2,520 research outputs found

    Synthesis of Manufacturing Systems Using Co-Platforming

    Get PDF
    Modern manufacturing environment is characterized by frequent changes within product design in order to satisfy evolving customer requirements. Various strategies are implemented in order to efficiently manage the consequences arising from the product design changes starting from design of the product, planning, manufacturing…etc. This dissertation focuses mainly on the manufacturing phase in which a new concept in manufacturing system synthesis is proposed. A new concept in manufacturing system synthesis has been introduced and coined as “Co-platforming”. Co-platforming is the synthesis of manufacturing systems through mapping product platform features and components to platform machines on one side, and non-platform product features and components to non-platform machines on the other side, in order to reduce the manufacturing system investment cost and prolong the manufacturing system useful life as product variants evolve and change. Tools and methods are developed to synthesize the manufacturing system based on Co-platforming within functional and physical levels. At the functional level, the group of platform and non-platform machines and the number of each machine type are determined. A new matrix based mapping model is proposed to determine the platform and non-platform machines candidates. A ranking coefficient is formulated which ranks the platform machines according to their machining capabilities in order to assist manufacturing firms in decision making concerning which type of platform machine to choose. Furthermore, a new mathematical programming optimization model is proposed in order to provide the optimum selection of machine types among machine candidates and their numbers. Moreover, a new mathematical programming model is proposed which synthesizes manufacturing systems taking into consideration machine level and system level changes based on co-platforming. At the physical level, the manufacturing system configuration is determined which is concerned with determining the number of stages, types of machines in each stage and the number of machines in each stage. A new mathematical programming optimization model is proposed which determines, in addition to the type and number of each machine, the optimal manufacturing system configuration based on co-platforming. The Co-platforming methodology is being applied in two case studies from automotive industry. The first case study is concerned with machining of automotive cylinder blocks taken from Mitsubishi Heavy Industries and the second case study is concerned with the assembly of automotive cylinder heads taken from ABB flexible automation. The results obtained from the co-platforming methodology indicate that cost reduction can be achieved when synthesizing the manufacturing system based on co-platforming

    Creative trans-border cooperation in the field of operations research and sustainable development in civil engineering

    Get PDF
    The paper presents an overview of the history and achievements of trans-border cooperation in the Lithuania-Germany-Poland triangle in planning instruments in Construction Management, decision-making theory, application of Operational Research, and Multiple Criteria Decision Making (MCDM) methods in Civil Engineering and sustainable development. The cooperation and results of the Colloquiums with 35 years of tradition, their multidimensional nature is underlined. The research instruments, methods, studied phenomena are reviewed and characteristic applications in engineering and economics are presented. The knowledge and combined efforts of three academic centers have created a synergy which set in motion many original methods and spectacular implementations. The Colloquium calendar and the evolution of organizational forms are presented along with the inclusion of the informal EURO Working Group on Operations Research in Sustainable Development and Civil Engineering

    Computer Aided Verification

    Get PDF
    This open access two-volume set LNCS 11561 and 11562 constitutes the refereed proceedings of the 31st International Conference on Computer Aided Verification, CAV 2019, held in New York City, USA, in July 2019. The 52 full papers presented together with 13 tool papers and 2 case studies, were carefully reviewed and selected from 258 submissions. The papers were organized in the following topical sections: Part I: automata and timed systems; security and hyperproperties; synthesis; model checking; cyber-physical systems and machine learning; probabilistic systems, runtime techniques; dynamical, hybrid, and reactive systems; Part II: logics, decision procedures; and solvers; numerical programs; verification; distributed systems and networks; verification and invariants; and concurrency

    Motion Planning and Feedback Control of Simulated Robots in Multi-Contact Scenarios

    Get PDF
    Diese Dissertation präsentiert eine optimale steuerungsbasierte Architektur für die Bewegungsplanung und Rückkopplungssteuerung simulierter Roboter in Multikontaktszenarien. Bewegungsplanung und -steuerung sind grundlegende Bausteine für die Erstellung wirklich autonomer Roboter. Während in diesen Bereichen enorme Fortschritte für Manipulatoren mit festem Sockel und Radrobotern in den letzten Jahren erzielt wurden, besteht das Problem der Bewegungsplanung und -steuerung für Roboter mit Armen und Beinen immer noch ein ungelöstes Problem, das die Notwendigkeit effizienterer und robusterer Algorithmen belegt. In diesem Zusammenhang wird in dieser Dissertation eine Architektur vorgeschlagen, mit der zwei Hauptherausforderungen angegangen werden sollen, nämlich die effiziente Planung von Kontaktsequenzen und Ganzkörperbewegungen für Floating-Base-Roboter sowie deren erfolgreiche Ausführung mit Rückkopplungsregelungsstrategien, die Umgebungsunsicherheiten bewältigen könne

    A systematic review of application of multi-criteria decision analysis for aging-dam management

    Get PDF
    [EN] Decisions for aging-dam management requires a transparent process to prevent the dam failure, thus to avoid severe consequences in socio-economic and environmental terms. Multiple criteria analysis arose to model complex problems like this. This paper reviews specific problems, applications and Multi-Criteria Decision Making techniques for dam management. Multi-Attribute Decision Making techniques had a major presence under the single approach, specially the Analytic Hierarchy Process, and its combination with Technique for Order of Preference by Similarity to Ideal Solution was prominent under the hybrid approach; while a high variety of complementary techniques was identified. A growing hybridization and fuzzification are the two most relevant trends observed. The integration of stakeholders within the decision making process and the inclusion of trade-offs and interactions between components within the evaluation model must receive a deeper exploration. Despite the progressive consolidation of Multi-Criteria Decision Making in dam management, further research is required to differentiate between rational and intuitive decision processes. Additionally, the need to address benefits, opportunities, costs and risks related to repair, upgrading or removal measures in aging dams suggests the Analytic Network Process, not yet explored under this approach, as an interesting path worth investigating.This research was funded by the Spanish Ministry of Economy and Competitiveness along with FEDER funding (Projects BIA201456574-R and ECO2015-66673-R).Zamarrón-Mieza, I.; Yepes, V.; Moreno-Jiménez, JM. (2017). A systematic review of application of multi-criteria decision analysis for aging-dam management. Journal of Cleaner Production. 147:217-230. https://doi.org/10.1016/j.jclepro.2017.01.092S21723014

    Integrated optimal design for hybrid electric vehicles

    Get PDF
    • …
    corecore