitions between 

places are shown in blue. 
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Figure 9.3: Example landmark sets and visual scenes from the reference position of 
places in the topological map: Places 1, 2, 9, 16, 23. 



9.2 Place Discrimination 

P29 

P37 

P43 

P44 

P50 

Figure 9.4: Example landmark sets and visual scenes from the reference position of 

places in the topological map: Places 29 , 37, 43, 44 , 50. 
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Figure 9.5: Example path which traverses the topological map used in the place 
discrimination experiment. The 50 places in the topological map are shown in red 
while the path the robot system travelled is displayed in green. 
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jority of the path, there are only a couple of places where no peaks are apparent. We 

can further refine our proposed method for MLP identification. 

There is one other measure which is readable available and which impacts greatly on 

identification of likely places which we have so far ignored. The background LRP 
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LR P Surface Over Path and Mip Space 

Figure 9.7: The LRP surface of each of the 50 places in the topological map over the 
example path. 

level for each place that was detected and recorded at the time of place acquisition. If 

the LRP measure for a particular place is subtracted from the background LRP level 

for that place, then the resulting quantity gives an indication as to the strength of 

the LRP measure irrespective of the background levels. This is particularly helpful 

when comparing LRP of places with differing background levels. The formulation for 

identifying the MLP then becomes: 

i 1 N (Qt = max(Qt, ... , Qt )) (9.2) 

where again Pt is the identified most likely place at time t , and LRP(Ct, Si) is the LRP 

measure gained when matching the landmark set of place c'£ with that of the current 

panoramic image Ct, and now sf gLRP is the background LRP level for place Si , and 
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Figure 9 .8: The difference between the LRP and the background LRP levels for each 

of the 50 places in the topological map over the example path. 
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Q~ is the difference between the measured LRP and the background level for place i at 

time t. 

Applying this new formulation for MLP identification to the images captured during 

the motion path gives the results shown in Figure 9.8. This is shown as a surface over 
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Difference between LR P and Background ~RP Surface Over Path and Ma.p Space 

Figure 9.9: The difference between the LRP and the background LRP levels for each 
of the 50 places in the topological map over the example path. 

the image and map space in Figure 9.9. When compared to the results produced by 

LRP measurements, most of the existing peaks have been strengthened and new peaks 

have emerged giving an overall better indication of the MLP at each stage along the 

path. In the surface plot, the magnitude of background peaks and troughs has been 

reduced. Using this method of place discrimination for exhaustive global localisation, 

the MLP can be correctly identified over 100% of the images in the path. 

This improvement is difficult to see due to the large number of places. The improve­

ment gained by incorporating the background LRP levels can be seen when comparing 

two places from locations in the map with disparate visual scenes. Figure 9.10 shows 

the LRP of places 2 and 43 over the example path. Place 2 represents a location in the 

environment which is in the large room, as shown in Figure 9.2, place 43 on the other 

hand , was acquired in a corridor environment. The LRP figure shows that although 

both places display peaks in the plots of their own performance at the correct locations 

along the path, the background LRP level of place 43 nearly overwhelms the peak LRP 
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Figure 9.10: LRP of places 2 and 43 over the example path. 

level produced by place 2. 
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In comparison, Figure 9.11 shows the difference between the LRP measurements and 

the background LRP levels for each of the two places. Now it can be seen that both 

places form a peak even when compared to the other place, the new formulation over­

comes the differences in background LRP levels between the two places. 

Global localisation can be achieved throughout t..1--ie topological map by matching the 

current panoramic view with the landmark sets from all places in the topological map. 

The uniqueness of individual landmark sets throughout the entire topological map in 

conjunction with knowledge about the background recognition levels can successfully 

identify the MLP from which a robot makes an observation of the environment. The 

uniqueness of the visual landmark representation can be demonstrated by matching 

each places ' landmark set with the panoramic image captured from the reference posi­

tion of all other places in the map. Figures 9.12 and 9.13 show that only when matching 

a reference landmark set with the place 's reference image is a high correlation result 

achieved. 
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Figure 9.11: The difference between the LRP and the background LRP levels for 
places 2 and 43 over the example path. 

9.3 Combining Global Localisation and Local Positioning 

Local Positioning can be used in conjunction with the topological map to estimate 

the robot's position along a route through a map without initial knowledge as to the 

robot's position. The global localisation system can be used to identify the MLP at each 

step along the route. Within the MLP the local position of the robot can be estimated, 

tracked and passed to the next identified MLP. 

In smaller maps with landmark sets that were captured in visually dense environ­

ments global localisation and local position tracking can be carried out to produce a 

reasonable position estimate. When the robot is executing long paths through a dy­

namic and visually sparse environment however, the robot can become lost, with the 

particle set distribution, and subsequently the position estimate, diverging from the 

ground truth position. The nature of the Condensation algorithm which is used to 

control the distribution of particles in the particle set does not consistently recover 
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Figure 9.12: The LRP levels for each of the 50 places in the topological map when 

matched with the places' reference images. 

position tracking automatically. When this situation occurs, the robot system must be 

able to first detect that it has become lost, and second, take steps to recover position 

tracking. 

9.3.1 Detecting Loss of Position Tracking 

The robot can detect a loss of position tracking by monitoring its belief as to where it 

is in the topological map. The robot's belief as to where it is in the topological map is 

fully represented by the entire distribution of the particle set. The samples approxi­

mate the probability distribution of the robot's possible position over the area around 

the current MLP's reference position. Any attempt to calculate a confidence measure 

of the robot's local position estimate should depend on the diffusion of the particle 

set. Such a calculation is problematic in real time. Alternatively, the probability of the 

most likely particle in the particle set can be used as an instantaneous measure the sys-
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Figure 9.13: The difference between the LRP and the background LRP levels for each 
of the 50 places in the topological map when matched with the places ' reference 
images. 

tern 's belief in it's position estimate without significant additional computation. This 

probability measure is normalised, so the confidence measure relies instead on the raw 

sensor model output of the most likely particle. This measurement is the output of the 

sensor model given the current sensory view and the hypothesised robot position as 

provided by the most likely particle. 

Figure 9.14 shows the robot movement between two places in a topological map that 

was used in the position passing experiment in Chapter 8. Figure 9.17 shows the raw 

sensor model output for local position estimates along the motion path. The sensor 

model output is at a high level when the robot makes observations close to the refer­

ence position of place 1. The output level decreases as the robot moves away from the 

reference position. It increases again as the robot approaches the reference position 

of place 2. This reflects the accuracy of local position information as the observation 

location moves away from the reference location. 
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Figure 9.14: The topological map used in the position passing experiment. 
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Figure 9.15: Maximum sensor model output for local position estimates along the 

example robot path. 

319 



320 Global Localisation 

By reversing the MLP when performing global localisation on the images along the 

path between the two places, the robot can be fooled into distributing particles at 

the incorrect place. This produces a local position estimate which is incorrect. This 

information can be used as a baseline measure for a definition of loss of local position 

tracking. The peak of the sensor model output for the most probable particle within a 

mis-identified place is slightly above the sensor model output for pure chance. 

With this and other experimental validation the sensor model output threshold, y£P 

for determining loss of position tracking was set appropriately. The decision as to 

whether position tracking has been momentarily lost can be made by the predicate: 

where p( t) is the predicate that position tracking is lost at observation t, and Ff P is 

the raw sensor model output of the most probable particle at observation t. 

The robot position estimation will be unstable if every time position a loss of position 

tracking as defined causes a mass redistribution of particles. This situation could be 

caused by momentary occlusion of a large portion of the visual field by dynamic ob­

jects in the environment, which is not a true loss of position tracking. To combat this 

the robot will report a loss of position tracking when the predicate p(t) is true for a 

number of consecutive observations. 

When p(t) has been determined true for a number of consecutive observations, the 

robot's position tracking is considered to have been lost and the recovery procedure is 

started. 

9.3.2 Recovering Position Tracking 

Upon the detection of a loss of position tracking the robot attempts to recover position 

tracking by redistributing the particle set within the MLP. Such a redistribution can 

lead to the particle set condensing about the correct region of the robot position state 

space. This redistribution takes place in two steps: 

l . Local Redistribution: Upon detecting the loss of position tracking the particle set 

is distributed about the last estimate in a Gaussian distribution with a variance 
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of 200mm. This step attempts to recover from the situation where the particle set 

has mistakenly condensed into a tight region of the state space, close to the true 

robot position, and cannot recover through process noise alone. 

2. Random Redistribution: If the local redistribution step does not bring the If P 

above the threshold, the robot redistributes the particle set randomly throughout 

the MLP. This redistribution is Gaussian and is centered on the place's reference 

position and has a variance if 1 m. A redistribution of with a variance of 1 m 

should ensure a thorough search of the region in the environment represented 

by the place, given the distance between places in acquired topological maps. 

Position tracking is considered to be recovered when the sensor model output of the 

most likely particle rises above the threshold value, or the second stage of particle 

redistribution has occurred, and the count of consecutive observations of lost position 

tracking is reset. 

Figure 9.16 shows an example of position tracking and the two step recovery pro­

cess. The figure shows position estimation and particle set distribution along the path 

between the two places from the position passing experiment. Initially the position 

estimate had been manually set to create a situation where the robot is "lost". Part 

a) shows the lost position estimate and particle set. The robot detects this loss and 

redistributes the particles in the local area as shown in part b) . After the robot is still 

lost the particle set as shown in part c) is redistributed randomly throughout the area 

surrounding the reference position. Finally the particle set condenses about a more 

accurate position estimate as shown in part d) . 

Figure 9.17 shows the sensor model output for the position loss and recovery sequence 

presented above. Initially the out put is essentially zero as the robot is lost, and re­

distributes the particle set. At image five in the sequence the particle set has been 

randomly redistributed , and a particle reports improvement in the sensor model out­

put. After that, however it drops briefly as the position estimate is passed between the 

places in the map, and then grows steadily as the robot approaches the second place 

in the path. 

The robot can detect losses in position tracking within places and also recover to form 

another sensible local position hypothesis. 



322 

C: 
.g 
·;;; 
0 
a. 
>-

C: 

~ 
"' 0 
a. 
>-

Global Localisation 

Loss and Recovery of Posrt10n Tracking: Lost Loss and Recovery of Position Tracking: Locally Redcstribute Panide Set 
1000 1000 

Pa111de Set Partida Set 
• Posit.an Estimate • PosiHon Estimate 

800 800 

600 600 

400 

200 

Direct ion of 
400 1--·· 200 

C: 
0 

"" 0 G ·u1 0 0 lnijial • 0 
a. 

Robot I >-
Posijion 

-200 / - 200 

Lost Posijion 
-400 Estimate -400 

-600 -600 

-800 -800 

-1000 '---__,_ _ _,_____,__~~-~~-~-~~ -1000 '---__,_ _ _,_____,__~~--'--~-~-'-----' - 1000 -800 -600 -400 -200 0 200 400 600 800 1000 -1000 -800 -600 -400 -200 0 200 400 800 800 1000 
X position X position 

a) b) 
Loss and Recovery of Position Tracking: Randomly Red istribu te Particle Set Loss and Recovery of Posnion Tracking: Start Recovery 

1000 1000 
• Pa11icle Set Particle Set 

800 
• •• • • Posijion Estimate .. . 

• : ... • ~ • 800 
• Posnion Estimate 

600 600 

400 400 

...... 
200 200 • 

C: 

0 :~ ., 0 
8. 0 
>-

- 200 -200 

-400 -400 

-600 -600 

-800 -800 

- 1000 ._____,_ _ _,_____,_ _ _,____,__-'-------'--'---'-----' -1000._____,_ _ _,_____,__~~-~~-~-~~ 
- 1000 -800 -600 -400 -200 0 200 400 600 800 1000 -1000 -800 -600 -400 -200 0 200 400 600 800 1000 

X position X position 

c) d) 

Figure 9.16: Loss and Recovery of Position Tracking: a) position tracking is lost; b) 
robot attempts to recover by redistributing particles around the local area; c) robot 
attempts to recover by randomly redistributing particles throughout place; d) posi­
tion tracking has been recovered. 

9.3.3 Global Localisation and Local Positioning Experiment 

The combination of global localisation and local positioning with loss of tracking and 

recovery was applied to the path through the large topological map shown in Fig­

ure 9.5. The position estimation results are presented in Figure 9.18. Position estima­

tion over the large topological map is noisy however the general path shape can still 

be observed. Loss of position tracking occurs on several occasions but is recovered 

each time. The location along the path in at which position tracking was lost are high­

lighted in Figure 9.18 by light blue boxes. The final position estimate at the end of the 
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Figure 9.17: Maximum sensor model output for position loss and recovery. 
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path lies within 15cm of the ground truth measurement. When position tracking is 

maintained the confidence measure is above the loss of tracking threshold and the po­

sition estimate stays within a maximum error of approximately 30cm. Errors in some 

sections of the estimated path cause the error to move above 1 m but the robot always 

recognises that tracking has been lost and takes action that causes eventual recovery 

of the position estimate. 

9.3.4 Computation Costs 

The process of global localisation using landmark set matching is computationally ex­

pensive. As reported in Chapter 4, matching just one landmark set with one panoramic 

image takes 700ms on a Pentium III 750m H z processor. To match all 50 places in the 

current topological map this results in a total computation time of 35s. This is unac­

ceptable, even given the non-critical real time constraints this research placed on the 

global localisation task. In order to make the system usable and provide timely re­

sponses to tasks involving human-robot interaction , this computation time must be 
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Figure 9.18: Estimated path through large topological map using combined global 
localisation and local position estimation. The light blue boxes highlight regions 
where position tracking is poor. 
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dramatically reduced. 

9.4 Constraining the Global Localisation Search 

The computation costs involved with performing a brute force global localisation 

search over the entire topological map are prohibitive except for the most trivial of 

maps. It is desirable then, to constrain this search as much as possible in order to re­

duce the computational resources needed for global localisation. We present a method 

for constraining the global localisation search space using the mid-level spatial repre­

sentation of local space profiles. 

9.4.1 Local Space 

The concept of using a profile of the extent of local space to represent a place in a topo­

logical map was introduced in Chapter 5. This representation can constrain the global 

localisation search performed on the lower level landmark representation which is 

computationally expensive. 

When performing global localisation the local space profile extracted from the current 

sensory view can be matched with the profiles of local space used to represent the 

places in the topological map. The cost of this matching process is significantly less 

than that of matching landmark sets. The results of the local space profile matching 

can then be used to restrict the places in the map that the landmark set matching is 

applied during the global localisation process. 

Local Space Profiles in a Topological Map 

The process of forming local space profiles from panoramic images captured by a mo­

bile robot system was described in Chapter 5. Topological maps can be constructed 

which contain a local space profile of the extent of local space surrounding the refer­

ence position of each place. Figure 9.19 shows a topological map containing 10 places 

which was learnt and which contains local space profiles in it's representations of 

places in the map. A robot motion path which traverses the map is also shown in the 

figure. 
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Figure 9.19: A topological map containing local space profiles in the representation 
for each place. 

The local space profiles which represent each of the 10 places in the topological map 

are shown in Figures 9.20 and 9.21. Each local space profile is displayed as a histogram 

overlaid on a panoramic image captured at the reference position of the associated 

place. The local space profiles representing the places in the map can be grouped into 

three broad categories: 

• images captured in the large room and containing a representation of large open 
spaces; 

• images captured around the doorway between the room and the corridor, dis­

playing open areas and constricted regions; 

• images captured in the corridor representing restricted open space except in the 
axis of the corridor. 

By comparing local space profiles of the current sensor view with the local space pro-
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Figure 9.20: The local space profiles of places 1-5 in the topological map. 
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Figure 9.21 : The local space profiles of places 6-10 in the topological map. 
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files if those places in the topological map , the global localisation search space can be 

at least restricted to places within one of the three categories. 

Local Space Matching for Global Localisation 

After learning the topological map shown in Figure 9.19, the robot traversed the map 

following the displayed path. For each image captured along this path the local space 

profiles were extracted and matched against the local space profiles of the ten places 

in the topological map. 

Figure 9.22 shows the results of matching the local space profiles. Each line in the 

graphs shows the matching performance of one place in the topological map. The 

results are grouped into the three broad place categories. Part a) shows the matching 

results for places one to four, part b) places five and six, and place c) places seven to 

ten. 

In general the results show the three categories of local space. There are even rough 

peaks at the location along the path where each place was learnt. In order to sub­

stantiate the local space profiles ability to discriminate between places it is useful to 

compare the results to those gained from landmark set matching discrimination. 

Figure 9.23 shows the Landmark Recognition Performance (LRP) over the example 

path for each of the landmark sets representing the 10 places in the topological map. 

The LRP results are also divided into the three categories fo_r comparison with the 

local space results. The LRP provides a better measure for discriminating between 

places, and it is unclear that the best local space matching results always coincide 

with the best LRP results. It is clear that the local space matching results do provide 

information pertinent to constraining the global localisation search. 

Computational Benefits of Local Space Matching 

The local space matching results can be used to constrain the landmark based global 

localisation search. The results must be categorised in a qualitative fashion in order 

to identify which places in the map to search further. A simple way to do this is to 

use sets of places which are above a given threshold for local space matching. If this 

was a static threshold , many occasions could occur where the noisy local space sensor 
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Figure 9.22: Local space profile matching along the example path. Places are grouped 
into plots with similar response curves. 
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Figure 9.23: Landmark Recognition Performance along example path . Places are 

grouped in plots by similarity of the local space profile. 
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data fails to identify the correct set of places. In our system the threshold limit at 

each iteration of the global localisations search depends on the current best local space 

matching results: 

rps = max(match(Cfs, s f s), ... , match(Cfs, S f:/)) - B (9 .3) 

where rps is the local space matching threshold value at iteration t, match(Cf s, s fs 

matches the local space profiles of the current view at time step t with the local space 

profile for place i , and B is a constant value which is subtracted to give a lower limit 

on the threshold for inclusion in the matching set. 

The set of places with which to perform landmark set matching can be defined as those 

having a matching value of greater than the threshold: 

(9.4) 

where cfs is the set of places at step t that is identified for further global localisation 

searching by the local space matching results. 

The value of B is obviously crucial to . the success or failure of this approach. The 

value of B should be chosen to maximise the computational savings which results 

from constraining the global localisation search space, while maintaining inclusion of 

the correct place in the identified set. This means that the value of B should minimise 

the size of the set while achieving acceptable rates of set inclusion for all possible 

views of the current local space profile s f s over the areas covered by the topological 

map. 

To select the best possible value of B, the threshold values rps and the resulting set 

of places cLS were evaluated for every captured image over the example path shown 

in Figure 9.19 for values of B ranging from 0.0 to 0.225. Set cLs was evaluated for set 

inclusion by determining whether the place identified as the best match by landmark 

matching is an element of the set. 

The set inclusion results for the range of lower limits (B) over the example path are 

shown in Figure 9.24. The horizontal axis of the plot shows the possible values of the 

lower limit B while the vertical axis shows the percentage of the sets cfs over the 

example path that include the correct place. The percentage of sets which include the 
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Figure 9.24: Correct place inclusion in local space set for global localisation. 
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correct place is quite low ("' 60%) when B is zero. This is equivalent to identifying the 

MLP purely by the local space matching results. From this it can be seen that it is not 

possible to rely solely on the local space profile matching for global localisation. The 

percentage of sets which include the correct place rises quickly however, as the value 

of B increases and levels of at above 99% at around the value of 0.1. 

The set inclusion percentage must be balanced against the global localisation compu­

tation costs which grow as the size of the set increases. Figure 9.25 shows the cumu­

lative number of places included in the sets Gf5 over the example path for a range of 

lower limit values. At each image in the path, the size of the set Gf 5 was evaluated 

for each value of B and this size was summed over the image path. The plot shows 

that the growth in total required computation presented by the cumulative set size is 

almost linear and the slope of the relationship depends on the value of the lower limit 

B. 

Figure 9.26 shows the average set size for the various values of the lower limit B . This 

relationship is also linear with the size of B , meaning that as B increases the size of 
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Figure 9.25: Cumulative number of places in the local space set during global local­
isation over the example path for various lower bounds to the local space matching 
limit. 

the set Gf 5 increases proportionally. 

Given that there is a sharp plateau of set inclusion percentage and that the computa­

tion cost increases linearly, it is clear that the value of B must be chosen before the 

set inclusion plateauing effect reduces the contribution of any additional computation 

caused by increasing set size. Therefore in our system the value of B is set to 0.075 

which gives a set inclusion percentage of 98%, and a average set size of 4.01. These 

values can be compared with the a full search of the global localisation space which 

has 100% set inclusion and an average set size of 10. By using the second level of 

spatial representation, that of local space primitives, the search space of global local­

isation can be reduced approximately 60% at the cost of less than 2% in set inclusion 

performance. 

In terms of total computation savings generated by the use of a local space representa­

tion , the benefits can be calculated by comparing the cost of global localisation using 
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landmark recognition for all places in the topological and the cost of global localisa­

tion on the constrained place set plus the additional cost of performing the local space 

matching. 

Given that the cost of matching for one place using local space profiles is less than 1 ms 

when comparing it to the cost of matching landmark sets , 700ms per landmark set, the 

additional costs involved with local space matching of places in the topological map 

are negligible when compared to the savings. Total computation savings derived from 

the use of the local space representation then, can also be estimated at approximately 

60%. 

9.4.2 Continuous Global Localisation 

The knowledge gained from the local space profiles can be used in conjunction with 

the particle filter system to provide continuous global localisation and local position-
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ing. In order to achieve this the mobile robot system must perform the following three 

steps: 

l . Constrain the Search Space: as described previously, the localisation search space 

of all places in the topological map must be restricted in order for the localisation 

process to approach computational tractability. 

2. Perform Global Localisation: Identify potential places in the map that the robot is 

most likely to be at at this particular moment in time. 

3. Perform Local Position Estimation: use the global localisation information to dis­

tribute particle filter samples to appropriate places in the topological map to 

perform local position estimation. 

This process can be used iteratively to provide continuous localisation. However it is 

desirable to make a distinction between the localisation upon initialisation of naviga­

tion, and that of localisation with a prior estimation of robot position. 

Active Place Set 

A subset of places can be defined in the topological map in order to restrict the global 

localisation search. Membership of this set can be determined using the local space 

profile representation. This set of likely places is named the active place set. Global 

localisation using landmark recognition is performed with members of the active place 

set. In addition to the set of places Gf 5 identified by local space matching, the active 

place set, At contains as members the MLP from the last iteration R- i, and its closest 

adjacent place as defined by the transition information, ~ 1 . The complete active 

place set can then be defined as: 

(9 .5) 

The previous MLP is added to the set identified by local space matching to provide 

stability to the local place estimate in the presence of noisy local space estimates that 

occur when moving objects temporarily occlude large portions of the panoramic cam­

era's visual field. The place associated with the closest transition is also included in 

order to detect when the current local position estimate passes into the domain of an 
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adjacent place in the map that may not have been identified by the local space match­

ing process. 

Examples of active place sets constructed by applying local space matching and Equa­

tion 9.5 to real world localisations situations are shown in Figure 9.27. Each of the 

figures show a topological map and the active place sets derived from observations 

made at places along a path. Places which are included in the active place sets are 

drawn in green, whereas the places which are excluded from the set are in red. The 

positions from which the sensory views which produced the active place sets where 

taken are displayed in yellow. It can be seen that all identified active place sets include 

the places closest to the position from which the sensory views were captured. The ac­

tive set in Part a) contains only two places , thus providing a significant computational 

saving for the subsequent localisation task, while part b) only managed to restrict the 

active place set to six places. Part c) identifies three potential places. 

It should be noted that the active place sets in a) and c) are from locations along the 

path which are close to particular places, thus providing definite place matching re­

sults and subsequently small active place sets. The location from which the active 

place set in part b) was produced is closer to the center of two places, thus providing 

a weaker matching result and a large active place set. 

Initial Global Localisation 

If a mobile robot system has been turned-on or if the robot has detected it has become 

lost, it is necessary to perform global localisation with no prior knowledge as to the 

robot's location in relation to the topological map. The robot must make a full search 

of the places in the active place set to successfully localise itself. 

If computation resources are scarce, or there is a need for the robot to immediately 

move, the robot could make an almost random guess as to likely places and proceed 

with the global localisation process as from a known position. In our system we as­

sume that it is acceptable for the robot to initially perform global localisation at less 

than real time rate. 

To accomplish the initial global localisation step, the robot system simply matches the 

landmark sets of each place in the active place set, the place with the highest LRP is 
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a) Active Place Set Most Likely Place Particle Distribution 

b) Active Place Set Most Likely Place Particle Distribution 

c) Active Place Set Most Likely Place Particle Distribution 

Figure 9.27: Three examples of global localisation and local position estimation using 
the local space profiles to constrain the global localisation search. 
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Figure 9.27 Places in Active Place Set LRP Most Likely Place 
a) 2 0.87 2 

3 0.68 
b) 4 0.70 9 

5 0.65 
6 0.69 
7 0.73 
9 0.73 
10 0.68 

c) 6 0.66 10 
9 0.78 
10 0.87 

Table 9 .1: LRP for places in active place sets 

identified as the MLP and global localisation has been achieved. 

Table 9 .1 shows tbe LRP of each place in the active set for the three active set examples 

in Figure 9.27. Performing landmark set matching on the example active sets in a) and 

c) identifies the place nearest to the observation location as the MLP. The active set 

in b) fails to produce a strong candidate for the MLP when performing landmark set 

recognition, although the correct place, place 7, is in a tie for the highest with place 9. 

This is due to actual robot position lying between places in the topological map. The 

system can randomly choose the correct place as being the most likely. The rounded 

figures could reflect a situation where the tie is not actually present. However for the 

sake of producing a problematic case for analysis, it is assumed that the robot system 

incorrectly chose place 9 as the MLP. 

Figure 9.27 also shows the MLP's identified from places in the active place sets using 

LRP for the three example cases. 

Local Position Estimation 

Once the MLP has been identified, local position estimation can proceed. For local 

position estimation occurring after initial global localisation or when relocalising from 

a lost state, this means distributing the particle set about the reference position of the 

learnt place. Examples of distributing the particle set in identified places are shown 

in Figure 9.27. Parts a) and c) of the figure show particles distributed about correctly 

identified places while part b) shows what occurs when the identified place does not 
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correspond to the place nearest to where the current observation was made. 

If the place in question already has a place estimate or a transition has been detected, 

local position estimation can proceed. If the particle set is distributed around the in­

correct place, the sensor model results will detect this situation and relocalisation can 

occur through the continuous mobile robot localisation process. 

Continuous Mobile Robot Localisation 

Once global localisation and an initial distribution of particles within the most likely 

place has been achieved , the mobile robot system must maintain an estimate of the 

robot's position while executing movements throughout the environment. In the case 

that the correct robot position has been estimated, as in Figure 9.27 parts a) and c). 

This means the robot must perform position tracking to maintain the estimate with 

limited exploration of other places in the map to detect possible transitions between 

places. In the cases where the robot has incorrectly identified the MLP, the robot must 

be able to detect the loss of position tracking and perform a limited relocalisation. 

The important feature of position tracking within and between places in continuous 

mobile robot localisation is the restriction on the size of the active place set. When per­

forming position tracking the robot uses the current active place set identified by the 

local space profile matching, which also contains the previously identified MLP and 

the adjacent place reached by the closest transition to the current estimated position. 

To perform probabilistic localisation over the entire map the particles should be spread 

throughout likely places in the map to achieve a correct approximation to the robot 

position probability density function. However in our system, due to the high recog­

nition accuracy of places and the excessive computation time for landmark set recog­

nition we decided to spread particles about the MLP only . The computation of the 

likelihood of the robot being located in other places contained in the topological map 

is left to the local space profile and landmark set matching. 

Which places in the active place set should landmark set recognition be applied in 

order to identify the current MLP? If the computational resources ware available it 

wo uld be desirable to apply landmark set recognition to all places in the active place 

set. However, given the high computation cost of landmark set recognition it is desir-
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able to further limit the active place set. While the measure for local position confi­

dence is high then the MLP is assumed to be correct and only the MLP and the adjacent 

place need to be searched for their LRP: 

where P/!;_ is the sensor model output of the most probable local position estimate in 

the most likely place Pt- i, rLP is the local position estimate threshold and At is the 

resulting active place set. 

If local position tracking has been lost then the active place set must be redefined to 

ensure the localisation system explores the places in the set constructed by the local 

space matching results: 

where Bt is a sub set of places from the set Gf8 . 

The formation of set B depends on the computational resources that are available. 

Obviously the more places that are contained in set B, the greater the chance that the 

MLP will be correctly identified and the position tracking regained. Conversely, the 

less places in B the faster the landmark recognition for each place can be performed 

and another sensor observation can be captured. In such a small map, as used in our 

examples, B was set to contain all elements from Gf s. 

Figure 9.28 shows the flow of control in the proposed system when continuous global 

localisation and local position estimation are performed. 

Figure 9.29 shows a sequence of continuous global localisation and local position esti­

mation using a restricted global localisation search space. This figure shows example 

b) from Figure 9.27, where the active place set has incorrectly identified the MLP. In 

the current figure, the places in the topological map are shown in red, places in the 

active place set in green , the particle set also in green, and the actual current robot 

position in yellow. In part a) the robot attempted to perform local position estima­

tion in an incorrect place, and the system detected a loss of position tracking. Part b) 

shows the system redistributing particles about the local current estimate. After this 

strategy fails , local space matching is performed to produce a new active set and the 
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Figure 9.28: The flow of control when performing continuous mobile robot global 
localisation and local position estimation. 

systen1 performs a restricted global localisation search. This produces a correct MLP, 

and the position estimates are redistributed about this new place, as shown in part c) 

of the figure. Part d) shows the state of the system after the next observation, when 

the particle set condenses around a new, more accurate local position estimate. 

During this process, the size of the set of places upon which landmark template match­

ing is performed did not rise above 3, compared to a maximum of 10 for unconstrained 

global localisation. 
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a) b) 

c) d) 

Figure 9.29: Continuous global localisation and local position estimation when the 

initial position estimate is wrong. The particle set representing the robots current 

belief in its location is shown in green, while the actual location is drawn in yellow. 

9.5 Disambiguating Similar Places 
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All landmark or feature based localisation systems will encounter situations where 

the localisation information provided by the underlying spatial representation will 

be ambiguous. An obvious example of this is a robot system in a featureless corri­

dor environment. Given a spatial memory based on a finite number of representation 

modalities, a corridor can be imagined where all the modalities could fail to provide 

unambiguous localisation information. Instead of relying on predefined landmarks or 
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features to guide the localisation process, it can be useful in these pathological cases 

to actively search for discriminating features with which to eliminate localisation am­

biguities. Chapter 6 introduced a method for extracting disambiguating features from 

panoramic snap-shots of places in a topological map and to use these features to dis­

criminate between places for the purposes of mobile robot localisation. 

Our method is expensive and unreliable however, and is not ready for application to a 

working mobile robot localisation system. In the present case, the use of distinct visual 

landmarks to perform place discrimination is successful in a vast majority of instances 

and the addition of the third level of spatial memory to the localisation process does 

not significantly improve localisation performance. Chapter 6 briefly discusses some 

options for improving the contribution of this level of spatial representation, but for 

now, its inclusion is only to highlight the need for actively searching for discriminating 

features. 

Although our system does not attempt to use the third level of disambiguating fea­

tures in the reported localisation experiments, it is useful to describe the basic steps 

of integrating a such a level of spatial representation into the existing mobile robot 

localisation system: 

1. Detect an Ambiguity in Localisation: a method of detecting the ambiguity aris­

ing from the lower levels of spatial representation is needed to trigger the dis­

ambiguation process. In the present system, this would involve the Landmark 

Recognition Performance of two or more places being equal. Of course given 

the expense of such a step, there should be some continuous time period during 

which an ambiguity is detected before it is reported. This would eliminate the 

need to perform disambiguation when the cause of the ambiguity is temporal in 

nature, such as dynamic objects occluding the visual scene or loss of landmark 

tracking. 

2. Decide Whether to Disambiguate: not every ambiguous situation requires disam­

biguation before purposive navigation can be achieved. A system which uses 

disambiguating features needs to be able to decide when such an action is ap­

propriate and when navigation in ambiguous circumstances is acceptable. A 

suggestion for making this determination could consider the potential expense 



9.6 The Kidnapped Robot 345 

of mis-planned routes when an ambiguous localisation is accepted. 

3. Perform Disambiguation: Finally the method of disambiguating features can be 

used to discriminate between ambiguous places in the topological map. Local 

position estimation and position tracking can then proceed as normal. 

Our mobile robot system does not use the disambiguating features level of spatial 

representation for the reasons listed previously. A truly robust localisation system, 

however, would require a method for performing location discrimination like that of 

disambiguating features to actively search for discriminating features in pathological 

situations. 

9.6 The Kidnapped Robot 

The kidnapped robot problem, as introduced in Chapter 1, remains an open problem 

in contemporary mobile robot localisation systems. The problem restated is: 

. . . given a robot system which has a strong belief in its location within an internal 

map of the environment, "kidnap" the robot by transporting it to another location in 

the environment, without the robot being aware of the translocation. The robot now 

must realise it has been "kidnapped", and further re-localise itself within it's internal 

map ... 

This problem is equivalent to relocalising a lost robot, with the additional nuisance of 

the robot moving instantaneously from a known location in the map to an unknown 

without any odometric or clues to the transition. A robust solution to this problem 

remains elusive due to the various sub-problems which must be first solved: 

1. Detection of Loss of Position Tracking 

2. Global Relocalisation 

3. Recovery of Position Tracking 

The global relocalisation step has proven to be the most intractable, especially in envi­

ronments where large maps are necessary and systems that have real time constraints 

on robot response. 
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The previous experimental results in this chapter have addressed the sub-components 

of the kidnapped robot problem. It has been shown that the multi-level spatial rep­

resentation can be used to perform recovery of loss from position tracking as well as 

global localisation with a constrained search space. 

9.6.1 Multi-Level Spatial Memory and the Kidnapped Robot 

The multi-level spatial memory approach to global localisation can be applied to the 

kidnapped robot problem in the same way it was used to re-localise a lost robot. Local 

positioning using the low-level representation can be used to form a strong belief that 
the the robot is in a particular location in the topological map. Upon kidnapping and 

release in another location, the robot can detect a loss of position tracking and can 

attempt to re-localise using first the local space representation to constrain the global 

search and then the landmark representation to select a MLP and initialise position 

tracking. 

An experiment to test the systems ability to solve the kidnapped robot problem, given 

a topological map and a set of panoramic images and odometric measurements from 

an example path through the map, involves the following steps: 

1. Identify a start position along the path, where the robot will be positioned prior 

to the kidnapping, and a release position along the path from where the robot will 

be released after kidnapping. 

2. For the first 5 frames (frames 0- 4) from the start position localise the robot within 

the topological map . A frame refers to a sensor data sample from a particular 

location along the example path. 

3. After frame 4, the robot is kidnapped. Continue localisation, but present the 

sensor data associated with the release position along the robot path. 

4. During the next 10 frames (frames 5 - 14) perform localisation. The system 

should detect that local position estimation has been lost and attempt to re­

localise and regain local position estimation. 

The frame number refer to the frames prior to and after the kidnapping. Initially 5 

frames are taken from the start position to ensure the robot is localised with a strong 



9.6 The Kidnapped Robot 347 

internal believe. After kidnapping and release at the release position, the robot must 

experience 5 continuous frames of low sensor model output to trigger relocalisation 

and another two to attempt global re-localisation. The remaining two frames allow 

the particle filter to start condensing about an estimate. 

After frame 14 the identified MLP and the estimated local position within that place 

can be compared with the ground truth measures to evaluate the robot's performance 

in solving the kidnapped robot problem. In addition the benefit of constraining the 

global localisation search space can be determined by recording the size of the active 

place set during the relocalisation process. 

Figure 9.30 shows the results of applying our localisation system to a kidnapped robot 

situation. In this situation the robot started in a location near place 1 at the bottom 

of the topological map, was kidnapped then released near place 9, which is close to 

the doorway between the large room and the corridor environment. In the images 

presented in the figure the localisation state of the system is shown after incorporating 

the sensor data for a given frame. In particular in each image, places in the topological 

map are shown by green circles for places within the current active place set and red 

for those without. The particle set distribution for the identified MLP is shown by 

the spread of green points, and the current estimated position as determined by the 

most likely particle is shown by the blue point. The yellow point represents the actual 

current location of the robot as determined by the ground truth measures. The frames 

shown in the figure correspond to the steps taken in solving the mobile robot problem 

outlines above. Frame O shows the system upon initial localisation about the start 

position; frames 4 and 5 before and after the kidnapping occurs; frames 11 , 12 and 13 

when the robot has detected a loss in position tracking relative to place 1, performs 

global localisation and redistributes the particle set about the new most likely place 

(place 9), and condenses about the new position estimate. 

In this example our system correctly identified the most likely place of release after the 

kidnapping and the final position estimate was 15.62cm distant from the ground truth 

measure. The active place set during initial localisation was of size 21, and during the 

relocalisation process it reached size 31. This represents a global localisation search 

through 62% of the topological map during relocalisation. Although the estimated 

local position was accurate just 3 frames after relocalisation in this example, the con-
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Frame 0 4 5 

Frame 11 12 13 

Figure 9.30: An example of the system solving an instance of the kidnapped robot 
problem. In all images, places in the active place set are drawn in green, the particle 
set is in green also , the estimated position in blue and the actual position in yellow. 
Frame O shows initial global localisation; frame 4: a strong position estimated has 
been achieved ; frame 5: the robot has been kidnapped and released ; frame 11 the 
robot has lost position tracking tracking; frame 12: the robot performs relocalisation; 
frame 13: the system has recovered position tracking. 
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Trials MLP Identification (1st Attempt) Ave. Search Size Ave. Error 

100 84% 19 places (38%) 29 .12cm 

Table 9.2: System performance in the kidnapped robot experiment after the first at­

tempt at re-localisation. 
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strained global localisation search space was still quite large and a further reduction 

on this is desirable. It should be noted however, that only during the initial localisa­

tion at frame 0 and relocalisation at frame 12 is the active place set this large. At all 

other times during local position position tracking the size of the active place set was 

constant at just 2 places. 

9.6.2 Multi-Level Spatial Memory Localisation Performance 

To further evaluate the ability of our system to solve the kidnapped robot problem 

and to constrain the global localisation search space, this experiment was repeated 

over 100 separate trials. For each trial the start position and the release position were 

chosen randomly from the 792 sample frames which were captured over the example 

path. 

The results of performing localisation using the current system over the 100 trials are 

presented in Table 9.2. The table shows the percentage of trials in which the most 

likely place (MLP) was correctly identified, the average size of the active place set 

during relocalisation (the size of the active place set as a percentage of the total num­

ber of places in the topological map is shown in the brackets), and the average error 

in the local position estimate, for trials in which the most likely place was correctly 

identified, 3 frames after relocalisation occurs. 

The 84 % place identification is acceptable given that this is a first attempt at relocalisa­

tion. The failures occur when the robot is released in a position which lies between two 

places on the topological map. This causes ambiguities in the LRP measures and can 

led to incorrect identification of the MLP. In this case the system continues to detect 

a loss in position tracking which triggers relocalisation again and again until position 

tracking has been recovered. Eventual recovery from the kidnapped robot problem in 

this map is 100%. The worst case observed required three attempts before the MLP 
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was correctly identified. 

The size of the average active place set is comparable to that suggested by the local 

space experiments using a smaller map presented earlier, resulting in global localisa­

tion computation savings of approximately 60%. This is surprising giving the similar­

ity of large extents of the current map and may represent a bound on potential saving 

using the local space matching approach with the current threshold levels. It holds 

sufficient promise that refinement of this method or the introduction of other cheap 

but ambiguous matching methods could further reduce the global localisation search 

space. 

The average error in the resulting local position estimate of 29.12cm is high, however 

it must be remembered that this is only the third estimate after relocalisation has oc­

curred and the local position tracking system could be still converging on a better 

estimate. Within the area surrounding a place 's reference position there will be some 

fluctuation of achievable position estimation accuracy as the information available 

varies with distance from the reference position. 

Our results indicate that the kidnapped robot problem is solvable and that the multi­

level spatial memory representation can reduce the computation costs involved in re­

localisation. The computation time required for the current system to perform posi­

tion tracking once global localisation has been been performed is approximately 1.5 s. 

Global localisation can be achieved on average in approximately 13.5s. These compu­

tation costs are still high for real time localisation for mobile robot navigation. Using 

range based sensors and a metric map, position tracking can be achieved in millisec­

onds, far outperforming our current system. During the global localisation task , how­

ever, the matching task grows prohibitively, increasing with each additional grid cell 

in the map space. In comparison, even with the expensive template matching of our 

current system, the ratio between computation time in global localisation and position 

tracking is very low: 

13.5 
-=9 
1.5 

Reiterating the example from Chapter 2, consider a particle filter based localisation 

system using a metric map could perform position tracking with 1000 particles in 
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lOms . Given a grid cell granularity of 10cm and 1 deg, a 10 x 10m map, roughly equiv­

alent to the size of the current topological map, would require 3, 600, 000 matches to 

perform an exhaustive global localisation search: 

gridsi ze = 3,600 , 000 = 100 x 100 x 360 

resulting in a computation time of 36s and a ratio of global localisation to local position 

estimation time of: 

36 , 000 = 3 600 
10 ' 

If we conservatively estimate the node density of our topological graphs at 1 m2 , then 

an equivalent multi-level representation topological map would require 100 places to 

cover the same area. Global localisation in this map can be estimated at 27 s still under 

that required by the metric map example. In regards to memory requirements, the 

metric map was estimated to require 3M B of memory. A map built using our sys­

tem, that contains 100 places represented by visual landmarks and local space profiles 

would require: 

(16 x 16 x 16 + 16) * 100 =rv 0.4MB 

bytes of storage (16 landmarks of size 16 x 16pixels), 16 value local space histogram, 

and 100 places, with a representation of a single place using 41{ B. If the high-level 

representation of disambiguating features is added to the representation, then the per 

place memory requirement is rv 47 I< B; a 100 place map rv 4.7 MB. This exceeds that 

of the metric map, ·but this level of representation is only required in rare cases and 

can be stored on a physical storage medium. 

Our system benefits from the scalability of topological based localisation system while 

still maintaining the local position accuracy of metric approaches. 

Our system suffers from the computationally expensive process of matching landmark 

templates with the current visual scene. If a fast, repeatable method for pre-extracting 

landmarks from a visual scene is developed, this would eliminate the need for match­

ing each landmark set with the entire current visual scene and greatly reduce the com-
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putation needed for global localisation. 

Our results validate the multi-level mapping approach with representations of vary­

ing complexity to solve different aspects of the mobile robot localisation problem. A 

combination of accurate local position estimation and high place discrimination can 

be achieved in topological maps due to the low-level, but computationally expensive, 

representation of visual landmarks. The global localisation search space can be con­

strained by the comparatively computationally cheap but indiscriminating mid-level 

representation of local space profiles. 

9.7 Summary 

This chapter has described the application of the proposed multi-level spatial repre­

sentation for mobile robots to the problem of global localisation. Methods for per­

forming local position estimation and global localisation were presented and experi­

mentation validating our approach was performed. In particular the following results 

were achieved: 

• Global Localisation using Place Discrimination over a Topological Map: Place discrim­

ination was achieved using the low-level representation of visual landmarks. A 

sensor image was classified as to which place it was captured in by evaluating 

the Landmark Recognition Performance (LRP) for each place's landmark set in 

the current image. Global localisation in a topological map can then be achieved 

by identifying the most likely place from which the current observation was made. 

In a path through a topological map of 50 places, place discrimination using vi­

sual landmarks correctly nominated the most likely place 100% of the time. 

• Combining Local Position Estimation and Global Localisation: A method of detecting 

and recovering from the loss of local position tracking was introduced and vali­

dated experimentally. This method was used to combine global localisation and 

local position estimation to perform mobile robot localisation on a path through 

a non-trivial topological map (50 places). Although position estimation over 

the path was noisy and position tracking was often lost, the system always re­

covered and the final position estimate was within 15cm of the ground truth 
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measure. 

• Constraint of Global Localisation Search Space with Local Space Profiles: The second 

level of spatial representation can be used to restrict the global localisation search 

space by forming active place sets. These sets define the most likely places in the 

topological map where the robot is located. Experimental results showed that 

it was possible to reduce the global localisation computation time by up to 60% 

while maintaining the inclusion of the most likely place in the active place set 

98% of the time. It was shown that the active place set can be applied to the 

problem of continuous global localisation and local position tracking. 

• Disambiguation of Similar Places: The role of the third level of spatial representa­

tion was introduced and a possible application to the current system was dis­

cussed. Due to the computationally expensive nature and limited reliability 

of the implemented disambiguating features, this level of spatial representation 

was not actually integrated with the lower levels. 

• A solution to the Kidnapped Robot Problem: The localisation system proposed in this 

thesis was applied to the notoriously difficult problem of the kidnapped robot 

as a measure of its ability to provide accurate local position estimation and effi­

cient global localisation. In experimental results over a topological map with 50 

places, it was found that the current system could recover from kidnapping 84 % 

of the time with one attempt at relocalisation, and produce a local position esti­

mate within 30cm of the ground truth measure within three frames of detection 

of position tracking loss. Given multiple attempts at relocalisation the system 

solved the kidnapped robot problem in this map 100% of the time. It was shown 

that although the computation involved in the method of landmark template 

matching is prohibitive for real time constraints, the current global localisation 

system does scale much better than a purely metric based approach. 

The second goal of this thesis was to efficiently solve the global localisation problem 

while maintaining the robot systems' ability to perform accurate local position esti­

mation. Global localisation was achieved as shown by the successful re-localisation 

observed in the kidnapped robot experiments. The low-level representation of visual 

landmarks provides a strong indicator when discriminating being places in a topo-
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logical map. The mid-level of representation also provided a method for reducing 

the global localisation search space, and goes a long way in providing efficient global 

localisation. The savings in computation were achieved by using place representa­

tion with a cheap method of matching to initially constrain the search space before 

applying the more discriminatory but expensive matching method. While the results 
enforce the current multi-level approach to mobile robot localisation and are an im­

provement on the current approach, they fall short of the goal of efficient global local­

isation. 

The major drawback in the global localisation process in this system is the nature of 

the visual landmark representation. The correlation method for matching landmark 

templates with the current panoramic image is too expensive to apply to the entire 

image space. This results in prohibitive computation costs when performing global 

localisation in even small topological maps, despite the reduction in search space size 

gained by the mid-level representation. Unfortunately our system will only approach 

acceptable real-time operation for global localisation when the computation involved 

in landmark matching method is drastically reduced. As stated in Chapter 4 this re­

duction in computation time, must not come at the expense of the landmark recogni­

tion performance. 

While the landmark matching problem limits the performance of the system, the basic 

premise that a multi-level representation providing more efficient global localisation 

has been proven. Additional mid-level cues which are cheap to extract from the envi­

ronment and match with the internal representation, such as the predominant colour 

in an image, could further reduce the global localisation costs. The topological rep­

resentation also provides an obvious level of categorisation in the restriction of the 

global localisation search space. This discretisation of the global search space removes 

the need for expensive exhaustive searches over all possible robot positions, while pro­

viding a meaningful level of representation upon which to apply mid-level cues . The 

coarseness of the discretisation also removes the need for any probabilistic exploration 

of the topological search space, as the mid-level representation is computationally fast 

enough to apply to all places simultaneously, while the low-level representation is dis­

criminatory enough to identify the correct place with a high measure of success. Add 

to this the simple rules for maintaining the active place set and the system's ability 
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to detect and recover from loss of position tracking. The resulting system is capable 

of providing robust and reliable continuous global localisation and position tracking. 

These traits were demonstrated in the kidnapped robot experiment. 

This chapter has described methods for performing the task of global localisation. The 

ability our system to perform global localisation has also been demonstrated. Our sys­

tem can also solve the kidnapped robot problem by combining multi-levels of spatial 

representation to perform continuous local position estimation and global localisation. 

Although this was achieved outside of acceptable real time constraints, the contribu­

tion of multiple levels of spatial representation was demonstrated. 
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Chapter 10 

Conclusions 

Mobile robots require robust and reliable navigation systems if they are to join us in 

the real world. The stumbling block for robotic navigation systems has been in form­

ing efficient and effective internal representations of the environment with which to 

perform localisation. Representations must be fine enough to allow for accurate lo­

cal position estimation and coarse enough to permit global localisation. These two 

conflicting attributes form the core of the current limitations in mobile robot naviga­

tion. Much current research is devoted to combining representations in an attempt 

to overcome these limitations. Without such representations the localisation task is 

prohibitively expensive computationally, or inaccurate. 

This thesis has proposed a multi-level representation of spatial knowledge for mo­

bile robot navigation. This approach was inspired by biological navigation systems 

which combine different levels of navigation strategies to perform complex naviga­

tional tasks. This thesis argues that not only should robots combine multiple naviga­

tion strategies but that these strategies ought to be adopted to fit multiple levels of 

spatial representation as well. Multi-level representations allow for the accuracy pro­

vided by low-level approaches while constraining the localisation search with associ­

ated higher level representations. This approach, of building higher levels of repre­

sentation and functionality ontop of existing levels was inspired by biological studies 

of navigation systems in honeybees, rats and humans. 

At a low level, unique visual landmarks were used to represent places on a topological 

map. Visual landmarks were selected via an automatic static and dynamic selection 
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process which was inspired by the flights of wasps. Performing a TBL movement 

during place acquisition also allows the estimation of landmarks depths using a form 

of bearing only SLAM. 

The second level of representation is that of local space profiles. A sense of open 

space in the environment can direct the global localisation search to places known to 

share such an extent of open space. A histogram representation of the extent of local 

space surrounding the robot is formed by detecting the ground plane through carpet 

matching techniques. An occupancy grid in image space is used to promulgate carpet 

region probability measures through time and across sensor modalities. 

The third level is that of disambiguating features . These are used to directly compare 

the panoramic images at two locations and identify images regions which differentiate 

between them. This process can help localisation in problematic environments where 

similar places exist. 

The three levels of spatial representation are used to represent places in a topological 

map. Topological maps are automatically constructed by monitoring the background 

levels of LRP. Once LRP performance drops to background levels, the robot acquires 

a new place and connects it to the existing map using transitions. Cycles in the topo­

logical map can be detected, and a method for defining transitions in the presence of 

cycles was developed. 

Geometric models of landmark sensor observations were developed and a particle fil­

ter method of local position estimation was implemented. Using the visual landmark 

representation, accurate local position estimation within places was achieved due to 

the estimated landmark depth and the associated sensor model. Position estimates 

are passed between places using the information contained in transitions and position 

tracking over a cyclical path was demonstrated in this fashion. 

The uniqueness of the visual landmark level of spatial representation provides good 

place discrimination ability. Global localisation can be achieved by matching the cur­

rent image against the landmark sets of all places in the topological map. Unfortu­

nately the computation costs involved in matching with landmark sets make an ex­

haustive global localisation search prohibitively expensive. The mid-level spatial rep­

resentation of local space profiles are compact, computationally inexpensive to match, 

and can be used to constrain the global localisation search. Use of local space pro-
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files in this fashion resulted in a 60% saving in landmark matching when performing 

global localisation. 

By defining a method of detecting when local position tracking has been lost, the 

multi-level spatial representation was used to perform continuous global localisation 

and local position estimation. This complete system was then applied to the kid­

napped robot problem, with good results. 

Chapter 1 outlined three principle objectives of this research: 

1. Solve the conflicting localisation problems of global localisation and local posi­

tion estimation. 

2. Maintain a central belief as to the robot's position within an internal map. 

3. Solve the kidnapped robot problem. 

The localisation system developed in this research uses the multi-level spatial repre­

sentation to achieve these objectives. 

The conflicting global localisation and local position estimation problem was resolved 

by the targeting of representation levels to the functional and computational require­

ments of the two tasks. The visual landmark representation level provided the nec­

essary positional and discriminatory ability to perform accurate local position estima­

tion and global localisation. The local space profile representation level provided the a 

computationally inexpensive way of constraining the global localisation search space. 

The implementation of the visual landmark representation reduced the efficiency of 

the system, however the concept of targeting multiple levels of spatial representation 

to the conflicting localisation task was demonstrated. 

A central belief of the robot's position was maintained through the use of active place 

sets in the topological map and particle filter position estimation within places of the 

topological map. The Most Likely Place that the robot is occupying is identified by local 

space and landmark set matching while the exact position within a place is identified 

by the most probable particle. The belief of robot location is spread between the levels 

of gross topology and the relative reference frames within each place. Methods for 

monitoring the certainty of this belief and forming and switching alternative hypothe­

ses in the face of conflicting sensory input were developed. Hypotheses formation and 
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switching occurs at both levels of belief, although at the relative reference level, hy­

potheses are restricted to within the current most likely topographic region (the most 

likely place). 

The multi-level spatial representation solved the kidnapped robot problem by using 
the representation's ability to perform continuous global localisation and position es­

timation and to maintain a central belief of it's location. 

The overall philosophy of multiple levels of representation providing a basis for mul­

tiple layers of localisation and navigation strategies was not fully embodied by the 

developed system. The high-level representation level proved difficult to implement 

reliably and was not integrated with the rest of the system. In the limited semantic en­

vironment of mobile robot perception, it is not easy to pick out disambiguating visual 

features without more complex scene analysis. Although we believe that this level of 

representation is essential for robust robot navigation, this research did not develop it 

to a level where it provides useful information to the localisation task. 

Another discrepancy from the multi-level philosophy appears when analysing what 

each level of representation contributes to the localisation task. In this research, the 

low-level representation of visual landmarks provided the majority of the localisation 

information at the topological and sub-topological level. The mid-level representation 

served only to restrict the global localisation search within the topological level. In a 

true multi-level approach, the localisation work-load should be more evenly spread, 

with the local space level of representation providing more information to the topo­

logical and even perhaps the sub-topological level. This is not meant to disregard the 

need for hierarchies in both representation levels and the localisation task, simply to 

highlight the possibility that each level of representation could contribute to multiple 

levels of the localisation task. 

The multi-level spatial representation developed in this research has been successfully 

applied to the domain of mobile robot localisation. The multiple levels of represen­

tation have provided the necessary information to solve contemporary problems in 

mobile robot localisation such as the conflict between global localisation and local po­

sition estimation and the kidnapped robot situation. While the current implementa­

tion of a multi-level spatial representation based localisation system can not perform 

global localisation within even soft real time constraints, the contributions of the vari-
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ous levels do reduce the computational complexity. 

10.1 Future Work 

The road goes ever on and on. This research leaves many openings for future in­

vestigation. In the areas where this research is successful, further refinement of the 

implementation details and the concepts involved are needed. In the areas where this 

research falls short, total revision is in order. 

Avenues for future work specific to the multi-level representation system reported in 

this research have been mentioned in the relevant chapter summaries. What follows 

here are some broad possibilities for future research in multi-level representations for 

mobile robot localisation. 

This research built topological maps based on the concept of places defined by a low 

level of representation. Consequently the topography defined by these maps is rela­

tively fine grained. Research is needed to define what level of representation should be 

used to drive the construction of topological maps. A possibility is to build maps with 

multi-levels of representation with appropriate linkages between them. This would be 

consistent withe the multi-level approach to representation espoused by our research. 

This would lead to coarser topologies and subsequently reduced complexity of the 

global localisation task. 

Throughout this research the dual role of the visual landmark representation in the 

localisation has intrigued the authors. Visual landmarks are used as a low-level rep­

resentation for accurate position information and at a higher level for topological dis­

crimination. The distinctiveness of landmarks derives from their richness and adds to 

the computation complexity of their use. Visual uniqueness of landmarks in the global 

environment is desirable when performing global localisation, while visual unique­

ness within the current scene is desirable for accurate local positioning. It would be 

interesting to investigate the role of landmarks in these two roles and how matching 

complexity could be managed by recognising such a demarcation of responsibilities. 

An obvious follow on from our research is to develop other modalities of lightweight 

spatial representations to contribute to the goal of constraining the global localisation 

task. A multitude of computationally inexpensive and comparatively indisciminatory 
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representations could be used in conjunction to further reduce the global localisation 
search space for a richer, more discriminatory representation. 

Finally, the further development of a high level representation for active place discrim­
ination would be interesting. Only the active search for disambiguating features will 
lead to reliable localisation. It is interesting that human ability to perform complex 
spatial reorientation tasks is linked to the onset of linguistic and reasoning capabili­
ties. A topic for future work would be to investigate just what functional , semantic 
and symbolic knowledge is required to perform such tasks. 

The future work described here is addressed to the same underlying concepts as this 
research as a whole: the representations of spatial knowledge that are essential for the 
navigation tasks of mapping and localisation. This thesis has proposed a multi-level 
representation of spatial knowledge and applied it to the problem of mobile robot 
localisation with promising results. Multiple representations of spatial knowledge 
facilitate the solving of the localisation problem. 
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