
University of Windsor University of Windsor

Scholarship at UWindsor Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

2022

Efficient Evaluation of Probability and Reliability with Digital Efficient Evaluation of Probability and Reliability with Digital

Integrated Circuits Integrated Circuits

Suoyue Zhan
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

 Part of the Electrical and Computer Engineering Commons

Recommended Citation Recommended Citation
Zhan, Suoyue, "Efficient Evaluation of Probability and Reliability with Digital Integrated Circuits" (2022).
Electronic Theses and Dissertations. 9125.
https://scholar.uwindsor.ca/etd/9125

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F9125&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=scholar.uwindsor.ca%2Fetd%2F9125&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/9125?utm_source=scholar.uwindsor.ca%2Fetd%2F9125&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

Efficient Evaluation of Probability and Reliability with Digital Integrated Circuits

By

SUOYUE ZHAN

A Dissertation

Submitted to the Faculty of Graduate Studies

through the Department of Electrical and Computer Engineering

in Partial Fulfillment of the Requirements for

the Degree of Doctor of Philosophy

 at the University of Windsor

Windsor, Ontario, Canada

2022

© 2022 Suoyue Zhan

Efficient Evaluation of Probability and Reliability with Digital Integrated Circuits

by

Suoyue Zhan

APPROVED BY:

J. Han, External Examiner

University of Alberta

H. Zhang

Department of Biomedical Sciences

H. Wu

Department of Electrical and Computer Engineering

M. Azzouz

Department of Electrical and Computer Engineering

C. Chen, Advisor

Department of Electrical and Computer Engineering

August 30, 2022

iii

DECLARATION OF CO-AUTHORSHIP / PREVIOUS PUBLICATION

I. Co-Authorship

I hereby declare that this thesis incorporates material that is result of joint research, as

follows:

• “Chapters 4 and 5 of the thesis include the outcome of publications which have

the following other co-authors: Chunhong Chen (academic advisor). In all cases

only my primary contributions towards these publications are included in this

thesis, and the contribution of co-author Chunhong Chen was primarily through

methodology development, algorithm design, simulation results analysis and

manuscript editing”.

• “Chapter 3 incorporates unpublished material under the supervision of professor

Chunhong Chen. In all cases the primary contributions, experimental designs,

MATLAB coding, data analysis, interpretation, and writing were performed by

myself; The contribution of Chunhong Chen was through the key ideas,

interpretation and manuscript writing/editing”.

I am aware of the University of Windsor Senate Policy on Authorship and I certify

that I have properly acknowledged the contribution of other researchers to my thesis, and

have obtained written permission from each of the co-author(s) to include the above

material(s) in my thesis.

I certify that, with the above qualification, this thesis, and the research to which it

refers, is the product of my own work.

II. Previous Publication

This thesis includes 3 original papers that have been previously published/submitted to

journals/conference for publication, as follows:

iv

Thesis Chapter Publication title/full citation Publication status

Chapter [3]

S. Zhan and C. Chen, “A Hybrid Method for

Signal Probability and Reliability Estimation with

Combinational Circuits,” Integration, the VLSI

Journal, 2022

“Published”

Chapter [4]

S. Zhan and C. Chen, “An Efficient Method for

Sequential Circuit Reliability Estimation,” Proc.

65th IEEE International Midwest Symposium on

Circuits and Systems (MWSCAS), Japan, August 7-

10, 2022.

“Published”

Chapter [5]

S. Zhan and C. Chen, “Circuit Reliability Analysis

with Consideration of Aging Effect,” Proc. 35th

Symposium on Integrated Circuits and Systems

Design (SBCCI), Brazil, August 22-26, 2022.

“Published”

I certify that I have obtained a written permission from the copyright owner(s) to

include the above published material(s) in my thesis. I certify that the above material

describes work completed during my registration as a graduate student at the University of

Windsor.

III. General

I declare that, to the best of my knowledge, my thesis does not infringe upon

anyone’s copyright nor violate any proprietary rights and that any ideas, techniques,

quotations, or any other material from the work of other people included in my thesis,

published or otherwise, are fully acknowledged in accordance with the standard

referencing practices. Furthermore, to the extent that I have included copyrighted material

that surpasses the bounds of fair dealing within the meaning of the Canada Copyright Act,

I certify that I have obtained a written permission from the copyright owner(s) to include

such material(s) in my thesis.

I declare that this is a true copy of my thesis, including any final revisions, as

approved by my thesis committee and the Graduate Studies office, and that this thesis has

not been submitted for a higher degree to any other University or Institution.

v

ABSTRACT

As complementary metal–oxide–semiconductor (CMOS) devices shrink to

nanoscale, digital integrated circuits (ICs) are more susceptible to various

environmental parameters, such as temperature, supply voltage, wiring, noise, and

fabrication process variations. This would reduce the circuit operation reliability

(i.e., the probability that a circuit or component is performing its intended logic

function). Signal probability (the probability that a digital signal is producing logic

1) is another factor that measures circuit’s dynamic behavior and power

dissipation. Research shows that signal probability and reliability within ICs may

interact with each other in a complicated way. Generally speaking, as signal

probability changes due to input probability variations, so does the signal

reliability, and vice versa. This motivates simultaneous evaluation of both for

digital ICs towards their performance improvement. However, this evaluation

could be a challenge especially for large-scale circuits, due to signal correlations

caused by reconvergent fanouts within circuits. Out of two existing evaluation

methods, i.e., numerical and analytical methods, the former can give high accuracy

level at the cost of expensive computation, while the latter does exactly the

opposite.

This thesis provides a hybrid solution by taking advantage of both numerical

and analytical methods to achieve fast and accurate evaluation for signal

probability and reliability for ICs (including both combinational and sequential

circuits). First, we develop a categorization-based analytical model for

combinational circuits to deal with a variety of signal correlations. For strongly

correlated or independent cases, analytical solutions are applied for accurate

results. For cases with moderate correlation strength, we use local bitstream

simulations for fast estimation. Our simulation results show that the proposed

method is hundreds of times faster than Monte-Carlo (MC) simulation, while

keeping almost same level of accuracy.

We then extend the above method to sequential circuits (with finite-state-

machine model) for probability and reliability evaluation. Since sequential circuits

vi

can be viewed as an unfolded network of combinational logic, our focus is on how

both probability and reliability converge to a final stable state over a certain

number of cycles/iterations. To improve the efficiency of this convergence

process, we propose a two-step-convergence (TSC) model instead of using

traditional step-size based convergence. Simulation results show that the proposed

method speeds up the process by around 30% on average compared to traditional

method while maintaining a high level of accuracy.

 Finally, we study the impact of device aging on circuit reliability. After years of

operation, CMOS (especially PMOS) devices would experience an increase in

their threshold voltage, a phenomenon called Negative Bias Temperature

Instability (NBTI). This aging effect leads to the increased gate delay with late

arrival time of signals, making circuits temporally unreliable. Threshold voltage

changes may also negatively affect the probability that transistors perform

intended logical operations, causing them spatially more unreliable. Our

investigation focuses on evaluation of the overall reliability at circuit-level by

considering both spatial (solely considering the correctness of signal logic values)

and temporal (considering the signal arrival time to catch up sampling action)

aspects of it. This would help circuit designers predict the circuit lifetime.

Simulations on benchmark circuits show that the reliability degradation rate due to

aging effect ranges from 1.5% to 8.2% over one-year period, depending on specific

circuits.

vii

ACKNOWLEDGEMENTS

I would like to express my deep sense of gratitude towards my academic advisor

Prof. Chunhong Chen for the continuous support of my PhD study and related

research. This thesis, as well as the publications, would never be possible without

the expertise. He has been extremely patient guiding me into the research world

and demonstrating me all the qualities a researcher should have. I could not image

having a better mentor than him.

I would like to extend my sincere appreciation to the committee members.

Thanks for their valuable comments and advice throughout my PhD study.

Meanwhile, a debt of gratitude is owed to University of Windsor as well as the

Department of Electrical and Computer Engineering. Thanks for providing such

incredible chance to study here.

Last but not least, I would like to offer my thanks to my family, especially my

wife and my parents, for their consistent support and encouragement during the

years of my research.

viii

TABLE OF CONTENTS

DECLARATION OF CO-AUTHORSHIP / PREVIOUS PUBLICATION iii

ABSTRACT ...v

ACKNOWLEDGEMENTS .. vii

LIST OF TABLES ... xi

LIST OF FIGURES .. xii

LIST OF ABBREVIATIONS/SYMBOLS .. xiii

LIST OF APPENDICES .. xiv

CHAPTER 1 INTRODUCTION ...1

1.1 Research Background ..1

1.2 Objectives ...2

1.3 Main Contributions ..3

1.4 Thesis Organization ...4

CHAPTER 2 LITERATURE REVIEW ..5

2.1 Evaluation of Signal Probability and Reliability Under Zero-delay Model5

2.1.1Evaluation for Combinational Circuits ..5

2.1.2 Evaluation for Sequential Circuits ..9

2.2 Evaluation of Signal Probability and Reliability Considering Delay and

Aging Effect ..11

2.2.1 Aging Effect on Spatial Reliability ..12

2.2.2 Aging Effect on Temporal Reliability ..13

CHAPTER 3 PROBABILITY AND RELIABILITY ESTIMATION FOR

COMBINATIONAL CIRCUITS...14

3.1 Signal Probability and Joint Probability Vector..14

3.1.1 Signal Probability ..14

3.1.2 Joint Probability Vector ..15

3.2 Signal Reliability and Joint Conditional Probability Matrix (JCPM)15

ix

3.2.1 Signal Reliability ...15

3.2.2 Joint Conditional Probability Matrix ..16

3.3 Gate Level Probability and Reliability Propagation ...18

3.4 Correlation Categorization and JCPM Estimation ...20

3.4.1 Category ‘S’ ...20

3.4.2 Category ‘N’ ..25

3.4.3 Category ‘I’ ...25

3.4.4 Multi-level Category ..26

3.5 Bitstream Simulation for JPV and JCPM Estimation ..29

3.5.1 Bitstream Simulation for Single-level Category ..29

3.5.2 Bitstream Simulation for Multi-level Category ...36

3.6 Algorithm Description ..39

3.7 Simulation Results and Performance Comparison ..42

3.8 Summary ...50

CHAPTER 4 PROBABILITY AND RELIABILITY ESTIMATION FOR

SEQUENTIAL CIRCUITS ...51

4.1 Combinational Equivalent of Sequential Circuits ..51

4.2 Convergence Process Analysis and Two-Step-Convergence (TSC) Method51

4.2.1 Convergence Process for Sequential Circuit ...51

4.2.2 Two-Step-Convergence Method ..52

4.3 Simulation Results and Performance Comparison ..54

4.4 Summary ...58

CHAPTER 5 RELIABILITY ESTIMATION WITH CONSIDERATION OF

AGING EFFECT ...59

5.1 Spatial Reliability and Temporal Reliability ..59

5.1.1 Spatial Reliability and Spatial Probability of Failure (SPF)59

5.1.2 Temporal Reliability and Temporal Probability of Failure (TPF)60

5.2 Threshold Variation under Aging Effect ..60

5.3 Estimation of SPF...61

5.3.1 Estimation of SPF for MOSFETs ..61

5.3.2 Estimation of SPF for Logic Gates and Integrated Circuits62

x

5.4 Estimation of TPF ..64

5.4.1 Gate Delay Distribution ..64

5.4.2 Circuit Delay Distribution and TPF Estimation ...64

5.5 Algorithm Description ..65

5.6 Error Analysis ..66

5.7 Simulation Results ..69

5.8 Summary ...72

CHAPTER 6 CONCLUSION AND FUTURE WORK ..73

REFERENCES/BIBLIOGRAPHY..75

APPENDICES ...80

Appendix A. Important MATLAB Code ..80

VITA AUCTORIS ...132

xi

LIST OF TABLES

Table I. CONDITIONAL RELIABILITIES FOR CIRCUIT C432 WITH 𝑟𝑔 = 0.999………17

Table II. STATISTICS ON FREQUENCY OF OCCURRENCES (%) FOR DIFFERENT

CORRELATION CATEGORIES……………………………………………………….46

Table III. PROBABILITY AND RELIABILITY ESTIMATION RESULTS BY PROPOSED

METHOD AND CC-SPRA.…………………………………………….……………47

Table IV. OUTPUT RELIABILITY ESTIMATION ERRORS, CPU TIME AND SPEEDUP

FACTOR FOR THE PROPOSED METHOD WITH COMPARISON ……………………….49

Table V. COMPARISON OF NUMBER OF ITERATIONS TO CONVERGE ………………55

Table VI. S27 CONVERGENCE PROCESS INFORMATION……………….…………..56

Table VII. ACCURACY AND SPEED COMPARISON OF TSC AND SEQ-RE …...……..57

Table VIII. DETAILED PERFORMANCE OF THE PROPOSED TSC ….………......……57

Table IX. COMPARISON OF 𝑝𝑓𝑁𝐴𝑁𝐷 EVALUATED BY PROPOSED METHOD AND MC

SIMULATION…………………………………………….…………………………67

Table X. MEAN OF SIGNAL DELAY FOR C17………………….………….………..69

Table XI. SPATIAL PFS FOR ELEMENTS IN C17.……….………......….…………...69

Table XII. CIRCUIT RELIABILITY SIMULATIONS ON SOME ISCAS’85 AND ISCAS’89

CIRCUITS WITH 1-YEAR OPERATION.….……….………………………….……….72

xii

LIST OF FIGURES

Figure 1. Sequential circuit and its combinational equivalent …………………...10

Figure 2. Examples of correlation category ‘S’…………………………………...21

Figure 3. Examples of correlation category ‘N’…………………………………..27

Figure 4. Examples of 2-level correlation category …………………………….28

Figure 5. Benchmark Circuit C17……………………………………...…………32

Figure 6. An example circuit with 5-level category of ‘N3-N3-N3-N3-S1’ being

treated as category ‘I’ for approximation…………………………………………44

Figure 7. Convergence process of 𝑅0 in circuit S27 with 3 DFFs .………………54

Figure 8. NAND logic gate ………………………………………………………63

Figure 9. 𝑝𝑓𝑁𝐴𝑁𝐷 trends as Vth changes …………………….…………………….68

Figure 10. The transient process of output voltage for NAND gate …..…………68

xiii

LIST OF ABBREVIATIONS/SYMBOLS

CMOS Complementary metal–oxide–semiconductor

IC Integrated circuits

MC Monte-Carlo

TSC Two-step-convergence

NBTI Negative bias temperature instability

PTM Probabilistic transfer matrices

ITM Ideal transfer matrix

PGM Probabilistic gate matrix

ER Equivalent reliability model

CC-SPRA
Correlation coefficients approach for signal

probability-based reliability analysis

DI Dummy input

DO Dummy output

VDD Supply voltage

P* Error-free signal probability

P Signal probability

PF Probability of failure

JPV Error-free joint probability vector

JCPM Joint conditional probability matrix

PV Error-free probability vector

RV Reliability vector

CGSP Cross-gate signal pairs

DFF D-flip-flop

SPF Spatial probability of failure

TPF Temporal probability of failure

CLK Clock signal

CDF Cumulative density function

PDD Probabilistic decision diagram

CC Circuit clustering

STA Static timing analysis

xiv

LIST OF APPENDICES

Appendix 1. Important MATLAB code…………………………………………73

1

CHAPTER 1

INTRODUCTION

1.1 Research Background

 Downscaling of CMOS devices to nanometers raises quite a few new

challenges for digital integrated circuit designers [1]. Among them is circuit

reliability. With the imprecision of nanoscale fabrication, device reliability can be

affected by many hard defects (such as shorts and opens [2-3]) and soft errors

which may occur due to environmental variations. High integration density and

unsaturated voltage/current are increasingly compounding the problem [4]. The

unreliability of fundamental devices will then negatively affect circuit performance

at high levels. Thus, it becomes necessary to keep track of not only signal

probability, but also signal reliability (or faulty ratio). For large circuits, the

difficulties in finding either signal probability or reliability stem from signal

correlations due to numerous reconvergent fanouts within circuits. Since the

reliability and probability may affect each other, it would make much sense to

estimate both of them simultaneously in a circuit. More specifically, for given

unreliable circuits, the output reliability depends on their input signal probabilities.

Take a two-input AND gate for example. When both inputs have a lower signal

probability (i.e., most of time they are logic ‘0’), the output signal would have a

higher reliability (i.e., high probability of being a correct value of ‘0’) due to the

nature of AND logic. On the other hand, signal probability depends on reliability

as well, as will become clear later in the thesis. Since signal reliability is

essentially a conditional signal probability (refer to next section for details),

evaluating signal reliability is generally more difficult than estimating signal

probability.

 These challenges, along with the high circuit density, bring up two main

requirements for the probability and reliability evaluation method: high accuracy

when dealing with correlation, and high efficiency (scalability) when applied to

integrated circuits. Currently, there exist numerical and analytical solutions, which

are mainly under the zero-delay model and assume gate reliability is a constant.

2

The numerical method can provide high accuracy results statistically at a cost of

extremely long processing time, which makes it a good way to provide benchmark

results for probability and reliability evaluation. Analytical methods, different from

numerical ones, tend to use some fast models to calculate/estimate signal

probability and reliability. Although it is much more efficient and practical to be

implemented on integrated circuits, the accuracy level is not satisfying. The major

error source is coming from imperfect solutions to signal correlation estimation.

Meanwhile, some works’ scalability, such as [5], is not good enough with a time

complexity of O(M2), where M is the number of gates.

1.2 Objectives

The goal of this thesis is to assist designers in evaluating digital integrated circuit

performance accurately and efficiently so that effective adjustments can be applied

immediately. More specifically, the performance evaluation includes estimations

for signal probability, reliability, and device reliability variations after a certain

operation time, which is called the aging effect. All these factors are directly related

to critical issues such as size, power consumption, lifetime, etc. Ideally, designers

are expecting this evaluation to be accurate and efficient.

However, it is unrealistic to search for an absolute accurate model with

maximum efficiency for signal probability and reliability estimations. The best

researchers can do is to find a reasonable balance between accuracy and efficiency.

Any proposed model should be well-designed to handle signal correlations

correctly, and the processing time should be preferably linear/quasi-linear

proportional to number of logic gates. Otherwise, the efficiency of the proposed

method will be a big concern when applied to integrated circuits.

Due to the lack of full circuit aging effect analysis, we are also trying to

introduce a model to help designers evaluate circuit reliability changes with

consideration of long-term intense operation. The model should be straightforward,

easy to follow and implement to any digital circuit.

3

1.3 Main Contributions

Main contributions of this thesis are as follows:

• developing a new, hybrid approach for signal correlation evaluation, unlike

others which are either pure numerical or analytical.

• introducing a categorization system for correlations based on circuit

connectivity.

 • achieving linear time complexity to circuit size by evaluating reliability in

terms of conditional signal probabilities, which allows the use of gate propagation

model

• achieving accurate evaluation for error-free probability (the probability that

a signal is ‘expected’ to produce logic ‘1’ with given inputs) and reliability

simultaneously during analytical and numerical analysis, getting rid of extra time

obtaining signal probability from other methods/tools/software.

• proposing a new convergence method (Two-step convergence) for

sequential circuit analysis, reducing the number of iterations required by around

30%

• covering the shortage of circuit-level aging effect evaluation by extending

existing device-level analysis.

• creating a new index to describe circuit overall reliability by considering the

cross-impact of spatial and temporal reliability simultaneously.

The basic idea of the hybrid model is to categorize signal correlations by

investigating a local circuit topology, and then apply specific solution methods

accordingly (including analytic computation, bitstream simulation, or their

combination). All category solutions, along with the conditional-probability-based

gate propagation model, are well-designed to obtain signal error-free probability

and reliability simultaneously. It should be noted that actual signal probability can

be easily obtained using error-free probability and reliability, but not vice versa.

With this strategy, the proposed model achieves not only linear time complexity to

4

circuit size efficiency (benefits from the propagation-based model), but also further

efficiency improvement by saving the processing time for signal error-free

probabilities. Meanwhile, the simulation shows decent accuracy for the proposed

model. When this model is applied to sequential circuits, instead of using traditional

step-size convergence, we use the first few iterations as a trial, and obtain a far-

better initial value for the following iterations by regression analysis. For

evaluations considering the aging effect, we propose a model to look at circuit

reliability from a logic perspective (or spatial viewpoint) as well as a delay aspect

(or temporal viewpoint), in order to build a single index to evaluate the overall

reliability of circuit outputs. We also extend and combine some existing models to

accomplish reliability analysis, starting from transistor level to gate level and finally

to full circuit reliability estimation.

1.4 Thesis Organization

The rest of the thesis is organized as follows. Chapter 2 reviews the existing

methods on above mentioned topics and their pros and cons. Chapter 3 presents the

hybrid model in detail. Chapter 4 illustrates how the proposed hybrid model could

be applied onto sequential circuits, as well as introduces the newly developed

convergence technique. Chapter 5 focuses on circuit-level aging effect analysis.

Finally, chapter 6 concludes the thesis.

5

CHAPTER 2

LITERATURE REVIEW

 Models for signal probability and reliability evaluation on combinational and

sequential circuits are well discussed, but there is still space for improvement for

better accuracy and/or efficiency. For aging effect evaluation, although there are

numerous works on device (transistors, gates) reliability changes, little has been

done on circuit-levels.

2.1 Evaluation of Signal Probability and Reliability Under Zero-

delay Model

 Gate and wire delay are important factors in circuit design and cannot be ignored

in real circuit analysis. However, when obtaining output probability and reliability

from a logical values perspective, researchers tend to assume that gate and wire

delays are zeros. This zero-delay model allows direct investigation to circuit

logical functionality without disturbance coming from temporal issues such as

delay and glitches, and the reliability evaluated under zero-delay model is called

spatial reliability, meaning that it is only related to circuit connectivity/structure

without considering any temporal factors.

 2.1.1Evaluation for Combinational Circuits

 Evaluation of signal reliability is mainly achieved by two methods: numerical

method and analytical method. The numerical method, such as Monte-Carlo

simulation [6] is to estimate circuit reliability by randomly generating input vectors

(with logic values 0 or 1 only) and evaluating the outputs. This approach is

straightforward and easy to implement, and its accuracy is generally proportional

to the number of iterative simulations. The major drawback of this method is that it

requires long processing times, making it almost impossible for large integrated

circuits. Therefore, it usually serves as a tool to provide standard results for

evaluating the accuracy of other methods.

Analytical methods, on the other hand, represent a class of approaches that use

analytical models with gate reliability, which is inspired by Von Neumann’s work

6

[7]. This reliability, assigned to each gate independently, represents a probability

that a given gate maintains output logic value correctly after any logic functions, or

equivalently, the probability that bit flip (from 0 to 1 or 1 to 0) event will not

happen. These analytical models using gate reliability are much more efficient than

numerical methods at a cost of accuracy reduction since the correlations between

signals are difficult to evaluate. Another challenge for analytical methods is how to

increase the efficiency as much as possible for probability and reliability

evaluation.

In 2008, S. Krishnaswamy et al. proposed a probabilistic transfer matrix model

(PTM) [8]. This work brings up the idea that all logic gates can be assigned by a

pair of transfer matrix ITM and PTM (ideal transfer matrix and probabilistic

transfer matrix), encountering error-free and erroneous environment respectively.

The entire propagation procedure from input to output is then transferred into

matrices multiplications, which speed up the evaluation process significantly.

However, since the matrix tensor product is required during computation, the

memory capacity needed to store the intermediate results is extremely high. On the

other hand, signal correlations are handled by storing all multi-output gates and all

correlated signals are considered simultaneously (maximum 10 correlated signals)

regarding joint probability. These greatly increases the time complexity of the

algorithm, especially for circuits with complex connectivity. Besides, considering

the high difficulty level of estimating joint probability accurately for multiple

(more than 2) signals, algorithm accuracy can still be a secondary concern in

general.

Another work [9] presented a model using Boolean difference calculus to

calculate circuit output reliability. Although the time complexity to number of

gates is linear, the computational process is based on an assumption that spatial

correlation coefficients are already available/obtained from some other methods,

which means this method itself is not capable for correlation evaluation. Thus, the

7

accuracy level is entirely based on the accuracy of the applied correlation

coefficients.

To better evaluate signal correlations, a multiple-state strategy has been used by

[10-12]. The main idea is to generate a set of ‘copies’ circuits and each of them

represents a specific logic state (0 or 1) for the reconvergent-fanouts. This method

is usually accurate enough since when reconvergent-fanouts are fixed to certain

logic values, the other signals’ probability and reliability can be easily calculated

accurately. However, the major drawback of this idea is that when multiple

reconvergent-fanouts exist, the number of input pattern considered will be

increasing exponentially, making the evaluation process much less efficient.

In a following milestone work called “probabilistic gate matrix” (PGM) [13],

the signal correlations are handled by investigating output reliability for specific

reconvergent fanout input pattern 𝑗 (with 𝑛 inputs) and take weighted summation

as follows:

𝑅𝑜𝑢𝑡 = ∑ 𝑃𝑗𝑅𝑜𝑢𝑡𝑗

2𝑛−1

𝑗=0

(2.1)

where 𝑅𝑜𝑢𝑡 is output reliability, 𝑃𝑗 = 𝑃{𝑖𝑛𝑝𝑢𝑡𝑠 = 𝑗} , and 𝑅𝑜𝑢𝑡𝑗{𝑜𝑢𝑡𝑝𝑢𝑡 =

1|𝑖𝑛𝑝𝑢𝑡𝑠 = 𝑗}. This approach is pretty accurate but requires a certain amount of

time to list all possible input patterns, resulting in a time complexity of 𝑂(𝑀2𝑀𝑓),

where 𝑀 is the number of gates and 𝑀𝑓 is the number of correlated signals. It

should be noted that if we ignore the extra processing time for signal correlations,

the fundamental propagation-based model achieves a linear time complexity

regarding the number of gates, which is the best in expectation so far. Therefore,

this framework is widely used in the following years.

 Meanwhile, researchers tried to find solutions based on probabilistic decision

diagrams (PDD) [14] as well. This is a good attempt to study circuit probability,

reliability, and correlation topologically. Again, the main drawback of the

8

proposed model is that the time complexity is not linear, but highly related to the

number of reconvergent-fanouts. For example, from [14], the CPU time for the

circuit ‘duke2’ with only 88 gates takes 14.76 seconds, and for the circuit ‘9symml’

with 108 gates it becomes 0.22 seconds. The instability of efficiency greatly

reduces the scalability of PDD. A similar problem has been observed in [15] as

well.

Bayesian network [16] is another attempt using graphical method for probability

and reliability evaluation. However, it is quite hard to address signal correlations

using the Bayesian network, and the accuracy level becomes a concern. The

efficiency and accuracy are both moderate, but the scalability of this work is still

questionable since the processing time to build up corresponding networks can be

unacceptably long for integrated circuits.

To make the evaluation method more scalable, [17] has bring up a model using

correlation coefficient 𝐶𝐴𝐵 for signal pair (A, B) which is defined as:

𝐶𝐴𝐵 =
𝑃(𝐴𝐵)

𝑃(𝐴)𝑃(𝐵)
(2.2)

where 𝑃(𝑘) = Pr{𝑘 = 1} , 𝑘 = 𝐴, 𝐵, 𝐴𝐵. This model requires only one-pass to the

circuit, making it very fast. However, considering the fact that reliability

correlation is different from probability correlation, this method becomes less

accurate for circuit reliability evaluation. More recently, a similar idea has been

used in equivalent reliability model (ER) [18]. With a different definition of the

correlation coefficient, the accuracy level of estimation for signal reliability has

been improved, but still not enough.

Another example of using correlation coefficients is the bitstream simulation

model (CC-SPRA) [5]. Although the big framework is still a propagation-based

analytical method, the evaluation of all correlation coefficients is achieved by

‘bitstream simulation’, which is a small-scale Monte-Carlo simulation instead.

More specifically, for any given signal pair, bit value sequences are generated

9

using available information. The correlation coefficient is then calculated using

information obtained by ‘counting’ the bit values from generated sequences for

signals of interest. With a good choice of the length of the bitstream, it provides

accurate results without sacrificing too much efficiency. A major drawback of this

work is that bitstream generation requires a circuit connectivity analysis from

primary inputs. When a signal pair of interest is approaching outputs within

integrated circuits, this investigation process will be time-consuming.

In 2011, circuit clustering (CC) [19] has been introduced as a speed-up

technique. The main idea is to separate a circuit into multiple clusters following its

topological order and calculate conditional signal probabilities based on given

values of its previous cluster only. The output probability can then be obtained by

multiplying these conditional probabilities all together. Since the maximum size of

matrices used to describe conditional probabilities is smaller, the algorithm

efficiency has been improved a lot. However, this model is too optimistic since any

interconnect signal between clusters will increase the difficulty of finding the

individual conditional probability. Therefore, it is only capable for circuits with

simple connectivity and clear hierarchy.

 2.1.2 Evaluation for Sequential Circuits

Since most of the real-world circuits are sequential, there is much research work

on this area. From a hardware and design perspective, for example, [20] has

developed a low-power, non-volatile and radiation-hardened latch against single

event upsets and [21] takes advantage of reconfigurable pulsed latches to achieve

low-power design with reliability enhancement.

As for software simulation-based work, a soft-error detection and correction

system has been introduced in [22], and [23] has investigated the critical path

identification technique for sequential circuit reliability analysis. However, neither

of their discussions mentioned how to improve the efficiency for sequential circuit

probability and reliability directly.

10

As discussed before, most of the introduced methods for combinational circuit

evaluation can be expanded to sequential circuits. Generally, as shown in [24], a

sequential circuit can be transferred into a combinational equivalent by unlooping

the memory component as shown in Fig. 1.

It should be noted that this combinational equivalent requires the probability and

reliability of the dummy inputs (DIs) are exactly the same as those of the dummy

outputs (DOs) since they are initially connected. However, since this information

is not given initially, we have to assign certain probability and reliability to DIs

first and let the DIs and DOs converge to each other. This brings up a higher

efficiency requirement for efficiency of combinational evaluation models since

they are applied continuously until circuits’ stable status is found.

The current convergence process is mostly driven by the following equation:

𝑄𝐷𝐼
𝑛+1 = 𝑄𝐷𝐼

𝑛 + 𝜂 ∙ (𝑄𝐷𝑂
𝑛 − 𝑄𝐷𝐼

𝑛) (2.3)

where 𝑄 represents either the probability or reliability element of DIs and DOs, 𝜂

is the step size, and 𝑛 is the number of iterations. The step size is the key to

determining how fast this convergence process is. Larger 𝜂 means a faster

approach from DIs to DOs, while smaller 𝜂 are usually used during the fine-tuning

process. In the extreme case, if 𝜂 = 1, the new DI value is directly substituted by

(a) (b)

Figure 1. (a) Sequential circuit, (b) combinational equivalent of (a)

11

the current DO value. However, the optimal 𝜂 is difficult to find, and for each

circuit the best 𝜂 can be different as well.

In [24-26], 𝜂 = 0.1 is applied for the entire convergence process without any

change, which leads to extremely tedious convergences. In fact, there is no reason

to keep 𝜂 to such a small value for the first few iterations, where the probability

and reliability of DIs and DOs are still far from each other. Such discussions on the

choices of 𝜂 have been done in [27], but no exact solution was given. The only

conclusion is that 𝜂 should be a dynamic value, starting with a relatively large one,

such as 0.5, and gradually decreasing as DIs and DOs are getting closer.

The tricky part about choosing 𝜂 is that it is sensitive to circuit structure as well

as input probability and reliabilities. For any given circuit, the optimal value of 𝜂 is

unique, which is also extremely difficult to find. Therefore, it is understandable

that current researchers tend to use a universal model for all sequential circuits at a

cost of reduction of efficiency.

 Another important parameter, which is ignored by researchers, is the initial

value of 𝑄𝐷𝐼
1 . A good initial value can significantly reduce the number of iterations

required. In most work, DIs shares the same probability and reliability as primary

inputs at the beginning of convergence. Although this setup is easy to follow, it is

never the best choice. This thesis will discuss how to find a better initial value to

speed up the entire convergence process as well.

2.2 Evaluation of Signal Probability and Reliability Considering

Delay and Aging Effect

In real world circuits, gate delay will affect output probability and reliability,

which cannot be ignored. For instance, there is a great chance for the sampled

output data to be incorrect if the expected logic value arrives later than the designed

guard band, even if the logic value is correct. In contrast to spatial reliability,

temporal reliability is used to describe the probability that a signal arrives on time.

Besides, gate reliability is usually not a constant either. In fact, after operating

12

intensively for years, transistor threshold voltages tend to increase (especially for

PMOS). The reason is that accumulated opposite charges during operation will

cancel the upcoming gate voltage and increase the threshold voltage if there is not

enough ‘rest’ time to let the charges release, which is known as Negative Bias

Temperature Instability (NBTI). Considering many other performance (such as

power and area) requirements, circuits are usually designed to have their critical

path delays around 10-30% shorter than the required clock period [28]. However,

an accurate evaluation of the performance degradation caused by NBTI would be

less likely since it strongly depends on dynamic operation conditions, such as

supply voltage (VDD), environmental temperature (T), and signal probability (Pin)

[29]. Even if a guard band is designed using extreme environmental parameters

(such as high temperatures and high supply voltages), the uncertainty of signal

probabilities makes it hard to accurately evaluate the aging effect.

Some prior work has successfully built up short-term and long-term estimation

models for the change in threshold voltage ∆𝑉𝑡ℎ due to NBTI effect through

experiments, as shown in [30, 31, 32]. Based on their results, [33] further simplified

the proposed model assuming the environmental conditions (such as supply voltage

and temperature) were fixed.

 2.2.1 Aging Effect on Spatial Reliability

 The spatial reliability refers to the probability that a signal will produce the

correct logic value, in contrast to the temporal reliability which is related to delay.

With the information of ∆𝑉𝑡ℎ, researchers in [33] have proposed models for gate-

level reliability aging analysis by looking into transistor performance. [33] shows

that the designed transistor threshold voltages 𝑉𝑡ℎ can fluctuate due to oxide

thickness variations [34], line edge roughness [35], polysilicon granularity, and the

combined effects of all these factors. Simulations and some sample analysis [36-49]

conclude that 𝑉𝑡ℎ fluctuations will lead to unexpected behavior (turning on/off at

incorrect gate-to-source voltage), which can be treated as a Gaussian distribution.

The probability of failure (PF) for transistors is then calculated by assuming that

transistors are ideal switches at its actual threshold voltage. The logic gates, formed

13

by these transistors, are found to be experiencing a certain probability to fail to

produce the correct logic function, which has been discussed in [40]. Therefore, the

output logic value could be incorrect.

 2.2.2 Aging Effect on Temporal Reliability

 The increased threshold voltage will make the transistors harder to be turned on

and reduce drain current, leading to a longer gate propagation delay ([41, 42]). With

the extra delay accumulated, there is a chance that the output signal may miss the

sampling action of the current clock cycle and produce an incorrect sampling result

for the output value, which is called temporal unreliability. Fortunately, it is

possible to efficiently calculate gate delay variation using ∆𝑉𝑡ℎ with the linear

approximation model for logic gates delay approximation developed in [43]. The

output delay is found using static timing analysis (STA) [44, 45], which can be

done easily using SPICE tools, as indicated in [46]. The temporal reliability of

output can be obtained by comparing the obtained output delay with the designed

CLK frequency requirement.

The above-mentioned work provides a clear picture of how aging effects can

change single device performance with respect to spatial and temporal reliability.

However, it is still a big challenge for designers to accurately determine the lifetime

of designed circuits due to the lack of full circuit estimations for reliability aging

issues while considering both types of reliability.

14

CHAPTER 3 PROBABILITY AND RELIABILITY ESTIMATION FOR

COMBINATIONAL CIRCUITS

In this chapter, we first describe some background of digital signal probability

and reliability, and then introduce the joint probability vector (JPV) and joint

conditional probability matrix (JCPM) for any given signal pair. With this

information, we propose a hybrid model based on correlation categorization and

show the corresponding solutions. The simulation results and summary are

followed.

3.1 Signal Probability and Joint Probability Vector

3.1.1 Signal Probability

For any signal D in a digital circuit, its error-free probability is defined as

follows:

{
𝑃𝐷
0∗ = Pr{𝐷∗ = 0}

𝑃𝐷
1∗ = Pr{𝐷∗ = 1}

(3.1)

where D* is the error-free version of D (throughout the thesis, the symbol ‘*’ is

used to indicate ‘error-free’, which refers to the condition where all gates and input

signals are reliable), and 𝑷𝑫
∗ = (𝑃𝐷

0∗ 𝑃𝐷
1∗) is called the error-free probability vector

(PV) of signal D with 𝑃𝐷
0∗ + 𝑃𝐷

1∗ = 1. In an unreliable circuit, the reliability of

signal D, (denoted by 𝑟𝐷) is defined as the probability that the signal generates an

intended logic value, i.e., 𝑟𝐷 = 𝑃𝑟{𝐷 = 𝐷
∗}. Similarly, for a logic gate g, its

reliability (denoted by 𝑟𝑔) is defined as the probability that an intended logic value

at its output is produced for given inputs (either erroneous or error-free). It should

be mentioned that the reliability for gate output may not necessarily be lower than

its input signal reliabilities for given 𝑟𝑔 due to logic masking. For instance, if one

input of a reliable AND gate has a reliability of 1 but is fixed to logic 0, the output

15

reliability will always be 1 no matter how low the reliability of the other input

could be.

 3.1.2 Joint Probability Vector

For any input pair (A, B) of a logic gate g, we define the joint (error-free)

probability vector (JPV) and joint conditional probability matrix (JCPM) as

follows:

𝐽𝑃𝑉: 𝑷𝑨𝑩
∗ = (𝑃𝐴𝐵

00∗ 𝑃𝐴𝐵
01∗ 𝑃𝐴𝐵

10∗ 𝑃𝐴𝐵
11∗) (3.2)

where 𝑃𝐴𝐵
𝑖𝑗∗
= Pr{(𝐴𝐵)∗ = ′𝑖𝑗′} , 𝑖, 𝑗 = 0 𝑜𝑟 1 , ∑𝑃𝐴𝐵

𝑖𝑗∗
= 1 . If (A, B) are

independent, we have 𝑃𝐴𝐵
𝑖𝑗∗
= 𝑃𝐴

𝑖∗ ∙ 𝑃𝐵
𝑗∗
. If (A, B) are correlated, this value is

evaluated otherwise.

3.2 Signal Reliability and Joint Conditional Probability Matrix

(JCPM)

 3.2.1 Signal Reliability

The reliability 𝑟𝐷 for signal D can be expressed in terms of probabilities of

error-free signal 𝐷∗and conditional probabilities of signal D as follows:

 𝑟𝐷 = 𝑃𝑟{𝐷 = 𝐷∗}

 = 𝑃𝑟{𝐷 = 1 ∩ 𝐷∗ = 1} + 𝑃𝑟{𝐷 = 0 ∩ 𝐷∗ = 0}

 = Pr {𝐷 = 1 | 𝐷∗ = 1} ∙ 𝑃𝐷
1∗ + Pr {𝐷 = 0 | 𝐷∗ = 0} ∙ 𝑃𝐷

0∗

= 𝑅𝐷
1 ∙ 𝑃𝐷

1∗ + 𝑅𝐷
0 ∙ 𝑃𝐷

0∗ (3.3)

16

 where 𝑅𝐷
1 𝑎𝑛𝑑 𝑅𝐷

0 are conditional probabilities:

{
𝑅𝐷
1 = Pr{𝐷 = 1 | 𝐷∗ = 1}

𝑅𝐷
0 = Pr{𝐷 = 0 | 𝐷∗ = 0}

(3.4)

Let 𝑹𝑫 = (𝑅𝐷
0 𝑅𝐷

1), which is known as the reliability vector (RV) of signal D. In

other words, the reliability of the signal D is associated with a pair of conditional

probabilities (𝑅𝐷
0 𝑅𝐷

1).

 3.2.2 Joint Conditional Probability Matrix

 Similar to JPV definition, we have Joint Conditional Probability Matrix defined

as follows:

𝐽𝐶𝑃𝑀: 𝑪𝑨𝑩 =

(

𝑃00
00 𝑃00

01 𝑃00
10 𝑃00

11

𝑃01
00 𝑃01

01 𝑃01
10 𝑃01

11

𝑃10
00 𝑃10

01 𝑃10
10 𝑃10

11

𝑃11
00 𝑃11

01 𝑃11
10 𝑃11

11
)

(3.5)

where the element 𝑃𝑖𝑗
𝑘𝑙 = Pr{(𝐴𝐵) = ′𝑘𝑙′ | (𝐴𝐵)∗ = ′𝑖𝑗′} , 𝑖, 𝑗, 𝑘, 𝑙 = 0 𝑜𝑟 1, and

summation of the four elements in each row is 1 unless 𝑃𝐴𝐵
𝑖𝑗∗
= 0 for a specific

value of i and j, in which case 𝑃𝑖𝑗
𝑘𝑙 (𝑘, 𝑙 = 0 , 1) in (3.5) is simply defined as 0.

Once both 𝑷𝑨𝑩
∗ and 𝑪𝑨𝑩 in the above (3.4) and (3.5) are available, the PV and RV

for the output of gate g can be derived through a probability propagation to be

presented in the next section.

17

For small circuits, both PVs and RVs for all signals can be found using MC

simulation. However, for large circuits with signal correlations, it would be

impractical to do so by MC simulation which would be too time-consuming.

Generally speaking, the PV and RV for any signal depends on input signal

probabilities, signal correlations and/or gate reliabilities. Intuitively, if a circuit

contains no signal correlations, the conditional reliability pair (𝑅𝐷
0 𝑅𝐷

1) can be

easily propagated through gates from circuit inputs to its outputs. Unfortunately,

most circuits have quite a few reconvergent fanouts which lead to signal

correlations. To get a sense of what could happen if we ignore these correlations,

we did MC simulations for benchmark circuit C432 with 160 gates under the

assumption that all signals are independent with gate reliability of 0.999, and that

all primary inputs are reliable with their signal probability of 0.5. The results are

summarized in Table I, where the errors in evaluating the RV go up to 10%. This

indicates that the signal correlations play an important role in circuit reliability

evaluation.

TABLE I. CONDITIONAL RELIABILITIES FOR CIRCUIT C432 WITH 𝑟𝑔 = 0.999

Node # RV under Independent

assumption

RV Considering

signal correlations

Errors in

percentage (%)

1 (0.9977, 0.9862) (0.9958, 0.9778) (0.19, 0.86)

2 (0.9932, 0.9218) (0.9866, 0.9681) (0.67, 4.78)

3 (0.9953, 0.9346) (0.9785, 0.9645) (1.72, 3.10)

4 (0.9256, 0.9290) (0.9673, 0.9927) (4.31, 6.42)

5 (0.9101, 0.9751) (0.9692, 0.9813) (6.10, 0.64)

6 (0.9032, 0.9574) (0.9700, 0.9832) (6.89, 2.63)

7 (0.8719, 0.9870) (0.9684, 0.9786) (9.97, 0.86)

Average ̶ ̶ (4.26, 2.75)

18

3.3 Gate Level Probability and Reliability Propagation

In this section, we first show how to obtain the (error-free) probability vector

(PV) and reliability vector (RV) for the output D of an unreliable logic gate

assuming the availability of 𝑷𝑨𝑩
∗ and 𝑪𝑨𝑩, where A and B are the two inputs of the

gate. We then present detailed analysis (either analytic or statistic simulation) by

considering various correlations with the signal pair (A, B) to find both 𝑷𝑨𝑩
∗ and

𝑪𝑨𝑩. It should be mentioned that the above obtained PV and RV for the signal D

will be required and used to find both JPV and JCPM for other signal pairs (if they

are the signal D’s transitive fanouts). Thus, the whole computation is a recursive

gate-by-gate propagation process, as will become clear later in the thesis. Finally,

the pseudo-codes of the overall algorithm are provided with some discussions.

Assume both 𝑷𝑨𝑩
∗ and 𝑪𝑨𝑩 are available and that the logic gate under

consideration is an AND gate with reliability of 𝑟𝑔. To obtain the PV of its output

D (i.e., 𝑷𝑫
∗), we partition the 𝑷𝑨𝑩

∗ as follows:

𝑷𝑨𝑩
∗ = (𝑃𝐴𝐵

00∗ 𝑃𝐴𝐵
01∗ 𝑃𝐴𝐵

10∗ ⋮ 𝑃𝐴𝐵
11∗) = (𝑷𝟎 ⋮ 𝑷𝟏) (3.6)

where P0 = (𝑃𝐴𝐵
00∗ 𝑃𝐴𝐵

01∗ 𝑃𝐴𝐵
10∗) and P1 = (𝑃𝐴𝐵

11∗). Under zero-delay model, the 𝑃𝐷
0∗ and

𝑃𝐷
1∗are the sum of all elements in P0 and P1, respectively, i.e.,

{
𝑷𝑫
𝟎∗ = 𝑆𝑈𝑀(𝑷𝟎)

𝑷𝑫
𝟏∗ = 𝑆𝑈𝑀(𝑷𝟏)

(3.7)

The 𝑪𝑨𝑩 is partitioned accordingly as follows:

19

𝑪𝑨𝑩 =

(

𝑃00
00 𝑃00

01 𝑃00
10 | 𝑃00

11

𝑃01
00 𝑃01

01 𝑃01
10 | 𝑃01

11

𝑃10
00 𝑃10

01 𝑃10
10 | 𝑃10

11

− − − + −
𝑃11
00 𝑃11

01 𝑃11
10 | 𝑃11

11)

= (
𝑪𝑷𝟏 𝑪𝑷𝟐
𝑪𝑷𝟑 𝑪𝑷𝟒

) (3.8)

If 𝑟𝑔 = 1, the RV for the output D is expressed as 𝑹𝑫
′ = (𝑅𝐷

0 ′ 𝑅𝐷
1 ′), where:

{
𝑅𝐷
0 ′ = 𝑆𝑈𝑀(𝐏𝟎 ∗ 𝐂𝐏𝟏)/𝑷𝑫

𝟎∗

𝑅𝐷
1 ′ = 𝑆𝑈𝑀(𝐏𝟏 ∗ 𝐂𝐏𝟒)/𝑷𝑫

𝟏∗
(3.9)

When rg < 1 in general, consider the following two cases which would lead to a

reliable output D: (a) both D’ (i.e., D when rg = 1) and the gate are reliable, and (b)

both D’ and the gate are unreliable, which also produces a correct (reliable) value

of D. The probability of case (a) is given by rg · RD’, while the probability of case

(b) is given by (1 ‒ rg)·(1 ‒ RD’). The summation of these two probabilities gives

the output reliability, i.e., RD = rg·RD’ + (1‒rg)·(1‒RD’) = (2rg‒1)·RD’ + (1‒rg).

Applying this result to both RD
0 and RD

1 gives the RV for D in a vector form as

follows:

𝑹𝑫 = (2𝑟𝑔 − 1) · 𝑹𝑫
′ + 𝑰𝒈 (3.10)

where

𝑰𝒈 = (1 − 𝑟𝑔 1 − 𝑟𝑔) (3.11)

For any 2-input gates other than AND logic, similar derivations can be done to

find the PV and RV of its output for given 𝑷𝑨𝑩
∗ and 𝑪𝑨𝑩, except that (3.6) through

20

(3.8) shall be partitioned in different ways accordingly. The question to ask now is

how to find both JPV and JCPM (i.e., 𝑷𝑨𝑩
∗ and 𝑪𝑨𝑩) as defined in (3.4) and (3.5),

which will be answered in the following section III.B.

3.4 Correlation Categorization and JCPM Estimation

For any signal pair of (A, B), finding its JPV and JCPM requires considerations

of the correlations between A and B, which depends on the connectivity of

themselves and/or their transitive fan-ins and deserves detailed analysis. In what

follows, we first define three different categories, i.e., categories ‘S’, ‘N’ and ‘I’, to

represent ‘strong’, ‘not-strong’ and ‘independent’ correlations, respectively, before

calculating or estimating both JPV and JCPM.

3.4.1 Category ‘S’

There are three sub-categories in this strong-correlation category ‘S’. They are

named as ‘S1’, ‘S2’, and ‘S3’, as shown in Fig. 2. ‘S1’ refers to a situation where A

and B are the same signal (Note that ‘S1’ rarely happens for any two-input gate as

it would be degenerated to an inverter or buffer. However, we still define it for

completeness of correlation categorization).

‘S2’ represents the case where one of A and B is an immediate fan-in of the

other. If A and B are driven by two different gates which share same inputs, then it

is defined as ‘S3’. Throughout the thesis, gates (such as 𝑔 , g1 and g2) in all figures

represent any type of 2-input logic gate unless otherwise stated. Also, inverter or

buffer would be ignored because they have no effect on correlation category.

Therefore, both cases shown in Fig.2 (a) are considered as ‘S1’. The characteristic

of the category ‘S’ is that the correlation between A and B is so strong that their

JPV and JCPM can be calculated directly, as discussed below. It should be noted

that only JCPMs of input pairs in previous levels of gates are treated as ‘available’,

which are obtained before the propagation reaches the current gate.

21

For category ‘S1’ in the left of Fig. 2 (a) where A and B are a same signal, the

JPV and JCPM for (A, B) are given by:

𝑷𝑨𝑩
∗ = (𝑃𝐴

0∗ 0 0 𝑃𝐴
1∗) (3.12)

𝑪𝑨𝑩 = (

𝑅𝐴
0 0 0 1 − 𝑅𝐴

0

0 0 0 0
0 0 0 0

1 − 𝑅𝐴
1 0 0 𝑅𝐴

1

) (3.13)

For category ‘S2’ of Fig. 2 (b), the JPV of (A, B) is given by:

(a) ‘S1’

(b) ‘S2’

(c) ‘S3’

Figure 2. Examples of correlation category ‘S’.

22

𝑷𝑨𝑩
∗ = 𝑷𝑿𝒀

∗ ∙ 𝑴𝑺𝟐
∗ (3.14)

where 𝑷𝑿𝒀
∗ is the JPV of (X, Y), which is assumed to be available, and 𝑴𝑺𝟐

∗ is a

gate-dependent probability propagation matrix for gate g1. For instance, if g1 is an

AND gate, the corresponding 𝑴𝑺𝟐
∗ is given by:

𝑴𝑺𝟐
∗ = (

1 0 0 0
1 0 0 0
0 0 1 0
0 0 0 1

) (3.15)

The JCPM of (A, B) in Fig. 2(b) can also be calculated by using the JPV and

JCPM of (X, Y) as well as the information about gate g1. To make the calculation

easier, this can be done by initially assuming the g1’s reliability of rg = 1 and then

extending it to the general case with any value of rg. First, with rg = 1, one can find

the JCPM of (A, B), denoted as 𝑪𝑨𝑩
′ , depending on the gate type of g1. For

instance, if g1 is an AND gate, 𝑪𝑨𝑩
′ is expressed as:

𝑪𝑨𝑩
′ =

(

𝑃00
00 0 𝑃00

10 𝑃00
11

0 0 0 0
𝑃10
00 0 𝑃10

10 𝑃10
11

𝑃11
00 0 𝑃11

10 𝑃11
11)

𝐴𝐵

(3.16)

where all elements can be calculated from both JPV and JCPM of (X, Y). For

example,

23

{

 (𝑃00

00)𝐴𝐵 =
𝑃𝑋𝑌
00∗[(𝑃00

00)𝑋𝑌 + (𝑃00
01)𝑋𝑌] + 𝑃𝑋𝑌

01∗[(𝑃01
00)𝑋𝑌 + (𝑃01

01)𝑋𝑌]

𝑃𝑋𝑌
00∗ + 𝑃𝑋𝑌

01∗

(𝑃00
10)𝐴𝐵 =

𝑃𝑋𝑌
00∗ ∙ (𝑃00

10)𝑋𝑌 + 𝑃𝑋𝑌
01∗ ∙ (𝑃01

10)𝑋𝑌

𝑃𝑋𝑌
00∗ + 𝑃𝑋𝑌

01∗

(𝑃00
11)𝐴𝐵 =

𝑃𝑋𝑌
00∗ ∙ (𝑃00

11)𝑋𝑌 + 𝑃𝑋𝑌
01∗ ∙ (𝑃01

11)𝑋𝑌

𝑃𝑋𝑌
00∗ + 𝑃𝑋𝑌

01∗

(3.17)

The other elements can be found similarly. For simplicity, (3.16) is rewritten in

matrix as:

𝑪𝑨𝑩
′ = (𝑴𝑺𝟐

∗)𝑻 ∙ 𝑻𝑺𝟐 ∙ 𝑪𝑿𝒀 ∙ 𝑴𝑺𝟐
∗ (3.18)

where (𝑴𝑺𝟐
∗)𝑇 represents the transpose of 𝑴𝑺𝟐

∗ , 𝑻𝑺𝟐 is a transition matrix for

category ‘S2’, depending on the gate type of g1. For instance, if g1 is an AND gate,

the 𝑻𝑺𝟐 is given by

𝑻𝑺𝟐 = 𝒅𝒊𝒂𝒈(
𝑃𝑋𝑌
00∗

𝑃𝑋𝑌
00∗ + 𝑃𝑋𝑌

01∗
,

𝑃𝑋𝑌
01∗

𝑃𝑋𝑌
00∗ + 𝑃𝑋𝑌

01∗
, 1, 1) (3.19)

Secondly, for a general case with unreliable g1 (i.e., rg < 1), the JCPM of (A, B)

is modified to

𝑪𝑨𝑩 = 𝑪𝑨𝑩
′ ∙ 𝑴𝒈𝟏

𝑩 (3.20)

where 𝑪𝑨𝑩
′
is given by (3.18), and 𝑴𝒈𝟏

𝑩 represents the modification due to the

unreliable g1 and is given by

24

𝑴𝒈𝟏
𝑩 =

(

𝑟𝑔 1 − 𝑟𝑔 0 0

1 − 𝑟𝑔 𝑟𝑔 0 0

0 0 𝑟𝑔 1 − 𝑟𝑔
0 0 1 − 𝑟𝑔 𝑟𝑔)

(3.21)

For category ‘S3’ of Fig. 2 (c), the computation procedure for the JPV and JCPM

is similar to the above category ‘S2’ except that an extra gate g2 shall be

considered. More specifically, the JPV of (A, B) in this case is given by:

𝑷𝑨𝑩
∗ = 𝑷𝑿𝒀

∗ ∙ 𝑴𝑺𝟑
∗ (3.22)

where 𝑴𝑺𝟑
∗ is the joint propagation matrix defined by both g1 and g2. In Fig. 2 (c),

if the gates g1 and g2 are AND and OR logic, respectively, the corresponding 𝑴𝑺𝟑
∗

is given by:

𝑴𝑺𝟑
∗ = (

1 0 0 0
0 1 0 0
0 1 0 0
0 0 0 1

) (3.23)

Similar to the derivation of (3.18) and (3.20), we define a transition matrix for

category ‘S3’ as 𝑻𝑺𝟑 , and express the JCPM of (A, B) for category ‘S3’ of Fig. 2

(c) as:

𝑪𝑨𝑩 = [(𝑴𝑺𝟑
∗)

𝑻
∙ 𝑻𝑺𝟑 ∙ 𝑪𝑿𝒀 ∙ 𝑴𝑺𝟑

∗] ∙ 𝑴𝒈𝟏
𝑨 ∙ 𝑴𝒈𝟐

𝑩 (3.24)

where 𝑴𝒈𝟐
𝑩 takes the form of (3.21) while 𝑴𝒈𝟏

𝑨 is given by

25

𝑴𝒈𝟏
𝑨 =

(

𝑟𝑔 0 𝑟𝑔 0

0 1 − 𝑟𝑔 0 1 − 𝑟𝑔
1 − 𝑟𝑔 0 1 − 𝑟𝑔 0

0 𝑟𝑔 0 𝑟𝑔)

(3.25)

3.4.2 Category ‘N’

Category ‘N’ refers to the ‘not-strong’ or relatively weak correlation cases for

the pair (A, B), including 3 sub-categories, i.e., ‘N1’, ‘N2’ and ‘N3’, as shown in

Fig. 3 where all gates are again generic. More specifically, N1 and N2 shown in

Fig. 3 (a) and (b), respectively, represent two specific correlations where A or B is

the reconvergent fanout with more than one gates involved in the reconvergent

path, which weaken the strength of correlation and make it more difficult to find

the JPV and JCPM of signal pair (A, B). A more general case for ‘not-strong’

correlations is the category ‘N3’, as shown in Fig. 3 (c) where the dotted lines

stand for some possible correlations/connections. It should be noticed that the

above category ‘S3’ of Fig. 3 (c) is an exception of ‘N3’ where X=W and Y=Z,

which is considered as a strong correlation.

Unlike category ‘S’, accurate evaluation of both JPV and JCPM for (A, B) under

category ‘N’ is generally difficult. For example, to find the JPV of (A, B) in ‘N1’,

the three-signal joint probability of (X, Z, W) is required, which is unknown (only

JCPMs for input pairs are available). To address this issue, a bitstream simulation

technique, which is a statistical method proposed by [12], can be used instead (see

Section III-C for details).

3.4.3 Category ‘I’

Category ‘I’ generally represents any topological structures other than the above

categories ‘S’ and ‘N’ (primary inputs are assumed to be independent). In

particular, if a reconvergent fanout does not exist or is too far away from the signal

pair (A, B), the correlation can be treated as the category ‘I’, which refers to

“independent”. This is because of the fact that when the reconvergent fanout stays

26

further away from A or B, their correlation is getting weaker. One could do

bitstream simulation [12] to evaluate both JPV and JCPM for (A, B), but it would

be very time-consuming. Our simulations showed that when the reconvergent

fanout is more than 4 levels away, the correlation strength would be negligibly

weak and can thus be treated as an independent case with negligible errors (refer to

Section IV for detailed results). For this category ‘I’, the JPV (or JCPM) for (A, B)

can be obtained easily and efficiently without simulations, and is given

approximately by simply taking the product of individual signal probabilities (or

reliabilities) for both A and B as:

𝑷𝑨𝑩
∗ = (𝑃𝐴

0∗ · 𝑃𝐵
0∗ 𝑃𝐴

0∗ · 𝑃𝐵
1∗ 𝑃𝐴

1∗ · 𝑃𝐵
0∗ 𝑃𝐴

1∗ · 𝑃𝐵
1∗) (3.26)

𝐶𝑚𝑛 = 𝑅𝐴
𝑚𝑛 · 𝑅𝐵

𝑚𝑛 (3.27)

where 𝐶𝑚𝑛 is the element in the m-th row and n-th column of 𝑪𝑨𝑩, and

𝑅𝐴
𝑚𝑛 and 𝑅𝐵

𝑚𝑛 are given by:

𝑅𝐴
𝑚𝑛 =

{

 𝑅𝐴

0, 𝑖𝑓 𝑚, 𝑛 = 1 𝑜𝑟 2

1 − 𝑅𝐴
0, 𝑖𝑓 𝑚 = 1 𝑜𝑟 2 𝑎𝑛𝑑 𝑛 = 3 𝑜𝑟 4

1 − 𝑅𝐴
1, 𝑖𝑓 𝑚 = 3 𝑜𝑟 4 𝑎𝑛𝑑 𝑛 = 1 𝑜𝑟 2

𝑅𝐴
1, 𝑖𝑓 𝑚, 𝑛 = 3 𝑜𝑟 4

 (3.28)

𝑅𝐵
𝑚𝑛 =

{

 𝑅𝐵

0 , 𝑖𝑓 𝑚, 𝑛 = 1, 3

1 − 𝑅𝐵
0 , 𝑖𝑓 𝑚 = 1 𝑜𝑟 3 𝑎𝑛𝑑 𝑛 = 2 𝑜𝑟 4

1 − 𝑅𝐵
1 , 𝑖𝑓 𝑚 = 2 𝑜𝑟 4 𝑎𝑛𝑑 𝑛 = 1 𝑜𝑟 3

𝑅𝐵
1 , 𝑖𝑓 𝑚, 𝑛 = 2 𝑜𝑟 4

 (3.29)

3.4.4 Multi-level Category

In terms of correlation strength, all above categories can be listed in a

descending order from the strongest to the weakest as: ‘S1’, ‘S2’, ‘S3’, ‘N1’, ‘N2’,

27

‘N3’, and ‘I’. In all these categories with exception of ‘N3’, a reconvergent fanout,

which significantly contributes to the correlation of (A, B), is known (or no such a

reconvergent fanout exists when it is the category ‘I’). For category ‘N3’, further

investigation is required to find possible correlations among signals X, Y, Z and W

(refer to Fig. 3 (c)) by locating any potential reconvergent fanouts. Considering the

fact that the correlation between X and Y (or between Z and W) does not directly

lead to the correlation between A and B, we are interested only in looking at

possible correlations within the four cross-gate signal pairs (CGSPs), i.e., (X, Z),

(a) ‘N1’

(b) ‘N2’

(c) ‘N3’

Figure 3. Examples of correlation category ‘N’.

28

(X, W), (Y, Z) and (Y, W). Like (A, B), each of these pairs has their own category,

but is one gate away from (A, B). In order to differentiate these CGSPs from (A,

B), we define the correlation for (A, B) as the 1st-level correlation, and those for

CGSPs as the 2nd-level correlation. The strongest correlation category among these

four CGSPs defines the 2nd-level category. For example, in Fig. 4 (a) where (Y, Z)

is category ‘S1’ which is the strongest among all CGSPs, the correlation of (A, B)

has the 1st-level category of ‘N3’ followed by the 2nd-level category of ‘S1’.

Therefore, the correlation of (A, B) belongs to 2-level category, expressed as ‘N3-

.

(a) ‘N3-S1’

(b) ‘N3-S2’

Figure 4. Examples of 2-level correlation category.

29

S1’. Fig. 4 (b) shows another example with a 2-level category of ‘N3-S2’.

 Following the above definition, we further proceed to the 3rd-level if the 2nd-

level category is ‘N3’ again, in order to check if any reconvergent fanout stem can

be found in the 3rd-level. It is noted that only CGSP pairs with category ‘N3’ in the

2nd-level proceed to the 3rd level. The maximum number of CGSPs at the 3rd-level

is 4×4 = 16 . If the 3rd-level category is still ‘N3’, then we move to the 4th level to

check, and so on. The maximum number of CGSPs on level K would be up to 4K‒1.

However, considering that the correlations due to reconvergent fanouts at the 5th or

higher level is increasingly weak, we go only up to 4 levels for computational

efficiency. In case the 4th-level category is ‘N’ which represents any category of

‘N1’, ‘N2’ or ‘N3’, the correlation of (A, B) is approximately treated as category

‘I’ instead of a 4-level category of ‘N3-N3-N3-N’. Also, if the category at the last

level for a multi-level category is ‘I’, it would be simply equivalent to single-level

category ‘I’.

3.5 Bitstream Simulation for JPV and JCPM Estimation

As discussed before, there are no analytical methods available to compute the

probability and reliability for category ‘N’. We resort to a local bitstream

simulation technique instead to estimate the JPV and JCPM of (A, B). We will

start with a single-level category ‘N1’ and ‘N2’, then extend our discussions to a

general multi-level category.

3.5.1 Bitstream Simulation for Single-level Category

Prior to simulation, all the JPV and JCPMs for transitive fan-ins of (A, B), along

with signal probabilities and reliabilities, are assumed to be available. We take

single-level category ‘N1’ for example to show how the bitstreams are generated.

Similar procedure also applies to single-level category ‘N2’ with considerations of

just one more gate on the reconvergent path.

30

For category ‘N1’ (refer to Fig. 2 (a)), we first generate an error-free bitstream

sequence for the reconvergent fanout X (or A), denoted as 𝑆𝑒𝑞𝑋
∗ (with length of L),

using the error-free probability vector 𝑷𝑿
∗ , and then generate the corresponding

error-free bitstream sequence for Y, denoted as 𝑆𝑒𝑞𝑌
∗ , based on 𝑆𝑒𝑞𝑋

∗ and 𝑷𝑿𝒀
∗ =

(𝑃𝑋𝑌
00∗ 𝑃𝑋𝑌

01∗ 𝑃𝑋𝑌
10∗ 𝑃𝑋𝑌

11∗). More specifically, if X = ‘0’ is first generated, then the bit-

value of Y is generated using the following conditional probability vector:

𝑃𝑟{𝒀|𝑋 = 0} = (
𝑃𝑋𝑌
00∗

𝑃𝑋𝑌
00∗ + 𝑃𝑋𝑌

01∗

𝑃𝑋𝑌
01∗

𝑃𝑋𝑌
00∗ + 𝑃𝑋𝑌

01∗
) (3.30)

If X = ‘1’ otherwise, we use the following conditional probability vector instead to

generate the bit-value for Y:

𝑃𝑟{𝒀 | 𝑋 = 1} = (
𝑃𝑋𝑌
10∗

𝑃𝑋𝑌
10∗ + 𝑃𝑋𝑌

11∗

𝑃𝑋𝑌
11∗

𝑃𝑋𝑌
10∗ + 𝑃𝑋𝑌

11∗
) (3.31)

With the above 𝑆𝑒𝑞𝑋
∗ and 𝑆𝑒𝑞𝑌

∗ , we then generate the (erroneous) bit-value

sequence for ‘XY’ using the JCPM of (X, Y):

𝑪𝑿𝒀 =

(

𝑃00
00 𝑃00

01 𝑃00
10 𝑃00

11

𝑃01
00 𝑃01

01 𝑃01
10 𝑃01

11

𝑃10
00 𝑃10

01 𝑃10
10 𝑃10

11

𝑃11
00 𝑃11

01 𝑃11
10 𝑃11

11
)

𝑋𝑌

(3.32)

For instance, if (XY)∗ = 00 at a certain bit of 𝑆𝑒𝑞𝑋
∗ and 𝑆𝑒𝑞𝑌

∗ , then ‘XY’ is

generated using the joint conditional probability from the first row of CXY, i.e.,

𝑃𝑟{𝑿𝒀 | (𝑋𝑌)∗ = 00} = (𝑃00
00 𝑃00

01 𝑃00
10 𝑃00

11)𝑋𝑌 (3.33)

31

For any other values of (XY)∗, simply take the corresponding row from 𝑪𝑿𝒀. This

process is repeated L times to obtain two bitstream sequences for (erroneous) X

and Y, denoted as 𝑆𝑒𝑞𝑋 and 𝑆𝑒𝑞𝑌, respectively. Once 𝑆𝑒𝑞𝑋
∗ , 𝑆𝑒𝑞𝑌

∗ , 𝑆𝑒𝑞𝑋 and 𝑆𝑒𝑞𝑌

are available, the bitstream sequence for the signal Z (denoted as 𝑆𝑒𝑞𝑍
∗ and 𝑆𝑒𝑞𝑍)

can be obtained accordingly by propagating (X, Y) through g1 to its output Z: 𝑆𝑒𝑞𝑍
∗

is generated by applying the logic operation on 𝑆𝑒𝑞𝑋
∗ and 𝑆𝑒𝑞𝑌

∗ , while 𝑆𝑒𝑞𝑍 is

generated by applying the logic operation on 𝑆𝑒𝑞𝑋 and 𝑆𝑒𝑞𝑌. It should be noted

that g1 is assumed to be reliable when producing 𝑆𝑒𝑞𝑍
∗ , while its gate reliability of

𝑟𝑔 is taken into considerations for producing 𝑆𝑒𝑞𝑍.

To further generate the bitstream sequence of B in Fig. 2 (a), we need to use the

JPV and JCPM of (Z, W). First, 𝑆𝑒𝑞𝑊
∗ can be easily obtained by following the

similar procedure of generating the above 𝑆𝑒𝑞𝑌
∗ . The 𝑆𝑒𝑞𝑊 can be generated by

taking two elements from 𝑪𝒁𝑾 , depending on the specific bit-values in 𝑆𝑒𝑞𝑊
∗ ,

𝑆𝑒𝑞𝑍
∗and 𝑆𝑒𝑞𝑍 and 𝑪𝒁𝑾. The bit-values in 𝑆𝑒𝑞𝑊

∗ and 𝑆𝑒𝑞𝑍
∗ define the row of the

two elements, while the bit-value in 𝑆𝑒𝑞𝑍 define their column. For instance, if

(ZW)∗ = 00 and Z = 0, the conditional probability vector of W is given by:

𝑃𝑟{𝑾 | (𝑍𝑊)∗ = 00 ∩ 𝑍 = 0} = (𝑃00
00 𝑃00

01)𝑍𝑊 (3.34)

where 𝑃00
00 and 𝑃00

01 are the two elements in the 1st row and 1st two columns of

𝑪𝒁𝑾. Thus, the bit-value of W is generated by using the probability vector of

(
𝑃00
00

𝑃00
00 +𝑃00

01

𝑃00
01

𝑃00
00 +𝑃00

01
) . Once 𝑆𝑒𝑞𝑍

∗ , 𝑆𝑒𝑞𝑊
∗ , 𝑆𝑒𝑞𝑍 and 𝑆𝑒𝑞𝑊 are available, the

bitstream sequence for the signal B (denoted as 𝑆𝑒𝑞𝐵
∗ and 𝑆𝑒𝑞𝐵) can be finally

obtained by propagating the bitstream sequences of both Z and W through g2 to its

output.

32

With the above-generated 𝑆𝑒𝑞𝐴
∗ , 𝑆𝑒𝑞𝐴 , 𝑆𝑒𝑞𝐵

∗ and 𝑆𝑒𝑞𝐵 , the occurrences of

(AB)∗ to take ‘00’, ‘01’, ‘10’ or ‘11 can be counted. Dividing them by the total

length of bitstreams L gives an estimate of 𝑷𝑨𝑩
∗ = (𝑃𝐴𝐵

00∗ 𝑃𝐴𝐵
01∗ 𝑃𝐴𝐵

10∗ 𝑃𝐴𝐵
11∗). The

total 16 elements in 𝑪𝑨𝑩 (i.e., JCPM for (A, B)) are estimated by the frequency of

occurrences for ‘AB’ = ‘00’, ‘01’, ‘10’ or ‘11’ given (AB)∗ = ‘ij’, where i, j = 0, 1.

For instance, 𝑃00
01 (i.e., the element in the 1st-row and 2nd-column of 𝑪𝑨𝑩) is given

by the occurrences of ‘AB’ = ‘01’ given (AB)∗ = ‘00’. With 𝑷𝑨𝑩
∗ and 𝑪𝑨𝑩, both

probability vector and reliability vector for the output D in Fig. 2 (a) can be

obtained easily by following the method discussed in Section III-A.

To better illustrate the proposed method, we show an example using benchmark

circuit C17 (Fig. 4) before presenting the pseudocodes of our algorithm.

In C17, all gates are NAND type, and (D, E, F, G, H) are primary input, while

(Q, T) are primary outputs. We assume all primary inputs are independent with an

error-free probability of 0.5 and reliability of 1, i.e., 𝑷𝑫~𝑯
∗ = (𝟎. 𝟓, 𝟎. 𝟓), 𝑹𝑲 =

(𝟏, 𝟏). In this example, we go through K - (L, M) - T to find the probability and

reliability of T. For K, since (F, G) are independent, the JPV and JCPM are

calculated by simple multiplication as follows:

𝑷𝑭𝑮
∗ = (0.25 0.25 0.25 0.25) = (𝐏𝟎, 𝐏𝟏) (3.35)

Figure 5. Benchmark Circuit C17

33

𝑪𝑭𝑮 =

(

1 0 0 | 0
0 1 0 | 0
0 0 1 | 0
− − − + −
0 0 0 | 1)

= (

𝑪𝑷𝟏 𝑪𝑷𝟐
𝑪𝑷𝟑 𝑪𝑷𝟒

) (3.36)

where P0 = (0.25 0.25 0.25) and P1 = (0.25). Under this case, it is easy to find

𝑃𝐾
∗ = (0.25, 0.75).

To calculate 𝑹𝑲, we firstly assume gate g2 is reliable. The CPM of K is given

by: 𝑪𝑲
′ = (

𝑅𝐾
0 1 − 𝑅𝐾

0

1 − 𝑅𝐾
1 𝑅𝐾

1)

{

 𝑅𝐾

0 ′ =
𝑆𝑈𝑀(𝐏𝟎 ∙ 𝐂𝐏𝟏)

𝑷𝑫
𝟎∗

=
0.25

0.25
= 1

𝑅𝐾
1 ′ =

𝑆𝑈𝑀(𝐏𝟏 ∙ 𝐂𝐏𝟒)

𝑷𝑫
𝟏∗

=
0.25 + 0.25 + 0.25

0.75
= 1

(3.37)

If gate g2 is not reliable and has reliability 𝑟𝑔2 = 0.9, we apply (3.11) to obtain

𝑪𝑲 = 𝑪𝑲
′ ∙ 𝑴𝒈 = (

1 0
0 1

) ∗ (
0.9 0.1
0.1 0.9

) = (
0.9 0.1
0.1 0.9

) , (3.38)

which means that the RV of K is 𝑹𝑲 = (0.9, 0.9).

 Then we move on to signal L and M. Again, since E and H are primary inputs

and K is the output of (F, G), both (E, K) and (H, K) are independent pairs

according to our assumption. The procedure of finding PV and RV for L and M is

exactly the same as above in deriving (3.35) - (3.38).

 Once the PV and RV for both L and M are calculated, we then tend to find out

the PV and RV for T. In this case, (L, M) is an ‘N3-S1’ correlation, which requires

bitstream simulation. Following the previous discussions, we firstly look at CGSPs

of inputs of (L, M) to find the most correlated pair, which is (K, K) with an ‘S1’

correlation. Then the bitstream for error-free and erroneous value of (K, K) pair is

generated based on JPV and JCPM:

34

𝐽𝑃𝑉: 𝑷𝑲𝑲
∗ = (𝑃𝐾

0∗ , 0,0, 𝑃𝐾
1∗) = (0.25,0,0,0.75) (3.39)

𝐽𝐶𝑃𝑀: 𝑪𝑲𝑲 = (

0.9 0 0 0.1
0 0 0 0
0 0 0 0
0.1 0 0 0.9

) (3.40)

Assume we’ve generated 10-bit length bitstreams 𝑺𝒆𝒒𝑲
∗ and 𝑺𝒆𝒒𝑲 for K as

follows:

Error-free 𝑺𝒆𝒒𝑲
∗ 0 0 1 1 1 0 0 0 0 0

Erroneous 𝑺𝒆𝒒𝑲 0 1 1 1 0 0 0 0 0 0

The two bits in bold represent the actual logic value of K is not the same as the

error-free value.

The next step is to find the second most correlated signal among (E, K) and (K, H)

(if no ‘S1’ exists, then 4 pairs will be involved here). Since both of them are

independent, we randomly choose one, say (E, K), to generate the 𝑺𝒆𝒒𝑬
∗ and

𝑺𝒆𝒒𝑬 for E (they should be equal since E is a primary input with reliability of 1),

based on bit values of 𝑺𝒆𝒒𝑲
∗ , 𝑺𝒆𝒒𝑲 and 𝑪𝑬𝑲 (Note that 𝑪𝑬𝑲 has been calculated

already when finding PV and RV for L):

𝑷𝑬𝑲
∗ = (0.125,0.375,0.125,0.375) (3.41)

𝑪𝑬𝑲 = (

0.9 0.1 0 0
0.1 0.9 0 0
0 0 0.9 0.1
0 0 0.1 0.9

) (3.42)

Let’s assume we are at the first bit generation of E, where 𝑺𝒆𝒒𝑲
∗ = 0 and 𝑺𝒆𝒒𝑲 =

0. From 𝑷𝑬𝑲
∗ , we take out the two probabilities representing two ‘0’s on K value,

as (𝑃𝐸𝐾
00∗ , 𝑃𝐸𝐾

10∗) = (0.125,0.125) . Therefore, E will have a probability of

0.125/0.25=0.5 to generate a ‘0’ on the first bit of 𝑺𝒆𝒒𝑬
∗ . Assume 𝑺𝒆𝒒𝑬

∗ is fully

generated with the following values:

35

Error-free 𝑺𝒆𝒒𝑲
∗ 0 0 1 1 1 0 0 0 0 0

Error-free 𝑺𝒆𝒒𝑬
∗ 1 1 0 1 0 0 1 0 0 0

For the first bit of 𝑺𝒆𝒒𝑬 generation, since 𝑺𝒆𝒒𝑲
∗ = 0, 𝑺𝒆𝒒𝑲 = 0 and 𝑺𝒆𝒒𝑬

∗ = 𝟏,

we need to find the terms in 𝑪𝑬𝑲 which matches the given values, as highlighted in

(3.42): (𝑃10
00, 𝑃10

10) = (0, 0.9). Therefore, E will have a probability of 0.9/(0+0.9) =

1 to generate a ‘1’ at the first bit of 𝑺𝒆𝒒𝑬. The final 𝑺𝒆𝒒𝑬 could be as follows:

Error-free 𝑺𝒆𝒒𝑲
∗ 0 0 1 1 1 0 0 0 0 0

Error-free 𝑺𝒆𝒒𝑬
∗ 1 1 0 1 0 0 1 0 0 0

Erroneous 𝑺𝒆𝒒𝑲 0 1 1 1 0 0 0 0 0 0

Erroneous 𝑺𝒆𝒒𝑬 1 1 0 1 0 0 1 0 0 0

Since E is one of the primary inputs which are assumed to be reliable, the 𝑺𝒆𝒒𝑬

and 𝑺𝒆𝒒𝑬
∗ are the same in this case. However, they are usually different for internal

nodes of circuits.

Once the 𝑺𝒆𝒒𝑬 is fully generated, we then propagate to L by using:

{
𝑺𝒆𝒒𝑳

∗ = 𝑵𝑨𝑵𝑫(𝑺𝒆𝒒𝑬
∗ , 𝑺𝒆𝒒𝑲

∗)

𝑺𝒆𝒒𝑳 = 𝑵𝑨𝑵𝑫(𝑺𝒆𝒒𝑬, 𝑺𝒆𝒒𝑲),𝑤𝑖𝑡ℎ 𝑟𝑔3 = 0.9
 (3.43)

where 𝑟𝑔3 = 0.9 means there are 90% chance for 𝑔3 to perform the correct logic

‘NAND’, and 10% chance to produce the opposite logic output of ‘NAND’, or

actually ‘AND’ logic. Using above sequences, we can have:

Error-free 𝑺𝒆𝒒𝑳
∗ 1 1 1 0 1 1 1 1 1 1

Erroneous 𝑺𝒆𝒒𝑳 1 0 1 0 1 0 1 1 1 1

where the bit values in bold represent that the NAND gate performs incorrect logic

function due to gate unreliability.

36

Similarly, we can find 𝑺𝒆𝒒𝑴
∗ and 𝑺𝒆𝒒𝑴. After that, by counting the frequencies of

each logic value combinations, we can find the 𝑷𝑳𝑴
∗ and 𝑪𝑳𝑴 accordingly. For

example in the following, if there are five bits (out of ten bits in total) giving 𝑳∗ =

𝟏,𝑴∗ = 𝟏, and among these five bits, two of them are giving 𝑳 = 𝟏,𝑴 = 𝟎, given

the bitstream length is 10, then we can estimate 𝑷𝑳𝑴
𝟏𝟏∗ =

5

10
= 0.5, and (𝑪𝟏𝟏

𝟏𝟎)𝐿𝑀 =

2

5
= 0.4. Signal probability 𝑷𝑳

∗ and 𝑷𝑴
∗ can be found similarly. When 𝑷𝑳𝑴

∗ and 𝑪𝑳𝑴

are available, we can easily propagate through 𝑔6 using (3.8) - (3.10).

Since the signal correlations have been taken into account in the above

bitstream-producing process, the results would be highly accurate if the bitstream

sequences are long enough. Also, the process is still fast even for long sequences

because only a few gates and signals in a small local structure are involved. In this

work, we chose L = 1000 as the bitstream length for all simulations with the best

trade-off between accuracy and efficiency, as will be verified in Section IV.

3.5.2 Bitstream Simulation for Multi-level Category

 For multi-level category (refer to Fig. 3), finding the JPV and JCPM for (A, B)

would be more difficult. The reasons are two-fold: First, the correlation of (A, B)

depends on the correlations among their immediate fan-ins (i.e., X, Y, Z and W in

Fig. 3), which potentially depend further on those of their transitive fan-ins,

making the probability and reliability estimation even harder. Secondly, multi-

level category may involve multiple reconvergent fanout stems, which require

some investigation on what order shall be followed in generating bitstream

sequences so that the correlation of (A, B) can be captured to a maximum extent.

Error-free 𝑺𝒆𝒒𝑳
∗ 1 1 1 0 1 1 1 1 1 1

Error-free 𝑺𝒆𝒒𝑴
∗ 1 1 0 1 1 0 1 1 0 0

Erroneous 𝑺𝒆𝒒𝑳 1 0 1 0 1 0 1 1 1 1

Erroneous 𝑺𝒆𝒒𝑴 1 1 0 1 0 0 1 0 0 0

37

In the following, we present a heuristic method to generate bitstreams for (A, B).

The general idea is to first generate both error-free and erroneous bitstream

sequences for the four signals X, Y, Z and W, and then propagate them through the

driving gates of A and B (i.e., g1 and g2 in Fig. 3) to obtain the bitstreams of (A, B)

and its JPV and JCPM accordingly.

Since the CGSPs with strongest correlations are generally a main contributor to

the correlation of (A, B), they represent a perfect candidate as a starting point of

bitstream simulation. This is to ensure that the correlation information among

multiple signals can be captured as much as possible. Consider a simple example

of Fig. 4 (a), where (Y, Z) are strongly correlated while other CGSPs are

independent. If the bitstreams of (Y, Z) are generated first, followed by bitstreams

of X and W, the correlation information can be fully captured. However, if we

begin with bitstreams of (X, W) instead, followed by bitstreams of Y and Z using

bit-values of X and W, respectively, then the bitstreams of Y would be

independent of Z, which would be totally untrue. Therefore, if the last level of

multi-level category is any category other than ‘I’ (it cannot be ‘N3’), then we

choose that defining pair (i.e., the signal pair which defines the specific category at

the level) as the starting candidate for bitstream simulations, and generate its

bitstreams by either using the JPV and JCPM from analytic computation (for

category ‘S’), or single-level bitstream simulations (for category ‘N1’ and ‘N2’). If

the last level is category ‘I’ otherwise, no bitstream simulations will be needed.

Once the above starting CGSP is found, we then proceed to generate all

bitstreams for the signals at the same level as this starting CGSP, before

propagating them to the next level closer to (A, B). In doing so, there are two

general rules to follow:

Rule 1: After generating the bitstreams for the starting CGSP, we choose the

next signal pair as one with strongest correlation among those signal pairs

38

(including both CGSPs and non-CGSPs) containing only one signal with available

bitstreams.

Rule 2: In case the JPV and/or JCPM for a certain signal pair is not available for

generating bitstreams, another set of new bitstream simulations is required, which

shall be discarded once the JPV and JCPM are found.

 To elaborate the above two rules and their importance, we take Fig. 4 (b) as an

example. The starting CGSP is (Y, Z) whose JPV and JCPM can be obtained from

an analytic computation as discussed in Section III-B. Following Rule 1, the

second pair will be the one of (X, Y), (X, Z), (Y, W) or (Z, W), whichever has the

strongest correlation. If one fails to follow Rule 1 by taking (X, W) as the second

pair whose bitstreams would be generated using both 𝑷𝑿𝑾
∗ and 𝑪𝑿𝑾. This would

imply that the bitstreams of (X, W) are independent of (Y, Z), and overlook the

possible correlations within other signal pairs of (X, Y), (X, Z), (Y, W) and (Z,

W). Similarly, if the third signal for bitstream generation is X, the third pair for

bitstream simulations will be the one with strongest correlation among (X, W), (Y,

W) and (Z, W) by following Rule 1.

Note that in case the JPV and JCPM for the above second pair (say, it is (Y, W))

is not available yet, another new bitstream process would be required to estimate

them. As stated in the above Rule 2, these new bitstreams for Y shall not interfere

with the existing 𝑆𝑒𝑞𝑌
∗ or 𝑆𝑒𝑞𝑌 . The 𝑆𝑒𝑞𝑊

∗ and 𝑆𝑒𝑞𝑊 will be generated next by

using the obtained JPV and ICPM of (Y, W) along with the existing 𝑆𝑒𝑞𝑌
∗ or 𝑆𝑒𝑞𝑌 .

This applies to all signal pairs involved to ensure that the most correlated

information is kept.

The above bitstream simulation procedure applies to all multi-level categories.

The only difference is that as the number of levels increases, more signal pairs

39

need to be considered. For instance, for 3-level category with 8 signals at the 3rd-

level, each of the two signals from the starting pair can pair with any of other 6

signals, leading to a total of 2×6=12 candidate pairs to be considered when

choosing the next (second) pair for bitstream generation. Each of the 3 signals with

available bitstreams can then pair with any of the remaining 5 signals, resulting in

a total of 3×5=15 signal pairs to be considered when choosing the 3rd pair for their

bitstream generation, and so on. For a 4-level category in which the 4th-level is

category ‘S’, we start with this defining pair of category ‘S’ for bitstream

simulations with a total of 16 signals at 4th level, leaving 2×14=28 candidate pairs

to be considered when choosing the second pair for bitstream generation, followed

by the 3rd pair, and so on. This procedure continues until all bitstreams for the

signals at all levels have been generated.

3.6 Algorithm Description

In summary, the proposed method looks at one gate at a time in a topological

order and finds the JPV and JCPM for its input signal pair before propagating to its

output for estimation of error-free signal probability vector and reliability vector.

This represents a hybrid model since both JPV and JCPM are found by either

analytic computation or local bitstream simulation, depending on the specific

signal correlation (single-level or multi-level) category. This can provide a high

level of accuracy while maintaining the computational efficiency for signal

probability and reliability evaluation with large circuits.

The whole procedure is described in the following algorithm:

Hybrid Estimation Algorithm

Input: Circuit with probabilities of independent PIs and M gates with gate

reliability. All PIs are assumed to be reliable.

40

Output: All signal probabilities and reliabilities in the circuit.

Procedure:

 {Sort all M gates in a topologic order;

 for i = 1 to M, do

 Let (A, B) be input signal pair of gate i, and D the output;

 /* Category identification */

 Determine the correlation category for (A, B) (see Section III-B);

 /* Estimation on JPV of 𝑷𝑨𝑩
∗ and JCPM of 𝑪𝑨𝑩 */

 if (A, B) is category ‘I’

 Estimate 𝑷𝑨𝑩
∗ and 𝑪𝑨𝑩 by eq. (3.26) - (3.29);

 else if (A, B) is single-level category ‘S’

 Find 𝑷𝑨𝑩
∗ and 𝑪𝑨𝑩 by analytic computation.

 (3.12) - (3.25) or similar ones according to the type of gate i;

 else if (A, B) is single-level category ‘N1’ or ‘N2’

41

 Find 𝑷𝑨𝑩
∗ and 𝑪𝑨𝑩 by bitstream simulations (refer to

 Section III-C for details);

 else /* (A, B) is a multi-level category */

Find 𝑷𝑨𝑩
∗ and 𝑪𝑨𝑩 by bitstreams or combination of bitstreams and

analytic computation;

 Calculate the probability and reliability for D using eqs. (3.7) - (3.11) or

similar ones according to the type of gate i;

end for

}

The category identification is one of the important steps in the above algorithm

and is elaborated as follows: For any given gate, we simply take its two inputs (A

and B), and compare their driving signals to see if they share a common signal or

not. If they do (examples shown in Fig. 1), then the (single-level) category ‘S’ is

identified. If not, keep searching their driving signals at the next logic level (once a

common signal is found, it could be identified as either category ‘N’ or a multi-

level category, with examples shown in Figs. 2 and 3), and so on. For instance, to

identify whether (A, B) belongs to either category ‘N1’ or ‘N2’, one can check if

one of A and B (say, A) is also an input of another gate (other than gate g in the

figures). If this is the case, then we can travel from this input through a few gates

to check if it meets the other signal (say, B). If yes, then it belongs to ‘N1’ or ‘N2’,

depending on the number of gates it goes through (refer to Fig. 2 (a) and (b)).

Otherwise, it is identified as category ‘I’. If none of A and B is an input of another

42

gate instead, then it belongs to category ‘N3’ which would lead to a multi-level

category. For multi-level category, we do a similar traversal for each CGSP signal

pair at the next level to identify the category based on the definition of multi-level

category. If the category remains ‘N3’ for up to 4 levels, then it is identified as

category ‘I’ as well (i.e., treated approximately as independent). As one can see,

the above search process is like a (local) graph traversal plus checking the local

structure against those in Figs. 1 through 3.

It can be seen from the above algorithm that the processing time is mostly spent

in the category identification and bitstream generation/propagation. To identify the

category for each signal pair of (A, B), the maximum number of gates (for up to

four levels) to be considered is (1+2+4+8+16) = 31. For a circuit with M gates, the

identifying process takes O(M) time. On the other hand, the computation time for

bitstream simulation is linearly proportional to the length of bitstream sequences

(L) since the number of local signals to be considered for each pair of (A, B) is

typically in tens. Also, L is usually few thousands (in this work, we chose L =

1000). Thus, the overall time complexity for the algorithm is O(L∙M). Meanwhile,

the value of L is directly related to the algorithm accuracy. The estimation results

would generally be more accurate with longer bitstream generated. According to

[47], the general error for L=1000 will be within 5 ∙ 10−4 while considering the

computational round-up.

3.7 Simulation Results and Performance Comparison

The proposed method was implemented using MATLAB on a DELL desktop

(OS: Windows 10) with CPU frequency of 3.2 GHz and 8GB RAM. All

simulations were conducted on benchmark circuits under the assumption that all

primary inputs are reliable and independent of each other with their signal

probability of 0.5. The length of bitstream sequences was set to L=1000.

43

First of all, in order to justify our previous assumption that the signal

correlations can be treated approximately as an independent case as long as the

reconvergent fanout is more than 4 levels away, we made an example circuit with

31 gates, as shown in Fig. 6 which represents a strongly-correlated 5-level

category being treated approximately as category ‘I’ (it would otherwise be

identified as category of ‘N3-N3-N3-N3-S1’), where different types of gates are

mixed at different levels. More specifically, all 16 gates at level 4 are NOR logic,

all 8 gates at level 3 are NAND logic, all 4 gates at level 2 are NOR logic, both

gates at level 1 are AND logic, and the last gate to the output D is an OR logic.

Each of 16 inputs at level 5 is shared by two gates (i.e., signals #1, #3, #5, …, #15

are connected to signals #32, #31, #30, …, #25, respectively, while signals #2, #4,

…, #16 are connected to signals #17, #18, …, #24, respectively, as shown in Fig.

6). Assume all these 16 inputs are reliable with signal probability of 0.5 and that all

gate reliabilities are set to rg = 0.95. Since the two inputs of all gates (except the

last gate G31) in the figure are independent, we can calculate the error-free signal

probability vector Pi
* and signal reliability vector Ri at level i (for i = 4, 3, 2, 1)

using (3.6) through (3.11) (or similar equations, depending on the specific gate

type) as follows:

P4
* = [0.75 0.25], R4 = [0.95 0.95];

P3
* = [0.0625 0.9375], R3 = [0.8623 0.9316];

P2
* = [0.8828 0.1172], R2 = [0.8349 0.7815];

P1
* = PA

*= PB
* = [0.9863 0.0137],

R1 = RA = RB = [0.9062 0.5995].

44

If we assume A and B are independent as well, the approximate JPV and JCPM for

the signal pair (A, B) can be calculated by (3.26) through (3.29) as:

JPV(appr.): PAB
* = [0.9727 0.0135 0.0135 0.0003]

JCPM(appr.): 𝑪𝑨𝑩 = (

0.8212 0.0850 0.0850 0.0088
0.3629 0.5433 0.0376 0.0562
0.3629 0.0376 0.5433 0.0562
0.1604 0.2401 0.2401 0.3594

)

Finally, we can use equations similar to (3.6) through (3.11) for the OR gate of

G31 to find PD
*, RD and rD at the output signal D as:

Figure 6. An example circuit with 5-level category of ‘N3-N3-N3-N3-S1’ being

treated as category ‘I’ for approximation.

45

PD
* = [0.9727 0.0273], RD = [0.7891 0.6246] and rD = 0.7846.

For comparison, we also performed MC simulations (with 1 million runs)

considering the correlations between A and B, and obtained the results below:

JPV(mc): 𝑷𝑨𝑩
∗ = (0.9735 0.0127 0.0127 0.0011)

JCPM (MC): 𝑪𝑨𝑩 = (

0.8222 0.0842 0.0843 0.0093
0.3550 0.5233 0.0487 0.0730
0.3408 0.0536 0.5215 0.0841
0.1674 0.2447 0.2291 0.3588

)

which lead to the values of PD
*, RD and rD (again by using similar equations to

(3.6) through (3.11) as well as (3.2)) for the OR logic of gate G31) as:

PD
* = [0.9735 0.0265], RD = [0.7899 0.6432] and rD = 0.7860.

Comparison of the above approximate results with MC simulations shows that

the absolute errors for PD
1* (the dominant element of PD

*) and rD are: (0.9735 ‒

0.9727) = 0.0008 and (0.7860 ‒ 0.7846) = 0.0014, which translate into the

percentage errors of around 0.08% and 0.18% (including possible numerical errors

during the simulation or calculation), respectively. It should also be mentioned that

this was just the results from the worst case of Fig. 6 with possibly strongest signal

correlations at level 5. Therefore, it can be expected that under all category ‘I’

which generally has weaker correlations at level 5 and beyond, the relative errors

caused by our approximation are typically even less (depending on specific

structures) and can thus be reasonably ignored for efficient evaluation.

46

Table II shows specific benchmarks for our simulations with some statistics,

including their sizes and occurrence frequencies for all different correlation

categories. All these circuits are ISCAS’85 benchmarks [48], except Log2 which is

a relatively large arithmetic circuit from the EPFL [49]. As can be seen from the

table, the majority of correlations belong to single-level category of ‘S’ or ‘I’, for

which an analytic method applies. This would generally help improve the accuracy

level of the proposed method. For instance, for circuit C6288 where the category

‘S’ accounts for as high as 40% (which means that a great number of signals are

strongly correlated with each other), the accuracy level for both signal probability

and reliability estimation with the proposed method is much better than that of the

CC-SPRA, as can be seen from Table III shown below. The circuit C1355 also has

TABLE II. Statistics on Frequency of Occurrences (%) for Different

Correlation Categories

Circuit

Gates

(M)

Single-level

category

Multi-

level

category

(ML)

Category by

analytic method

(S + I)

Category by

bitstream

simulation

(N + ML)
S N I

C432 216 1 3 57 39 58 42

C499 246 1 0 73 26 74 26

C880 435 9 0 77 14 86 14

C1355 590 35 1 44 20 79 21

C1908 1057 1 0 81 18 82 18

C2670 1400 4 0 67 29 71 29

C5315 2973 5 0 65 30 70 30

C6288 2416 40 10 21 29 61 39

C7552 4042 3 0 63 34 66 34

Log2 45083 6 2 54 38 60 40

47

a high percentage (35%) for category ‘S’, and the proposed method gives a much

better result for this circuit than CC-SPRA in terms of signal probability estimation

(see Table III). However, in terms of signal reliability of C1355, the proposed

method produces slightly more errors than the CC-SPRA. This is most likely due

to a relatively high percentage (44%) of category ‘I’ with the circuit.

To compare the proposed method with CC-SPRA [12], we measured their

average errors in both signal probability and reliability against MC simulation

results (with 105 runs), as summarized in Table III, where 𝐸𝑎𝑃 is the average

absolute errors of estimated signal probability (P*) for all outputs against MC

simulation results, and 𝐸𝑎𝑅 is the average absolute errors of estimated signal

reliability (calculated by 𝑟𝐷 = 𝑅𝐷
1 ∙ 𝑃𝐷

1∗ + 𝑅𝐷
0 ∙ 𝑃𝐷

0∗) for all outputs against MC

simulation results (defined as 𝑟𝐷 = Pr{𝐷 = 𝐷
∗}). For a fair comparison, the

average of 𝐸𝑎𝑃 or 𝐸𝑎𝑅 in the table was taken with circuit Log2 being excluded (the

result for this circuit is not available from the CC-SPRA). It can be seen from

Table III that the proposed method achieves absolute errors of around 0.01 for

TABLE III. Probability and Reliability Estimation Results by Proposed

Method and CC-SPRA [5]

Circuit

EaP EaR (rg = 0.95)

Prop. method CC-SPRA Prop. method CC-SPRA

C432 0.0090 0.0239 0.0026 0.0317

C499 0.0086 0.0018 0.0033 0.0032

C880 0.0089 0.0150 0.0061 0.0061

C1355 0.0094 0.0257 0.0088 0.0027

C1908 0.0092 0.0200 0.0055 0.0071

C2670 0.0160 0.0398 0.0146 0.0124

C5315 0.0114 0.2500 0.0105 0.0124

C6288 0.0154 0.0300 0.0179 0.0374

C7552 0.0195 0.0238 0.0143 0.0098

Log2 0.0253 ̶ 0.0288 ̶

Average* 0.0119 0.0478 0.0092 0.0136

 * The average is taken with circuit Log2 excluded.

48

signal probability estimation (except Log2), which are much better than errors of

around 0.05 with the CC-SPRA. The reliability estimation results from the

proposed method are slightly better than those from CC-SPRA, on average.

The differences between the proposed method and CC-SPRA are summarized as

follows. First, the CC-SPRA handles the correlation coefficients for a signal pair

by either analytic computation (only when A=B) or bitstream simulations, while

the proposed method provides two extra accurate solutions under categories ‘S2’

and ‘S3’. For the case of ‘S2’ in particular, the CC-SPRA would generate the

bitstreams for 3 signals of (A, X, Y), and calibrate the JCPM of (A, B). Secondly,

in producing bitstreams for 3 signals in general, the CC-SPRA does not necessarily

take the signal pair with the strongest correlation to start with, leading to a doubtful

level of accuracy. Finally, the bitstream technique in CC-SPRA is applied for up to

3 signals at a time. However, the proposed method considers more than 4 signals at

a time for generation of signal bitstreams, with the potential of capturing signal

correlations to a maximum extent.

The errors (EaR) in estimating the output reliability by the proposed method for

different values of 𝑟𝑔 are reported in Table IV, where the average CPU time was

calculated by taking the average of computation times over three different values

of 𝑟𝑔. The last two columns of this table show the speedup factors (against MC

simulations) with both the proposed method and CC-SPRA for comparison. As can

be seen from the table, the average errors (again, the average is taken with circuit

Log2 excluded) in reliability estimation are getting smaller as a higher value of 𝑟𝑔

is applied. The average speed-up factor of the proposed method against MC

simulation is 123.97 (except the circuit Log2), compared to 192.34 with the CC-

SPRA [12]. This is mainly due to the fact that the proposed algorithm typically

generates more bitstreams for the JCPM estimation than CC-SPRA. In the CC-

SPRA, for a gate at certain level, the correlation coefficient propagation process

49

always starts from the first level (i.e., primary inputs) with a maximum of 3 signal

bitstreams to be generated per level, compared to up to 64 bitstreams (with a

maximum of 4 levels considered) for the proposed method regardless of levels as

mentioned in Section III. However, this also means that as the number of levels

increases in large circuits, the CC-SPRA would require more signal bitstreams and

simulation time, making the proposed method more scalable than the CC-SPRA. A

particular example is the EPFL circuit Log2 (with 45k gates) shown in Table IV.

The size of this circuit is around 10 times as large as circuit C7552. While the

processing time is more than 30 times as long (this is mainly due to the fact that

matrix operations involved with large circuits slow down the computation), the

speed-up factor for Log2 is 215, which is much greater than those for other circuits

and is also better than the average of 192 for the CC-SPRA. The main reason is

that the correlation evaluation for CC-SPRA requires a reconvergent-fanout

investigation back all the way to the input, resulting in a time complexity of

O(M2), while the proposed method stops at maximum 4 levels of gate

TABLE IV. OUTPUT RELIABILITY ESTIMATION ERRORS, CPU TIME AND SPEEDUP

FACTOR FOR THE PROPOSED METHOD WITH COMPARISON

Circuit
𝐸𝑎𝑅 Avg.

CPU

time (s)

Speedup

with

prop.

Speedup

with CC-

SPRA
rg=0.90 rg=0.95 rg=0.99

C432 0.0060 0.0026 0.0012 0.39 160.52 108.09

C499 0.0054 0.0033 0.0015 0.76 182.24 195.43

C880 0.0122 0.0061 0.0023 1.18 109.93 194.22

C1355 0.0119 0.0088 0.0077 1.55 110.21 281.85

C1908 0.0117 0.0055 0.0024 2.34 136.18 352.41

C2670 0.0158 0.0146 0.0096 3.99 107.84 99.06

C5315 0.0223 0.0105 0.0078 8.13 75.56 321.36

C6288 0.0242 0.0179 0.0131 6.41 135.63 34.56

C7552 0.0217 0.0143 0.0096 13.22 97.54 144.11

Log2 0.0392 0.0288 0.0201 453.47 214.78 -

Average* 0.0146 0.0093 0.0061 ̶ 123.97 192.34

* The average is taken with circuit Log2 excluded.

50

investigation, making it possible to have an upper-bound for the processing time of

any input pair correlation evaluation. This suggests that the proposed method can

be more scalable and more advantageous for larger circuits. Also, it should be

mentioned that the scalability has become increasingly important for any CAD

methods/algorithms, given today’s large-scale circuits.

3.8 Summary

In this chapter, we have proposed a hybrid method to estimate both signal

probability and reliability for combinational circuits by categorizing all signal pairs

based on their correlation strength. The signals pairs with strong correlations are

handled by an analytic computation, leading to an accurate propagation of signal

probability and reliability through logic gates. Those with relatively weak

correlations are processed using local bitstream simulations which take signal

correlations into consideration (to a maximum extent) with high efficiency. The

signal pairs with extremely weak correlations are treated approximately as

independent. This combination of analysis and simulation makes the proposed

model competitive in terms of the tradeoff between accuracy and efficiency by

estimating both signal probability and reliability simultaneously. Comparing to the

recent CC-SPRA method, the proposed method is 3.59% and 0.44% more accurate

regarding probability and reliability estimation, and the time complexity is

improved from CC-SPRA’s O(M2) to O(M).

51

CHAPTER 4 PROBABILITY AND RELIABILITY ESTIMATION FOR

SEQUENTIAL CIRCUITS

In this chapter we focus on sequential circuit reliability analysis by considering

combinational logic and memory components. This involves how both probability

and reliability at the inputs of combinational logic are to be updated over a number

of iterations until they converge to final stable values. For any sequential circuit,

the total processing time equals to: 𝑡𝑐𝑜𝑚𝑏−𝐸𝑞 ∙ N𝑖𝑡𝑒𝑟, where 𝑡𝑐𝑜𝑚𝑏−𝐸𝑞 represents the

estimation time for its combinational equivalent, and N𝑖𝑡𝑒𝑟 is the number of

iterations needed before convergence. Therefore, the speed-up of convergence

process becomes comparably important to that of combinational equivalent

evaluation. In this chapter, we introduce a two-step convergence technique and

show how it reduces the number of iterations. The simulation results and summary

are followed as well.

4.1 Combinational Equivalent of Sequential Circuits

Sequential circuits contain both combinational logic and memory components

which introduce feedback loops into the circuit. Since most memory components

are simply D-Flip-Flops (DFFs), one can simply break all loops by creating

dummy inputs DIs (i.e., the outputs of DFFs) and dummy outputs DOs (i.e., the

inputs of DFFs) to transform sequential circuits into a sequence of combinational

logic networks, as in Fig.1.

4.2 Convergence Process Analysis and Two-Step-Convergence (TSC)

Method

 4.2.1 Convergence Process for Sequential Circuit

 Since the statistics of DIs are unknown initially, one can assume they all have

signal probability of 0.5 (i.e., fully random) and reliability of 1 before starting the

probability and reliability propagation through the combinational logic (as is

discussed in the previous section). The resulting statistics (i.e., both probability and

52

reliability) at the DOs would generally be different from that of DIs, and thus an

iterative process is required to reach a stable status (or a convergence point).

During this iterative process, we keep updating both probability and reliability at

DIs based on the differences between DIs and DOs until these differences in both

probability and reliability (including 𝑅0 and 𝑅1) are less than a specified threshold

value of 𝜀 (assuming DFFs are reliable). This iterative process can be described

by:

𝑄𝐷𝐼
𝑛+1 = 𝑄𝐷𝐼

𝑛 + 𝜂 ∙ (𝑄𝐷𝑂
𝑛 − 𝑄𝐷𝐼

𝑛) (4.1)

where 𝑛 is the number of iteration, Q represents either probability or reliability

element of DI or DO, and 𝜂 is an adjustment parameter (or step size) within [0, 1].

When 𝜂 = 1, we are simply using DO’s statistics in the n-th iteration as DI’s in the

(n+1)-th iteration. A larger value of 𝜂 means a faster step towards the convergence

point but may take more time in the later stage of the process. A typical value of 𝜂

is chosen as 0.1. While it was claimed by [27] that a good way of choosing 𝜂 is to

change it dynamically with an initial value of 0.5, some recent work, such as [5]

suggested a universal value of 0.1 for 𝜂 to make the convergence process

smoother, which is less efficient.

4.2.2 Two-Step-Convergence Method

In addition to the 𝜂 value, the choice of initial statistics can affect the

convergence process as well. If the initial reliabilities for DIs are set to the

maximum of 1, the reliabilities of DOs would be less than those of DIs due to

unreliable gates. Gradual reduction in DIs’ reliability will only result in decreasing

reliabilities at DOs, which means that the reliability convergence under this case

would be monotonous. This suggests that a simple linear regression can be applied

to find a set of initial reliability values to speed up the entire process. More

specifically, we can firstly do 𝑁𝑟𝑒𝑔 trial estimations to find out the ‘trends’ of the

input and output statistics for a specific pair of (DI, DO) with a relatively large

53

value of 𝜂 (say 0.4), and then apply a linear regression on input and output datasets

independently. The intersection point of the two lines serves as a new initial value

for the following fine-tuning process with 𝜂 being a smaller value (say 0.1). This

method is called two-step convergence (TSC). The reason we choose a relatively

large 𝜂 to begin with is that the proposed method contains bitstream simulations

which may introduce random fluctuations during the process. Therefore, to reduce

the impact of randomness, the step size 𝜂 should be large enough to provide

enough tolerance and maintain the accuracy level of regression. It should be noted

that the initial values of 𝑅0 and 𝑅1 are found independently.

As an illustration example, Fig. 7 shows a visualized comparison of convergence

progress for 𝑅0 (using 𝜀 = 0.003 , 𝑟𝑔 = 0.9) with a universal 𝜂 = 0.4 and TSC

(using 𝑁𝑟𝑒𝑔 = 3, 𝜂 = 0.4 initially and 𝜂 = 0.1 after regression) on the benchmark

circuit S27 with 3 DFFs. In Fig. 7, the dashed and solid lines represent DOs and

DIs, respectively.

 It can be seen from the figure that the TSC halves the required number of

iterations to reach the convergence, and the new initial points calculated from the

regression model are much closer to the actual convergence point.

More circuit results are reported in Table V, where the 𝑓 is a speedup factor that

compares the number of iterations required when using TSC versus choosing 𝜂 =

0.4 universally, and is defined as

𝑓 = (
𝑁𝜂=0.4 − 𝑁𝑇𝑆𝐶

𝑁𝜂=0.4
) ∙ 100% (4.2)

where 𝑁𝜂=0.4 and 𝑁𝑇𝑆𝐶 are the entries in the 3rd and 4th column of Table V,

respectively, with an average improvement of around 28% in terms of iterations.

54

(a) 𝜂 = 0.4 (universal value)

(b) TSC

Figure 7. Convergence process of 𝑅0 in circuit S27 with 3 DFFs.

4.3 Simulation Results and Performance Comparison

The proposed method was implemented using MATLAB on a DELL desktop

(OS: Windows 10) with CPU frequency of 3.2 GHz and 8GB RAM. Simulations

55

were conducted on benchmark circuits under the assumption that all primary inputs

are reliable and independent of each other with their signal probabilities of 0.5.

The length of bitstream sequences was set to L=1000, and the gate reliability to

𝑟𝑔 = 0.9. The TSC parameters were set as 𝜀 = 0.003, 𝑁𝑟𝑒𝑔 = 3, 𝜂 = 0.4 (during

first step) or 0.1 (during second step).

 Detailed simulation results for applying TSC on ISCAS’89 benchmark circuit

S27 are firstly presented in Table VI. In Table VI, we show data for reliability

converge process. The 3rd and 4th column shows the corresponding coefficient

obtained from linear regression using first 3 iterations. The former value represents

slop of the linear regression and latter one is the corresponding Y-axis intercept.

The 5th and 6th column compares the new initial calculated by TSC and the final

converged value. The last two columns compare the gap remained to reach

convergence for 4th iteration (Converged values-4th loop initials) using TSC and

traditional regression with η=0.4. The 0s reported for row ‘R1’ of DFF2 is because

of a probability equals to 0 for that signal, which means logic 1 reliability is not

applicable to it.

 It could be seen that by using TSC, the remained gaps were reduced

significantly, except for R1 estimation of DFF2 which simply reaches 0. The

largest gap difference happens for R1 estimation of DFF1, up to 0.0609. The

average improvement regarding remained absolute gap is 0.0343, which could

cause at least a few more iterations to be covered for traditional method.

Table V. COMPARISON OF NUMBER OF ITERATIONS TO CONVERGE

Circuit 𝜼 = 𝟎. 𝟏 𝜼 = 𝟎. 𝟒 𝜼 = 𝟎. 𝟒

(TSC)

𝒇(%)

S27 40 11 7 36.36

S298 74 14 12 14.28

S349 79 21 14 33.33

S444 80 21 16 23.81

S526 73 26 15 42.31

S635 88 24 23 4.17

S820 62 14 9 35.71

Average - - - 28.53

56

Since the efficiency of the convergence process will not affect the final

converged value, the output reliability accuracy for S27, along with some other

ISCAS’89 benchmark circuits results are shown in Table VII, with the comparison

between the proposed TSC and Seq-RE [24] in terms of both accuracy and speed

on some ISCAS’89 benchmark circuits, where the average error in reliability refers

to the average of reliability estimation errors (in percentage) over all outputs with a

circuit. Due to hardware limitations, we were not able to conduct the same MC

simulations as in [24] with 1012 full-circuit iterations. Instead, 105 MC iterations

were used in this work. It was found that the differences in MC results from 105

versus 1012 iterations are marginal (for instance, the absolute difference is less than

0.00004 with S27). It can be seen from the table that the speedup factor with TSC

is still around 102 times faster than Seq-RE. There are mainly two reasons behind

this efficiency. First, the Seq-RE uses a universal value of 𝜂 = 0.1 , which

significantly slows down the entire convergence process. Secondly, our TSC uses

direct calculations for popular correlation categories of ‘S2’ and ‘S3’, while the

Seq-RE requires full bitstreams to evaluate these two correlations.

TABLE VI S27 CONVERGENCE PROCESS INFORMATION

Number

of DFF

Reliability

element

Linear Regression coefficient (slop,

y intercept) New

Initials

Conv.

values

Remained absolute

gap (4th loop)

DI DO TSC Traditional

DFF1
R0 (-0.0294,0.9591) (0.0056,0.8260) 0.8470 0.8423 0.0047 0.0198

R1 (-0.0726,0.9301) (-0.0134,0.6703) 0.6125 0.6184 0.0059 0.0668

DFF2
R0 (-0.0501,0.9577) (-0.0141,0.7908) 0.7252 0.7249 0.0003 0.0568

R1 (-0.3000,0.8000) (0.0000,0.0000) 0 0 0 0

DFF3
R0 (-0.0267,0.9767) (-0.0069,0.8862) 0.8548 0.8552 0.0004 0.0295

R1 (-0.0395,0.9627) (-0.0072,0.8215) 0.7896 0.7891 0.0005 0.0446

Average - - - - - 0.0020 0.0363

57

Further detailed performance of the proposed TSC method is summarized in

Table VIII, where P and R refer to probability and reliability, respectively, and

DFF maximum errors represent the maximum absolute difference between DIs and

DOs when the convergence is reached. The results from Table VIII again show a

high level of efficiency and accuracy with the proposed method. Since the TSC

uses simulation-based estimation, random fluctuations may result in an increasing

number of iterations prior to convergence when circuits involve more DFFs.

Table VII. ACCURACY AND SPEED COMPARISON OF TSC AND SEQ-RE

Circuit

Gates

DFFs

Average errors

in reliability

(%)

Speed-up factor

against MC

TSC Seq-RE TSC Seq-RE

S27 10 3 0.03 0.01 3.46×102 4.00×104

S298 119 14 0.57 1.00 1.39×102 1.16×104

S349 161 15 0.40 1.50 1.46×102 1.50×104

S444 181 21 0.68 2.60 1.57×102 1.76×104

S526 193 21 0.58 2.30 1.48×102 1.69×104

S635 286 32 0.70 2.10 1.43×102 1.81×104

S820 288 5 0.78 2.20 1.39×102 1.85×104

S1196 529 18 1.04 2.84 1.88×102 2.47×104

S1488 653 103 1.18 2.00 1.71×102 2.59×104

S13207 7951 638 3.82 - 2.44×102 -

Ave* - - 0.66 1.83 1.75×102 2.09×104

 *S13207 is excluded while calculating the average.

Table VIII. DETAILED PERFORMANCE OF THE PROPOSED TSC

Circuit

Average

relative errors

in outputs (%)

DFF max. errors

Conv.

iterations

CPU

Time (s)

P R P R P R

S27 0.03 0.03 0.0013 0.0008 11 7 0.27

S298 0.85 0.57 0.0021 0.0021 44 12 10.32

S349 0.56 0.40 0.0028 0.0029 65 14 18.75

S444 0.72 0.68 0.0023 0.0028 73 16 26.63

S526 0.82 0.58 0.0027 0.0015 78 15 33.57

S635 0.89 0.70 0.0027 0.0029 82 23 49.24

S820 0.74 0.78 0.0023 0.0014 25 9 19.98

S1196 1.24 1.04 0.0030 0.0028 31 24 197.72

58

4.4 Summary

In this chapter, we have proposed a fast and effective hybrid method for

sequential circuit probability and reliability estimation. In combinational logic, we

combined both analytical and statistical methods to reach a good balance between

efficiency and accuracy in estimation. To speed up the convergence for sequential

circuits, a two-step convergence method was applied to further reduce the number

of iterations required. This TSC reaches average 30%, maximum 42%

improvement of convergence process efficiency on simulated benchmark

sequential circuits. The high efficiency of combinational model, combined with

fast convergence process, leads to a decent speed up factor, which is much higher

than what is achieved by Seq-RE.

59

CHAPTER 5 RELIABILITY ESTIMATION WITH CONSIDERATION OF

AGING EFFECT

The model discussed in Chapter 3 and 4 are coming with assumptions that

circuit is under zero-delay and the gate reliability is a constant. In real-world

circuits, the gate delay cannot be ignored, and after operating intensively for long

time, devices are experiencing aging effect and therefore reduce circuit reliability.

A key reliability issue is the Negative-bias temperature instability (NBTI) on

PMOS, which is caused by operating with negative gate-to-source voltage.

Without enough rest time, the positive charges trapped underneath the gate will

partially cancel the negative gate-to-source voltage and hence make it harder for

the transistors to be turned on, hence increase threshold voltage. This threshold

voltage change will not only affect the delay of the transistors, but also change the

behavior acting as a switch, leading to possible incorrect logic value at the output.

In this chapter, we first introduce a model using a single index for signal

reliability by combining spatial and temporal reliability, followed by discussions

on how to obtain spatial and temporal reliability separately. We then present

simulation results and summarize our work.

5.1 Spatial Reliability and Temporal Reliability

 5.1.1 Spatial Reliability and Spatial Probability of Failure (SPF)

 For a combinational circuit, if either an output signal arrives late, or its logic

value is incorrect, the sampled output value is considered as incorrect, and

therefore we have:

𝑝𝑓𝐶 = 𝑝𝑓𝐶
𝑇 + (1 − 𝑝𝑓𝐶

𝑇) ∙ 𝑝𝑓𝐶
𝑠 (5.1)

where 𝑝𝑓𝐶
𝑇 represents the probability that the signal arrives late and 𝑝𝑓𝐶

𝑠 = 1 − 𝑟𝐶
𝑆,

which is the probability that the produced logic value is incorrect.

60

 5.1.2 Temporal Reliability and Temporal Probability of Failure (TPF)

In sequential circuits, if a logic value arrives too late and exceeds the guard band,

the sampled output would be the value generated by the previous clock (CLK)

cycle, and there is a probability that the sampled data of current CLK cycle to be

accidentally correct. There are two possibilities to consider: 1. Last cycle logic

value was wrong, and the error free value of current cycle has an expected

switching. 2. Last cycle logic value is correct, and the error free value of current

cycle has no expected switching. However, it is impractical to accurately find out

if a switch is happening for each CLK cycle. Hence, we use output error free

probability to find the overall probability of switching activity. The output PF is

then approximated as follows:

𝑝𝑓𝐶 ≈ 𝑝𝑓𝐶
𝑇 ∗ [𝑝𝑓𝐶

𝑆 ∗ (1 − 𝑃𝑆𝑊𝐼) + (1 − 𝑝𝑓𝐶
𝑆) ∗ 𝑃𝑆𝑊𝐼]

+(1 − 𝑝𝑓𝐶
𝑇) ∙ 𝑝𝑓𝐶

𝑆 (5.2)

where 𝑃𝑆𝑊𝐼 = 2 ∙ 𝑃𝐶
∗ ∙ (1 − 𝑃𝐶

∗) represents the switching probability. It can be seen

that overall PF is reduced compared to a combinational case. Under extreme cases,

if 𝑝𝑓𝐶
𝑇 = 0 (i.e., the signal is always arriving on time), then 𝑝𝑓𝐶 = 𝑝𝑓𝐶

𝑆 according

to (5.2) which provides a same value as (5.1). If 𝑝𝑓𝐶
𝑆 = 0 , we have 𝑝𝑓𝐶 =

𝑝𝑓𝐶
𝑇𝑃𝑠𝑤1, which means that the output will always be correct if the signal arrives

on time. If the signal arrives late otherwise, the output could still be correct unless

there is a switching event.

 In the following section, we will introduce how to calculate/estimate the PFs

first, and then find the signal overall reliability using (5.1) or (5.2) accordingly.

5.2 Threshold Variation under Aging Effect

In this section, we modify some of previously developed model and introduce

how to apply it into full circuit reliability estimations with detailed error analysis.

61

As mentioned above, with the NBTI effect, the threshold value of MOSFETs

will increase, causing performance variation of logic gates. There are several

analytical NBTI models that have been introduced in [30, 31, 32], and a simplified

version (for an inverter) was proposed in [34] as follows:

∆𝑉𝑡ℎ = 𝑏 ∙ (1 − 𝑃𝑖𝑛)
𝑛 ∙ 𝑡𝑛 (5.3)

where 𝑏 = 3.9 ∙ 10−3, 𝑃𝑖𝑛 is the input probability, 𝑡 is the time that the device have

been working for, and 𝑛 is a time component factor with a standard value of 0.16.

However, since the input probabilities for a two-input logic gates (such as NAND

gate) are usually different, we take the smaller probability to estimate ∆𝑉𝑡ℎ in (5.3)

to ensure that the model covers the worst case.

5.3 Estimation of 𝑺𝑷𝑭

5.3.1 Estimation of SPF for MOSFETs

For 𝑝𝑓𝐶
𝑆 estimation, our focus is on identifying PF for every individual gate 𝑝𝑓𝑔,

i.e., the probability that the gate is not performing the logic function correctly, by

investigating the transistor performance. According to [32], the designed transistor

threshold voltages 𝑉𝑡ℎ can fluctuate due to oxide thickness variations [23], line

edge roughness [24], polysilicon granularity, and the combined effects of all these

factors. Simulation and some sample analysis [25-29] concluded that the real 𝑉𝑡ℎ

fluctuations can be treated as a Gaussian distribution 𝑁(𝑉𝑇𝐻, 𝜎𝑇𝐻
2), where the 𝑉𝑇𝐻

represents the designed threshold and 𝜎𝑇𝐻 is the standard deviation found from the

real threshold voltage. The PF for PMOS and NMOS can be given as follows

(assuming the transistor behaves like a binary switch around the threshold

voltage):

62

{

 𝑝𝑓𝑝(𝑣𝑖𝑛) = 0.5 ∙ 𝑒𝑟𝑓𝑐 (

|𝑣𝑖𝑛 − [𝑉𝐷𝐷 + 𝑉𝑡ℎ𝑝]|

𝜎𝑇𝐻,𝑝 ∙ √2
)

𝑝𝑓𝑛(𝑣𝑖𝑛) = 0.5 ∙ 𝑒𝑟𝑓𝑐 (
|𝑣𝑖𝑛 − 𝑉𝑡ℎ𝑛|

𝜎𝑇𝐻,𝑛 ∙ √2
)

(5.4)

where 𝜎𝑇𝐻 ≈ 𝑡𝑜𝑥𝑁𝐴
0.4/(𝐿𝑒𝑓𝑓𝑊𝑒𝑓𝑓)

0.5 (stands for both NMOS and PMOS), 𝑡𝑜𝑥 is

the oxide thickness, 𝑁𝐴 is the channel doping, 𝐿𝑒𝑓𝑓, 𝑊𝑒𝑓𝑓 are the effective length

and width of the channel, which are all determined by the given technology, and

𝑣𝑖𝑛 is the input voltage to the transistors. When the threshold voltage changes due

to aging, the 𝑝𝑓𝑛and 𝑝𝑓𝑝 would be different from their original values, and any

logic gate containing MOSFETS will perform differently.

5.3.2 Estimation of SPF for Logic Gates and Integrated Circuits

The gate PF can then be calculated using information provided by (5.4). Take

NAND gate as an example, as shown in Fig.8 where the four transistors are

independent of each other. The probability of failure of the NAND gate with

different input patterns (A, B), as mentioned in [19], is given by:

𝒑𝒇(𝑨𝑩)𝑵𝑨𝑵𝑫 =

{

𝑝𝑓(00) = 𝑝𝑓𝑇1
0 ⋅ 𝑝𝑓𝑇2

0 + 𝑝𝑓𝑇3
0 ⋅ 𝑝𝑓𝑇4

0 −

𝑝𝑓𝑇1
0 ⋅ 𝑝𝑓𝑇2

0 ⋅ 𝑝𝑓𝑇3
0 ⋅ 𝑝𝑓𝑇4

0

𝑝𝑓(01) = 𝑝𝑓𝑇1
1 ⋅ (1 − 𝑝𝑓𝑇2

0) + 𝑝𝑓𝑇3
0 ⋅ (1 − 𝑝𝑓𝑇4

1) −

𝑝𝑓𝑇1
1 ⋅ (1 − 𝑝𝑓𝑇2

0) ⋅ 𝑝𝑓𝑇3
0 ⋅ (1 − 𝑝𝑓𝑇4

1)

𝑝𝑓(10) = (1 − 𝑝𝑓𝑇1
0) ⋅ 𝑝𝑓𝑇2

1 + (1 − 𝑝𝑓𝑇3
1) ⋅ 𝑝𝑓𝑇4

0 −

𝑝𝑓𝑇1
0 ⋅ (1 − 𝑝𝑓𝑇2

1) ⋅ 𝑝𝑓𝑇3
1 ⋅ (1 − 𝑝𝑓𝑇4

0)

𝑝𝑓(11) = 1 − (1 − 𝑝𝑓𝑇1
1) ⋅ (1 − 𝑝𝑓𝑇2

1) ⋅

(1 − 𝑝𝑓𝑇3
1) ⋅ (1 − 𝑝𝑓𝑇4

1)

 (5.5)

where 𝑝𝑓𝑇𝑖
𝑗
 (𝑓𝑜𝑟 𝑖 = 1, 2, 3, 4, 𝑎𝑛𝑑 𝑗 = 0, 1) represents the PF for transistor i

using (5.4) when 𝑣𝑖𝑛 takes any value that represents logic j. However, it is a non-

trivial task to find the exact 𝑣𝑖𝑛 when input signals (A, B) arrive. The best solution

would be letting the 𝑣𝑖𝑛 be two standard values for logic 0 and 1 separately.

63

Considering the fact that 𝑣𝑖𝑛 is barely exceeding the designed noise margin, we

can let the designed 𝑣𝑖𝑛 be the following values with the assumption that the noise

margin is at 50% point of the two intervals [0, 𝑉𝑡ℎ] and [𝑉𝑡ℎ, 𝑉𝐷𝐷] for both PMOS

and NMOS transistors (taking the more strict boundaries):

{
𝑣𝑖𝑛
0 = min(0.5 ∙ (𝑉𝐷𝐷 + 𝑉𝑡ℎ𝑝) , 0.5 ∙ 𝑉𝑡ℎ𝑛)

𝑣𝑖𝑛
1 = 1 −min(0.5 ∙ (−𝑉𝑡ℎ𝑝), 0.5 ∙ (𝑉𝐷𝐷 − 𝑉𝑡ℎ𝑛))

(5.6)

where 𝑉𝐷𝐷 = 1𝑉 throughout this thesis. When 𝑝𝑓𝑁𝐴𝑁𝐷(𝑖𝑗) (𝑓𝑜𝑟 𝑖 = 0, 1, 𝑗 = 0, 1)

are found, the gate reliability is then given by:

𝑝𝑓𝑁𝐴𝑁𝐷 =∑𝑃𝑁𝐴𝑁𝐷(𝑖𝑗) 𝑝𝑓(𝑖𝑗) (5.7)

where 𝑃𝑁𝐴𝑁𝐷(𝑖𝑗) represents the joint probability that (A, B) takes ‘ij’ pattern,

which is well discussed in any propagation-based reliability estimation work (such

as [7]).

Figure 8. NAND logic gate

64

 For any other logic gates, equations similar to (5.5) can be easily derived. With

the availability of reliability for every single gate, it is possible to use the

methodology introduced in chapter 3 to find the output SPFs.

5.4 Estimation of TPF

5.4.1 Gate Delay Distribution

Estimation of 𝑝𝑓𝐶
𝑇 is different from that of 𝑝𝑓𝐶

𝑆 since we only consider the

impact of delay. It has shown [33, 34] that the delay of logic gates can be treated as

a linear function of 𝑉𝑡ℎ . Thus, when ∆𝑉𝑡ℎ goes up due to aging, the delay

increment of gate 𝑖 can be estimated as a linear function:

𝑡𝑝𝑖 = 𝑎0𝑖𝑛𝑣 + 𝑎1𝑖𝑛𝑣 ∙ ∆𝑉𝑡ℎ/𝑏 (5.8)

where 𝑡𝑝𝑖 is the real gate transition delay, 𝑎0𝑖 is the original intrinsic delay, and

𝑎1𝑖 is a constant. The 𝑎0𝑖 and 𝑎1𝑖 values for different gate type with given

technology can be calibrated using data simulated from PSPICE tools.

5.4.2 Circuit Delay Distribution and TPF Estimation

Since ∆𝑉𝑡ℎ is estimated as a deterministic value (instead of a distribution), the

degraded threshold voltage for a specific gate G can be expressed as

𝑉𝑡ℎ~𝑁(𝑉𝑇𝐻,𝐺 + ∆𝑉𝑡ℎ,𝐺 , 𝜎𝑇𝐻
2). The delay distribution can be found using (5.8) as:

𝐷𝑖~𝑁(𝑎0𝑖 + 𝑎1𝑖 ∗ ∆𝑉𝑡ℎ/𝑏, 𝜎𝐷
2), and the 𝜎𝐷 is a constant introduced by 𝜎𝑇𝐻 : 𝜎𝐷 =

𝑎1 ∙
𝜎𝑇𝐻

𝑏
 . By adding all gate delay distributions along the path, the distribution of

output delay 𝐷𝑂, which is also a Gaussian distribution, is found as follows:

𝐷𝑂~𝑁(∑𝑎0𝑖 + 𝑎1𝑖 ∙
∆𝑉𝑡ℎ
𝑏

,∑𝜎𝐷𝑖
2

𝑁𝐺

𝑖=1

𝑁𝐺

𝑖=1

) (5.9)

65

where NG is the number of gates along the path from primary inputs to a specific

output. We can then find the 𝑝𝑓𝑂
𝑇 using the cumulative density function (CDF) as:

𝑝𝑓𝑂
𝑇 = 1 − 𝑐𝑑𝑓(𝐷𝑂 = 𝐷𝐺𝐵) (5.10)

where 𝐷𝐺𝐵 represents the designed guard band delay which equals to
1

𝐶𝐿𝐾 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦
.

5.5 Algorithm Description

The propagation-based method used to find signal probabilities and joint

probabilities is out of this thesis’s scope but is well-developed in other prior works

such as [16]. In this work, we simply use MC simulation to find this information.

The pseudo-code of the proposed algorithm is given below:

Algorithm:

Begin:

 Read in circuit information (including input probabilities,

 initial gate PF, initial MOSFET threshold voltage

 distributions, circuit operation time t, and gate netlist);

 Sort all gates in a topologic order;

 Set delay indicator for all signals to 0;

 for i = 1 : NG (# gates)

 Spatial PF

 a) Find threshold voltage increment at time t:

 ∆𝑉𝑡ℎ = 𝑏 ∙ (1 − 𝑃𝑖𝑛)
𝑛 ∙ 𝑡𝑛;

 b) Find signal probability (𝑃𝐴and 𝑃𝐵) and their joint

 probability (𝑃𝐺𝐴𝑇𝐸) by MC simulations;

66

 c) Find 𝑝𝑓𝐺𝐴𝑇𝐸 using (5.4-5.7);

 d) Find 𝑃𝑂
∗and 𝑟0 at outputs by propagation analysis

 or MC simulation;

 Timing Analysis

 Find gate delay 𝑡𝑝𝑖 at time t by (5.8);

 End for

 An extra step for sequential circuit only:

Repeat the above for-loop until a stable state is

 reached

 End extra step

 Find output spatial PF: 𝑝𝑓𝑂
𝑠 = 1 − 𝑟𝑜;

 Find output delay distribution using (5.9) and 𝑡𝑝𝑖;

 Find output temporal PF 𝑝𝑓𝑂
𝑇 using (5.10);

 Find 𝑝𝑓𝑂 by (5.1) for combinational circuits or by

 (5.2) for sequential circuits.

End

5.6 Error Analysis

The first source of errors comes from the propagation model we chose.

Theoretically speaking, this error can be significantly reduced if Monte-Carlo

simulation is applied in this step. The second error source lies in the assumption

that 𝑣𝑖𝑛
0 and 𝑣𝑖𝑛

1 used in section 3.2 are two universal constants. In a real circuit,

the environmental noise is always involved even if the circuit is always working

under the worst case.

Table IX shows the difference between our proposed method and Monte-Carlo

simulation for NAND PF regarding multiple 𝑉𝑡ℎ (to simulate possible

degradation). In the MC simulation, a white noise with standard deviation of

67

𝑁𝑜𝑖𝑠𝑒 𝑀𝑎𝑟𝑔𝑖𝑛

12
 is added to 𝑣𝑖𝑛

0 and 𝑣𝑖𝑛
1 to simulate the worst-case scenario in real-

world, i.e., the device is always receiving inputs with voltage of

maximum/minimum logic 0/1 requirements, with possible environmental noise.

We assume the initial designed Vth for NMOS and PMOS are 0.6V and -0.6V,

respectively, and compare the PF when Vth increases to different values. The

𝑝𝑓𝑁𝐴𝑁𝐷 is calculated assuming all four patterns have equal probability. Fig. 9

shows the overall trends under the same settings.

It can be seen that our model overestimated the unreliability when ∆𝑉𝑡ℎ reaches

one-third of the original threshold voltage. The reason is that the transistor failure

rate decreases in logarithm scale according to (5.4). When noise is considered, the

PF of transistors drops dramatically while the proposed model assumes the PF is

always at the maximum point. Nonetheless, the proposed model still shows the

correct trend of how the PF for NAND gate changes. If the given noise has a

smaller standard deviation, the two curves shown in Fig. 9 would be closer to each

other and finally overlap when no noise exists.

TABLE IX. COMPARISON OF 𝑝𝑓𝑁𝐴𝑁𝐷 EVALUATED BY PROPOSED METHOD AND

MC SIMULATION

VthN, VthP (V) 𝒑𝒇(𝟎𝟎) 𝒑𝒇(𝟎𝟏) 𝒑𝒇(𝟏𝟎) 𝒑𝒇(𝟏𝟏) 𝒑𝒇𝑵𝑨𝑵𝑫

0.6, -0.6 1.32e-13 6.66e-31 6.66e-31 7.28e-7 1.82e-7

0.6, -0.6 (MC) 3.34e-11 1.31e-20 5.00e-23 7.91e-6 1.977e-6

0.75, -0.75 0.0024 5.58e-50 5.58e-50 0.0963 0.0247

0.75, -0.75 (MC) 0.0124 8.89e-41 2.79e-44 0.2093 0.0554

0.8, -0.8 0.25 1.49e-61 1.49e-61 0.75 0.25

0.8, -0.8 (MC) 0.0553 1.36e-56 1.74e-54 0.4143 0.1174

68

 The third source of errors has something to do with the linear model of gate

propagation delay evaluation. Fig. 9 shows the simulated delay of NAND gate

using PSPICE with default MOSFET parameters, except the absolute threshold

voltage of both PMOS and NMOS ranging from [0.6V, 0.8V] with increment of

0.05V (with the order from left to right in Fig. 10). The input A is set to be logic 1

and input B transits from 0 to 1 and back to 0.

Figure 9. 𝑝𝑓𝑁𝐴𝑁𝐷 trends as Vth changes

Figure 10. The transient process of output voltage for NAND gate

69

It can be seen from the figure that when ∆𝑉𝑡ℎ increases linearly, the tpHL and tpLH

are not sharing same increment. However, when ∆𝑉𝑡ℎ is relatively small, the

resulting delay increase can be treated as quasi-linear.

5.7 Simulation Results

In this section, we show some circuit simulation results using the proposed

method. We firstly take a close look at ISCAS’85 benchmark circuit C17, as

shown in Fig. 5. Assuming the original gate PF is 0.1 (or gate reliability is 0.9), all

primary inputs have probability of 0.5 and PF of 0, 𝑎0𝑁𝐴𝑁𝐷 = 50 , 𝑎1𝑁𝐴𝑁𝐷 = 0.59

(calibrated from PSPICE simulation data), 𝜎𝑇𝐻 = 30.28 ∗ 10
−3𝑉 for 35nm

technology for both NMOS and PMOS for simplicity, initial threshold voltage for

PMOS and NMOS are -0.6V and 0.6V, respectively, and designed CLK frequency

is 5GHz, i.e., 𝐷𝐺𝐵 = 200𝑝𝑠 (these settings are case sensitive and subject to

change). Using (5.8), the standard deviation of delay can be found to be 4.58ps.

Table X. Mean of Signal Delay for C17

Node Delay/Original Delay (ps)

1 month 1 year

Inputs 0/0 0/0

10, 11 59.04/50 63.45/50

16, 19 118.07/100 126.90/100

22, 23 176.72/150 189.77/150

Table XI. Spatial PFs for Elements in C17

Elements Increment of PF Initial PF

1 month 1 year

G1-G4 1.89E-8 4.42E-7 0.1

G5, G6 2.43E-8 6.13E-7 0.1

Output 22 2.10E-5 0.0006 0.224585

Output 23 8.00E-6 0.0002 0.239580

70

The mean of signal delay is shown in Table X for t = 2.63 ∙ 106𝑠, 3.16 ∙ 107𝑠 (i.e.

a month, and a year).

 Using (5.10), the corresponding PFs for one month was calculated as: 𝑝𝑓22
𝑇 =

𝑝𝑓23
𝑇 = 0.0075 , which increases to 0.0328 after being degraded over one-year

period. Considering the fact that originally the 𝑝𝑓22
𝑇 = 1.4𝐸−4 (without

considering aging issue), the degradation of transistors worsens the circuit

performance significantly based on the temporal analysis. With this information in

mind, the designers can either reduce the CLK frequency or implement the circuit

with shorter original delay to improve the 1-year performance and extend the

circuit’s expected lifetime. It should be noted that even for the same circuit with

different input probabilities, these values vary. For example, if the input

probabilities are zero, then the first two gates would be experiencing much more

degradation and hence increasing the overall delay.

As for 𝑝𝑓22
𝑆 , the gate PF increment is different as well due to the input signal

probability difference. The detailed changes of element (including gates and

outputs) spatial PFs are shown in Table XI along with their initials, where the data

of two outputs are simulated using Monte-Carlo simulation with 106 iterations.

With information from Table X, Table XI and (5.1), given circuit operation time

of 1 year, we have:

𝑝𝑓22 = 𝑝𝑓22
𝑇 + (1 − 𝑝𝑓22

𝑇) ∙ 𝑝𝑓22
𝑠 = 0.2500

𝑝𝑓23 = 𝑝𝑓23
𝑇 + (1 − 𝑝𝑓23

𝑇) ∙ 𝑝𝑓23
𝑠 = 0.2645

or

71

𝑟22 = 0.7500, 𝑟23 = 0.7355

which represents around 3% degradation when compared to the reliabilities of

𝑟22 = 0.7745 and 𝑟23 = 0.7606 without considering aging effect. This is mostly

due to an extra delay involved in this case, and the impact of spatial reliability was

observed to be marginal. However, under situations where the ∆𝑉𝑡ℎ varies

significantly, the spatial reliability can play a critical role, as shown in Table VIII,

and should be considered.

Similar simulations were also applied to other circuits with the results shown in

Table XI. The reliability degradation rate is calculated by
𝑝𝑓(𝐴𝑔𝑖𝑛𝑔)−𝑝𝑓(𝑁𝑜 𝐴𝑔𝑖𝑛𝑔)

1−𝑝𝑓(𝑁𝑜 𝐴𝑔𝑖𝑛𝑔)
∙

100%. It should be noted that the designed delay guard band was set to be 15%

more than the original delay, while the initial intrinsic delay was assumed to be

70ps for each gate (although they have different degradation rate) for simulations.

The initial gate PF was set to 0.01. Again, these settings can vary according to

specific situations. It can be seen from Table XI that the circuit degradation rate

ranges from 1.5% to 8.2%. In addition, it was found that the 𝑝𝑓𝑂
𝑆 value does not

change much regardless of the aging effect. Instead, the 𝑝𝑓𝑂
𝑇 is the main

contributor to the reliability degradation. This suggests that the designers should

focus on delay optimization to efficiently prolong the life of circuit operation.

Although the presented results are not verified using any hardware experiments

with above-mentioned assumptions, this work shows an example of how to

consider both spatial and temporal reliabilities and can be easily applied to

practical cases by simply substituting the assumptions.

72

5.8 Summary

 In this chapter, we have proposed a new circuit-level reliability evaluation

model to estimate signal reliability variations under aging effect. The model takes

both spatial and temporal reliabilities into consideration and studies the reliability

variations caused by the aging/NBTI effect. This helps designers predict potential

performance degradation for circuits to operate over an extended time. Simulations

on benchmark circuits have shown that the reliability degradation rate ranges from

1.5% to 8.2% over one-year period of operation, depending on specific circuits

TABLE XII. CIRCUIT RELIABILITY SIMULATIONS ON SOME ISCAS’85 AND

ISCAS’89 CIRCUITS WITH 1-YEAR OPERATION

Circuit

Avg. Parameters

with Aging

Avg. Parameters

without Aging Reliability

Degradation

Rate (%) 𝒑𝒇𝑶
𝑻 𝒑𝒇𝑶

𝑺 𝒑𝒇 𝒑𝒇𝑶
𝑻 𝒑𝒇𝑶

𝑺 𝒑𝒇

C432 0.023 0.081 0.110 0.000 0.078 0.078 3.47

C499 0.049 0.102 0.144 0.000 0.098 0.098 5.10

C880 0.062 0.163 0.212 0.000 0.156 0.156 6.64

C2670 0.038 0.149 0.182 0.000 0.133 0.133 5.65

C7552 0.044 0.207 0.243 0.000 0.175 0.175 8.24

S27 0.069 0.030 0.060 0.000 0.029 0.029 3.19

S298 0.051 0.062 0.071 0.000 0.057 0.057 1.48

S349 0.022 0.080 0.093 0.000 0.074 0.074 2.05

S444 0.034 0.075 0.089 0.000 0.070 0.070 2.04

73

CHAPTER 6

CONCLUSION AND FUTURE WORK

We have proposed a hybrid method to estimate both signal probability and

reliability for combinational circuits by categorizing all signal pairs based on their

correlation strength, under the assumption of zero-delay and constant gate

reliability. The signal pairs with strong correlations are handled by analytic

computation, leading to an accurate propagation of signal probability and

reliability through logic gates. Those with relatively weak correlations are

processed using local bitstream simulations which take signal correlations into

consideration (to a maximum extent) with high efficiency. Additionally, we have

proved that reconvergent-fanouts can be ignored when they are too far away from

signals of interest through simulation. Therefore, signal pairs with extremely weak

correlations are treated approximately as independent. This combination of

analysis and simulation makes the proposed model competitive in terms of the

tradeoff between accuracy and efficiency in estimating both signal probability and

reliability simultaneously. While maintaining high accuracy, the efficiency

improvement is twofold: 1. The proposed method has a linear time complexity. 2.

The CPU time required for obtaining signal probability prior to reliability

evaluation has been saved. These improvements significantly strengthen method

scalability. For sequential circuit evaluation, we introduced a TSC model to speed

up the convergence process. With the help of trial iterations, TSC can reduce the

number of iterations needed by up to 42%, on average 28%.

Without the zero-delay and constant gate reliability assumptions, we further

investigate signal reliability considering aging effect. We extend some existing

device-level models and present circuit-level aging effect evaluations. We

innovatively combine both temporal and spatial reliability into a proposed new

index to help designers better predict circuit performance under aging effects. The

74

simulation results show that circuit reliability degradation ranges from 1.5% to

8.2% over a one-year period of operation.

The suggested future work includes:

• Searching for better solutions for category ‘N’ correlation.

Although the bitstream can provide accurate results, it is relatively

time-consuming compared to analytical approaches. For better efficiency,

this part of process time should be further shortened.

• Searching for supportive theory for TSC.

We had an observation that when all gates are set to be reliable except

for one specific gate, the output reliability is following a quasi-linear

trend to this gate reliability. It might be a direction to find theoretical

support for TSC linear regression model.

• Considering more factors for temporal reliability model

 In Chapter 5, the proposed temporal reliability model only considers

late arrival. However, glitches as well as early arrivals of signals can

affect circuit probability/reliability. Moreover, the CLK generator is

experiencing aging effect, and the CLK signal may not be ideal after

intense long-term operation, which should be considered simultaneously.

75

REFERENCES/BIBLIOGRAPHY

[1] A. H. El-Maleh and K. A. K. Daud, “Simulation-based method for synthesizing soft

error tolerant combinational circuits,” IEEE Trans. Rel., vol. 64, no. 3, pp. 935–948,

Sep. 2015.

[2] S. Borkar, “Designing reliable systems from unreliable components: The challenges

of transistor variability and degradation,” IEEE Micro, vol. 25, no. 6, pp. 10–16,

Nov./Dec. 2005.

[3] N. R. Shanbhag et al., “The search for alternative computational paradigms,” IEEE

Des. Test Comput., vol. 25, no. 4, pp. 334–344, Jul./Aug. 2008.

[4] C. Constantinescu, “Trends and challenges in VLSI circuit reliability,” IEEE Micro,

vol. 23, no. 4, pp. 14-19, Jul./Aug. 2003

[5] H. Jahanirad, “CC-SPRA: Correlation coefficients approach for signal probability-

based reliability analysis,” IEEE Transactions on VLSI Systems, vol. 27, no. 4, pp.

927-939, Apr. 2019.

[6] R.Y. Rubinstein and D.P. Kroese, Simulation and the Monte Carlo Method, 2nd

Edition, John Wiley & Sons, New York, 2007

[7] J. von Neumann, “Probabilistic logics and synthesis of reliable organisms from

unreliable components,” Automata Studies, Eds. Princeton, NJ, USA: Princeton

Press, pp. 43–98, 2016.

[8] S. Krishnaswamy et al, “Probabilistic transfer matrices in symbolic reliability

analysis of logic circuits,” ACM Trans. Des. Automat. Electron. Syst., vol. 13, no. 1,

pp. 1–35, Jan. 2008.

[9] N. Mohyuddin, E. Pakbaznia, and M. Pedram, “Probabilistic error propagation in

logic circuits using the Boolean difference calculus,” Proc. IEEE Int. Conf.

Comput. Design, pp. 7–13 Oct. 2008

[10] D. T. Franco, M. C. Vasconcelos, L. Naviner, and J.-F. Naviner, “Signal

probability for reliability evaluation of logic circuits,” Microelectron. Rel., vol. 48,

pp. 1586–1591, Aug./Sep. 2008.

76

[11] J. T. Flaquer, J. M. Daveau, L. Naviner, and P. Roche, “Fast reliability analysis of

combinatorial logic circuits using conditional probabilities,” Microelectron. Rel.,

vol. 50, pp. 1215–1218, Sep./Nov. 2010.

[12] M. R. Choudhury and K. Mohanram, “Reliability analysis of logic circuits,” IEEE

Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 28, no. 3, pp. 392–405,

Mar. 2009.

[13] J. Han et al, “Reliability evaluation of logic circuits using probabilistic gate

models,” Microelectron. Rel., vol. 51,no. 2, pp. 468–476, Feb. 2011.

[14] A. Abdollahi, “Probabilistic decision diagrams for exact probabilistic analysis,”

Proc. IEEE/ACM Int. Conf. Comput.-Aided Design (CAD) , pp. 266–272, Nov.

2007

[15] Bo Yang et al, "An approach for digital Circuit Error/Reliability Propagation

Analysis based on Conditional Probability," 2016 27th Irish Signals and Systems

Conference (ISSC), pp. 1-6, Jun. 2016.

[16] T. Rejimon, K. Lingasubramanian, and S. Bhanja, “Probabilistic error modeling

for nano-domain logic circuits,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst.,

vol. 17, no. 1, pp. 55–65, Jan. 2009.

[17] S. Ercolani, M. Favalli, M. Damiani, P. Olivo, and B. Ricco, “Estimate of signal

probability in combinational logic networks,” Proc. 1st Eur. Test Conf., pp. 132–

138, Apr. 1989

[18] C. Chen and R. Xiao, “A fast model for analysis and improvement of gate-level

circuit reliability,” Integration, vol. 50, pp. 107–115, Jun. 2015.

[19] J. T. Flaquer et al, "An approach to reduce computational cost in combinatorial

logic netlist reliability analysis using circuit clustering and conditional

probabilities," 2011 IEEE 17th International On-Line Testing Symposium, pp. 98-

103, 2011.

[20] Ramin Rajaei, “Single Event Double Node Upset Tolerance in MOS/Spintronic

Sequential and Combinational Logic Circuits,” Microelectronics Reliability, vol.

69, pp 109-114, Dec. 2016.

77

[21] W. Elsharkasy et al, “Reliability Enhancement of Low-Power Sequential Circuits

Using Reconfigurable Pulsed Latches,” IEEE Transactions on Circuits and Systems

I : Regular Papers, vol. 64, no. 7, pp. 1803-1814, Jul. 2017

[22] M. Krstić et al, “Enhanced architectures for soft error detection and correction in

combinational and sequential circuits,” Microelectronics Reliability, vol. 56 pp 212-

220, Jan. 2016

[23] R. Ubar et al, “Fast identification of true critical paths in sequential circuits,”

Mircoelectronics reliability, vol. 81, pp 252-261, Feb. 2018.

[24] H. Jahanirad, “Efficient reliability evaluation of combinational and sequential

logic circuits,” J Comput Electron 18, 343–355, Dec. 2018.

[25] K. Mohammadi et al, "Fast Reliability Analysis Method for Sequential Logic

Circuits," 2011 21st International Conference on Systems Engineering, pp. 352-

356, 2011.

[26] H. Jahanirad and K. Mohammadi “SEQUENTIAL LOGIC CIRCUITS

RELIABILITY ANALYSIS,” Journal of Circuits, Systems and Computers, vol. 21,

no. 5, 2012.

[27] B. Srinivasu and K. Sridharan, "A transistor-level probabilistic approach for

reliability analysis of arithmetic circuits with applications to emerging

technologies," IEEE Transactions on Reliability, vol. 66, no. 2, pp. 440-457, Jun.

2017.

[28] B. C. Paul et al, “Temporal performance degradation under NBTI: Estimation and

design for improved reliability of nanoscale circuits,” DATE, pp. 780–785, 2006.

[29] W. Wang et al, “The impact of nbti on the performance of combinational and

sequential circuits” DAC, pp. 364–369, Jun. 2007.

[30] M. A. Alam and S. Mahapatra. “A comprehensive model of PMOS NBTI

degradation,” Microelectronics Reliability, vol. 45, 71–81, Aug. 2005.

[31] S. Bhardwaj et al. “Predictive modeling of the nbti effect for reliable design,”

CICC, pp. 189–192, Sep. 2006.

78

[32] S. V. Kumar et al. “An analytical model for negative bias temperature instability,”

ICCAD, pp. 493–496, 2006.

[33] W. Wang, et al “An efficient method to identify critical gates under circuit

aging.” IEEE/ACM International Conference on Computer-Aided Design, pp. 735-

740, Nov. 2007.

[34] A. Asenov et al. “Intrinsic threshold voltage fluctuations in decanano MOSFETs

due to local oxide thickness variations.” IEEE Trans. Electr. Dev., vol. 49, pp. 112–

119, Jan. 2002.

[35] G. Roy et al. “Simulation study of individual and combined sources of intrinsic

parameter fluctuations in conventional nano-MOSFETs,” IEEE Trans. Electr. Dev.,

vol. 53, pp. 3063–3070, Dec., 2006.

[36] K. Kuhn et al. “Managing process variations in Intel’s 45nm CMOS technology.”

Intel Tech. J., vol. 12, pp. 93–109, Jun. 2008.

[37] B. Cheng et al. “Evaluation of intrinsic parameter fluctuations on 45, 32 and

22nm technology node LP n-MOSFETs.” Proc. European Solid-State Dev. Res.

Conf. ESSDERC’08, pp. 47–50, Sep., 2008.

[38] C. Alexander et al, “Random dopant-induced drain current variation in nano-

MOSFETs: A three-dimensional self-consistent Monte Carlo simulation study using

“ab initio” ionized impurity scattering.” IEEE Trans. Electr. Dev., vol. 55, pp.

3251–3258, Nov., 2008.

[39] Y. Li et al. “Large-scale atomistic approach to random dopant-induced

characteristic variability in nanoscale CMOS digital and high-frequency integrated

circuits.” ICCAD, pp. 278–285, Nov. 2008.

[40] Ibrahim, W., and Beiu, V., “Reliability of NAND-2 CMOS gates from threshold

voltage variations.” IEEE International Conference on Innovations in Information

Technology (IIT), pp. 135-139, 2009

[41] De, S et al, “Negative bias temperature instability (NBTI) effects on p-Si/n-

InGaAs hybrid CMOSFETs for digital applications,” Microsystem Technologies,

vol. 26, no. 4, pp. 1173-1178, 2020.

79

[42] Aryan, N. P. et al, “From an analytic NBTI device model to reliability assessment

of complex digital circuits” IEEE 20th International On-Line Testing Symposium

(IOLTS), pp. 19-24, Jul. 2014

[43] T. Sakurai, “Alpha-Power Law MOSFET Model and its Applications to CMOS

Inverter Delay and Other Formulas”, IEEE Journal of Solid-State Circuits, vol. 25,

No.2, Apr. 1990.

[44] R. Chadha and J. bhasker, “Static Timing Analaysis for Nanometer Designs”,

Springer, ISBN 978-0-387-93819-6, 2009

[45] L. Scheffer et al, “Electronic Design Automation for Integrated Circuits

Handbook”, vol. II, Chapter 8. ISBN 0-8493-3096-3. 2005

[46] J. A. Delport and C. J. Fourie, "A Static Timing Analysis Tool for RSFQ and

ERSFQ Superconducting Digital Circuit Applications," IEEE Transactions on

Applied Superconductivity, vol. 28, no. 5, pp. 1-5, , Art no. 1300705, Aug., 2018.

[47] J. Han et al. "A Stochastic Computational Approach for Accurate and Efficient

Reliability Evaluation," IEEE Transactions on Computers, vol. 63, no. 6, pp. 1336 -

1350, Jun., 2014.

[48] M. Hansen et al, "Unveiling the ISCAS-85 Benchmarks: A Case Study in Reverse

Engineering," IEEE Design and Test, vol. 16, no. 3, pp. 72-80, Jul./Sep.. 1999

[49] L. Amarú et al, “The EPFL combinational benchmark suite,” Proc. the 24th

International Workshop on Logic & Synthesis (IWLS), pp. 57-61. 2015.

[50] S. Zhan and C. Chen, “Circuit Reliability Analysis with Consideration of Aging

Effect,” Proc. 35th Symposium on Integrated Circuits and Systems Design

(SBCCI), Aug. 2022.

[51] S. Zhan and C. Chen, “An Efficient Method for Sequential Circuit Reliability

Estimation,” Proc. 65th IEEE International Midwest Symposium on Circuits and

Systems (MWSCAS), Aug. 2022.

[52] S. Zhan and C. Chen, “A Hybrid Method for Signal Probability and Reliability

Estimation with Combinational Circuits,” Integration, the VLSI Journal (In press),

2022.

80

APPENDICES

Appendix A. Important MATLAB Code

The MATLAB code used for this thesis is attached in this

appendix. The code and functions are in same order as the

chapters.

The following codes are used for obtaining MC simulation

results for combinational circuits.

clear

clc;

Circuit = {'C17'};

% % load(['Circuit_decomp/',Circuit{1},'.mat']);

load([Circuit{1},'.mat']);

%% Basic Parameters

% Num_node = max(max(Gates));

% Num_gate = size(Gates,1);

% Num_input = size(Input,1);

% Num_output = size(Output,1);

Ind = Gates(:,1:3);

MC = 10^6;

Pin = 0.5*ones(1,Num_input);

rin = ones(1,Num_input);

Gates(Gates(:,5)==7,5)=8;

rg = 0.9;

% small nodes first, large nodes second

tic

% for i = 1:Num_gate

% if Gates(i,2)>Gates(i,3)

% Gates(i,2:3) = [Gates(i,3),Gates(i,2)];

% end

% end

%% Counters Initialization

tic;

NodevecStar = zeros(Num_node,1);

Nodevec = zeros(Num_node,1);

Pstarc = zeros(Num_node,1);

rallc = zeros(Num_node,2);

%% MC simulation

for i=1:MC

 NodevecStar = zeros(Num_node,1);

81

 %% Input Setup regarding to Pin, Node Reliability Setup

 for k = 1:Num_input

 NodevecStar(Input(k)) = (rand(1)<Pin(k));

 if rand(1)<rin(k)

 Nodevec(Input(k)) = NodevecStar(Input(k));

 else

 Nodevec(Input(k)) = 1-NodevecStar(Input(k));

 end

 end

 for j = 1:Num_gate

 x=Gates(j,:);

 %% simulate error-free value and real value

 %% Gate type: 1-NAND, 2-AND, 3-NOR, 4-OR, 5-NOT, 6-

BUFF, 7-XNOR, 8-XOR

 switch x(5)

 case {1}

 NodevecStar(x(1)) = 1-

and(NodevecStar(x(2)), NodevecStar(x(3)));

 if rand(1)<rg

 Nodevec(x(1)) = 1-and(Nodevec(x(2)),

Nodevec(x(3)));

 else

 Nodevec(x(1)) = and(Nodevec(x(2)),

Nodevec(x(3)));

 end

 case {2}

 NodevecStar(x(1)) = and(NodevecStar(x(2)),

NodevecStar(x(3)));

 if rand(1)<rg

 Nodevec(x(1)) = and(Nodevec(x(2)),

Nodevec(x(3)));

 else

 Nodevec(x(1)) = 1-and(Nodevec(x(2)),

Nodevec(x(3)));

 end

 case {3}

 NodevecStar(x(1)) = 1-or(NodevecStar(x(2)),

NodevecStar(x(3)));

 if rand(1)<rg

 Nodevec(x(1)) = 1-or(Nodevec(x(2)),

Nodevec(x(3)));

 else

 Nodevec(x(1)) = or(Nodevec(x(2)),

Nodevec(x(3)));

 end

 case {4}

82

 NodevecStar(x(1)) = or(NodevecStar(x(2)),

NodevecStar(x(3)));

 if rand(1)<rg

 Nodevec(x(1)) = or(Nodevec(x(2)),

Nodevec(x(3)));

 else

 Nodevec(x(1)) = 1-or(Nodevec(x(2)),

Nodevec(x(3)));

 end

 case {5}

 NodevecStar(x(1)) = not(NodevecStar(x(2)));

 if rand(1)<rg

 Nodevec(x(1)) = not(Nodevec(x(2)));

 else

 Nodevec(x(1)) = 1-not(Nodevec(x(2)));

 end

 case {6}

 NodevecStar(x(1)) = NodevecStar(x(2));

 if rand(1)<rg

 Nodevec(x(1)) = Nodevec(x(2));

 else

 Nodevec(x(1)) = 1-Nodevec(x(2));

 end

 case {7}

 NodevecStar(x(1)) = 1-

xor(NodevecStar(x(2)), NodevecStar(x(3)));

 if rand(1)<rg

 Nodevec(x(1)) = 1-xor(Nodevec(x(2)),

Nodevec(x(3)));

 else

 Nodevec(x(1)) = xor(Nodevec(x(2)),

Nodevec(x(3)));

 end

 case {8}

 NodevecStar(x(1)) = xor(NodevecStar(x(2)),

NodevecStar(x(3)));

 if rand(1)<rg

 Nodevec(x(1)) = xor(Nodevec(x(2)),

Nodevec(x(3)));

 else

 Nodevec(x(1)) = 1-xor(Nodevec(x(2)),

Nodevec(x(3)));

83

 end

 end

 %% Calculate Node Probability

 bitStreamMatStar(:,i)= NodevecStar;

 bitStreamMat(:,i) = Nodevec;

 if NodevecStar(x(1)) == 1

 Pstarc(x(1)) = Pstarc(x(1)) + 1;

 if Nodevec(x(1)) == 1

 rallc(x(1),2) = rallc(x(1),2)+1;

 end

 else

 if Nodevec(x(1)) == 0

 rallc(x(1),1) = rallc(x(1),1)+1;

 end

 end

 end

 i

end

G_ind = [Gates(:,1:3),Gates(:,5)];

r = rallc./[MC-Pstarc,Pstarc];

TMC = toc;

toc

sum(bitStreamMat(22,:)==bitStreamMatStar(22,:))/MC

sum(bitStreamMat(23,:)==bitStreamMatStar(23,:))/MC

% save bitStreamC17.mat

% eval(['save

BitStreamMat\bitStream',num2str(rg),'_',Circuit{1},'_',num2

str(MC),'.mat bitStreamMat bitStreamMatStar'])

% eval(['save bitStream',Circuit{1},'.mat bitStreamMat

bitStreamMatStar'])

84

The following codes are used to find frequency of

occurrences for signal correlations within circuit

clear

clc;

close all

Circuit = {'C1355'};

% load(['Circuit\',Circuit{1},'.mat']);

load(['Circuit_decomp\',Circuit{1},'.mat'])

Num_node = max(max(Gates));

Num_gate = size(Gates,1);

Num_input = size(Input,1);

Num_output = size(Output,1);

%% Gate type: 1-NAND, 2-AND, 3-NOR, 4-OR, 5-NOT, 6-BUFF, 7-

XNOR, 8-XOR

%% Initialization

Gates(Gates(:,4)==7,4)=8;

gatestrx =

{'NAND','AND','NOR','OR','NOT','BUFF','XNOR','XOR'};

invPair = Gates(Gates(:,3)==0,[2,1,5]); % signal 1, signal

2, Type (1 = not, 2 = buff)

tic;

cMat = []; % Correlation type matrix

sixc = 0;

C = [];

% bitStream_MC;

tic

for ipn = 1:Num_gate

 gateVec = Gates(ipn,:);

 [cMat,sixc] = CorrCate(gateVec(2),gateVec(3), cMat,

Gates, Input, invPair);

 ipn

end

T = toc;

Type = {'S1';'S2';'S3';'N1';'N2';'N3';'I';'N3-2';'N3-

3';'N3-4';'Approx.I'};

Occurence = zeros(11,1);

for i = 1:size(cMat)

 X = cMat(i,:);

 Occurence(X(3))= Occurence(X(3))+1;

85

 if X(3)==6

 if X(4)~=6

 Occurence(8)=Occurence(8)+1;

 elseif X(5)~=6

 Occurence(9)=Occurence(9)+1;

 elseif X(6)~=6

 Occurence(10)=Occurence(10)+1;

 else

 Occurence(11)=Occurence(11)+1;

 end

 end

end

Occurence = Occurence([1,2,3,4,5,7,11,8,9,10]);

Type = Type([1,2,3,4,5,7,11,8,9,10]);

CTable = rows2vars(table(Type,Occurence));

Per =

[sum(Occurence(1:3)),sum(Occurence(4:5)),sum(Occurence(6:7)

),...

 Occurence(8),Occurence(9),Occurence(10)]/Num_gate

sum(Per)

sum(Occurence(1:10))

function [cMat,sixc] = CorrCate(n1, n2, cMat, Gates,

Input,...

 invPair)

%find out correlation categories for each gate of a given

circuit

%% correlation type and order detection

sixc = 0;

h = [0,0,0,0]; % correlation type

Lis1 = n1; Lis2 = n2; % Lists for input pair detection on

level 1-3s

if n2~=0

 [v1,s1] = in_L4New(n1, Gates, Input);

 [v2,s2] = in_L4New(n2, Gates, Input);

 G1 = Gates(Gates(:,1)==n1,:);

 G2 = Gates(Gates(:,1)==n2,:);

 hi2 = [];

 for f = 1:4 %correlation detection flag

 for i1 = 1:size(Lis1,2)

 for i2 = 1:size(Lis2,2)

86

 hi1 = corrType(Lis1(i1),Lis2(i2), Gates,

Input, invPair);

 hi2 = [hi2;Lis1(i1),Lis2(i2),hi1];

 end

 end

 hi2 = sortrows(hi2,3);

 h(f) = hi2(1,3);

 if hi2(1,3)~=6

 break;

 else

 Lis1 = v1(s1(f)+1:s1(f+1));

 Lis2 = v2(s2(f)+1:s2(f+1));

 end

 end

 if h == [6,6,6,6]

 sixc = sixc + 1;

 h = [7,0,0,0];

 end

else

 h = [7,0,0,0]; %independent for inverter

end

cMat = [cMat;n1,n2,h];

end

function [h] = corrType(n1, n2, Gates, Input, invPair)

h = 0;

% [v1,s1] = in_L3New(n1, Gates, Input);

% [v2,s2] = in_L3New(n2, Gates, Input);

[v1,s1] = in_L4New(n1, Gates, Input);

[v2,s2] = in_L4New(n2, Gates, Input);

% G1 = Gates(Gates(:,1)==n1,:);

% G2 = Gates(Gates(:,1)==n2,:);

if n1==n2 || ismember([n1,n2],invPair(:,[1,2]),'rows')...

 || ismember([n2,n1],invPair(:,[1,2]),'rows')

 h = 1; % S1

elseif sum(ismember(v2(1:s2(1)),v1(s1(1)+1:s1(2))))||...

 sum(ismember(v1(1:s1(1)),v2(s2(1)+1:s2(2))))

 h = 2; % S2

elseif ~isempty(v1(s1(1)+1:s1(2))) && ...

(sum(ismember(v1(s1(1)+1:s1(2)),v2(s2(1)+1:s2(2))),'all')==

2||sum(ismember(v2(s2(1)+1:s2(2)),v1(s1(1)+1:s1(2))),'all')

==2)

 h = 3; % S3

elseif sum(ismember(v2(1:s2(1)),v1(s1(2)+1:s1(3))))||...

 sum(ismember(v1(1:s1(1)),v2(s2(2)+1:s2(3))))

87

 h = 4; % N1

elseif sum(ismember(v2(1:s2(1)),v1(s1(3)+1:s1(4))))||...

 sum(ismember(v1(1:s1(1)),v2(s2(3)+1:s2(4))))

 h = 5; % N2

elseif ismember(n1,Input) || ismember(n2,Input) && n1~=n2

 h = 7; % I, independent is the least correlated case

else

 h = 6;

end

end

function [v,s] = in_L4New(node1,Gates,Input)

%% return inputs from previous 4 levels. Inverter and

buffer is not counted

v = [];

s = zeros(1,5);

L = 1;

vOut = node1;

if ismember(node1,Input)

 v = node1;

 s(1) = 1;

else

 while L < 6

 i = 1;

 vPresent{L} = [vOut];

 [vL1,vL2] = deal([],[]);

 while i < size(vOut,2)+1

 if ismember(vOut(1,i),Input)

 i = i+1;

 continue;

 else

 vInP = Gates(Gates(:,1) == vOut(1,i),:);

 if ismember(vInP(5),[5,6])

 vL1 = [vL1,vInP(2)];

 vOut(1,i) = vL1(end);

 else

 vL2 = [vL2,vInP(2:3)];

 i = i+1;

 end

 end

 end

 vPresent{L} = [vPresent{L},vL1];

 s(L) = size(vPresent{L},2);

 vOut = vL2;

 L = L+1;

 end

88

 for i = 1:L-1

 v = [v,vPresent{i}];

 end

 s = cumsum(s);

end

end

89

The following codes are used for category S calculations

function [nP,jP,jC] = pS1(n1,n2,P,R,Gates,PM,C,Input,...

 invPair,bitStreamMatStar,rg)

% node pair-nP, joint Probability-jP, joint reliability-jR

jP = [P(n1,1), 0, 0, P(n1,2)];

jC = [R(n1,1), 0, 0, 1-R(n1,1);0,0,0,0;0,0,0,0;1-

R(n1,2),0,0,R(n1,2)];

MB = [rg,1-rg,0,0;1-rg,rg,0,0;0,0,rg,1-rg;0,0,1-rg,rg];

if n1==n2

 nP = [n1, n1];

else

 [n1,n2] = isinput(n1,n2,Gates);

 nP = [n1,n2]; % min first in PM matrix

 if invPair(invPair(:,1:2)==[n1,n2],3)==5

 jP = [0,P(n1,1),P(n1,2),0];

 jRS = [0,0,0,0;0,R(n1,1),1-R(n1,1),0;0,1-

R(n1,2),R(n1,2),0;0,0,0,0];

 jC = jRS*MB;

 else

 jC = jC*MB;

 end

end

end

function [nP,jP,jR] =

pS2(n1,n2,P,R,Gates,PM,C,Input,invPair,bitStreamMatStar)

[v1,s1] = in_L3New(n1, Gates, Input);

[v2,s2] = in_L3New(n2, Gates, Input);

G1 = Gates(Gates(:,1)==n1,:);

G2 = Gates(Gates(:,1)==n2,:);

fOutInv = 0;

fPairSwap = 0;

fInInv = 0;

if sum(ismember(v1(1:s1(1)),v2(s2(1)+1:s2(2))))

 L1 = v1(1:s1(1));

 x = L1(ismember(L1,v2(s2(1)+1:s2(2))));

 x = x(1);

 if x ~= n1

 fInInv = 1;

 end

 if ~isempty(invPair)

 if ismember(n2,invPair(:,1))

 vecInv2 = invPair(invPair(:,1)==n2,:);

90

 z = vecInv2(2);

 if vecInv2(3)==1

 fOutInv = 1;

 end

 if ismember(z,invPair(:,1))

 z = invPair(invPair(:,1)==z,2);

 if vecInv2(3)==1

 fOutInv = 1;

 end

 end

 else

 z = n2;

 end

 else

 z = n2;

 end

 G = Gates(Gates(:,1)==z,:);

 inPair = G(2:3);

 inPair(inPair==0) = [];

 xPrime = invPair(invPair(:,2)==x,1);

 if ismember(xPrime,inPair)

 fInInv = 1;

 x = xPrime;

 end

 y = inPair(inPair~=x);

 gateType = G(4);

elseif sum(ismember(v2(1:s2(1)),v1(s1(1)+1:s1(2))))

 L1 = v2(1:s2(1));

 x = L1(ismember(L1,v1(s1(1)+1:s1(2))));

 x = x(1);

 if x ~= n2

 fInInv = 1;

 end

 fPairSwap = 1;

 if ~isempty(invPair)

 if ismember(n1,invPair(:,1))

 vecInv1 = invPair(invPair(:,1)==n1,:);

 z = vecInv1(2);

 if vecInv1(3)==1

 fOutInv = 1;

 end

 if ismember(z,invPair(:,1))

 z = invPair(invPair(:,1)==z,2);

 if vecInv1(3)==1

 fOutInv = 1;

 end

91

 end

 else

 z = n1;

 end

 else

 z = n1;

 end

 G = Gates(Gates(:,1)==z,:);

 inPair = G(2:3);

 inPair(inPair==0) = [];

 xPrime = invPair(invPair(:,2)==x,1);

 if ismember(xPrime,inPair)

 fInInv = 1;

 x = xPrime;

 end

 y = inPair(inPair~=x);

 gateType = G(4);

end

pVec = PM(sum(ismember(PM(:,1:2),[x,y]),2)==2,:);

CXY = C{sum(ismember(PM(:,1:2),[x,y]),2)==2};

if size(pVec,1)>1

 pVec = pVec(1,:);

end

if x == pVec(1)

 pXY = pVec(3:6);

else

 pXY = pVec([3,5,4,6]);

 CXY = CXY([1,3,2,4],[1,3,2,4]);

end

%% Gate type: 1-NAND, 2-AND, 3-NOR, 4-OR, 5-NOT, 6-BUFF, 7-

XNOR, 8-XOR

mAND = [1,0,0,0;1,0,0,0;0,0,1,0;0,0,0,1];

mOR = [1,0,0,0;0,1,0,0;0,0,0,1;0,0,0,1];

mXOR = [1,0,0,0;0,1,0,0;0,0,0,1;0,0,1,0];

mBUF = [1,0,0,0;0,0,0,0;0,0,0,0;0,0,0,1];

switch gateType

 case {1,2}

 mT = mAND;

 TM =

(pXY./[pXY(1)+pXY(2),pXY(1)+pXY(2),pXY(3),pXY(4)]);

 case {3,4}

 mT = mOR;

 TM =

(pXY./[pXY(1),pXY(2),pXY(3)+pXY(4),pXY(3)+pXY(4)]);

 case {5,6}

92

 mT = mBUF;

 case {7,8}

 mT = mXOR;

 TM = [1,1,1,1];

end

if mod(gateType,2)==1

 mModify = [0,1,0,0;1,0,0,0;0,0,0,1;0,0,1,0];

else

 mModify = 1;

end

jP = pXY * mT * mModify;

jC = mT'*diag(TM)*CXY*mT;

if fOutInv == 1

 jP = jP([2,1,4,3]);

 jC = jC([2,1,4,3],[2,1,4,3]);

end

if fInInv == 1

 jP = jP([3,4,1,2]);

 jC = jC([3,4,1,2],[3,4,1,2]);

end

nP = [n1,n2];

if fPairSwap == 1

 jP = jP([1,3,2,4]);

end

end

function [nP,jP,jR] = pS3(n1, n2, Pstar, Gates, PM, C, ...

 Input,invPair,bitStreamMatStar,bitStreamMat)

[v1,s1] = in_L3New(n1, Gates, Input);

[v2,s2] = in_L3New(n2, Gates, Input);

G1 = Gates(Gates(:,1)==n1,:);

G2 = Gates(Gates(:,1)==n2,:);

fOutInvA = 0;fOutInvB = 0;

fPairSwap = 0;

fInInvXA = 0;fInInvXB = 0; fInInvYA = 0; fInInvYB = 0;

x =

if s1(1)==2

 fOutInvA = 1;

end

if s2(1)==2

 fOutInvB = 1;

end

if ~ismember(x,[v1(s(1)+1),v1(s(1)+2)])

 fInInvXA = 1;

end

93

if sum(ismember(v1(1:s1(1)),v2(s2(1)+1:s2(2))))

 L1 = v1(1:s1(1));

 x = L1(ismember(L1,v2(s2(1)+1:s2(2))));

 x = x(1);

 if x ~= n1

 fInInv = 1;

 end

 if ~isempty(invPair)

 if ismember(n2,invPair(:,1))

 vecInv2 = invPair(invPair(:,1)==n2,:);

 z = vecInv2(2);

 if vecInv2(3)==1

 fOutInv = 1;

 end

 if ismember(z,invPair(:,1))

 z = invPair(invPair(:,1)==z,2);

 if vecInv2(3)==1

 fOutInv = 1;

 end

 end

 else

 z = n2;

 end

 else

 z = n2;

 end

 G = Gates(Gates(:,1)==z,:);

 inPair = G(2:3);

 inPair(inPair==0) = [];

 xPrime = invPair(invPair(:,2)==x,1);

 if ismember(xPrime,inPair)

 fInInv = 1;

 x = xPrime;

 end

 y = inPair(inPair~=x);

 gateType = G(4);

elseif sum(ismember(v2(1:s2(1)),v1(s1(1)+1:s1(2))))

 L1 = v2(1:s2(1));

 x = L1(ismember(L1,v1(s1(1)+1:s1(2))));

 x = x(1);

 if x ~= n2

 fInInv = 1;

 end

 fPairSwap = 1;

 if ~isempty(invPair)

94

 if ismember(n1,invPair(:,1))

 vecInv1 = invPair(invPair(:,1)==n1,:);

 z = vecInv1(2);

 if vecInv1(3)==1

 fOutInv = 1;

 end

 if ismember(z,invPair(:,1))

 z = invPair(invPair(:,1)==z,2);

 if vecInv1(3)==1

 fOutInv = 1;

 end

 end

 else

 z = n1;

 end

 else

 z = n1;

 end

 G = Gates(Gates(:,1)==z,:);

 inPair = G(2:3);

 inPair(inPair==0) = [];

 xPrime = invPair(invPair(:,2)==x,1);

 if ismember(xPrime,inPair)

 fInInv = 1;

 x = xPrime;

 end

 y = inPair(inPair~=x);

 gateType = G(4);

end

pVec = PM(sum(ismember(PM(:,1:2),[x,y]),2)==2,:);

CXY = C{sum(ismember(PM(:,1:2),[x,y]),2)==2};

if size(pVec,1)>1

 pVec = pVec(1,:);

end

if x == pVec(1)

 pXY = pVec(3:6);

else

 pXY = pVec([3,5,4,6]);

 CXY = CXY([1,3,2,4],[1,3,2,4]);

end

%% Gate type: 1-NAND, 2-AND, 3-NOR, 4-OR, 5-NOT, 6-BUFF, 7-

XNOR, 8-XOR

mAND = [1,0,0,0;1,0,0,0;0,0,1,0;0,0,0,1];

mOR = [1,0,0,0;0,1,0,0;0,0,0,1;0,0,0,1];

mXOR = [1,0,0,0;0,1,0,0;0,0,0,1;0,0,1,0];

95

mBUF = [1,0,0,0;0,0,0,0;0,0,0,0;0,0,0,1];

switch gateType

 case {1,2}

 mT = mAND;

 TM =

(pXY./[pXY(1)+pXY(2),pXY(1)+pXY(2),pXY(3),pXY(4)]);

 case {3,4}

 mT = mOR;

 TM =

(pXY./[pXY(1),pXY(2),pXY(3)+pXY(4),pXY(3)+pXY(4)]);

 case {5,6}

 mT = mBUF;

 case {7,8}

 mT = mXOR;

 TM = [1,1,1,1];

end

if mod(gateType,2)==1

 mModify = [0,1,0,0;1,0,0,0;0,0,0,1;0,0,1,0];

else

 mModify = 1;

end

jP = pXY * mT * mModify;

jC = mT'*diag(TM)*CXY*mT

if fOutInv == 1

 jP = jP([2,1,4,3]);

 jC = jC([2,1,4,3],[2,1,4,3]);

end

if fInInv == 1

 jP = jP([3,4,1,2]);

 jC = jC([3,4,1,2],[3,4,1,2]);

end

nP = [n1,n2];

if fPairSwap == 1

 jP = jP([1,3,2,4]);

end

end

96

The following codes are used for bitstream generations.

For generation based on one existed sequence:

function [SimPvec,SimRvec] =

bitGen1(n1,SimP2,SimR2,CJM,bitLength)

%generate bitstream for n1 based on exist n2

SimPvec = [n1];

SimRvec = [n1];

for ilength = 1:bitLength

 ran = rand(1);

 if [SimP2(ilength),SimR2(ilength)]==[0,0]

 CJMvec = [CJM(1,1),CJM(1,3),CJM(3,1),CJM(3,3)];

 CJMvec = cumsum(CJMvec/sum(CJMvec));

 if ran < CJMvec(1)

 SimPvec = [SimPvec,0];

 SimRvec = [SimRvec,0];

 elseif ran<CJM(2)

 SimPvec = [SimPvec,0];

 SimRvec = [SimRvec,1];

 elseif ran<CJM(3)

 SimPvec = [SimPvec,1];

 SimRvec = [SimRvec,0];

 else

 SimPvec = [SimPvec,1];

 SimRvec = [SimRvec,1];

 end

 elseif [SimP2(ilength),SimR2(ilength)]==[0,1]

 CJMvec = [CJM(1,2),CJM(1,4),CJM(3,2),CJM(3,4)];

 CJMvec = cumsum(CJMvec/sum(CJMvec));

 if ran < CJMvec(1)

 SimPvec = [SimPvec,0];

 SimRvec = [SimRvec,0];

 elseif ran<CJM(2)

 SimPvec = [SimPvec,0];

 SimRvec = [SimRvec,1];

 elseif ran<CJM(3)

 SimPvec = [SimPvec,1];

 SimRvec = [SimRvec,0];

 else

 SimPvec = [SimPvec,1];

 SimRvec = [SimRvec,1];

 end

 elseif [SimP2(ilength),SimR2(ilength)]==[1,0]

 CJMvec = [CJM(2,1),CJM(2,3),CJM(4,1),CJM(4,3)];

 CJMvec = cumsum(CJMvec/sum(CJMvec));

 if ran < CJMvec(1)

 SimPvec = [SimPvec,0];

97

 SimRvec = [SimRvec,0];

 elseif ran<CJM(2)

 SimPvec = [SimPvec,0];

 SimRvec = [SimRvec,1];

 elseif ran<CJM(3)

 SimPvec = [SimPvec,1];

 SimRvec = [SimRvec,0];

 else

 SimPvec = [SimPvec,1];

 SimRvec = [SimRvec,1];

 end

 else

 CJMvec = [CJM(2,2),CJM(2,4),CJM(4,2),CJM(4,4)];

 CJMvec = cumsum(CJMvec/sum(CJMvec));

 if ran < CJMvec(1)

 SimPvec = [SimPvec,0];

 SimRvec = [SimRvec,0];

 elseif ran<CJM(2)

 SimPvec = [SimPvec,0];

 SimRvec = [SimRvec,1];

 elseif ran<CJM(3)

 SimPvec = [SimPvec,1];

 SimRvec = [SimRvec,0];

 else

 SimPvec = [SimPvec,1];

 SimRvec = [SimRvec,1];

 end

 end

end

SimPvec = [SimPvec;SimP2];

SimRvec = [SimRvec;SimR2];

end

98

Generating 2 bitstreams when both signals are not generated

 function [SimPvec,SimRvec] =

bitGen2(n1,n2,pVec,CJM,bitLength)

% generate 2 bitstreams when both n1 and n2 are not

generated

SimPvec = [n1;n2];

SimRvec = [n1;n2];

for ilength = 1:bitLength

 pVec = cumsum(pVec);

 ranP = rand(1);

 ranR = rand(1);

 if ranP<pVec(1)

 SimPvec = [SimPvec,[0;0]];

 CJMvec = cumsum(CJM(1,:));

 if ranR < CJMvec(1)

 SimRvec = [SimRvec,[0;0]];

 elseif ranR<CJMvec(2)

 SimRvec = [SimRvec,[0;1]];

 elseif ranR<CJMvec(3)

 SimRvec = [SimRvec,[1;0]];

 else

 SimRvec = [SimRvec,[1;1]];

 end

 elseif ranP<pVec(2)

 SimPvec = [SimPvec,[0;1]];

 CJMvec = cumsum(CJM(2,:));

 if ranR < CJMvec(1)

 SimRvec = [SimRvec,[0;0]];

 elseif ranR<CJMvec(2)

 SimRvec = [SimRvec,[0;1]];

 elseif ranR<CJMvec(3)

 SimRvec = [SimRvec,[1;0]];

 else

 SimRvec = [SimRvec,[1;1]];

 end

 elseif ranP<pVec(3)

 SimPvec = [SimPvec,[1;0]];

 CJMvec = cumsum(CJM(3,:));

 if ranR < CJMvec(1)

 SimRvec = [SimRvec,[0;0]];

 elseif ranR<CJMvec(2)

 SimRvec = [SimRvec,[0;1]];

 elseif ranR<CJMvec(3)

 SimRvec = [SimRvec,[1;0]];

 else

99

 SimRvec = [SimRvec,[1;1]];

 end

 else

 SimPvec = [SimPvec,[1;1]];

 CJMvec = cumsum(CJM(4,:));

 if ranR < CJMvec(1)

 SimRvec = [SimRvec,[0;0]];

 elseif ranR<CJMvec(2)

 SimRvec = [SimRvec,[0;1]];

 elseif ranR<CJMvec(3)

 SimRvec = [SimRvec,[1;0]];

 else

 SimRvec = [SimRvec,[1;1]];

 end

 end

end

end

100

The following codes are used to deal with category N

function [nP,jP,jC] =

pS4(n1,n2,P,R,Gates,PM,C,Input,invPair,bitStreamMatStar,bit

StreamMat,rg,bitLength)

SimPbit = [];

SimRbit = [];

path = findpathN1(n1,n2,Gates,Input, invPair);

for iBit = 1:size(path,2)

 G = Gates(Gates(:,1)==path(iBit),:);

 %% input pair bitstream generation

 if G(3)~=0

 pVec =

PM(sum(ismember(PM(:,1:2),[G(2),G(3)]),2)==2,:);

 CJM =

C{sum(ismember(PM(:,1:2),[G(2),G(3)]),2)==2};

 if G(2) == pVec(1)

 pVec = pVec(3:6);

 else

 pVec = pVec([3,5,4,6]);

 CJM = CXY([1,3,2,4],[1,3,2,4]);

 end

 if ~isempty(SimPbit)

 n1Exi = ismember(G(2),SimPbit(:,1)); % check if

bitstream existed or not

 n2Exi = ismember(G(3),SimPbit(:,1));

 else

 n1Exi = 0;

 n2Exi = 0;

 end

 if n1Exi

 SimP2 = SimPbit(SimPbit(:,1)==G(2),:);

 SimR2 = SimPbit(SimRbit(:,1)==G(2),:);

 [SimPvec,SimRvec] =

bitGen1(G(3),SimP2,SimR2,CJM([1,3,2,4],[1,3,2,4]),bitLength

);

 SimPbit = [SimPbit;SimPvec(1,:)];

 SimRbit = [SimRbit;SimRvec(1,:)];

 elseif n2Exi

 SimP2 = SimPbit(SimPbit(:,1)==G(3),:);

 SimR2 = SimPbit(SimRbit(:,1)==G(3),:);

 [SimPvec,SimRvec] =

bitGen1(G(2),SimP2,SimR2,CJM,bitLength);

 SimPbit = [SimPbit;SimPvec(1,:)];

 SimRbit = [SimRbit;SimRvec(1,:)];

 else

101

 [SimPvec,SimRvec] =

bitGen2(G(2),G(3),pVec,CJM,bitLength);

 SimPbit = [SimPbit;SimPvec];

 SimRbit = [SimRbit;SimRvec];

 end

 %% propagate to output for current gate on path

 SimPOut(1) = G(1);

 SimROut(1) = G(1);

 for iprop = 1:bitLength

 switch G(end)

 case {1}

 SimPOut(1,iprop+1) = 1-

and(SimPvec(1,iprop+1), SimPvec(2,iprop+1));

 if rand(1)<rg

 SimROut(1,iprop+1) = 1-

and(SimRvec(1,iprop+1), SimRvec(2,iprop+1));

 else

 SimROut(1,iprop+1) =

and(SimRvec(1,iprop+1), SimRvec(2,iprop+1));

 end

 case {2}

 SimPOut(1,iprop+1) =

and(SimPvec(1,iprop+1), SimPvec(2,iprop+1));

 if rand(1)<rg

 SimROut(1,iprop+1) =

and(SimRvec(1,iprop+1), SimRvec(2,iprop+1));

 else

 SimROut(1,iprop+1) = 1-

and(SimRvec(1,iprop+1), SimRvec(2,iprop+1));

 end

 case {3}

 SimPOut(1,iprop+1) = 1-

or(SimPvec(1,iprop+1), SimPvec(2,iprop+1));

 if rand(1)<rg

 SimROut(1,iprop+1) = 1-

or(SimRvec(1,iprop+1), SimRvec(2,iprop+1));

 else

 SimROut(1,iprop+1) =

or(SimRvec(1,iprop+1), SimRvec(2,iprop+1));

 end

 case {4}

 SimPOut(1,iprop+1) =

or(SimPvec(1,iprop+1), SimPvec(2,iprop+1));

 if rand(1)<rg

 SimROut(1,iprop+1) =

or(SimRvec(1,iprop+1), SimRvec(2,iprop+1));

102

 else

 SimROut(iprop+1) = 1-

or(SimRvec(1,iprop+1), SimRvec(2,iprop+1));

 end

 case {7}

 SimPOut(1,iprop+1) = 1-

xor(SimPvec(1,iprop+1), SimPvec(2,iprop+1));

 if rand(1)<rg

 SimROut(1,iprop+1) = 1-

xor(SimRvec(1,iprop+1), SimRvec(2,iprop+1));

 else

 SimROut(1,iprop+1) =

xor(SimRvec(1,iprop+1), SimRvec(2,iprop+1));

 end

 case {8}

 SimPOut(1,iprop+1) =

xor(SimPvec(1,iprop+1), SimPvec(2,iprop+1));

 if rand(1)<rg

 SimROut(1,iprop+1) =

xor(SimRvec(1,iprop+1), SimRvec(2,iprop+1));

 else

 SimROut(iprop+1) = 1-

xor(SimRvec(1,iprop+1), SimRvec(2,iprop+1));

 end

 end

 end

 SimPbit = [SimPbit;SimPOut];

 SimRbit = [SimRbit;SimROut];

 else

 SimPOut(1) = G(1);

 SimROut(1) = G(1);

 if ~isempty(SimPbit)

 n1Exi = ismember(G(2),SimPbit(:,1));

 else

 n1Exi = 0;

 end

 if n1Exi

 SimPvec = SimPbit(SimPbit(:,1)==G(2),:);

 SimRvec = SimRbit(SimPbit(:,1)==G(2),:);

 else

 SimPvec(1) = G(2);

 SimRvec(1) = G(2);

 for ilength = 1:bitLength

 ranP = rand(1);

 ranR = rand(1);

103

 if ranP < P(G(2),1)

 SimPvec(ilength+1) = 0;

 if ranR < R(G(2),1)

 SimRvec(ilength+1) = 0;

 else

 SimPvec(ilength+1) = 1;

 end

 else

 SimPvec(ilength+1) = 1;

 if ranR < R(G(2),2)

 SimRvec(ilength+1) = 1;

 else

 SimPvec(ilength+1) = 0;

 end

 end

 end

 end

 for iprop = 1:bitLength

 switch G(end)

 case {5}

 SimPOut(iprop+1) = 1-

SimPvec(1,iprop+1);

 if rand(1)<rg

 SimROut(iprop+1) = 1-

SimPvec(1,iprop+1);

 else

 SimROut(iprop+1) =

SimPvec(1,iprop+1);

 end

 case {6}

 SimPOut(iprop+1) = SimPvec(1,iprop+1);

 if rand(1)<rg

 SimROut(iprop+1) =

SimPvec(1,iprop+1);

 else

 SimROut(iprop+1) = 1-

SimPvec(1,iprop+1);

 end

 end

 end

 SimPbit = [SimPbit;SimPOut];

 SimRbit = [SimRbit;SimROut];

 if ~n1Exi

 SimPbit = [SimPbit;SimPvec];

 SimRbit = [SimRbit;SimRvec];

 end

104

 end

end

nP = [n1,n2];

[jP,jC] = bitCount(n1,n2,SimPbit,SimRbit);

end

function [nP,jP,jC] =

pS5(n1,n2,P,R,Gates,PM,C,Input,invPair,bitStreamMatStar,bit

StreamMat,rg,bitLength)

SimPbit = [];

SimRbit = [];

path = findpathN2(n1,n2,Gates,Input, invPair);

for iBit = 1:size(path,2)

 G = Gates(Gates(:,1)==path(iBit),:);

 %% input pair bitstream generation

 if G(3)~=0

 pVec =

PM(sum(ismember(PM(:,1:2),[G(2),G(3)]),2)==2,:);

 CJM =

C{sum(ismember(PM(:,1:2),[G(2),G(3)]),2)==2};

 if G(2) == pVec(1)

 pVec = pVec(3:6);

 else

 pVec = pVec([3,5,4,6]);

 CJM = CXY([1,3,2,4],[1,3,2,4]);

 end

 if ~isempty(SimPbit)

 n1Exi = ismember(G(2),SimPbit(:,1)); % check if

bitstream existed or not

 n2Exi = ismember(G(3),SimPbit(:,1));

 else

 n1Exi = 0;

 n2Exi = 0;

 end

 if n1Exi

 SimP2 = SimPbit(SimPbit(:,1)==G(2),:);

 SimR2 = SimPbit(SimRbit(:,1)==G(2),:);

 [SimPvec,SimRvec] =

bitGen1(G(3),SimP2,SimR2,CJM([1,3,2,4],[1,3,2,4]),bitLength

);

 SimPbit = [SimPbit;SimPvec(1,:)];

 SimRbit = [SimRbit;SimRvec(1,:)];

105

 elseif n2Exi

 SimP2 = SimPbit(SimPbit(:,1)==G(3),:);

 SimR2 = SimPbit(SimRbit(:,1)==G(3),:);

 [SimPvec,SimRvec] =

bitGen1(G(2),SimP2,SimR2,CJM,bitLength);

 SimPbit = [SimPbit;SimPvec(1,:)];

 SimRbit = [SimRbit;SimRvec(1,:)];

 else

 [SimPvec,SimRvec] =

bitGen2(G(2),G(3),pVec,CJM,bitLength);

 SimPbit = [SimPbit;SimPvec];

 SimRbit = [SimRbit;SimRvec];

 end

 %% propagate to output for current gate on path

 SimPOut(1) = G(1);

 SimROut(1) = G(1);

 for iprop = 1:bitLength

 switch G(end)

 case {1}

 SimPOut(iprop+1) = 1-

and(SimPvec(1,iprop+1), SimPvec(2,iprop+1));

 if rand(1)<rg

 SimROut(iprop+1) = 1-

and(SimRvec(1,iprop+1), SimRvec(2,iprop+1));

 else

 SimROut(iprop+1) =

and(SimRvec(1,iprop+1), SimRvec(2,iprop+1));

 end

 case {2}

 SimPOut(iprop+1) =

and(SimPvec(1,iprop+1), SimPvec(2,iprop+1));

 if rand(1)<rg

 SimROut(iprop+1) =

and(SimRvec(1,iprop+1), SimRvec(2,iprop+1));

 else

 SimROut(iprop+1) = 1-

and(SimRvec(1,iprop+1), SimRvec(2,iprop+1));

 end

 case {3}

 SimPOut(iprop+1) = 1-

or(SimPvec(1,iprop+1), SimPvec(2,iprop+1));

 if rand(1)<rg

 SimROut(iprop+1) = 1-

or(SimRvec(1,iprop+1), SimRvec(2,iprop+1));

 else

106

 SimROut(iprop+1) =

or(SimRvec(1,iprop+1), SimRvec(2,iprop+1));

 end

 case {4}

 SimPOut(iprop+1) =

or(SimPvec(1,iprop+1), SimPvec(2,iprop+1));

 if rand(1)<rg

 SimROut(iprop+1) =

or(SimRvec(1,iprop+1), SimRvec(2,iprop+1));

 else

 SimROut(iprop+1) = 1-

or(SimRvec(1,iprop+1), SimRvec(2,iprop+1));

 end

 case {7}

 SimPOut(iprop+1) = 1-

xor(SimPvec(1,iprop+1), SimPvec(2,iprop+1));

 if rand(1)<rg

 SimROut(iprop+1) = 1-

xor(SimRvec(1,iprop+1), SimRvec(2,iprop+1));

 else

 SimROut(iprop+1) =

xor(SimRvec(1,iprop+1), SimRvec(2,iprop+1));

 end

 case {8}

 SimPOut(iprop+1) =

xor(SimPvec(1,iprop+1), SimPvec(2,iprop+1));

 if rand(1)<rg

 SimROut(iprop+1) =

xor(SimRvec(1,iprop+1), SimRvec(2,iprop+1));

 else

 SimROut(iprop+1) = 1-

xor(SimRvec(1,iprop+1), SimRvec(2,iprop+1));

 end

 end

 end

 SimPbit = [SimPbit;SimPOut];

 SimRbit = [SimRbit;SimROut];

 else

 SimPOut(1) = G(1);

 SimROut(1) = G(1);

 if ~isempty(SimPbit)

 n1Exi = ismember(G(2),SimPbit(:,1));

 else

 n1Exi = 0;

 end

107

 if n1Exi

 SimPvec = SimPbit(SimPbit(:,1)==G(2),:);

 SimRvec = SimRbit(SimPbit(:,1)==G(2),:);

 else

 SimPvec(1) = G(2);

 SimRvec(1) = G(2);

 for ilength = 1:bitLength

 ranP = rand(1);

 ranR = rand(1);

 if ranP < P(G(2),1)

 SimPvec(ilength+1) = 0;

 if ranR < R(G(2),1)

 SimRvec(ilength+1) = 0;

 else

 SimPvec(ilength+1) = 1;

 end

 else

 SimPvec(ilength+1) = 1;

 if ranR < R(G(2),2)

 SimRvec(ilength+1) = 1;

 else

 SimPvec(ilength+1) = 0;

 end

 end

 end

 end

 for iprop = 1:bitLength

 switch G(end)

 case {5}

 SimPOut(iprop+1) = 1-

SimPvec(1,iprop+1);

 if rand(1)<rg

 SimROut(iprop+1) = 1-

SimPvec(1,iprop+1);

 else

 SimROut(iprop+1) =

SimPvec(1,iprop+1);

 end

 case {6}

 SimPOut(iprop+1) = SimPvec(1,iprop+1);

 if rand(1)<rg

 SimROut(iprop+1) =

SimPvec(1,iprop+1);

 else

 SimROut(iprop+1) = 1-

SimPvec(1,iprop+1);

108

 end

 end

 end

 SimPbit = [SimPbit;SimPOut];

 SimRbit = [SimRbit;SimROut];

 if ~n1Exi

 SimPbit = [SimPbit;SimPvec];

 SimRbit = [SimRbit;SimRvec];

 end

 end

end

nP = [n1,n2];

[jP,jC] = bitCount(n1,n2,SimPbit,SimRbit);

end

function [nP,jP,jC] = pS7(n1,n2,P,R)

nP = [n1,n2];

jP =

[P(n1,1)*P(n2,1),P(n1,1)*P(n2,2),P(n1,2)*P(n2,1),P(n1,2)*P(

n2,2)];

jC = [R(n1,1)*R(n2,1),R(n1,1)*(1-R(n2,1)),(1-

R(n1,1))*R(n2,1),(1-R(n1,1))*(1-R(n2,1));...

 R(n1,1)*(1-R(n2,2)),R(n1,1)*R(n2,2),(1-R(n1,1))*(1-

R(n2,2)),(1-R(n1,1))*R(n2,2);...

 (1-R(n1,2))*R(n2,1),(1-R(n1,2))*(1-

R(n2,1)),R(n1,2)*R(n2,1),R(n1,2)*(1-R(n2,1));...

 (1-R(n1,2))*(1-R(n2,2)),(1-R(n1,2))*R(n2,2),R(n1,2)*(1-

R(n2,2)),R(n1,2)*R(n2,2)];

end

109

The following codes are used for gate propagation, from (A,

B) to D

 % M, First row is signal pair, second row is P_j, third

row is R_j

% AND

pIJ = PM(ipn,3:6);

P(gateVec(1),:) = [1-pIJ(4),pIJ(4)];

CJ = C{ipn};

R(gateVec(1),:) =

[sum(pIJ(1:3)*CJ(1:3,1:3))/P(gateVec(1),1),sum(pIJ(4)*CJ(4,

4))/P(gateVec(1),2)];

R(gateVec(1),:) = R(gateVec(1),:).*(2*rg-1)+[1-rg,1-rg];

% M, First row is signal pair, second row is P_j, third row

is R_j

% NAND

pIJ = PM(ipn,3:6);

P(gateVec(1),:) = [pIJ(4),1-pIJ(4)];

CJ = C{ipn};

R(gateVec(1),:) =

[sum(pIJ(4)*CJ(4,4))/P(gateVec(1),1),sum(pIJ(1:3)*CJ(1:3,1:

3))/P(gateVec(1),2)];

R(gateVec(1),:) = R(gateVec(1),:).*(2*rg-1)+[1-rg,1-rg];

% M, First row is signal pair, second row is P_j, third row

is R_j

% NOR

pIJ = PM(ipn,3:6);

P(gateVec(1),:) = [1-pIJ(1),pIJ(1)];

CJ = C{ipn};

R(gateVec(1),:) =

[sum(pIJ(2:4)*CJ(2:4,2:4))/P(gateVec(1),1),sum(pIJ(1)*CJ(1,

1))/P(gateVec(1),2)];

R(gateVec(1),:) = R(gateVec(1),:).*(2*rg-1)+[1-rg,1-rg];

% M, First row is signal pair, second row is P_j, third row

is R_j

% NOT

pInputJoint = P(gateVec(2),:);

rInputJoint = R(gateVec(2),:);

P(gateVec(1),:) = [pInputJoint(2),pInputJoint(1)];

R(gateVec(1),:) = [rInputJoint(2),rInputJoint(1)]*(2*rg-

1)+[1-rg,1-rg];

110

% M, First row is signal pair, second row is P_j, third row

is R_j

% OR

pIJ = PM(ipn,3:6);

P(gateVec(1),:) = [pIJ(1),1-pIJ(1)];

CJ = C{ipn};

R(gateVec(1),:) =

[sum(pIJ(1)*CJ(1,1))/P(gateVec(1),1),sum(pIJ(2:4)*CJ(2:4,2:

4))/P(gateVec(1),2)];

R(gateVec(1),:) = R(gateVec(1),:).*(2*rg-1)+[1-rg,1-rg];

% M, First row is signal pair, second row is P_j, third row

is R_j

% XNOR

pInputJoint = PM(ipn,3:6);

CJ = C{ipn};

P(gateVec(1),:)=

[pInputJoint(2)+pInputJoint(3),pInputJoint(1)+pInputJoint(4

)];

% M, First row is signal pair, second row is P_j, third row

is R_j

% XOR

pIJ = PM(ipn,3:6);

P(gateVec(1),:)= [pIJ(1)+pIJ(4),pIJ(2)+pIJ(3)];

CJ = C{ipn};

R(gateVec(1),:) =

[sum(pIJ([1,4])*CJ([1,4],[1,4]))/P(gateVec(1),1),sum(pIJ([2

,3])*CJ([2,3],[2,3]))/P(gateVec(1),2)];

R(gateVec(1),:) = R(gateVec(1),:).*(2*rg-1)+[1-rg,1-rg];

% M, First row is signal pair, second row is P_j, third row

is R_j

% BUFF

pInputJoint = P(gateVec(2),:);

rInputJoint = R(gateVec(2),:);

P(gateVec(1),:) = [pInputJoint(1),pInputJoint(2)];

R(gateVec(1),:) = [rInputJoint(1),rInputJoint(2)]*(2*rg-

1)+[1-rg,1-rg];

111

The following codes are used to investigate convergence

process for sequential circuit, using traditional

convergence or TSC

clear

clc;

close all;

load('Circuit\s27.mat');

%% Basic Parameters

Num_node = max(max(Gates));

Num_gate = size(Gates,1);

Num_input = size(Input,1);

Num_output = size(Output,1);

Ind = Gates(:,1:3);

MC = 2*10^4;

rg = 0.9;

[R0, R1] = deal(zeros(Num_node,1),zeros(Num_node,1));

Pin = 0.5*ones(1,Num_input);

r0_in = ones(1,Num_input);

r1_in = ones(1,Num_input);

ita = 0.4;

itarec(1,1) = ita;

i1 = 0; i0=0;

Gates(Gates(:,5)==7,5)=8;

CC = 1;

exitflag = 0;

exitP = 0;

exitR = 0;

%% Counters Initialization

Nodevec = zeros(Num_node,1);

NodevecStar = zeros(Num_node,1);

%% MC simulation

%% P* Convergence

clear R1rec R0rec Prec R1recIn R0recIn PrecIn;

CC = 1;

exitflag = 0;

[R0, R1] = deal(zeros(Num_node,1),zeros(Num_node,1));

112

Pin = 0.5*ones(1,Num_input);

r0_in = ones(1,Num_input);

r1_in = ones(1,Num_input);

tic;

while (CC==1 || CC < 100) && (exitP == 0)

 Pstarc = zeros(Num_node,1);

 for i=1:MC

 NodevecStar = zeros(Num_node,1);

 for k = 1:Num_input

 NodevecStar(Input(k)) = (rand(1)<Pin(k));

 end

 % Gate type: 1-NAND, 2-AND, 3-NOR, 4-OR, 5-NOT, 6-

BUFF, 7-XNOR, 8-XOR

 for j = 1:Num_gate

 x=Gates(j,:);

 switch x(5)

 case {1}

 NodevecStar(x(1)) = 1-

and(NodevecStar(x(2)), NodevecStar(x(3)));

 case {2}

 NodevecStar(x(1)) =

and(NodevecStar(x(2)), NodevecStar(x(3)));

 case {3}

 NodevecStar(x(1)) = 1-

or(NodevecStar(x(2)), NodevecStar(x(3)));

 case {4}

 NodevecStar(x(1)) =

or(NodevecStar(x(2)), NodevecStar(x(3)));

 case {5}

 NodevecStar(x(1)) =

not(NodevecStar(x(2)));

 case {6}

 NodevecStar(x(1)) = NodevecStar(x(2));

 case {7}

 NodevecStar(x(1)) = 1-

xor(NodevecStar(x(2)), NodevecStar(x(3)));

 case {8}

 NodevecStar(x(1)) =

xor(NodevecStar(x(2)), NodevecStar(x(3)));

 end

 % Calculate Node Probability

 if NodevecStar(x(1)) == 1

 Pstarc(x(1)) = Pstarc(x(1)) + 1;

 end

 end

 end

113

 PS = Pstarc./MC;

 PS(Input) = Pin;

 for iDFF = 1:size(indDFF,1)

 xD = indDFF(iDFF,:);

 xIn = find(Input==xD(1));

 Pdif(iDFF,CC+1) = PS(xD(2))-PS(xD(1));

 Pin(xIn) = Pin(xIn)-ita*(Pin(xIn)-PS(xD(2)));

 Prec(iDFF,CC) = PS(xD(2));

 PrecIn(iDFF,CC) = Pin(xIn);

 end

 CC = CC+1

 if max(abs(Pdif(:,end)),[],'all')<0.003

 numPConv = CC-1;

 exitP = 1;

 end

end

Prec(Prec>0.99) = 1;

Prec(Prec<0.01) = 0;

PrecIn(Prec>0.99) = 1;

PrecIn(Prec<0.01) = 0;

TPstar = toc;

save pStarConv.mat

%% R convergence

clear;

clc;

load pStarConv.mat

for reg_length = 3

 PinDFF = Prec(:,end);

 Pin = 0.5*ones(1,Num_input);

 Pin(1,end-size(PinDFF,1)+1:end) = PinDFF;

 TCC = 0;

 clear R1rec R0rec R1recIn R0recIn R0 R1;

 CC = 1;

 exitflag = 0;

 [R0, R1] = deal(zeros(Num_node,1),zeros(Num_node,1));

 r0_in = ones(1,Num_input);

 r1_in = ones(1,Num_input);

 tic;

 % while (CC==1 || CC <50) && (exitP == 0 ||

exitR == 0)

 while (CC==1 || CC < 100) && (exitR == 0)

 [R0, R1] =

deal(zeros(Num_node,1),zeros(Num_node,1));

114

 Pstarc = zeros(Num_node,1);

 for i=1:MC

 NodevecStar = zeros(Num_node,1);

 % Input Setup regarding to Pin, Node

Reliability Setup

 for k = 1:Num_input

 NodevecStar(Input(k)) = (rand(1)<Pin(k));

 if (NodevecStar(Input(k))==1 &&

rand(1)<r1_in(k))||...

 (NodevecStar(Input(k))==0 &&

rand(1)<r0_in(k))

 Nodevec(Input(k)) =

NodevecStar(Input(k));

 else

 Nodevec(Input(k)) = 1-

NodevecStar(Input(k));

 end

 end

 for j = 1:Num_gate

 x=Gates(j,:);

 % simulate error-free value and real value

 % Gate type: 1-NAND, 2-AND, 3-NOR, 4-OR, 5-

NOT, 6-BUFF, 7-XNOR, 8-XOR

 switch x(5)

 case {1}

 NodevecStar(x(1)) = 1-

and(NodevecStar(x(2)), NodevecStar(x(3)));

 if rand(1)<rg

 Nodevec(x(1)) = 1-

and(Nodevec(x(2)), Nodevec(x(3)));

 else

 Nodevec(x(1)) =

and(Nodevec(x(2)), Nodevec(x(3)));

 end

 case {2}

 NodevecStar(x(1)) =

and(NodevecStar(x(2)), NodevecStar(x(3)));

 if rand(1)<rg

 Nodevec(x(1)) =

and(Nodevec(x(2)), Nodevec(x(3)));

 else

 Nodevec(x(1)) = 1-

and(Nodevec(x(2)), Nodevec(x(3)));

 end

 case {3}

115

 NodevecStar(x(1)) = 1-

or(NodevecStar(x(2)), NodevecStar(x(3)));

 if rand(1)<rg

 Nodevec(x(1)) = 1-

or(Nodevec(x(2)), Nodevec(x(3)));

 else

 Nodevec(x(1)) =

or(Nodevec(x(2)), Nodevec(x(3)));

 end

 case {4}

 NodevecStar(x(1)) =

or(NodevecStar(x(2)), NodevecStar(x(3)));

 if rand(1)<rg

 Nodevec(x(1)) =

or(Nodevec(x(2)), Nodevec(x(3)));

 else

 Nodevec(x(1)) = 1-

or(Nodevec(x(2)), Nodevec(x(3)));

 end

 case {5}

 NodevecStar(x(1)) =

not(NodevecStar(x(2)));

 if rand(1)<rg

 Nodevec(x(1)) =

not(Nodevec(x(2)));

 else

 Nodevec(x(1)) = 1-

not(Nodevec(x(2)));

 end

 case {6}

 NodevecStar(x(1)) =

NodevecStar(x(2));

 if rand(1)<rg

 Nodevec(x(1)) = Nodevec(x(2));

 else

 Nodevec(x(1)) = 1-

Nodevec(x(2));

 end

 case {7}

 NodevecStar(x(1)) = 1-

xor(NodevecStar(x(2)), NodevecStar(x(3)));

 if rand(1)<rg

 Nodevec(x(1)) = 1-

xor(Nodevec(x(2)), Nodevec(x(3)));

116

 else

 Nodevec(x(1)) =

xor(Nodevec(x(2)), Nodevec(x(3)));

 end

 case {8}

 NodevecStar(x(1)) =

xor(NodevecStar(x(2)), NodevecStar(x(3)));

 if rand(1)<rg

 Nodevec(x(1)) =

xor(Nodevec(x(2)), Nodevec(x(3)));

 else

 Nodevec(x(1)) = 1-

xor(Nodevec(x(2)), Nodevec(x(3)));

 end

 end

 % Calculate Node Probability and

reliability

 if NodevecStar(x(1)) == 1

 if x(1)==30

 i1 = i1+1;

 end

 Pstarc(x(1)) = Pstarc(x(1)) + 1;

 if NodevecStar(x(1)) == Nodevec(x(1))

 R1(x(1)) = R1(x(1))+1;

 end

 else

 if x(1)==30

 i0 = i0+1;

 end

 if NodevecStar(x(1)) == Nodevec(x(1))

 R0(x(1)) = R0(x(1))+1;

 end

 end

 end

 end

 R1 = R1./Pstarc;

 R0 = R0./(MC-Pstarc);

 R1(isnan(R1)) = 0;

 R0(isnan(R0)) = 0;

 R1(Input) = r1_in';

 R0(Input) = r0_in';

117

 for iDFF = 1:size(indDFF,1)

 xD = indDFF(iDFF,:);

 xIn = find(Input==xD(1));

 R0dif(iDFF,CC) = R0(xD(2))-R0(xD(1));

 R1dif(iDFF,CC) = R1(xD(2))-R1(xD(1));

 r0_in(xIn) = r0_in(xIn)-ita*(r0_in(xIn)-

R0(xD(2)));

 r1_in(xIn) = r1_in(xIn)-ita*(r1_in(xIn)-

R1(xD(2)));

 R1rec(iDFF,CC) = R1(xD(2));

 R0rec(iDFF,CC) = R0(xD(2));

 R1recIn(iDFF,CC) = r1_in(xIn);

 R0recIn(iDFF,CC) = r0_in(xIn);

 if Pin(xIn) <= 10^-2

 r1_in(xIn) = 0;

 elseif Pin(xIn) >= 1-10^-2

 r0_in(xIn) = 0;

 end

 end

 CC = CC+1

 if

mean(abs([R0dif(:,end),R1dif(:,end)]),'all')<0.003

 numRConv = CC-1;

 exitR = 1;

 end

 % regression

% if CC == reg_length+1

% for iDFF = 1:size(indDFF,1)

% X = [1:reg_length];

% % xD =

indDFF(iDFF,:);

% xD = indDFF(iDFF,:);

% xIn = find(Input==xD(1));

%

% mR1O = fitlm(X,R1rec(iDFF,(CC-

reg_length):(CC-1))); mR1In = fitlm(X,R1recIn(iDFF,(CC-

reg_length):(CC-1)));

% coR1O(:,iDFF) =

mR1O.Coefficients.Estimate([2,1]);

% coR1In(:,iDFF) =

mR1In.Coefficients.Estimate([2,1]);

118

% r1_in(xIn) =

(coR1O(1,iDFF)*coR1In(2,iDFF)-

coR1O(2,iDFF)*coR1In(1,iDFF))/(coR1O(1,iDFF)-

coR1In(1,iDFF));

%

% mR0O = fitlm(X,R0rec(iDFF,(CC-

reg_length):(CC-1))); mR0In = fitlm(X,R0recIn(iDFF,(CC-

reg_length):(CC-1)));

% coR0O(:,iDFF) =

mR0O.Coefficients.Estimate([2,1]);

% coR0In(:,iDFF) =

mR0In.Coefficients.Estimate([2,1]);

% r0_in(xIn) =

(coR0O(1,iDFF)*coR0In(2,iDFF)-

coR0O(2,iDFF)*coR0In(1,iDFF))/(coR0O(1,iDFF)-

coR0In(1,iDFF));

%

% end

%

% if r0_in(xIn)<0

% r0_in(xIn) = 0;

% end

% if r0_in(xIn)>1

% r0_in(xIn) = 1;

% end

%

% if r1_in(xIn)<0

% r1_in(xIn) = 0;

% end

% if r1_in(xIn)>1

% r1_in(xIn) = 1;

% end

%

% if Pin(xIn) == 0

% r1_in(xIn) = 0;

% elseif Pin(xIn) == 1

% r0_in(xIn) = 0;

% end

%

%

% ita = 0.1;

%

% end

 end

 TCC = toc;

119

 % T(reg_length-2)=mean(TCC);

end

% T = T/10;

figure(1)

color = ['r','b','k'];

linespec = ['>','h','p'];

hold

for i = 1:size(indDFF,1)

 plot(R1rec(i,:),['--

',linespec(i),color(i)],'LineWidth',2)

 plot(R1recIn(i,:),['-

',linespec(i),color(i)],'LineWidth',2)

end

set(gca,'FontSize',40)

legend('DI 1','DO 1','DI 2','DO 2','DI 3','DO

3','NumColumns',2,'Orientation','horizontal')

xlabel('Iterations')

ylabel('R1')

legend('DO 1','DI 1','DO 2','DI 2','DO 3','DI

3','NumColumns',2,'Orientation','horizontal')

xlabel('Iterations','FontName','Times New

Roman','fontweight','bold')

ylabel('R1','FontName','Times New

Roman','fontweight','bold')

figure(2)

color = ['r','b','k'];

linespec = ['>','h','p'];

hold

for i = 1:size(indDFF,1)

 plot(R0rec(i,:),['--

',linespec(i),color(i)],'LineWidth',2)

 plot(R0recIn(i,:),['-

',linespec(i),color(i)],'LineWidth',2)

end

set(gca,'FontSize',40)

legend('DI 1','DO 1','DI 2','DO 2','DI 3','DO

3','NumColumns',2,'Orientation','horizontal')

xlabel('Iterations')

ylabel('R0')

% set(gca,'FontSize',30)

% title('R0')

% figure(3)

% hold

120

% for i = 1:size(indDFF,1)

% plot(R1rec(i,:),'-o')

% % plot(R1recIn(i,:),'-o')

% end

% title('R1')

% set(gca,'FontSize',30)

% %

%

legend('DO 1','DI 1','DO 2','DI 2','DO 3','DI

3','NumColumns',2,'Orientation','horizontal')

xlabel('Iterations','FontName','Times New

Roman','fontweight','bold')

ylabel('R0','FontName','Times New

Roman','fontweight','bold')

title('')

set(gca, 'fontsize', 40)

set(gca, 'linewidth',4)

xlim([1,7])

ylim([0.7,1])

xticklabels([1:11])

121

The following codes are used to verify that level-5

correlation could be treated as independent

%% Level 5 Independency Assumption MC simulation

clear;

clc;

close all;

Num_node = 63;

Num_gate = 31;

Num_input = 32;

NUm_output = 1;

Input = [1:32]';

Output = 63;

MC = 1000000;

Pin = 0.5;

rin = 1;

rg = 0.95;

%% Gate matrix generation

Gates = [];

for i = 1:16

 Gates(i,2:3) = [2*i-1,2*i];

end

Gates(13:16,2:3) = [15,13;11,9;7,5;3,1;];

Gates(9:12,2:3) = [2,4;6,8;10,12;14,16];

Gates(:,1) = [33:48]';

Gates(17:24,1) = [49:56]';

Gates(17:24,2) = 33:2:47';

Gates(17:24,3) = 34:2:48';

Gates(25:28,1) = [57:60]';

Gates(25:28,2) = 49:2:55';

Gates(25:28,3) = 50:2:56';

Gates(29:30,1) = [61;62];

Gates(29:30,2) = [57;59];

Gates(29:30,3) = [58;60];

Gates(31,:) = [63,61,62];

Gates(:,4) = rg;

% Gate type: 1-NAND, 2-AND, 3-NOR, 4-OR, 5-NOT, 6-BUFF, 7-

XNOR, 8-XOR

% randomly generate gates

122

% GateType = [1,2,3,4,7,8];

% Gatein = randi(6,1,31);

%generate gates as L5-NOR, L4-NAND, L3-XOR, L2-AND, L1-OR

Gates(1:16,5) = 3*ones(16,1);

Gates(17:24,5) = ones(8,1);

Gates(25:28,5) = 8*ones(4,1);

Gates(29:30,5) = 2*ones(2,1);

Gates(31,5) = 4;

% GateTypeStr = {'NAND';'AND';'NOR';'OR';'XNOR';'XOR'};

% for m = 1:30

% GateTypeRecord{1,m} = GateTypeStr(Gatein(m),:);

% end

NodevecStar = zeros(Num_node,1);

Nodevec = zeros(Num_node,1);

Pstarc = zeros(Num_node,1);

rallc = zeros(Num_node,2);

%% MC simulation

for i=1:MC

 NodevecStar = zeros(Num_node,1);

 %% Input Setup regarding to Pin, Node Reliability Setup

 for k = 1:Num_input

 NodevecStar(Input(k)) = (rand(1)<Pin);

% if rand(1)<rin(k)

 Nodevec(Input(k)) = NodevecStar(Input(k));

% else

% Nodevec(Input(k)) = 1-NodevecStar(Input(k));

% end

 end

 for j = 1:Num_gate

 x=Gates(j,:);

 %% simulate error-free value and real value

 %% Gate type: 1-NAND, 2-AND, 3-NOR, 4-OR, 5-NOT, 6-

BUFF, 7-XNOR, 8-XOR

 switch x(5)

 case {1}

 NodevecStar(x(1)) = 1-

and(NodevecStar(x(2)), NodevecStar(x(3)));

 if rand(1)<rg

 Nodevec(x(1)) = 1-and(Nodevec(x(2)),

Nodevec(x(3)));

 else

 Nodevec(x(1)) = and(Nodevec(x(2)),

Nodevec(x(3)));

 end

 case {2}

123

 NodevecStar(x(1)) = and(NodevecStar(x(2)),

NodevecStar(x(3)));

 if rand(1)<rg

 Nodevec(x(1)) = and(Nodevec(x(2)),

Nodevec(x(3)));

 else

 Nodevec(x(1)) = 1-and(Nodevec(x(2)),

Nodevec(x(3)));

 end

 case {3}

 NodevecStar(x(1)) = 1-or(NodevecStar(x(2)),

NodevecStar(x(3)));

 if rand(1)<rg

 Nodevec(x(1)) = 1-or(Nodevec(x(2)),

Nodevec(x(3)));

 else

 Nodevec(x(1)) = or(Nodevec(x(2)),

Nodevec(x(3)));

 end

 case {4}

 NodevecStar(x(1)) = or(NodevecStar(x(2)),

NodevecStar(x(3)));

 if rand(1)<rg

 Nodevec(x(1)) = or(Nodevec(x(2)),

Nodevec(x(3)));

 else

 Nodevec(x(1)) = 1-or(Nodevec(x(2)),

Nodevec(x(3)));

 end

 case {5}

 NodevecStar(x(1)) = not(NodevecStar(x(2)));

 if rand(1)<rg

 Nodevec(x(1)) = not(Nodevec(x(2)));

 else

 Nodevec(x(1)) = 1-not(Nodevec(x(2)));

 end

 case {6}

 NodevecStar(x(1)) = NodevecStar(x(2));

 if rand(1)<rg

 Nodevec(x(1)) = Nodevec(x(2));

 else

 Nodevec(x(1)) = 1-Nodevec(x(2));

 end

124

 case {7}

 NodevecStar(x(1)) = 1-

xor(NodevecStar(x(2)), NodevecStar(x(3)));

 if rand(1)<rg

 Nodevec(x(1)) = 1-xor(Nodevec(x(2)),

Nodevec(x(3)));

 else

 Nodevec(x(1)) = xor(Nodevec(x(2)),

Nodevec(x(3)));

 end

 case {8}

 NodevecStar(x(1)) = xor(NodevecStar(x(2)),

NodevecStar(x(3)));

 if rand(1)<rg

 Nodevec(x(1)) = xor(Nodevec(x(2)),

Nodevec(x(3)));

 else

 Nodevec(x(1)) = 1-xor(Nodevec(x(2)),

Nodevec(x(3)));

 end

 end

 %% Calculate Node Probability

 bitStreamMatStar(:,i)= NodevecStar;

 bitStreamMat(:,i) = Nodevec;

 if NodevecStar(x(1)) == 1

 Pstarc(x(1)) = Pstarc(x(1)) + 1;

 if Nodevec(x(1)) == 1

 rallc(x(1),2) = rallc(x(1),2)+1;

 end

 else

 if Nodevec(x(1)) == 0

 rallc(x(1),1) = rallc(x(1),1)+1;

 end

 end

 end

 i

end

G_ind = [Gates(:,1:3),Gates(:,5)];

r = rallc./[MC-Pstarc,Pstarc];

P = [MC-Pstarc,Pstarc]/MC;

%% A = 61, B = 62, D = 63

125

A = 61; B = 62; D = 63;

[jP,jC] = bSMP(61,62,bitStreamMatStar,bitStreamMat,MC);

PA = P(A,:);

PB = P(B,:);

jPIN = PA'*PB;

jPIN = jPIN'

RA = r(A,:);

RB = r(B,:);

RAM = [RA(1),RA(1),1-RA(1),1-RA(1);...

 RA(1),RA(1),1-RA(1),1-RA(1);...

 1-RA(2),1-RA(2),RA(2),RA(2);...

 1-RA(2),1-RA(2),RA(2),RA(2);]

RBM = [RB(1),1-RB(1),RB(1),1-RB(1);...

 1-RB(2),RB(2),1-RB(2),RB(2);...

 RB(1),1-RB(1),RB(1),1-RB(1);...

 1-RB(2),RB(2),1-RB(2),RB(2);]

jCIN = RAM.*RBM;

jPE = jPIN(:)-jP(:)

jCE = jCIN-jC

P(63,:)-[0.9735,0.0265];

r(63,:)-[0.7891,0.6246];

rDMC = P(63,1)*r(63,1)+P(63,2)*r(63,2)

rDIN = R(4,1)*PC(4,1)+R(4,2)*PC(4,2)

rDMC-rDIN

rDINMC = R(5,1)*PC(5,1)+R(5,2)*PC(5,2);

126

The following codes are used to obtain JCPM, JPV and signal

probabilities from bitstreams

function [jP,jC] =

bSMP(node1,node2,bitStreamMatStar,bitStreamMat,bitLength)

bitLength = size(bitStreamMatStar,2);

MC = bitLength;

bSMS = bitStreamMatStar;

bsm1S = bSMS(node1,:);

bsm2S = bSMS(node2,:);

bR = [bitStreamMat(node1,:);bitStreamMat(node2,:)];

bsmSCounter = zeros(1,4);

bRcounter = zeros(4,4);

%% one signal

for ibsm = 1:MC

 if [bsm1S(ibsm),bsm2S(ibsm)] == [0,0]

 bsmSCounter(1,1) = bsmSCounter(1,1)+1;

 if bR(:,ibsm) == [0;0]

 bRcounter(1,1) = bRcounter(1,1)+1;

 elseif bR(:,ibsm) == [0;1]

 bRcounter(1,2) = bRcounter(1,2)+1;

 elseif bR(:,ibsm) == [1;0]

 bRcounter(1,3) = bRcounter(1,3)+1;

 elseif bR(:,ibsm) == [1;1]

 bRcounter(1,4) = bRcounter(1,4)+1;

 end

 end

 if [bsm1S(ibsm),bsm2S(ibsm)] == [0,1]

 bsmSCounter(1,2) = bsmSCounter(1,2)+1;

 if bR(:,ibsm) == [0;0]

 bRcounter(2,1) = bRcounter(2,1)+1;

 elseif bR(:,ibsm) == [0;1]

 bRcounter(2,2) = bRcounter(2,2)+1;

 elseif bR(:,ibsm) == [1;0]

 bRcounter(2,3) = bRcounter(2,3)+1;

 elseif bR(:,ibsm) == [1;1]

 bRcounter(2,4) = bRcounter(2,4)+1;

 end

 end

 if [bsm1S(ibsm),bsm2S(ibsm)] == [1,0]

 bsmSCounter(1,3) = bsmSCounter(1,3)+1;

 if bR(:,ibsm) == [0;0]

 bRcounter(3,1) = bRcounter(3,1)+1;

 elseif bR(:,ibsm) == [0;1]

 bRcounter(3,2) = bRcounter(3,2)+1;

 elseif bR(:,ibsm) == [1;0]

127

 bRcounter(3,3) = bRcounter(3,3)+1;

 elseif bR(:,ibsm) == [1;1]

 bRcounter(3,4) = bRcounter(3,4)+1;

 end

 end

 if [bsm1S(ibsm),bsm2S(ibsm)] == [1,1]

 bsmSCounter(1,4) = bsmSCounter(1,4)+1;

 if bR(:,ibsm) == [0;0]

 bRcounter(4,1) = bRcounter(4,1)+1;

 elseif bR(:,ibsm) == [0;1]

 bRcounter(4,2) = bRcounter(4,2)+1;

 elseif bR(:,ibsm) == [1;0]

 bRcounter(4,3) = bRcounter(4,3)+1;

 elseif bR(:,ibsm) == [1;1]

 bRcounter(4,4) = bRcounter(4,4)+1;

 end

 end

end

jC = bRcounter./bsmSCounter';

jP = bsmSCounter/MC;

128

The following codes are used to find aging effects on

circuit delay

 clear

clc

load C17.mat

load bitStreamC17.mat

% initialization

ain = 50;

aj = 0.59;

t = 2.6*10^6*12;

P = (sum(bitStreamMat')/size(bitStreamMat,2))';

PStar = (sum(bitStreamMatStar')/size(bitStreamMat,2))';

D(Input,:) = 0;

for i = 1:Num_gate

 x = Gates(i,:);

 Dpin = min(P(x(2)), P(x(3)));

 tpi = ain+aj*((1-Dpin)*t).^0.16;

 D(x(1),:) = max(D(x(2),:),D(x(3),:)) + tpi;

end

The following codes are used to find transistor probability

of failure regarding

 %%for 35nm tech

delta = 30.28*10^-3;

VDD = 1;

for i = 1:99

VthN = 0+i*0.01;

x = 0:0.001:1;

y = 0.5*erfc(abs(x-VthN)/(delta*sqrt(2)));

% plot(y)

% set(gca, 'YSCALE', 'log');

Pin_N = 0.9;

pfN0 = y(floor(VthN/0.002));

pfN1 = y(floor((1+VthN)/0.002));

pfN(i) = Pin_N * pfN1 + (1-Pin_N)*pfN0;

% display(pfN)

end

plot(pfN)

xlabel('Vth')

129

ylabel('Probability of Failure')

xticklabels(0:0.1:0.9)

set(gca, 'FontSize', 40)

set(gca, 'YSCALE', 'log');

title('NMOS probability of Fialure with Vth variation')

The following codes are used to calculate the probability

of failure for NAND gate, and compare to MC simulation

results

clear;

clc;

%% NAND gate PF calculation

% Initialization

for ith = 1:41

 VthNi = 0.6;

 VthPi = -0.6;

 deltaP = 30.28*10^-3;

 deltaN = 30.28*10^-3;

 VDD = 1;

 MC = 10^4;

 for i = 1:MC

 % 0 and 1 PF for NMOS and PMOS

 % nmHN = (1+VthNi)/2; nmLN = VthNi/2; % noise

margin High/Low for NMOS

 % nmHP = 1+VthPi/2; nmLP = (1+VthPi)/2; % noise

margin High/Low for PMOS

 mu = [(1+VthPi)/2,1-(1-VthNi)/2;...

 (1+VthPi)/2,1-(1-VthNi)/2];

 sigma = [(1+VthPi)/12,(1-VthNi)/12;...

 (1+VthPi)/12,(1-VthNi)/12];

% sigma = [0,0;...

% 0,0];

 vin =

[normrnd(mu(1,1),sigma(1,1)),normrnd(mu(1,2),sigma(1,2));..

. %[A=0, A=1;]

normrnd(mu(2,1),sigma(2,1)),normrnd(mu(2,2),sigma(2,2))];

%[B=0, B=1;]

 vin(vin>1) = 1;

 vin(vin<0) = 0;

 VthN = 0.6+(ith-1)*0.005;

130

 VthP = -0.6-(ith-1)*0.005;

 pf = zeros(4,2); % T1, T2, T3, T4 Pf0 and Pf1

 for ipf = 1:2

 pf(1,ipf) = 0.5*erfc(abs(vin(2,ipf)-

(VDD+VthP))/(deltaP*sqrt(2)));

 pf(2,ipf) = 0.5*erfc(abs(vin(1,ipf)-

(VDD+VthP))/(deltaP*sqrt(2)));

 pf(3,ipf) = 0.5*erfc(abs(vin(1,ipf)-

VthN)/(deltaP*sqrt(2)));

 pf(4,ipf) = 0.5*erfc(abs(vin(2,ipf)-

VthN)/(deltaP*sqrt(2)));

 end

 % pfN0 = 0.5*erfc(abs(nmLN-VthN)/(deltaN*sqrt(2)));

 % pfN1 = 0.5*erfc(abs(nmHN-VthN)/(deltaN*sqrt(2)));

 % pfP0 = 0.5*erfc(abs(nmLP-

(VDD+VthP))/(deltaP*sqrt(2)));

 % pfP1 = 0.5*erfc(abs(nmHP-

(VDD+VthP))/(deltaP*sqrt(2)));

 % MC values

 % pfN0 = 0.5*erfc(abs(0-VthN)/(deltaN*sqrt(2)));

 % pfN1 = 0.5*erfc(abs(1-VthN)/(deltaN*sqrt(2)));

 % pfP0 = 0.5*erfc(abs(0-

(VDD+VthP))/(deltaP*sqrt(2)));

 % pfP1 = 0.5*erfc(abs(1-

(VDD+VthP))/(deltaP*sqrt(2)));

 % PF of NAND gate for different patterns

 % ipat(i) = ceil(rand(1)/0.25);

 % switch ipat(i)

 % case 1

 % PF(i,1) =

pf(1,1)*pf(2,1)+pf(3,1)*pf(4,1)-...

 % pf(1,1)*pf(2,1)*pf(3,1)*pf(4,1);

 % case 2

 % PF(i,1) = pf(1,2)*(1-

pf(2,1))+pf(3,1)*(1-pf(4,2))-...

 % pf(1,2)*(1-pf(2,1))*pf(3,1)*(1-

pf(4,2));

 % case 3

 % PF(i,1) = pf(2,2)*(1-

pf(1,1))+pf(4,1)*(1-pf(3,2))-...

 % pf(2,2)*(1-pf(1,1))*pf(4,1)*(1-

pf(3,2));

131

 % case 4

 % PF(i,1) = 1-(1-pf(1,2))*(1-

pf(2,2))*(1-pf(3,2))*(1-pf(4,2));

 % end

 PF(i,1) = pf(1,1)*pf(2,1)+pf(3,1)*pf(4,1)-...

 pf(1,1)*pf(2,1)*pf(3,1)*pf(4,1);

 PF(i,2) = pf(1,2)*(1-pf(2,1))+pf(3,1)*(1-pf(4,2))-

...

 pf(1,2)*(1-pf(2,1))*pf(3,1)*(1-pf(4,2));

 PF(i,3) = pf(2,2)*(1-pf(1,1))+pf(4,1)*(1-pf(3,2))-

...

 pf(2,2)*(1-pf(1,1))*pf(4,1)*(1-pf(3,2));

 PF(i,4) = 1-(1-pf(1,2))*(1-pf(2,2))*(1-pf(3,2))*(1-

pf(4,2));

 end

 PFG(ith) = mean(PF,'all');

 PFM(ith,:) = mean(PF);

 ith

end

save NAND_MC.mat PFG PFM

plot([0.6:0.005:0.8], PF,'-^','LineWidth',4);

hold;

plot([0.6:0.005:0.8], PFG,'-p','LineWidth',4);

xlim([0.6 0.8]);

set(gca,'Fontsize',40);

xlabel('Vth Variation')

ylabel('Probability of Failure')

title('NAND Gate Probability of Failure against different

Vths')

legend('Model Calculation', 'MC simulation')

132

VITA AUCTORIS

NAME: SUOYUE ZHAN

PLACE OF BIRTH:

HUBEI, CHINA

YEAR OF BIRTH:

1993

EDUCATION:

University of Electronic Science and Technology

of China, B.Sc., Chengdu, SICHUAN, China,

2015

University of Windsor, M.Sc., Windsor, ON,

2018

University of Windsor, Ph.D., Windsor, ON,

2022

	Efficient Evaluation of Probability and Reliability with Digital Integrated Circuits
	Recommended Citation

	tmp.1690917271.pdf.UQX1C

