167 research outputs found

    Parity Codes Used for On-Line Testing in FPGA

    Get PDF
    This paper deals with on-line error detection in digital circuits implemented in FPGAs. Error detection codes have been used to ensure the self-checking property. The adopted fault model is discussed. A fault in a given combinational circuit must be detected and signalized at the time of its appearance and before further distribution of errors. Hence safe operation of the designed system is guaranteed. The check bits generator and the checker were added to the original combinational circuit to detect an error during normal circuit operation. This concurrent error detection ensures the Totally Self-Checking property. Combinational circuit benchmarks have been used in this work in order to compute the quality of the proposed codes. The description of the benchmarks is based on equations and tables. All of our experimental results are obtained by XILINX FPGA implementation EDA tools. A possible TSC structure consisting of several TSC blocks is presented.

    LSI/VLSI design for testability analysis and general approach

    Get PDF
    The incorporation of testability characteristics into large scale digital design is not only necessary for, but also pertinent to effective device testing and enhancement of device reliability. There are at least three major DFT techniques, namely, the self checking, the LSSD, and the partitioning techniques, each of which can be incorporated into a logic design to achieve a specific set of testability and reliability requirements. Detailed analysis of the design theory, implementation, fault coverage, hardware requirements, application limitations, etc., of each of these techniques are also presented

    Efficient Evaluation of Probability and Reliability with Digital Integrated Circuits

    Get PDF
    As complementary metal–oxide–semiconductor (CMOS) devices shrink to nanoscale, digital integrated circuits (ICs) are more susceptible to various environmental parameters, such as temperature, supply voltage, wiring, noise, and fabrication process variations. This would reduce the circuit operation reliability (i.e., the probability that a circuit or component is performing its intended logic function). Signal probability (the probability that a digital signal is producing logic 1) is another factor that measures circuit’s dynamic behavior and power dissipation. Research shows that signal probability and reliability within ICs may interact with each other in a complicated way. Generally speaking, as signal probability changes due to input probability variations, so does the signal reliability, and vice versa. This motivates simultaneous evaluation of both for digital ICs towards their performance improvement. However, this evaluation could be a challenge especially for large-scale circuits, due to signal correlations caused by reconvergent fanouts within circuits. Out of two existing evaluation methods, i.e., numerical and analytical methods, the former can give high accuracy level at the cost of expensive computation, while the latter does exactly the opposite. This thesis provides a hybrid solution by taking advantage of both numerical and analytical methods to achieve fast and accurate evaluation for signal probability and reliability for ICs (including both combinational and sequential circuits). First, we develop a categorization-based analytical model for combinational circuits to deal with a variety of signal correlations. For strongly correlated or independent cases, analytical solutions are applied for accurate results. For cases with moderate correlation strength, we use local bitstream simulations for fast estimation. Our simulation results show that the proposed method is hundreds of times faster than Monte-Carlo (MC) simulation, while keeping almost same level of accuracy. We then extend the above method to sequential circuits (with finite-state-machine model) for probability and reliability evaluation. Since sequential circuits can be viewed as an unfolded network of combinational logic, our focus is on how both probability and reliability converge to a final stable state over a certain number of cycles/iterations. To improve the efficiency of this convergence process, we propose a two-step-convergence (TSC) model instead of using traditional step-size based convergence. Simulation results show that the proposed method speeds up the process by around 30% on average compared to traditional method while maintaining a high level of accuracy. Finally, we study the impact of device aging on circuit reliability. After years of operation, CMOS (especially PMOS) devices would experience an increase in their threshold voltage, a phenomenon called Negative Bias Temperature Instability (NBTI). This aging effect leads to the increased gate delay with late arrival time of signals, making circuits temporally unreliable. Threshold voltage changes may also negatively affect the probability that transistors perform intended logical operations, causing them spatially more unreliable. Our investigation focuses on evaluation of the overall reliability at circuit-level by considering both spatial (solely considering the correctness of signal logic values) and temporal (considering the signal arrival time to catch up sampling action) aspects of it. This would help circuit designers predict the circuit lifetime. Simulations on benchmark circuits show that the reliability degradation rate due to aging effect ranges from 1.5% to 8.2% over one-year period, depending on specific circuits

    A Case Study of Self-Checking Circuits Reliability

    Get PDF
    In this paper, we analyze the reliability of self-checking circuits. A case study is presented in which a fault-tolerant system with duplicated self-checking modules is compared to the TMR version. It is shown that a duplicated self-checking system has a much higher reliability than that of the TMR counterpart. More importantly, the reliability of the selfchecking system does not drop as sharply as that of the TMR version. We also demonstrate the trade-offs between hardware complexity and error handling capability of self-checking circuits. Alternative self-checking designs where some hardware redundancies are removed with the lost of fault-secure and/or self-testing properties are also studied

    TFI-FTS: An efficient transient fault injection and fault-tolerant system for asynchronous circuits on FPGA platform

    Get PDF
    Designing VLSI digital circuits is challenging tasks because of testing the circuits concerning design time. The reliability and productivity of digital integrated circuits are primarily affected by the defects in the manufacturing process or systems. If the defects are more in the systems, which leads the fault in the systems. The fault tolerant systems are necessary to overcome the faults in the VLSI digital circuits. In this research article, an asynchronous circuits based an effective transient fault injection (TFI) and fault tolerant system (FTS) are modelled. The TFI system generates the faults based on BMA based LFSR with faulty logic insertion and one hot encoded register. The BMA based LFSR reduces the hardware complexity with less power consumption on-chip than standard LFSR method. The FTS uses triple mode redundancy (TMR) based majority voter logic (MVL) to tolerant the faults for asynchronous circuits. The benchmarked 74X-series circuits are considered as an asynchronous circuit for TMR logic. The TFI-FTS module is modeled using Verilog-HDL on Xilinx-ISE and synthesized on hardware platform. The Performance parameters are tabulated for TFI-FTS based asynchronous circuits. The performance of TFI-FTS Module is analyzed with 100% fault coverage. The fault coverage is validated using functional simulation of each asynchronous circuit with fault injection in TFI-FTS Module

    Reliability Driven Synthesis of Sequential Circuits

    Get PDF
    Coordinated Science Laboratory was formerly known as Control Systems LaboratorySemiconductor Research Corporation / SRC 95-DP-109Joint Services Electronics Program / N00014-90-J-127

    Self-checking multiple-valued circuit based on dual-rail current-mode differential logic

    Get PDF
    科研費報告書収録論文(課題番号:09558027・基盤研究(B)(2)・H9~H12/研究代表者:羽生, 貴弘/1トランジスタセル多値連想メモリの試作とその応用
    corecore