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ABSTRACT 

As complementary metal–oxide–semiconductor (CMOS) devices shrink to 

nanoscale, digital integrated circuits (ICs) are more susceptible to various 

environmental parameters, such as temperature, supply voltage, wiring, noise, and 

fabrication process variations. This would reduce the circuit operation reliability 

(i.e., the probability that a circuit or component is performing its intended logic 

function). Signal probability (the probability that a digital signal is producing logic 

1) is another factor that measures circuit’s dynamic behavior and power 

dissipation. Research shows that signal probability and reliability within ICs may 

interact with each other in a complicated way. Generally speaking, as signal 

probability changes due to input probability variations, so does the signal 

reliability, and vice versa.  This motivates simultaneous evaluation of both for 

digital ICs towards their performance improvement. However, this evaluation 

could be a challenge especially for large-scale circuits, due to signal correlations 

caused by reconvergent fanouts within circuits. Out of two existing evaluation 

methods, i.e., numerical and analytical methods, the former can give high accuracy 

level at the cost of expensive computation, while the latter does exactly the 

opposite. 

This thesis provides a hybrid solution by taking advantage of both numerical 

and analytical methods to achieve fast and accurate evaluation for signal 

probability and reliability for ICs (including both combinational and sequential 

circuits). First, we develop a categorization-based analytical model for 

combinational circuits to deal with a variety of signal correlations.  For strongly 

correlated or independent cases, analytical solutions are applied for accurate 

results. For cases with moderate correlation strength, we use local bitstream 

simulations for fast estimation. Our simulation results show that the proposed 

method is hundreds of times faster than Monte-Carlo (MC) simulation, while 

keeping almost same level of accuracy.  

We then extend the above method to sequential circuits (with finite-state-

machine model) for probability and reliability evaluation. Since sequential circuits 
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can be viewed as an unfolded network of combinational logic, our focus is on how 

both probability and reliability converge to a final stable state over a certain 

number of cycles/iterations. To improve the efficiency of this convergence 

process, we propose a two-step-convergence (TSC) model instead of using 

traditional step-size based convergence. Simulation results show that the proposed 

method speeds up the process by around 30% on average compared to traditional 

method while maintaining a high level of accuracy. 

    Finally, we study the impact of device aging on circuit reliability. After years of 

operation, CMOS (especially PMOS) devices would experience an increase in 

their threshold voltage, a phenomenon called Negative Bias Temperature 

Instability (NBTI). This aging effect leads to the increased gate delay with late 

arrival time of signals, making circuits temporally unreliable. Threshold voltage 

changes may also negatively affect the probability that transistors perform 

intended logical operations, causing them spatially more unreliable. Our 

investigation focuses on evaluation of the overall reliability at circuit-level by 

considering both spatial (solely considering the correctness of signal logic values) 

and temporal (considering the signal arrival time to catch up sampling action) 

aspects of it. This would help circuit designers predict the circuit lifetime. 

Simulations on benchmark circuits show that the reliability degradation rate due to 

aging effect ranges from 1.5% to 8.2% over one-year period, depending on specific 

circuits. 
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CHAPTER 1 

INTRODUCTION 

1.1 Research Background 

     Downscaling of CMOS devices to nanometers raises quite a few new 

challenges for digital integrated circuit designers [1]. Among them is circuit 

reliability. With the imprecision of nanoscale fabrication, device reliability can be 

affected by many hard defects (such as shorts and opens [2-3]) and soft errors 

which may occur due to environmental variations. High integration density and 

unsaturated voltage/current are increasingly compounding the problem [4]. The 

unreliability of fundamental devices will then negatively affect circuit performance 

at high levels. Thus, it becomes necessary to keep track of not only signal 

probability, but also signal reliability (or faulty ratio). For large circuits, the 

difficulties in finding either signal probability or reliability stem from signal 

correlations due to numerous reconvergent fanouts within circuits. Since the 

reliability and probability may affect each other, it would make much sense to 

estimate both of them simultaneously in a circuit. More specifically, for given 

unreliable circuits, the output reliability depends on their input signal probabilities. 

Take a two-input AND gate for example. When both inputs have a lower signal 

probability (i.e., most of time they are logic ‘0’), the output signal would have a 

higher reliability (i.e., high probability of being a correct value of ‘0’) due to the 

nature of AND logic. On the other hand, signal probability depends on reliability 

as well, as will become clear later in the thesis. Since signal reliability is 

essentially a conditional signal probability (refer to next section for details), 

evaluating signal reliability is generally more difficult than estimating signal 

probability. 

    These challenges, along with the high circuit density, bring up two main 

requirements for the probability and reliability evaluation method: high accuracy 

when dealing with correlation, and high efficiency (scalability) when applied to 

integrated circuits. Currently, there exist numerical and analytical solutions, which 

are mainly under the zero-delay model and assume gate reliability is a constant. 
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The numerical method can provide high accuracy results statistically at a cost of 

extremely long processing time, which makes it a good way to provide benchmark 

results for probability and reliability evaluation. Analytical methods, different from 

numerical ones, tend to use some fast models to calculate/estimate signal 

probability and reliability. Although it is much more efficient and practical to be 

implemented on integrated circuits, the accuracy level is not satisfying. The major 

error source is coming from imperfect solutions to signal correlation estimation. 

Meanwhile, some works’ scalability, such as [5], is not good enough with a time 

complexity of O(M2), where M is the number of gates. 

1.2 Objectives 

The goal of this thesis is to assist designers in evaluating digital integrated circuit 

performance accurately and efficiently so that effective adjustments can be applied 

immediately. More specifically, the performance evaluation includes estimations 

for signal probability, reliability, and device reliability variations after a certain 

operation time, which is called the aging effect. All these factors are directly related 

to critical issues such as size, power consumption, lifetime, etc. Ideally, designers 

are expecting this evaluation to be accurate and efficient. 

However, it is unrealistic to search for an absolute accurate model with 

maximum efficiency for signal probability and reliability estimations. The best 

researchers can do is to find a reasonable balance between accuracy and efficiency. 

Any proposed model should be well-designed to handle signal correlations 

correctly, and the processing time should be preferably linear/quasi-linear 

proportional to number of logic gates. Otherwise, the efficiency of the proposed 

method will be a big concern when applied to integrated circuits.  

Due to the lack of full circuit aging effect analysis, we are also trying to 

introduce a model to help designers evaluate circuit reliability changes with 

consideration of long-term intense operation. The model should be straightforward, 

easy to follow and implement to any digital circuit. 
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1.3 Main Contributions 

Main contributions of this thesis are as follows: 

• developing a new, hybrid approach for signal correlation evaluation, unlike 

others which are either pure numerical or analytical. 

•  introducing a categorization system for correlations based on circuit 

connectivity. 

     • achieving linear time complexity to circuit size by evaluating reliability in 

terms of conditional signal probabilities, which allows the use of gate propagation 

model 

• achieving accurate evaluation for error-free probability (the probability that 

a signal is ‘expected’ to produce logic ‘1’ with given inputs) and reliability 

simultaneously during analytical and numerical analysis, getting rid of extra time 

obtaining signal probability from other methods/tools/software. 

• proposing a new convergence method (Two-step convergence) for 

sequential circuit analysis, reducing the number of iterations required by around 

30% 

• covering the shortage of circuit-level aging effect evaluation by extending 

existing device-level analysis. 

• creating a new index to describe circuit overall reliability by considering the 

cross-impact of spatial and temporal reliability simultaneously.  

The basic idea of the hybrid model is to categorize signal correlations by 

investigating a local circuit topology, and then apply specific solution methods 

accordingly (including analytic computation, bitstream simulation, or their 

combination).  All category solutions, along with the conditional-probability-based 

gate propagation model, are well-designed to obtain signal error-free probability 

and reliability simultaneously. It should be noted that actual signal probability can 

be easily obtained using error-free probability and reliability, but not vice versa.  

With this strategy, the proposed model achieves not only linear time complexity to 
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circuit size efficiency (benefits from the propagation-based model), but also further 

efficiency improvement by saving the processing time for signal error-free 

probabilities. Meanwhile, the simulation shows decent accuracy for the proposed 

model. When this model is applied to sequential circuits, instead of using traditional 

step-size convergence, we use the first few iterations as a trial, and obtain a far-

better initial value for the following iterations by regression analysis. For 

evaluations considering the aging effect, we propose a model to look at circuit 

reliability from a logic perspective (or spatial viewpoint) as well as a delay aspect 

(or temporal viewpoint), in order to build a single index to evaluate the overall 

reliability of circuit outputs. We also extend and combine some existing models to 

accomplish reliability analysis, starting from transistor level to gate level and finally 

to full circuit reliability estimation.  

1.4 Thesis Organization 

The rest of the thesis is organized as follows. Chapter 2 reviews the existing 

methods on above mentioned topics and their pros and cons. Chapter 3 presents the 

hybrid model in detail. Chapter 4 illustrates how the proposed hybrid model could 

be applied onto sequential circuits, as well as introduces the newly developed 

convergence technique. Chapter 5 focuses on circuit-level aging effect analysis. 

Finally, chapter 6 concludes the thesis. 

 

 

  



 

 

5 
 

CHAPTER 2  

LITERATURE REVIEW 

    Models for signal probability and reliability evaluation on combinational and 

sequential circuits are well discussed, but there is still space for improvement for 

better accuracy and/or efficiency. For aging effect evaluation, although there are 

numerous works on device (transistors, gates) reliability changes, little has been 

done on circuit-levels. 

2.1 Evaluation of Signal Probability and Reliability Under Zero-

delay Model   

    Gate and wire delay are important factors in circuit design and cannot be ignored 

in real circuit analysis. However, when obtaining output probability and reliability 

from a logical values perspective, researchers tend to assume that gate and wire 

delays are zeros. This zero-delay model allows direct investigation to circuit 

logical functionality without disturbance coming from temporal issues such as 

delay and glitches, and the reliability evaluated under zero-delay model is called 

spatial reliability, meaning that it is only related to circuit connectivity/structure 

without considering any temporal factors.  

    2.1.1Evaluation for Combinational Circuits 

    Evaluation of signal reliability is mainly achieved by two methods: numerical 

method and analytical method. The numerical method, such as Monte-Carlo 

simulation [6] is to estimate circuit reliability by randomly generating input vectors 

(with logic values 0 or 1 only) and evaluating the outputs. This approach is 

straightforward and easy to implement, and its accuracy is generally proportional 

to the number of iterative simulations. The major drawback of this method is that it 

requires long processing times, making it almost impossible for large integrated 

circuits. Therefore, it usually serves as a tool to provide standard results for 

evaluating the accuracy of other methods.  

Analytical methods, on the other hand, represent a class of approaches that use 

analytical models with gate reliability, which is inspired by Von Neumann’s work 
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[7]. This reliability, assigned to each gate independently, represents a probability 

that a given gate maintains output logic value correctly after any logic functions, or 

equivalently, the probability that bit flip (from 0 to 1 or 1 to 0) event will not 

happen. These analytical models using gate reliability are much more efficient than 

numerical methods at a cost of accuracy reduction since the correlations between 

signals are difficult to evaluate. Another challenge for analytical methods is how to 

increase the efficiency as much as possible for probability and reliability 

evaluation.  

In 2008, S. Krishnaswamy et al. proposed a probabilistic transfer matrix model 

(PTM) [8]. This work brings up the idea that all logic gates can be assigned by a 

pair of transfer matrix ITM and PTM (ideal transfer matrix and probabilistic 

transfer matrix), encountering error-free and erroneous environment respectively. 

The entire propagation procedure from input to output is then transferred into 

matrices multiplications, which speed up the evaluation process significantly. 

However, since the matrix tensor product is required during computation, the 

memory capacity needed to store the intermediate results is extremely high. On the 

other hand, signal correlations are handled by storing all multi-output gates and all 

correlated signals are considered simultaneously (maximum 10 correlated signals) 

regarding joint probability. These greatly increases the time complexity of the 

algorithm, especially for circuits with complex connectivity. Besides, considering 

the high difficulty level of estimating joint probability accurately for multiple 

(more than 2) signals, algorithm accuracy can still be a secondary concern in 

general. 

Another work [9] presented a model using Boolean difference calculus to 

calculate circuit output reliability. Although the time complexity to number of 

gates is linear, the computational process is based on an assumption that spatial 

correlation coefficients are already available/obtained from some other methods, 

which means this method itself is not capable for correlation evaluation. Thus, the 
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accuracy level is entirely based on the accuracy of the applied correlation 

coefficients. 

To better evaluate signal correlations, a multiple-state strategy has been used by 

[10-12]. The main idea is to generate a set of ‘copies’ circuits and each of them 

represents a specific logic state (0 or 1) for the reconvergent-fanouts. This method 

is usually accurate enough since when reconvergent-fanouts are fixed to certain 

logic values, the other signals’ probability and reliability can be easily calculated 

accurately. However, the major drawback of this idea is that when multiple 

reconvergent-fanouts exist, the number of input pattern considered will be 

increasing exponentially, making the evaluation process much less efficient. 

In a following milestone work called “probabilistic gate matrix” (PGM) [13], 

the signal correlations are handled by investigating output reliability for specific 

reconvergent fanout input pattern 𝑗 (with 𝑛 inputs) and take weighted summation 

as follows:  

𝑅𝑜𝑢𝑡 = ∑ 𝑃𝑗𝑅𝑜𝑢𝑡𝑗

2𝑛−1

𝑗=0

(2.1) 

where 𝑅𝑜𝑢𝑡  is output reliability, 𝑃𝑗 = 𝑃{𝑖𝑛𝑝𝑢𝑡𝑠 = 𝑗} , and 𝑅𝑜𝑢𝑡𝑗{𝑜𝑢𝑡𝑝𝑢𝑡 =

1|𝑖𝑛𝑝𝑢𝑡𝑠 = 𝑗}. This approach is pretty accurate but requires a certain amount of 

time to list all possible input patterns, resulting in a time complexity of 𝑂(𝑀2𝑀𝑓), 

where 𝑀 is the number of gates and  𝑀𝑓  is the number of correlated signals. It 

should be noted that if we ignore the extra processing time for signal correlations, 

the fundamental propagation-based model achieves a linear time complexity 

regarding the number of gates, which is the best in expectation so far. Therefore, 

this framework is widely used in the following years. 

    Meanwhile, researchers tried to find solutions based on probabilistic decision 

diagrams (PDD) [14] as well.  This is a good attempt to study circuit probability, 

reliability, and correlation topologically. Again, the main drawback of the 
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proposed model is that the time complexity is not linear, but highly related to the 

number of reconvergent-fanouts. For example, from [14], the CPU time for the 

circuit ‘duke2’ with only 88 gates takes 14.76 seconds, and for the circuit ‘9symml’ 

with 108 gates it becomes 0.22 seconds. The instability of efficiency greatly 

reduces the scalability of PDD.  A similar problem has been observed in [15] as 

well.   

Bayesian network [16] is another attempt using graphical method for probability 

and reliability evaluation.  However, it is quite hard to address signal correlations 

using the Bayesian network, and the accuracy level becomes a concern. The 

efficiency and accuracy are both moderate, but the scalability of this work is still 

questionable since the processing time to build up corresponding networks can be 

unacceptably long for integrated circuits.  

To make the evaluation method more scalable, [17] has bring up a model using 

correlation coefficient 𝐶𝐴𝐵 for signal pair (A, B) which is defined as: 

𝐶𝐴𝐵 =
𝑃(𝐴𝐵)

𝑃(𝐴)𝑃(𝐵)
(2.2) 

where 𝑃(𝑘) = Pr{𝑘 = 1} , 𝑘 = 𝐴, 𝐵, 𝐴𝐵. This model requires only one-pass to the 

circuit, making it very fast. However, considering the fact that reliability 

correlation is different from probability correlation, this method becomes less 

accurate for circuit reliability evaluation. More recently, a similar idea has been 

used in equivalent reliability model (ER) [18]. With a different definition of the 

correlation coefficient, the accuracy level of estimation for signal reliability has 

been improved, but still not enough.  

Another example of using correlation coefficients is the bitstream simulation 

model (CC-SPRA) [5]. Although the big framework is still a propagation-based 

analytical method, the evaluation of all correlation coefficients is achieved by 

‘bitstream simulation’, which is a small-scale Monte-Carlo simulation instead. 

More specifically, for any given signal pair, bit value sequences are generated 
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using available information. The correlation coefficient is then calculated using 

information obtained by ‘counting’ the bit values from generated sequences for 

signals of interest. With a good choice of the length of the bitstream, it provides 

accurate results without sacrificing too much efficiency. A major drawback of this 

work is that bitstream generation requires a circuit connectivity analysis from 

primary inputs. When a signal pair of interest is approaching outputs within 

integrated circuits, this investigation process will be time-consuming.  

In 2011, circuit clustering (CC) [19] has been introduced as a speed-up 

technique. The main idea is to separate a circuit into multiple clusters following its 

topological order and calculate conditional signal probabilities based on given 

values of its previous cluster only. The output probability can then be obtained by 

multiplying these conditional probabilities all together. Since the maximum size of 

matrices used to describe conditional probabilities is smaller, the algorithm 

efficiency has been improved a lot. However, this model is too optimistic since any 

interconnect signal between clusters will increase the difficulty of finding the 

individual conditional probability. Therefore, it is only capable for circuits with 

simple connectivity and clear hierarchy. 

    2.1.2 Evaluation for Sequential Circuits  

Since most of the real-world circuits are sequential, there is much research work 

on this area. From a hardware and design perspective, for example, [20] has 

developed a low-power, non-volatile and radiation-hardened latch against single 

event upsets and [21] takes advantage of reconfigurable pulsed latches to achieve 

low-power design with reliability enhancement.  

As for software simulation-based work, a soft-error detection and correction 

system has been introduced in [22], and [23] has investigated the critical path 

identification technique for sequential circuit reliability analysis. However, neither 

of their discussions mentioned how to improve the efficiency for sequential circuit 

probability and reliability directly. 
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As discussed before, most of the introduced methods for combinational circuit 

evaluation can be expanded to sequential circuits. Generally, as shown in [24], a 

sequential circuit can be transferred into a combinational equivalent by unlooping 

the memory component as shown in Fig. 1. 

It should be noted that this combinational equivalent requires the probability and 

reliability of the dummy inputs (DIs) are exactly the same as those of the dummy 

outputs (DOs) since they are initially connected. However, since this information 

is not given initially, we have to assign certain probability and reliability to DIs 

first and let the DIs and DOs converge to each other. This brings up a higher 

efficiency requirement for efficiency of combinational evaluation models since 

they are applied continuously until circuits’ stable status is found. 

The current convergence process is mostly driven by the following equation:  

𝑄𝐷𝐼
𝑛+1 = 𝑄𝐷𝐼

𝑛 + 𝜂 ∙ (𝑄𝐷𝑂
𝑛 − 𝑄𝐷𝐼

𝑛 ) (2.3) 

where 𝑄 represents either the probability or reliability element of DIs and DOs, 𝜂 

is the step size, and 𝑛 is the number of iterations. The step size is the key to 

determining how fast this convergence process is. Larger 𝜂  means a faster 

approach from DIs to DOs, while smaller 𝜂 are usually used during the fine-tuning 

process. In the extreme case, if 𝜂 = 1, the new DI value is directly substituted by 

 

(a)                                                                    (b) 

Figure 1. (a) Sequential circuit, (b) combinational equivalent of (a) 
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the current DO value. However, the optimal 𝜂 is difficult to find, and for each 

circuit the best 𝜂 can be different as well.  

In [24-26], 𝜂 = 0.1 is applied for the entire convergence process without any 

change, which leads to extremely tedious convergences. In fact, there is no reason 

to keep 𝜂 to such a small value for the first few iterations, where the probability 

and reliability of DIs and DOs are still far from each other. Such discussions on the 

choices of 𝜂 have been done in [27], but no exact solution was given. The only 

conclusion is that 𝜂 should be a dynamic value, starting with a relatively large one, 

such as 0.5, and gradually decreasing as DIs and DOs are getting closer. 

The tricky part about choosing 𝜂 is that it is sensitive to circuit structure as well 

as input probability and reliabilities. For any given circuit, the optimal value of 𝜂 is 

unique, which is also extremely difficult to find. Therefore, it is understandable 

that current researchers tend to use a universal model for all sequential circuits at a 

cost of reduction of efficiency.  

    Another important parameter, which is ignored by researchers, is the initial 

value of  𝑄𝐷𝐼
1 . A good initial value can significantly reduce the number of iterations 

required. In most work, DIs shares the same probability and reliability as primary 

inputs at the beginning of convergence. Although this setup is easy to follow, it is 

never the best choice. This thesis will discuss how to find a better initial value to 

speed up the entire convergence process as well.  

2.2 Evaluation of Signal Probability and Reliability Considering 

Delay and Aging Effect 

In real world circuits, gate delay will affect output probability and reliability, 

which cannot be ignored. For instance, there is a great chance for the sampled 

output data to be incorrect if the expected logic value arrives later than the designed 

guard band, even if the logic value is correct. In contrast to spatial reliability, 

temporal reliability is used to describe the probability that a signal arrives on time. 

Besides, gate reliability is usually not a constant either. In fact, after operating 
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intensively for years, transistor threshold voltages tend to increase (especially for 

PMOS). The reason is that accumulated opposite charges during operation will 

cancel the upcoming gate voltage and increase the threshold voltage if there is not 

enough ‘rest’ time to let the charges release, which is known as Negative Bias 

Temperature Instability (NBTI). Considering many other performance (such as 

power and area) requirements, circuits are usually designed to have their critical 

path delays around 10-30% shorter than the required clock period [28]. However, 

an accurate evaluation of the performance degradation caused by NBTI would be 

less likely since it strongly depends on dynamic operation conditions, such as 

supply voltage (VDD), environmental temperature (T), and signal probability (Pin) 

[29]. Even if a guard band is designed using extreme environmental parameters 

(such as high temperatures and high supply voltages), the uncertainty of signal 

probabilities makes it hard to accurately evaluate the aging effect. 

Some prior work has successfully built up short-term and long-term estimation 

models for the change in threshold voltage ∆𝑉𝑡ℎ  due to NBTI effect through 

experiments, as shown in [30, 31, 32]. Based on their results, [33] further simplified 

the proposed model assuming the environmental conditions (such as supply voltage 

and temperature) were fixed.  

    2.2.1 Aging Effect on Spatial Reliability 

    The spatial reliability refers to the probability that a signal will produce the 

correct logic value, in contrast to the temporal reliability which is related to delay. 

With the information of ∆𝑉𝑡ℎ, researchers in [33] have proposed models for gate-

level reliability aging analysis by looking into transistor performance. [33] shows 

that the designed transistor threshold voltages 𝑉𝑡ℎ  can fluctuate due to oxide 

thickness variations [34], line edge roughness [35], polysilicon granularity, and the 

combined effects of all these factors. Simulations and some sample analysis [36-49] 

conclude that 𝑉𝑡ℎ fluctuations will lead to unexpected behavior (turning on/off at 

incorrect gate-to-source voltage), which can be treated as a Gaussian distribution. 

The probability of failure (PF) for transistors is then calculated by assuming that 

transistors are ideal switches at its actual threshold voltage. The logic gates, formed 
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by these transistors, are found to be experiencing a certain probability to fail to 

produce the correct logic function, which has been discussed in [40]. Therefore, the 

output logic value could be incorrect. 

    2.2.2 Aging Effect on Temporal Reliability 

    The increased threshold voltage will make the transistors harder to be turned on 

and reduce drain current, leading to a longer gate propagation delay ([41, 42]). With 

the extra delay accumulated, there is a chance that the output signal may miss the 

sampling action of the current clock cycle and produce an incorrect sampling result 

for the output value, which is called temporal unreliability. Fortunately, it is 

possible to efficiently calculate gate delay variation using ∆𝑉𝑡ℎ  with the linear 

approximation model for logic gates delay approximation developed in [43]. The 

output delay is found using static timing analysis (STA) [44, 45], which can be 

done easily using SPICE tools, as indicated in [46]. The temporal reliability of 

output can be obtained by comparing the obtained output delay with the designed 

CLK frequency requirement.  

The above-mentioned work provides a clear picture of how aging effects can 

change single device performance with respect to spatial and temporal reliability. 

However, it is still a big challenge for designers to accurately determine the lifetime 

of designed circuits due to the lack of full circuit estimations for reliability aging 

issues while considering both types of reliability. 
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CHAPTER 3 PROBABILITY AND RELIABILITY ESTIMATION FOR 

COMBINATIONAL CIRCUITS 

In this chapter, we first describe some background of digital signal probability 

and reliability, and then introduce the joint probability vector (JPV) and joint 

conditional probability matrix (JCPM) for any given signal pair. With this 

information, we propose a hybrid model based on correlation categorization and 

show the corresponding solutions. The simulation results and summary are 

followed. 

3.1 Signal Probability and Joint Probability Vector 

3.1.1 Signal Probability  

For any signal D in a digital circuit, its error-free probability is defined as 

follows: 

{
𝑃𝐷
0∗ = Pr{𝐷∗ = 0}

𝑃𝐷
1∗ = Pr{𝐷∗ = 1}

(3.1)    

where D* is the error-free version of D (throughout the thesis, the symbol ‘*’ is 

used to indicate ‘error-free’, which refers to the condition where all gates and input 

signals are reliable), and 𝑷𝑫
∗ = (𝑃𝐷

0∗   𝑃𝐷
1∗) is called the error-free probability vector 

(PV) of signal D with 𝑃𝐷
0∗ + 𝑃𝐷

1∗ = 1. In an unreliable circuit, the reliability of 

signal D, (denoted by 𝑟𝐷) is defined as the probability that the signal generates an 

intended logic value, i.e., 𝑟𝐷 = 𝑃𝑟{𝐷 = 𝐷
∗}.  Similarly, for a logic gate g, its 

reliability (denoted by 𝑟𝑔) is defined as the probability that an intended logic value 

at its output is produced for given inputs (either erroneous or error-free). It should 

be mentioned that the reliability for gate output may not necessarily be lower than 

its input signal reliabilities for given 𝑟𝑔 due to logic masking. For instance, if one 

input of a reliable AND gate has a reliability of 1 but is fixed to logic 0, the output 
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reliability will always be 1 no matter how low the reliability of the other input 

could be. 

   3.1.2 Joint Probability Vector 

For any input pair (A, B) of a logic gate g, we define the joint (error-free) 

probability vector (JPV) and joint conditional probability matrix (JCPM) as 

follows: 

𝐽𝑃𝑉: 𝑷𝑨𝑩
∗ = (𝑃𝐴𝐵

00∗   𝑃𝐴𝐵
01∗   𝑃𝐴𝐵

10∗   𝑃𝐴𝐵
11∗) (3.2) 

where  𝑃𝐴𝐵
𝑖𝑗∗
= Pr{(𝐴𝐵)∗ = ′𝑖𝑗′} , 𝑖, 𝑗 = 0 𝑜𝑟 1 ,  ∑𝑃𝐴𝐵

𝑖𝑗∗
= 1 . If (A, B) are 

independent, we have 𝑃𝐴𝐵
𝑖𝑗∗
= 𝑃𝐴

𝑖∗ ∙ 𝑃𝐵
𝑗∗
.  If (A, B) are correlated, this value is 

evaluated otherwise. 

3.2 Signal Reliability and Joint Conditional Probability Matrix 

(JCPM) 

    3.2.1 Signal Reliability 

The reliability 𝑟𝐷   for signal D can be expressed in terms of probabilities of 

error-free signal 𝐷∗and conditional probabilities of signal D as follows: 

          𝑟𝐷  = 𝑃𝑟{𝐷 =  𝐷∗} 

               = 𝑃𝑟{𝐷 = 1 ∩ 𝐷∗ = 1} + 𝑃𝑟{𝐷 = 0 ∩ 𝐷∗ = 0} 

               =  Pr {𝐷 = 1 | 𝐷∗ = 1} ∙ 𝑃𝐷
1∗  +  Pr {𝐷 = 0 | 𝐷∗ = 0} ∙ 𝑃𝐷

0∗ 

= 𝑅𝐷
1 ∙ 𝑃𝐷

1∗  + 𝑅𝐷
0 ∙ 𝑃𝐷

0∗                                                        (3.3) 
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 where 𝑅𝐷
1  𝑎𝑛𝑑 𝑅𝐷

0  are conditional probabilities: 

{
𝑅𝐷
1 = Pr{𝐷 = 1 | 𝐷∗ = 1}

𝑅𝐷
0 = Pr{𝐷 = 0 | 𝐷∗ = 0}

(3.4) 

Let 𝑹𝑫 = (𝑅𝐷
0   𝑅𝐷

1 ), which is known as the reliability vector (RV) of signal D. In 

other words, the reliability of the signal D is associated with a pair of conditional 

probabilities (𝑅𝐷
0   𝑅𝐷

1).  

    3.2.2 Joint Conditional Probability Matrix 

    Similar to JPV definition, we have Joint Conditional Probability Matrix defined 

as follows: 

𝐽𝐶𝑃𝑀: 𝑪𝑨𝑩 =

(

 
 

𝑃00
00 𝑃00

01 𝑃00
10 𝑃00

11

𝑃01
00 𝑃01

01 𝑃01
10 𝑃01

11

𝑃10
00 𝑃10

01 𝑃10
10 𝑃10

11

𝑃11
00 𝑃11

01 𝑃11
10 𝑃11

11
)

 
 

(3.5) 

where the element 𝑃𝑖𝑗
𝑘𝑙 = Pr{(𝐴𝐵) = ′𝑘𝑙′  | (𝐴𝐵)∗ = ′𝑖𝑗′} , 𝑖, 𝑗, 𝑘, 𝑙 = 0 𝑜𝑟 1, and 

summation of the four elements in each row is 1 unless 𝑃𝐴𝐵
𝑖𝑗∗
= 0 for a specific 

value of i and j, in which case 𝑃𝑖𝑗
𝑘𝑙 (𝑘, 𝑙 = 0 , 1) in (3.5) is simply defined as 0. 

Once both 𝑷𝑨𝑩
∗  and 𝑪𝑨𝑩 in the above (3.4) and (3.5) are available, the PV and RV 

for the output of gate g can be derived through a probability propagation to be 

presented in the next section. 
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For small circuits, both PVs and RVs for all signals can be found using MC 

simulation. However, for large circuits with signal correlations, it would be 

impractical to do so by MC simulation which would be too time-consuming. 

Generally speaking, the PV and RV for any signal depends on input signal 

probabilities, signal correlations and/or gate reliabilities. Intuitively, if a circuit 

contains no signal correlations, the conditional reliability pair (𝑅𝐷
0   𝑅𝐷

1 ) can be 

easily propagated through gates from circuit inputs to its outputs. Unfortunately, 

most circuits have quite a few reconvergent fanouts which lead to signal 

correlations. To get a sense of what could happen if we ignore these correlations, 

we did MC simulations for benchmark circuit C432 with 160 gates under the 

assumption that all signals are independent with gate reliability of 0.999, and that 

all primary inputs are reliable with their signal probability of 0.5. The results are 

summarized in Table I, where the errors in evaluating the RV go up to 10%. This 

indicates that the signal correlations play an important role in circuit reliability 

evaluation.  

 

 

TABLE I. CONDITIONAL RELIABILITIES FOR CIRCUIT C432 WITH 𝑟𝑔 = 0.999 

Node # RV under Independent 

assumption 

RV Considering 

signal correlations 

Errors in 

percentage (%) 

1 (0.9977, 0.9862) (0.9958, 0.9778) (0.19, 0.86) 

2 (0.9932, 0.9218) (0.9866, 0.9681) (0.67, 4.78) 

3 (0.9953, 0.9346) (0.9785, 0.9645) (1.72, 3.10) 

4 (0.9256, 0.9290) (0.9673, 0.9927) (4.31, 6.42) 

5 (0.9101, 0.9751) (0.9692, 0.9813) (6.10, 0.64) 

6 (0.9032, 0.9574) (0.9700, 0.9832) (6.89, 2.63) 

7 (0.8719, 0.9870) (0.9684, 0.9786) (9.97, 0.86) 

Average ̶ ̶ (4.26, 2.75) 
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3.3 Gate Level Probability and Reliability Propagation  

In this section, we first show how to obtain the (error-free) probability vector 

(PV) and reliability vector (RV) for the output D of an unreliable logic gate 

assuming the availability of 𝑷𝑨𝑩
∗  and 𝑪𝑨𝑩, where A and B are the two inputs of the 

gate. We then present detailed analysis (either analytic or statistic simulation) by 

considering various correlations with the signal pair (A, B) to find both 𝑷𝑨𝑩
∗  and 

𝑪𝑨𝑩. It should be mentioned that the above obtained PV and RV for the signal D 

will be required and used to find both JPV and JCPM for other signal pairs (if they 

are the signal D’s transitive fanouts). Thus, the whole computation is a recursive 

gate-by-gate propagation process, as will become clear later in the thesis. Finally, 

the pseudo-codes of the overall algorithm are provided with some discussions. 

Assume both 𝑷𝑨𝑩
∗  and  𝑪𝑨𝑩  are available and that the logic gate under 

consideration is an AND gate with reliability of 𝑟𝑔. To obtain the PV of its output 

D (i.e., 𝑷𝑫
∗ ), we partition the 𝑷𝑨𝑩

∗  as follows: 

𝑷𝑨𝑩
∗ = (𝑃𝐴𝐵

00∗  𝑃𝐴𝐵
01∗  𝑃𝐴𝐵

10∗  ⋮  𝑃𝐴𝐵
11∗) = (𝑷𝟎 ⋮  𝑷𝟏) (3.6) 

where P0 = (𝑃𝐴𝐵
00∗  𝑃𝐴𝐵

01∗  𝑃𝐴𝐵
10∗) and P1 = (𝑃𝐴𝐵

11∗). Under zero-delay model, the 𝑃𝐷
0∗ and 

𝑃𝐷
1∗are the sum of all elements in P0 and P1, respectively, i.e., 

{
𝑷𝑫
𝟎∗ = 𝑆𝑈𝑀(𝑷𝟎)

𝑷𝑫
𝟏∗ = 𝑆𝑈𝑀(𝑷𝟏)

(3.7) 

The 𝑪𝑨𝑩 is partitioned accordingly as follows: 
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𝑪𝑨𝑩 =

(

  
 

𝑃00
00 𝑃00

01 𝑃00
10 | 𝑃00

11

𝑃01
00 𝑃01

01 𝑃01
10 | 𝑃01

11

𝑃10
00 𝑃10

01 𝑃10
10 | 𝑃10

11

− − − + −
𝑃11
00 𝑃11

01 𝑃11
10 | 𝑃11

11)

  
 

= (
𝑪𝑷𝟏 𝑪𝑷𝟐
𝑪𝑷𝟑 𝑪𝑷𝟒

)    (3.8) 

 

If 𝑟𝑔 = 1, the RV for the output D is expressed as 𝑹𝑫
′ = (𝑅𝐷

0 ′ 𝑅𝐷
1 ′), where: 

{
𝑅𝐷
0 ′ = 𝑆𝑈𝑀(𝐏𝟎 ∗ 𝐂𝐏𝟏)/𝑷𝑫

𝟎∗

𝑅𝐷
1 ′ = 𝑆𝑈𝑀(𝐏𝟏 ∗ 𝐂𝐏𝟒)/𝑷𝑫

𝟏∗
(3.9) 

When rg < 1 in general, consider the following two cases which would lead to a 

reliable output D: (a) both D’ (i.e., D when rg = 1) and the gate are reliable, and (b) 

both D’ and the gate are unreliable, which also produces a correct (reliable) value 

of D. The probability of case (a) is given by rg · RD’,   while the probability of case 

(b) is given by (1 ‒ rg)·(1 ‒ RD’). The summation of these two probabilities gives 

the output reliability, i.e., RD = rg·RD’ + (1‒rg)·(1‒RD’) = (2rg‒1)·RD’ + (1‒rg). 

Applying this result to both RD
0 and RD

1 gives the RV for D in a vector form as 

follows: 

𝑹𝑫 = (2𝑟𝑔 − 1) · 𝑹𝑫
′ + 𝑰𝒈 (3.10) 

where 

𝑰𝒈 = (1 − 𝑟𝑔     1 − 𝑟𝑔) (3.11) 

For any 2-input gates other than AND logic, similar derivations can be done to 

find the PV and RV of its output for given 𝑷𝑨𝑩
∗  and 𝑪𝑨𝑩, except that (3.6) through 



 

 

20 
 

(3.8) shall be partitioned in different ways accordingly. The question to ask now is 

how to find both JPV and JCPM (i.e., 𝑷𝑨𝑩
∗  and 𝑪𝑨𝑩) as defined in (3.4) and (3.5), 

which will be answered in the following section III.B. 

3.4 Correlation Categorization and JCPM Estimation 

For any signal pair of (A, B), finding its JPV and JCPM requires considerations 

of the correlations between A and B, which depends on the connectivity of 

themselves and/or their transitive fan-ins and deserves detailed analysis. In what 

follows, we first define three different categories, i.e., categories ‘S’, ‘N’ and ‘I’, to 

represent ‘strong’, ‘not-strong’ and ‘independent’ correlations, respectively, before 

calculating or estimating both JPV and JCPM. 

3.4.1 Category ‘S’ 

There are three sub-categories in this strong-correlation category ‘S’. They are 

named as ‘S1’, ‘S2’, and ‘S3’, as shown in Fig. 2. ‘S1’ refers to a situation where A 

and B are the same signal (Note that ‘S1’ rarely happens for any two-input gate as 

it would be degenerated to an inverter or buffer. However, we still define it for 

completeness of correlation categorization).  

‘S2’ represents the case where one of A and B is an immediate fan-in of the 

other. If A and B are driven by two different gates which share same inputs, then it 

is defined as ‘S3’. Throughout the thesis, gates (such as 𝑔 , g1 and g2) in all figures 

represent any type of 2-input logic gate unless otherwise stated. Also, inverter or 

buffer would be ignored because they have no effect on correlation category. 

Therefore, both cases shown in Fig.2 (a) are considered as ‘S1’. The characteristic 

of the category ‘S’ is that the correlation between A and B is so strong that their 

JPV and JCPM can be calculated directly, as discussed below. It should be noted 

that only JCPMs of input pairs in previous levels of gates are treated as ‘available’, 

which are obtained before the propagation reaches the current gate. 
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For category ‘S1’ in the left of Fig. 2 (a) where A and B are a same signal, the 

JPV and JCPM for (A, B) are given by: 

𝑷𝑨𝑩
∗ = (𝑃𝐴

0∗   0   0   𝑃𝐴
1∗) (3.12) 

𝑪𝑨𝑩 = (

𝑅𝐴
0 0 0 1 − 𝑅𝐴

0

0 0 0 0
0 0 0 0

1 − 𝑅𝐴
1 0 0 𝑅𝐴

1

) (3.13) 

For category ‘S2’ of Fig. 2 (b), the JPV of (A, B) is given by: 

 

(a) ‘S1’ 

 

(b) ‘S2’ 

 

(c) ‘S3’ 

Figure 2. Examples of correlation category ‘S’. 
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𝑷𝑨𝑩
∗ = 𝑷𝑿𝒀

∗ ∙ 𝑴𝑺𝟐
∗ (3.14) 

where 𝑷𝑿𝒀
∗  is the JPV of (X, Y), which is assumed to be available, and 𝑴𝑺𝟐

∗  is a 

gate-dependent probability propagation matrix for gate g1. For instance, if g1 is an 

AND gate, the corresponding 𝑴𝑺𝟐
∗  is given by: 

𝑴𝑺𝟐
∗ = (

1 0 0 0
1 0 0 0
0 0 1 0
0 0 0 1

) (3.15) 

The JCPM of (A, B) in Fig. 2(b) can also be calculated by using the JPV and 

JCPM of (X, Y) as well as the information about gate g1. To make the calculation 

easier, this can be done by initially assuming the g1’s reliability of rg = 1 and then 

extending it to the general case with any value of rg. First, with rg = 1, one can find 

the JCPM of (A, B), denoted as 𝑪𝑨𝑩
′ , depending on the gate type of g1. For 

instance, if g1 is an AND gate, 𝑪𝑨𝑩
′ is expressed as: 

𝑪𝑨𝑩
′ =

(

 

𝑃00
00 0 𝑃00

10 𝑃00
11

0 0 0 0
𝑃10
00 0 𝑃10

10 𝑃10
11

𝑃11
00 0 𝑃11

10 𝑃11
11)

 

𝐴𝐵

(3.16) 

where all elements can be calculated from both JPV and JCPM of (X, Y). For 

example, 
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{
 
 
 

 
 
 (𝑃00

00)𝐴𝐵  =
𝑃𝑋𝑌
00∗[(𝑃00

00)𝑋𝑌 + (𝑃00
01)𝑋𝑌] + 𝑃𝑋𝑌

01∗[(𝑃01
00)𝑋𝑌 + (𝑃01

01)𝑋𝑌]

𝑃𝑋𝑌
00∗ + 𝑃𝑋𝑌

01∗

(𝑃00
10)𝐴𝐵 =

𝑃𝑋𝑌
00∗ ∙ (𝑃00

10)𝑋𝑌 + 𝑃𝑋𝑌
01∗ ∙ (𝑃01

10)𝑋𝑌

𝑃𝑋𝑌
00∗ + 𝑃𝑋𝑌

01∗

(𝑃00
11)𝐴𝐵 =

𝑃𝑋𝑌
00∗ ∙ (𝑃00

11)𝑋𝑌 + 𝑃𝑋𝑌
01∗ ∙ (𝑃01

11)𝑋𝑌

𝑃𝑋𝑌
00∗ + 𝑃𝑋𝑌

01∗

(3.17) 

The other elements can be found similarly. For simplicity, (3.16) is rewritten in 

matrix as: 

𝑪𝑨𝑩
′ = (𝑴𝑺𝟐

∗ )𝑻 ∙ 𝑻𝑺𝟐 ∙ 𝑪𝑿𝒀 ∙ 𝑴𝑺𝟐
∗ (3.18) 

where (𝑴𝑺𝟐
∗ )𝑇  represents the transpose of 𝑴𝑺𝟐

∗ , 𝑻𝑺𝟐  is a transition matrix for 

category ‘S2’, depending on the gate type of g1. For instance, if g1 is an AND gate, 

the 𝑻𝑺𝟐 is given by 

𝑻𝑺𝟐 = 𝒅𝒊𝒂𝒈(
𝑃𝑋𝑌
00∗

𝑃𝑋𝑌
00∗ + 𝑃𝑋𝑌

01∗
,

𝑃𝑋𝑌
01∗

𝑃𝑋𝑌
00∗ + 𝑃𝑋𝑌

01∗
, 1, 1) (3.19) 

Secondly, for a general case with unreliable g1 (i.e., rg < 1), the JCPM of (A, B) 

is modified to 

𝑪𝑨𝑩 = 𝑪𝑨𝑩
′ ∙ 𝑴𝒈𝟏

𝑩 (3.20) 

where 𝑪𝑨𝑩
′
is given by (3.18), and 𝑴𝒈𝟏

𝑩  represents the modification due to the 

unreliable g1 and is given by 
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𝑴𝒈𝟏
𝑩 =

(

 
 

𝑟𝑔 1 − 𝑟𝑔 0 0

1 − 𝑟𝑔 𝑟𝑔 0 0

0 0 𝑟𝑔 1 − 𝑟𝑔
0 0 1 − 𝑟𝑔 𝑟𝑔 )

 
 

(3.21) 

For category ‘S3’ of Fig. 2 (c), the computation procedure for the JPV and JCPM 

is similar to the above category ‘S2’ except that an extra gate g2 shall be 

considered. More specifically, the JPV of (A, B) in this case is given by: 

𝑷𝑨𝑩
∗ = 𝑷𝑿𝒀

∗ ∙ 𝑴𝑺𝟑
∗ (3.22) 

where 𝑴𝑺𝟑
∗  is the joint propagation matrix defined by both g1 and g2. In Fig. 2 (c), 

if the gates g1 and g2 are AND and OR logic, respectively, the corresponding 𝑴𝑺𝟑
∗  

is given by: 

𝑴𝑺𝟑
∗ = (

1 0 0 0
0 1 0 0
0 1 0 0
0 0 0 1

) (3.23) 

Similar to the derivation of (3.18) and (3.20), we define a transition matrix for 

category ‘S3’ as 𝑻𝑺𝟑 , and express the JCPM of (A, B) for category ‘S3’ of Fig. 2 

(c) as: 

𝑪𝑨𝑩 = [(𝑴𝑺𝟑
∗ )

𝑻
∙ 𝑻𝑺𝟑 ∙ 𝑪𝑿𝒀 ∙ 𝑴𝑺𝟑

∗ ] ∙ 𝑴𝒈𝟏
𝑨 ∙ 𝑴𝒈𝟐

𝑩 (3.24) 

where 𝑴𝒈𝟐
𝑩  takes the form of (3.21) while 𝑴𝒈𝟏

𝑨 is given by 
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𝑴𝒈𝟏
𝑨 =

(

 
 

𝑟𝑔 0 𝑟𝑔 0

0 1 − 𝑟𝑔 0 1 − 𝑟𝑔
1 − 𝑟𝑔 0 1 − 𝑟𝑔 0

0 𝑟𝑔 0 𝑟𝑔 )

 
 

(3.25) 

3.4.2 Category ‘N’ 

Category ‘N’ refers to the ‘not-strong’ or relatively weak correlation cases for 

the pair (A, B), including 3 sub-categories, i.e., ‘N1’, ‘N2’ and ‘N3’, as shown in 

Fig. 3 where all gates are again generic. More specifically, N1 and N2 shown in 

Fig. 3 (a) and (b), respectively, represent two specific correlations where A or B is 

the reconvergent fanout with more than one gates involved in the reconvergent 

path, which weaken the strength of correlation and make it more difficult to find 

the JPV and JCPM of signal pair (A, B). A more general case for ‘not-strong’ 

correlations is the category ‘N3’, as shown in Fig. 3 (c) where the dotted lines 

stand for some possible correlations/connections. It should be noticed that the 

above category ‘S3’ of Fig. 3 (c) is an exception of ‘N3’ where X=W and Y=Z, 

which is considered as a strong correlation. 

Unlike category ‘S’, accurate evaluation of both JPV and JCPM for (A, B) under 

category ‘N’ is generally difficult.  For example, to find the JPV of (A, B) in ‘N1’, 

the three-signal joint probability of (X, Z, W) is required, which is unknown (only 

JCPMs for input pairs are available). To address this issue, a bitstream simulation 

technique, which is a statistical method proposed by [12], can be used instead (see 

Section III-C for details). 

3.4.3 Category ‘I’ 

Category ‘I’ generally represents any topological structures other than the above 

categories ‘S’ and ‘N’ (primary inputs are assumed to be independent). In 

particular, if a reconvergent fanout does not exist or is too far away from the signal 

pair (A, B), the correlation can be treated as the category ‘I’, which refers to 

“independent”. This is because of the fact that when the reconvergent fanout stays 
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further away from A or B, their correlation is getting weaker. One could do 

bitstream simulation [12] to evaluate both JPV and JCPM for (A, B), but it would 

be very time-consuming. Our simulations showed that when the reconvergent 

fanout is more than 4 levels away, the correlation strength would be negligibly 

weak and can thus be treated as an independent case with negligible errors (refer to 

Section IV for detailed results). For this category ‘I’, the JPV (or JCPM) for (A, B) 

can be obtained easily and efficiently without simulations, and is given 

approximately by simply taking the product of individual signal probabilities (or 

reliabilities) for both A and B as: 

𝑷𝑨𝑩
∗ = (𝑃𝐴

0∗ · 𝑃𝐵
0∗       𝑃𝐴

0∗ · 𝑃𝐵
1∗       𝑃𝐴

1∗ · 𝑃𝐵
0∗       𝑃𝐴

1∗ · 𝑃𝐵
1∗) (3.26) 

𝐶𝑚𝑛 = 𝑅𝐴
𝑚𝑛 · 𝑅𝐵

𝑚𝑛                                       (3.27) 

where 𝐶𝑚𝑛  is the element in the m-th row and n-th column of 𝑪𝑨𝑩,  and 

𝑅𝐴
𝑚𝑛 and 𝑅𝐵

𝑚𝑛 are given by: 

𝑅𝐴
𝑚𝑛 =

{
 
 

 
 𝑅𝐴

0,                                 𝑖𝑓 𝑚, 𝑛 = 1 𝑜𝑟 2

1 − 𝑅𝐴
0,     𝑖𝑓 𝑚 = 1 𝑜𝑟 2 𝑎𝑛𝑑 𝑛 = 3 𝑜𝑟 4

1 − 𝑅𝐴
1,     𝑖𝑓 𝑚 = 3 𝑜𝑟 4 𝑎𝑛𝑑 𝑛 = 1 𝑜𝑟 2

𝑅𝐴
1,                                 𝑖𝑓 𝑚, 𝑛 = 3 𝑜𝑟 4

              (3.28)  

𝑅𝐵
𝑚𝑛 =

{
 
 

 
 𝑅𝐵

0 ,                                 𝑖𝑓 𝑚, 𝑛 = 1, 3

1 − 𝑅𝐵
0 ,     𝑖𝑓 𝑚 = 1 𝑜𝑟 3 𝑎𝑛𝑑 𝑛 = 2 𝑜𝑟 4

1 − 𝑅𝐵
1 ,     𝑖𝑓 𝑚 = 2 𝑜𝑟 4 𝑎𝑛𝑑 𝑛 = 1 𝑜𝑟 3

𝑅𝐵
1 ,                                 𝑖𝑓 𝑚, 𝑛 = 2 𝑜𝑟 4

              (3.29)   

3.4.4 Multi-level Category  

In terms of correlation strength, all above categories can be listed in a 

descending order from the strongest to the weakest as: ‘S1’, ‘S2’, ‘S3’, ‘N1’, ‘N2’, 
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‘N3’, and ‘I’. In all these categories with exception of ‘N3’, a reconvergent fanout, 

which significantly contributes to the correlation of (A, B), is known (or no such a 

reconvergent fanout exists when it is the category ‘I’). For category ‘N3’, further 

investigation is required to find possible correlations among signals X, Y, Z and W 

(refer to Fig. 3 (c)) by locating any potential reconvergent fanouts. Considering the 

fact that the correlation between X and Y (or between Z and W) does not directly 

lead to the correlation between A and B, we are interested only in looking at 

possible correlations within the four cross-gate signal pairs (CGSPs), i.e., (X, Z), 

 

(a) ‘N1’ 

 

(b) ‘N2’ 

 

(c) ‘N3’ 

Figure 3. Examples of correlation category ‘N’. 
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(X, W), (Y, Z) and (Y, W). Like (A, B), each of these pairs has their own category, 

but is one gate away from (A, B). In order to differentiate these CGSPs from (A, 

B), we define the correlation for (A, B) as the 1st-level correlation, and those for 

CGSPs as the 2nd-level correlation. The strongest correlation category among these 

four CGSPs defines the 2nd-level category. For example, in Fig. 4 (a) where (Y, Z) 

is category ‘S1’ which is the strongest among all CGSPs, the correlation of (A, B) 

has the 1st-level category of ‘N3’ followed by the 2nd-level category of ‘S1’. 

Therefore, the correlation of (A, B) belongs to 2-level category, expressed as ‘N3-

.  

(a) ‘N3-S1’ 

 

(b) ‘N3-S2’ 

Figure 4. Examples of 2-level correlation category. 
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S1’. Fig. 4 (b) shows another example with a 2-level category of ‘N3-S2’.  

    Following the above definition, we further proceed to the 3rd-level if the 2nd-

level category is ‘N3’ again, in order to check if any reconvergent fanout stem can 

be found in the 3rd-level. It is noted that only CGSP pairs with category ‘N3’ in the 

2nd-level proceed to the 3rd level. The maximum number of CGSPs at the 3rd-level 

is 4×4 = 16 . If the 3rd-level category is still ‘N3’, then we move to the 4th level to 

check, and so on. The maximum number of CGSPs on level K would be up to 4K‒1. 

However, considering that the correlations due to reconvergent fanouts at the 5th or 

higher level is increasingly weak, we go only up to 4 levels for computational 

efficiency. In case the 4th-level category is ‘N’ which represents any category of 

‘N1’, ‘N2’ or ‘N3’, the correlation of (A, B) is approximately treated as category 

‘I’ instead of a 4-level category of ‘N3-N3-N3-N’. Also, if the category at the last 

level for a multi-level category is ‘I’, it would be simply equivalent to single-level 

category ‘I’. 

3.5 Bitstream Simulation for JPV and JCPM Estimation 

As discussed before, there are no analytical methods available to compute the 

probability and reliability for category ‘N’. We resort to a local bitstream 

simulation technique instead to estimate the JPV and JCPM of (A, B). We will 

start with a single-level category ‘N1’ and ‘N2’, then extend our discussions to a 

general multi-level category. 

3.5.1 Bitstream Simulation for Single-level Category 

Prior to simulation, all the JPV and JCPMs for transitive fan-ins of (A, B), along 

with signal probabilities and reliabilities, are assumed to be available.  We take 

single-level category ‘N1’ for example to show how the bitstreams are generated. 

Similar procedure also applies to single-level category ‘N2’ with considerations of 

just one more gate on the reconvergent path. 
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For category ‘N1’ (refer to Fig. 2 (a)), we first generate an error-free bitstream 

sequence for the reconvergent fanout X (or A), denoted as 𝑆𝑒𝑞𝑋
∗  (with length of L), 

using the error-free probability vector 𝑷𝑿
∗ , and then generate the corresponding 

error-free bitstream sequence for Y, denoted as  𝑆𝑒𝑞𝑌
∗ , based on 𝑆𝑒𝑞𝑋

∗  and 𝑷𝑿𝒀
∗ =

(𝑃𝑋𝑌
00∗   𝑃𝑋𝑌

01∗   𝑃𝑋𝑌
10∗   𝑃𝑋𝑌

11∗). More specifically, if X = ‘0’ is first generated, then the bit-

value of Y is generated using the following conditional probability vector: 

𝑃𝑟{𝒀|𝑋 = 0} = (
𝑃𝑋𝑌
00∗

𝑃𝑋𝑌
00∗ + 𝑃𝑋𝑌

01∗
    

𝑃𝑋𝑌
01∗

𝑃𝑋𝑌
00∗ + 𝑃𝑋𝑌

01∗
) (3.30) 

If X = ‘1’ otherwise, we use the following conditional probability vector instead to 

generate the bit-value for Y: 

𝑃𝑟{𝒀 | 𝑋 = 1} = (
𝑃𝑋𝑌
10∗

𝑃𝑋𝑌
10∗ + 𝑃𝑋𝑌

11∗
      

𝑃𝑋𝑌
11∗

𝑃𝑋𝑌
10∗ + 𝑃𝑋𝑌

11∗
) (3.31) 

With the above 𝑆𝑒𝑞𝑋
∗  and 𝑆𝑒𝑞𝑌

∗ , we then generate the (erroneous) bit-value 

sequence for ‘XY’ using the JCPM of (X, Y):  

𝑪𝑿𝒀 =

(

 
 

𝑃00
00 𝑃00

01 𝑃00
10 𝑃00

11

𝑃01
00 𝑃01

01 𝑃01
10 𝑃01

11

𝑃10
00 𝑃10

01 𝑃10
10 𝑃10

11

𝑃11
00 𝑃11

01 𝑃11
10 𝑃11

11
)

 
 

𝑋𝑌

(3.32)

For instance, if (XY)∗ = 00 at a certain bit of 𝑆𝑒𝑞𝑋
∗  and 𝑆𝑒𝑞𝑌

∗ , then ‘XY’ is 

generated using the joint conditional probability from the first row of CXY, i.e.,  

𝑃𝑟{𝑿𝒀 | (𝑋𝑌)∗ = 00} = (𝑃00
00   𝑃00

01   𝑃00
10   𝑃00

11)𝑋𝑌 (3.33) 
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For any other values of (XY)∗, simply take the corresponding row from 𝑪𝑿𝒀. This 

process is repeated L times to obtain two bitstream sequences for (erroneous) X 

and Y, denoted as 𝑆𝑒𝑞𝑋 and 𝑆𝑒𝑞𝑌, respectively. Once 𝑆𝑒𝑞𝑋
∗ , 𝑆𝑒𝑞𝑌

∗ , 𝑆𝑒𝑞𝑋 and 𝑆𝑒𝑞𝑌 

are available, the bitstream sequence for the signal Z (denoted as 𝑆𝑒𝑞𝑍
∗  and 𝑆𝑒𝑞𝑍) 

can be obtained accordingly by propagating (X, Y) through g1 to its output Z: 𝑆𝑒𝑞𝑍
∗  

is generated by applying the logic operation on 𝑆𝑒𝑞𝑋
∗  and 𝑆𝑒𝑞𝑌

∗ , while 𝑆𝑒𝑞𝑍  is 

generated by applying the logic operation on 𝑆𝑒𝑞𝑋 and 𝑆𝑒𝑞𝑌. It should be noted 

that g1 is assumed to be reliable when producing 𝑆𝑒𝑞𝑍
∗ , while its gate reliability of 

𝑟𝑔 is taken into considerations for producing 𝑆𝑒𝑞𝑍. 

To further generate the bitstream sequence of B in Fig. 2 (a), we need to use the 

JPV and JCPM of (Z, W). First, 𝑆𝑒𝑞𝑊
∗  can be easily obtained by following the 

similar procedure of generating the above 𝑆𝑒𝑞𝑌
∗ . The 𝑆𝑒𝑞𝑊 can be generated by 

taking two elements from 𝑪𝒁𝑾 , depending on the specific bit-values in  𝑆𝑒𝑞𝑊
∗ , 

𝑆𝑒𝑞𝑍
∗and 𝑆𝑒𝑞𝑍  and 𝑪𝒁𝑾. The bit-values in 𝑆𝑒𝑞𝑊

∗  and 𝑆𝑒𝑞𝑍
∗  define the row of the 

two elements, while the bit-value in 𝑆𝑒𝑞𝑍  define their column. For instance, if 

(ZW)∗ = 00 and Z = 0, the conditional probability vector of W is given by: 

𝑃𝑟{𝑾 | (𝑍𝑊)∗ = 00 ∩  𝑍 = 0} = (𝑃00
00   𝑃00

01)𝑍𝑊 (3.34) 

where 𝑃00
00 and 𝑃00

01 are the two elements in the 1st row and 1st two columns of 

𝑪𝒁𝑾. Thus, the bit-value of W is generated by using the probability vector of 

(
𝑃00
00

𝑃00
00 +𝑃00

01
    

𝑃00
01

𝑃00
00 +𝑃00

01
) . Once 𝑆𝑒𝑞𝑍

∗ , 𝑆𝑒𝑞𝑊
∗ , 𝑆𝑒𝑞𝑍  and 𝑆𝑒𝑞𝑊  are available, the 

bitstream sequence for the signal B (denoted as 𝑆𝑒𝑞𝐵
∗  and 𝑆𝑒𝑞𝐵) can be finally 

obtained by propagating the bitstream sequences of both Z and W through g2 to its 

output.  
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With the above-generated 𝑆𝑒𝑞𝐴
∗  , 𝑆𝑒𝑞𝐴 ,  𝑆𝑒𝑞𝐵

∗  and 𝑆𝑒𝑞𝐵 , the occurrences of 

(AB)∗ to take ‘00’, ‘01’, ‘10’ or ‘11 can be counted. Dividing them by the total 

length of bitstreams L gives an estimate of 𝑷𝑨𝑩
∗ = (𝑃𝐴𝐵

00∗   𝑃𝐴𝐵
01∗   𝑃𝐴𝐵

10∗   𝑃𝐴𝐵
11∗). The 

total 16 elements in 𝑪𝑨𝑩 (i.e., JCPM for (A, B)) are estimated by the frequency of 

occurrences for ‘AB’ = ‘00’, ‘01’, ‘10’ or ‘11’ given (AB)∗ = ‘ij’, where i, j = 0, 1. 

For instance, 𝑃00
01 (i.e., the element in the 1st-row and 2nd-column of 𝑪𝑨𝑩) is given 

by the occurrences of ‘AB’ = ‘01’ given (AB)∗ = ‘00’. With 𝑷𝑨𝑩
∗  and 𝑪𝑨𝑩, both 

probability vector and reliability vector for the output D in Fig. 2 (a) can be 

obtained easily by following the method discussed in Section III-A. 

To better illustrate the proposed method, we show an example using benchmark 

circuit C17 (Fig. 4) before presenting the pseudocodes of our algorithm. 

In C17, all gates are NAND type, and (D, E, F, G, H) are primary input, while 

(Q, T) are primary outputs. We assume all primary inputs are independent with an 

error-free probability of 0.5 and reliability of 1, i.e., 𝑷𝑫~𝑯
∗ = (𝟎. 𝟓, 𝟎. 𝟓), 𝑹𝑲 =

(𝟏, 𝟏). In this example, we go through K - (L, M) - T to find the probability and 

reliability of T.  For K, since (F, G) are independent, the JPV and JCPM are 

calculated by simple multiplication as follows: 

𝑷𝑭𝑮
∗ = (0.25  0.25 0.25  0.25) = (𝐏𝟎, 𝐏𝟏) (3.35) 

 

Figure 5. Benchmark Circuit C17 
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𝑪𝑭𝑮 =

(

 
 

1 0 0 | 0
0 1 0 | 0
0 0 1 | 0
− − − + −
0 0 0 | 1)

 
 
= (

𝑪𝑷𝟏 𝑪𝑷𝟐
𝑪𝑷𝟑 𝑪𝑷𝟒

) (3.36) 

where P0 = (0.25 0.25 0.25) and P1 = (0.25). Under this case, it is easy to find 

𝑃𝐾
∗ = (0.25, 0.75). 

To calculate 𝑹𝑲, we firstly assume gate g2 is reliable. The CPM of K is given 

by: 𝑪𝑲
′ = (

𝑅𝐾
0 1 − 𝑅𝐾

0

1 − 𝑅𝐾
1 𝑅𝐾

1 )  

{
 
 

 
 𝑅𝐾

0 ′ =
𝑆𝑈𝑀(𝐏𝟎 ∙ 𝐂𝐏𝟏)

𝑷𝑫
𝟎∗

=
0.25

0.25
= 1

𝑅𝐾
1 ′ =

𝑆𝑈𝑀(𝐏𝟏 ∙ 𝐂𝐏𝟒)

𝑷𝑫
𝟏∗

=
0.25 + 0.25 + 0.25

0.75
= 1

(3.37) 

If gate g2 is not reliable and has reliability 𝑟𝑔2 = 0.9, we apply (3.11) to obtain 

𝑪𝑲 = 𝑪𝑲
′ ∙ 𝑴𝒈 = (

1 0
0 1

) ∗ (
0.9 0.1
0.1 0.9

) = (
0.9 0.1
0.1 0.9

) , (3.38) 

which means that the RV of K is 𝑹𝑲 = (0.9, 0.9). 

    Then we move on to signal L and M. Again, since E and H are primary inputs 

and K is the output of (F, G), both (E, K) and (H, K) are independent pairs 

according to our assumption. The procedure of finding PV and RV for L and M is 

exactly the same as above in deriving (3.35) - (3.38). 

   Once the PV and RV for both L and M are calculated, we then tend to find out 

the PV and RV for T. In this case, (L, M) is an ‘N3-S1’ correlation, which requires 

bitstream simulation. Following the previous discussions, we firstly look at CGSPs 

of inputs of (L, M) to find the most correlated pair, which is (K, K) with an ‘S1’ 

correlation. Then the bitstream for error-free and erroneous value of (K, K) pair is 

generated based on JPV and JCPM: 
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𝐽𝑃𝑉: 𝑷𝑲𝑲
∗ = (𝑃𝐾

0∗ , 0,0, 𝑃𝐾
1∗) = (0.25,0,0,0.75) (3.39) 

𝐽𝐶𝑃𝑀: 𝑪𝑲𝑲 = (

0.9 0 0 0.1
0 0 0 0
0 0 0 0
0.1 0 0 0.9

) (3.40) 

Assume we’ve generated 10-bit length bitstreams 𝑺𝒆𝒒𝑲
∗  and 𝑺𝒆𝒒𝑲 for K as 

follows: 

Error-free 𝑺𝒆𝒒𝑲
∗  0 0 1 1 1 0 0 0 0 0 

Erroneous 𝑺𝒆𝒒𝑲 0 1 1 1 0 0 0 0 0 0 

 

The two bits in bold represent the actual logic value of K is not the same as the 

error-free value. 

The next step is to find the second most correlated signal among (E, K) and (K, H) 

(if no ‘S1’ exists, then 4 pairs will be involved here). Since both of them are 

independent, we randomly choose one, say (E, K), to generate the 𝑺𝒆𝒒𝑬
∗  and 

𝑺𝒆𝒒𝑬 for E (they should be equal since E is a primary input with reliability of 1), 

based on bit values of 𝑺𝒆𝒒𝑲
∗ , 𝑺𝒆𝒒𝑲  and 𝑪𝑬𝑲 (Note that 𝑪𝑬𝑲 has been calculated 

already when finding PV and RV for L): 

𝑷𝑬𝑲
∗ = (0.125,0.375,0.125,0.375) (3.41) 

𝑪𝑬𝑲 = (

0.9 0.1 0 0
0.1 0.9 0 0
0 0 0.9 0.1
0 0 0.1 0.9

) (3.42) 

Let’s assume we are at the first bit generation of E, where 𝑺𝒆𝒒𝑲
∗ = 0 and 𝑺𝒆𝒒𝑲 =

0. From 𝑷𝑬𝑲
∗ , we take out the two probabilities representing two ‘0’s on K value, 

as (𝑃𝐸𝐾
00∗ , 𝑃𝐸𝐾

10∗) = (0.125,0.125) . Therefore, E will have a probability of 

0.125/0.25=0.5 to generate a ‘0’ on the first bit of  𝑺𝒆𝒒𝑬
∗ . Assume 𝑺𝒆𝒒𝑬

∗  is fully 

generated with the following values: 
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Error-free 𝑺𝒆𝒒𝑲
∗  0 0 1 1 1 0 0 0 0 0 

Error-free 𝑺𝒆𝒒𝑬
∗  1 1 0 1 0 0 1 0 0 0 

 

For the first bit of 𝑺𝒆𝒒𝑬  generation, since 𝑺𝒆𝒒𝑲
∗ = 0, 𝑺𝒆𝒒𝑲 = 0 and 𝑺𝒆𝒒𝑬

∗ = 𝟏, 

we need to find the terms in 𝑪𝑬𝑲 which matches the given values, as highlighted in 

(3.42): (𝑃10
00, 𝑃10

10) = (0, 0.9). Therefore, E will have a probability of 0.9/(0+0.9) = 

1 to generate a ‘1’ at the first bit of 𝑺𝒆𝒒𝑬. The final 𝑺𝒆𝒒𝑬 could be as follows: 

Error-free 𝑺𝒆𝒒𝑲
∗  0 0 1 1 1 0 0 0 0 0 

Error-free 𝑺𝒆𝒒𝑬
∗  1 1 0 1 0 0 1 0 0 0 

Erroneous 𝑺𝒆𝒒𝑲 0 1 1 1 0 0 0 0 0 0 

Erroneous 𝑺𝒆𝒒𝑬 1 1 0 1 0 0 1 0 0 0 

 

Since E is one of the primary inputs which are assumed to be reliable, the 𝑺𝒆𝒒𝑬 

and 𝑺𝒆𝒒𝑬
∗  are the same in this case. However, they are usually different for internal 

nodes of circuits. 

Once the 𝑺𝒆𝒒𝑬 is fully generated, we then propagate to L by using: 

{
𝑺𝒆𝒒𝑳

∗ = 𝑵𝑨𝑵𝑫(𝑺𝒆𝒒𝑬
∗ , 𝑺𝒆𝒒𝑲

∗ ) 

𝑺𝒆𝒒𝑳 = 𝑵𝑨𝑵𝑫(𝑺𝒆𝒒𝑬, 𝑺𝒆𝒒𝑲),𝑤𝑖𝑡ℎ 𝑟𝑔3 = 0.9
 (3.43) 

where 𝑟𝑔3 = 0.9 means there are 90% chance for 𝑔3 to perform the correct logic 

‘NAND’, and 10% chance to produce the opposite logic output of ‘NAND’, or 

actually ‘AND’ logic. Using above sequences, we can have:  

Error-free 𝑺𝒆𝒒𝑳
∗  1 1 1 0 1 1 1 1 1 1 

Erroneous 𝑺𝒆𝒒𝑳 1 0 1 0 1 0 1 1 1 1 

 

where the bit values in bold represent that the NAND gate performs incorrect logic 

function due to gate unreliability. 
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Similarly, we can find 𝑺𝒆𝒒𝑴
∗  and 𝑺𝒆𝒒𝑴. After that, by counting the frequencies of 

each logic value combinations, we can find the 𝑷𝑳𝑴
∗  and 𝑪𝑳𝑴  accordingly. For 

example in the following, if there are five bits (out of ten bits in total) giving 𝑳∗ =

𝟏,𝑴∗ = 𝟏, and among these five bits, two of them are giving 𝑳 = 𝟏,𝑴 = 𝟎, given 

the bitstream length is 10, then we can estimate 𝑷𝑳𝑴
𝟏𝟏∗ =

5

10
= 0.5, and (𝑪𝟏𝟏

𝟏𝟎)𝐿𝑀 =

2

5
= 0.4. Signal probability 𝑷𝑳

∗  and 𝑷𝑴
∗  can be found similarly. When 𝑷𝑳𝑴

∗  and 𝑪𝑳𝑴 

are available, we can easily propagate through 𝑔6 using (3.8) - ( 3.10).  

Since the signal correlations have been taken into account in the above 

bitstream-producing process, the results would be highly accurate if the bitstream 

sequences are long enough. Also, the process is still fast even for long sequences 

because only a few gates and signals in a small local structure are involved. In this 

work, we chose L = 1000 as the bitstream length for all simulations with the best 

trade-off between accuracy and efficiency, as will be verified in Section IV.  

3.5.2 Bitstream Simulation for Multi-level Category 

    For multi-level category (refer to Fig. 3), finding the JPV and JCPM for (A, B) 

would be more difficult. The reasons are two-fold: First, the correlation of (A, B) 

depends on the correlations among their immediate fan-ins (i.e., X, Y, Z and W in 

Fig. 3), which potentially depend further on those of their transitive fan-ins, 

making the probability and reliability estimation even harder. Secondly, multi-

level category may involve multiple reconvergent fanout stems, which require 

some investigation on what order shall be followed in generating bitstream 

sequences so that the correlation of (A, B) can be captured to a maximum extent. 

Error-free 𝑺𝒆𝒒𝑳
∗  1 1 1 0 1 1 1 1 1 1 

Error-free 𝑺𝒆𝒒𝑴
∗  1 1 0 1 1 0 1 1 0 0 

Erroneous 𝑺𝒆𝒒𝑳 1 0 1 0 1 0 1 1 1 1 

Erroneous 𝑺𝒆𝒒𝑴 1 1 0 1 0 0 1 0 0 0 
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In the following, we present a heuristic method to generate bitstreams for (A, B). 

The general idea is to first generate both error-free and erroneous bitstream 

sequences for the four signals X, Y, Z and W, and then propagate them through the 

driving gates of A and B (i.e., g1 and g2 in Fig. 3) to obtain the bitstreams of (A, B) 

and its JPV and JCPM accordingly.  

Since the CGSPs with strongest correlations are generally a main contributor to 

the correlation of (A, B), they represent a perfect candidate as a starting point of 

bitstream simulation. This is to ensure that the correlation information among 

multiple signals can be captured as much as possible. Consider a simple example 

of Fig. 4 (a), where (Y, Z) are strongly correlated while other CGSPs are 

independent. If the bitstreams of (Y, Z) are generated first, followed by bitstreams 

of X and W, the correlation information can be fully captured. However, if we 

begin with bitstreams of (X, W) instead, followed by bitstreams of Y and Z using 

bit-values of X and W, respectively, then the bitstreams of Y would be 

independent of Z, which would be totally untrue. Therefore, if the last level of 

multi-level category is any category other than ‘I’ (it cannot be ‘N3’), then we 

choose that defining pair (i.e., the signal pair which defines the specific category at 

the level) as the starting candidate for bitstream simulations, and generate its 

bitstreams by either using the JPV and JCPM from analytic computation (for 

category ‘S’), or single-level bitstream simulations (for category ‘N1’ and ‘N2’). If 

the last level is category ‘I’ otherwise, no bitstream simulations will be needed.  

Once the above starting CGSP is found, we then proceed to generate all 

bitstreams for the signals at the same level as this starting CGSP, before 

propagating them to the next level closer to (A, B). In doing so, there are two 

general rules to follow: 

Rule 1: After generating the bitstreams for the starting CGSP, we choose the 

next signal pair as one with strongest correlation among those signal pairs 
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(including both CGSPs and non-CGSPs) containing only one signal with available 

bitstreams. 

Rule 2: In case the JPV and/or JCPM for a certain signal pair is not available for 

generating bitstreams, another set of new bitstream simulations is required, which 

shall be discarded once the JPV and JCPM are found. 

 To elaborate the above two rules and their importance, we take Fig. 4 (b) as an 

example. The starting CGSP is (Y, Z) whose JPV and JCPM can be obtained from 

an analytic computation as discussed in Section III-B. Following Rule 1, the 

second pair will be the one of (X, Y), (X, Z), (Y, W) or (Z, W), whichever has the 

strongest correlation. If one fails to follow Rule 1 by taking (X, W) as the second 

pair whose bitstreams would be generated using both 𝑷𝑿𝑾
∗  and 𝑪𝑿𝑾. This would 

imply that the bitstreams of (X, W) are independent of (Y, Z), and overlook the 

possible correlations within other signal pairs of (X, Y), (X, Z), (Y, W) and (Z, 

W). Similarly, if the third signal for bitstream generation is X, the third pair for 

bitstream simulations will be the one with strongest correlation among (X, W), (Y, 

W) and (Z, W) by following Rule 1.  

Note that in case the JPV and JCPM for the above second pair (say, it is (Y, W)) 

is not available yet, another new bitstream process would be required to estimate 

them. As stated in the above Rule 2, these new bitstreams for Y shall not interfere 

with the existing 𝑆𝑒𝑞𝑌
∗  or 𝑆𝑒𝑞𝑌 . The  𝑆𝑒𝑞𝑊

∗  and 𝑆𝑒𝑞𝑊 will be generated next by 

using the obtained JPV and ICPM of (Y, W) along with the existing 𝑆𝑒𝑞𝑌
∗  or 𝑆𝑒𝑞𝑌 . 

This applies to all signal pairs involved to ensure that the most correlated 

information is kept. 

The above bitstream simulation procedure applies to all multi-level categories. 

The only difference is that as the number of levels increases, more signal pairs 
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need to be considered. For instance, for 3-level category with 8 signals at the 3rd-

level, each of the two signals from the starting pair can pair with any of other 6 

signals, leading to a total of 2×6=12 candidate pairs to be considered when 

choosing the next (second) pair for bitstream generation. Each of the 3 signals with 

available bitstreams can then pair with any of the remaining 5 signals, resulting in 

a total of 3×5=15 signal pairs to be considered when choosing the 3rd pair for their 

bitstream generation, and so on. For a 4-level category in which the 4th-level is 

category ‘S’, we start with this defining pair of category ‘S’ for bitstream 

simulations with a total of 16 signals at 4th level, leaving 2×14=28 candidate pairs 

to be considered when choosing the second pair for bitstream generation, followed 

by the 3rd pair, and so on. This procedure continues until all bitstreams for the 

signals at all levels have been generated. 

3.6 Algorithm Description 

In summary, the proposed method looks at one gate at a time in a topological 

order and finds the JPV and JCPM for its input signal pair before propagating to its 

output for estimation of error-free signal probability vector and reliability vector. 

This represents a hybrid model since both JPV and JCPM are found by either 

analytic computation or local bitstream simulation, depending on the specific 

signal correlation (single-level or multi-level) category. This can provide a high 

level of accuracy while maintaining the computational efficiency for signal 

probability and reliability evaluation with large circuits. 

The whole procedure is described in the following algorithm: 

Hybrid Estimation Algorithm 

Input: Circuit with probabilities of independent PIs and M gates with gate 

reliability. All PIs are assumed to be reliable. 
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Output: All signal probabilities and reliabilities in the circuit. 

Procedure: 

   {Sort all M gates in a topologic order; 

   for i = 1 to M, do 

    Let (A, B) be input signal pair of gate i, and D the output; 

    /* Category identification */ 

    Determine the correlation category for (A, B) (see Section III-B);  

    /* Estimation on JPV of 𝑷𝑨𝑩
∗  and JCPM of 𝑪𝑨𝑩  */ 

    if (A, B) is category ‘I’ 

          Estimate  𝑷𝑨𝑩
∗  and 𝑪𝑨𝑩 by eq. (3.26) - (3.29);           

    else if (A, B) is single-level category ‘S’ 

                Find 𝑷𝑨𝑩
∗  and 𝑪𝑨𝑩 by analytic computation.  

                (3.12) - ( 3.25) or similar ones according to the type of gate i; 

           else if (A, B) is single-level category ‘N1’ or ‘N2’ 
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                       Find 𝑷𝑨𝑩
∗  and 𝑪𝑨𝑩 by bitstream simulations (refer to  

                        Section III-C for details); 

                  else   /* (A, B) is a multi-level category */ 

Find 𝑷𝑨𝑩
∗  and 𝑪𝑨𝑩 by bitstreams or combination of bitstreams and 

analytic computation; 

      Calculate the probability and reliability for D using eqs. (3.7) - ( 3.11) or 

similar ones according to the type of gate i; 

end for 

} 

The category identification is one of the important steps in the above algorithm 

and is elaborated as follows: For any given gate, we simply take its two inputs (A 

and B), and compare their driving signals to see if they share a common signal or 

not. If they do (examples shown in Fig. 1), then the (single-level) category ‘S’ is 

identified. If not, keep searching their driving signals at the next logic level (once a 

common signal is found, it could be identified as either category ‘N’ or a multi-

level category, with examples shown in Figs. 2 and 3), and so on. For instance, to 

identify whether (A, B) belongs to either category ‘N1’ or ‘N2’, one can check if 

one of A and B (say, A) is also an input of another gate (other than gate g in the 

figures). If this is the case, then we can travel from this input through a few gates 

to check if it meets the other signal (say, B). If yes, then it belongs to ‘N1’ or ‘N2’, 

depending on the number of gates it goes through (refer to Fig. 2 (a) and (b)). 

Otherwise, it is identified as category ‘I’. If none of A and B is an input of another 
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gate instead, then it belongs to category ‘N3’ which would lead to a multi-level 

category. For multi-level category, we do a similar traversal for each CGSP signal 

pair at the next level to identify the category based on the definition of multi-level 

category. If the category remains ‘N3’ for up to 4 levels, then it is identified as 

category ‘I’ as well (i.e., treated approximately as independent). As one can see, 

the above search process is like a (local) graph traversal plus checking the local 

structure against those in Figs. 1 through 3.  

It can be seen from the above algorithm that the processing time is mostly spent 

in the category identification and bitstream generation/propagation. To identify the 

category for each signal pair of (A, B), the maximum number of gates (for up to 

four levels) to be considered is (1+2+4+8+16) = 31. For a circuit with M gates, the 

identifying process takes O(M) time. On the other hand, the computation time  for  

bitstream  simulation  is linearly proportional to the length of bitstream sequences 

(L) since the number of local signals to be considered for each pair of (A, B) is 

typically in tens. Also, L is usually few thousands (in this work, we chose L = 

1000). Thus, the overall time complexity for the algorithm is O(L∙M). Meanwhile, 

the value of L is directly related to the algorithm accuracy. The estimation results 

would generally be more accurate with longer bitstream generated. According to 

[47], the general error for L=1000 will be within 5 ∙ 10−4 while considering the 

computational round-up. 

3.7 Simulation Results and Performance Comparison 

The proposed method was implemented using MATLAB on a DELL desktop 

(OS: Windows 10) with CPU frequency of 3.2 GHz and 8GB RAM. All 

simulations were conducted on benchmark circuits under the assumption that all 

primary inputs are reliable and independent of each other with their signal 

probability of 0.5. The length of bitstream sequences was set to L=1000. 
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First of all, in order to justify our previous assumption that the signal 

correlations can be treated approximately as an independent case as long as the 

reconvergent fanout is more than 4 levels away, we made an example circuit with 

31 gates, as shown in Fig. 6 which represents a strongly-correlated 5-level 

category being treated approximately as category ‘I’ (it would otherwise be 

identified as category of ‘N3-N3-N3-N3-S1’), where different types of gates are 

mixed at different levels. More specifically, all 16 gates at level 4 are NOR logic, 

all 8 gates at level 3 are NAND logic, all 4 gates at level 2 are NOR logic, both 

gates at level 1 are AND logic, and the last gate to the output D is an OR logic. 

Each of 16 inputs at level 5 is shared by two gates (i.e., signals #1, #3, #5, …, #15 

are connected to signals #32, #31, #30, …, #25, respectively, while signals #2, #4, 

…, #16 are connected to signals #17, #18, …, #24, respectively, as shown in Fig. 

6). Assume all these 16 inputs are reliable with signal probability of 0.5 and that all 

gate reliabilities are set to rg = 0.95. Since the two inputs of all gates (except the 

last gate G31) in the figure are independent, we can calculate the error-free signal 

probability vector Pi
* and signal reliability vector Ri at level i (for i = 4, 3, 2, 1) 

using (3.6) through (3.11) (or similar equations, depending on the specific gate 

type) as follows: 

P4
* = [0.75    0.25], R4 = [0.95   0.95]; 

P3
* = [0.0625   0.9375], R3 = [0.8623   0.9316]; 

P2
* = [0.8828   0.1172], R2 = [0.8349   0.7815]; 

P1
* = PA

*= PB
* = [0.9863   0.0137], 

R1 = RA = RB = [0.9062     0.5995]. 
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If we assume A and B are independent as well, the approximate JPV and JCPM for 

the signal pair (A, B) can be calculated by (3.26) through (3.29) as:    

JPV(appr.):  PAB
* = [0.9727   0.0135   0.0135   0.0003] 

JCPM(appr.):  𝑪𝑨𝑩 = (

0.8212 0.0850 0.0850 0.0088
0.3629 0.5433 0.0376 0.0562
0.3629 0.0376 0.5433 0.0562
0.1604 0.2401 0.2401 0.3594

)  

Finally, we can use equations similar to (3.6) through (3.11) for the OR gate of 

G31 to find PD
*, RD and rD at the output signal D as: 

 

Figure 6. An example circuit with 5-level category of ‘N3-N3-N3-N3-S1’ being 

treated as category ‘I’ for approximation. 
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PD
* = [0.9727   0.0273], RD = [0.7891   0.6246] and rD  = 0.7846. 

For comparison, we also performed MC simulations (with 1 million runs) 

considering the correlations between A and B, and obtained the results below: 

JPV(mc):  𝑷𝑨𝑩
∗ = (0.9735  0.0127  0.0127   0.0011) 

JCPM (MC): 𝑪𝑨𝑩 = (

0.8222 0.0842 0.0843 0.0093
0.3550 0.5233 0.0487 0.0730
0.3408 0.0536 0.5215 0.0841
0.1674 0.2447 0.2291 0.3588

)  

which lead to the values of PD
*, RD and rD (again by using similar equations to 

(3.6) through (3.11) as well as (3.2)) for the OR logic of gate G31) as: 

PD
* = [0.9735   0.0265], RD = [0.7899   0.6432] and rD  = 0.7860. 

Comparison of the above approximate results with MC simulations shows that 

the absolute errors for PD
1* (the dominant element of PD

*) and rD are: (0.9735 ‒ 

0.9727) = 0.0008 and (0.7860 ‒ 0.7846) = 0.0014, which translate into the 

percentage errors of around 0.08% and 0.18% (including possible numerical errors 

during the simulation or calculation), respectively. It should also be mentioned that 

this was just the results from the worst case of Fig. 6 with possibly strongest signal 

correlations at level 5. Therefore, it can be expected that under all category ‘I’ 

which generally has weaker correlations at level 5 and beyond, the relative errors 

caused by our approximation are typically even less (depending on specific 

structures) and can thus be reasonably ignored for efficient evaluation. 
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Table II shows specific benchmarks for our simulations with some statistics, 

including their sizes and occurrence frequencies for all different correlation 

categories. All these circuits are ISCAS’85 benchmarks [48], except Log2 which is 

a relatively large arithmetic circuit from the EPFL [49]. As can be seen from the 

table, the majority of correlations belong to single-level category of ‘S’ or ‘I’, for 

which an analytic method applies. This would generally help improve the accuracy 

level of the proposed method. For instance, for circuit C6288 where the category 

‘S’ accounts for as high as 40% (which means that a great number of signals are 

strongly correlated with each other), the accuracy level for both signal probability 

and reliability estimation with the proposed method is much better than that of the 

CC-SPRA, as can be seen from Table III shown below. The circuit C1355 also has 

TABLE II. Statistics on Frequency of Occurrences (%) for Different 

Correlation Categories 

Circuit 

# 

Gates 

(M) 

Single-level 

category 

Multi-

level 

category 

(ML)  

Category by 

analytic method 

(S + I) 

Category by 

bitstream 

simulation 

(N + ML)  
S N I 

C432 216 1 3 57 39 58 42 

C499 246 1 0 73 26 74 26 

C880 435 9 0 77 14 86 14 

C1355 590 35 1 44 20 79 21 

C1908 1057 1 0 81 18 82 18 

C2670 1400 4 0 67 29 71 29 

C5315 2973 5 0 65 30 70 30 

C6288 2416 40 10 21 29 61 39 

C7552 4042 3 0 63 34 66 34 

Log2 45083 6 2 54 38 60 40 
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a high percentage (35%) for category ‘S’, and the proposed method gives a much 

better result for this circuit than CC-SPRA in terms of signal probability estimation 

(see Table III). However, in terms of signal reliability of C1355, the proposed 

method produces slightly more errors than the CC-SPRA. This is most likely due 

to a relatively high percentage (44%) of category ‘I’ with the circuit. 

To compare the proposed method with CC-SPRA [12], we measured their 

average errors in both signal probability and reliability against MC simulation 

results (with 105 runs), as summarized in Table III, where 𝐸𝑎𝑃  is the average 

absolute errors of estimated signal probability (P*) for all outputs against MC 

simulation results, and 𝐸𝑎𝑅  is the average absolute errors of estimated signal 

reliability (calculated by 𝑟𝐷 = 𝑅𝐷
1 ∙ 𝑃𝐷

1∗ + 𝑅𝐷
0 ∙ 𝑃𝐷

0∗ ) for all outputs against MC 

simulation results (defined as 𝑟𝐷 = Pr{𝐷 = 𝐷
∗} ). For a fair comparison, the 

average of 𝐸𝑎𝑃 or 𝐸𝑎𝑅 in the table was taken with circuit Log2 being excluded (the 

result for this circuit is not available from the CC-SPRA).  It can be seen from 

Table III that the proposed method achieves absolute errors of around 0.01 for 

TABLE III. Probability and Reliability Estimation Results by Proposed 

Method and CC-SPRA [5]  

 

Circuit 

EaP  EaR (rg = 0.95) 

Prop. method CC-SPRA Prop. method CC-SPRA 

C432 0.0090 0.0239 0.0026 0.0317 

C499 0.0086 0.0018 0.0033 0.0032 

C880 0.0089 0.0150 0.0061 0.0061 

C1355 0.0094 0.0257 0.0088 0.0027 

C1908 0.0092 0.0200 0.0055 0.0071 

C2670 0.0160 0.0398 0.0146 0.0124 

C5315 0.0114 0.2500 0.0105 0.0124 

C6288 0.0154 0.0300 0.0179 0.0374 

C7552 0.0195 0.0238 0.0143 0.0098 

Log2 0.0253 ̶ 0.0288 ̶ 

Average* 0.0119 0.0478 0.0092 0.0136 

        * The average is taken with circuit Log2 excluded. 
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signal probability estimation (except Log2), which are much better than errors of 

around 0.05 with the CC-SPRA. The reliability estimation results from the 

proposed method are slightly better than those from CC-SPRA, on average.  

The differences between the proposed method and CC-SPRA are summarized as 

follows. First, the CC-SPRA handles the correlation coefficients for a signal pair 

by either analytic computation (only when A=B) or bitstream simulations, while 

the proposed method provides two extra accurate solutions under categories ‘S2’ 

and ‘S3’. For the case of ‘S2’ in particular, the CC-SPRA would generate the 

bitstreams for 3 signals of (A, X, Y), and calibrate the JCPM of (A, B). Secondly, 

in producing bitstreams for 3 signals in general, the CC-SPRA does not necessarily 

take the signal pair with the strongest correlation to start with, leading to a doubtful 

level of accuracy. Finally, the bitstream technique in CC-SPRA is applied for up to 

3 signals at a time. However, the proposed method considers more than 4 signals at 

a time for generation of signal bitstreams, with the potential of capturing signal 

correlations to a maximum extent. 

The errors (EaR) in estimating the output reliability by the proposed method for 

different values of 𝑟𝑔 are reported in Table IV, where the average CPU time was 

calculated by taking the average of computation times over three different values 

of 𝑟𝑔. The last two columns of this table show the speedup factors (against MC 

simulations) with both the proposed method and CC-SPRA for comparison. As can 

be seen from the table, the average errors (again, the average is taken with circuit 

Log2 excluded) in reliability estimation are getting smaller as a higher value of 𝑟𝑔 

is applied. The average speed-up factor of the proposed method against MC 

simulation is 123.97 (except the circuit Log2), compared to 192.34 with the CC-

SPRA [12]. This is mainly due to the fact that the proposed algorithm typically 

generates more bitstreams for the JCPM estimation than CC-SPRA. In the CC-

SPRA, for a gate at certain level, the correlation coefficient propagation process  
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always starts from the first level (i.e., primary inputs) with a maximum of 3 signal 

bitstreams to be generated per level, compared to up to 64 bitstreams (with a 

maximum of 4 levels considered) for the proposed method regardless of levels as 

mentioned in Section III. However, this also means that as the number of levels 

increases in large circuits, the CC-SPRA would require more signal bitstreams and 

simulation time, making the proposed method more scalable than the CC-SPRA. A 

particular example is the EPFL circuit Log2 (with 45k gates) shown in Table IV. 

The size of this circuit is around 10 times as large as circuit C7552. While the 

processing time is more than 30 times as long (this is mainly due to the fact that 

matrix operations involved with large circuits slow down the computation), the 

speed-up factor for Log2 is 215, which is much greater than those for other circuits 

and is also better than the average of 192 for the CC-SPRA. The main reason is 

that the correlation evaluation for CC-SPRA requires a reconvergent-fanout 

investigation back all the way to the input, resulting in a time complexity of 

O(M2), while the proposed method stops at maximum 4 levels of gate 

TABLE IV. OUTPUT RELIABILITY ESTIMATION ERRORS, CPU TIME AND SPEEDUP 

FACTOR FOR THE PROPOSED METHOD WITH COMPARISON 

 

Circuit 
𝐸𝑎𝑅 Avg. 

CPU 

time (s) 

Speedup 

with 

prop. 

Speedup 

with CC-

SPRA 
rg=0.90 rg=0.95 rg=0.99 

C432 0.0060 0.0026 0.0012 0.39   160.52 108.09 

C499 0.0054 0.0033 0.0015 0.76 182.24 195.43 

C880 0.0122 0.0061 0.0023 1.18 109.93 194.22 

C1355 0.0119 0.0088 0.0077 1.55 110.21 281.85 

C1908 0.0117 0.0055 0.0024 2.34 136.18 352.41 

C2670 0.0158 0.0146 0.0096 3.99 107.84 99.06 

C5315 0.0223 0.0105 0.0078 8.13 75.56 321.36 

C6288 0.0242 0.0179 0.0131 6.41 135.63 34.56 

C7552 0.0217 0.0143 0.0096 13.22 97.54 144.11 

Log2 0.0392 0.0288 0.0201 453.47 214.78 - 

Average* 0.0146 0.0093  0.0061 ̶ 123.97 192.34 

* The average is taken with circuit Log2 excluded. 
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investigation, making it possible to have an upper-bound for the processing time of 

any input pair correlation evaluation. This suggests that the proposed method can 

be more scalable and more advantageous for larger circuits. Also, it should be 

mentioned that the scalability has become increasingly important for any CAD 

methods/algorithms, given today’s large-scale circuits.  

3.8 Summary 

In this chapter, we have proposed a hybrid method to estimate both signal 

probability and reliability for combinational circuits by categorizing all signal pairs 

based on their correlation strength. The signals pairs with strong correlations are 

handled by an analytic computation, leading to an accurate propagation of signal 

probability and reliability through logic gates. Those with relatively weak 

correlations are processed using local bitstream simulations which take signal 

correlations into consideration (to a maximum extent) with high efficiency. The 

signal pairs with extremely weak correlations are treated approximately as 

independent. This combination of analysis and simulation makes the proposed 

model competitive in terms of the tradeoff between accuracy and efficiency by 

estimating both signal probability and reliability simultaneously. Comparing to the 

recent CC-SPRA method, the proposed method is 3.59% and 0.44% more accurate 

regarding probability and reliability estimation, and the time complexity is 

improved from CC-SPRA’s O(M2) to O(M).  
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CHAPTER 4 PROBABILITY AND RELIABILITY ESTIMATION FOR 

SEQUENTIAL CIRCUITS 

In this chapter we focus on sequential circuit reliability analysis by considering 

combinational logic and memory components. This involves how both probability 

and reliability at the inputs of combinational logic are to be updated over a number 

of iterations until they converge to final stable values. For any sequential circuit, 

the total processing time equals to: 𝑡𝑐𝑜𝑚𝑏−𝐸𝑞 ∙ N𝑖𝑡𝑒𝑟, where 𝑡𝑐𝑜𝑚𝑏−𝐸𝑞 represents the 

estimation time for its combinational equivalent, and N𝑖𝑡𝑒𝑟  is the number of 

iterations needed before convergence.  Therefore, the speed-up of convergence 

process becomes comparably important to that of combinational equivalent 

evaluation. In this chapter, we introduce a two-step convergence technique and 

show how it reduces the number of iterations. The simulation results and summary 

are followed as well. 

4.1 Combinational Equivalent of Sequential Circuits 

Sequential circuits contain both combinational logic and memory components 

which introduce feedback loops into the circuit. Since most memory components 

are simply D-Flip-Flops (DFFs), one can simply break all loops by creating 

dummy inputs DIs (i.e., the outputs of DFFs) and dummy outputs DOs (i.e., the 

inputs of DFFs) to transform sequential circuits into a sequence of combinational 

logic networks, as in Fig.1. 

4.2 Convergence Process Analysis and Two-Step-Convergence (TSC) 

Method 

    4.2.1 Convergence Process for Sequential Circuit 

   Since the statistics of DIs are unknown initially, one can assume they all have 

signal probability of 0.5 (i.e., fully random) and reliability of 1 before starting the 

probability and reliability propagation through the combinational logic (as is 

discussed in the previous section). The resulting statistics (i.e., both probability and 
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reliability) at the DOs would generally be different from that of DIs, and thus an 

iterative process is required to reach a stable status (or a convergence point). 

During this iterative process, we keep updating both probability and reliability at 

DIs based on the differences between DIs and DOs until these differences in both 

probability and reliability (including 𝑅0 and 𝑅1) are less than a specified threshold 

value of 𝜀 (assuming DFFs are reliable).  This iterative process can be described 

by: 

𝑄𝐷𝐼
𝑛+1 = 𝑄𝐷𝐼

𝑛 + 𝜂 ∙ (𝑄𝐷𝑂
𝑛 − 𝑄𝐷𝐼

𝑛 ) (4.1) 

where 𝑛 is the number of iteration, Q represents either probability or reliability 

element of DI or DO, and 𝜂 is an adjustment parameter (or step size) within [0, 1]. 

When 𝜂 = 1, we are simply using DO’s statistics in the n-th iteration as DI’s in the 

(n+1)-th iteration. A larger value of 𝜂 means a faster step towards the convergence 

point but may take more time in the later stage of the process. A typical value of 𝜂 

is chosen as 0.1. While it was claimed by [27] that a good way of choosing 𝜂 is to 

change it dynamically with an initial value of 0.5, some recent work, such as [5] 

suggested a universal value of 0.1 for 𝜂  to make the convergence process 

smoother, which is less efficient. 

4.2.2 Two-Step-Convergence Method 

In addition to the  𝜂  value, the choice of initial statistics can affect the 

convergence process as well. If the initial reliabilities for DIs are set to the 

maximum of 1, the reliabilities of DOs would be less than those of DIs due to 

unreliable gates. Gradual reduction in DIs’ reliability will only result in decreasing 

reliabilities at DOs, which means that the reliability convergence under this case 

would be monotonous. This suggests that a simple linear regression can be applied 

to find a set of initial reliability values to speed up the entire process. More 

specifically, we can firstly do 𝑁𝑟𝑒𝑔 trial estimations to find out the ‘trends’ of the 

input and output statistics for a specific pair of (DI, DO) with a relatively large 
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value of 𝜂 (say 0.4), and then apply a linear regression on input and output datasets 

independently. The intersection point of the two lines serves as a new initial value 

for the following fine-tuning process with 𝜂 being a smaller value (say 0.1). This 

method is called two-step convergence (TSC). The reason we choose a relatively 

large 𝜂 to begin with is that the proposed method contains bitstream simulations 

which may introduce random fluctuations during the process. Therefore, to reduce 

the impact of randomness, the step size 𝜂  should be large enough to provide 

enough tolerance and maintain the accuracy level of regression. It should be noted 

that the initial values of 𝑅0 and 𝑅1 are found independently.  

As an illustration example, Fig. 7 shows a visualized comparison of convergence 

progress for 𝑅0 (using 𝜀 = 0.003 , 𝑟𝑔 = 0.9) with a universal 𝜂 = 0.4  and TSC 

(using 𝑁𝑟𝑒𝑔 = 3, 𝜂 = 0.4 initially and 𝜂 = 0.1 after regression) on the benchmark 

circuit S27 with 3 DFFs. In Fig. 7, the dashed and solid lines represent DOs and 

DIs, respectively.  

    It can be seen from the figure that the TSC halves the required number of 

iterations to reach the convergence, and the new initial points calculated from the 

regression model are much closer to the actual convergence point. 

More circuit results are reported in Table V, where the 𝑓 is a speedup factor that 

compares the number of iterations required when using TSC versus choosing 𝜂 =

0.4 universally, and is defined as 

𝑓 = (
𝑁𝜂=0.4 − 𝑁𝑇𝑆𝐶

𝑁𝜂=0.4
) ∙ 100% (4.2) 

where 𝑁𝜂=0.4 and 𝑁𝑇𝑆𝐶  are the entries in the 3rd and 4th column of Table V, 

respectively, with an average improvement of around 28% in terms of iterations. 
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(a) 𝜂 = 0.4 (universal value) 

 

 

(b) TSC 

Figure 7. Convergence process of 𝑅0 in circuit S27 with 3 DFFs. 

 

4.3 Simulation Results and Performance Comparison 

The proposed method was implemented using MATLAB on a DELL desktop 

(OS: Windows 10) with CPU frequency of 3.2 GHz and 8GB RAM. Simulations  
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were conducted on benchmark circuits under the assumption that all primary inputs 

are reliable and independent of each other with their signal probabilities of 0.5. 

The length of bitstream sequences was set to L=1000, and the gate reliability to 

𝑟𝑔 = 0.9. The TSC parameters were set as 𝜀 = 0.003, 𝑁𝑟𝑒𝑔 = 3, 𝜂 = 0.4 (during 

first step) or 0.1 (during second step). 

    Detailed simulation results for applying TSC on ISCAS’89 benchmark circuit 

S27 are firstly presented in Table VI. In Table VI, we show data for reliability 

converge process. The 3rd and 4th column shows the corresponding coefficient 

obtained from linear regression using first 3 iterations. The former value represents 

slop of the linear regression and latter one is the corresponding Y-axis intercept. 

The 5th and 6th column compares the new initial calculated by TSC and the final 

converged value. The last two columns compare the gap remained to reach 

convergence for 4th iteration (Converged values-4th loop initials) using TSC and 

traditional regression with η=0.4. The 0s reported for row ‘R1’ of DFF2 is because 

of a probability equals to 0 for that signal, which means logic 1 reliability is not 

applicable to it. 

    It could be seen that by using TSC, the remained gaps were reduced 

significantly, except for R1 estimation of DFF2 which simply reaches 0. The 

largest gap difference happens for R1 estimation of DFF1, up to 0.0609. The 

average improvement regarding remained absolute gap is 0.0343, which could 

cause at least a few more iterations to be covered for traditional method. 

Table V. COMPARISON OF NUMBER OF ITERATIONS TO CONVERGE 

Circuit 𝜼 = 𝟎. 𝟏  𝜼 = 𝟎. 𝟒 𝜼 = 𝟎. 𝟒 

(TSC) 

𝒇(%) 

S27 40 11 7 36.36 

S298 74 14 12 14.28 

S349 79 21 14 33.33 

S444 80 21 16 23.81 

S526 73 26 15 42.31 

S635 88 24 23 4.17 

S820 62 14 9 35.71 

Average - - - 28.53 
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Since the efficiency of the convergence process will not affect the final 

converged value, the output reliability accuracy for S27, along with some other 

ISCAS’89 benchmark circuits results are shown in Table VII, with the comparison 

between the proposed TSC and Seq-RE [24] in terms of both accuracy and speed 

on some ISCAS’89 benchmark circuits, where the average error in reliability refers 

to the average of reliability estimation errors (in percentage) over all outputs with a 

circuit. Due to hardware limitations, we were not able to conduct the same MC 

simulations as in [24] with 1012 full-circuit iterations. Instead, 105 MC iterations 

were used in this work. It was found that the differences in MC results from 105 

versus 1012 iterations are marginal (for instance, the absolute difference is less than 

0.00004 with S27). It can be seen from the table that the speedup factor with TSC 

is still around 102 times faster than Seq-RE. There are mainly two reasons behind 

this efficiency. First, the Seq-RE uses a universal value of 𝜂 = 0.1 , which 

significantly slows down the entire convergence process. Secondly, our TSC uses 

direct calculations for popular correlation categories of ‘S2’ and ‘S3’, while the 

Seq-RE requires full bitstreams to evaluate these two correlations. 

 

TABLE VI S27 CONVERGENCE PROCESS INFORMATION 

Number 

of DFF 

Reliability 

element 

Linear Regression coefficient (slop, 

y intercept) New 

Initials  

Conv. 

values 

Remained absolute 

gap (4th loop) 

DI DO TSC Traditional 

DFF1 
R0 (-0.0294,0.9591) (0.0056,0.8260) 0.8470 0.8423 0.0047 0.0198 

R1 (-0.0726,0.9301) (-0.0134,0.6703) 0.6125 0.6184 0.0059 0.0668 

DFF2 
R0 (-0.0501,0.9577) (-0.0141,0.7908) 0.7252 0.7249 0.0003 0.0568 

R1 (-0.3000,0.8000) (0.0000,0.0000) 0 0 0 0 

DFF3 
R0 (-0.0267,0.9767) (-0.0069,0.8862) 0.8548 0.8552 0.0004 0.0295 

R1 (-0.0395,0.9627) (-0.0072,0.8215) 0.7896 0.7891 0.0005 0.0446 

Average - - - - - 0.0020 0.0363 
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Further detailed performance of the proposed TSC method is summarized in 

Table VIII, where P and R refer to probability and reliability, respectively, and 

DFF maximum errors represent the maximum absolute difference between DIs and 

DOs when the convergence is reached. The results from Table VIII again show a 

high level of efficiency and accuracy with the proposed method. Since the TSC 

uses simulation-based estimation, random fluctuations may result in an increasing 

number of iterations prior to convergence when circuits involve more DFFs. 

Table VII. ACCURACY AND SPEED COMPARISON OF TSC AND SEQ-RE  

 

Circuit 

# 

Gates 

# 

DFFs 

Average errors 

in reliability 

(%) 

Speed-up factor 

against MC 

TSC Seq-RE TSC Seq-RE 

S27 10 3 0.03 0.01 3.46×102 4.00×104 

S298 119 14 0.57 1.00 1.39×102 1.16×104 

S349 161 15 0.40 1.50 1.46×102 1.50×104 

S444 181 21 0.68 2.60 1.57×102 1.76×104 

S526 193 21 0.58 2.30 1.48×102 1.69×104 

S635 286 32 0.70 2.10 1.43×102 1.81×104 

S820 288 5 0.78 2.20 1.39×102 1.85×104 

S1196 529 18 1.04 2.84 1.88×102 2.47×104 

S1488 653 103 1.18 2.00 1.71×102 2.59×104 

S13207 7951 638 3.82 - 2.44×102 - 

Ave* - - 0.66 1.83 1.75×102 2.09×104 

     *S13207 is excluded while calculating the average. 

 

Table VIII. DETAILED PERFORMANCE OF THE PROPOSED TSC 

 

Circuit 

Average 

relative errors 

in outputs (%) 

 

DFF max. errors 

# Conv. 

iterations 

CPU 

Time (s) 

P R P R P R 

S27 0.03 0.03 0.0013 0.0008 11 7 0.27 

S298 0.85 0.57 0.0021 0.0021 44 12 10.32 

S349 0.56 0.40 0.0028 0.0029 65 14 18.75 

S444 0.72 0.68 0.0023 0.0028 73 16 26.63 

S526 0.82 0.58 0.0027 0.0015 78 15 33.57 

S635 0.89 0.70 0.0027 0.0029 82 23 49.24 

S820 0.74 0.78 0.0023 0.0014 25 9 19.98 

S1196 1.24 1.04 0.0030 0.0028 31 24 197.72 
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4.4 Summary 

In this chapter, we have proposed a fast and effective hybrid method for 

sequential circuit probability and reliability estimation. In combinational logic, we 

combined both analytical and statistical methods to reach a good balance between 

efficiency and accuracy in estimation. To speed up the convergence for sequential 

circuits, a two-step convergence method was applied to further reduce the number 

of iterations required. This TSC reaches average 30%, maximum 42% 

improvement of convergence process efficiency on simulated benchmark 

sequential circuits. The high efficiency of combinational model, combined with 

fast convergence process, leads to a decent speed up factor, which is much higher 

than what is achieved by Seq-RE. 
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CHAPTER 5 RELIABILITY ESTIMATION WITH CONSIDERATION OF 

AGING EFFECT 

The model discussed in Chapter 3 and 4 are coming with assumptions that 

circuit is under zero-delay and the gate reliability is a constant. In real-world 

circuits, the gate delay cannot be ignored, and after operating intensively for long 

time, devices are experiencing aging effect and therefore reduce circuit reliability. 

A key reliability issue is the Negative-bias temperature instability (NBTI) on 

PMOS, which is caused by operating with negative gate-to-source voltage. 

Without enough rest time, the positive charges trapped underneath the gate will 

partially cancel the negative gate-to-source voltage and hence make it harder for 

the transistors to be turned on, hence increase threshold voltage. This threshold 

voltage change will not only affect the delay of the transistors, but also change the 

behavior acting as a switch, leading to possible incorrect logic value at the output. 

In this chapter, we first introduce a model using a single index for signal 

reliability by combining spatial and temporal reliability, followed by discussions 

on how to obtain spatial and temporal reliability separately. We then present 

simulation results and summarize our work. 

5.1 Spatial Reliability and Temporal Reliability 

    5.1.1 Spatial Reliability and Spatial Probability of Failure (SPF) 

   For a combinational circuit, if either an output signal arrives late, or its logic 

value is incorrect, the sampled output value is considered as incorrect, and 

therefore we have:  

𝑝𝑓𝐶 = 𝑝𝑓𝐶
𝑇 + (1 − 𝑝𝑓𝐶

𝑇) ∙ 𝑝𝑓𝐶
𝑠 (5.1) 

where 𝑝𝑓𝐶
𝑇 represents the probability that the signal arrives late and 𝑝𝑓𝐶

𝑠 = 1 − 𝑟𝐶
𝑆, 

which is the probability that the produced logic value is incorrect. 
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   5.1.2 Temporal Reliability and Temporal Probability of Failure (TPF) 

In sequential circuits, if a logic value arrives too late and exceeds the guard band, 

the sampled output would be the value generated by the previous clock (CLK) 

cycle, and there is a probability that the sampled data of current CLK cycle to be 

accidentally correct. There are two possibilities to consider: 1. Last cycle logic 

value was wrong, and the error free value of current cycle has an expected 

switching. 2. Last cycle logic value is correct, and the error free value of current 

cycle has no expected switching. However, it is impractical to accurately find out 

if a switch is happening for each CLK cycle. Hence, we use output error free 

probability to find the overall probability of switching activity. The output PF is 

then approximated as follows: 

𝑝𝑓𝐶 ≈ 𝑝𝑓𝐶
𝑇 ∗ [𝑝𝑓𝐶

𝑆 ∗ (1 − 𝑃𝑆𝑊𝐼) + (1 − 𝑝𝑓𝐶
𝑆) ∗ 𝑃𝑆𝑊𝐼]

+(1 − 𝑝𝑓𝐶
𝑇) ∙ 𝑝𝑓𝐶

𝑆 (5.2)
                                                                                                                         

 

where 𝑃𝑆𝑊𝐼 = 2 ∙ 𝑃𝐶
∗ ∙ (1 − 𝑃𝐶

∗) represents the switching probability. It can be seen 

that overall PF is reduced compared to a combinational case. Under extreme cases, 

if 𝑝𝑓𝐶
𝑇 = 0 (i.e., the signal is always arriving on time), then 𝑝𝑓𝐶 = 𝑝𝑓𝐶

𝑆 according 

to (5.2) which provides a same value as (5.1). If 𝑝𝑓𝐶
𝑆 = 0 , we have 𝑝𝑓𝐶 =

𝑝𝑓𝐶
𝑇𝑃𝑠𝑤1, which means that the output will always be correct if the signal arrives 

on time. If the signal arrives late otherwise, the output could still be correct unless 

there is a switching event. 

    In the following section, we will introduce how to calculate/estimate the PFs 

first, and then find the signal overall reliability using (5.1) or (5.2) accordingly. 

5.2 Threshold Variation under Aging Effect 

In this section, we modify some of previously developed model and introduce 

how to apply it into full circuit reliability estimations with detailed error analysis. 
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As mentioned above, with the NBTI effect, the threshold value of MOSFETs 

will increase, causing performance variation of logic gates. There are several 

analytical NBTI models that have been introduced in [30, 31, 32], and a simplified 

version (for an inverter) was proposed in [34] as follows: 

∆𝑉𝑡ℎ = 𝑏 ∙ (1 − 𝑃𝑖𝑛)
𝑛 ∙ 𝑡𝑛  (5.3) 

where 𝑏 = 3.9 ∙ 10−3,  𝑃𝑖𝑛 is the input probability, 𝑡 is the time that the device have 

been working for, and 𝑛 is a time component factor with a standard value of 0.16. 

However, since the input probabilities for a two-input logic gates (such as NAND 

gate) are usually different, we take the smaller probability to estimate ∆𝑉𝑡ℎ in (5.3) 

to ensure that the model covers the worst case. 

5.3 Estimation of  𝑺𝑷𝑭 

5.3.1 Estimation of SPF for MOSFETs 

For 𝑝𝑓𝐶
𝑆 estimation, our focus is on identifying PF for every individual gate 𝑝𝑓𝑔, 

i.e., the probability that the gate is not performing the logic function correctly, by 

investigating the transistor performance. According to [32], the designed transistor 

threshold voltages 𝑉𝑡ℎ  can fluctuate due to oxide thickness variations [23], line 

edge roughness [24], polysilicon granularity, and the combined effects of all these 

factors. Simulation and some sample analysis [25-29] concluded that the real 𝑉𝑡ℎ 

fluctuations can be treated as a Gaussian distribution 𝑁(𝑉𝑇𝐻, 𝜎𝑇𝐻
2 ), where the 𝑉𝑇𝐻 

represents the designed threshold and 𝜎𝑇𝐻 is the standard deviation found from the 

real threshold voltage. The PF for PMOS and NMOS can be given as follows 

(assuming the transistor behaves like a binary switch around the threshold 

voltage):  



 

 

62 
 

{
 
 

 
 𝑝𝑓𝑝(𝑣𝑖𝑛) = 0.5 ∙ 𝑒𝑟𝑓𝑐 (

|𝑣𝑖𝑛 − [𝑉𝐷𝐷 + 𝑉𝑡ℎ𝑝]|

𝜎𝑇𝐻,𝑝 ∙ √2
)

𝑝𝑓𝑛(𝑣𝑖𝑛) = 0.5 ∙ 𝑒𝑟𝑓𝑐 (
|𝑣𝑖𝑛 − 𝑉𝑡ℎ𝑛|

𝜎𝑇𝐻,𝑛 ∙ √2
)

(5.4) 

where 𝜎𝑇𝐻 ≈ 𝑡𝑜𝑥𝑁𝐴
0.4/(𝐿𝑒𝑓𝑓𝑊𝑒𝑓𝑓)

0.5 (stands for both NMOS and PMOS), 𝑡𝑜𝑥 is 

the oxide thickness, 𝑁𝐴 is the channel doping, 𝐿𝑒𝑓𝑓, 𝑊𝑒𝑓𝑓 are the effective length 

and width of the channel, which are all determined by the given technology, and 

𝑣𝑖𝑛 is the input voltage to the transistors. When the threshold voltage changes due 

to aging, the 𝑝𝑓𝑛and 𝑝𝑓𝑝  would be different from their original values, and any 

logic gate containing MOSFETS will perform differently.  

5.3.2 Estimation of SPF for Logic Gates and Integrated Circuits 

The gate PF can then be calculated using information provided by (5.4). Take 

NAND gate as an example, as shown in Fig.8 where the four transistors are 

independent of each other. The probability of failure of the NAND gate with 

different input patterns (A, B), as mentioned in [19], is given by: 

𝒑𝒇(𝑨𝑩)𝑵𝑨𝑵𝑫 =

{
 
 
 
 

 
 
 
 

𝑝𝑓(00) = 𝑝𝑓𝑇1
0 ⋅ 𝑝𝑓𝑇2

0 + 𝑝𝑓𝑇3
0 ⋅ 𝑝𝑓𝑇4

0 −

𝑝𝑓𝑇1
0 ⋅ 𝑝𝑓𝑇2

0 ⋅ 𝑝𝑓𝑇3
0 ⋅ 𝑝𝑓𝑇4

0

𝑝𝑓(01) = 𝑝𝑓𝑇1
1 ⋅ (1 − 𝑝𝑓𝑇2

0 ) + 𝑝𝑓𝑇3
0 ⋅ (1 − 𝑝𝑓𝑇4

1 ) −

𝑝𝑓𝑇1
1 ⋅ (1 − 𝑝𝑓𝑇2

0 ) ⋅ 𝑝𝑓𝑇3
0 ⋅ (1 − 𝑝𝑓𝑇4

1 )

𝑝𝑓(10) = (1 − 𝑝𝑓𝑇1
0 ) ⋅ 𝑝𝑓𝑇2

1 + (1 − 𝑝𝑓𝑇3
1 ) ⋅ 𝑝𝑓𝑇4

0 −

𝑝𝑓𝑇1
0 ⋅ (1 − 𝑝𝑓𝑇2

1 ) ⋅ 𝑝𝑓𝑇3
1 ⋅ (1 − 𝑝𝑓𝑇4

0 )

𝑝𝑓(11) = 1 − (1 − 𝑝𝑓𝑇1
1 ) ⋅ (1 − 𝑝𝑓𝑇2

1 ) ⋅

(1 − 𝑝𝑓𝑇3
1 ) ⋅ (1 − 𝑝𝑓𝑇4

1 )

 (5.5) 

where  𝑝𝑓𝑇𝑖
𝑗
 (𝑓𝑜𝑟 𝑖 = 1, 2, 3, 4, 𝑎𝑛𝑑  𝑗 = 0, 1)  represents the PF for transistor i 

using (5.4) when 𝑣𝑖𝑛 takes any value that represents logic j. However, it is a non-

trivial task to find the exact 𝑣𝑖𝑛 when input signals (A, B) arrive. The best solution 

would be letting the 𝑣𝑖𝑛 be two standard values for logic 0 and 1 separately.  
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Considering the fact that 𝑣𝑖𝑛 is barely exceeding the designed noise margin, we 

can let the designed 𝑣𝑖𝑛 be the following values with the assumption that the noise 

margin is at 50% point of the two intervals [0, 𝑉𝑡ℎ] and [𝑉𝑡ℎ, 𝑉𝐷𝐷] for both PMOS 

and NMOS transistors (taking the more strict boundaries): 

{
𝑣𝑖𝑛
0 = min(0.5 ∙ (𝑉𝐷𝐷 + 𝑉𝑡ℎ𝑝) , 0.5 ∙ 𝑉𝑡ℎ𝑛)

𝑣𝑖𝑛
1 = 1 −min(0.5 ∙ (−𝑉𝑡ℎ𝑝), 0.5 ∙ (𝑉𝐷𝐷 − 𝑉𝑡ℎ𝑛))

(5.6) 

where 𝑉𝐷𝐷 = 1𝑉 throughout this thesis. When 𝑝𝑓𝑁𝐴𝑁𝐷(𝑖𝑗) (𝑓𝑜𝑟 𝑖 = 0, 1, 𝑗 = 0, 1) 

are found, the gate reliability is then given by: 

𝑝𝑓𝑁𝐴𝑁𝐷 =∑𝑃𝑁𝐴𝑁𝐷(𝑖𝑗) 𝑝𝑓(𝑖𝑗) (5.7) 

where 𝑃𝑁𝐴𝑁𝐷(𝑖𝑗)  represents the joint probability that (A, B) takes ‘ij’ pattern, 

which is well discussed in any propagation-based reliability estimation work (such 

as [7]). 

 

Figure 8. NAND logic gate 
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     For any other logic gates, equations similar to (5.5) can be easily derived. With 

the availability of reliability for every single gate, it is possible to use the 

methodology introduced in chapter 3 to find the output SPFs. 

5.4 Estimation of TPF 

5.4.1 Gate Delay Distribution 

Estimation of  𝑝𝑓𝐶
𝑇  is different from that of 𝑝𝑓𝐶

𝑆  since we only consider the 

impact of delay. It has shown [33, 34] that the delay of logic gates can be treated as 

a linear function of 𝑉𝑡ℎ . Thus, when ∆𝑉𝑡ℎ  goes up due to aging, the delay 

increment of gate 𝑖  can be estimated as a linear function: 

𝑡𝑝𝑖 = 𝑎0𝑖𝑛𝑣 + 𝑎1𝑖𝑛𝑣 ∙ ∆𝑉𝑡ℎ/𝑏 (5.8) 

where 𝑡𝑝𝑖 is the real gate transition delay,  𝑎0𝑖 is the original intrinsic delay, and 

𝑎1𝑖  is a constant. The 𝑎0𝑖  and 𝑎1𝑖  values for different gate type with given 

technology can be calibrated using data simulated from PSPICE tools. 

5.4.2 Circuit Delay Distribution and TPF Estimation 

Since ∆𝑉𝑡ℎ is estimated as a deterministic value (instead of a distribution), the 

degraded threshold voltage for a specific gate G can be expressed as 

𝑉𝑡ℎ~𝑁(𝑉𝑇𝐻,𝐺 + ∆𝑉𝑡ℎ,𝐺 , 𝜎𝑇𝐻
2 ). The delay distribution can be found using (5.8) as: 

𝐷𝑖~𝑁(𝑎0𝑖 + 𝑎1𝑖 ∗ ∆𝑉𝑡ℎ/𝑏, 𝜎𝐷
2), and the 𝜎𝐷 is a constant introduced by  𝜎𝑇𝐻 : 𝜎𝐷 =

𝑎1 ∙
𝜎𝑇𝐻

𝑏
 . By adding all gate delay distributions along the path, the distribution of 

output delay 𝐷𝑂, which is also a Gaussian distribution, is found as follows: 

𝐷𝑂~𝑁(∑𝑎0𝑖 + 𝑎1𝑖 ∙
∆𝑉𝑡ℎ
𝑏

,∑𝜎𝐷𝑖
2

𝑁𝐺

𝑖=1

𝑁𝐺

𝑖=1

) (5.9) 
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where NG is the number of gates along the path from primary inputs to a specific 

output. We can then find the 𝑝𝑓𝑂
𝑇 using the cumulative density function (CDF) as: 

𝑝𝑓𝑂
𝑇 = 1 − 𝑐𝑑𝑓(𝐷𝑂 = 𝐷𝐺𝐵) (5.10) 

where 𝐷𝐺𝐵 represents the designed guard band delay which equals to 
1

𝐶𝐿𝐾 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦
. 

5.5 Algorithm Description  

The propagation-based method used to find signal probabilities and joint 

probabilities is out of this thesis’s scope but is well-developed in other prior works 

such as [16]. In this work, we simply use MC simulation to find this information. 

The pseudo-code of the proposed algorithm is given below: 

Algorithm: 

Begin:  

 Read in circuit information (including input probabilities,  

   initial gate PF, initial MOSFET threshold voltage  

   distributions, circuit operation time t, and gate netlist); 

 Sort all gates in a topologic order; 

 Set delay indicator for all signals to 0; 

 for i = 1 : NG (# gates)  

          Spatial PF 

              a) Find threshold voltage increment at time t: 

                  ∆𝑉𝑡ℎ = 𝑏 ∙ (1 − 𝑃𝑖𝑛)
𝑛 ∙ 𝑡𝑛; 

             b) Find signal probability (𝑃𝐴and 𝑃𝐵) and their joint  

                  probability (𝑃𝐺𝐴𝑇𝐸) by MC simulations; 
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             c) Find 𝑝𝑓𝐺𝐴𝑇𝐸 using (5.4-5.7); 

             d) Find 𝑃𝑂
∗and 𝑟0 at outputs by propagation analysis  

               or MC simulation; 

        Timing Analysis 

   Find gate delay 𝑡𝑝𝑖 at time t by (5.8); 

  End for 

  An extra step for sequential circuit only: 

Repeat the above for-loop until a stable state is  

              reached 

      End extra step  

      Find output spatial PF: 𝑝𝑓𝑂
𝑠 = 1 − 𝑟𝑜; 

      Find output delay distribution using (5.9) and 𝑡𝑝𝑖; 

      Find output temporal PF 𝑝𝑓𝑂
𝑇 using (5.10); 

      Find 𝑝𝑓𝑂 by (5.1) for combinational circuits or by  

      (5.2) for sequential circuits. 

End 

5.6 Error Analysis 

The first source of errors comes from the propagation model we chose. 

Theoretically speaking, this error can be significantly reduced if Monte-Carlo 

simulation is applied in this step. The second error source lies in the assumption 

that 𝑣𝑖𝑛
0  and 𝑣𝑖𝑛

1  used in section 3.2 are two universal constants. In a real circuit, 

the environmental noise is always involved even if the circuit is always working 

under the worst case.  

Table IX shows the difference between our proposed method and Monte-Carlo 

simulation for NAND PF regarding multiple 𝑉𝑡ℎ  (to simulate possible 

degradation). In the MC simulation, a white noise with standard deviation of 
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𝑁𝑜𝑖𝑠𝑒 𝑀𝑎𝑟𝑔𝑖𝑛

12
 is added to 𝑣𝑖𝑛

0  and 𝑣𝑖𝑛
1  to simulate the worst-case scenario in real-

world, i.e., the device is always receiving inputs with voltage of 

maximum/minimum logic 0/1 requirements, with possible environmental noise. 

We assume the initial designed Vth for NMOS and PMOS are 0.6V and -0.6V, 

respectively, and compare the PF when Vth increases to different values. The 

𝑝𝑓𝑁𝐴𝑁𝐷  is calculated assuming all four patterns have equal probability. Fig. 9 

shows the overall trends under the same settings.  

It can be seen that our model overestimated the unreliability when ∆𝑉𝑡ℎ reaches 

one-third of the original threshold voltage. The reason is that the transistor failure 

rate decreases in logarithm scale according to (5.4). When noise is considered, the 

PF of transistors drops dramatically while the proposed model assumes the PF is 

always at the maximum point. Nonetheless, the proposed model still shows the 

correct trend of how the PF for NAND gate changes. If the given noise has a 

smaller standard deviation, the two curves shown in Fig. 9 would be closer to each 

other and finally overlap when no noise exists.  

TABLE IX. COMPARISON OF 𝑝𝑓𝑁𝐴𝑁𝐷 EVALUATED BY PROPOSED METHOD AND 

MC SIMULATION 

VthN, VthP (V) 𝒑𝒇(𝟎𝟎) 𝒑𝒇(𝟎𝟏) 𝒑𝒇(𝟏𝟎) 𝒑𝒇(𝟏𝟏) 𝒑𝒇𝑵𝑨𝑵𝑫 

0.6, -0.6 1.32e-13 6.66e-31 6.66e-31 7.28e-7 1.82e-7 

0.6, -0.6 (MC) 3.34e-11 1.31e-20 5.00e-23 7.91e-6 1.977e-6 

0.75, -0.75 0.0024 5.58e-50 5.58e-50 0.0963 0.0247 

0.75, -0.75 (MC) 0.0124 8.89e-41 2.79e-44 0.2093 0.0554 

0.8, -0.8 0.25 1.49e-61 1.49e-61 0.75 0.25 

0.8, -0.8 (MC) 0.0553 1.36e-56 1.74e-54 0.4143 0.1174 
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    The third source of errors has something to do with the linear model of gate 

propagation delay evaluation. Fig. 9 shows the simulated delay of NAND gate 

using PSPICE with default MOSFET parameters, except the absolute threshold 

voltage of both PMOS and NMOS ranging from [0.6V, 0.8V] with increment of 

0.05V (with the order from left to right in Fig. 10). The input A is set to be logic 1 

and input B transits from 0 to 1 and back to 0.  

 

Figure 9. 𝑝𝑓𝑁𝐴𝑁𝐷 trends as Vth changes 

 

 

Figure 10. The transient process of output voltage for NAND gate 

 



 

 

69 
 

It can be seen from the figure that when ∆𝑉𝑡ℎ increases linearly, the tpHL and tpLH 

are not sharing same increment. However, when  ∆𝑉𝑡ℎ  is relatively small, the 

resulting delay increase can be treated as quasi-linear.  

5.7 Simulation Results 

In this section, we show some circuit simulation results using the proposed 

method. We firstly take a close look at ISCAS’85 benchmark circuit C17, as 

shown in Fig. 5. Assuming the original gate PF is 0.1 (or gate reliability is 0.9), all 

primary inputs have probability of 0.5 and PF of 0, 𝑎0𝑁𝐴𝑁𝐷 = 50 , 𝑎1𝑁𝐴𝑁𝐷 = 0.59 

(calibrated from PSPICE simulation data), 𝜎𝑇𝐻 = 30.28 ∗ 10
−3𝑉  for 35nm 

technology for both NMOS and PMOS for simplicity, initial threshold voltage for 

PMOS and NMOS are -0.6V and 0.6V, respectively, and designed CLK frequency 

is 5GHz, i.e., 𝐷𝐺𝐵 = 200𝑝𝑠  (these settings are case sensitive and subject to 

change). Using (5.8), the standard deviation of delay can be found to be 4.58ps. 

 

Table X. Mean of Signal Delay for C17 

Node Delay/Original Delay (ps) 

1 month 1 year 

Inputs 0/0 0/0 

10, 11 59.04/50 63.45/50 

16, 19 118.07/100 126.90/100 

22, 23 176.72/150 189.77/150 

 

Table XI. Spatial PFs for Elements in C17 

Elements Increment of PF Initial PF 

1 month 1 year 

G1-G4 1.89E-8 4.42E-7 0.1 

G5, G6 2.43E-8 6.13E-7 0.1 

Output 22 2.10E-5 0.0006 0.224585 

Output 23 8.00E-6 0.0002 0.239580 
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The mean of signal delay is shown in Table X for t = 2.63 ∙ 106𝑠, 3.16 ∙ 107𝑠 (i.e. 

a month, and a year). 

    Using (5.10), the corresponding PFs for one month was calculated as: 𝑝𝑓22
𝑇 =

𝑝𝑓23
𝑇 = 0.0075 , which increases to 0.0328 after being degraded over one-year 

period. Considering the fact that originally the 𝑝𝑓22
𝑇 = 1.4𝐸−4  (without 

considering aging issue), the degradation of transistors worsens the circuit 

performance significantly based on the temporal analysis. With this information in 

mind, the designers can either reduce the CLK frequency or implement the circuit 

with shorter original delay to improve the 1-year performance and extend the 

circuit’s expected lifetime. It should be noted that even for the same circuit with 

different input probabilities, these values vary. For example, if the input 

probabilities are zero, then the first two gates would be experiencing much more 

degradation and hence increasing the overall delay.  

As for 𝑝𝑓22
𝑆 , the gate PF increment is different as well due to the input signal 

probability difference. The detailed changes of element (including gates and 

outputs) spatial PFs are shown in Table XI along with their initials, where the data 

of two outputs are simulated using Monte-Carlo simulation with 106 iterations. 

With information from Table X, Table XI and (5.1), given circuit operation time 

of 1 year, we have: 

𝑝𝑓22 = 𝑝𝑓22
𝑇 + (1 − 𝑝𝑓22

𝑇 ) ∙ 𝑝𝑓22
𝑠 = 0.2500 

𝑝𝑓23 = 𝑝𝑓23
𝑇 + (1 − 𝑝𝑓23

𝑇 ) ∙ 𝑝𝑓23
𝑠 = 0.2645 

or 
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𝑟22 = 0.7500, 𝑟23 = 0.7355 

which represents around 3% degradation when compared to the reliabilities of 

𝑟22 = 0.7745 and 𝑟23 = 0.7606 without considering aging effect. This is mostly 

due to an extra delay involved in this case, and the impact of spatial reliability was 

observed to be marginal. However, under situations where the  ∆𝑉𝑡ℎ  varies 

significantly, the spatial reliability can play a critical role, as shown in Table VIII, 

and should be considered. 

Similar simulations were also applied to other circuits with the results shown in 

Table XI. The reliability degradation rate is calculated by 
𝑝𝑓(𝐴𝑔𝑖𝑛𝑔)−𝑝𝑓(𝑁𝑜 𝐴𝑔𝑖𝑛𝑔)

1−𝑝𝑓(𝑁𝑜 𝐴𝑔𝑖𝑛𝑔)
∙

100%. It should be noted that the designed delay guard band was set to be 15% 

more than the original delay, while the initial intrinsic delay was assumed to be 

70ps for each gate (although they have different degradation rate) for simulations. 

The initial gate PF was set to 0.01.  Again, these settings can vary according to 

specific situations. It can be seen from Table XI that the circuit degradation rate 

ranges from 1.5% to 8.2%. In addition, it was found that the 𝑝𝑓𝑂
𝑆 value does not 

change much regardless of the aging effect. Instead, the 𝑝𝑓𝑂
𝑇  is the main 

contributor to the reliability degradation. This suggests that the designers should 

focus on delay optimization to efficiently prolong the life of circuit operation. 

Although the presented results are not verified using any hardware experiments 

with above-mentioned assumptions, this work shows an example of how to 

consider both spatial and temporal reliabilities and can be easily applied to 

practical cases by simply substituting the assumptions. 
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5.8 Summary 

    In this chapter, we have proposed a new circuit-level reliability evaluation 

model to estimate signal reliability variations under aging effect. The model takes 

both spatial and temporal reliabilities into consideration and studies the reliability 

variations caused by the aging/NBTI effect. This helps designers predict potential 

performance degradation for circuits to operate over an extended time. Simulations 

on benchmark circuits have shown that the reliability degradation rate ranges from 

1.5% to 8.2% over one-year period of operation, depending on specific circuits 

 

 

 

TABLE XII. CIRCUIT RELIABILITY SIMULATIONS ON SOME ISCAS’85 AND 

ISCAS’89 CIRCUITS WITH 1-YEAR OPERATION 

Circuit 

Avg. Parameters 

with Aging 

Avg. Parameters 

without Aging Reliability 

Degradation 

Rate (%)  𝒑𝒇𝑶
𝑻  𝒑𝒇𝑶

𝑺  𝒑𝒇 𝒑𝒇𝑶
𝑻  𝒑𝒇𝑶

𝑺  𝒑𝒇 

C432 0.023 0.081 0.110 0.000 0.078 0.078 3.47 

C499 0.049 0.102 0.144 0.000 0.098 0.098 5.10 

C880 0.062 0.163 0.212 0.000 0.156 0.156 6.64 

C2670 0.038 0.149 0.182 0.000 0.133 0.133 5.65 

C7552 0.044 0.207 0.243 0.000 0.175 0.175 8.24 

S27 0.069 0.030 0.060 0.000 0.029 0.029 3.19 

S298 0.051 0.062 0.071 0.000 0.057 0.057 1.48 

S349 0.022 0.080 0.093 0.000 0.074 0.074 2.05 

S444 0.034 0.075 0.089 0.000 0.070 0.070 2.04 
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CHAPTER 6  

CONCLUSION AND FUTURE WORK 

We have proposed a hybrid method to estimate both signal probability and 

reliability for combinational circuits by categorizing all signal pairs based on their 

correlation strength, under the assumption of zero-delay and constant gate 

reliability. The signal pairs with strong correlations are handled by analytic 

computation, leading to an accurate propagation of signal probability and 

reliability through logic gates. Those with relatively weak correlations are 

processed using local bitstream simulations which take signal correlations into 

consideration (to a maximum extent) with high efficiency. Additionally, we have 

proved that reconvergent-fanouts can be ignored when they are too far away from 

signals of interest through simulation. Therefore, signal pairs with extremely weak 

correlations are treated approximately as independent. This combination of 

analysis and simulation makes the proposed model competitive in terms of the 

tradeoff between accuracy and efficiency in estimating both signal probability and 

reliability simultaneously. While maintaining high accuracy, the efficiency 

improvement is twofold: 1. The proposed method has a linear time complexity. 2. 

The CPU time required for obtaining signal probability prior to reliability 

evaluation has been saved. These improvements significantly strengthen method 

scalability. For sequential circuit evaluation, we introduced a TSC model to speed 

up the convergence process. With the help of trial iterations, TSC can reduce the 

number of iterations needed by up to 42%, on average 28%.  

Without the zero-delay and constant gate reliability assumptions, we further 

investigate signal reliability considering aging effect. We extend some existing 

device-level models and present circuit-level aging effect evaluations. We 

innovatively combine both temporal and spatial reliability into a proposed new 

index to help designers better predict circuit performance under aging effects. The 
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simulation results show that circuit reliability degradation ranges from 1.5% to 

8.2% over a one-year period of operation. 

The suggested future work includes: 

• Searching for better solutions for category ‘N’ correlation.  

Although the bitstream can provide accurate results, it is relatively 

time-consuming compared to analytical approaches. For better efficiency, 

this part of process time should be further shortened. 

 

• Searching for supportive theory for TSC.   

We had an observation that when all gates are set to be reliable except 

for one specific gate, the output reliability is following a quasi-linear 

trend to this gate reliability. It might be a direction to find theoretical 

support for TSC linear regression model. 

 

• Considering more factors for temporal reliability model 

     In Chapter 5, the proposed temporal reliability model only considers 

late arrival. However, glitches as well as early arrivals of signals can 

affect circuit probability/reliability. Moreover, the CLK generator is 

experiencing aging effect, and the CLK signal may not be ideal after 

intense long-term operation, which should be considered simultaneously. 
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APPENDICES  

Appendix A. Important MATLAB Code 

The MATLAB code used for this thesis is attached in this 

appendix. The code and functions are in same order as the 

chapters. 

The following codes are used for obtaining MC simulation 

results for combinational circuits. 

clear 

clc; 

Circuit = {'C17'}; 

% % load(['Circuit_decomp/',Circuit{1},'.mat']); 

load([Circuit{1},'.mat']); 

  

  

%% Basic Parameters 

% Num_node   = max(max(Gates)); 

% Num_gate   = size(Gates,1); 

% Num_input  = size(Input,1); 

% Num_output = size(Output,1); 

Ind        = Gates(:,1:3); 

MC         = 10^6; 

Pin        = 0.5*ones(1,Num_input); 

rin        = ones(1,Num_input); 

Gates(Gates(:,5)==7,5)=8; 

rg = 0.9; 

% small nodes first, large nodes second 

tic 

% for i = 1:Num_gate 

%     if Gates(i,2)>Gates(i,3) 

%         Gates(i,2:3) = [Gates(i,3),Gates(i,2)]; 

%     end 

% end 

%% Counters Initialization 

tic; 

NodevecStar        = zeros(Num_node,1); 

Nodevec            = zeros(Num_node,1); 

  

Pstarc             = zeros(Num_node,1); 

rallc              = zeros(Num_node,2); 

%% MC simulation 

for i=1:MC 

    NodevecStar        = zeros(Num_node,1); 
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    %% Input Setup regarding to Pin, Node Reliability Setup 

    for k = 1:Num_input 

        NodevecStar(Input(k)) = (rand(1)<Pin(k)); 

        if rand(1)<rin(k) 

            Nodevec(Input(k)) = NodevecStar(Input(k)); 

        else 

            Nodevec(Input(k)) = 1-NodevecStar(Input(k)); 

        end 

    end 

    for j = 1:Num_gate 

        x=Gates(j,:); 

        %% simulate error-free value and real value 

        %% Gate type: 1-NAND, 2-AND, 3-NOR, 4-OR, 5-NOT, 6-

BUFF, 7-XNOR, 8-XOR 

        switch x(5) 

            case {1} 

                NodevecStar(x(1)) = 1-

and(NodevecStar(x(2)), NodevecStar(x(3))); 

                if rand(1)<rg 

                    Nodevec(x(1)) = 1-and(Nodevec(x(2)), 

Nodevec(x(3))); 

                else 

                    Nodevec(x(1)) = and(Nodevec(x(2)), 

Nodevec(x(3))); 

                end 

            case {2} 

                NodevecStar(x(1)) = and(NodevecStar(x(2)), 

NodevecStar(x(3))); 

                if rand(1)<rg 

                    Nodevec(x(1)) = and(Nodevec(x(2)), 

Nodevec(x(3))); 

                else 

                    Nodevec(x(1)) = 1-and(Nodevec(x(2)), 

Nodevec(x(3))); 

                end 

            case {3} 

                NodevecStar(x(1)) = 1-or(NodevecStar(x(2)), 

NodevecStar(x(3))); 

                if rand(1)<rg 

                    Nodevec(x(1)) = 1-or(Nodevec(x(2)), 

Nodevec(x(3))); 

                else 

                    Nodevec(x(1)) = or(Nodevec(x(2)), 

Nodevec(x(3))); 

                end 

            case {4} 
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                NodevecStar(x(1)) = or(NodevecStar(x(2)), 

NodevecStar(x(3))); 

                if rand(1)<rg 

                    Nodevec(x(1)) = or(Nodevec(x(2)), 

Nodevec(x(3))); 

                else 

                    Nodevec(x(1)) = 1-or(Nodevec(x(2)), 

Nodevec(x(3))); 

                end 

                 

            case {5} 

                NodevecStar(x(1)) = not(NodevecStar(x(2))); 

                if rand(1)<rg 

                    Nodevec(x(1)) = not(Nodevec(x(2))); 

                else 

                    Nodevec(x(1)) = 1-not(Nodevec(x(2))); 

                end 

                 

            case {6} 

                NodevecStar(x(1)) = NodevecStar(x(2)); 

                if rand(1)<rg 

                    Nodevec(x(1)) = Nodevec(x(2)); 

                else 

                    Nodevec(x(1)) = 1-Nodevec(x(2)); 

                end 

                 

            case {7} 

                NodevecStar(x(1)) = 1-

xor(NodevecStar(x(2)), NodevecStar(x(3))); 

                if rand(1)<rg 

                    Nodevec(x(1)) = 1-xor(Nodevec(x(2)), 

Nodevec(x(3))); 

                else 

                    Nodevec(x(1)) = xor(Nodevec(x(2)), 

Nodevec(x(3))); 

                end 

                 

            case {8} 

                NodevecStar(x(1)) = xor(NodevecStar(x(2)), 

NodevecStar(x(3))); 

                if rand(1)<rg 

                    Nodevec(x(1)) = xor(Nodevec(x(2)), 

Nodevec(x(3))); 

                else 

                    Nodevec(x(1)) = 1-xor(Nodevec(x(2)), 

Nodevec(x(3))); 
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                end 

                 

        end 

        %% Calculate Node Probability 

        bitStreamMatStar(:,i)= NodevecStar; 

        bitStreamMat(:,i)    = Nodevec; 

        if NodevecStar(x(1)) == 1 

            Pstarc(x(1)) = Pstarc(x(1)) + 1; 

            if Nodevec(x(1)) == 1 

                rallc(x(1),2) = rallc(x(1),2)+1; 

            end 

        else 

            if Nodevec(x(1)) == 0 

                rallc(x(1),1) = rallc(x(1),1)+1; 

            end 

        end 

         

    end 

    i 

end 

  

G_ind = [Gates(:,1:3),Gates(:,5)]; 

r = rallc./[MC-Pstarc,Pstarc]; 

TMC = toc; 

toc 

sum(bitStreamMat(22,:)==bitStreamMatStar(22,:))/MC 

sum(bitStreamMat(23,:)==bitStreamMatStar(23,:))/MC 

% save bitStreamC17.mat 

  

% eval(['save 

BitStreamMat\bitStream',num2str(rg),'_',Circuit{1},'_',num2

str(MC),'.mat bitStreamMat bitStreamMatStar']) 

% eval(['save bitStream',Circuit{1},'.mat bitStreamMat 

bitStreamMatStar']) 
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The following codes are used to find frequency of 

occurrences for signal correlations within circuit 

clear 

clc; 

close all 

  

Circuit = {'C1355'}; 

% load(['Circuit\',Circuit{1},'.mat']); 

load(['Circuit_decomp\',Circuit{1},'.mat']) 

  

  

Num_node   = max(max(Gates)); 

Num_gate   = size(Gates,1); 

Num_input  = size(Input,1); 

Num_output = size(Output,1); 

  

  

%% Gate type: 1-NAND, 2-AND, 3-NOR, 4-OR, 5-NOT, 6-BUFF, 7-

XNOR, 8-XOR 

%% Initialization 

Gates(Gates(:,4)==7,4)=8; 

gatestrx   = 

{'NAND','AND','NOR','OR','NOT','BUFF','XNOR','XOR'}; 

invPair = Gates(Gates(:,3)==0,[2,1,5]); % signal 1, signal 

2, Type (1 = not, 2 = buff) 

tic; 

cMat = []; % Correlation type matrix 

sixc = 0; 

C = []; 

% bitStream_MC; 

tic 

for ipn = 1:Num_gate 

    gateVec    = Gates(ipn,:); 

   [cMat,sixc] = CorrCate(gateVec(2),gateVec(3), cMat,  

Gates, Input, invPair); 

    ipn 

     

end 

T = toc; 

Type = {'S1';'S2';'S3';'N1';'N2';'N3';'I';'N3-2';'N3-

3';'N3-4';'Approx.I'}; 

Occurence = zeros(11,1); 

for i = 1:size(cMat) 

    X = cMat(i,:); 

    Occurence(X(3))= Occurence(X(3))+1; 
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    if X(3)==6 

        if X(4)~=6 

            Occurence(8)=Occurence(8)+1; 

        elseif X(5)~=6 

            Occurence(9)=Occurence(9)+1; 

        elseif X(6)~=6 

            Occurence(10)=Occurence(10)+1; 

        else 

            Occurence(11)=Occurence(11)+1; 

        end 

    end 

end 

Occurence = Occurence([1,2,3,4,5,7,11,8,9,10]); 

Type = Type([1,2,3,4,5,7,11,8,9,10]); 

CTable = rows2vars(table(Type,Occurence)); 

  

Per = 

[sum(Occurence(1:3)),sum(Occurence(4:5)),sum(Occurence(6:7)

),... 

    Occurence(8),Occurence(9),Occurence(10)]/Num_gate 

sum(Per) 

  

sum(Occurence(1:10)) 

 

 

function [cMat,sixc] = CorrCate(n1, n2, cMat,  Gates, 

Input,... 

    invPair) 

%find out correlation categories for each gate of a given 

circuit 

%% correlation type and order detection 

sixc = 0; 

h = [0,0,0,0]; % correlation type 

Lis1 = n1; Lis2 = n2; % Lists for input pair detection on 

level 1-3s 

if n2~=0 

    [v1,s1] = in_L4New(n1, Gates, Input); 

    [v2,s2] = in_L4New(n2, Gates, Input); 

    G1 = Gates(Gates(:,1)==n1,:); 

    G2 = Gates(Gates(:,1)==n2,:); 

     

    hi2 = []; 

    for f = 1:4 %correlation detection flag 

        for i1 = 1:size(Lis1,2) 

            for i2 = 1:size(Lis2,2) 
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                hi1 = corrType(Lis1(i1),Lis2(i2), Gates, 

Input, invPair); 

                hi2 = [hi2;Lis1(i1),Lis2(i2),hi1]; 

            end 

        end 

        hi2 = sortrows(hi2,3); 

        h(f) = hi2(1,3); 

        if hi2(1,3)~=6 

            break; 

        else 

            Lis1 = v1(s1(f)+1:s1(f+1)); 

            Lis2 = v2(s2(f)+1:s2(f+1)); 

        end 

    end 

    if h == [6,6,6,6] 

        sixc = sixc + 1; 

        h = [7,0,0,0]; 

    end 

else 

    h = [7,0,0,0]; %independent for inverter 

end 

cMat = [cMat;n1,n2,h]; 

end 

function [h] = corrType(n1, n2, Gates, Input, invPair) 

h = 0; 

% [v1,s1] = in_L3New(n1, Gates, Input); 

% [v2,s2] = in_L3New(n2, Gates, Input); 

[v1,s1] = in_L4New(n1, Gates, Input); 

[v2,s2] = in_L4New(n2, Gates, Input); 

% G1 = Gates(Gates(:,1)==n1,:); 

% G2 = Gates(Gates(:,1)==n2,:); 

  

if n1==n2 || ismember([n1,n2],invPair(:,[1,2]),'rows')... 

        || ismember([n2,n1],invPair(:,[1,2]),'rows') 

    h = 1; % S1 

elseif sum(ismember(v2(1:s2(1)),v1(s1(1)+1:s1(2))))||... 

        sum(ismember(v1(1:s1(1)),v2(s2(1)+1:s2(2)))) 

    h = 2; % S2 

elseif ~isempty(v1(s1(1)+1:s1(2))) && ... 

        

(sum(ismember(v1(s1(1)+1:s1(2)),v2(s2(1)+1:s2(2))),'all')==

2||sum(ismember(v2(s2(1)+1:s2(2)),v1(s1(1)+1:s1(2))),'all')

==2)     

    h = 3; % S3 

elseif sum(ismember(v2(1:s2(1)),v1(s1(2)+1:s1(3))))||... 

        sum(ismember(v1(1:s1(1)),v2(s2(2)+1:s2(3)))) 
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    h = 4; % N1 

elseif sum(ismember(v2(1:s2(1)),v1(s1(3)+1:s1(4))))||... 

        sum(ismember(v1(1:s1(1)),v2(s2(3)+1:s2(4)))) 

    h = 5; % N2 

elseif ismember(n1,Input) || ismember(n2,Input) && n1~=n2 

    h = 7; % I, independent is the least correlated case 

else 

    h = 6;     

end 

end 

  

function [v,s] = in_L4New(node1,Gates,Input) 

%% return inputs from previous 4 levels. Inverter and 

buffer is not counted 

v = []; 

s = zeros(1,5); 

L = 1; 

vOut = node1; 

if ismember(node1,Input) 

    v = node1; 

    s(1) = 1; 

else 

    while L < 6 

        i = 1; 

        vPresent{L} = [vOut]; 

        [vL1,vL2] = deal([],[]); 

        while i < size(vOut,2)+1 

            if ismember(vOut(1,i),Input) 

                i = i+1; 

                continue; 

            else 

                vInP = Gates(Gates(:,1) == vOut(1,i),:); 

                if ismember(vInP(5),[5,6]) 

                    vL1 = [vL1,vInP(2)]; 

                    vOut(1,i) = vL1(end); 

                else 

                    vL2 = [vL2,vInP(2:3)]; 

                    i = i+1; 

                end 

            end 

        end 

        vPresent{L} = [vPresent{L},vL1]; 

        s(L) = size(vPresent{L},2); 

        vOut = vL2; 

        L = L+1; 

    end 
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    for i = 1:L-1 

        v = [v,vPresent{i}]; 

    end 

    s = cumsum(s); 

end 

  

end 
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The following codes are used for category S calculations 

 

function [nP,jP,jC] = pS1(n1,n2,P,R,Gates,PM,C,Input,... 

    invPair,bitStreamMatStar,rg) 

% node pair-nP, joint Probability-jP, joint reliability-jR 

jP  = [P(n1,1), 0, 0, P(n1,2)]; 

jC  = [R(n1,1), 0, 0, 1-R(n1,1);0,0,0,0;0,0,0,0;1-

R(n1,2),0,0,R(n1,2)]; 

MB  = [rg,1-rg,0,0;1-rg,rg,0,0;0,0,rg,1-rg;0,0,1-rg,rg]; 

if n1==n2 

    nP = [n1, n1]; 

else 

    [n1,n2] = isinput(n1,n2,Gates); 

    nP = [n1,n2]; % min first in PM matrix 

    if invPair(invPair(:,1:2)==[n1,n2],3)==5 

        jP = [0,P(n1,1),P(n1,2),0]; 

        jRS = [0,0,0,0;0,R(n1,1),1-R(n1,1),0;0,1-

R(n1,2),R(n1,2),0;0,0,0,0]; 

        jC = jRS*MB; 

    else 

        jC = jC*MB; 

    end 

end       

end 

     

     

function [nP,jP,jR] = 

pS2(n1,n2,P,R,Gates,PM,C,Input,invPair,bitStreamMatStar) 

[v1,s1] = in_L3New(n1, Gates, Input); 

[v2,s2] = in_L3New(n2, Gates, Input); 

G1 = Gates(Gates(:,1)==n1,:); 

G2 = Gates(Gates(:,1)==n2,:); 

  

fOutInv = 0; 

fPairSwap = 0; 

fInInv = 0; 

if sum(ismember(v1(1:s1(1)),v2(s2(1)+1:s2(2)))) 

    L1 = v1(1:s1(1)); 

    x = L1(ismember(L1,v2(s2(1)+1:s2(2)))); 

    x = x(1); 

    if x ~= n1 

        fInInv = 1; 

    end 

    if ~isempty(invPair) 

        if ismember(n2,invPair(:,1)) 

            vecInv2 = invPair(invPair(:,1)==n2,:); 



 

 

90 
 

            z = vecInv2(2); 

            if vecInv2(3)==1 

                fOutInv = 1; 

            end 

            if ismember(z,invPair(:,1)) 

                z = invPair(invPair(:,1)==z,2); 

                if vecInv2(3)==1 

                    fOutInv = 1; 

                end 

            end 

        else 

            z = n2; 

        end 

    else 

        z = n2; 

    end 

    G = Gates(Gates(:,1)==z,:); 

    inPair = G(2:3); 

    inPair(inPair==0) = []; 

    xPrime = invPair(invPair(:,2)==x,1); 

    if ismember(xPrime,inPair) 

        fInInv = 1; 

        x = xPrime; 

    end 

    y = inPair(inPair~=x); 

    gateType = G(4); 

elseif sum(ismember(v2(1:s2(1)),v1(s1(1)+1:s1(2)))) 

    L1 = v2(1:s2(1)); 

    x = L1(ismember(L1,v1(s1(1)+1:s1(2)))); 

    x = x(1); 

    if x ~= n2 

        fInInv = 1; 

    end 

    fPairSwap = 1; 

    if ~isempty(invPair) 

        if ismember(n1,invPair(:,1)) 

            vecInv1 = invPair(invPair(:,1)==n1,:); 

            z = vecInv1(2); 

            if vecInv1(3)==1 

                fOutInv = 1; 

            end 

            if ismember(z,invPair(:,1)) 

                z = invPair(invPair(:,1)==z,2); 

                if vecInv1(3)==1 

                    fOutInv = 1; 

                end 
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            end 

        else 

            z = n1; 

        end 

    else 

        z = n1; 

    end 

     

    G = Gates(Gates(:,1)==z,:); 

    inPair = G(2:3); 

    inPair(inPair==0) = []; 

    xPrime = invPair(invPair(:,2)==x,1); 

    if ismember(xPrime,inPair) 

        fInInv = 1; 

        x = xPrime; 

    end 

    y = inPair(inPair~=x); 

    gateType = G(4); 

end 

pVec = PM(sum(ismember(PM(:,1:2),[x,y]),2)==2,:); 

CXY  = C{sum(ismember(PM(:,1:2),[x,y]),2)==2}; 

if size(pVec,1)>1 

    pVec = pVec(1,:); 

end 

if x == pVec(1) 

    pXY = pVec(3:6); 

else 

    pXY = pVec([3,5,4,6]); 

    CXY = CXY([1,3,2,4],[1,3,2,4]); 

end 

%% Gate type: 1-NAND, 2-AND, 3-NOR, 4-OR, 5-NOT, 6-BUFF, 7-

XNOR, 8-XOR 

mAND = [1,0,0,0;1,0,0,0;0,0,1,0;0,0,0,1]; 

mOR  = [1,0,0,0;0,1,0,0;0,0,0,1;0,0,0,1]; 

mXOR = [1,0,0,0;0,1,0,0;0,0,0,1;0,0,1,0]; 

mBUF = [1,0,0,0;0,0,0,0;0,0,0,0;0,0,0,1]; 

switch gateType 

    case {1,2} 

        mT = mAND; 

        TM = 

(pXY./[pXY(1)+pXY(2),pXY(1)+pXY(2),pXY(3),pXY(4)]); 

    case {3,4} 

        mT = mOR; 

        TM = 

(pXY./[pXY(1),pXY(2),pXY(3)+pXY(4),pXY(3)+pXY(4)]); 

    case {5,6} 
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        mT = mBUF; 

    case {7,8} 

        mT = mXOR; 

        TM = [1,1,1,1]; 

end 

if mod(gateType,2)==1 

    mModify = [0,1,0,0;1,0,0,0;0,0,0,1;0,0,1,0]; 

else 

    mModify = 1; 

end 

jP = pXY * mT * mModify; 

jC = mT'*diag(TM)*CXY*mT; 

if fOutInv == 1 

    jP = jP([2,1,4,3]); 

    jC = jC([2,1,4,3],[2,1,4,3]); 

end 

if fInInv == 1 

    jP = jP([3,4,1,2]); 

     jC = jC([3,4,1,2],[3,4,1,2]); 

end 

nP = [n1,n2]; 

if fPairSwap == 1 

    jP = jP([1,3,2,4]); 

end 

end 

 

function [nP,jP,jR] = pS3(n1, n2, Pstar, Gates, PM, C, ... 

    Input,invPair,bitStreamMatStar,bitStreamMat) 

[v1,s1] = in_L3New(n1, Gates, Input); 

[v2,s2] = in_L3New(n2, Gates, Input); 

G1 = Gates(Gates(:,1)==n1,:); 

G2 = Gates(Gates(:,1)==n2,:); 

  

fOutInvA = 0;fOutInvB = 0; 

fPairSwap = 0; 

fInInvXA = 0;fInInvXB = 0; fInInvYA = 0; fInInvYB = 0; 

x =  

if s1(1)==2 

    fOutInvA = 1; 

end 

if s2(1)==2 

    fOutInvB = 1; 

end 

if ~ismember(x,[v1(s(1)+1),v1(s(1)+2)]) 

    fInInvXA = 1; 

end 
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if sum(ismember(v1(1:s1(1)),v2(s2(1)+1:s2(2)))) 

    L1 = v1(1:s1(1)); 

    x = L1(ismember(L1,v2(s2(1)+1:s2(2)))); 

    x = x(1); 

    if x ~= n1 

        fInInv = 1; 

    end 

    if ~isempty(invPair) 

        if ismember(n2,invPair(:,1)) 

            vecInv2 = invPair(invPair(:,1)==n2,:); 

            z = vecInv2(2); 

            if vecInv2(3)==1 

                fOutInv = 1; 

            end 

            if ismember(z,invPair(:,1)) 

                z = invPair(invPair(:,1)==z,2); 

                if vecInv2(3)==1 

                    fOutInv = 1; 

                end 

            end 

        else 

            z = n2; 

        end 

    else 

        z = n2; 

    end 

    G = Gates(Gates(:,1)==z,:); 

    inPair = G(2:3); 

    inPair(inPair==0) = []; 

    xPrime = invPair(invPair(:,2)==x,1); 

    if ismember(xPrime,inPair) 

        fInInv = 1; 

        x = xPrime; 

    end 

    y = inPair(inPair~=x); 

    gateType = G(4); 

elseif sum(ismember(v2(1:s2(1)),v1(s1(1)+1:s1(2)))) 

    L1 = v2(1:s2(1)); 

    x = L1(ismember(L1,v1(s1(1)+1:s1(2)))); 

    x = x(1); 

    if x ~= n2 

        fInInv = 1; 

    end 

    fPairSwap = 1; 

    if ~isempty(invPair) 
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        if ismember(n1,invPair(:,1)) 

            vecInv1 = invPair(invPair(:,1)==n1,:); 

            z = vecInv1(2); 

            if vecInv1(3)==1 

                fOutInv = 1; 

            end 

            if ismember(z,invPair(:,1)) 

                z = invPair(invPair(:,1)==z,2); 

                if vecInv1(3)==1 

                    fOutInv = 1; 

                end 

            end 

        else 

            z = n1; 

        end 

    else 

        z = n1; 

    end 

     

    G = Gates(Gates(:,1)==z,:); 

    inPair = G(2:3); 

    inPair(inPair==0) = []; 

    xPrime = invPair(invPair(:,2)==x,1); 

    if ismember(xPrime,inPair) 

        fInInv = 1; 

        x = xPrime; 

    end 

    y = inPair(inPair~=x); 

    gateType = G(4); 

end 

pVec = PM(sum(ismember(PM(:,1:2),[x,y]),2)==2,:); 

CXY  = C{sum(ismember(PM(:,1:2),[x,y]),2)==2}; 

if size(pVec,1)>1 

    pVec = pVec(1,:); 

end 

if x == pVec(1) 

    pXY = pVec(3:6); 

else 

    pXY = pVec([3,5,4,6]); 

    CXY = CXY([1,3,2,4],[1,3,2,4]); 

end 

%% Gate type: 1-NAND, 2-AND, 3-NOR, 4-OR, 5-NOT, 6-BUFF, 7-

XNOR, 8-XOR 

mAND = [1,0,0,0;1,0,0,0;0,0,1,0;0,0,0,1]; 

mOR  = [1,0,0,0;0,1,0,0;0,0,0,1;0,0,0,1]; 

mXOR = [1,0,0,0;0,1,0,0;0,0,0,1;0,0,1,0]; 
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mBUF = [1,0,0,0;0,0,0,0;0,0,0,0;0,0,0,1]; 

switch gateType 

    case {1,2} 

        mT = mAND; 

        TM = 

(pXY./[pXY(1)+pXY(2),pXY(1)+pXY(2),pXY(3),pXY(4)]); 

    case {3,4} 

        mT = mOR; 

        TM = 

(pXY./[pXY(1),pXY(2),pXY(3)+pXY(4),pXY(3)+pXY(4)]); 

    case {5,6} 

        mT = mBUF; 

    case {7,8} 

        mT = mXOR; 

        TM = [1,1,1,1]; 

end 

if mod(gateType,2)==1 

    mModify = [0,1,0,0;1,0,0,0;0,0,0,1;0,0,1,0]; 

else 

    mModify = 1; 

end 

jP = pXY * mT * mModify; 

jC = mT'*diag(TM)*CXY*mT 

if fOutInv == 1 

    jP = jP([2,1,4,3]); 

    jC = jC([2,1,4,3],[2,1,4,3]); 

end 

if fInInv == 1 

    jP = jP([3,4,1,2]); 

    jC = jC([3,4,1,2],[3,4,1,2]); 

end 

nP = [n1,n2]; 

if fPairSwap == 1 

    jP = jP([1,3,2,4]); 

end 

end 
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The following codes are used for bitstream generations. 

For generation based on one existed sequence: 

function [SimPvec,SimRvec] = 

bitGen1(n1,SimP2,SimR2,CJM,bitLength) 

%generate bitstream for n1 based on exist n2 

SimPvec = [n1]; 

SimRvec = [n1]; 

for ilength = 1:bitLength 

    ran = rand(1); 

    if [SimP2(ilength),SimR2(ilength)]==[0,0] 

        CJMvec = [CJM(1,1),CJM(1,3),CJM(3,1),CJM(3,3)]; 

        CJMvec = cumsum(CJMvec/sum(CJMvec)); 

        if ran < CJMvec(1) 

            SimPvec = [SimPvec,0]; 

            SimRvec = [SimRvec,0]; 

        elseif ran<CJM(2) 

            SimPvec = [SimPvec,0]; 

            SimRvec = [SimRvec,1]; 

        elseif ran<CJM(3) 

            SimPvec = [SimPvec,1]; 

            SimRvec = [SimRvec,0]; 

        else 

            SimPvec = [SimPvec,1]; 

            SimRvec = [SimRvec,1]; 

        end 

    elseif [SimP2(ilength),SimR2(ilength)]==[0,1] 

        CJMvec = [CJM(1,2),CJM(1,4),CJM(3,2),CJM(3,4)]; 

        CJMvec = cumsum(CJMvec/sum(CJMvec)); 

        if ran < CJMvec(1) 

            SimPvec = [SimPvec,0]; 

            SimRvec = [SimRvec,0]; 

        elseif ran<CJM(2) 

            SimPvec = [SimPvec,0]; 

            SimRvec = [SimRvec,1]; 

        elseif ran<CJM(3) 

            SimPvec = [SimPvec,1]; 

            SimRvec = [SimRvec,0]; 

        else 

            SimPvec = [SimPvec,1]; 

            SimRvec = [SimRvec,1]; 

        end 

    elseif [SimP2(ilength),SimR2(ilength)]==[1,0] 

        CJMvec = [CJM(2,1),CJM(2,3),CJM(4,1),CJM(4,3)]; 

        CJMvec = cumsum(CJMvec/sum(CJMvec)); 

        if ran < CJMvec(1) 

            SimPvec = [SimPvec,0]; 
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            SimRvec = [SimRvec,0]; 

        elseif ran<CJM(2) 

            SimPvec = [SimPvec,0]; 

            SimRvec = [SimRvec,1]; 

        elseif ran<CJM(3) 

            SimPvec = [SimPvec,1]; 

            SimRvec = [SimRvec,0]; 

        else 

            SimPvec = [SimPvec,1]; 

            SimRvec = [SimRvec,1]; 

        end 

    else 

        CJMvec = [CJM(2,2),CJM(2,4),CJM(4,2),CJM(4,4)]; 

        CJMvec = cumsum(CJMvec/sum(CJMvec)); 

        if ran < CJMvec(1) 

            SimPvec = [SimPvec,0]; 

            SimRvec = [SimRvec,0]; 

        elseif ran<CJM(2) 

            SimPvec = [SimPvec,0]; 

            SimRvec = [SimRvec,1]; 

        elseif ran<CJM(3) 

            SimPvec = [SimPvec,1]; 

            SimRvec = [SimRvec,0]; 

        else 

            SimPvec = [SimPvec,1]; 

            SimRvec = [SimRvec,1]; 

        end 

    end 

end 

SimPvec = [SimPvec;SimP2]; 

SimRvec = [SimRvec;SimR2]; 

end 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

98 
 

Generating 2 bitstreams when both signals are not generated 

  

 function [SimPvec,SimRvec] = 

bitGen2(n1,n2,pVec,CJM,bitLength) 

% generate 2 bitstreams when both n1 and n2 are not 

generated 

SimPvec = [n1;n2]; 

SimRvec = [n1;n2]; 

for ilength = 1:bitLength 

    pVec = cumsum(pVec); 

    ranP = rand(1); 

    ranR = rand(1); 

    if ranP<pVec(1) 

        SimPvec = [SimPvec,[0;0]]; 

        CJMvec = cumsum(CJM(1,:)); 

        if ranR < CJMvec(1) 

            SimRvec = [SimRvec,[0;0]]; 

        elseif ranR<CJMvec(2) 

            SimRvec = [SimRvec,[0;1]]; 

        elseif ranR<CJMvec(3) 

            SimRvec = [SimRvec,[1;0]]; 

        else 

            SimRvec = [SimRvec,[1;1]]; 

        end 

    elseif ranP<pVec(2) 

        SimPvec = [SimPvec,[0;1]]; 

        CJMvec = cumsum(CJM(2,:)); 

        if ranR < CJMvec(1) 

            SimRvec = [SimRvec,[0;0]]; 

        elseif ranR<CJMvec(2) 

            SimRvec = [SimRvec,[0;1]]; 

        elseif ranR<CJMvec(3) 

            SimRvec = [SimRvec,[1;0]]; 

        else 

            SimRvec = [SimRvec,[1;1]]; 

        end 

    elseif ranP<pVec(3) 

        SimPvec = [SimPvec,[1;0]]; 

        CJMvec = cumsum(CJM(3,:)); 

        if ranR < CJMvec(1) 

            SimRvec = [SimRvec,[0;0]]; 

        elseif ranR<CJMvec(2) 

            SimRvec = [SimRvec,[0;1]]; 

        elseif ranR<CJMvec(3) 

            SimRvec = [SimRvec,[1;0]]; 

        else 
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            SimRvec = [SimRvec,[1;1]]; 

        end 

    else 

        SimPvec = [SimPvec,[1;1]]; 

        CJMvec = cumsum(CJM(4,:)); 

        if ranR < CJMvec(1) 

            SimRvec = [SimRvec,[0;0]]; 

        elseif ranR<CJMvec(2) 

            SimRvec = [SimRvec,[0;1]]; 

        elseif ranR<CJMvec(3) 

            SimRvec = [SimRvec,[1;0]]; 

        else 

            SimRvec = [SimRvec,[1;1]]; 

        end 

    end 

end 

end 
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The following codes are used to deal with category N 

function [nP,jP,jC] = 

pS4(n1,n2,P,R,Gates,PM,C,Input,invPair,bitStreamMatStar,bit

StreamMat,rg,bitLength) 

SimPbit = []; 

SimRbit = []; 

path = findpathN1(n1,n2,Gates,Input, invPair); 

for iBit = 1:size(path,2) 

    G = Gates(Gates(:,1)==path(iBit),:); 

    %% input pair bitstream generation 

    if G(3)~=0 

        pVec = 

PM(sum(ismember(PM(:,1:2),[G(2),G(3)]),2)==2,:); 

        CJM  = 

C{sum(ismember(PM(:,1:2),[G(2),G(3)]),2)==2}; 

        if G(2) == pVec(1) 

            pVec = pVec(3:6); 

        else 

            pVec = pVec([3,5,4,6]); 

            CJM = CXY([1,3,2,4],[1,3,2,4]); 

        end 

        if ~isempty(SimPbit) 

            n1Exi = ismember(G(2),SimPbit(:,1)); % check if 

bitstream existed or not 

            n2Exi = ismember(G(3),SimPbit(:,1)); 

        else 

            n1Exi = 0; 

            n2Exi = 0; 

        end 

        if n1Exi 

            SimP2 = SimPbit(SimPbit(:,1)==G(2),:); 

            SimR2 = SimPbit(SimRbit(:,1)==G(2),:); 

            [SimPvec,SimRvec] = 

bitGen1(G(3),SimP2,SimR2,CJM([1,3,2,4],[1,3,2,4]),bitLength

); 

            SimPbit = [SimPbit;SimPvec(1,:)]; 

            SimRbit = [SimRbit;SimRvec(1,:)]; 

        elseif n2Exi 

            SimP2 = SimPbit(SimPbit(:,1)==G(3),:); 

            SimR2 = SimPbit(SimRbit(:,1)==G(3),:); 

            [SimPvec,SimRvec] = 

bitGen1(G(2),SimP2,SimR2,CJM,bitLength); 

            SimPbit = [SimPbit;SimPvec(1,:)]; 

            SimRbit = [SimRbit;SimRvec(1,:)]; 

        else 
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            [SimPvec,SimRvec] = 

bitGen2(G(2),G(3),pVec,CJM,bitLength); 

            SimPbit = [SimPbit;SimPvec]; 

            SimRbit = [SimRbit;SimRvec]; 

        end 

        %% propagate to output for current gate on path 

        SimPOut(1) = G(1); 

        SimROut(1) = G(1); 

        for iprop = 1:bitLength 

            switch G(end) 

                case {1} 

                    SimPOut(1,iprop+1) = 1-

and(SimPvec(1,iprop+1), SimPvec(2,iprop+1)); 

                    if rand(1)<rg 

                        SimROut(1,iprop+1) = 1-

and(SimRvec(1,iprop+1), SimRvec(2,iprop+1)); 

                    else 

                        SimROut(1,iprop+1) = 

and(SimRvec(1,iprop+1), SimRvec(2,iprop+1)); 

                    end 

                case {2} 

                    SimPOut(1,iprop+1) = 

and(SimPvec(1,iprop+1), SimPvec(2,iprop+1)); 

                    if rand(1)<rg 

                        SimROut(1,iprop+1) = 

and(SimRvec(1,iprop+1), SimRvec(2,iprop+1)); 

                    else 

                        SimROut(1,iprop+1) = 1-

and(SimRvec(1,iprop+1), SimRvec(2,iprop+1)); 

                    end 

                case {3} 

                    SimPOut(1,iprop+1) = 1-

or(SimPvec(1,iprop+1), SimPvec(2,iprop+1)); 

                    if rand(1)<rg 

                        SimROut(1,iprop+1) = 1-

or(SimRvec(1,iprop+1), SimRvec(2,iprop+1)); 

                    else 

                        SimROut(1,iprop+1) = 

or(SimRvec(1,iprop+1), SimRvec(2,iprop+1)); 

                    end 

                case {4} 

                    SimPOut(1,iprop+1) = 

or(SimPvec(1,iprop+1), SimPvec(2,iprop+1)); 

                    if rand(1)<rg 

                        SimROut(1,iprop+1) = 

or(SimRvec(1,iprop+1), SimRvec(2,iprop+1)); 
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                    else 

                        SimROut(iprop+1) = 1-

or(SimRvec(1,iprop+1), SimRvec(2,iprop+1)); 

                    end 

                case {7} 

                    SimPOut(1,iprop+1) = 1-

xor(SimPvec(1,iprop+1), SimPvec(2,iprop+1)); 

                    if rand(1)<rg 

                        SimROut(1,iprop+1) = 1-

xor(SimRvec(1,iprop+1), SimRvec(2,iprop+1)); 

                    else 

                        SimROut(1,iprop+1) = 

xor(SimRvec(1,iprop+1), SimRvec(2,iprop+1)); 

                    end 

                     

                case {8} 

                    SimPOut(1,iprop+1) = 

xor(SimPvec(1,iprop+1), SimPvec(2,iprop+1)); 

                    if rand(1)<rg 

                        SimROut(1,iprop+1) = 

xor(SimRvec(1,iprop+1), SimRvec(2,iprop+1)); 

                    else 

                        SimROut(iprop+1) = 1-

xor(SimRvec(1,iprop+1), SimRvec(2,iprop+1)); 

                    end 

            end 

        end 

        SimPbit = [SimPbit;SimPOut]; 

        SimRbit = [SimRbit;SimROut]; 

    else 

        SimPOut(1) = G(1); 

        SimROut(1) = G(1); 

        if ~isempty(SimPbit) 

            n1Exi = ismember(G(2),SimPbit(:,1)); 

        else 

            n1Exi = 0; 

        end 

        if n1Exi 

            SimPvec = SimPbit(SimPbit(:,1)==G(2),:); 

            SimRvec = SimRbit(SimPbit(:,1)==G(2),:); 

        else 

            SimPvec(1) = G(2); 

            SimRvec(1) = G(2); 

            for ilength = 1:bitLength 

                ranP = rand(1); 

                ranR = rand(1); 
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                if ranP < P(G(2),1) 

                    SimPvec(ilength+1) = 0; 

                    if ranR < R(G(2),1) 

                        SimRvec(ilength+1) = 0; 

                    else 

                        SimPvec(ilength+1) = 1; 

                    end 

                else 

                    SimPvec(ilength+1) = 1; 

                    if ranR < R(G(2),2) 

                        SimRvec(ilength+1) = 1; 

                    else 

                        SimPvec(ilength+1) = 0; 

                    end 

                end 

            end 

        end 

        for iprop = 1:bitLength 

            switch G(end) 

                case {5} 

                    SimPOut(iprop+1) = 1-

SimPvec(1,iprop+1); 

                    if rand(1)<rg 

                        SimROut(iprop+1) = 1-

SimPvec(1,iprop+1); 

                    else 

                        SimROut(iprop+1) = 

SimPvec(1,iprop+1); 

                    end 

                case {6} 

                    SimPOut(iprop+1) = SimPvec(1,iprop+1); 

                    if rand(1)<rg 

                        SimROut(iprop+1) = 

SimPvec(1,iprop+1); 

                    else 

                        SimROut(iprop+1) = 1-

SimPvec(1,iprop+1); 

                    end 

            end 

        end 

        SimPbit = [SimPbit;SimPOut]; 

        SimRbit = [SimRbit;SimROut]; 

        if ~n1Exi 

            SimPbit = [SimPbit;SimPvec]; 

            SimRbit = [SimRbit;SimRvec]; 

        end 
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    end 

     

     

end 

nP = [n1,n2]; 

[jP,jC] = bitCount(n1,n2,SimPbit,SimRbit); 

end 

  

  

 

function [nP,jP,jC] = 

pS5(n1,n2,P,R,Gates,PM,C,Input,invPair,bitStreamMatStar,bit

StreamMat,rg,bitLength) 

SimPbit = []; 

SimRbit = []; 

path = findpathN2(n1,n2,Gates,Input, invPair); 

for iBit = 1:size(path,2) 

    G = Gates(Gates(:,1)==path(iBit),:); 

    %% input pair bitstream generation 

    if G(3)~=0 

        pVec = 

PM(sum(ismember(PM(:,1:2),[G(2),G(3)]),2)==2,:); 

        CJM  = 

C{sum(ismember(PM(:,1:2),[G(2),G(3)]),2)==2}; 

        if G(2) == pVec(1) 

            pVec = pVec(3:6); 

        else 

            pVec = pVec([3,5,4,6]); 

            CJM = CXY([1,3,2,4],[1,3,2,4]); 

        end 

        if ~isempty(SimPbit) 

            n1Exi = ismember(G(2),SimPbit(:,1)); % check if 

bitstream existed or not 

            n2Exi = ismember(G(3),SimPbit(:,1)); 

        else 

            n1Exi = 0; 

            n2Exi = 0; 

        end 

        if n1Exi 

            SimP2 = SimPbit(SimPbit(:,1)==G(2),:); 

            SimR2 = SimPbit(SimRbit(:,1)==G(2),:); 

            [SimPvec,SimRvec] = 

bitGen1(G(3),SimP2,SimR2,CJM([1,3,2,4],[1,3,2,4]),bitLength

); 

            SimPbit = [SimPbit;SimPvec(1,:)]; 

            SimRbit = [SimRbit;SimRvec(1,:)]; 
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        elseif n2Exi 

            SimP2 = SimPbit(SimPbit(:,1)==G(3),:); 

            SimR2 = SimPbit(SimRbit(:,1)==G(3),:); 

            [SimPvec,SimRvec] = 

bitGen1(G(2),SimP2,SimR2,CJM,bitLength); 

            SimPbit = [SimPbit;SimPvec(1,:)]; 

            SimRbit = [SimRbit;SimRvec(1,:)]; 

        else 

            [SimPvec,SimRvec] = 

bitGen2(G(2),G(3),pVec,CJM,bitLength); 

            SimPbit = [SimPbit;SimPvec]; 

            SimRbit = [SimRbit;SimRvec]; 

        end 

        %% propagate to output for current gate on path 

        SimPOut(1) = G(1); 

        SimROut(1) = G(1); 

        for iprop = 1:bitLength 

            switch G(end) 

                case {1} 

                    SimPOut(iprop+1) = 1-

and(SimPvec(1,iprop+1), SimPvec(2,iprop+1)); 

                    if rand(1)<rg 

                        SimROut(iprop+1) = 1-

and(SimRvec(1,iprop+1), SimRvec(2,iprop+1)); 

                    else 

                        SimROut(iprop+1) = 

and(SimRvec(1,iprop+1), SimRvec(2,iprop+1)); 

                    end 

                case {2} 

                    SimPOut(iprop+1) = 

and(SimPvec(1,iprop+1), SimPvec(2,iprop+1)); 

                    if rand(1)<rg 

                        SimROut(iprop+1) = 

and(SimRvec(1,iprop+1), SimRvec(2,iprop+1)); 

                    else 

                        SimROut(iprop+1) = 1-

and(SimRvec(1,iprop+1), SimRvec(2,iprop+1)); 

                    end 

                case {3} 

                    SimPOut(iprop+1) = 1-

or(SimPvec(1,iprop+1), SimPvec(2,iprop+1)); 

                    if rand(1)<rg 

                        SimROut(iprop+1) = 1-

or(SimRvec(1,iprop+1), SimRvec(2,iprop+1)); 

                    else 
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                        SimROut(iprop+1) = 

or(SimRvec(1,iprop+1), SimRvec(2,iprop+1)); 

                    end 

                case {4} 

                    SimPOut(iprop+1) = 

or(SimPvec(1,iprop+1), SimPvec(2,iprop+1)); 

                    if rand(1)<rg 

                        SimROut(iprop+1) = 

or(SimRvec(1,iprop+1), SimRvec(2,iprop+1)); 

                    else 

                        SimROut(iprop+1) = 1-

or(SimRvec(1,iprop+1), SimRvec(2,iprop+1)); 

                    end 

                case {7} 

                    SimPOut(iprop+1) = 1-

xor(SimPvec(1,iprop+1), SimPvec(2,iprop+1)); 

                    if rand(1)<rg 

                        SimROut(iprop+1) = 1-

xor(SimRvec(1,iprop+1), SimRvec(2,iprop+1)); 

                    else 

                        SimROut(iprop+1) = 

xor(SimRvec(1,iprop+1), SimRvec(2,iprop+1)); 

                    end 

                     

                case {8} 

                    SimPOut(iprop+1) = 

xor(SimPvec(1,iprop+1), SimPvec(2,iprop+1)); 

                    if rand(1)<rg 

                        SimROut(iprop+1) = 

xor(SimRvec(1,iprop+1), SimRvec(2,iprop+1)); 

                    else 

                        SimROut(iprop+1) = 1-

xor(SimRvec(1,iprop+1), SimRvec(2,iprop+1)); 

                    end 

            end 

        end 

        SimPbit = [SimPbit;SimPOut]; 

        SimRbit = [SimRbit;SimROut]; 

    else 

        SimPOut(1) = G(1); 

        SimROut(1) = G(1); 

        if ~isempty(SimPbit) 

            n1Exi = ismember(G(2),SimPbit(:,1)); 

        else 

            n1Exi = 0; 

        end 
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        if n1Exi 

            SimPvec = SimPbit(SimPbit(:,1)==G(2),:); 

            SimRvec = SimRbit(SimPbit(:,1)==G(2),:); 

        else 

            SimPvec(1) = G(2); 

            SimRvec(1) = G(2); 

            for ilength = 1:bitLength 

                ranP = rand(1); 

                ranR = rand(1); 

                if ranP < P(G(2),1) 

                    SimPvec(ilength+1) = 0; 

                    if ranR < R(G(2),1) 

                        SimRvec(ilength+1) = 0; 

                    else 

                        SimPvec(ilength+1) = 1; 

                    end 

                else 

                    SimPvec(ilength+1) = 1; 

                    if ranR < R(G(2),2) 

                        SimRvec(ilength+1) = 1; 

                    else 

                        SimPvec(ilength+1) = 0; 

                    end 

                end 

            end 

        end 

        for iprop = 1:bitLength 

            switch G(end) 

                case {5} 

                    SimPOut(iprop+1) = 1-

SimPvec(1,iprop+1); 

                    if rand(1)<rg 

                        SimROut(iprop+1) = 1-

SimPvec(1,iprop+1); 

                    else 

                        SimROut(iprop+1) = 

SimPvec(1,iprop+1); 

                    end 

                case {6} 

                    SimPOut(iprop+1) = SimPvec(1,iprop+1); 

                    if rand(1)<rg 

                        SimROut(iprop+1) = 

SimPvec(1,iprop+1); 

                    else 

                        SimROut(iprop+1) = 1-

SimPvec(1,iprop+1); 
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                    end 

            end 

        end 

        SimPbit = [SimPbit;SimPOut]; 

        SimRbit = [SimRbit;SimROut]; 

        if ~n1Exi 

            SimPbit = [SimPbit;SimPvec]; 

            SimRbit = [SimRbit;SimRvec]; 

        end 

    end 

end 

nP = [n1,n2]; 

[jP,jC] = bitCount(n1,n2,SimPbit,SimRbit); 

end 

  

  

  

function [nP,jP,jC] = pS7(n1,n2,P,R) 

nP = [n1,n2]; 

jP = 

[P(n1,1)*P(n2,1),P(n1,1)*P(n2,2),P(n1,2)*P(n2,1),P(n1,2)*P(

n2,2)]; 

jC = [R(n1,1)*R(n2,1),R(n1,1)*(1-R(n2,1)),(1-

R(n1,1))*R(n2,1),(1-R(n1,1))*(1-R(n2,1));... 

    R(n1,1)*(1-R(n2,2)),R(n1,1)*R(n2,2),(1-R(n1,1))*(1-

R(n2,2)),(1-R(n1,1))*R(n2,2);... 

    (1-R(n1,2))*R(n2,1),(1-R(n1,2))*(1-

R(n2,1)),R(n1,2)*R(n2,1),R(n1,2)*(1-R(n2,1));... 

    (1-R(n1,2))*(1-R(n2,2)),(1-R(n1,2))*R(n2,2),R(n1,2)*(1-

R(n2,2)),R(n1,2)*R(n2,2)]; 

end 
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The following codes are used for gate propagation, from (A, 

B) to D  

  

 % M, First row is signal pair, second row is P_j, third 

row is R_j 

% AND 

  

pIJ = PM(ipn,3:6); 

P(gateVec(1),:)   = [1-pIJ(4),pIJ(4)]; 

CJ = C{ipn}; 

R(gateVec(1),:) = 

[sum(pIJ(1:3)*CJ(1:3,1:3))/P(gateVec(1),1),sum(pIJ(4)*CJ(4,

4))/P(gateVec(1),2)]; 

R(gateVec(1),:) = R(gateVec(1),:).*(2*rg-1)+[1-rg,1-rg]; 

  

 

% M, First row is signal pair, second row is P_j, third row 

is R_j 

% NAND 

pIJ = PM(ipn,3:6); 

P(gateVec(1),:)   = [pIJ(4),1-pIJ(4)]; 

CJ = C{ipn}; 

R(gateVec(1),:) = 

[sum(pIJ(4)*CJ(4,4))/P(gateVec(1),1),sum(pIJ(1:3)*CJ(1:3,1:

3))/P(gateVec(1),2)]; 

R(gateVec(1),:) = R(gateVec(1),:).*(2*rg-1)+[1-rg,1-rg]; 

 

% M, First row is signal pair, second row is P_j, third row 

is R_j 

% NOR 

pIJ = PM(ipn,3:6); 

P(gateVec(1),:)   = [1-pIJ(1),pIJ(1)]; 

CJ = C{ipn}; 

R(gateVec(1),:) = 

[sum(pIJ(2:4)*CJ(2:4,2:4))/P(gateVec(1),1),sum(pIJ(1)*CJ(1,

1))/P(gateVec(1),2)]; 

R(gateVec(1),:) = R(gateVec(1),:).*(2*rg-1)+[1-rg,1-rg]; 

 

% M, First row is signal pair, second row is P_j, third row 

is R_j 

% NOT 

pInputJoint = P(gateVec(2),:); 

rInputJoint = R(gateVec(2),:); 

P(gateVec(1),:)   = [pInputJoint(2),pInputJoint(1)]; 

R(gateVec(1),:)   = [rInputJoint(2),rInputJoint(1)]*(2*rg-

1)+[1-rg,1-rg]; 
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% M, First row is signal pair, second row is P_j, third row 

is R_j 

% OR 

  

pIJ = PM(ipn,3:6); 

P(gateVec(1),:)   = [pIJ(1),1-pIJ(1)]; 

CJ = C{ipn}; 

R(gateVec(1),:) = 

[sum(pIJ(1)*CJ(1,1))/P(gateVec(1),1),sum(pIJ(2:4)*CJ(2:4,2:

4))/P(gateVec(1),2)]; 

R(gateVec(1),:) = R(gateVec(1),:).*(2*rg-1)+[1-rg,1-rg]; 

 

% M, First row is signal pair, second row is P_j, third row 

is R_j 

% XNOR 

pInputJoint = PM(ipn,3:6); 

CJ = C{ipn}; 

P(gateVec(1),:)= 

[pInputJoint(2)+pInputJoint(3),pInputJoint(1)+pInputJoint(4

)]; 

  

  

% M, First row is signal pair, second row is P_j, third row 

is R_j 

% XOR 

pIJ = PM(ipn,3:6); 

P(gateVec(1),:)= [pIJ(1)+pIJ(4),pIJ(2)+pIJ(3)]; 

CJ = C{ipn}; 

R(gateVec(1),:) = 

[sum(pIJ([1,4])*CJ([1,4],[1,4]))/P(gateVec(1),1),sum(pIJ([2

,3])*CJ([2,3],[2,3]))/P(gateVec(1),2)]; 

R(gateVec(1),:) = R(gateVec(1),:).*(2*rg-1)+[1-rg,1-rg]; 

 

% M, First row is signal pair, second row is P_j, third row 

is R_j 

% BUFF 

pInputJoint = P(gateVec(2),:); 

rInputJoint = R(gateVec(2),:); 

P(gateVec(1),:)   = [pInputJoint(1),pInputJoint(2)]; 

R(gateVec(1),:)   = [rInputJoint(1),rInputJoint(2)]*(2*rg-

1)+[1-rg,1-rg]; 
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The following codes are used to investigate convergence 

process for sequential circuit, using traditional 

convergence or TSC 

  

 

 

clear 

clc; 

close all; 

load('Circuit\s27.mat'); 

  

%% Basic Parameters 

Num_node   = max(max(Gates)); 

Num_gate   = size(Gates,1); 

Num_input  = size(Input,1); 

Num_output = size(Output,1); 

Ind        = Gates(:,1:3); 

MC         = 2*10^4; 

rg         = 0.9; 

[R0, R1]   = deal(zeros(Num_node,1),zeros(Num_node,1)); 

Pin        = 0.5*ones(1,Num_input); 

r0_in       = ones(1,Num_input); 

r1_in       = ones(1,Num_input); 

ita = 0.4; 

itarec(1,1) = ita; 

i1 = 0; i0=0; 

  

  

Gates(Gates(:,5)==7,5)=8; 

CC = 1; 

exitflag = 0; 

exitP = 0; 

exitR = 0; 

  

%% Counters Initialization 

  

Nodevec            = zeros(Num_node,1); 

NodevecStar        = zeros(Num_node,1); 

  

%% MC simulation 

%% P* Convergence 

  

clear   R1rec R0rec Prec R1recIn R0recIn  PrecIn; 

CC = 1; 

exitflag = 0; 

[R0, R1]   = deal(zeros(Num_node,1),zeros(Num_node,1)); 
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Pin        = 0.5*ones(1,Num_input); 

r0_in       = ones(1,Num_input); 

r1_in       = ones(1,Num_input); 

tic; 

while (CC==1 || CC < 100) && (exitP == 0) 

    Pstarc     = zeros(Num_node,1); 

    for i=1:MC 

        NodevecStar        = zeros(Num_node,1); 

        for k = 1:Num_input 

            NodevecStar(Input(k)) = (rand(1)<Pin(k)); 

        end 

        % Gate type: 1-NAND, 2-AND, 3-NOR, 4-OR, 5-NOT, 6-

BUFF, 7-XNOR, 8-XOR 

        for j = 1:Num_gate 

            x=Gates(j,:); 

            switch x(5) 

                case {1} 

                    NodevecStar(x(1)) = 1-

and(NodevecStar(x(2)), NodevecStar(x(3))); 

                case {2} 

                    NodevecStar(x(1)) = 

and(NodevecStar(x(2)), NodevecStar(x(3))); 

                case {3} 

                    NodevecStar(x(1)) = 1-

or(NodevecStar(x(2)), NodevecStar(x(3))); 

                case {4} 

                    NodevecStar(x(1)) = 

or(NodevecStar(x(2)), NodevecStar(x(3))); 

                case {5} 

                    NodevecStar(x(1)) = 

not(NodevecStar(x(2))); 

                case {6} 

                    NodevecStar(x(1)) = NodevecStar(x(2)); 

                case {7} 

                    NodevecStar(x(1)) = 1-

xor(NodevecStar(x(2)), NodevecStar(x(3))); 

                case {8} 

                    NodevecStar(x(1)) = 

xor(NodevecStar(x(2)), NodevecStar(x(3))); 

            end 

            % Calculate Node Probability 

            if NodevecStar(x(1)) == 1 

                Pstarc(x(1)) = Pstarc(x(1)) + 1; 

            end 

        end 

    end 
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    PS = Pstarc./MC; 

    PS(Input) = Pin; 

    for iDFF = 1:size(indDFF,1) 

        xD = indDFF(iDFF,:); 

        xIn = find(Input==xD(1)); 

        Pdif(iDFF,CC+1) = PS(xD(2))-PS(xD(1)); 

        Pin(xIn) = Pin(xIn)-ita*(Pin(xIn)-PS(xD(2))); 

        Prec(iDFF,CC)  = PS(xD(2)); 

        PrecIn(iDFF,CC)  = Pin(xIn); 

    end 

    CC = CC+1 

    if max(abs(Pdif(:,end)),[],'all')<0.003 

        numPConv = CC-1; 

        exitP = 1; 

    end 

end 

Prec(Prec>0.99) = 1; 

Prec(Prec<0.01) = 0; 

PrecIn(Prec>0.99) = 1; 

PrecIn(Prec<0.01) = 0; 

TPstar = toc; 

save pStarConv.mat 

  

  

  

%% R convergence 

clear; 

clc; 

load pStarConv.mat 

for reg_length = 3 

    PinDFF = Prec(:,end); 

    Pin    = 0.5*ones(1,Num_input); 

    Pin(1,end-size(PinDFF,1)+1:end) = PinDFF; 

    TCC = 0; 

    clear   R1rec R0rec R1recIn R0recIn R0 R1; 

    CC = 1; 

    exitflag = 0; 

    [R0, R1]   = deal(zeros(Num_node,1),zeros(Num_node,1)); 

    r0_in       = ones(1,Num_input); 

    r1_in       = ones(1,Num_input); 

    tic; 

    %         while (CC==1 || CC <50) && (exitP == 0 || 

exitR == 0) 

    while (CC==1 || CC < 100) && (exitR == 0) 

        [R0, R1]   = 

deal(zeros(Num_node,1),zeros(Num_node,1)); 
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        Pstarc     = zeros(Num_node,1); 

        for i=1:MC 

            NodevecStar        = zeros(Num_node,1); 

            % Input Setup regarding to Pin, Node 

Reliability Setup 

            for k = 1:Num_input 

                NodevecStar(Input(k)) = (rand(1)<Pin(k)); 

                if (NodevecStar(Input(k))==1 && 

rand(1)<r1_in(k))||... 

                        (NodevecStar(Input(k))==0 && 

rand(1)<r0_in(k)) 

                    Nodevec(Input(k)) = 

NodevecStar(Input(k)); 

                else 

                    Nodevec(Input(k)) = 1-

NodevecStar(Input(k)); 

                end 

            end 

            for j = 1:Num_gate 

                x=Gates(j,:); 

                % simulate error-free value and real value 

                % Gate type: 1-NAND, 2-AND, 3-NOR, 4-OR, 5-

NOT, 6-BUFF, 7-XNOR, 8-XOR 

                switch x(5) 

                    case {1} 

                        NodevecStar(x(1)) = 1-

and(NodevecStar(x(2)), NodevecStar(x(3))); 

                        if rand(1)<rg 

                            Nodevec(x(1)) = 1-

and(Nodevec(x(2)), Nodevec(x(3))); 

                        else 

                            Nodevec(x(1)) = 

and(Nodevec(x(2)), Nodevec(x(3))); 

                        end 

                    case {2} 

                        NodevecStar(x(1)) = 

and(NodevecStar(x(2)), NodevecStar(x(3))); 

                        if rand(1)<rg 

                            Nodevec(x(1)) = 

and(Nodevec(x(2)), Nodevec(x(3))); 

                        else 

                            Nodevec(x(1)) = 1-

and(Nodevec(x(2)), Nodevec(x(3))); 

                        end 

                    case {3} 
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                        NodevecStar(x(1)) = 1-

or(NodevecStar(x(2)), NodevecStar(x(3))); 

                        if rand(1)<rg 

                            Nodevec(x(1)) = 1-

or(Nodevec(x(2)), Nodevec(x(3))); 

                        else 

                            Nodevec(x(1)) = 

or(Nodevec(x(2)), Nodevec(x(3))); 

                        end 

                    case {4} 

                        NodevecStar(x(1)) = 

or(NodevecStar(x(2)), NodevecStar(x(3))); 

                        if rand(1)<rg 

                            Nodevec(x(1)) = 

or(Nodevec(x(2)), Nodevec(x(3))); 

                        else 

                            Nodevec(x(1)) = 1-

or(Nodevec(x(2)), Nodevec(x(3))); 

                        end 

                    case {5} 

                        NodevecStar(x(1)) = 

not(NodevecStar(x(2))); 

                        if rand(1)<rg 

                            Nodevec(x(1)) = 

not(Nodevec(x(2))); 

                        else 

                            Nodevec(x(1)) = 1-

not(Nodevec(x(2))); 

                        end 

                         

                    case {6} 

                        NodevecStar(x(1)) = 

NodevecStar(x(2)); 

                        if rand(1)<rg 

                            Nodevec(x(1)) = Nodevec(x(2)); 

                        else 

                            Nodevec(x(1)) = 1-

Nodevec(x(2)); 

                        end 

                         

                    case {7} 

                        NodevecStar(x(1)) = 1-

xor(NodevecStar(x(2)), NodevecStar(x(3))); 

                        if rand(1)<rg 

                            Nodevec(x(1)) = 1-

xor(Nodevec(x(2)), Nodevec(x(3))); 
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                        else 

                            Nodevec(x(1)) = 

xor(Nodevec(x(2)), Nodevec(x(3))); 

                        end 

                         

                    case {8} 

                        NodevecStar(x(1)) = 

xor(NodevecStar(x(2)), NodevecStar(x(3))); 

                        if rand(1)<rg 

                            Nodevec(x(1)) = 

xor(Nodevec(x(2)), Nodevec(x(3))); 

                        else 

                            Nodevec(x(1)) = 1-

xor(Nodevec(x(2)), Nodevec(x(3))); 

                        end 

                         

                end 

                % Calculate Node Probability and 

reliability 

                if NodevecStar(x(1)) == 1 

                    if x(1)==30 

                        i1 = i1+1; 

                    end 

                    Pstarc(x(1)) = Pstarc(x(1)) + 1; 

                    if NodevecStar(x(1)) == Nodevec(x(1)) 

                        R1(x(1)) = R1(x(1))+1; 

                    end 

                else 

                    if x(1)==30 

                        i0 = i0+1; 

                    end 

                    if NodevecStar(x(1)) == Nodevec(x(1)) 

                        R0(x(1)) = R0(x(1))+1; 

                    end 

                end 

                 

            end 

        end 

        R1 = R1./Pstarc; 

        R0 = R0./(MC-Pstarc); 

         

        R1(isnan(R1)) = 0; 

        R0(isnan(R0)) = 0;   

         

        R1(Input) = r1_in'; 

        R0(Input) = r0_in'; 
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        for iDFF = 1:size(indDFF,1) 

            xD = indDFF(iDFF,:); 

            xIn = find(Input==xD(1)); 

            R0dif(iDFF,CC) = R0(xD(2))-R0(xD(1)); 

            R1dif(iDFF,CC) = R1(xD(2))-R1(xD(1)); 

            

            r0_in(xIn) = r0_in(xIn)-ita*(r0_in(xIn)-

R0(xD(2))); 

            r1_in(xIn) = r1_in(xIn)-ita*(r1_in(xIn)-

R1(xD(2))); 

                 

            R1rec(iDFF,CC) = R1(xD(2)); 

            R0rec(iDFF,CC) = R0(xD(2)); 

  

            R1recIn(iDFF,CC) = r1_in(xIn); 

            R0recIn(iDFF,CC) = r0_in(xIn); 

             

            if Pin(xIn) <= 10^-2 

                r1_in(xIn) = 0; 

            elseif Pin(xIn) >= 1-10^-2 

                r0_in(xIn) = 0; 

            end 

        end 

        CC = CC+1 

        if 

mean(abs([R0dif(:,end),R1dif(:,end)]),'all')<0.003 

            numRConv = CC-1; 

            exitR = 1; 

        end 

        % regression 

%         if CC == reg_length+1 

%             for iDFF = 1:size(indDFF,1) 

%                 X = [1:reg_length]; 

%                 %                     xD = 

indDFF(iDFF,:); 

%                 xD = indDFF(iDFF,:); 

%                 xIn = find(Input==xD(1)); 

%                  

%                 mR1O = fitlm(X,R1rec(iDFF,(CC-

reg_length):(CC-1))); mR1In = fitlm(X,R1recIn(iDFF,(CC-

reg_length):(CC-1))); 

%                 coR1O(:,iDFF) = 

mR1O.Coefficients.Estimate([2,1]); 

%                 coR1In(:,iDFF) = 

mR1In.Coefficients.Estimate([2,1]); 
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%                 r1_in(xIn) = 

(coR1O(1,iDFF)*coR1In(2,iDFF)-

coR1O(2,iDFF)*coR1In(1,iDFF))/(coR1O(1,iDFF)-

coR1In(1,iDFF)); 

%                  

%                 mR0O = fitlm(X,R0rec(iDFF,(CC-

reg_length):(CC-1))); mR0In = fitlm(X,R0recIn(iDFF,(CC-

reg_length):(CC-1))); 

%                 coR0O(:,iDFF) = 

mR0O.Coefficients.Estimate([2,1]); 

%                 coR0In(:,iDFF) = 

mR0In.Coefficients.Estimate([2,1]); 

%                 r0_in(xIn) = 

(coR0O(1,iDFF)*coR0In(2,iDFF)-

coR0O(2,iDFF)*coR0In(1,iDFF))/(coR0O(1,iDFF)-

coR0In(1,iDFF)); 

%                  

%             end 

%              

%             if r0_in(xIn)<0 

%                 r0_in(xIn) = 0; 

%             end 

%             if r0_in(xIn)>1 

%                 r0_in(xIn) = 1; 

%             end 

%              

%             if r1_in(xIn)<0 

%                 r1_in(xIn) = 0; 

%             end 

%             if r1_in(xIn)>1 

%                 r1_in(xIn) = 1; 

%             end 

%              

%             if Pin(xIn) == 0 

%                 r1_in(xIn) = 0; 

%             elseif Pin(xIn) == 1 

%                 r0_in(xIn) = 0; 

%             end 

%              

%              

%             ita = 0.1; 

%              

%         end 

    end 

    TCC = toc; 
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    %     T(reg_length-2)=mean(TCC); 

end 

% T = T/10; 

  

figure(1) 

color = ['r','b','k']; 

linespec = ['>','h','p']; 

hold 

for i = 1:size(indDFF,1) 

    plot(R1rec(i,:),['--

',linespec(i),color(i)],'LineWidth',2) 

    plot(R1recIn(i,:),['-

',linespec(i),color(i)],'LineWidth',2) 

end 

set(gca,'FontSize',40) 

legend('DI 1','DO 1','DI 2','DO 2','DI 3','DO 

3','NumColumns',2,'Orientation','horizontal') 

xlabel('Iterations') 

ylabel('R1') 

legend('DO 1','DI 1','DO 2','DI 2','DO 3','DI 

3','NumColumns',2,'Orientation','horizontal') 

xlabel('Iterations','FontName','Times New 

Roman','fontweight','bold') 

ylabel('R1','FontName','Times New 

Roman','fontweight','bold') 

  

figure(2) 

color = ['r','b','k']; 

linespec = ['>','h','p']; 

hold 

for i = 1:size(indDFF,1) 

    plot(R0rec(i,:),['--

',linespec(i),color(i)],'LineWidth',2) 

    plot(R0recIn(i,:),['-

',linespec(i),color(i)],'LineWidth',2) 

end 

set(gca,'FontSize',40) 

legend('DI 1','DO 1','DI 2','DO 2','DI 3','DO 

3','NumColumns',2,'Orientation','horizontal') 

xlabel('Iterations') 

ylabel('R0') 

  

% set(gca,'FontSize',30) 

% title('R0') 

% figure(3) 

% hold 
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% for i = 1:size(indDFF,1) 

%     plot(R1rec(i,:),'-o') 

% %     plot(R1recIn(i,:),'-o') 

% end 

% title('R1') 

% set(gca,'FontSize',30) 

% % 

%  

legend('DO 1','DI 1','DO 2','DI 2','DO 3','DI 

3','NumColumns',2,'Orientation','horizontal') 

xlabel('Iterations','FontName','Times New 

Roman','fontweight','bold') 

ylabel('R0','FontName','Times New 

Roman','fontweight','bold') 

title('') 

set(gca, 'fontsize', 40) 

set(gca, 'linewidth',4) 

xlim([1,7]) 

ylim([0.7,1]) 

xticklabels([1:11]) 
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The following codes are used to verify that level-5 

correlation could be treated as independent   

  

%% Level 5 Independency Assumption MC simulation 

clear; 

clc; 

close all; 

  

Num_node = 63; 

Num_gate = 31; 

Num_input = 32; 

NUm_output = 1; 

Input     = [1:32]'; 

Output    = 63; 

MC = 1000000; 

Pin = 0.5; 

rin = 1; 

rg = 0.95; 

  

%% Gate matrix generation 

Gates = []; 

for i = 1:16 

    Gates(i,2:3) = [2*i-1,2*i]; 

end 

Gates(13:16,2:3) = [15,13;11,9;7,5;3,1;]; 

Gates(9:12,2:3)  = [2,4;6,8;10,12;14,16]; 

Gates(:,1) = [33:48]'; 

  

Gates(17:24,1) = [49:56]'; 

Gates(17:24,2) = 33:2:47'; 

Gates(17:24,3) = 34:2:48'; 

  

Gates(25:28,1) = [57:60]'; 

Gates(25:28,2) = 49:2:55'; 

Gates(25:28,3) = 50:2:56'; 

  

Gates(29:30,1) = [61;62]; 

Gates(29:30,2) = [57;59]; 

Gates(29:30,3) = [58;60]; 

  

Gates(31,:)    = [63,61,62]; 

Gates(:,4)     = rg; 

  

% Gate type: 1-NAND, 2-AND, 3-NOR, 4-OR, 5-NOT, 6-BUFF, 7-

XNOR, 8-XOR 

% randomly generate gates 
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% GateType       = [1,2,3,4,7,8]; 

% Gatein         = randi(6,1,31); 

%generate gates as L5-NOR, L4-NAND, L3-XOR, L2-AND, L1-OR 

Gates(1:16,5)  = 3*ones(16,1); 

Gates(17:24,5) = ones(8,1); 

Gates(25:28,5) = 8*ones(4,1); 

Gates(29:30,5) = 2*ones(2,1); 

Gates(31,5)    = 4; 

% GateTypeStr    = {'NAND';'AND';'NOR';'OR';'XNOR';'XOR'}; 

% for m = 1:30 

%     GateTypeRecord{1,m} = GateTypeStr(Gatein(m),:); 

% end 

NodevecStar        = zeros(Num_node,1); 

Nodevec            = zeros(Num_node,1); 

  

Pstarc             = zeros(Num_node,1); 

rallc              = zeros(Num_node,2); 

%% MC simulation 

for i=1:MC 

    NodevecStar        = zeros(Num_node,1); 

    %% Input Setup regarding to Pin, Node Reliability Setup 

    for k = 1:Num_input 

        NodevecStar(Input(k)) = (rand(1)<Pin); 

%         if rand(1)<rin(k) 

            Nodevec(Input(k)) = NodevecStar(Input(k)); 

%         else 

%             Nodevec(Input(k)) = 1-NodevecStar(Input(k)); 

%         end 

    end 

    for j = 1:Num_gate 

        x=Gates(j,:); 

        %% simulate error-free value and real value 

        %% Gate type: 1-NAND, 2-AND, 3-NOR, 4-OR, 5-NOT, 6-

BUFF, 7-XNOR, 8-XOR 

        switch x(5) 

            case {1} 

                NodevecStar(x(1)) = 1-

and(NodevecStar(x(2)), NodevecStar(x(3))); 

                if rand(1)<rg 

                    Nodevec(x(1)) = 1-and(Nodevec(x(2)), 

Nodevec(x(3))); 

                else 

                    Nodevec(x(1)) = and(Nodevec(x(2)), 

Nodevec(x(3))); 

                end 

            case {2} 
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                NodevecStar(x(1)) = and(NodevecStar(x(2)), 

NodevecStar(x(3))); 

                if rand(1)<rg 

                    Nodevec(x(1)) = and(Nodevec(x(2)), 

Nodevec(x(3))); 

                else 

                    Nodevec(x(1)) = 1-and(Nodevec(x(2)), 

Nodevec(x(3))); 

                end 

            case {3} 

                NodevecStar(x(1)) = 1-or(NodevecStar(x(2)), 

NodevecStar(x(3))); 

                if rand(1)<rg 

                    Nodevec(x(1)) = 1-or(Nodevec(x(2)), 

Nodevec(x(3))); 

                else 

                    Nodevec(x(1)) = or(Nodevec(x(2)), 

Nodevec(x(3))); 

                end 

            case {4} 

                NodevecStar(x(1)) = or(NodevecStar(x(2)), 

NodevecStar(x(3))); 

                if rand(1)<rg 

                    Nodevec(x(1)) = or(Nodevec(x(2)), 

Nodevec(x(3))); 

                else 

                    Nodevec(x(1)) = 1-or(Nodevec(x(2)), 

Nodevec(x(3))); 

                end 

                 

            case {5} 

                NodevecStar(x(1)) = not(NodevecStar(x(2))); 

                if rand(1)<rg 

                    Nodevec(x(1)) = not(Nodevec(x(2))); 

                else 

                    Nodevec(x(1)) = 1-not(Nodevec(x(2))); 

                end 

                 

            case {6} 

                NodevecStar(x(1)) = NodevecStar(x(2)); 

                if rand(1)<rg 

                    Nodevec(x(1)) = Nodevec(x(2)); 

                else 

                    Nodevec(x(1)) = 1-Nodevec(x(2)); 

                end 
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            case {7} 

                NodevecStar(x(1)) = 1-

xor(NodevecStar(x(2)), NodevecStar(x(3))); 

                if rand(1)<rg 

                    Nodevec(x(1)) = 1-xor(Nodevec(x(2)), 

Nodevec(x(3))); 

                else 

                    Nodevec(x(1)) = xor(Nodevec(x(2)), 

Nodevec(x(3))); 

                end 

                 

            case {8} 

                NodevecStar(x(1)) = xor(NodevecStar(x(2)), 

NodevecStar(x(3))); 

                if rand(1)<rg 

                    Nodevec(x(1)) = xor(Nodevec(x(2)), 

Nodevec(x(3))); 

                else 

                    Nodevec(x(1)) = 1-xor(Nodevec(x(2)), 

Nodevec(x(3))); 

                end 

                 

        end 

        %% Calculate Node Probability 

        bitStreamMatStar(:,i)= NodevecStar; 

        bitStreamMat(:,i)    = Nodevec; 

        if NodevecStar(x(1)) == 1 

            Pstarc(x(1)) = Pstarc(x(1)) + 1; 

            if Nodevec(x(1)) == 1 

                rallc(x(1),2) = rallc(x(1),2)+1; 

            end 

        else 

            if Nodevec(x(1)) == 0 

                rallc(x(1),1) = rallc(x(1),1)+1; 

            end 

        end 

         

    end 

    i 

end 

  

G_ind = [Gates(:,1:3),Gates(:,5)]; 

r = rallc./[MC-Pstarc,Pstarc]; 

P = [MC-Pstarc,Pstarc]/MC; 

  

%% A = 61, B = 62, D = 63 
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A = 61; B = 62; D = 63; 

[jP,jC] = bSMP(61,62,bitStreamMatStar,bitStreamMat,MC); 

  

PA      = P(A,:); 

PB      = P(B,:); 

jPIN    = PA'*PB; 

jPIN    = jPIN' 

  

RA      = r(A,:); 

RB      = r(B,:); 

RAM     = [RA(1),RA(1),1-RA(1),1-RA(1);... 

           RA(1),RA(1),1-RA(1),1-RA(1);... 

           1-RA(2),1-RA(2),RA(2),RA(2);... 

           1-RA(2),1-RA(2),RA(2),RA(2);] 

RBM     = [RB(1),1-RB(1),RB(1),1-RB(1);... 

           1-RB(2),RB(2),1-RB(2),RB(2);... 

           RB(1),1-RB(1),RB(1),1-RB(1);... 

           1-RB(2),RB(2),1-RB(2),RB(2);] 

jCIN    = RAM.*RBM; 

jPE     = jPIN(:)-jP(:) 

jCE     = jCIN-jC 

  

P(63,:)-[0.9735,0.0265]; 

r(63,:)-[0.7891,0.6246]; 

rDMC = P(63,1)*r(63,1)+P(63,2)*r(63,2) 

rDIN = R(4,1)*PC(4,1)+R(4,2)*PC(4,2) 

rDMC-rDIN 

rDINMC = R(5,1)*PC(5,1)+R(5,2)*PC(5,2); 
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The following codes are used to obtain JCPM, JPV and signal 

probabilities from bitstreams 

function [jP,jC] = 

bSMP(node1,node2,bitStreamMatStar,bitStreamMat,bitLength) 

bitLength = size(bitStreamMatStar,2); 

MC = bitLength; 

bSMS = bitStreamMatStar; 

bsm1S = bSMS(node1,:); 

bsm2S = bSMS(node2,:); 

bR = [bitStreamMat(node1,:);bitStreamMat(node2,:)]; 

bsmSCounter = zeros(1,4); 

bRcounter = zeros(4,4); 

%% one signal 

for ibsm = 1:MC 

    if [bsm1S(ibsm),bsm2S(ibsm)] == [0,0] 

        bsmSCounter(1,1) = bsmSCounter(1,1)+1; 

        if bR(:,ibsm) == [0;0] 

            bRcounter(1,1) = bRcounter(1,1)+1; 

        elseif bR(:,ibsm) == [0;1] 

            bRcounter(1,2) = bRcounter(1,2)+1; 

        elseif bR(:,ibsm) == [1;0] 

            bRcounter(1,3) = bRcounter(1,3)+1; 

        elseif bR(:,ibsm) == [1;1] 

            bRcounter(1,4) = bRcounter(1,4)+1; 

        end 

    end 

    if [bsm1S(ibsm),bsm2S(ibsm)] == [0,1] 

        bsmSCounter(1,2) = bsmSCounter(1,2)+1; 

        if bR(:,ibsm) == [0;0] 

            bRcounter(2,1) = bRcounter(2,1)+1; 

        elseif bR(:,ibsm) == [0;1] 

            bRcounter(2,2) = bRcounter(2,2)+1; 

        elseif bR(:,ibsm) == [1;0] 

            bRcounter(2,3) = bRcounter(2,3)+1; 

        elseif bR(:,ibsm) == [1;1] 

            bRcounter(2,4) = bRcounter(2,4)+1; 

        end 

    end 

    if [bsm1S(ibsm),bsm2S(ibsm)] == [1,0] 

        bsmSCounter(1,3) = bsmSCounter(1,3)+1; 

        if bR(:,ibsm) == [0;0] 

            bRcounter(3,1) = bRcounter(3,1)+1; 

        elseif bR(:,ibsm) == [0;1] 

            bRcounter(3,2) = bRcounter(3,2)+1; 

        elseif bR(:,ibsm) == [1;0] 
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            bRcounter(3,3) = bRcounter(3,3)+1; 

        elseif bR(:,ibsm) == [1;1] 

            bRcounter(3,4) = bRcounter(3,4)+1; 

        end 

    end 

    if [bsm1S(ibsm),bsm2S(ibsm)] == [1,1] 

        bsmSCounter(1,4) = bsmSCounter(1,4)+1; 

        if bR(:,ibsm) == [0;0] 

            bRcounter(4,1) = bRcounter(4,1)+1; 

        elseif bR(:,ibsm) == [0;1] 

            bRcounter(4,2) = bRcounter(4,2)+1; 

        elseif bR(:,ibsm) == [1;0] 

            bRcounter(4,3) = bRcounter(4,3)+1; 

        elseif bR(:,ibsm) == [1;1] 

            bRcounter(4,4) = bRcounter(4,4)+1; 

        end 

    end 

     

end 

jC = bRcounter./bsmSCounter'; 

jP = bsmSCounter/MC; 
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The following codes are used to find aging effects on 

circuit delay 

  

 clear 

clc 

  

load C17.mat 

load bitStreamC17.mat 

  

% initialization 

ain = 50; 

aj  = 0.59; 

t   = 2.6*10^6*12; 

P = (sum(bitStreamMat')/size(bitStreamMat,2))'; 

PStar = (sum(bitStreamMatStar')/size(bitStreamMat,2))'; 

D(Input,:) = 0; 

  

for i = 1:Num_gate 

    x = Gates(i,:); 

    Dpin = min(P(x(2)), P(x(3))); 

    tpi = ain+aj*((1-Dpin)*t).^0.16; 

    D(x(1),:) = max(D(x(2),:),D(x(3),:)) + tpi; 

end 

 

The following codes are used to find transistor probability 

of failure regarding  

  

  

 %%for 35nm tech 

delta = 30.28*10^-3; 

VDD    = 1; 

for i = 1:99 

VthN   = 0+i*0.01; 

x = 0:0.001:1; 

y = 0.5*erfc(abs(x-VthN)/(delta*sqrt(2))); 

% plot(y) 

% set(gca, 'YSCALE', 'log'); 

Pin_N = 0.9; 

pfN0  = y(floor(VthN/0.002)); 

pfN1  = y(floor((1+VthN)/0.002)); 

pfN(i)   = Pin_N * pfN1 + (1-Pin_N)*pfN0; 

% display(pfN) 

end 

plot(pfN) 

xlabel('Vth') 
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ylabel('Probability of Failure') 

xticklabels(0:0.1:0.9) 

set(gca, 'FontSize', 40) 

set(gca, 'YSCALE', 'log'); 

title('NMOS probability of Fialure with Vth variation') 

  

 

The following codes are used to calculate the probability 

of failure for NAND gate, and compare to MC simulation 

results 

 

clear; 

clc; 

%% NAND gate PF calculation 

% Initialization 

for ith = 1:41 

    VthNi = 0.6; 

    VthPi = -0.6; 

    deltaP = 30.28*10^-3; 

    deltaN = 30.28*10^-3; 

    VDD  = 1; 

    MC = 10^4; 

    for i = 1:MC 

        % 0 and 1 PF for NMOS and PMOS 

        % nmHN  = (1+VthNi)/2; nmLN  = VthNi/2; % noise 

margin High/Low for NMOS 

        % nmHP  = 1+VthPi/2;   nmLP  = (1+VthPi)/2; % noise 

margin High/Low for PMOS 

        mu = [(1+VthPi)/2,1-(1-VthNi)/2;... 

            (1+VthPi)/2,1-(1-VthNi)/2]; 

         

        sigma = [(1+VthPi)/12,(1-VthNi)/12;... 

            (1+VthPi)/12,(1-VthNi)/12]; 

%         sigma = [0,0;... 

%             0,0]; 

         

        vin = 

[normrnd(mu(1,1),sigma(1,1)),normrnd(mu(1,2),sigma(1,2));..

. %[A=0, A=1;] 

            

normrnd(mu(2,1),sigma(2,1)),normrnd(mu(2,2),sigma(2,2))];   

%[B=0, B=1;] 

        vin(vin>1) = 1; 

        vin(vin<0) = 0; 

         

        VthN = 0.6+(ith-1)*0.005; 
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        VthP = -0.6-(ith-1)*0.005; 

         

        pf   = zeros(4,2); % T1, T2, T3, T4 Pf0 and Pf1 

        for ipf = 1:2 

            pf(1,ipf) = 0.5*erfc(abs(vin(2,ipf)-

(VDD+VthP))/(deltaP*sqrt(2))); 

            pf(2,ipf) = 0.5*erfc(abs(vin(1,ipf)-

(VDD+VthP))/(deltaP*sqrt(2))); 

            pf(3,ipf) = 0.5*erfc(abs(vin(1,ipf)-

VthN)/(deltaP*sqrt(2))); 

            pf(4,ipf) = 0.5*erfc(abs(vin(2,ipf)-

VthN)/(deltaP*sqrt(2))); 

        end 

        % pfN0 = 0.5*erfc(abs(nmLN-VthN)/(deltaN*sqrt(2))); 

        % pfN1 = 0.5*erfc(abs(nmHN-VthN)/(deltaN*sqrt(2))); 

        % pfP0 = 0.5*erfc(abs(nmLP-

(VDD+VthP))/(deltaP*sqrt(2))); 

        % pfP1 = 0.5*erfc(abs(nmHP-

(VDD+VthP))/(deltaP*sqrt(2))); 

         

        % MC values 

        % pfN0 = 0.5*erfc(abs(0-VthN)/(deltaN*sqrt(2))); 

        % pfN1 = 0.5*erfc(abs(1-VthN)/(deltaN*sqrt(2))); 

        % pfP0 = 0.5*erfc(abs(0-

(VDD+VthP))/(deltaP*sqrt(2))); 

        % pfP1 = 0.5*erfc(abs(1-

(VDD+VthP))/(deltaP*sqrt(2))); 

         

         

        % PF of NAND gate for different patterns 

        %     ipat(i) = ceil(rand(1)/0.25); 

        %     switch ipat(i) 

        %         case 1 

        %             PF(i,1) = 

pf(1,1)*pf(2,1)+pf(3,1)*pf(4,1)-... 

        %                 pf(1,1)*pf(2,1)*pf(3,1)*pf(4,1); 

        %         case 2 

        %             PF(i,1) = pf(1,2)*(1-

pf(2,1))+pf(3,1)*(1-pf(4,2))-... 

        %                 pf(1,2)*(1-pf(2,1))*pf(3,1)*(1-

pf(4,2)); 

        %         case 3 

        %             PF(i,1) = pf(2,2)*(1-

pf(1,1))+pf(4,1)*(1-pf(3,2))-... 

        %                 pf(2,2)*(1-pf(1,1))*pf(4,1)*(1-

pf(3,2)); 
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        %         case 4 

        %             PF(i,1) = 1-(1-pf(1,2))*(1-

pf(2,2))*(1-pf(3,2))*(1-pf(4,2)); 

        %     end 

         

        PF(i,1) = pf(1,1)*pf(2,1)+pf(3,1)*pf(4,1)-... 

            pf(1,1)*pf(2,1)*pf(3,1)*pf(4,1); 

        PF(i,2) = pf(1,2)*(1-pf(2,1))+pf(3,1)*(1-pf(4,2))-

... 

            pf(1,2)*(1-pf(2,1))*pf(3,1)*(1-pf(4,2)); 

        PF(i,3) = pf(2,2)*(1-pf(1,1))+pf(4,1)*(1-pf(3,2))-

... 

            pf(2,2)*(1-pf(1,1))*pf(4,1)*(1-pf(3,2)); 

        PF(i,4) = 1-(1-pf(1,2))*(1-pf(2,2))*(1-pf(3,2))*(1-

pf(4,2)); 

         

         

    end 

    PFG(ith) = mean(PF,'all'); 

    PFM(ith,:) = mean(PF); 

    ith 

end 

save NAND_MC.mat PFG PFM 

 

plot([0.6:0.005:0.8], PF,'-^','LineWidth',4); 

hold; 

plot([0.6:0.005:0.8], PFG,'-p','LineWidth',4); 

xlim([0.6 0.8]); 

set(gca,'Fontsize',40); 

xlabel('Vth Variation') 

ylabel('Probability of Failure') 

title('NAND Gate Probability of Failure against different 

Vths' ) 

legend('Model Calculation', 'MC simulation')  
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