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Preface

It was our privilege to serve as the program chairs for CAV 2019, the 31st International
Conference on Computer-Aided Verification. CAV 2019 was held in New York, USA,
during July 15-18, 2019. The tutorial day was on July 14, 2019, and the pre-conference
workshops were held during July 13-14, 2019. All events took place in The New
School in New York City.

CAV is an annual conference dedicated to the advancement of the theory and
practice of computer-aided formal analysis methods for hardware and software sys-
tems. The primary focus of CAV is to extend the frontiers of verification techniques by
expanding to new domains such as security, quantum computing, and machine
learning. This put CAV at the cutting edge of formal methods research, and this year’s
program is a reflection of this commitment.

CAV 20109 received a very high number of submissions (258). We accepted 13 tool
papers, two case studies, and 52 regular papers, which amounts to an acceptance rate of
roughly 26%. The accepted papers cover a wide spectrum of topics, from theoretical
results to applications of formal methods. These papers apply or extend formal methods
to a wide range of domains such as concurrency, learning, and industrially deployed
systems. The program featured invited talks by Dawn Song (UC Berkeley), Swarat
Chaudhuri (Rice University), and Ken McMillan (Microsoft Research) as well as
invited tutorials by Emina Torlak (University of Washington) and Ranjit Jhala (UC San
Diego). Furthermore, we continued the tradition of Logic Lounge, a series of discus-
sions on computer science topics targeting a general audience.

In addition to the main conference, CAV 2019 hosted the following workshops: The
Best of Model Checking (BeMC) in honor of Orna Grumberg, Design and Analysis of
Robust Systems (DARS), Verification Mentoring Workshop (VMW), Numerical
Software Verification (NSV), Verified Software: Theories, Tools, and Experiments
(VSTTE), Democratizing Software Verification, Formal Methods for ML-Enabled
Autonomous Systems (FOMLAS), and Synthesis (SYNT).

Organizing a top conference like CAV requires a great deal of effort from the
community. The Program Committee for CAV 2019 consisted of 79 members, a
committee of this size ensures that each member has to review a reasonable number of
papers in the allotted time. In all, the committee members wrote over 770 reviews while
investing significant effort to maintain and ensure the high quality of the conference
program. We are grateful to the CAV 2019 Program Committee for their outstanding
efforts in evaluating the submissions and making sure that each paper got a fair chance.

Like last year’s CAV, we made artifact evaluation mandatory for tool submissions
and optional but encouraged for the rest of the accepted papers. The Artifact Evaluation
Committee consisted of 27 reviewers who put in significant effort to evaluate each
artifact. The goal of this process was to provide constructive feedback to tool devel-
opers and help make the research published in CAV more reproducible. The Artifact
Evaluation Committee was generally quite impressed by the quality of the artifacts,
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and, in fact, all accepted tools passed the artifact evaluation. Among regular papers,
65% of the authors submitted an artifact, and 76% of these artifacts passed the eval-
uation. We are also very grateful to the Artifact Evaluation Committee for their hard
work and dedication in evaluating the submitted artifacts.

CAV 2019 would not have been possible without the tremendous help we received
from several individuals, and we would like to thank everyone who helped make CAV
2019 a success. First, we would like to thank Yu Feng and Ruben Martins for chairing
the Artifact Evaluation Committee and Zvonimir Rakamaric for maintaining the CAV
website and social media presence. We also thank Oksana Tkachuk for chairing the
workshop organization process, Peter O’Hearn for managing sponsorship, and Thomas
Wies for arranging student fellowships. We also thank Loris D’Antoni, Rayna
Dimitrova, Cezara Dragoi, and Anthony W. Lin for organizing the Verification
Mentoring Workshop and working closely with us. Last but not least, we would like to
thank Kostas Ferles, Navid Yaghmazadeh, and members of the CAV Steering
Committee (Ken McMillan, Aarti Gupta, Orna Grumberg, and Daniel Kroening) for
helping us with several important aspects of organizing CAV 2019.

We hope that you will find the proceedings of CAV 2019 scientifically interesting
and thought-provoking!

June 2019 Isil Dillig
Serdar Tasiran
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Symbolic Register Automata

Loris D’Antoni!, Tiago Ferreira?, Matteo Sammartino?®),

and Alexandra Silva2

! University of Wisconsin-Madison, Madison, WI 53706-1685, USA
loris@cs.wisc.edu
2 University College London, Gower Street, London WC1E 6BT, UK

meQ@tiferrei.com, {m .sammartino,a. silva}@ucl .ac.uk

Abstract. Symbolic Finite Automata and Register Automata are two
orthogonal extensions of finite automata motivated by real-world prob-
lems where data may have unbounded domains. These automata address
a demand for a model over large or infinite alphabets, respectively. Both
automata models have interesting applications and have been success-
ful in their own right. In this paper, we introduce Symbolic Register
Automata, a new model that combines features from both symbolic and
register automata, with a view on applications that were previously out
of reach. We study their properties and provide algorithms for emptiness,
inclusion and equivalence checking, together with experimental results.

1 Introduction

Finite automata are a ubiquitous formalism that is simple enough to model
many real-life systems and phenomena. They enjoy a large variety of theoret-
ical properties that in turn play a role in practical applications. For example,
finite automata are closed under Boolean operations, and have decidable empti-
ness and equivalence checking procedures. Unfortunately, finite automata have
a fundamental limitation: they can only operate over finite (and typically small)
alphabets. Two orthogonal families of automata models have been proposed to
overcome this: symbolic automata and register automata. In this paper, we show
that these two models can be combined yielding a new powerful model that can
cover interesting applications previously out of reach for existing models.

Symbolic finite automata (SFAs) allow transitions to carry predicates over
rich first-order alphabet theories, such as linear arithmetic, and therefore extend
classic automata to operate over infinite alphabets [12]. For example, an SFA can
define the language of all lists of integers in which the first and last elements are
positive integer numbers. Despite their increased expressiveness, SFAs enjoy the
same closure and decidability properties of finite automata—e.g., closure under
Boolean operations and decidable equivalence and emptiness.
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Register automata (RA) support infinite alphabets by allowing input charac-
ters to be stored in registers during the computation and to be compared against
existing values that are already stored in the registers [17]. For example, an RA
can define the language of all lists of integers in which all numbers appearing in
even positions are the same. RAs do not have some of the properties of finite
automata (e.g., they cannot be determinized), but they still enjoy many useful
properties that have made them a popular model in static analysis, software
verification, and program monitoring [15].

In this paper, we combine the best features of these two models—first order
alphabet theories and registers—into a new model, symbolic register automata
(SRA). SRAs are strictly more expressive than SFAs and RAs. For example,
an SRA can define the language of all lists of integers in which the first and
last elements are positive rational numbers and all numbers appearing in even
positions are the same. This language is not recognizable by either an SFA nor
by an RA.

While other attempts at combining symbolic automata and registers have
resulted in undecidable models with limited closure properties [11], we show
that SRAs enjoy the same closure and decidability properties of (non-symbolic)
register automata. We propose a new application enabled by SRAs and imple-
ment our model in an open-source automata library.

In summary, our contributions are:

— Symbolic Register Automata (SRA): a new automaton model that can handle
complex alphabet theories while allowing symbols at arbitrary positions in the
input string to be compared using equality (Sect. 3).

— A thorough study of the properties of SRAs. We show that SRAs are closed
under intersection, union and (deterministic) complementation, and provide
algorithms for emptiness and forward (bi)simulation (Sect.4).

— A study of the effectiveness of our SRA implementation on handling regular
expressions with back-references (Sect.5). We compile a set of benchmarks
from existing regular expressions with back-references (e.g., (\d) [a-z]*\1)
and show that SRAs are an effective model for such expressions and existing
models such as SFAs and RAs are not. Moreover, we show that SRAs are more
efficient than the java.util.regex library for matching regular expressions
with back-references.

2 Motivating Example

In this section, we illustrate the capabilities of symbolic register automata using
a simple example. Consider the regular expression r, shown in Fig.1la. This
expression, given a sequence of product descriptions, checks whether the prod-
ucts have the same code and lot number. The reader might not be familiar with
some of the unusual syntax of this expression. In particular, r, uses two back-
references \1 and \2. The semantics of this construct is that the string matched
by the regular expression for \1 (resp. \2) should be exactly the string that
matched the subregular expression r appearing between the first (resp. second)
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C:(.{3}) L:(.) D:["\s]+( C:\1 L:\2 D:["\sl+)+
(a) Regular expression r;, (with back-reference).

C:X4a L:4 D:bottle C:X4a L:4 D:jar C:X4a L:4 D:bottle C:Xba L:4 D:jar
(b) Example text matched by 7p. (c¢) Example text not matched by 7.

Ms

true/=r, /\true/=r2 /\true/=r3
/

A
@), \s

(d) Snippets of a symbolic register automaton A, corresponding to ry.

Fig. 1. Regular expression for matching products with same code and lot number—i.e.,
the characters of C and L are the same in all the products.

two parenthesis, in this case (.{3}) (resp. (.)). Back-references allow regular
expressions to check whether the encountered text is the same or is different
from a string/character that appeared earlier in the input (see Figs. 1b and ¢ for
examples of positive and negative matches).

Representing this complex regular expression using an automaton model
requires addressing several challenges. The expression 7,:

1. operates over large input alphabets consisting of upwards of 2'6 characters;

2. uses complex character classes (e.g., \s) to describe different sets of characters
in the input;

3. adopts back-references to detect repeated strings in the input.

Existing automata models do not address one or more of these challenges. Finite
automata require one transition for each character in the input alphabet and
blow-up when representing large alphabets. Symbolic finite automata (SFA)
allow transitions to carry predicates over rich structured first-order alphabet
theories and can describe, for example, character classes [12]. However, SFAs
cannot directly check whether a character or a string is repeated in the input.
An SFA for describing the regular expression 7, would have to store the charac-
ters after C: directly in the states to later check whether they match the ones of
the second product. Hence, the smallest SFA for this example would require bil-
lions of states! Register automata (RA) and their variants can store characters in
registers during the computation and compare characters against values already
stored in the registers [17]. Hence, RAs can check whether the two products have
the same code. However, RAs only operate over unstructured infinite alphabets
and cannot check, for example, that a character belongs to a given class.

The model we propose in this paper, symbolic register automata (SRA), com-
bines the best features of SFAs and RAs—first-order alphabet theories and
registers—and can address all the three aforementioned challenges. Figure 1d
shows a snippet of a symbolic register automaton A, corresponding to r,. Each
transition in A, is labeled with a predicate that describes what characters can
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trigger the transition. For example, ~\s denotes that the transition can be trig-
gered by any non-space character, L denotes that the transition can be triggered
by the character L, and true denotes that the transition can be triggered by any
character. Transitions of the form ¢/— r; denote that, if a character x satisfies
the predicate ¢, the character is then stored in the register r;. For example, the
transition out of state 1 reads any character and stores it in register ;. Finally,
transitions of the form ¢/= r; are triggered if a character x satisfies the pred-
icate ¢ and x is the same character as the one stored in r;. For example, the
transition out of state 2 can only be triggered by the same character that was
stored in r; when reading the transition out state 1—i.e., the first characters in
the product codes should be the same.

SRAs are a natural model for describing regular expressions like r,, where
capture groups are of bounded length, and hence correspond to finitely-many
registers. The SRA A, has fewer than 50 states (vs. more than 100 billion for
SFAs) and can, for example, be used to check whether an input string matches
the given regular expression (e.g., monitoring). More interestingly, in this paper
we study the closure and decidability properties of SRAs and provide an imple-
mentation for our model. For example, consider the following regular expression
rpc that only checks whether the product codes are the same, but not the lot
numbers:

C:(.{3}) L:. D:["\s]+( C:\1 L:. D:["\s]l+)+

The set of strings accepted by rpc is a superset of the set of strings accepted by
rp. In this paper, we present simulation and bisimulation algorithms that can
check this property. Our implementation can show that r, subsumes r,c in 25s
and we could not find other tools that can prove the same property.

3 Symbolic Register Automata

In this section we introduce some preliminary notions, we define symbolic register
automata and a variant that will be useful in proving decidability properties.

Preliminaries. An effective Boolean algebra A is a tuple (D,¥,[],L,
T,A,V,—), where: D is a set of domain elements; ¥ is a set of predicates
closed under the Boolean connectives and 1, T € ¥. The denotation func-
tion []: ¥ — 2P is such that [L] = 0 and [T] = D, for all p,v» € ¥,
[ov o] = [e] UYL [ A Y] = [e] N [¢¥], and [~¢] = D\ [¢]. For ¢ € ¥,
we write isSat(p) whenever [¢] # 0 and say that ¢ is satisfiable. A is decidable
if isSat is decidable. For each a € D, we assume predicates atom(a) such that

[atom(a)] = {a}.

Example 1. The theory of linear integer arithmetic forms an effective BA, where
D = Z and ¥ contains formulas ¢(x) in the theory with one fixed integer variable.
For example, divk := (z mod k) = 0 denotes the set of all integers divisible by k.
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Notation. Given a set S, we write P(S) for its powerset. Given a function
f+ A — B, we write fla — b] for the function such that fla — b](a) = b
and fla — b](z) = f(x), for x # a. Analogously, we write f[S +— b], with
S C A, to map multiple values to the same b. The pre-image of f is the function
f~1: P(B) — P(A) given by f~1(S) = {a | b € S: b= f(a)}; for readability,
we will write f~!(z) when S = {z}. Given a relation R C A x B, we write aRb
for (a,b) € R.

Model Definition. Symbolic register automata have transitions of the form:

¢/E,1,U
S LN

where p and g are states, ¢ is a predicate from a fixed effective Boolean algebra,
and E,I,U are subsets of a fixed finite set of registers R. The intended inter-
pretation of the above transition is: an input character a can be read in state
q if (i) a € ], (ii) the content of all the registers in F is equal to a, and (iii)
the content of all the registers in [ is different from a. If the transition succeeds
then a is stored into all the registers U and the automaton moves to q.

Ezxample 2. The transition labels in Fig. 1d have been conveniently simplified to
ease intuition. These labels correspond to full SRA labels as follows:

o/=r = ¢/0,0,{r}  @/=r = o/{r},0,0 © = ¢/0,0,0 .

Given a set of registers R, the transitions of an SRA have labels over the following
set: Lp =¥ x {(E,I,U) € P(R) x P(R) x P(R) | ENT = 0}. The condition
E NI = guarantees that register constraints are always satisfiable.

Definition 1 (Symbolic Register Automaton). A symbolic register
automaton (SRA) is a 6-tuple (R, Q, qo, vo, F, A), where R is a finite set of reg-
isters, Q is a finite set of states, qo € Q is the initial state, vo: R — DU {#} is
the initial register assignment (if vo(r) =4, the register r is considered empty ),
F C Q is a finite set of final states, and A C @Q X Lr x @ is the transition
relation. Transitions (p, (p,£),q) € A will be written as p LA q.

An SRA can be seen as a finite description of a (possibly infinite) labeled tran-
sition system (LTS), where states have been assigned concrete register values,
and transitions read a single symbol from the potentially infinite alphabet. This
so-called configuration LTS will be used in defining the semantics of SRAs.

Definition 2 (Configuration LTS). Given an SRA 8, the configuration LTS
CLTS(8) is defined as follows. A configuration is a pair (p,v) where p € Q s
a state in 8 and a v: R — D U {#} is register assignment; (qo, vo) s called the
initial configuration; every (q,v) such that ¢ € F is a final configuration. The
set of transitions between configurations is defined as follows:

quEA ECvia) INnvia)=0

(p,v) % (q,v[U — a]) € CLTS(8)
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Intuitively, the rule says that a SRA transition from p can be instantiated to
one from (p,v) that reads a when the registers containing the value a, namely
v71(a), satisfy the constraint described by E,I (a is contained in registers E
but not in I). If the constraint is satisfied, all registers in U are assigned a.

A run of the SRA 8§ is a sequence of transitions in CLTS(S) starting from the
initial configuration. A configuration is reachable whenever there is a run ending
up in that configuration. The language of an SRA § is defined as

Z(8):={ay...a, € D" | I(qo,v0) e L N (Gn,vn) € CLTS(8),q, € F'}

An SRA 8 is deterministic if its configuration LTS is; namely, for every word
w € D* there is at most one run in CLTS(8) spelling w. Determinism is important
for some application contexts, e.g., for runtime monitoring. Since SRAs subsume
RAs, nondeterministic SRAs are strictly more expressive than deterministic ones,
and language equivalence is undecidable for nondeterministic SRAs [27].

We now introduce the notions of simulation and bisimulation for SRAs, which
capture whether one SRA behaves “at least as” or “exactly as” another one.

Definition 3 ((Bi)simulation for SRAs). A simulation R on SRAs 81 and
8o is a binary relation R on configurations such that (p1,v1)R(p2,ve) implies:

- ifpl € Fy then po € Fy;
— for each transition (p1,v1) % (q1,w1) in CLTS(81), there exists a transition
(pa,v2) = (g2, ws) in CLTS(8y) such that (q1,w1)R(ga,ws).

A simulation R is o bisimulation if R™! is a also a simulation. We write 81 < S
(resp. 81 ~ 83) whenever there is a simulation (resp. bisimulation) R such that
(go1,v01)R(qoz, vo2), where (qo;,vo;) s the initial configuration of 8;, fori=1,2.

We say that an SRA is complete whenever for every configuration (p,v) and

a € D there is a transition (p,v) = (g, w) in CLTS(8). The following results
connect similarity and language inclusion.

Proposition 1. If 81 < 8g then £ (81) C £ (82). If 81 and 85 are deterministic
and complete, then the other direction also holds.

It is worth noting that given a deterministic SRA we can define its completion
by adding transitions so that every value a € D can be read from any state.

Remark 1. RAs and SFAs can be encoded as SRAs on the same state-space:

— An RA is encoded as an SRA with all transition guards T;

— an SFA can be encoded as an SRA with R = (), with each SFA transition

0,0,0 . . .
p 2 g encoded as p /00,0, q. Note that the absence of registers implies that

the CLTS always has finitely many configurations.

SRAs are strictly more expressive than both RAs and SFAs. For instance, the
language {ngny ...nx | ng = ng,even(n;),n; € Z,i = 1,...,k} of finite sequences
of even integers where the first and last one coincide, can be recognized by an
SRA, but not by an RA or by an SFA.
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Boolean Closure Properties. SRAs are closed under intersection and union.
Intersection is given by a standard product construction whereas union is
obtained by adding a new initial state that mimics the initial states of both
automata.

Proposition 2 (Closure under intersection and union). Given SRAs 8;
and 82, there are SRAs 81N82 and 81USy such that £ (81N82) = L(81)NZ(82)
and 5(81 U 82) = ,jf(Sl) U 5(82)

SRAs in general are not closed under complementation, because RAs are not.
However, we still have closure under complementation for a subclass of SRAs.

Proposition 3. Let 8 be a complete and deterministic SRA, and let S be the

SRA defined as 8, except that its final states are Q\ F. Then £ (8) = D*\ Z(8).

4 Decidability Properties

In this section we will provide algorithms for checking determinism and emptiness
for an SRA, and (bi)similarity of two SRAs. Our algorithms leverage symbolic
techniques that use the finite syntax of SRAs to indirectly operate over the
underlying configuration LTS, which can be infinite.

Single-Valued Variant. To study decidability, it is convenient to restrict reg-
ister assignments to injective ones on non-empty registers, that is functions
v: R — D U {t} such that v(r) = v(s) and v(r) # f implies » = s. This is
also the approach taken for RAs in the seminal papers [17,27]. Both for RAs
and SRAs, this restriction does not affect expressivity. We say that an SRA is
single-valued if its initial assignment vg is injective on non-empty registers. For
single-valued SRAs, we only allow two kinds of transitions:

Read transition: p o, q triggers when a € [¢] and a is already stored in 7.
Fresh transition: p LN q triggers when the input a € [¢] and a is fresh, i.e.,

is not stored in any register. After the transition, a is stored into 7.

SRAs and their single-valued variants have the same expressive power. Trans-
lating single-valued SRAs to ordinary ones is straightforward:
w/r= w/{r},0,0 w/r* ©/0,R,{r}
p——q =p —(¢ p——q =—=p —(q
The opposite translation requires a state-space blow up, because we need to
encode register equalities in the states.

Theorem 1. Given an SRA 8 with n states and r registers, there is a single-
valued SRA 8" with O(nr") states and r+ 1 registers such that § ~ 8'. Moreover,
the translation preserves determinism.
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Normalization. While our techniques are inspired by analogous ones for non-
symbolic RAs, SRAs present an additional challenge: they can have arbitrary
predicates on transitions. Hence, the values that each transition can read, and
thus which configurations it can reach, depend on the history of past transitions
and their predicates. This problem emerges when checking reachability and sim-
ilarity, because a transition may be disabled by particular register values, and so
lead to unsound conclusions, a problem that does not exist in register automata.

Example 3. Consider the SRA below, defined over the BA of integers.

Q=
Zal) ®
All predicates on transitions are satisfiable, yet £ (8) = 0. To go from 0 to 1, §
must read a value n such that divs(n) and n # 0 and then n is stored into r. The
transition from 1 to 2 can only happen if the content of r also satisfies divs(n) and
n € [0, 10]. However, there is no n satisfying divs(n) An # 0Adivs(n) An € [0, 10],
hence the transition from 1 to 2 never happens.

To handle the complexity caused by predicates, we introduce a way of normaliz-
ing an SRA to an equivalent one that stores additional information about input
predicates. We first introduce some notation and terminology.

A register abstraction 0 for 8, used to “keep track” of the domain of regis-
ters, is a family of predicates indexed by the registers R of S. Given a register
assignment v, we write v |= 6 whenever v(r) € [0,] for v(r) # £, and 0, = L
otherwise. Hereafter we shall only consider “meaningful” register abstractions,
for which there is at least one assignment v such that v |= 6.

With the contextual information about register domains given by 6, we say

that a transition p RZAN q € Ais enabled by 6 whenever it has at least an instance
(p,v) % (q,w) in CLTS(8), for all v |= 6. Enabled transitions are important when
reasoning about reachability and similarity.

Checking whether a transition has at least one realizable instance in the CLTS
is difficult in practice, especially when ¢ = r®, because it amounts to checking
whether [¢] \ img(v) # 0, for all injective v |= 0.

To make the check for enabledness practical we will use minterms. For a set
of predicates @, a minterm is a minimal satisfiable Boolean combination of all
predicates that occur in @. Minterms are the analogue of atoms in a complete
atomic Boolean algebra. E.g. the set of predicates & = {z > 2,z < 5} over the
theory of linear integer arithmetic has minterms mint(®) = {z > 2Az <5, ~z >
2ANx <5, x>2A-z <5} Given ¢ € mint(P) and ¢ € P, we will write ¢ C ¥
whenever ¢ appears non-negated in ¢, for instance (z > 2) C (z > 2 A —x < 5).
A crucial property of minterms is that they do not overlap, i.e., isSat(¢1 A 12)
if and only if ¥ = 15, for 11 and 19 minterms.

Lemma 1 (Enabledness). Let 0 be a register abstraction such that 0, is a

minterm, for all v € R. If ¢ is a minterm, then p LR q s enabled by 0 iff:
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(1) if C=1=, then =00 (2) if =7*, then |[4]] > 60, ¢),
where &(0,p) = |{r € R | 0, = p}| is the # of registers with values from [¢].

Intuitively, (1) says that if the transition reads a symbol stored in r satisfying ¢,
the symbol must also satisfy 6,., the range of r. Because ¢ and 6, are minterms,
this only happens when ¢ = 6,.. (2) says that the enabling condition [¢] \
img(v) # 0, for all injective v |= 6, holds if and only if there are fewer registers
storing values from ¢ than the cardinality of ¢. That implies we can always
find a fresh element in [¢] to enable the transition. Registers holding values
from ¢ are exactly those r € R such that 6, = ¢. Both conditions can be
effectively checked: the first one is a simple predicate-equivalence check, while the
second one amounts to checking whether ¢ holds for at least a certain number
k of distinct elements. This can be achieved by checking satisfiability of ¢ A
—atom(ay) A - -+ A matom(ag—1), for ay,...,ar—1 distinct elements of [¢].

Remark 2. Using single-valued SRAs to check enabledness might seem like a
restriction. However, if one would start from a generic SRA, the process to
check enabledness would contain an extra step: for each state p, we would have
to keep track of all possible equations among registers. In fact, register equalities
determine whether (i) register constraints of an outgoing transition are satisfi-
able; (ii) how many elements of the guard we need for the transition to happen,
analogously to condition 2 of Lemma 1. Generating such equations is the key
idea behind Theorem 1, and corresponds precisely to turning the SRA into a
single-valued one.

Given any SRA, we can use the notion of register abstraction to build an equiva-
lent normalized SRA, where (i) states keep track of how the domains of registers
change along transitions, (4i) transitions are obtained by breaking the one of the
original SRA into minterms and discarding the ones that are disabled according
to Lemma 1. In the following we write mint(8) for the minterms for the set of

¢
predicates {¢ | p 2L q € A} U {atom(vg(r)) | vo(r) € D,r € R}. Observe that
an atomic predicate always has an equivalent minterm, hence we will use atomic
predicates to define the initial register abstraction.

Definition 4 (Normalized SRA). Given an SRA 8, its normalization N(8)
is the SRA (R,N(Q),N(qo),vo, N(F),N(A)) where:

- N(Q) = {0 | 0 is a register abstraction over mint(8)U{L} } x Q; we will write
0> q for (6,q) € N(Q).

- N(qo) = 0o > qo, where (6p), = atom(vo(r)) if vo(r) € D, and (6y), = L if
UO(T) = ﬁz'

“NF)={0>peN@)|peF}

SN =05 p T g p P g e Ap T 0} U

O05p 20— gl g p 2 ge A gy, |[¥]] > £060,9)}
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The automaton N(8) enjoys the desired property: each transition from 6 > p is
enabled by 6, by construction. N(8) is always finite. In fact, suppose 8 has n
states, m transitions and r registers. Then N(8) has at most m predicates, and
Imint(8)| is O(2™). Since the possible register abstractions are O(r2™), N(8) has
O(nr2™) states and O(mr223™) transitions.

Example 4. We now show the normalized version of Example 3. The first step is
computing the set mint(8) of minterms for 8, i.e., the satisfiable Boolean combi-
nations of {atom(0), divs, [0,10] A divs, < OV > 10}. For simplicity, we represent
minterms as bitvectors where a 0 component means that the corresponding pred-
icate is negated, e.g., [1,1, 1, 0] stands for the minterm atom(0) A ([0, 10] Adivs) A
divs A =(< 0V > 10). Minterms and the resulting SRA N(§) are shown below.

m e {10.1,0.01
: € {[0, 1.,0, 1]} \\v\.:\ry(.)wf_‘”.v@
mint(8) = A m/r
@ [r10,1,01]

On each transition we show how it is broken down to minterms, and for each
state we show the register abstraction (note that state 1 becomes two states in
N(8)). The transition from 1 to 2 is not part of N(8) — this is why it is dotted. In
fact, in every register abstraction [r — m] reachable at state 1, the component
for the transition guard [0, 10] Adivs in the minterm m (3rd component) is 0, i.e.,
([0,10] A divs) IZ m. Intuitively, this means that r will never be assigned a value
that satisfies [0, 10] Adivs. As a consequence, the construction of Definition 4 will
not add a transition from 1 to 2.

) 1/p=

Eeicicicl)
“anooo
EEY-TEY-]

.0,
, 0,
1,
.0,
.0,
1

0o = [r— atom(0)]  [r+—m]

Finally, we show that the normalized SRA behaves exactly as the original one.

Proposition 4. (p,v) ~ (0> p,v), for allp € Q and v |= 6. Hence, S ~ N(8).

Emptiness and Determinism. The transitions of N(§8) are always enabled
by construction, therefore every path in N(8) always corresponds to a run in

CLTS(N(S)).

Lemma 2. The state 6>p is reachable in N(8) if and only if there is a reachable
configuration (0 > p,v) in CLTS(N(S)) such that v |= 0. Moreover, if (6 > p,v)
is reachable, then all configurations (6 > p,w) such that w |= 0 are reachable.

Therefore, using Proposition 4, we can reduce the reachability and emptiness
problems of § to that of N(8).

Theorem 2 (Emptiness). There is an algorithm to decide reachability of any
configuration of 8, hence whether Z(8) = (.

Proof. Let (p,v) be a configuration of 8. To decide whether it is reachable in
CLTS(8), we can perform a visit of N(8) from its initial state, stopping when a
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state 6 > p such that v = 0 is reached. If we are just looking for a final state, we
can stop at any state such that p € F. In fact, by Proposition 4, there is a run
in CLTS(8) ending in (p, v) if and only if there is a run in CLTS(N(S)) ending in
(0> p,v) such that v = 6. By Lemma 2, the latter holds if and only if there is a
path in N(8) ending in 6 > p. This algorithm has the complexity of a standard
visit of N(8), namely O(nr2™ + mr?23™). 0

Now that we characterized which transitions are reachable, we define what it
means for a normalized SRA to be deterministic and we show that determinism
is preserved by the translation from SRA.

Proposition 5 (Determinism). N(8) is deterministic if and only if for all

reachable transitions p £/ q1,p p2/te g2 € N(A) the following holds: ¢1 # pa
whenever either (1) 1 =y and q1 # qa, or; (2) b1 =71°, by =s°, and r # s;

One can check determinism of an SRA by looking at its normalized version.

Proposition 6. § is deterministic if and only if N(8) is deterministic.

Similarity and Bisimilarity. We now introduce a symbolic technique to
decide similarity and bisimilarity of SRAs. The basic idea is similar to sym-
bolic (bi)simulation [20,27] for RAs. Recall that RAs are SRAs whose transition
guards are all T. Given two RAs 8; and 85 a symbolic simulation between them
is defined over their state spaces Q1 and ()2, not on their configurations. For this
to work, one needs to add an extra piece of information about how registers of
the two states are related. More precisely, a symbolic simulation is a relation on
triples (p1, p2, o), where p1 € Q1,p2 € Q2 and 0 C Ry X Ry is a partial injective
function. This function encodes constraints between registers: (r,s) € o is an
equality constraint between r € Ry and s € Ra, and (r,s) ¢ o is an inequality
constraint. Intuitively, (p1,p2, o) says that all configurations (p1,v1) and (pa, v2)
such that vy and vy satisfy o — e.g., v1(r) = va(s) whenever (r,s) € o — are in
the simulation relation (p1,v1) < (p2,v2). In the following we will use vy < vg to
denote the function encoding constraints among v; and vs, explicitly: o(r) = s
if and only if v1(r) = va(s) and vy (r) # £.

Definition 5 (Symbolic (bi)similarity [27]). A symbolic simulation is a rela-
tion R C Q1 X Q1 X P(R1 X Ry) such that if (p1,p2,0) € R, then p; € Fy implies
p2 € Fy, and if p1 LN g1 € Ayt then:
1. 0f 0 =r=:
(a) if r € dom(o), then there is pa o0, g2 € Ay such that (g1, q2,0) € R.
(b) if r ¢ dom(o) then there is po =, g2 € Ag s.t. (q1,q2,0[r — s]) € R.

! 'We will keep the T guard implicit for succinctness.
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2 ifb=rs:
(a) for all s € Ry \ img(o), there is po 2, qo € Ay such that (q1,G2,0[r —
s]) € R, and;

(b) there is pa =, g2 € Az such that (q1,q2,0[r — s]) € R.

Here olr +— s] stands for o \ (071(s),s) U (r,s), which ensures that o stays
injective when updated.

Given a symbolic simulation R, its inverse is defined as R~ = {71 | t € R},
where (p1, p2,0) "t = (p2,p1,0~1). A symbolic bisimulation R is a relation such
that both R and R™' are symbolic simulations.

Case 1 deals with cases when p; can perform a transition that reads the register
r. If r € dom(o), meaning that r and o(r) € Ry contain the same value, then po
must be able to read o(r) as well. If r ¢ dom(o), then the content of r is fresh
w.r.t. pa, so po must be able to read any fresh value—in particular the content
of r. Case 2 deals with the cases when p; reads a fresh value. It ensures that ps
is able to read all possible values that are fresh for p;, be them already in some
register s —i.e., s € Ry \img(c), case 2(a) — or fresh for ps as well — case 2(b). In
all these cases, o must be updated to reflect the new equalities among registers.

Keeping track of equalities among registers is enough for RAs, because the
actual content of registers does not determine the capability of a transition to
fire (RA transitions have implicit T guards). As seen in Example 3, this is no
longer the case for SRAs: a transition may or may not happen depending on the
register assignment being compatible with the transition guard.

As in the case of reachability, normalized SRAs provide the solution to this
problem. We will reduce the problem of checking (bi)similarity of 8§; and 83 to
that of checking symbolic (bi)similarity on N(8;) and N(83), with minor modifi-
cations to the definition. To do this, we need to assume that minterms for both
N(81) and N(83) are computed over the union of predicates of 8; and Ss.

Definition 6 (N-simulation). A N-simulation on 81 and 83 is a relation R C
N(Q1) X N(Q2) X P(Ry x Rg), defined as in Definition 5, with the following
modifications:

(i) we require that 01>p; e/l 01>q1 € N(A1) must be matched by transitions

02 > p2 “0_2/6_% 9/2 > qo € N(AQ) such that g2 = @1.

(i) we modify case 2 as follows (changes are underlined):
2(a)’ for all s € Ry \ img(o) such that p; = (02)s, there is O3 1> po

04 > g2 € N(Az) such that (07 > qu,05 > g2, 0[r — s]) € R, and;

2(b)" if £(01, 1) + E(02, 1) < |[ipall, then there is 0 > py 2L 0 > gy €

N(Az) such that (8] > q1,05 > qo,0[r — s]) € R.

p1/s~

A N—bisz'mula}zqfion R is a relation such that both R and R~ are N-simulations.
We write 81 < 82 (resp. 81 N 82) if there is a N-simulation (resp. bisimulation)
R such that (N(go1), N(qo2),v01 > vo2) € R.
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The intuition behind this definition is as follows. Recall that, in a normalized
SRA, transitions are defined over minterms, which cannot be further broken
down, and are mutually disjoint. Therefore two transitions can read the same
values if and only if they have the same minterm guard. Thus condition (i) makes
sure that matching transitions can read exactly the same set of values. Analo-
gously, condition (ii) restricts how a fresh transition of N(8;) must be matched
by one of N(82): 2(a)’” only considers transitions of N(82) reading registers s € Ry
such that ¢ = (62)s because, by definition of normalized SRA, 65 > po has no
such transition if this condition is not met. Condition 2(b)’ amounts to requiring
a fresh transition of N(82) that is enabled by both 6; and 05 (see Lemma 1), i.e.,
that can read a symbol that is fresh w.r.t. both N(8;) and N(82).
N-simulation is sound and complete for standard simulation.

Theorem 3. 81 < 85 if and only if 81 i 8.

As a consequence, we can decide similarity of SRAs via their normalized versions.
N-simulation is a relation over a finite set, namely N(Q1) x N(Q2) x P(R; X Ra),
therefore N-similarity can always be decided in finite time. We can leverage
this result to provide algorithms for checking language inclusion/equivalence for
deterministic SRAs (recall that they are undecidable for non-deterministic ones).

Theorem 4. Given two deterministic SRAs 81 and 8o, there are algorithms to
decide £ (81) C Z(82) and £ (81) = Z(82).

Proof. By Proposition 1 and Theorem 3, we can decide £(81) C £(82) by

checking §; i 89. This can be done algorithmically by iteratively building a
relation R on triples that is an N-simulation on N(8;) and N(82). The algorithm
initializes R with (N(go1), N(go2), vo1 B wg2), as this is required to be in R
by Definition 6. Each iteration considers a candidate triple ¢t and checks the
conditions for N-simulation. If satisfied, it adds ¢ to R and computes the next
set of candidate triples, i.e., those which are required to belong to the simulation
relation, and adds them to the list of triples still to be processed. If not, the
algorithm returns Z(81) € £(82). The algorithm terminates returning £ (81) C
Z(82) when no triples are left to process. Determinism of 81 and 83, and hence
of N(81) and N(82) (by Proposition 6), ensures that computing candidate triples
is deterministic. To decide Z(81) = -Z(82), at each iteration we need to check
that both ¢t and ¢t~! satisfy the conditions for N-simulation.

If 8; and 85 have, respectively, ni,ns states, my, ms transitions, and rq,ry
registers, the normalized versions have O(n1712™!) and Q(ngre2™2) states. Each
triple, taken from the finite set N(Q1) x N(Q2) X P(R1 X R2), is processed exactly
once, so the algorithm iterates O(ninorre2™1Tm2+172) times. O

5 Evaluation

We have implemented SRAs in the open-source Java library SVPALib [26]. In
our implementation, constructions are computed lazily when possible (e.g., the
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normalized SRA for emptiness and (bi)similarity checks). All experiments were
performed on a machine with 3.5 GHz Intel Core i7 CPU with 16 GB of RAM
(JVM 8GB), with a timeout value of 300s. The goal of our evaluation is to
answer the following research questions:

Q1: Are SRAs more succinct than existing models when processing strings over
large but finite alphabets? (Sect.5.1)

Q2: What is the performance of membership for deterministic SRAs and how
does it compare to the matching algorithm in java.util.regex? (Sect.5.2)

Q3: Are SRA decision procedures practical? (Sect. 5.3)

Benchmarks. We focus on regular expressions with back-references, therefore
all our benchmarks operate over the Boolean algebra of Unicode characters with
interval—i.e., the set of characters is the set of all 2! UTF-16 characters and
the predicates are union of intervals (e.g., [a-zA-Z]).? Our benchmark set con-
tains 19 SRAs that represent variants of regular expressions with back-references
obtained from the regular-expression crowd-sourcing website RegExLib [23]. The
expressions check whether inputs have, for example, matching first/last name ini-
tials or both (Name-F, Name-L and Name), correct Product Codes/Lot number
of total length n (Pr-Cn, Pr-CLn), matching XML tags (XML), and IP addresses
that match for n positions (IPn). We also create variants of the product bench-
mark presented in Sect.2 where we vary the numbers of characters in the code
and lot number. All the SRAs are deterministic.

5.1 Swuccinctness of SRAs vs SFAs

In this experiment, we relate the size of SRAs over finite alphabets to the size
of the smallest equivalent SFAs. For each SRA, we construct the equivalent
SFA by equipping the state space with the values stored in the registers at each
step (this construction effectively builds the configuration LTS). Figure 2a shows
the results. As expected, SFAs tend to blow up in size when the SRA contains
multiple registers or complex register values. In cases where the register values
range over small sets (e.g., [0-9]) it is often feasible to build an SFA equivalent
to the SRA, but the construction always yields very large automata. In cases
where the registers can assume many values (e.g., 2!%) SFAs become prohibitively
large and do not fit in memory. To answer Q1, even for finite alphabets, it is
not feasible to compile SRAs to SFAs. Hence, SRAs are a succinct model.

5.2 Performance of Membership Checking

In this experiment, we measure the performance of SRA membership, and we
compare it with the performance of the java.util.regex matching algorithm.

2 Qur experiments are over finite alphabets, but the Boolean algebra can be infinite
by taking the alphabet to be positive integers and allowing intervals to contain co as
upper bound. This modification does not affect the running time of our procedures,
therefore we do not report it.
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SRA SFA
states tr reg |reg|| states tr SRA 81 SRA 82| A1=0 L1=%1 %> C %
1P2 44 46 3 10 4,013 4,312 Pr-C2 Pr-CL2| 0.125s 0.905s 3.426s
1P3 44 46 4 10| 39,113 42,112 Pr-C3 Pr-CL3| 1.294s 5.558s 24.688s
P4 44 46 5 10[372,113 402,112 Pr-C4 Pr-CL4[13.577s 55.595s —
1P6 44 46 7 10 — — Pr-C6 Pr-CL6 — — —
IP9 44 46 10 10 — — Pr-CL2 Pr-C2 | 1.067s 0.952s 0.889s
Name-F 710 2 26 201 300 Pr-CL3 Pr-C3 [10.998s 11.104s 11.811s
Name-L 710 2 26 129 180 Pr-CL4 Pr-C4 — —
Name 710 3 26 3,201 4,500 Pr-CL6 Pr-C6 — — —
XML 12 16 4 52 — — 1P-2 IP-3 0.125s  0.408s 1.845s
Pr-C2 26 28 3 216 — — IP-3 IP-4 1.288s 2.953s 21.627s
Pr-C3 28 30 4 26 - - P-4 IP-6 |18.440s 42.727s —
Pr-C4 30 32 5 26 — — IP-6  IP-9 — — -
- . ap 16 . .
Er'gg ig Zg 13 315 - - (b) Performance of decision procedures.
Tr- .
Pr-CL2 26 28 3 ol6 o o In the table % = £(8;), for i = 1,2.
Pr-CL3 28 30 4 2'6 — —
Pr-CL4| 3032 5 2' — — e
Pr-CL6 34 36 7 2'6 — — z
16 < 10
Pr-CL9 40 42 10 2 E
;100
(a) Size of SRAs vs SFAs. (—) denotes the 2
SFA didn’t fit in memory. |reg| denotes how £
. . 5102
many different characters a register stored. E
10

100 102 10° 10" 10° 106 107 108 107
input length

(c) SRA membership and Java regex
matching performance. Missing data
points for Java are stack overflows.

Fig. 2. Experimental results.

For each benchmark, we generate inputs of length varying between approxi-
mately 100 and 10® characters and measure the time taken to check member-
ship. Figure 2¢ shows the results. The performance of SRA (resp. Java) is not
particularly affected by the size of the expression. Hence, the lines for different
expressions mostly overlap. As expected, for SRAs the time taken to check mem-
bership grows linearly in the size of the input (axes are log scale). Remarkably,
even though our implementation does not employ particular input processing
optimizations, it can still check membership for strings with tens of millions of
characters in less than 10s. We have found that our implementation is more
efficient than the Java regex library, matching the same input an average of
50 times faster than java.util.regex.Matcher. java.util.regex.Matcher
seems to make use of a recursive algorithm to match back-references, which
means it does not scale well. Even when given the maximum stack size, the
JVM will return a Stack Overflow for inputs as small as 20,000 characters. Our
implementation can match such strings in less than 2s. To answer Q2, deter-
ministic SRAs can be efficiently executed on large inputs and perform
better than the java.util.regex matching algorithm.
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5.3 Performance of Decision Procedures

In this experiment, we measure the performance of SRAs simulation and bisim-
ulation algorithms. Since all our SRAs are deterministic, these two checks cor-
respond to language equivalence and inclusion. We select pairs of benchmarks
for which the above tests are meaningful (e.g., variants of the problem discussed
at the end of Sect. 2). The results are shown in Fig. 2b. As expected, due to the
translation to single-valued SRAs, our decision procedures do not scale well in
the number of registers. This is already the case for classic register automata
and it is not a surprising result. However, our technique can still check equiva-
lence and inclusion for regular expressions that no existing tool can handle. To
answer Q3, bisimulation and simulation algorithms for SRAs only scale
to small numbers of registers.

6 Conclusions

In this paper we have presented Symbolic Register Automata, a novel class of
automata that can handle complex alphabet theories while allowing symbol com-
parisons for equality. SRAs encompass — and are strictly more powerful — than
both Register and Symbolic Automata. We have shown that they enjoy the same
closure and decidability properties of the former, despite the presence of arbi-
trary guards on transitions, which are not allowed by RAs. Via a comprehensive
set of experiments, we have concluded that SRAs are vastly more succinct than
SFAs and membership is efficient on large inputs. Decision procedures do not
scale well in the number of registers, which is already the case for basic RAs.

Related Work. RAs were first introduced in [17]. There is an extensive lit-
erature on register automata, their formal languages and decidability proper-
ties [7,13,21,22,25], including variants with global freshness [20,27] and totally
ordered data [4,14]. SRAs are based on the original model of [17], but are much
more expressive, due to the presence of guards from an arbitrary decidable
theory.

In recent work, variants over richer theories have appeared. In [9] RA over
rationals were introduced. They allow for a restricted form of linear arithmetic
among registers (RAs with arbitrary linear arithmetic subsume two-counter
automata, hence are undecidable). SRAs do not allow for operations on reg-
isters, but encompass a wider range of theories without any loss in decidability.
Moreover, [9] does not study Boolean closure properties. In [8,16], RAs allow-
ing guards over a range of theories — including (in)equality, total orders and
increments/sums — are studied. Their focus is different than ours as they are
interested primarily in active learning techniques, and several restrictions are
placed on models for the purpose of the learning process. We can also relate
SRAs with Quantified Event Automnata [2], which allow for guards and assign-
ments to registers on transitions. However, in QEA guards can be arbitrary,
which could lead to several problems, e.g. undecidable equivalence.
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Symbolic automata were first introduced in [28] and many variants of them
have been proposed [12]. The one that is closer to SRAs is Symbolic Extended
Finite Automata (SEFA) [11]. SEFAs are SFAs in which transitions can read
more than one character at a time. A transition of arity k reads k symbols which
are consumed if they satisfy the predicate ¢(z1,...,x). SEFAs allow arbitrary
k-ary predicates over the input theory, which results in most problems being
undecidable (e.g., equivalence and intersection emptiness) and in the model not
being closed under Boolean operations. Even when deterministic, SEFAs are
not closed under union and intersection. In terms of expressiveness, SRAs and
SEFAs are incomparable. SRAs can only use equality, but can compare symbols
at arbitrary points in the input while SEFAs can only compare symbols within
a constant window, but using arbitrary predicates.

Several works study matching techniques for extended regular expres-
sions [3,5,18,24]. These works introduce automata models with ad-hoc features
for extended regular constructs — including back-references — but focus on effi-
cient matching, without studying closure and decidability properties. It is also
worth noting that SRAs are not limited to alphanumeric or finite alphabets.
On the negative side, SRAs cannot express capturing groups of an unbounded
length, due to the finitely many registers. This limitation is essential for
decidability.

Future Work. In [21] a polynomial algorithm for checking language equivalence
of deterministic RAs is presented. This crucially relies on closure properties of
symbolic bisimilarity, some of which are lost for SRAs. We plan to investigate
whether this algorithm can be adapted to our setting. Extending SRAs with
more complex comparison operators other than equality (e.g., a total order <)
is an interesting research question, but most extensions of the model quickly
lead to undecidability. We also plan to study active automata learning for SRAs,
building on techniques for SFAs [1], RAs [6,8,16] and nominal automata [19].
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Abstract. We present abstraction-refinement algorithms for model
checking safety properties of timed automata. The abstraction domain
we consider abstracts away zones by restricting the set of clock con-
straints that can be used to define them, while the refinement procedure
computes the set of constraints that must be taken into consideration
in the abstraction so as to exclude a given spurious counterexample.
We implement this idea in two ways: an enumerative algorithm where
a lazy abstraction approach is adopted, meaning that possibly different
abstract domains are assigned to each exploration node; and a symbolic
algorithm where the abstract transition system is encoded with Boolean
formulas.

1 Introduction

Model checking [4,10,12,26] is an automated technique for verifying that the
set of behaviors of a computer system satisfies a given property. Model-checking
algorithms explore finite-state automata (representing the system under study)
in order to decide if the property holds; if not, the algorithm returns an explana-
tion. These algorithms have been extended to verify real-time systems modelled
as timed automata [2,3], an extension of finite automata with clock variables to
measure and constrain the amount of time elapsed between occurrences of transi-
tions. The state-space exploration can be done by representing clock constraints
efficiently using convex polyhedra called zones [8,9]. Algorithms based on this
data structure have been implemented in several tools such as Uppaal [7], and
have been applied in various industrial cases.

The well-known issue in the applications of model checking is the state-space
ezxplosion problem: the size of the state space grows exponentially in the size
of the description of the system. There are several sources for this explosion:
the system might be made of the composition of several subsystems (such as
a distributed system), it might contain several discrete variables (such as in a
piece of software), or it might contain a number of real-valued clocks as in our
case.
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grant EQuallS (StG-308087).
© The Author(s) 2019

I. Dillig and S. Tasiran (Eds.): CAV 2019, LNCS 11561, pp. 22-40, 2019.
https://doi.org/10.1007/978-3-030-25540-4_2


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-25540-4_2&domain=pdf
https://doi.org/10.1007/978-3-030-25540-4_2

Abstraction Refinement Algorithms for Timed Automata 23

Numerous attempts have been made to circumvent this problem. Abstrac-
tion is a generic approach that consists in simplifying the model under study,
so as to make it easier to verify [13]. Ezistential abstraction may only add extra
behaviors, so that when a safety property holds in an abstracted model, it also
holds in the original model; if on the other hand a safety property fails to hold,
the model-checking algorithms return a witness trace exhibiting the non-safe
behaviour: this either invalidates the property on the original model, if the trace
exists in that model, or gives information about how to automatically refine the
abstraction. This approach, named CEGAR (counter-example guided abstrac-
tion refinement) [11], was further developed and used, for instance, in software
verification (BLAST [20], SLAM [5], ...).

The CEGAR approach has been adapted to timed automata, e.g. in [14,
18], but the abstractions considered there only consist in removing clocks and
discrete variables, and adding them back during refinement. So for most well-
designed models, one ends up adding all clocks and variables which renders the
method useless. Two notable exceptions are [22], in which the zone extrapolation
operators are dynamically adapted during the exploration, and [29], in which
zones are refined when needed using interpolants. Both approaches define “exact”
abstractions in the sense that they make sure that all traces discovered in the
abstract model are feasible in the concrete model at any time.

In this work, we consider a more general setting and study predicate abstrac-
tions on clock variables. Just like in software model checking, we define abstract
state spaces using these predicates, where the values of the clocks and their
relations are approximately represented by these predicates. New predicates are
generated if needed during the refinement step. We instantiate our approach by
two algorithms. The first one is a zone-based enumerative algorithm inspired by
the lazy abstraction in software model checking [19], where we assign a possibly
different abstract domain to each node in the exploration. The second algorithm
is based on binary decision diagrams (BDD): by exploiting the observation that a
small number of predicates was often sufficient to prove safety properties, we use
an efficient BDD encoding of zones similar to one introduced in early work [28].

Let us explain the abstract domains we consider. Assume there are two clock
variables  and y. The abstraction we consider consists in restricting the clock

x x T x

(a) Abstraction of zone 1 < z,y <2 (b) Abstraction of zoney <1A1<z—y <2

Fig.1. The abstract domain is defined by the clock constraints shown in thick red
lines. In each example, the abstraction of the zone shown on the left (shaded area) is
the larger zone on the right. (Color figure online)
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constraints that can be used when defining zones. Assume that we only allow to
compare x with 2 or 3; that y can only be compared with 2, and x —y can only be
compared with —1 or 2. Then any conjunction of constraints one might obtain
in this manner will be delimited by the thick red lines in Fig.1; one cannot
define a finer region under this restriction. The figure shows the abstraction
process: given a “concrete” zone, its abstraction is the smallest zone which is a
superset and is definable under our restriction. For instance, the abstraction of
1<z,y<2is0<z,y<2A-1<z—y (cf. Fig. 1la).

Related Works. We give more detail on zone abstractions in timed automata.
Most efforts in the literature have been concentrated in designing zone abstrac-
tion operators that are exact in the sense that they preserve the reachability
relation between the locations of a timed automaton; see [6]. The idea is to
determine bounds on the constants to which a given clock can be compared to
in a given part of the automaton, since the clock values do not matter outside
these bounds. In [21,22], the authors give an algorithm where these bounds are
dynamically adapted during the exploration, which allows one to obtain coarser
abstractions. In [29], the exploration tree contains pairs of zones: a concrete zone
as in the usual algorithm, and a coarser abstract zone. The algorithm explores
all branches using the coarser zone and immediately refines the abstract zone
whenever an edge which is disabled in the concrete zone is enabled. In [17], a
CEGAR loop was used to solve timed games by analyzing strategies computed
for each abstract game. The abstraction consisted in collapsing locations.

Some works have adapted the abstraction-refinement paradigm to timed
automata. In [14], the authors apply “localization reduction” to timed automata
within an abstraction-refinement loop: they abstract away clocks and discrete
variables, and only introduce them as they are needed to rule out spurious coun-
terexamples. A more general but similar approach was developed in [18]. In [31],
the authors adapt the trace abstraction refinement idea to timed automata where
a finite automaton is maintained to rule out infeasible edge sequences.

The CEGAR approach was also used recently in the LinAIG framework for
verifying linear hybrid automata [1]. In this work, the backward reachability algo-
rithm exploits don’t-cares to reduce the size of the Boolean circuits representing
the state space. The abstractions consist in enlarging the size of don’t-cares to
reduce the number of linear predicates used in the representation.

2 Timed Automata and Zones

2.1 Timed Automata

Given a finite set of clocks C, we call valuations the elements of RS . For a
clock valuation v, a subset R C C, and a non-negative real d, we denote with
v[R « d] the valuation w such that w(z) = v(z) for z € C\ R and w(x) = d for
x € R, and with v + d the valuation w’ such that w’(z) = v(z) +d for all x € C.
We extend these operations to sets of valuations in the obvious way. We write 0
for the valuation that assigns 0 to every clock. An atomic guard is a formula of
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the formz < korz—y < kwithz,y € C, k € Nyand < € {<,<,>,>}. A guard
is a conjunction of atomic guards. A valuation v satisfies a guard g, denoted
v = g, if all atomic guards hold true when each = € C is replaced with v(z).
Let [g] = {v € RS, | v = g} denote the set of valuations satisfying g. We write
¢ for the set of guards built on C.

A timed automaton A is a tuple (L, Inv, ¢y,C, E), where L is a finite set of
locations, Inv: £ — &¢ defines location invariants, C is a finite set of clocks,
E C Lx®e x2° x L is a set of edges, and ¢y € L is the initial location. An edge

e=({,g,R,0') is also written as £ 28 For any location ¢, we let E(¢) denote
the set of edges leaving ¢.

A configuration of A is a pair ¢ = (¢,v) € L x RS, such that v = Inv(f).
A run of A is a sequence qieiqaes...q, where for all i > 1, ¢; = (€;,v;) is
a configuration, and either e; € Rsq, in which case ¢;4+1 = (4;,v; + €;), or
e; = (4, gi,Ri,iy1) € E, in which case v; E g; and ¢r1 = (Li1,v;[R; < 0]).
A path is a sequence of edges with matching endpoint locations.

2.2 Zones and DBMs

Several tools for timed automata implement algorithms based on zones, which
are particular polyhedra definable with clock constraints. Formally, a zone Z is
a subset of Rgo definable by a guard in @¢.

We recall a few basic operations defined on zones. First, the intersection ZNZ’
of two zones Z and Z’ is clearly a zone. Given a zone Z, the set of time-successors
of Z, defined as Z1T = {v+t € R, | t € Rsg, v € Z}, is easily seen to be

a zone; similarly for time-predecessors Z| = {v € RS, | 3t > 0. v+t € Z}.
Given R C C, we let Resetg(Z) be the zone {v[R « 0] € RS, | v € Z}, and
Free,(Z) = {v' € RS, | v € Z,d € Rxp,v" = vz « d}.

Zones can be represented as difference-bound matrices (DBM) [8,15].
Let Cy = C U {0}, where 0 is an extra symbol representing a special clock vari-
able whose value is always 0. A DBM is a |Cy| X |Co|-matrix taking values in
(Z x{<, <})U{(+00, <)}. Intuitively, cell (z,y) of a DBM M stores a pair (d, <)
representing an upper bound on the difference z—y. For any DBM M, we let [M]
denote the zone it defines.

While several DBMs can represent the same zone, each zone admits a canon-
ical representation, which is obtained by storing the tightest clock constraints
defining the zone. This canonical representation can be obtained by comput-
ing shortest paths in a graph where the vertices are clocks and the edges
weighted by clock constraints, with natural addition and comparison of elements
of (Z x {<,<})U{(+00,<)}. This graph has a negative cycle if, and only if, the
associated DBM represents the empty zone.

All the operations on zones can be performed efficiently (in O(|Co|?)) on their
associated DBMs while maintaining reduced form. For instance, the intersection
N = Z N Z' of two canonical DBMs Z and Z’ can be obtained by first com-
puting the DBM M = min(Z, Z’) such that M(z,y) = min{Z(z,y), Z'(z,y)}
for all (z,y) € Co?, and then turning M into canonical form. We refer to [8] for
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full details. By a slight abuse of notation, we use the same notations for DBMs
as for zones, writing e.g. M/ = M1, where M and M’ are reduced DBMs such
that [M'] = [M]1. Given an edge e = ({,g,R,¢), and a zone Z, we define
Post.(Z) = Inv(¢') N (g N Resetr(Z))1, and Pre.(Z) = (g N Freeg(Inv(¢') N Z))].
For a path p = ejez...e,, we define Post, and Pre, by iteratively applying
Post., and Pre., respectively.

2.3 Clock-Predicate Abstraction and Interpolation

For all clocks & and y in Cy, we consider a finite set D, ,, € Nx{<, <}, and gather
these in a table D = (Dyy)a,yec,- D is the abstract domain which restricts zones
to be defined only using constraints of the form z —y < k with (k, <) € Dy,
as seen earlier. Let us call D the concrete domain if D, , = N x {<, <} for
all z,y € Cy. A zone Z is D-definable if there exists a DBM D such that Z = [D]
and D(z,y) € Dg, for all z,y € Cy. Note that we do not require this witness
DBM D to be reduced; the reduction of such a DBM might introduce additional
values. We say that domain D’ is a refinement of D if for all z,y € Cy, we have
Dy y €Dy

An abstract domain D induces an abstraction function ap: P T IN
2520 where ap(Z) is the smallest D-definable zone containing Z. For any
reduced DBM D, ap([D]) can be computed by setting D’(x,y) = min{(k, <)
€D,y | D(z,y) < (k, <)} (with min) = (o0, <)).

An interpolant for a pair of zones (Z1, Zy) with Z1 N Zy = ) is a zone Z3
with Z; C Z3 and Z3 N Zy = (' [29]. We use interpolants to refine our
abstractions; in order not to add too many new constraints when refining,
our aim is to find minimal interpolants: define the density of a DBM D as
d(D) = #{(z,y) € Co* | D(x,y) # (00, <)}. Notice that while any pair of dis-
joint convex polyhedra can be separated by hyperplanes, not all pairs of disjoint
zones admit interpolants of density 1; this is because not all (half-spaces delim-
ited by) hyperplanes are zones. Still, we can bound the density of a minimal
interpolant:

Lemma 1. For any pair of disjoint, non-empty zones (A, B), there exists an
interpolant of density less than or equal to |Co|/2.

By adapting the algorithm of [29] for computing interpolants, we can compute
minimal interpolants efficiently:

Proposition 2. Computing a minimal interpolant can be performed in O(|C|*).

3 Enumerative Algorithm

The first type of algorithm we present is a zone-based enumerative algorithm
based on the clock-predicate abstractions. Let us first describe the overall

! It is sometimes also required that the interpolant only involves clocks that have
non-trivial constraints in both Z; and Z2. We do not impose this requirement in our
definition, but it will hold true in the interpolants computed by our algorithm.
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algorithm in Algorithm 1, which is a typical abstraction-refinement loop. We then
explain how the abstract reachability and refinement procedures are instantiated.

Algorithm 1. Enumerative Algorithm 2. AbsReach

algorithm checking the reacha- Input: (£, Inv,lo,C, E), wait, passed,

bility of a target location ¢p. by

Input: A= (L,Inv,£4y,C, E), {1 1 while wait # () do

1 Initialize Do; 2 | n:=wait.pop();

2 wait:= {node({o, 07, Do) }; 3 if n.£ = {7 then

3 passed:= (; 4 L return Trace from root to n;

4 while do 5 if In’ € passed such that n.f =

5 7 := AbsReach(A, wait, n' 4 An.Z Cn'.Z then

passed, {r); 6 ‘ n.covered :=n’;

6 if 7 =0 then 7 else

7 ‘ return Not reachable; 8 n.Z := a(n.Z,n);

8 else 9 passed.add(n);

9 if trace w is feasible then 10 for e = (£,g,R,{') € E(n.f)
10 ‘ return Reachable; s.t. Z' :=Post.(n.Z) # 0
11 else do

L Refine(rr, wait, passed); 11 D' := choose-dom(n, e);
L 12 n' := node(¢’, Z', D');
12 return Not reachable; 13 n'.parent := n;
14 wait.add(n');

15 return (;

The initialization at line 1 chooses an abstract domain for the initial state,
which can be either empty (thus the coarsest abstraction) or defined according
to some heuristics. The algorithm maintains the wait and passed lists that are
used in the forward exploration. As usual, the wait list can be implemented
as a stack, a queue, or another priority list that determines the search order.
The algorithm also uses covering nodes. Indeed if there are two node n and
n/, with n € passed, n’ € wait, n.{ = n’.{, and n’.2 C n.Z, then we know
that every location reachable from n’ is also reachable from n. Since we have
already explored n and we generated its successors, there is no need to explore
the successors of n’. The algorithm explicitly creates an exploration tree: line 2
creates a node containing location ¢y, zone 07, and the abstract domain Dy as the
root of our tree, and adds this to the wait list. More details on the tree are given
in the next subsection. Procedure AbsReach then looks for a trace to the target
location ¢7. If such a trace exists, line 9 checks its feasibility. Here 7 is a sequence
of node and edges of A. The feasibility check is done by computing predecessors
with zones starting from the final state, without using the abstraction function.
If the last zone intersects our initial zone, this means that the trace is feasible.
More details are given in Sect. 3.2.
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3.1 Abstract Forward Reachability: AbsReach

We give a generic algorithm independently from the implementations of the
abstraction functions and the refinement procedure.

Algorithm 2 describes the reachability procedure under a given abstract
domain D. It is similar to the standard forward reachability algorithm using
a wait-list and a passed-list. We explicitly create an exploration tree where the
leaves are nodes in wait, covered nodes, or nodes that have no non-empty succes-
sors. Each node n contains the fields ¢, Z which are labels describing the current
location and zone; field covered points to a node covering the current node (it is
undefined if the current node is not (known to be) covered); field parent points
to the parent node in the tree (it is undefined for the root); and field D is the
abstract domain associated with the node. Thus, the algorithm uses a possibly
different abstract domain for each node in the exploration tree.

The difference of our algorithm w.r.t. the standard reachability can be seen
at lines 8 and 11. At line 8, we apply the abstraction function to the zone taken
from the wait-list before adding it to the passed-list. The abstraction function «
is a function of a zone Z and a node n. This allows one to define variants with
different dependencies; for instance, a might depend on the abstract domain n.D
at the current node, but it can also use other information available in n or on
the path ending in n. For now, it is best to think of « simply as Z — ay, p(Z).
At line 11, the function choose-dom chooses an abstract domain for the node n’.
The domain could be chosen global for all nodes, or local to each node. A good
trade-off, which we used in our experiments, is to have domains associated with
locations of the timed automaton.

Remark 1. Note that we use the abstraction function when the node is inserted
in the passed list. This is because we want the node to contain the smallest zone
possible when we test whether the node is covered. We only need to use the
abstracted zone when we compute its successor and when we test whether the
node is covering. This allows us to store a unique zone.

As a first step towards proving correctness of our algorithm, we show that
the following property is preserved by Algorithm AbsReach:

For all nodes n in passed, for all edges e from n.¢, if Post.(n.Z) # 0,
then n has a child n’ such that Post.(n.Z) C n'.Z. If n’ is in passed, (1)
then we also have a, p(Post.(n.Z)) Cn'.Z.

Lemma 3. Algorithm AbsReach preserves Property (1).

Note that although we use inclusion in Property (1), AbsReach would actually
preserve equality of zones, but we will not always have equality before running
AbsReach. This is because Refine might change the zones of some nodes without
updating the zones of all their descendants.
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3.2 Refinement: Refine

We now describe our refinement procedure Refine. Let us now assume that
AbsReach returns 7 = A; 25 Ay, 2 ... Tkt Ay, and write D; for the
domain associated with each A;. We write C for the initial concrete zone, and
for i < k, we define C;y; = Post,,(A;). We also note Z = Ay and for i < k,
Z; = Prey,(Zi+1) N A;. Then  is not feasible if, and only if, Post,,  ,(C1) =0,
or equivalently Prey, . . (Ax) N Cy = 0. Since for all ¢ < k, it holds C; C A;4q,
we have that 7 is not feasible if, and only if, 3i < k. C; N Z; = (). We illustrate

this on Fig. 2.

——

o — —
" Post

" Post

Fig. 2. Spurious counter-example: Z1 N C; = ()

Let us assume that 7 is not feasible. Let us denote by iy the maximal index
such that C;, N Z;, = 0. This index also has the property that for all j < iy,
we have Z; = () and Z,, # 0. Once we have identified this trace as spurious by
computing the Z;, we have two possibilities:

- if Zi, Nap,, (Ci,) # 0: this means that we can reach Ay from ap, (Cj,) but
not from Cj,. In other words, our abstraction is too coarse and we must add
some values to D;, so that Z;, Nap, (Cy,) = (). Those values are found by
computing the interpolant of Z;, and Cj,

— Otherwise it means that ap, (Cj,) cannot reach Ay and the only reason the
trace exists is because either D;, or A;,_; has been modified at some point
and A;, was not modified accordingly.

We can then update the values of C; for ¢ > ip and repeat the process until
we reach an index jo such that Cj, = (). We then have modified the nodes
Ny, - .., Nj, and knowing that nj,.Z = 0, we can delete it and all of its descen-
dants. Since some of the descendants of n;, have not been modified, this might
cause some refinements of the first type in the future. In order to ensure termi-
nation, we sometimes have to cut a subtree from a node in n;,,...,n; -1 and
reinsert it in the wait list to restart the exploration from there. We call this
action cut, and we can use several heuristics to decide when to use it. In the
rest of this paper we will use the following heuristics: we perform cut on the first
node of n;,...n;, that is covered by some other node. Since this node is covered,
we know that we will not restart the exploration from this node, or that the
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node was covered by one of its descendant. If none of these nodes are covered,
we delete n;, and its descendants. Other heuristics are possible, for instance
applying cut on n;,. We found that the above heuristics was the most efficient
in our experiments.

Lemma 4. Pick a node n, and let Y = n.Z. Then after running Refine, either
node n is deleted, or it holds n.Z C Y. In other words, the zone of a node can
only be reduced by Refine.

It follows that Refine also preserves Property (1), so that:
Lemma 5. Algorithm 1 satisfies Property (1).

We can then prove that our algorithm correctly decides the reachability prob-
lem and always terminates.

Theorem 6. Algorithm 1 terminates and is correct.

4 Symbolic Algorithm

4.1 Boolean Encoding of Zones

We now present a symbolic algorithm that represents abstract states using
Boolean formulas. Let B = {0,1}, and V be a set of variables. A Boolean for-
mula f that uses variables from set X C V will be written f(X) to make the
dependency explicit; we sometimes write f(X,Y) in place of f(X UY). Such a
formula represents a set [f] = {v € BY | v = f}. We consider primed versions
of all variables; this will allow us to write formulas relating two valuations. For
any subset X C V, we define X' = {p' | p € X}.

A literal is either p or —p for a variable p. Given a set X of variables, an X -
manterm is the conjunction of literals where each variable of X appears exactly
once. X-minterms can be seen as elements of BX. Given a vector of Boolean
formulas Y = (Y;)zex, formula f[Y/X] is the substitution of X by Y in f,
obtained by replacing each x € X with the formula Y,. The positive cofactor
of f(X) by z is Jx. (z A f(X)), and its negative cofactor is Jz. (—z A f(X)).

Let us define a generic operator post that computes successors of a
set S(X,Y) given a relation R(X, X’) (here, Y designates any set of variables
on which S might depend outside of X): postp(S(X,Y)) = 3X.S(X,Y) A
R(X,X"))[X/X']. Similarly, we set pregp(S(X,Y)) = (33X .S(X,Y)[X'/X] A
R(X, X)), which computes the predecessors of S(X,Y’) by the relation R [24].

Clock Predicate Abstraction. We fix a total order < on Cy. In this section, abstract
domains are defined as D = (Dg y)zayec,, that is only for pairs « < y. In fact,
constraints of the form = — y < k with z > y are encoded using the negation of
y—x < —ksince (r —y < k) & —(y — 2 < —k). We thus define D, , = —D
for all xz > y.

Y,z
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For z,y € Co, let P, , denote the set of clock predicates associated to Dy -

Pn?y = {Pe—y=k | (k;,<) € Dz y}

Let PP = Uz,yeco Ps,y denote the set of all clock predicates associated
with D (we may omit the superscript D when it is clear). For all (z,y) €
Co? and (k,<) € Dy, we denote by py_,<p the literal Py, if z < y,
and —P,_,-1_j, otherwise (where <™! = < and <~' = <). We also consider a
set B of Boolean variables used to encode locations. Overall, the state space is
described using Boolean formulas on these two types of variables, so states are
elements of BPYB,

Our Boolean encoding of clock constraints and semantic operations follow
those of [28] for a concrete domain. We define these however for abstract domains,
and show how successor computation and refinement operations can be per-
formed.

Let us define the clock semantics of predicate P,_y<p as [Py—y<k]c, =
{v e R(;UO | v(z) — v(y) = k}. Since the set C of clocks is fixed, we may omit
the subscript and just write [P,_y<x]. We define the conjunction, disjunction,
and negation as intersection, union, and complement, respectively. Given a P-
minterm v € B, we define [v]p = N, ..y [PID NN, ot —op) [P]5- Thus, nega-
tion of a predicate encodes its complement. For a Boolean formula F(P), we set
[F] = U, eminterms(r) [v]p. Intuitively, the minterms of P define smallest zones

of RS, definable using P. A minterm v € BBY” defines a pair [v]p = (I, 2)
where [ is encoded by vjg and Z = [v/p]p. A Boolean formula F on BU P
defines a set [F]p = Uyeminterms(rF) [v]p of such pairs. A minterm v is satisfiable
if [[U]]D 75 0.

An abstract domain D induces an abstraction function ap: 9RSo _, 9B
with ap(Z) = {v | v € B” and [v]p N Z # 0}, from the set of zones to the
set, of subsets of Boolean valuations on P. We define the concretization function
as []p: 287 — 2%%0_ The pair (ap, []p) is a Galois connection, and [ap(Z)]p is
the most precise abstraction of Z in the domain induced by D. Notice that ap is
non-convex in general: for instance, if the clock predicates are z < 2,y < 2, then
the set defined by the constraint x = y maps to (pg<2 Apy<2) V ("Pz<2 A 7Py<a2).

4.2 Reduction and Successor Computation

We now define the reduction operation, which is similar to the reduction of
DBMs. The idea is to eliminate unsatisfiable minterms from a given Boolean
formula. For example, we would like to make sure that in all minterms, if p,_,<1
holds, then so does p;_y<2, when both are available predicates. Another issue is
to eliminate minterms that are unsatisfiable due to triangle inequality. This is
similar to the shortest path computation used to turn DBMs in canonical form.

Example 1. Given predicates P = {py_y<1,DPy—2<1,Pe—2<2}, the formula
Dz—y<1 N Py—z.<1 is not reduced since it contains the unsatisfiable minterm
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Do—y<1 N Dy—z<1 N\ “Ppy—-<2. However, the same formula is reduced if P =
{px—yglapy—z§1}~

In this paper, we use limited reduction, since reductions are the most expen-
sive operations in our algorithms. The following formula corresponds to 2-
reduction, which intuitively amounts to applying shortest paths for paths of
lengths 1 and 2:

/\ |:pac—y-<k - ( \/ Pz—y=<1l; V \/ Px—2z=<1 /\pzy<’l'):|

(z,y)€Co? (11,<1)€EDg y 2€Co,(11,<1)€Dx 2,
(k,<)EDg,y (11,=<1)<(k, <) (12,<2)€D:,y
(11,=1)+(2,=<2)<(k, <)

Lemma 7. For all formulas S(P), we have [S]p = [reduces(S)]p and all
minterms of reduces,(S) are 2-reduced.

Since 2-reduction des not consider shortest paths of all lengths, there are, in
general, 2-reduced unsatisfiable minterms. Nevertheless, any abstraction can be
refined so that the updated 2-reduction eliminates a given unsatisfiable minterm:

Lemma 8. Let v € BP” be a minterm such that v |= reducel and [v] = 0.
One can compute in polynomial time a refinement D' D D such that v [
reduce?, .

We now explain how successor computation is realized in our encoding. For a
guard g, assume we have computed an abstraction ap(g) in the present abstract
domain. For each transition o = (¢1,g, R, {2), let us define the formula T, =
01 A ap(g). We show how each basic operation on zones can be computed in our
BDD encoding. In our algorithm, all formulas A(B,P) representing sets of states
are assumed to be reduced, that is, A(B,P) C reduces,(A(B,P)).

The intersection operation is simply logical conjunction:

Lemma 9. For all reduced formulas A(P) and B(P), we have A(P) A B(P) =
ap([A(P)]o N [B(P)]p)-

For the time successors, we define Up(A(B,P)) = reduce(postg, (A(B,P)))
where

/ /
Sup = /\ (mPs—0<k — “Pp—_o<k) /\ (Pa—y<k < Pa—y=<k)-
zeC z,y€Co,x#0
(k,<)€Da0 (k,<)EDa .y

Lemma 10. For any Boolean formula A(B,P), ap([A]T) C Up(A). Moreover,
if D is the concrete domain and A is reduced, then this holds with equality.
Following similar ideas, we handle clock resets by defining Reset,(A) =
reduce(postg,  (A)), for a (complex) relation Sreset. to encode how predicates
evolve (see the long version [27] of this article for more detailled explanations).
We get:
Lemma 11. For any Boolean formula A(B,P), and any clock z € C, we have
ap(Reset,([A]p)) C Reset.(A). Moreover, if D is the concrete domain, and A
1s reduced, then the above holds with equality.
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Algorithm 3. Algorithm SymReach that checks the reachability of a target
location [r in a given abstract domain D.
Input: A= (L, Inv,4,C, E), {r, D
next := enc(lo) A ap(Azecz = 0);
layers := [|;
reachable := false;
while (—reachable A next) # false do
reachable := reachable V next;
next := ApplyEdges(Up(next)) A —reachable;
layers.push(next);
if (next Aenc(lr)) # false then
| return ExtractTrace (layers);
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return Not reachable;

4.3 Model-Checking Algorithm

Algorithm 3 shows how to check the reachability of a target location given an
abstract domain. The list layers contains, at position i, the set of states that
are reachable in i steps. The function ApplyEdges computes the disjunction of
immediate successors by all edges. It consists in looping over all edges e =
(l1, 9, R,l2), and gathering the following image by e:

enc(f2) A Reset,, (Reset,, . (... (Reset,, ((((3B.A(B,P) Aenc(f1)) A ap(g))))))),

where R = {ri,...,r;}. We thus use a partitioned transition relation and do not
compute the monolithic transition relation.

When the target location is found to be reachable, ExtractTrace(layers)
returns a trace reaching the target location. This is standard and can be done by
computing backwards from the last element of layers, by finding which edge can
be applied to reach the current state. Since both reset and time successor opera-
tions are defined using relations, predecessors in our abstract system can be easily
computed using the operator prep. As it is standard, we omit the precise defini-
tion of this function (the reader can refer to the implementation) but assume that
it returns a trace of the form A; 25 Ay 2 ... RN A, where the A;(B,P)
are minterms and the o; belong to the trace alphabet X' = {up, ¢} U {r(z)}zcc,
with the following meaning:

— if Al 27 Ai+1 then A7;+1 = Up(AZ),

—if Az T—w> Ai+1 then Ai+1 = Ai;

— if AL ﬂ Ai+1 then A,’+1 = Resetx(Ai).

The feasibility of such a trace is easily checked using DBMs.

The overall algorithm then follows a classical CEGAR scheme. We initialize D
by adding the clock constraints that appear syntactically in A, which is often
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a good heuristic. We run the reachability check of Algorithm 3. If no trace is
found, then the target location is not reachable. If a trace is found, then we check
for feasibility. If it is feasible, then the counterexample is confirmed. Otherwise,
the trace is spurious and we run the refinement procedure described in the next
subsection, and repeat the analysis.

4.4 Abstraction Refinement

Since we initialize D with all clock constraints appearing in guards, we can
assume that all guards are represented exactly in the considered abstractions.
Note that the algorithm can be easily extended to the general case; but this
simplifies the presentation.

The abstract transition relation we use is not the most precise abstraction of
the concrete transition relation. Therefore, it is possible to have abstract tran-
sitions A; < A, for some action a while no concrete transition exists between
[A1] and [A3]. This requires care and is not a direct application of the standard
refinement technique from [11]. A second difficulty is due to incomplete reduction
of the predicates using reduce%. In fact, some reachable states in our abstract
model will be unsatisfiable. Let us explain how we refine the abstraction in each
of these cases.

Consider an algorithm interp which returns an interpolant of given
zones Z1, Z». In what follows, by the refinement of D by interp(Z1, Z3), we mean
the domain D’ obtained by adding (k, <) to Dy, for all constraints z —y < k
of interp(Z1, Z3). Observe that ap/(Z1) Nap/(Z3) = 0 in this case.

We define concrete successor and predecessor operations for the actions in X.
For each a € X, let Pre; denote the concrete predecessor operation on zones
defined straightforwardly, and similarly for Post(.

Consider domain P and the induced abstraction function ap. Assume that
we are given a spurious trace m = A T oAy I Int, A,,. Let B;...B, be
the sequence of concrete states visited along « in A, that is, By is the concrete
initial state, and for all 2 < i < n, let B; = Post;,  (B;_1). This sequence can
be computed using DBMs.

The trace is realizable if B,, # (), in which case the counterexample is con-
firmed. Otherwise it is spurious. We show how to refine the abstraction to elim-
inate a spurious trace .

Let 49 be the maximal index such that B;, # 0. There are three possible
reasons explaining why B; 41 is empty:

1. first, if the abstract successor A; 41 is unsatisfiable, that is, if it contains
contradictory predicates; in this case, [A;,+1] = 0, and the abstraction is
refined by Lemma 8 to eliminate this case by strengthening reduce%.

2. if there are predecessors of A;,;1 inside A;, but none of them are in B;, i.e.,
Prefri0 ([Aig+1]) N [As] # 0; in this case, we refine the domain by separating
these predecessors from the rest of A;, using interp(Prez, ([Ai,+1]), Bip—1),
as in [11].
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3. otherwise, there are no predecessors of A;, 41 inside A;,: we refine the abstrac-
tion according to the type of the transition from step i to 7o + 1:
(a) if m;, = up: refine D by interp([A4;,]1, [Aig+1]1)-
(b) if m;, = r(x): refine D by interp(Free, ([Ai,]), Freex ([Aig+1]))-

Note that the case m;,, = rp is not possible since this induces the identity
function both in the abstract and concrete systems.

Given abstraction ap and spurious trace 7, let refine(ap,7) denote the
refined abstraction avps obtained as described above.

The following two lemmas justify the two subcases of the third case above.
They prove that the detected spurious transition disappears after refinement.
The reset and up operations depend on the abstraction, so we make this depen-
dence explicit below by using superscripts, as in Resety and Up®, in order to
distinguish the operations before and after a refinement.

Lemma 12. Consider (A1, As) € Up™ with [A1]T N [A2] = 0. Then [A1]T N
[A2]] = 0. Moreover, if o is obtained by refinement of a by interp([A1]1, [42]1),
then for all (A}, Ay) € Up™ , [A}] C [A1] implies [AL] N [A2] = 0.

Y Y Y Y

Ay Al H

I At e e
A Az A1 Az A Ab

(a) Refinement for the time successors (b) Refinement for the reset opera-
operation. The interpolant that sepa- tion. The interpolant that separates
rates [A1]1 from [A2]| contains the con- Freey (A1) from Free,(A2) contains the
straint x = y + 2. When this is added to constraint x < 2. When this is added to
the abstract domain, the set A5 (which is the abstract domain, the set A5 (which
Az in the new abstraction) is no longer is A, in the new abstraction) is no
reachable by the time successors opera- longer reachable by the reset operation.
tion.

Lemma 13. Consider x € C, and (A1, A2) € Resety such that [A1][z < 0] N
[A2] = 0. Then Freey([A1]) N Free,([A2]) = 0. Moreover, if o is obtained
by refinement of « by interp(Free,([A1]), Free,([A2])), then for all (A}, Ab) €
Reset® with [A}] C [A1], we have [AL] N [As] = 0.

5 Experiments

We implemented both algorithms. The symbolic version was implemented in
OCaml using the CUDD library?; the explicit version was implemented in C+4+
within an existing model checker using Uppaal DBM library. Both prototypes

2 http://vlsi.colorado.edu/~fabio/.
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take as input networks of timed automata with invariants, discrete variables,
urgent and committed locations. The presented algorithms are adapted to these
features without difficulty.

We evaluated our algorithms on three classes of benchmarks we believe are
significant. We compare the performance of the algorithm with that of Uppaal [7]
which is based on zones, as well as the BDD-based model checker engine of
PAT [25]. We were unable to compare with RED [30] which is not maintained
anymore and not open source, and with which we failed to obtain correct results.
The tool used in [16] was not available either. We thus only provide a comparison
here with two well-maintained tools.

Two of our benchmarks are variants of schedulability-analysis problems
where task execution times depend on the internal states of executed processes,
so that an analysis of the state space is necessary to obtain a precise answer.

Monoprocess Scheduling Analysis. In this variant, a single process sequen-
tially executes tasks on a single machine, and the execution time of each cycle
depends on the state of the process. The goal is to determine a bound on the
maximum execution time of a single cycle. This depends on the semantics of the
process since the bound depends on the reachable states.

More precisely, we built a set of benchmarks where the processes are defined
by synchronous circuit models taken from the Synthesis Competition (http://
www.syntcomp.org). We assume that each latch of the circuit is associated with
a resource, and changing the state of the resource takes some amount of time.
So a subset of the latches have clocks associated with them, which measure
the time elapsed since the latest value change (latest moment when the value
changed from 0 to 1, or from 1 to 0). We provide two time positive bounds £
and ¢, for each latch, which determine the execution time as follows: if the value
of latch £ changes from 0 to 1 (resp. from 1 to 0), then the execution time of the
present cycle cannot be less than ¢; (resp. £y). The execution time of the step is
then the minimum that satisfies these constraints.

Multi-process Stateful Scheduling Analysis. In this variant, three processes
are scheduled on two machines with a round-robin policy. Processes schedule
tasks one after the other without any delay. As in the previous benchmarks,
a process executing a task (on any machine) corresponds to a step of the syn-
chronous circuit model. Each task is described by a tuple (Cy,Cs, D) which
defines the minimum and maximum execution times, and the relative deadline.
When a task finishes, the next task arrives immediately. The values in the tuple
depend on the state of the process. The goal is to check the absence of any dead-
line miss. Processes are also instantiated with AIG circuits from http://www.
syntcomp.org.

Asynchronous Computation. We consider an asynchronous network of
“threshold gates”, defined as follows: each gate is characterized by a tuple
(n, 0, [l,u]) where n is the number of inputs, 0 < 6 < n is the threshold, and I < u
are lower and upper bounds on activation time. Each gate has an output which
is initially undefined. The gate becomes active during the time period [I, u].
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During this time, if all inputs are defined, and if at least 6 of the inputs have
value 1, then it sets its output to 1. At the end of the time period, it becomes deac-
tivated and the output becomes undefined again, until the next period, which
starts [ time units after the deactivation. The goal is to check whether the given
gate can output 1 within a given time bound T'.

Results. Figure 3 displays the results of our experiments. All algorithms were
given 8 GB of memory and a timeout of 30 min, and the experiments were run
on laptop with an Intel i7@3.2 Ghz processor running Linux. The symbolic algo-
rithm performs best among all on the monoprocess and multiprocess scheduling
benchmarks. Uppaal is the second best, but does not solve as many benchmarks
as our algorithm. Our enumerative algorithm quickly fails on these benchmarks,
often running out of memory. On asynchronous computation benchmarks, our
enumerative algorithm performs remarkably well, beating all other algorithms.
We ran our tools on the CSMA /CD benchmarks (with 3 to 12 processes); Uppaal
performs the best but our enumerative algorithm is slightly behind. The symbolic
algorithm does not scale, while PAT fails to terminate in all cases.

The tool used for the symbolic algorithm is open source and can be found at
https://github.com/osankur/symrob along with all the benchmarks.

Monoprocess Scheduling Multiprocess Scheduling
1800 _ 1800 .
Abs-symbolic —+— Abs-symbolic ——
1600 Abs-enumerative 1600 Abs-enumerative
Uppaal Uppaal
1400 PAT-bdd 1400 PAT-bdd
1200 1200
1000 4 1000 r
800 Z‘ 800 [
600 600
+“@L ‘
400 b # 400
o v £
200 f - 200 /
e v TNt 0 e SE Ll
0 10 20 30 40 50 60 70 0 5 10 15 20 25 30 35 40
Asynchronous Computation CSMA/CD
1800 1800 -
Abs-symbolic —+— Abs-symbolic —+—
1600 Abs-enumerative T 1600 Abs-enumerative
Uppaal Uppaal
1400 PAT-bdd 1400
1200 1200
7
1000 1000 ‘J‘
800 800 /
600 600
e
400 f* 400
200 / 200 /
L /
0 et L 0 / :
0 5 10 15 20 0 1 2 3 4 5 6 7 8 9

Fig. 3. Comparison of our enumerative and symbolic algorithms (referred to as Abs-
enumerative and Abs-symbolic) with Uppaal and PAT. Each figure is a cactus plot for
the set of benchmarks: a point (X,Y) means X benchmarks were solved within time
bound Y.
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6 Conclusion and Future Work

There are several ways to improve the algorithm. Since the choice of interpolants
determines the abstraction function and the number of refinements, we assumed
that taking the minimal interpolant should be preferable as it should keep the
abstractions as coarse as possible. But it might be better to predict which inter-
polant is the most adapted for the rest of the computation in order to limit
future refinements. The number of refinement also depends on the search order,
and although it has already been studied in [23], it could be interesting to study
it in this case. Generally speaking, it is worth noting that we currently cannot
predict which (variant of) our algorithms is better suited for which model.

Several extensions of our algorithms could be developed, e.g. combining our
algorithms with other methods based on finer abstractions as in [22], integrating
predicate abstraction on discrete variables, or developing SAT-based versions of
our algorithms.
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Abstract. A popular method for solving reachability in timed automata
proceeds by enumerating reachable sets of valuations represented as
zones. A naive enumeration of zones does not terminate. Various ter-
mination mechanisms have been studied over the years. Coming up with
efficient termination mechanisms has been remarkably more challenging
when the automaton has diagonal constraints in guards.

In this paper, we propose a new termination mechanism for timed
automata with diagonal constraints based on a new simulation relation
between zones. Experiments with an implementation of this simulation
show significant gains over existing methods.

Keywords: Timed automata - Diagonal constraints - Reachability -
Zones - Simulations

1 Introduction

Timed automata have emerged as a popular model for systems with real-time
constraints [2]. Timed automata are finite automata extended with real-valued
variables called clocks. All clocks are assumed to start at 0, and increase at the
same rate. Transitions of the automaton can make use of these clocks to disallow
behaviours which violate timing constraints. This is achieved by making use of
guards which are constraints of the form = <5, v —y > 3, y > 7, etc. where z,y
are clocks. A transition guarded by x < 5 says that it can be fired only when
the value of clock x is < 5. Another important feature is the reset of clocks in
transitions. Each transition can specify a subset of clocks whose values become
0 once the transition is fired. The combination of guards and resets allows to
track timing distance between events. A basic question that forms the core of
timed automata technology is reachability: given a timed automaton, does there
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exist an execution from its initial state to a final state. This question is known
to be decidable [2]. Various algorithms for this problem have been studied over
the years and have been implemented in tools [6,21,26,28,31,32].

Since the clocks are real valued variables, the space of configurations of a
timed automaton (consisting of a state and a valuation of the clocks) is infinite
and an explicit enumeration is not possible. The earliest solution to reachability
was to partition this space into a finite number of regions and build a region
graph that provides a finite abstraction of the behaviour of the timed automa-
ton [2]. However, this solution was not practical. Subsequent works introduced
the use of zones [14]. Zones are special sets of clock valuations with efficient
data structures and manipulation algorithms [6]. Within zone based algorithms,
there is a division: forward analysis versus backward analysis. The current indus-
try strength tool UPPAAL [28] implements a forward analysis approach, as this
works better in the presence of other discrete data structures used in UPPAAL
models [9]. We focus on this forward analysis approach using zones in this paper.

The forward analysis of a timed automaton essentially enumerates sets of
reachable configurations stored as zones. Some extra care needs to be taken
for this enumeration to terminate. Traditional development of timed automata
made use of extrapolation operators over zones to ensure termination. These are
functions which map a zone to a bigger zone. Importantly, the range of these
functions is finite. The goal was to come up with extrapolation operators which
are sound: adding these extra valuations should not lead to new behaviours.
This is where the role of simulations between configurations was studied and
extrapolation operators based on such simulations were devised [14]. A certain
extrapolation operation, which is now known as Extrap; [5] was proposed and
reachability using Extrap; was implemented in tools [14].

A seminal paper by Bouyer [9] revealed that Extraps is not correct in the
presence of diagonal constraints in guards. These are constraints of the form
x — y < ¢ where < is either < or <, and c is an integer. Moreover, it was proved
that no such extrapolation operation would be correct when there are diago-
nal constraints present. It was shown that for automata without diagonal con-
straints (henceforth referred to as diagonal-free automata), the extrapolation
works. After this result, developments in timed automata reachability focussed
on the class of diagonal-free automata [4,5,23,24], and diagonal constraints were
mostly sidelined. All these developments have led to quite efficient algorithms
for diagonal-free timed automata.

Diagonal constraints are a useful modeling feature and occur naturally in
certain problems, especially scheduling [3,17,20,27] and logic-automata transla-
tions [16,25], also in [29]. It is however known that they do not add any expres-
sive power: every timed automaton can be converted into a diagonal-free timed
automaton [7]. This conversion suffers from an exponential blowup, which was
later shown to be unavoidable: diagonal constraints could potentially give expo-
nentially more succinet models [10]. Therefore, a good forward analysis algorithm
that works directly on a timed automaton with diagonal constraints would be
handy. This is the subject of this paper.
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Related Work. The first attempt at such an algorithm was to split the (extrap-
olated) zones with respect to the diagonal constraints present in the automa-
ton [6]. This gave a correct procedure, but since zones are split, an enumeration
starts from each small zone leading to an exponential blow-up in the number
of visited zones. A second attempt was to do a more refined conversion into a
diagonal free automaton by detecting “relevant” diagonals [13,30] in an iterative
manner. In order to do this, special data structures storing sets of sets of diagonal
constraints were utilized. In [18] we extended the works [5] and [23] on diagonal-
free automata to the case of diagonal constraints. All the approaches suffer from
either a space or time bottleneck and are incomparable to the efficiency and
scalability of tools for diagonal-free automata.

Our Contributions. The goal of this paper is to come up with fast algorithms for
handling diagonal constraints. Since the extrapolation based approach is a dead
end, we work with simulation between zones directly, as in [23] and [18]. We
propose a new simulation relation between zones that is correct in the presence
of diagonal constraints (Sect.3). We give an algorithm to test this simulation
between zones (Sect.4). We have incorporated this simulation test in (an older
version of) the tool TChecker [21] checking reachability for timed automata, and
compared our results with the state-of-the-art tool UPPAAL. Experiments show
an encouraging gain, both in the number of zones enumerated and in the time
taken by the algorithm, sometimes upto four orders of magnitude (Sect. 6). The
main advantage of our approach is that it does not split zones, and furthermore
it leverages the optimizations studied for diagonal-free automata.

From a technical point of view, our presentation does not make use of regions
and instead works with valuations, zones and simulation relations. We think
that this presentation provides a clearer perspective - as a justification of this
claim, we extend our simulation to timed automata with general updates of
the form z := ¢ and x := y + d in transitions (where x,y are clocks and ¢,d
are constants) in a rather natural manner (Sect.5). In general, reachability for
timed automata with updates is undecidable [12]. Some decidable cases have
been proposed for which the algorithms are based on regions. For decidable
subclasses containing diagonal constraints, no zone based approach has been
studied. Our proposed method includes these classes, and also benefits from
zones and standard optimizations studied for diagonal-free automata.

Missing proofs can be found in the full version of this paper [19].

2 Preliminaries

Let N be the set of natural numbers, R>( the set of non-negative reals and Z the
set of integers. Let X be a finite set of variables ranging over R, called clocks.
Let #(X) denote the set of constraints ¢ formed using the following grammar:
pi=x<dc | c<x | x—y<d | o ANy, where z,y € X, ce N, d € Z
and < € {<, <}. Constraints of the form x < ¢ and ¢ < z are called non-diagonal
constraints and those of the form = — y < ¢ are called diagonal constraints. We
have adopted a convention that in non-diagonal constraints = < ¢ and ¢ < z, the
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constant c is restricted to N. A clock valuation v is a function which maps every
clock z € X to a real number v(x) € R>¢. A valuation is said to satisfy a guard
g, written as v = g if replacing every z in g with v(z) makes the constraint
g true. For 6 € R>(¢ we write v 4+ ¢ for the valuation which maps every = to
v(x) + 6. Given a subset of clocks R C X, we write [R]v for the valuation which
maps each z € R to 0 and each z & R to v(z).

A timed automaton A is a tuple (Q, X, qo, T, F) where @ is a finite set of
states, X is a finite set of clocks, gy € @ is the initial state, F' C @ is a set
of accepting states and T' € Q x ®(X) x 2¥ x @ is a set of transitions. Each
transition ¢ € T is of the form (q,g, R,q’) where ¢ and ¢’ are respectively the
source and target states, g is a constraint called the guard, and R is a set of
clocks which are reset in t. We call a timed automaton diagonal-free if guards
in transitions do not use diagonal constraints.

A configuration of A is a pair (g,v) where ¢ € @ and v is a valuation. The
semantics of a timed automaton is given by a transition system S4 whose states
are the configurations of A. Transitions in S4 are of two kinds: delay transitions

are given by (q,v) 2, (g,v+6) for all 6 > 0, and action transitions are given by

(¢,v) SR (¢’,v") for each t := (q,9, R, ¢), if v = g and v' = [R]v. We write 2, for
a sequence of delay ¢ followed by action ¢. A run of A is an alternating sequence of

delay-action transitions starting from the initial state ¢y and the initial valuation

0 which maps every clock to 0: (qo, 0) Sorto, (q1,v1) S, (Gn,vn). A run of

the above form is said to be accepting if the last state ¢, € F. The reachability
problem for timed automata is the following: given an automaton A, decide if
there exists an accepting run. This problem is known to be PSPACE-complete [2].
Since the semantics S 4 is infinite, solutions to the reachability problem work with
a finite abstraction of S4 that is sound and complete. Before we explain one of
the popular solutions to reachability, we state a result which allows to convert
every timed automaton into a diagonal-free timed automaton.

Theorem 1. [7] For every timed automaton A, there exists a diagonal-free
timed automaton Ag s.t. there is a bijection between runs of A and Agr. The
number of states in Agy is 24 . n where d is the number of diagonal constraints
and n is the number of states of A.

The above theorem allows to solve the reachability of a timed automaton A
by first converting it into the diagonal free automaton Ag and then checking
reachability on A4r. However, this conversion comes with a systematic exponen-
tial blowup (in terms of the number of diagonal constraints present in A). It was
shown in [10] that such a blowup is unavoidable in general. We will now recall
the general algorithm for analyzing timed automata, and then move into specific
details which depend on whether the automaton has diagonal constraints or not.

Zones and Simulations. Fix a timed automaton A with clock set X for the
rest of the discussion in this section. As the space of valuations of A is infinite,
algorithms work with sets of valuations called zones. A zone is set of clock
valuations given by a conjunction of constraints of the form z —y < ¢, < ¢ and
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¢ < x where ¢ € Z and <« € {<, <}, for example the solutions of z —y < 5Ay < 10
is a zone. The transition relation over configurations (g, v) is extended to (g, Z)
where Z is a zone. We define the following operations on zones given a guard g
and a set of clocks R: time elapse 7 = {v+4¢|v e Z > 0}; guard intersection
ZAg:={v|v € Zand v = g} and reset [R]Z := {[R]v | v € Z}. It can be shown
that all these operations result in zones. Zones can be efficiently represented and
manipulated using Difference Bound Matrices (DBMs) [15].

The zone graph ZG(A) of timed automaton A is a transition system whose
nodes are of the form (g, Z) where ¢ is a state of A and Z is a zone. For
each transition t := (q,g,R,q’) of A, and each zone (q,Z) there is a transi-

_
tion (q, Z) ="' (¢', Z') where Z' = [R](Z A g). The initial node is (qo, Zo) where
qo is the initial state of A and Zy = {0+ ¢ | § > 0} is the zone obtained by
elapsing an arbitrary delay from the initial valuation. A path in the zone graph
is a sequence (qo, Zg) =% (q1,721) =1 - =it (q,, Z,) starting from the
initial node. The path is said to be accepting if ¢, is an accepting state. The
zone graph is known to be sound and complete for reachability.

Theorem 2. [1/] A has an accepting run iff ZG(A) has an accepting path.

This does not yet give an algorithm as the zone graph ZG(A) is still not
finite. Moreover, there are examples of automata for which the reachable part
of ZG(A) is also infinite: starting from the initial node, applying the successor
computation leads to infinitely many zones. Two different approaches have been
studied to get finiteness, both of them based on the usage of simulation relations.

A (time-abstract) simulation relation (<) between configurations of A is a
reflexive and transitive relation such that (¢,v) < (¢, v") implies ¢ = ¢’ and (1)
for every § > 0, there exists ¢’ > 0 such that (¢g,v + J) < (¢,v" +¢') and (2)
for every transition t of A, if (¢,v) = (qi,v1) then (¢,v') % (q1,v}) such that
(q1,v1) < (q1,07)-

We say v < ¢/, read as v is simulated by o’ if (q,v) < (g,v’) for all states
g. The simulation relation can be extended to zones: Z < Z' if for every v € Z
there exists v’ € Z’ such that v < v'. We write | Z for {v | I’ € Z s.t. v g v’}
The simulation relation < is said to be finite if the function mapping zones Z to
the down sets |Z has finite range. We now recall a specific simulation relation
<rv [5,23]. Current algorithms and tools for diagonal-free automata are based
on this simulation. The conditions required for v <., v’ ensure that when all
lower bound constraints ¢ < x satisfy ¢ < L(z) and all upper bound constraints
x < ¢ satisfy ¢ < U(x), whenever v satisfies a constraint, v’ will also satisfy it.

Definition 1 (LU-bounds and the relation <., [5,23]). An LU-bounds
function is a pair of functions L : X — NU{—o00} and U : X — NU{—o0} that
map each clock to either a non-negative constant or —oo. Given an LU -bounds
function, we define v <,y V' for valuations v,v' if for every clock x € X :

v'(z) < wv(x) implies L(z) < v'(x) and v(z) < v'(z) implies U(z) < v(x).
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Reachability in Diagonal-Free Timed Automata. A natural method to
get finiteness of the zone graph is to prune the zone graph computation through
simulations Z < Z’: do not explore a node (g, Z) if there is an already visited
node (g, Z') such that Z < Z'. Since these simulation tests need to be done often
during the zone graph computation, an efficient algorithm for performing this
test is crucial. Note that Z < Z’ iff Z C |Z’'. However, it is known that the set
1Z’ is not necessarily a zone (this was proved for |,,Z’ in [5]), and hence no
simple zone inclusions are applicable. The first algorithms for timed automata
followed a different approach, which we call the extrapolation approach. In this
approach, whenever a new zone Z is discovered by the algorithm, a new zone
Extra(Z)(2 Z) gets computed and stored in the place of Z.

Reachability Algorithm Using Zone Extrapolation. The input to the algorithm is
a timed automaton A. The algorithm maintains two lists, Passed and Waiting.
Initially, the node (go, Extra(Zy)) is added to the Waiting list (recall that (g, Zo)
is the initial node of the zone graph ZG(A)). Wlog. we assume that ¢ is not
accepting. The algorithm repeatedly performs the following steps:

Step 1. If Waiting is empty, then return “.A has no accepting run”; else pick
(and remove) a node (g, Z) from Waiting. Add (¢, Z) to Passed.

Step 2. For each transition ¢ := (¢, g, R, q1), compute the successor (g, Z) =!
(q1,7Z1): if Z1 # ) perform the following operations - if g is accepting, return
“A has an accepting run”; else compute Z; := Extra(Z;) and check if there
exists a node (g1, Z}) in Passed or Waiting such that Z; C Z{: if yes, ignore
the node (g1, Zl), otherwise add (g1, Zl) to Waiting.

Several extrapolation operators (Extra,;, Extra,y, Extraju) were introduced
in [5]. The function Extra’, has nice properties - (1) Extral, (Z) C |,,Z and (2)
Extran(Z ) is a zone for all Z. These properties give an algorithm that performs
only efficient zone operations: successor computations and zone inclusions.

Reachability Algorithm Using Simulations. The initial node (qo, Zp) is added
to the Waiting list. Wlog. we assume that ¢y is not accepting. The algorithm
repeatedly performs the following steps:

Step 1. If Waiting is empty, then return “.4 has no accepting run”; else pick
(and remove) a node (¢, Z) from Waiting. Add (g, Z) to Passed.

Step 2. For each transition t := (¢, g, R, q1), compute the successor (g, 7Z) =*
(q1, Z1): if Z1 # Q) perform the following operations - if ¢; is accepting, return
“A has an accepting run”; else check if there exists a node (g1, Z]) in Passed
or Waiting such that Z; < Z: if yes, ignore the node (g, Z1), otherwise add
(q1,Z71) to Waiting.

An O(|X|?) algorithm for Z <., Z' was proposed in [23]. The efficiency of
this simulation check makes it well suited for use in practice. Moreover, as
Extral, (Z) C |.uZ, we expect to get more simulations (and hence quicker ter-
mination) through <.
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Reachability in the Presence of Diagonal Constraints. The <, relation
is no longer a simulation when diagonal constraints are present. Moreover, it was
shown in [9] that no extrapolation operator (along the lines of Extra}, ) can work
in the presence of diagonal constraints. The first option to deal with diagonals is
to use Theorem 1 to get a diagonal free automaton and then apply the methods
discussed previously. One problem with this is the systematic exponential blowup
introduced in the number of states of the resulting automaton. Another problem
is to get diagnostic information: counterexamples need to be translated back to
the original automaton [6]. Various methods have been studied to circumvent
the diagonal free conversion and instead work on the automaton with diagonal
constraints directly. We recall the approach used in the state-of-the-art tool
UPPAAL below.

Zone Splitting [6]. The paper introducing timed automata gave a notion of equiv-
alence between valuations v ~); v’ parameterized by a function M mapping each
clock z to the maximum constant M among the guards of the automaton that
involve x. This equivalence is a finite simulation for diagonal-free automata.
Equivalence classes of ~,; are called regions. This was extended to the diagonal
case by [6] as: v f:cfw v’ if v ~); v’ and for all diagonal constraints g present in
the automaton, if v |= g then v’ |= g. The :‘fw relation splits the regions further,
such that each region is either entirely included inside g, or entirely outside g for
each g. The next step is to use this notion of equivalence in zones. The paper [6]
follows the extrapolation approach: to each zone Z, an extrapolation operation
Extra, (Z) is applied; this adds some valuations which are ~j; equivalent to
valuations in Z; then it is further split into multiple zones, so that each small
zone is either inside g or outside g for each diagonal constraint g. If d is the
number of diagonal constraints present in the automaton, this splitting process
can give rise to 2% zones for each zone Z. From each small zone, the zone graph
computation is started. Essentially, the exponential blow-up at the state level
which appeared in the diagonal-free conversion now appears in the zone level.
In this paper, we propose a new simulation to handle diagonal constraints.
This has two advantages - using this avoids the blow-up in the number of nodes
arising due to zone splitting, and the simulation test between zones has an effi-
cient implementation and is significantly quicker than the simulation of [18].

3 A New Simulation Relation

We start with a definition of a relation between timed automata configurations,
which in some sense “declares” upfront what we need out of a simulation relation
that can be used in a reachability algorithm. As we proceed, we will make its
description more concrete and give an effective simulation algorithm between
zones, that can be implemented. Fix a clock set X. This generates constraints
P(X).

Definition 2 (the relation T;). Let G be a (finite or infinite) set of con-
straints. We say v Cg v if for all p € G and all 6 > 0, v+ 0 = ¢ implies
V6 E .
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Our goal is to utilize the above relation in a simulation (as defined in p. xx)
for a timed automaton. Directly from the definition, we get the following lemma
which shows that the Cg relation is preserved under time elapse.

Lemma 1. Ifv Cg v/, thenv+ 6 Eg o' + 6§ for all § > 0.

The other kind of transformation over valuations is resets. Given sets of
guards G1, G and a set of clocks R, we want to find conditions on G; and G so
that if v Cg, v" then [R]v Cg [R]v’. To do this, we need to answer this question:
what guarantees should we ensure for v, v’ (via G1) so that [R]v Cg [R]v’. This
motivates the next definition.

Definition 3 (weakest pre-condition of T, over resets). For a constraint
v and a set of clocks R, we define a set of constraints wp(C,, R) as follows:
when ¢ is of the form x < ¢ or ¢ < x, then wp(C,,, R) is empty if x € R and is
{¢} otherwise; when ¢ is a diagonal constraint x — y < ¢, then wp(C,, R) is:

~fe—yactif{fz,ytnR=10
~{z<c}tifyeR,x¢Randc>0
~{—c<ay}ifreR, y¢dRand —c>0
— empty, otherwise.

For a set of guards G, we define wp(Cg, R) := U«peg wp(C,, R).

Note that the relation T, is parameterized by a set of constraints. Addi-
tionally, we desire this set to be finite, so that the relation can be used in an
algorithm. We need to first link an automaton A with such a set of constraints.
One way to do it is to take the set of all guards present in the automaton and
to close it under weakest pre-conditions with respect to all possible subsets of
clocks. A better approach is to consider a set of constraints for each state, as in
[4] where the parameters for extrapolation (the maximum constants appearing
in guards) are calculated at each state.

Definition 4 (State based guards). Let A = (Q,X,qo,T,F) be a timed
automaton. We associate a set of guards G(q) for each state q¢ € Q, which is the
least set of guards (for the coordinate-wise subset inclusion order) such that for
every transition (q,g,R,q): the guard g and the set wp(Cg(,,), R) are present
in G(q). More precisely, {G(q)}qeq is the least solution to the following set of
equations written for each q € Q:

g(Q) = U {g} UWp(Eg(ql)vR)

(¢,9,R,q1)€ET

All constraints present in the set wp(Cg,,), R) contain constants which are
already present in Cg,,,. The least solution to the above set of equations can
therefore be obtained by a fixed point computation which starts with G(q) set to
U(q7g7R7ql)ET{g} and then repeatedly updates the weakest-preconditions. Since
no new constants are generated in this process, the fixed point computation
terminates. We now have the ingredients to define a simulation relation over
configurations of a timed automaton with diagonal constraints.
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Definition 5 (A-simulation). Let A= (Q, X, qo, T, F) be a timed automaton
and let the set of guards G(q) of Definition 4 be associated to every state q €
Q. We define a relation <4 between configurations of A as (q,v) <4 (q,v") if
v Eg(q) v’

Lemma 2. The relation <4 is a simulation on the configurations of timed
automaton A.

As pointed before, Definition 2 gives a declarative description of the simula-
tion and it is unclear how to work with it algorithmically, even when the set of
constraints G is finite. The main issue is with the ¥V quantification, which is not
finite. We will first provide a characterization that brings out the fact that this
V4 quantification is irrelevant for diagonal constraints (essentially because value
of v(z) — v(y) does not change with time elapse). Given a set of constraints G,
let G~ C G be the set of non-diagonal constraints in G.

Proposition 1. v T, v iff v C,- v' and for all diagonal constraints ¢ € G, if
v E @ then v' = .

It now amounts to solving the Vé problem for non-diagonals. It turns out
that the <., simulation achieves this, almost. We will see this in more detail in
the next section.

4 Algorithm for Z C, Z’

Fix a finite set of guards G. Restating the definition of Cg extended to zones:
Z T, Z'if for all v € Z there exists a v € Z’ such that v T, v'. In this
section, we will view the characterization of =, as in Proposition 1 and give an
algorithm to check Z Cg Z’ that uses as an oracle a test Z C,- Z’. We discuss
the computation of Z C,- Z’ later in this section. We start with an observation
following from Proposition 1.

Lemma 3. Let ¢ := x — y < ¢ be a diagonal constraint in G. Then Z T, Z' if
and only if ZNp Cgr Z' N and ZN—p Cgr Z' where G' = G\ {p}.
If G has no diagonal constraints, Z T Z' if and only if Z C,- Z'.

This leads to the following algorithm consisting of two mutually recursive
procedures. This algorithm is essentially an implementation of the above lemma,
with two optimizations:

— we start with the non-diagonal check in Line 6 of Algorithm 1 - if this is
already violated, then the algorithm returns false;

— suppose Z C,— 7', the next task is to perform the checks in the first statement
of Lemma 3 - this is done by Algorithm 2; note however that when Algorithm
2 is called, we already have Z C,- Z’, hence Z N —p C,- Z’. Therefore we
use an optimization in Line 7 by calling Algorithm 2 directly (as the check in
Line 6 of Algorithm 1 will be redundant).
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=

check Z C} 7':

1 check Z C; 7': 2 if G does not contain any
2 if Z=0: diagonal constraints :
L return true 3 L return true
4 if Z/=0: 4 pick a diagonal constraint
5 L return false p=x—y<cfromG
6 if 27z, 7' 5 G — G\ {¢}
| return false 6 | ifZN-p#0:
8 return Z C} 7’ 7 if ZN-p L} 2"
- 8 L return false
9 | return ZNyp Ly Z'Ng
Algorithm 1 Algorithm 2

Computing Z C,- Z’. We will use <., to approximate C,-: in our imple-
mentation of the above algorithms, we replace Z C,- Z’ with Z <., Z’. This
works because for an appropriate choice of LU (explained below), we have
Z <Siu@) Z' = Z Cg- Z'. The converse is not true as the LU bounds func-
tions cannot distinguish between guards with < and < comparisons. Therefore,
the <, simulation does not characterize v C,— v’ completely. Although we are
aware of the (rather technical) modifications to <, simulation that are needed
for this characterization, we choose to use the existing <, directly as it is safe
to do so and it has already been implemented in tools. This gives us a finer
simulation than v C,- v’

Definition 6 (LU-bounds from G). Let G be a finite set of constraints. We
define LU(G) to denote the pair of functions Lg and Ug defined as follows:

Lo(x) —00 if there is no guard of the form c<ax in G
€Tr) =
g max{c | c<axz € G}  otherwise
Ug(z) —00 if there is no guard of the form x < c in G
€Tr) =
g max{c | z<c € G} otherwise

Lemma 4. For every set of constraints G, v <,y v implies v Co— v'.
The above observations call for the next definition and subsequent lemmas.

Definition 7 (approximating C;). Let G be a finite set of constraints. We
define a relation C°LY as follows: v TLY o' if v <, ug) V' and for all diagonal
constraints ¢ € G, if v = ¢ then v' = ¢. Similarly, define x5V as (¢,v) x5
(q,v") if v E50 0.

Lemma 5. The relation <4V is a finite simulation on the configurations of A.
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The above lemma and the fact that Z <, 2’ can be checked in O(|X|?)
[23,33], imply the following theorem.

Theorem 3. When using Z <,u, 4 in the place of Z C,- Z', the algorithm
is correct and it terminates in O(2¢ - |X|?) where d is the number of diagonal
guards in G.

From a complexity viewpoint, this algorithm is not efficient since it makes
an exponential number of calls in the number of diagonal constraints (in fact
this may not be avoidable due to Lemma 6, which follows from the NP-hardness
result in [18]). Although the above algorithm does involve many calls, the internal
operations involved in each call are simple zone manipulations. Moreover, the
preliminary checks (for instance line 6 of Algorithm 1) cut short the number
of calls. This is visible in our experiments which are very good, especially with
respect to running time, as compared to other methods. A similar hardness was
shown for a different simulation in [18], but the implementation there indeed
witnessed the hardness, as the time taken by that algorithm was unsatisfactory.

Lemma 6. Deciding Z L5V Z' is NP-complete.

5 Simulations for Updatable Timed Automata

In the timed automata considered so far, clocks are allowed to be reset to 0 along
transitions. We consider in this section more sophisticated transformations to
clocks in transitions. These are called updates. An update up : RL)E‘ — RIXlis a
function mapping non-negative | X |-dimensional reals (valuations) v to general
| X|-dimensional reals (which may apriori not be valuations as the coordinates
may be negative). The syntax of the update function up is given by a set of
atomic updates up, to each x € X, which are of the form z :=cor z ==y +d
where c € N, d € Z and y € X (possibly equal to z). Note that we want d to be
an integer, since we allow for decrementing clocks, and on the other hand ¢ € N
since we have non-negative clocks. Given a valuation v and an update up, the
valuation up(v) is:

() (@) : c ifup, isz:=c
UPROIRE) = v(y)+d ifupyisx:=y+d
Note that in general, due to the presence of updates x := y+d, the update up(v)
may not yield a clock valuation. However, when it does give a valuation, it can
be used as a transformation in timed automata transitions. We say up(v) > 0 if
up(v)(x) > 0 for all clocks z € X.

An updateable timed automaton (UTA) A = (Q,X,qo, T, F) is an extension
of a classic timed automaton with transitions of the form (g, g, up,q’) where up
is an update. Semantics extend in the natural way: delay transitions remain the
same, and for action transitions ¢ := (¢, g, up, ¢') we have (¢,v) — (¢',v') ifv = g,
up(v) > 0, and v' = up(v). We allow the transition only if the update results
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in a valuation. The reachability problem for these automata is known to be
undecidable in general [12]. Various subclasses with decidable reachability have
been discussed in the same paper. Decidability proofs in [12] take the following
flavour, for a given automaton A: (1) divide the space of all valuations into a
finite number of equivalence classes called regions (2) to build the parameters for
the equivalence, derive a set of diophantine equations from the guards of A; if
they have a solution then construct the quotient graph of the equivalence (called
region graph) parameterized by the obtained solution and check reachability on
it; if the equations have no solution, output that reachability for A cannot be
answered. Sufficient conditions on the nature of the updates that give a solution
to the diophantine equations have been tabulated in [12]. When the automaton
is diagonal-free, the “region-equivalence” can be used to build an extrapolation
operation which in turn can be used in a reachability algorithm with zones.
When the automaton contains diagonals, the region-equivalence is used to only
build a region graph - no effective zone based approach has been studied.

We use a similar idea, but we have two fundamental differences: (1) we want
to obtain reachability through the use of simulations on zones, and (2) we build
equations over sets of guards as in Definition 4. The advantage of this approach
is that this allows the use of coarser simulations over zones. Even for automata
with diagonal constraints and updates, we get a zone based algorithm, instead
of resorting to regions which are not efficient in practice.

The notion of simulations as in p. xx remains the same, now using the seman-
tics of transitions with updates. We will re-use the simulation relation C,. We
need to extend Definition 3 to incorporate updates. We do this below. Here is a
notation: for an update function up, we write up(x) to be ¢ if up, is x := ¢, and
up(z) to be y + ¢ if up, is ¢ :=y + ¢

Definition 8 (weakest pre-condition of C; over updates).

Let up be an update.

For a constraint ¢ of the form x < ¢ or ¢ < z, we define wp(C,,up) to be
respectively {up(x) < ¢} or {c < up(x)} if these resulting constraints are of the
form z<d or d <z with z € X and d > 0, otherwise wp(C,,up) is empty.

For a constraint ¢ : x —y < ¢, we define wp(C,, up) to be {up(x) —up(y) < c}
if this constraint is either a diagonal using different clocks, or it is of the form
z<d ord<z withd >0, otherwise wp(C,,, up) is empty.

For a set of guards G, we define wp(Cg, up) := Uweg wp(C., up).

Some examples: wp(z < 5,z := x + 10) is empty, since up(z) is « + 10, and
the guard 4 10 < 5 is not satisfiable; wp(x < 5,2 := 2 —10) is ¢ < 15, wp(z <
5,2 := c) is empty, wp(x—y < 5, (x := 21,y := 22+10)) will be z; —(22+10) < 5,
giving the constraint z; — 2o < 15, wp(x —y < 5,(x := 2+ c¢1,y := 2+ ¢2)) is
empty, wp(x —y <5, {(x :=cj,y:=2+c))isc=c1—5—ce < zif¢>0and is
empty otherwise.

Definition 9 (State based guards). Let A = (Q,X,q,T,F) be a UTA.
We associate a set of constraints G(q) for each state ¢ € Q, which is the least
set of constraints (for the coordinate-wise subset inclusion order) such that for
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every transition (q,g,up,q1): the guard g and the set wp(Cg(,,),up) are present
in G(q), and in addition constraints that allow the update to happen are also
present in G. The last condition is given by the weakest precondition of the set
of constraints {x > 0 | x € X}. Overall, {G(q)}qeq is the least solution to the
following set of equations, for each q € Q:

da)=  |J ({9} U wp(Cozopwexy up) U wp(Cogy)up) )
(¢,9,up,q1)€T

The least solution {G(q)}qeq is said to be finite if each G(q) is a finite set of
constraints.

In contrast to the simple reset case, the above set of equations may not have
a finite solution. Consider a self-looping transition: (¢, < ¢,z := x — 1,q). We
require z < ¢ € G(q). Now, wp(z < ¢,z := x — 1) is © < ¢+ 1 which should be
in G(q) according to the above equation. Continuing this process, we need to
add x < d for every natural number d > c. Indeed this is consistent with the
undecidability of reachability when subtraction updates are allowed. We deal
with the subject of finite solutions to the above equations later in this section.
On the other hand, when the above system does have a solution with finite G(q)
at every ¢, we can use the A simulation of Definition 5 and its approximation
<4U to get an algorithm.

Proposition 2. Let A= (Q,X,qo, T, F) be a UTA. Let {G(q)}qcq be the least
solution to the equations given in Definition 9. Then, the relation <4 is a sim-
ulation on the configurations of A.

Lemma 7. For a UTA A, assume that the least solution {G(q)}q4cq to the state-
based guards equations is finite. Then the relation <%V is a finite simulation on
the configurations of A.

Finite Solution to the State-Based Guards Equations. The least solution
to the equations of Definition 9 can be obtained by a standard Kleene iteration
for fixed points computation. For each ¢ > 0 and each state ¢, define:

G%(q) = U {9} Uwp(Efezojzexy> up)
(¢,9,up,q’)ET
Gt (q) = U G'(q) Uwp (g, up)
(¢,9,up,q’)ET

The iteration stabilizes when there exists a k satisfying G¥*1(q) = G*(q) for all
q. At stabilization, the values G¥(q) satisfy the equations of Definition 9, and
give the required G(q). However, as we mentioned earlier, this iteration might
not stabilize at any k. We will now develop some observations that will help
detect after finitely many steps if the iteration will stabilize or not.

Suppose we colour the set G*1(q) to red if either there exists a diagonal
constraint z —y < ¢ € G*T1(q) \ G*(¢) (a new diagonal is added) or there exists a
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non-diagonal constraint z < ¢ or ¢ <z in G**1(q) \ G(q) such that the constant
¢ is strictly bigger than ¢’ for respectively every non-diagonal x < ¢ or ¢ < x
in G'(¢) (a non-diagonal with a bigger constant is added). If this condition is
not applicable, we colour the set Gi*1(q) green. The next observations say that
the iteration terminates iff we reach a stage where all sets are green. Intuitively,
once we reach green, the only constraints that can be added are non-diagonals
having smaller (non-negative) constants and hence the procedure terminates.

Lemma 8. Leti > 0. If G¢(q) is green for all q, then G*1(q) is green for all q.

Lemma 9. Let K = 1+|Q|-|X|- (| X|+1). If there is a state p such that G (p)
is red, then there is no i such that G'(q) is green for all q.

As to why the bound K =1+ |Q| - |X]|- (|X|+ 1) in the lemma above: a red
state at stage 7 arises due to the addition of a constraint ; at state p;, which in
turn depends on a state p;_; marked red at stage i —1 due to constraint ;1. If
we iterate sufficiently long, we will hit a state p, a sequence of transitions from
p to p and a constraint ¢ such that computing the weakest precondition over
this loop will give a new constraint with the same set of clocks as ¢ but with a
different constant. This part can be iterated infinitely often.

Proposition 3. The least solution of the local constraint equations for a UTA
is finite iff GX(q) is green for all ¢ and where K =1+ |Q| - |X|- (| X|+1).

Theorem 4. Let A be a UTA. It is decidable whether the equations in Defini-
tion 9 have a finite solution. When these equations do have a finite solution, zone
graph enumeration using %V is a sound, complete and terminating procedure
for the reachability problem.

All decidable classes of [12] can be shown decidable with our approach, by
showing stabilization of the G(g) computation.

Lemma 10. Reachability is decidable in UTA where: guards are non-diagonals
and updates are of the form x := ¢, x ==y, x := y + ¢ where ¢ > 0 or, guards
include diagonal constraints and updates are of the form x :=c¢, T :=1y.

6 Experiments

We have implemented the reachability algorithm for timed automata with diag-
onal constraints (and only resets as updates) based on the simulation approach
(p. xx) using the %Y simulation (Definition 7) for pruning zones. The algorithm
for Z CLY Z' comes from Sect. 4. Experiments are reported in Table 1. We take
model Cez from [8,30] and Fischer from [30]. We are not aware of any other
“standard” benchmarks containing diagonal constraints. In addition to these two
models, we introduce a new benchmark. This is an extension of the job-shop
scheduling using (diagonal-free) timed automata [1]. Here the tasks within a
job were logically independent. We add some timing dependency between them
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Table 1. Experiments: the column #D gives the number of diagonal constraints. Four
methods have been reported in the table. First two methods, TChecker with our sim-
ulation relation C5Y and UPPAAL engine for diagonals, have been run on A, the
automata containing diagonal constraints. Whereas, the third and fourth methods are
running diagonal-free engines of UPPAAL and TChecker on Ag, a diagonal-free equiv-
alent of A. Experiments were run on macOS X with 2.3 GHz Intel core i5 processor,
and 8 GB RAM. Time is reported in seconds. We set a timeout of 15 min.

Model #D | A: contains diagonals Agy: diagonal-free equivalent of A
TChecker + CEY  |UPPAAL UPPAAL TChecker
Time Nodes count | Time Nodes count | Time Nodes count | Time Nodes count
Cex 2 4 0.047 241 0.026 |2180 0.005 1039 0.067 |1039
Cex 3 6 7.399 7111 111.168 |182394 1.028| 60982 40.092 60982
Cex 4 8 |857.662|185209 Timeout |- 734.5433447119 Timeout |-
Fischer 4 4 0.032 452 307.836 |357687 0.009 1815 0.100 1815
Fischer 5 5 0.257 1842 Timeout |- 0.116 12511 1.856 12511
Fischer 7 7 15.032| 26812 Timeout |- 174.560| 693603 Timeout |-
Job Shop 3|12 0.420 278 23.093 [31711 0.003 845 0.312 |845
Job Shop 5|20 |285.421| 10592 Timeout |- 4.633| 179607 150.811 179607

which gets naturally modeled using diagonal constraints. Each model considered
above is a product of a number of k£ timed automata. In the table we write the
name of the model and the number k of automata involved in the product. We
also report the number of diagonal constraints in each of them.

Ezperimental Results. We report the results of four methods of handling diago-
nal constraints, as mentioned in the caption of Table 1. Under each method, we
report on the number of zones enumerated and the time taken. The first method
gives a huge gain over the second one (upto four orders of magnitude in the
number of nodes, and even better for time) and gives a less marked, but still sig-
nificant, gain over the third and fourth methods. We provide a brief explanation
of this phenomenon. The performance of the reachability algorithm is dependent
on three factors:

— parameters of extrapolation or simulation: M-simulations which use the max-
imum constant appearing in the guards, versus the LU-simulations which
make a distinction between lower bound guards ¢ < x and upper bound
guards = < ¢ (refer to [5] for the exact definitions of extrapolations based
on these parameters, and [23] for simulations based on these parameters);
LU-simulations are superior to M-simulations.

— computation of the parameters: global parameters which associate a bound
to each clock versus the more local state based parameters as in Definition 4
which associate a set of bounds functions to each state [4]; local bounds are
superior to global bounds.

— when diagonal constraints are present, whether zones get split or not: each
time a zone gets split, new enumerations start from each of the new nodes;
clearly, a no-splitting-of-zones approach is superior to zone splitting.
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Algorithm of column 1 uses the superior heuristic in all the three optimiza-
tions above. The no-splitting-of-zones was possible thanks to our simulation app-
roach, which temporarily splits zones for checking Z CLY Z’, but never starts a
new exploration from any of the split nodes. The algorithm of column 2, which is
implemented in the current version UPPAAL 4.1 uses the inferior heuristic in all
the three above. In particular, it is not clear how the extrapolation approach can
avoid the zone splitting in an efficient manner. The superiority of our approach
gets amplified (by multiplicative factors) when we consider bigger products with
many more diagonals. In the third and fourth methods, we give a diagonal free
equivalent of the original model (c.f. Theorem 1) and use the UPPAAL and
TChecker engines respectively, for diagonal free timed automata. The UPPAAL
diagonal free engine is highly optimized, and makes use of the superior heuristics
in the first two optimizations mentioned above (the third heuristic is not appli-
cable now as it is a diagonal free automaton). The third and fourth methods
can be considered as a good approximation of the zone splitting approach to
diagonal constraints using LU-abstractions and local guards.

The second and the third methods are the only possibilities of verifying timed
models coming with diagonal constraints in UPPAAL. Both these approaches
are in principle prone to a 2#P blowup compared to the first approach, where
#D gives the number of diagonal constraints. The table shows that a good
extent of this blowup indeed happens. The UPPAAL diagonal free engine uses
“minimal constraint systems” [6] for representing zones, whereas TChecker uses
DBMs [15]. This explains why even with the same number of nodes visited,
UPPAAL performs better in terms of time. We have not included in the table
the comparison with two other works dealing with the same problem: the refined
diagonal free conversion [30] and the extension of LU simulation for diagonals
[18]. However, our results are better than the tables reported in these papers.

7 Conclusion

We have proposed a new algorithm for handling diagonal constraints in timed
automata, and extended it to automata with general updates. Our approach
is based on a simulation relation between zones. From our preliminary exper-
iments, we can infer that the use of simulations is indispensable in the pres-
ence of diagonal constraints as zone-splitting can be avoided. Moreover, the fact
that the simulation approach stores the actual zones (as opposed to abstracted
zones in the extrapolation approach) has enabled optimizations for diagonal-free
automata that work with dynamically changing simulation parameters (LU-
bounds), which are learnt as and when the zones are expanded [22]. Working
with actual zones is also convenient for finding cost-optimal paths in priced timed
automata [11]. Investigating these in the presence of diagonal constraints is part
of future work. Currently, we have not implemented our approach for updateable
timed automata. This will also be part of our future work.
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Working directly with a model containing diagonal constraints could be con-
venient (both during modeling, and during extraction of diagnostic traces) and
can also potentially give a smaller automaton to begin with. We believe that our
experiments provide hope that diagonal constraints can indeed be used.
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Abstract. Discounted-sum inclusion (DS-inclusion, in short) formalizes
the goal of comparing quantitative dimensions of systems such as cost,
resource consumption, and the like, when the mode of aggregation for the
quantitative dimension is discounted-sum aggregation. Discounted-sum
comparator automata, or DS-comparators in short, are Biichi automata
that read two infinite sequences of weights synchronously and relate their
discounted-sum. Recent empirical investigations have shown that while
DS-comparators enable competitive algorithms for DS-inclusion, they
still suffer from the scalability bottleneck of Biichi operations.

Motivated by the connections between discounted-sum and Biichi
automata, this paper undertakes an investigation of language-theoretic
properties of DS-comparators in order to mitigate the challenges of Biichi
DS-comparators to achieve improved scalability of DS-inclusion. Our
investigation uncovers that DS-comparators possess safety and co-safety
language-theoretic properties. As a result, they enable reductions based
on subset construction-based methods as opposed to higher complex-
ity Biichi complementation, yielding tighter worst-case complexity and
improved empirical scalability for DS-inclusion.

1 Introduction

The analysis of quantitative dimensions of computing systems such as cost,
resource consumption, and distance metrics [6, 10, 28] has been studied thoroughly
to design efficient computing systems. Cost-aware program-synthesis [14,16] and
low-cost program-repair [25] have found compelling applications in robotics [24,
29], education [22], and the like. Quantitative verification facilitates efficient system
design by automatically determining if a system implementation is more efficient
than a specification model. Investigations in quantitative verification have demon-
strated their high computational complexity and practically intractable [17,23].
This work addresses practical intractability of quantitative verification.

At the core of quantitative verification lies the problem of quantitative inclu-
sion which formalizes the goal of determining which of two given systems is more
efficient [17,23,31]. In quantitative inclusion, quantitative systems are abstracted
as weighted automata [7,21,32]. A run in a weighted automaton is associated
with a sequence of weights. The quantitative dimension of these runs is deter-
mined by the weight of runs, which is computed by taking an aggregate of the
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run’s weight sequence. Quantitative inclusion can be thought of as the quanti-
tative generalization of (qualitative) language inclusion.

A commonly appearing mode of aggregation is that of Discounted-sum (DS)
aggregation which captures the intuition that weights incurred in the near future
are more significant than those incurred later on [19]. The convergence of DS
aggregation for all bounded infinite weight-sequences makes it a preferred mode
of aggregation across domains: Reinforcement learning [37], planning under
uncertainty [34], and game-theory [33]. This work examines the problem of
Discounted-sum inclusion or DS-inclusion that is quantitative inclusion when
discounted sum is the mode of aggregation.

In theory, DS-inclusion is PSPACE-complete [12]. Recent algorithmic
approaches have tapped into language-theoretic properties of discounted-sum
aggregate function [12,18] to design practical algorithms for DS-inclusion [11,12].
These algorithms use DS-comparator automata (DS-comparator, in short) as
their main technique, and are purely automata-theoretic. While these algorithms
outperform other existing approaches for DS-inclusion in runtime [15,17], even
these do not scale well on weighted-automata with more than few hundreds
of states [11]. This work contributes novel techniques and algorithms for DS-
inclusion to address the scalability challenge of DS-inclusion

An in-depth examination of the DS-comparator based algorithm exposes
their scalability bottleneck. DS-comparator is a Biichi automaton that relates
the discounted-sum aggregate of two (bounded) weight-sequences A and B by
determining the membership of the interleaved pair of sequences (A, B) in the
language of the comparator. As a result, DS-comparators reduce DS-inclusion to
language inclusion between (non-deterministic) Biichi automaton. In spite of the
fact that many techniques have been proposed to solve Biichi language inclusion
efficiently in practice [4,20], none of them can avoid at least an exponential blow-
up of 20(n1087) for an n-sized input, caused by a direct or indirect involvement
of Biichi complementation [36,40].

This work meets the scalability challenge of DS-inclusion by delving deeper
into language-theoretic properties of discounted-sum aggregate functions [18] in
order to obtain algorithms for DS-inclusion that render both tighter theoretical
complexity and improved scalability. Specifically, we prove that DS-comparators
are expressed as safety automata or co-safety automata [26] (Sect. 3.1), and have
compact deterministic constructions (Sect. 3.2). Safety and co-safety automata
have the property that their complementation is performed by simpler and lower
20(")_complexity subset-construction methods [27]. As a result, they facilitate
a procedure for DS-inclusion that uses subset-construction based intermediate
steps instead of Biichi complementation, yielding an improvement in theoretical
complexity from 20(10gn) o 20(7)  Our subset-construction based procedure
has yet another advantage over Biichi complementation as they support efficient
on-the-fly implementations, yielding practical scalability as well (Sect. 4).

An empirical evaluation of our prototype tool QulIPFly for the proposed pro-
cedure against the prior DS-comparator algorithm and other existing approaches
for DS-inclusion shows that QuIPFly outperforms them by orders of magnitude
both in runtime and the number of benchmarks solved (Sect. 4).
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2 Preliminaries and Related Work

A weight-sequence, finite or infinite, is bounded if the absolute value of all of its
elements are bounded by a fixed number.

Biichi Automaton: A Bichi automaton is a tuple A = (S, X, §, sz, F), where
S is a finite set of states, X' is a finite input alphabet, 6 C (S x X' x §) is the
transition relation, state sz € S is the initial state, and F C S is the set of
accepting states [39]. A Biichi automaton is deterministic if for all states s and
inputs a, [{s'|(s,a,s’) € § for some s'}| < 1. Otherwise, it is nondeterministic.
A Biichi automaton is complete if for all states s and inputs a, |{s'|(s,a,s’) €
d for some s'}| > 1. For a word w = wowy - -+ € X¥, a run p of w is a sequence of
states sgs1 ... s.t. 89 = sz, and 7; = (s;, w;, $;41) € ¢ for all 4. Let inf(p) denote
the set of states that occur infinitely often in run p. A run p is an accepting run
if inf(p) N F # 0. A word w is an accepting word if it has an accepting run.
The language of Biichi automaton A, denoted by L£(A) is the set of all words
accepted by A. By abuse of notation, we write w € A and p € A if w and p are
an accepting word and an accepting run of A. Biichi automata are closed under
set-theoretic union, intersection, and complementation [39].

Safety and Co-safety Properties: Let L C X be a language over alphabet X.
A finite word w € X* is a bad prefix for L if for all infinite words y € X¢,
x-y ¢ L. A language L is a safety language if every word w ¢ L has a bad
prefix for £. A language L is a co-safety language if its complement language
is a safety language [5]. When a safety or co-safety language is an w-regular
language, the Biichi automaton representing it is called a safety or co-safety
automaton, respectively [26]. Wlog, safety and co-safety automaton contain a
sink state from which every outgoing transitions loops back to the sink state
and there is a transition on every alphabet symbol. All states except the sink
state are accepting in a safety automaton, while only the sink state is accepting
in a co-safety automaton. Unlike Biichi complementation, complementation of
safety and co-safety automaton is conducted by simpler subset construction with
a lower 29(") blow-up. The complementation of safety automaton is a co-safety
automaton, and vice-versa. Safety automata are closed under intersection, and
co-safety automata are closed under union.

Comparator Automaton: For a finite-set of integers Y, an aggregate function
f 7% — R, and equality or inequality relation R € {<,>,<, > = #}, the
comparison language for f with relation R is a language of infinite words over the
alphabet X' x X' that accepts a pair (A, B) iff f(4) R f(B) holds. A comparator
automaton (comparator, in short) for aggregate function f and relation R is an
automaton that accepts the comparison language for f with R [12]. A comparator
is said to be regular if its automaton is a Biichi automaton.

Weighted Automaton: A weighted automaton over infinite words is a tuple
A = (M,~, f), where M = (5,X%,6,s7,S5) is a complete Biichi automaton



Safety and Co-safety Comparator Automata for Discounted-Sum Inclusion 63

with all states as accepting, v : § — N is a weight function, and f : N¥ — R
is the aggregate function [17,31]. Words and runs in weighted automata are
defined as in Biichi automata. The weight-sequence of run p = sps; ... of word
w = wow; ... is given by wt, = noning ... where n; = y(s;,w;, s;41) for all .
The weight of a run p, denoted by f(p), is given by f(wt,). Here the weight of a
word w € X in weighted automata is defined as wt 4(w) = sup{f(p)|p is a run
of win A}.

Quantitative Inclusion: Let P and @ be weighted automata with the same aggre-
gate function. The strict quantitative inclusion problem, denoted by P C @, asks
whether for all words w € X%, wtp(w) < wtg(w). The non-strict quantitative
inclusion problem, denoted by P C (@), asks whether for all words w € X“|
wtp(w) < wtg(w). Comparison language or comparator of a quantitative inclu-
sion problem refer to the comparison language or comparator of the associated
aggregate function.

Discounted-sum Inclusion: Let A = Ag, A1, ... be a weight sequence, d > 1 be a
rational number. The discounted-sum (DS in short) of A with integer discount-
factor d > 1is DS(A,d) = Zg’io%. DS-comparison language and DS-comparator
with discount-factor d > 1 are the comparison language and comparator obtained
for the discounted-sum aggregate function with discount-factor d > 1, respec-
tively. Strict or non-strict discounted-sum inclusion is strict or non-strict quan-
titative inclusion with the discounted-sum aggregate function, respectively. For
brevity, we abbreviate discounted-sum inclusion to DS-inclusion.

Related Work. The decidability of DS-inclusion is an open problem when the
discount-factor d > 1 is arbitrary. Recent work has established that DS-inclusion
is PSPACE-complete when the discount-factor is an integer [12]. This work inves-
tigates algorithmic approaches to DS-inclusion with integer discount-factors.

Two contrasting solution approaches have been identified for DS-inclusion.
The first approach is hybrid [17]. It separates out the language-theoretic aspects
of weighted-automata from the numerical aspects, and solves each separately
[15,17]. More specifically, the hybrid approach solves the language-theoretic
aspects by DS-determinization [15] and the numerical aspect is performed by
linear programming [8,9] sequentially. To the best of our knowledge, this pro-
cedure cannot be performed in parallel. As a result, this approach must always
incur the exponential cost of DS-determinization.

The second approach is purely-automata theoretic [12]. This approach uses reg-
ular DS-comparator to reduce DS-inclusion to language inclusion between non-
deterministic Biichi automata [11,12]. While the purely automata-theoretic app-
roach scales better than the hybrid approach in runtime [11], its scalability suf-
fers from fundamental algorithmic limitations of Biichi language inclusion. A key
ingredient of Biichi language-inclusion is Biichi complementation [36]. Biichi com-
plementation is 2°("1°87) in the worst-case, and is practically intractable [40].
These limitations also feature in the theoretical complexity and practical per-
formance of DS-inclusion. The complexity of DS-inclusion between weighted
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automata P and Q) with regular DS-comparator C for integer discount-factor d > 1
is |P| - 20(PlIQIICT o PIIRIICT),

This work improves the worst-case complexity and practical performance of
the purely automata theoretic approach for DS-inclusion by a closer investiga-
tion of language-theoretic properties of DS-comparators. In particular, we iden-
tify that DS-comparator for integer discount-factor form a safety or co-safety
automata (depending on the relation R). We show that complementation advan-
tage of safety/co-safety automata not only improves the theoretical complexity
of DS-inclusion with integer discount-factor but also facilitate on-the-fly imple-
mentations that significantly improve practical performance.

3 DS-inclusion with Integer Discount-Factor

This section covers the core technical contributions of this paper. We uncover
novel language-theoretic properties of DS-comparison languages and utilize them
to obtain tighter theoretical upper-bound for DS-inclusion with integer discount-
factor. Unless mentioned otherwise, the discount-factor is an integer.

In Sect. 3.1 we prove that DS-comparison languages are either safety or
co-safety for all rational discount-factors. Since DS-comparison languages are w-
regular for integer discount-factors [12], we obtain that DS-comparators for inte-
ger discount-factors form safety or co-safety automata. Next, Sect. 3.2 makes use
of newly obtained safety/co-safety properties of DS-comparator to present the
first deterministic constructions for DS-comparators. These deterministic con-
struction are compact in the sense that they match their non-deterministic coun-
terparts in number of states [11]. Section 3.3 evaluates the complexity of quan-
titative inclusion with regular safety/co-safety comparators, and observes that
its complexity is lower than the complexity for quantitative inclusion with regu-
lar comparators. Finally, since DS-comparators are regular safety/co-safety, our
analysis shows that the complexity of DS-inclusion is improved as a consequence
of the complexity observed for quantitative-inclusion with regular safety/co-
safety comparators.

We begin with formal definitions of safety/co-safety comparison languages
and safety/co-safety comparators:

Definition 1 (Safety and co-safety comparison languages). Let X be a
finite set of integers, f : Z* — R be an aggregate function, and R € {<,<
, >, >,=,#} be a relation. A comparison language L over X x X for aggregate
function f and relation R is said to be a safety comparison language (or a co-
safety comparison language) if L is a safety language (or a co-safety language).

Definition 2 (Safety and co-safety comparators). Let X be a finite set
of integers, f : Z* — R be an aggregate function, and R € {<,<,>,> =, #}
be a relation. A comparator for aggregate function f and relation R is a safety
comparator (or co-safety comparator) is the comparison language for f and R
is a safety language (or co-safety language).
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A safety comparator is regular if its language is w-regular (equivalently, if its
automaton is a safety automaton). Likewise, a co-safety comparator is regular if
its language is w-regular (equivalently, automaton is a co-safety automaton).

By complementation duality of safety and co-safety languages, comparison
language for an aggregate function f for non-strict inequality < is safety iff
the comparison language for f for strict inequality < is co-safety. Since safety
languages and safety automata are closed under intersection, safety comparison
languages and regular safety comparator for non-strict inequality renders the
same for equality. Similarly, since co-safety languages and co-safety automata
are closed under union, co-safety comparison languages and regular co-safety
comparators for non-strict inequality render the same for the inequality relation.
Therefore, it suffices to examine the comparison language for one relation only.

It is worth noting that for weight-sequences A and B and all relations R,
we have that DS(A,d) R DS(B,d) ifft DS(A— B,d) R 0, where (A — B); =
A; — B, for all ¢ > 0. Prior work [11] shows that we can define DS-comparison
language with upper bound pu, discount-factor d > 1, and relation R to accept
infinite and bounded weight-sequence C over {—p, ..., u} iff DS(C,d) R 0 holds.
Similarly, DS-comparator with the same parameters p, d > 1, accepts the DS-
comparison language with parameters u, d and R. We adopt these definitions for
DS-comparison languages and DS-comparators

Throughout this section, the concatenation of finite sequence = with finite or
infinite sequence y is denoted by x - y in the following.

3.1 DS-comparison Languages and Their Safety/Co-safety
Properties

The central result of this section is that DS-comparison languages are safety
or co-safety languages for all (integer and non-integer) discount-factors (The-
orem 1). In particular, since DS-comparison languages are w-regular for inte-
ger discount-factors [12], this implies that DS-comparators for integer discount-
factors form safety or co-safety automata (Corollary 1).

The argument for safety/co-safety of DS-comparison languages depends on
the property that the discounted-sum aggregate of all bounded weight-sequences
exists for all discount-factors d > 1 [35].

Theorem 1. Let u > 1 be the upper bound. For rational discount-factor d > 1

1. DS-comparison languages are safety languages for relations R € {<, > =}
2. DS-comparison language are co-safety languages for relations R € {<,>,#}.

Proof (Proof sketch). Due to duality of safety/co-safety languages, it suffices to
show that DS-comparison language with < is a safety language.

Let DS-comparison language with upper bound pu, rational discount-factor
d > 1 and relation < be denoted by £4%. Suppose that £4% is not a safety

language. Let W be a weight-sequence in the complement of_LZ’d such that W

does not have a bad prefix. Then the following hold: (a). DS(W,d) > 0 (b).
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For all ¢ > 0, the i-length prefix W[i] of W can be extended to an infinite and
bounded weight-sequence W[i] - Y¢ such that DS(W([i] - Y, d) < 0.

Note that DS(W,d) = DS(W[i],d) + 4 - DS(W[i...],d) where W[i...] =
W;Wit1 ... and DS(Wi],d) is the discounted-sum of the finite sequence W]
i.e. DS(WTil,d) = 2i=¢ " "Wl Similarly, DS(WT[i] - Y?,d) = DS(W[i],d) + & -
DS(Y* d). The contribution of tail sequences Wi...] and Y to the discounted-
sum of W and W[i] - Y%, respectively, diminishes exponentially as the value of
i increases. In addition, since W and W[i] - Y share a common i-length prefix
Wi], their discounted-sum values must converge to each other. The discounted
sum of W is fixed and greater than 0, due to convergence there must be a k > 0
such that DS(Wk] - Y*,d) > 0. Contradiction to (b).

Therefore, DS-comparison language with < is a safety language. O

Semantically this result implies that for a bounded-weight sequence C' and ratio-
nal discount-factor d > 1, if DS(C,d) > 0 then C must have a finite prefix Cpre
such that the discounted-sum of the finite prefix is so large that no infinite exten-
sion by bounded weight-sequence Y can reduce the discounted-sum of Cp - Y
with the same discount-factor d to zero or below.

Prior work shows that DS-comparison languages are expressed by Biichi
automata iff the discount-factor is an integer [13]. Therefore:

Corollary 1. Let u > 1 be the upper bound. For integer discount-factor d > 1

1. DS-comparators are regular safety for relations R € {<, >, =}
2. DS-comparators are reqular co-safety for relations R € {<, >, #}.

Lastly, it is worth mentioning that for the same reason [13] DS-comparators for
non-integer rational discount-factors do not form safety or co-safety automata.

3.2 Deterministic DS-comparator for Integer Discount-Factor

This section issues deterministic safety/co-safety constructions for DS-
comparators with integer discount-factors. This is different from prior works
since they supply non-deterministic Biichi constructions only [11,12]. An out-
come of DS-comparators being regular safety/co-safety (Corollary 1) is a
proof that DS-comparators permit deterministic Biichi constructions, since non-
deterministic and deterministic safety automata (and co-safety automata) have
equal expressiveness [26]. Therefore, one way to obtain deterministic Biichi con-
struction for DS-comparators is to determinize the non-deterministic construc-
tions using standard procedures [26,36]. However, this will result in exponen-
tially larger deterministic constructions. To this end, this section offers direct
deterministic safety/co-safety automata constructions for DS-comparator that
not only avoid an exponential blow-up but also match their non-deterministic
counterparts in number of states (Theorem 3).
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Key ideas. Due to duality and closure properties of safety/co-safety automata,
we only present the construction of deterministic safety automata for DS-
comparator with upper bound pu, integer discount-factor d > 1 and relation
<, denoted by A’é’d. We proceed by obtaining a deterministic finite automaton,

(DFA), denoted by bad(y, d, <), for the language of bad-prefixes of A% (Theo-
rem 2). Trivial modifications to bad(p, d, <) will furnish the coveted deterministic

safety automata for A‘é’d (Theorem 3).

Construction. We begin with some definitions. Let W be a finite weight-
sequence. By abuse of notation, the discounted-sum of finite-sequence W with
discount-factor d is defined as DS(W,d) = DS(W - 0%,d). The recoverable-gap
of a finite weight-sequences W with discount factor d, denoted gap(W,d), is its
normalized discounted-sum: If W = ¢ (the empty sequence), gap(e,d) = 0, and
gap(W,d) = d"W!=1. DS(W,d) otherwise [15]. Observe that the recoverable-gap
has an inductive definition i.e. gap(e,d) = 0, where ¢ is the empty weight-
sequence, and gap(W - v,d) = d - gap(W, d) + v, where v € {—p, ..., u}.

This observation influences a sketch for bad(u,d, <). Suppose all possible
values for recoverable-gap of weight sequences forms the set of states. Then, the
transition relation of the DFA can mimic the inductive definition of recoverable
gap i.e. there is a transition from state s to ¢ on alphabet v € {—pu,...,u} iff
t = d-s+ v, where s and v are recoverable-gap values of weight-sequences.
There is one caveat here: There are infinitely many possibilities for the values
of recoverable gap. We need to limit the recoverable gap values to finitely many
values of interest. The core aspect of this construction is to identify these values.

First, we obtain a lower bound on recoverable gap for bad-prefixes of A’é’d:

Lemma 1. Let 1 and d > 1 be the bound and discount-factor, resp. Let T = S5
be the threshold value. Let W be a non-empty, bounded, finite weight-sequence.

Weight sequence W is a bad-prefiz of A’é’d iff gap(W,d) > T.

Proof. Let a finite weight-sequence W be a bad-prefix of A’é’d. Then,
DS(W -Y,d) > 0 for all infinite and bounded weight-sequences Y. Since
DS(W-Y,d) = DS(W,d) + —kr - DS(Y,d), we get inf(DS(W,d) + —kr -
DS(Y,d)) > 0 = DS(W,d) + +gurr - inf(DS(Y,d)) > 0 as W is a fixed
sequence. Hence DS(W,d) + W‘T,l >0 = gap(W,d) — T > 0. Conversely,
for all infinite, bounded, weight-sequence Y, DS(W - Y, d)-dWI=! = gap(W, d) +
1. DS(Y,d). Since gap(W,d) > T, inf(DS(Y,d)) = —T - d, we get DS(W - Y, d)
> 0. O

Since all finite and bounded extensions of bad-prefixes are also bad-prefixes,
Lemma 1 implies that if the recoverable-gap of a finite sequence is strinctly
lower that threshold T, then recoverable gap of all of its extensions also exceed
T. Since recoverable gap exceeding threshold T is the precise condition for bad-
prefixes, all states with recoverable gap exceeding T can be merged into a single
state. Note, this state forms an accepting sink in bad(y, d, <).
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Next, we attempt to merge very low recoverable gap value into a single state.
For this purpose, we define very-good prefizes for A’é’d: A finite and bounded

weight-sequence W is a wvery good prefix for language of Ai’d if for all infinite,
bounded extensions of W by Y, DS(W -Y,d) < 0. A proof similar to Lemma 1
proves an upper bound for the recoverable gap of very-good prefixes of A‘é’d:

Lemma 2. Let i and d > 1 be the bound and discount-factor, resp. Let T = S5
be the threshold value. Let W be a non-empty, bounded, finite weight-sequence.
Weight-sequence W is a very-good prefix of A’é’d iff gap(W,d) < —T.

Clearly, finite extensions of very-good prefixes are also very-good prefixes. Fur-
ther, bad(u,d, <) must not accept very-good prefixes. Thus, by reasoning as
earlier we get that all recoverable gap values that are less than or equal to —T
can be merged into one non-accepting sink state in bad(y, d, <).

Finally, for an integer discount-factor the recoverable gap is an integer. Let
|z] denote the floor of x € R e.g. |2.3| =2, |—-2]| = —2, |—2.3] = —3. Then,

Corollary 2. Let p be the bound and d > 1 an integer discount-factor. Let
T = 55 be the threshold. Let W be a non-empty, bounded, finite weight-sequence.

— W is a bad prefiz of A‘é’d iff gap(W,d) > |T|
- W is a very-good prefix of A‘é’d iff gap(W,d) < |-T]

So, the recoverable gap value is either one of {|—=T] +1,...,|T|}, or less than
or equal to |—T], or greater than | T]. This curbs the state-space to O(u)-many
values of interest, as T = 5 < C’f—'dl and 1 < % < 2. Lastly, since gap(e, d) = 0,
state 0 must be the initial state.

Construction of bad(u,d, <). Let u be the upper bound, and d > 1 be the integer
discount-factor. Let T = &5 be the threshold value. The finite-state automata
bad(y,d, <) = (S, s1, X, 0, F) is defined as follows:

— States S ={|-T|+1,...,|T]} U {bad, veryGood}
— Initial state s; = 0, Accepting states F = {bad}
Alphabet X = {—p,—p+1,...,0— 1, u}
— Transition function 6 C S x X' — S where (s,a,t) € 6 then:
1. If s € {bad, veryGood}, then t = s for all a € X
2. Ifse{|-T]+1,...,|T|},anda € ¥
(a) If |-T|<d-s+a<|T|],thent=d-s+a
(b) If d-s+a > |T], then ¢t = bad
(¢) fd-s+a<|-T], then t = veryGood

Theorem 2. Let p be the upper bound, d > 1 be the integer discount-factor.
bad(, d, <) accepts finite, bounded, weight-sequence iff it is a bad-prefic ofA’é’d.

Proof (Proof sketch). First note that the transition relation is deterministic and
complete. Therefore, every word has a unique run in bad(u,d, <). Let last be
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the last state in the run of finite, bounded, weight-sequence W in the DFA. Use
induction on the length of W to prove the following:

—last e {|-T|+1,...,|T]} iff gap(W,d) = last
— last = bad iff gap(W,d) > |T|
— last = veryGood iff gap(W,d) < |—T]

Therefore, a finite, bounded weight-sequence is accepted iff its recoverable gap
is greater than |T|. In other words, iff it is a bad-prefix of A’é’d. O

AZ’d is obtained from bad(u, d, <) by applying co-Biichi acceptance condition.

Theorem 3. Let i be the upper bound, and d > 1 be the integer discount-factor.
DS-comparator for all inequalities and equality are either deterministic safety or
deterministic co-safety automata with O(p) states.

As a matter of fact, the most compact non-deterministic DS-comparator con-
structions with parameters u, d and R also contain O(u) states [11].

3.3 Quantitative Inclusion with Safety/Co-safety Comparators

This section investigates quantitative language inclusion with regular safety/co-
safety comparators. Unlike quantitative inclusion with regular comparators,
quantitative inclusion with regular safety/co-safety comparators is able to cir-
cumvent Biichi complementation with intermediate subset-construction steps.
As a result, complexity of quantitative inclusion with regular safety/co-safety
comparator is lower than the same with regular comparators [12] (Theorem 4).
Finally, since DS-comparators are regular safety/co-safety comparators, the
algorithm for quantitative inclusion with regular safety/co-safety comparators
applies to DS-inclusion yielding a lower complexity algorithm for DS-inclusion
(Corollary 5).

Key Ideas A run of word w in a weighted-automaton is mazimal if its weight
is the supremum weight of all runs of w in the weighted-automaton. A run pp
of w in P is a counterezample for P C @ (or P C Q) iff there exists a maximal
run supg of w in @ such that wt(pp) > wt(supg) (or wt(pp) > wit(supg)).
Consequently, P C Q (or P C Q) iff there are no counterexample runs in P.
Therefore, the roadmap to solve quantitative inclusion for regular safety/co-
safety comparators is as follows:

1. Use regular safety/co-safety comparators to construct the mazimal automaton
of @ i.e. an automaton that accepts all maximal runs of @ (Corollary 3).

2. Use the regular safety/co-safety comparator and the maximal automaton to
construct a counterexample automaton that accepts all counterexample runs
of the inclusion problem P C @ (or P C @) (Lemma 5).
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3. Solve quantitative inclusion for safety/co-safety comparator by checking for
emptiness of the counterexample (Theorem 4).
Finally, since DS-comparators are regular safety/co-safety automaton (Corol-
lary 1), apply Theorem 4 to obtain an algorithm for DS-inclusion that uses
regular safety/co-safety comparators (Corollary 5).

Let W be a weighted automaton. Then the annotated automaton of W, denoted
by W, is the Biichi automaton obtained by transforming transition s — ¢ with
weight v in W to transition s 2% ¢t in W. Observe that W is a safety automaton
since all its states are accepting. A run on word w with weight sequence wt in
W corresponds to an annotated word (w,wt) in W, and vice-versa.

Maximal Automaton. This section covers the construction of the mazimal
automaton from a weighted automaton. Let W and W be a weighted automaton
and its annotated automaton, respectively. We call an annotated word (w, wt;)
in W mazimal if for all other words of the form (w,wty) in W, wt(wty) >
wt(wty). Clearly, (w,wt;) is a maximal word in W iff word w has a run with
weight sequence wt; in W that is maximal. We define maximal automaton of
weighted automaton W, denoted Maximal(W), to be the automaton that accepts
all maximal words of its annotated automata W.

We show that when the comparator is regular safety/co-safety, the construc-
tion of the maximal automata incurs a 2°(™ blow-up. This section exposes the
construction for maximal automaton when comparator for non-strict inequality
is regular safety. The other case when the comparator for strict inequality is
regular co-safety has been deferred to the appendix.

Lemma 3. Let W be a weighted automaton with reqular safety comparator for
non-strict inequality. Then the language of Maximal(W) is a safety language.

Proof (Proof sketch). An annotated word (w, wt;) is not maximal in W for one
of the following two reasons: Either (w, wt;) is not a word in W, or there exists
another word (w, wty) in W s.t. wt(wt,) < wt(wty) (equivalently (wty,wty) is
not in the comparator non-strict inequality). Both W and comparator for non-
strict inequality are safety languages, so the language of maximal words must
also be a safety language. O

We now proceed to construct the safety automata for Maximal(W)

Intuition. The intuition behind the construction of maximal automaton follows
directly from the definition of maximal words. Let W be the annotated automa-
ton for weighted automaton W. Let Y denote the alphabet of W. Then an
annotated word (w,wt;) € £¥ is a word in Maximal(W) if (a) (w,wt) € W,
and (b) For all words (w, wty) € W, wt(wt1) > wt(wty).

The challenge here is to construct an automaton for condition (b). Intuitively,
this automaton simulates the following action: As the automaton reads word
(w,wty), it must spawn all words of the form (w,wts) in W while also ensuring
that wt(wty) > wt(wts) holds for every word (w, wts) in W. Since W is a safety
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automaton, for a word (w, wt;) € %, all words of the form (w, wty) € W can be
traced by subset-construction. Similarly since the comparator C' for non-strict
inequality (>) is a safety automaton, all words of the form (wtq,wts) € C can be
traced by subset-construction as well. The construction needs to carefully align
the word (w,wt) with the all possible (w, wty) € W and (wty, wty) € C.

Construction of Maximal(W). Let W be a weighted automaton, with annotated
automaton W and C denote its regular safety comparator for non-strict inequal-
ity. Let Sy denote the set of states of W (and W) and S¢ denote the set of
states of C. We define Maximal(W) = (S, 57, 3,6, F) as follows:

— Set of states S consists of tuples of the form (s, X), where s € Sy, and
X ={(t, C)|t€Sw,CESc}

— X is the alphabet of W

— Initial state s; = (Sw, {(Sw, S¢)}), where s,, and s.. are initial states in W and
C, respectively.

— Let states (s, X), (s, X’) € S such that X = {(t1,¢1),...,(tn,cn)} and X' =

{(thsch)s oy (Ey )} - Then (s, X) 22 (5, X7) € 5 iff

1. s g s’ is a transition in W and

2. (t,c)) € X’ if there exists (¢;,¢;) € X, and a weight v’ such that t; —— t’

and ¢; — cj are transitions in W and C, respectively.

— (s,{(t1,c1), ..., (tn,cn)}) € Fiff s and all ; are accepting in W, and all ¢; is
accepting in C.

Lemma 4. Let W be a weighted automaton with reqular safety comparator C
for non-strict inequality. Then the size of Maximal(W) is |[W| - 20UWICD,

Proof (Proof sketch). A state (s,{(t1,¢1),..., (tn,cn)}) is non-accepting in the
automata if one of s,t; or ¢; is non-accepting in underlying automata W and
the comparator. Since W and the comparator automata are safety, all outgoing
transitions from a non-accepting state go to non-accepting state in the underly-
ing automata. Therefore, all outgoing transitions from a non-accepting state in
Maximal(W) go to non-accepting state in Maximal(WW). Therefore, Maximal(W)
is a safety automaton. To see correctness of the transition relation, one must
prove that transitions of type (1.) satisfy condition (a), while transitions of type
(2.) satisfy condition (b). Maximal(W) forms the conjunction of (a) and (b),
hence accepts the language of maximal words of W.

A similar construction proves that the maximal automata of weighted
automata W with regular safety comparator C for strict inequality contains
[W| - 20(WIICD states. In this case, however, the maximal automaton may not
be a safety automaton. Therefore, Lemma 4 generalizes to:

Corollary 3. Let W be a weighted automaton with reqular safety/co-safety com-
parator C. Then Maximal(W) is a Biichi automaton of size [W| - 20UWI-ICD
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Counterexample Automaton. This section covers the construction of the
counterexample automaton. Given weighted-automata P and (), an annotated
word (w,wtp) in annotated automata Pisa counterexample word of P C @
(or P C Q) if there exists (w,wtg) in Maximal(Q) s.t. wt(wtp) > wt(wtg)
(or wt(wtp) > wt(wtg)). Clearly, annotated word (w,wtp) is a counterexample
word iff there exists a counterexample run of w with weight-sequence wtp in P.

For this section, we abbreviate strict and non-strict to strct and nstrct,
respectively. For inc € {strct,nstrct}, the counterexample automaton for inc-
quantitative inclusion, denoted by Counterexample(inc), is the automaton that
contains all counterexample words of the problem instance. We construct the
counterexample automaton as follows:

Lemma 5. Let P, QQ be weighted-automata with regular safety/co-safety com-
parators. For inc € {strct, nstrct}, Counterexample(inc) is a Biichi automaton.

Proof. We construct Bilichi automaton Counterexample(inc) for inc €
{strct, nstrct} that contains the counterexample words of inc-quantitative inclu-
sion. Since the comparator are regular safety/co-safety, Maximal(Q) is a Biichi
automaton (Corollary 3). Construct the product P x Maximal(Q) such that tran-
sition (p1,q1) SRR (p1, ¢2) is in the product iff p; LY, p1and ¢ 2225 gy are
transitions in P and Maximal(Q@), respectively. A state (p, ¢) is accepting if both
p and ¢ are accepting in P and Maximal(@). One can show that the product
accepts (w, wtp, wtg) iff (w, wtp) and (w, wtq) are words in P and Maximal(Q),
respectively.

If inc = strct, intersect P x Maximal(Q) with comparator for >. If inc =
nstrct, intersect P x Maximal(Q) with comparator for >. Since the comparator
is a safety or co-safety automaton, the intersection is taken without the cyclic
counter. Therefore, (s1,t1) 2% (s5,5) is a transition in the intersection iff
sp 22, g0 and £ =22 ¢, are transitions in the product and the appropriate
comparator, respectively. State (s,t) is accepting if both s and ¢ are accepting.
The intersection will accept (w,wtp,wtg) iff (w,wtp) is a counterexample of
inc-quantitative inclusion. Counterexample(inc) is obtained by projecting out the

a,v1,V2

. . .. . a,v1
intersection as follows: Transition m n is transformed to m ——n. 0O

Quantitative Inclusion and DS-inclusion. In this section, we give the final
algorithm for quantitative inclusion with regular safety/co-safety comparators.
Since DS-comparators are regular safety/co-safety comparators, this gives us an
algorithm for DS-inclusion with improved complexity than previous results.

Theorem 4. Let P, Q be weighted-automata with regular safety/co-safety com-
parators. Let C< and C< be the comparators for < and <, respectively. Then

— Strict quantitative inclusion P C @ is reduced to emptiness checking of a
Biichi automaton of size |P||C<||Q| - 20URQIC<D.

— Non-strict quantitative inclusion P C @Q is reduced to emptiness checking of
a Biichi automaton of size |P||C<||Q| - 20URIC<D,
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Proof. Strict and non-strict are abbreviated to strct and nstrct, respectively.
For inc € {strct, nstrct}, inc-quantitative inclusion holds iff Counterexample(inc)
is empty. Size of Counterexample(inc) is the product of size of P, Maximal(Q)
(Corollary 3), and the appropriate comparator as described in Lemma 5. a

In contrast, quantitative inclusion with regular comparators reduces to empti-
ness of a Biichi automaton with |P| - 20UPlRICIHoe(IPIIRIICD) states [12]. The
20(nlogn) plow-up is unavoidable due to Biichi complementation. Hence, quan-
titative inclusion with regular safety/co-safety has lower worst-case complexity.

Lastly, we use the results of developed in previous sections to solve DS-
inclusion. Since DS-comparators are regular safety/co-safety (Corollary 1), an
immediate consequence of Theorem 4 is an improvement in the worst-case
complexity of DS-inclusion in comparison to prior results with regular DS-
comparators. Furthermore, since the regular safety/co-safety DS-comparators
are of the same size for all inequalities (Theorem 3), we get:

Corollary 4. Let P, Q be weighted-automata, and C be a regular safety/co-
safety DS-comparator with integer discount-factor d > 1. Strict DS-inclusion
reduces to emptiness checking of a safety automaton of size |P||C||Q]-2°(QICD,

Proof (Proof sketch). When comparator for non-strict inequality is safety-
automaton, as it is for DS-comparator, the maximal automaton is a safety
automaton (Lemma 3). One can then show that the counterexample automata
is also a safety automaton.

A similar argument proves non-strict DS-inclusion reduces to emptiness of a
weak-Biichi automaton [27] of size | P||C||Q] - 2°URICD (see Appendix).

Corollary 5 ([DS-inclusion with safety/co-safety comparator). Let P, @Q be
weighted-automata, and C be a regular (co)-safety DS-comparator with integer
discount-factor d > 1.The complexity of DS-inclusion is |P||C]|Q| - 2°0URICD

4 Implementation and Experimental Evaluation

The goal of the empirical analysis is to examine performance of DS-inclusion
with integer discount-factor with safety/co-safety comparators against existing
tools to investigate the practical merit of our algorithm. We compare against (a)
Regular-comparator based tool QulP, and (b) DS-determinization and linear-
programming tool DetLP.

QulP is written in C++, and invokes state-of-the-art Biichi language
inclusion-solver RABIT [2]. We enable the -fast flag in RABIT, and tune its
Java-threads with Xss, Xms, Xmx set to 1GB, 1GB and 8GB, respectively. DetLP
is also written in C++, and uses linear programming solver GLPSOL provided
by GLPK (GNU Linear Prog. Kit) [1]. We compare these tools along two axes:
runtime and number of benchmarks solved.
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Comparison of median runtime of QuIP and QuipFly
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Fig.1. sp = sg on z-axis, wt =4, =3,d=3, PCQ

Implementation Details. The algorithm for strict-DS-inclusion with integer
discount factor d > 1 proposed in Corollary 4 and non-strict DS-inclusion checks
for emptiness of the counterexample automata. A naive algorithm will construct
the counterexample automata fully, and then check if they are empty by ensuring
the absence of an accepting lasso.

We implement a more efficient algorithm. In our implementation, we make
use of the fact that the constructions for DS-inclusion use subset-construction
intermediate steps. This facilitates an on-the-fly procedure since successor states
of state in the counterexample automata can be determined directly from input
weighted automata and the comparator automata. The algorithm terminates as
soon as an accepting lasso is detected. When an accepting lasso is absent, the
algorithm traverses all states and edges of the counterexample automata.

We implement the optimized on-the-fly algorithm in a prototype QulPFly.
QuIPFly is written in Python 2.7.12. QulPFly employs basic implementation-level
optimizations to avoid excessive re-computation.

Design and Setup for Experiments. Due to lack of standardized benchmarks
for weighted automata, we follow a standard approach to performance evaluation
of automata-theoretic tools [3,30,38] by experimenting with randomly generated
benchmarks, using random benchmark generation procedure described in [11].
The parameters for each experiment are number of states sp and sg of
weighted automata, transition density §, maximum weight wt, integer discount-
factor d, and inc € {strct, nstrct}. In each experiment, weighted automata P and
@ are randomly generated, and runtime of inc-DS-inclusion for all three tools
is reported with a timeout of 900s. We run the experiment for each parameter
tuple 50 times. All experiments are run on a single node of a high-performance
cluster consisting of two quad-core Intel-Xeon processor running at 2.83 GHz,
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Comparison of runtime of DetLP and QuIPFly on same benchmarks
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Fig.2. sp =so =75, wt=4,6=3,d=3,PCQ

with 8 GB of memory per node. We experiment with sp = sq ranging from 0-
1500 in increments of 25, 6 € {3,3.5,4}, d = 3, and wt € {d* +1,d> —1,d* — 1}.

Observations and Inferences.! For clarity of exposition, we present the obser-
vations for only one parameter-tuple. Trends and observations for other param-
eters were similar.

QulPFly Outperforms. QulP by at least an order of magnitude in runtime.
Figure 1 plots the median runtime of all 50 experiments for the given parameter-
values for QulP and QulPFly. More importantly, QulPFly solves all of our bench-
marks within a fraction of the timeout, whereas QulP struggled to solve at least
50% of the benchmarks with larger inputs (beyond sp = sg = 1000). Primary
cause of failure is memory overflow inside RABIT. We conclude that regular
safety /co-safety comparators outperform their regular counterpart, giving credit
to the simpler subset-constructions vs. Biichi complementation.

QulPFly Outperforms. DetLP comprehensively in runtime and in number of
benchmarks solved. We were unable to plot DetLP in Fig. 1 since it solved fewer
than 50% benchmarks even with small input instances. Figure2 compares the
runtime of both tools on the same set of 50 benchmarks for a representative
parameter-tuple on which all 50 benchmarks were solved. The plot shows that
QulPFly beats DetLP by 2-4 orders of magnitude on all benchmarks.

Overall Verdict. Overall, QuIPFly outperforms QulP and DetLP by a significant
margin along both axes, runtime and number of benchmarks solved. This analysis
gives unanimous evidence in favor of our safety/co-safety approach to solving
DS-inclusion.

! Figures are best viewed online and in color.
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5 Concluding Remarks

The goal of this paper was to build scalable algorithms for DS-inclusion. To
this end, this paper furthers the understanding of language-theoretic proper-
ties of discounted-sum aggregate function by demonstrating that DS-comparison
languages form safety and co-safety languages, and utilizes these properties to
obtain a decision procedure for DS-inclusion that offers both tighter theoretical
complexity and improved scalability. All in all, the key insights of this work are:

1. Pure automata-theoretic techniques of DS-comparator are better for DS-
inclusion;

2. In-depth language-theoretic analysis improve both theoretical complexity and
practical scalability of DS-inclusion;

3. DS-comparators are compact deterministic safety or co-safety automata.

To the best of our knowledge, this is the first work that applies language-theoretic
properties such as safety/co-safety in the context of quantitative reasoning.

More broadly, this paper demonstrates that the close integration of language-
theoretic and quantitative properties can render novel algorithms for quantita-
tive reasoning that can benefit from advances in qualitative reasoning.
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the paper. This work was partially supported by NSF Grant No. CCF-1704883.

References

1. GLPK. https://www.gnu.org/software/glpk/

2. Rabit-Reduce. http://www.languageinclusion.org/

3. Abdulla, P.A., et al.: Simulation subsumption in ramsey-based biichi automata
universality and inclusion testing. In: Proceedings of CAV, pp. 132-147. Springer
(2010)

4. Abdulla, P.A., et al.. Advanced ramsey-based biichi automata inclusion testing.
In: Proceedings of CONCUR, vol. 11, pp. 187-202. Springer (2011)

5. Alpern, B., Schneider, F.B.: Recognizing safety and liveness. Distrib. Comput.
2(3), 117-126 (1987)

6. Alur, R., Mamouras, K.: An introduction to the streamqre language. Dependable
Softw. Syst. Eng. 50, 1 (2017)

7. Aminof, B., Kupferman, O., Lampert, R.: Reasoning about online algorithms with
weighted automata. Trans. Algorithms 6(2), 28 (2010)

8. Andersen, G., Conitzer, V.: Fast equilibrium computation for infinitely repeated
games. In: Proceedings of AAAI, pp. 53-59 (2013)

9. Andersson, D.: An improved algorithm for discounted payoff games. In: ESSLLI
Student Session, pp. 91-98 (2006)

10. Baier, C.: Probabilistic model checking. In: Dependable Software Systems Engi-
neering, pp. 1-23 (2016)

11. Bansal, S., Chaudhuri, S., Vardi, M.Y.. Automata vs linear-programming
discounted-sum inclusion. In: Proceedings of International Conference on
Computer-Aided Verification (CAV) (2018)


https://www.gnu.org/software/glpk/
http://www.languageinclusion.org/

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Safety and Co-safety Comparator Automata for Discounted-Sum Inclusion 77

Bansal, S., Chaudhuri, S., Vardi, M.Y. : Comparator automata in quantitative ver-
ification. In: Proceedings of International Conference on Foundations of Software
Science and Computation Structures (FoSSaCS) (2018)

Bansal, S., Chaudhuri, S., Vardi, M.Y.: Comparator automata in quantitative ver-
ification (full version). CoRR, abs/1812.06569 (2018)

Bloem, R., Chatterjee, K., Henzinger, T.A., Jobstmann, B.: Better quality in syn-
thesis through quantitative objectives. In: Bouajjani, A., Maler, O. (eds.) CAV
2009. LNCS, vol. 5643, pp. 140-156. Springer, Heidelberg (2009). https://doi.org/
10.1007/978-3-642-02658-4_14

Boker, U., Henzinger, T.A.: Exact and approximate determinization of discounted-
sum automata. LMCS 10(1), 1-13 (2014)

Chakrabarti, A., Chatterjee, K., Henzinger, T.A., Kupferman, O., Majumdar, R.:
Verifying quantitative properties using bound functions. In: Borrione, D., Paul, W.
(eds.) CHARME 2005. LNCS, vol. 3725, pp. 50-64. Springer, Heidelberg (2005).
https://doi.org/10.1007/11560548_7

Chatterjee, K., Doyen, L., Henzinger, T.A.: Quantitative languages. Trans. Com-
putat. Logic 11(4), 23 (2010)

Chaudhuri, S., Sankaranarayanan, S., Vardi, M.Y.: Regular real analysis. In: Pro-
ceedings of LICS, pp. 509-518 (2013)

de Alfaro, L., Henzinger, T.A., Majumdar, R.: Discounting the future in sys-
tems theory. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J.
(eds.) ICALP 2003. LNCS, vol. 2719, pp. 1022-1037. Springer, Heidelberg (2003).
https://doi.org/10.1007/3-540-45061-0-79

Doyen, L., Raskin, J.-F.: Antichain algorithms for finite automata. In: Esparza, J.,
Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 2-22. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-12002-2_2

Droste, M., Kuich, W., Vogler, H.: Handbook of Weighted Automata. Springer,
Berlin (2009)

D’Antoni, L., Samanta, R., Singh, R.: Qlose: program repair with quantitative
objectives. In: Proceedings of CAV, pp. 383-401. Springer (2016)

Filiot, E., Gentilini, R., Raskin, J.-F.: Quantitative languages defined by func-
tional automata. In: Koutny, M., Ulidowski, I. (eds.) CONCUR 2012. LNCS, vol.
7454, pp. 132-146. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-32940-1_11

He, K., Lahijanian, M., Kavraki, L.E., Vardi, M.Y.: Reactive synthesis for finite
tasks under resource constraints. In: 2017 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pp. 5326-5332. IEEE (2017)

Hu, Q., DAntoni, L.: Syntax-guided synthesis with quantitative syntactic objec-
tives. In: Chockler, H., Weissenbacher, G. (eds.) CAV 2018. LNCS, vol. 10981, pp.
386-403. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96145-3_21
Kupferman, O., Vardi, M.Y.: Model checking of safety properties. In: Halbwachs,
N., Peled, D. (eds.) CAV 1999. LNCS, vol. 1633, pp. 172-183. Springer, Heidelberg
(1999). https://doi.org/10.1007/3-540-48683-6_17

Kupferman, O., Vardi, M.Y.: Weak alternating automata are not that weak. Trans.
Computat. Logic 2(3), 408-429 (2001)

Kwiatkowska, M.: Quantitative verification: models, techniques and tools. In: Pro-
ceedings 6th Joint Meeting of the European Software Engineering Conference
and the ACM SIGSOFT Symposium on the Foundations of Software Engineer-
ing (ESEC/FSE), pp. 449-458. ACM Press, September 2007


https://doi.org/10.1007/978-3-642-02658-4_14
https://doi.org/10.1007/978-3-642-02658-4_14
https://doi.org/10.1007/11560548_7
https://doi.org/10.1007/3-540-45061-0_79
https://doi.org/10.1007/978-3-642-12002-2_2
https://doi.org/10.1007/978-3-642-32940-1_11
https://doi.org/10.1007/978-3-642-32940-1_11
https://doi.org/10.1007/978-3-319-96145-3_21
https://doi.org/10.1007/3-540-48683-6_17

78

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

S. Bansal and M. Y. Vardi

Lahijanian, M., Almagor, S., Fried, D., Kavraki, L.E., Vardi, M.Y.: This time the
robot settles for a cost: a quantitative approach to temporal logic planning with
partial satisfaction. In: AAAI, pp. 3664-3671 (2015)

Mayr, R., Clemente, L.: Advanced automata minimization. ACM SIGPLAN Not.
48(1), 63-74 (2013)

Mohri, M.: Weighted automata algorithms. In: Droste, M., Kuich, W., Vogler, H.
(eds.) Handbook of Weighted Automata. Monographs in Theoretical Computer
Science. An EATCS Series. Springer, Berlin (2009). https://doi.org/10.1007/978-
3-642-01492-5_6

Mobhri, M., Pereira, F., Riley, M.: Weighted finite-state transducers in speech recog-
nition. Comput. Speech Lang. 16(1), 69-88 (2002)

Osborne, M.J., Rubinstein, A.: A Course in Game Theory. MIT press, Cambridge
(1994)

Puterman, M.L.: Markov decision processes. Handbooks Oper. Res. Manag. Sci.
2, 331-434 (1990)

Rudin, W.: Principles of Mathematical Analysis, vol. 3. McGraw-Hill, New York
(1964)

Safra, S.: On the complexity of w-automata. In: Proceedings of FOCS, pp. 319-327.
IEEE (1988)

Sutton, R.S., Barto, A.G.: Introduction to Reinforcement Learning, vol. 135. MIT
press, Cambridge (1998)

Tabakov, D., Vardi, M.Y.: Experimental evaluation of classical automata construc-
tions. In: Sutcliffe, G., Voronkov, A. (eds.) LPAR 2005. LNCS (LNAI), vol. 3835,
pp. 396—411. Springer, Heidelberg (2005). https://doi.org/10.1007/11591191_28
Thomas, W., Wilke, T., et al.: Automata, Logics, and Infinite Games: A Guide to
Current Research, vol. 2500. Springer Science & Business Media, Berlin (2002)
Vardi, M.Y.: The biichi complementation saga. In: Annual Symposium on Theo-
retical Aspects of Computer Science, pp. 12-22. Springer (2007)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the

chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.


https://doi.org/10.1007/978-3-642-01492-5_6
https://doi.org/10.1007/978-3-642-01492-5_6
https://doi.org/10.1007/11591191_28
http://creativecommons.org/licenses/by/4.0/

®

Check for
updates

Clock Bound Repair for Timed Systems

Martin K61b1!® | Stefan Leue'®™, and Thomas Wies2 ™=

! University of Konstanz, Konstanz, Germany
{Martin.Koelbl, Stefan.Leue}@uni-konstanz.de
2 New York University, New York, NY, USA
wies@cs.nyu.edu

Abstract. We present algorithms and techniques for the repair of timed system
models, given as networks of timed automata (NTA). The repair is based on an
analysis of timed diagnostic traces (TDTs) that are computed by real-time model
checking tools, such as UPPAAL, when they detect the violation of a timed safety
property. We present an encoding of TDTs in linear real arithmetic and use the
MaxSMT capabilities of the SMT solver Z3 to compute possible repairs to clock
bound values that minimize the necessary changes to the automaton. We then
present an admissibility criterion, called functional equivalence, that assesses
whether a proposed repair is admissible in the overall context of the NTA. We
have implemented a proof-of-concept tool called TARTAR for the repair and
admissibility analysis. To illustrate the method, we have considered a number of
case studies taken from the literature and automatically injected changes to clock
bounds to generate faulty mutations. Our technique is able to compute a feasible
repair for 91% of the faults detected by UPPAAL in the generated mutants.

Keywords: Timed automata - Automated repair - Admissibility of repair *
TARTAR tool

1 Introduction

The analysis of system design models using model checking technology is an important
step in the system design process. It enables the automated verification of system prop-
erties against given design models. The automated nature of model checking facilitates
the integration of the verification step into the design process since it requires no further
intervention of the designer once the model has been formulated and the property has
been specified.

Often it is sufficient to abstract from real time aspects when checking system proper-
ties, in particular when the focus is on functional aspects of the system. However, when
non-functional properties, such as response times or the timing of periodic behavior,
play an important role, it is necessary to incorporate real time aspects into the models
and the specification, as well as to use specialized real-time model checking tools, such
as UPPAAL [6], Kronos [31] or opaal [11] during the verification step.

Next to the automatic nature of model checking, the ability to return counterexam-
ples, in real-time model checking often referred to as timed diagnostic traces (TDT), is
© The Author(s) 2019
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a further practical benefit of the use of model checking technology. A TDT describes a
timed sequence of steps that lead the design model from the initial state of the system
into a state violating a real-time property. A TDT neither constitutes a causal explana-
tion of the property violation, nor does it provide hints as to how to correct the model.

In this paper we describe an automated method that computes proposals for possible
repairs of a network of timed automata (NTA) that avoid the violation of a timed safety
property. Consider the TDT depicted as a time annotated sequence diagram [5] in Fig. 1.
This scenario describes a simple message exchange where the process dbServer
sends a message req to process db which, after some processing steps returns a mes-
sage ser to dbServer. Assume a requirement on the system to be that the time from
sending req to receiving ser is not to be more than 4 time units. Assume that the tim-
ing interval annotations on the sequence diagram represent the minimum and maximum
time for the message transmission and processing steps that the NTA, from which the
diagram has been derived, permits. It is then easy to see that it is possible to execute the
system in such a way that this property is violated.

Various changes to the underlying NTA dbServer db
model, depicted in Fig. 2, may avoid this prop-
erty violation. For instance, the maximum time initial reqAwaiting
it takes to transmit the req and ser messages
can be constrained to be at most 1 time unit, reqCreate [1,2]
respectively. Alternatively, it may be possible req()
to avoid the property violation by reducing two reqSent reqRecaived
of the three timings by 0.5 time units. In any rePiocssing [1.1]
case, proposing such changes to the model may ser|
either serve to correct clerical mistakes made serReceiving [1,2]

during the editing of the model, or point to nec-
essary changes in the dimensioning of its time
resources, thus contributing to improved design
space exploration. Fig. 1. TDT represented as a sequence

The repair method described in this paper giagram with timing annotations
relies on an encoding of a TDT as a constraint
system in linear real arithmetic. This encoding provides a symbolic abstract semantics
for the TDT by constraining the sojourn time of the NTA in the locations visited along
the trace. The constraint system is then augmented by auxiliary model variation vari-
ables which represent syntactic changes to the NTA model, for instance the variation
of a location invariant condition or a transition guard. We assert that the thus modi-
fied constraint system implies the non-reachability of a violation. At the same time, we
assert that the model variation variables have a value that implies that no change of the
NTA model will occur, for instance by setting a clock bound variation variable to 0.
This renders the resulting constraint system unsatisfiable.

In order to compute a repair, we derive a partial MaxSMT instance by turning the
constraints that disable any repair into soft constraints. We solve this MaxSMT instance
using the SMT solver Z3 [25]. If the MaxSMT instance admits a solution, the resulting
model provides values of the model variation variables. These values indicate a repair
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of the NTA model which entails that along the sequence of locations represented by the
TDT, the property violation will no longer be reachable.

In a next step it is necessary to check whether the computed repair is an admissi-
ble repair in the context of the full NTA. This is important since the repair was com-
puted locally with respect to only a single given TDT. Thus, it is necessary to define
a notion of admissibility that is reasonable and helpful in this setting. To this end, we
propose the notion of functional equivalence which states that as a result of the com-
puted repair, neither erstwhile existing functional behavior will be purged, nor will new
functional behavior be added. Functional behavior in this sense is represented by lan-
guages accepted by the untimed automata of the unrepaired and the repaired NTAs.
Functional equivalence is then defined as equivalence of the languages accepted by
these automata. We propose a zone-based automaton construction for implementing the
functional equivalence test that is efficient in practice.

We have implemented our proposed method in a proof-of-concept tool called TAR-
TAR!. Our evaluation of TARTAR is based on several non-trivial NTA models taken
from the literature, including the frequently considered Pacemaker model [19]. For each
model, we automatically generate mutants by injecting clock bound variations which we
then model check using UPPAAL and repair using TARTAR. The evaluation shows that
our technique is able to compute an admissible repair for 91% of the detected faults.

Related Work. There are relatively few results available on a formal treatment of TDTs.
The zone based approach to real-time model checking, which relies on a constraint-
based abstraction of the state space, is proposed in [14]. The use of constraint solving
to perform reachability analysis for NTAs is described in [30]. This approach ultimately
leads to the on-the-fly reachability analysis algorithm used in UPPAAL [7]. [12] defines
the notion of a time-concrete UPPAAL counterexample. Work documented in [27]
describes the computation of concrete delays for symbolic TDTs. The above cited
approaches address neither fault analysis nor repair for TDTs. Our use of MaxSMT
solvers for computing minimal repairs is inspired by the use MaxSAT solvers for fault
localization in C programs, which was first explored in the BugAssist tool [20,21]. Our
approach also shares some similarities with syntax-guided synthesis [2,28], which has
also been deployed in the context of program repair [22]. One key difference is how we
determine the admissibility of a repair in the overall system, which takes advantage of
the semantic restrictions imposed by timed automata.

Structure of the Paper. We will introduce the automata and real-time concepts needed
in our analysis in Sect. 2. In Sect. 3 we present the logical formalization of TDTs. The
repair and admissibility analyses are presented in Sects. 4 and 5, respectively. We report
on tool development, experimental evaluation and case studies in Sects. 6 and 7 con-
cludes.

" TARTAR and links to all models used in this paper can be found at URL https://github.com/
sen-uni-kn/tartar.
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2 Preliminaries

The timed automaton model that we use in this paper is adapted from [7]. Given a
set of clocks C, we denote by B(C') the set of all clock constraints over C, which are
conjunctions of atomic clock constraints of the form ¢ ~ n, where ¢ € C, ~€ {<,<
,=,>,>}and n € N. A timed automaton (TA) T is a tuple T = (L,1°,C, X,0,1)
where L is a finite set of locations, (° € L is an initial location, C is a finite set of
clocks, X is a set of action labels, © Cg,, L x B(C) x X x 2¢ x L is a set of actions,
and I : L — B(C) denotes a labeling of locations with clock constraints, referred to
as location invariants. For 0 € © with § = (I, g, a, r,l’) we refer to g as the guard of 6
and to r as its clock resets.

The operational semantics of 7" is given by a timed transition system consisting of
states s = (I, u) where [ is a location and v : C' — R is a clock valuation. The initial
state sg is (¢,ug) where uy maps all clocks to 0. For a clock constraint B we write
u |= B iff B evaluates to true in u. There are two types of transitions. An action tran-
sition models the execution of an action whose guard is satisfied. These transitions are
instantaneous and reset the specified clocks. The passing of time in a location is mod-
eled by delay transitions. Both types of transitions guarantee that location invariants are

satisfied in the pre and post state. Formally, we have (I, u) N (I’ ') iff

— (action transition) t = (I, g,a,7,l') € ©,u = I(l) Ag,u' |= I(I") and for all clocks
ce C,u'(c) =0if ¢ € rand v/ (c) = u(c) otherwise; or
— (delay transition) t € Ry, u = I(l), v E I(l) and v/ = u + t.

Definition 1. A symbolic timed trace (STT) of T is a sequence of actions S = 0y, . ..,

0,,_1. A realization of S is a sequence of delay values g, . . . , 6,, such that there exists
. 5L HL . 5”

states Sq, . .., Sp, Spt1 With 8; —>—> $;11 for all i € [0,n) and 8, — Sp41. We

say that a STT is feasible if it has at least one realization.

Property Specification. We focus on the analysis of timed safety properties, which we
characterize by an invariant formula that has to hold for all reachable states of a TA.
These properties state, for instance, that there are certain locations in which the value of
a clock variable is not above, equal to or below a certain (integer) bound. Formally, let
T = (L,1°,C,X,0,I)beaTA. A timed safety property II is a Boolean combination of
atomic clock constraints and location predicates Q] where [ € L. A location predicate
@I holds in a state (I, u) of T iff I’ = I. We say that a STT .S witnesses a violation of
II in T if there exists a realization of .S whose induced final state does not satisfy I1.
We refer to such an STT as a timed diagnostic trace of T for I1I.

T satisfies II iff all its reachable states satisfy II. This problem can be decided
using model checking tools such as Kronos [31] and UPPAAL [6]. UPPAAL in par-
ticular computes a finite abstraction of the state space of an NTA using a zone graph
construction. Reachability analysis is then performed by an on-the-fly search of the
zone graph. If the property is violated, the tool generates a feasible TDT that witnesses
the violation. The objective of our work is to analyze TDTs and to propose repairs for
the property violation that they represent. We use TDTs generated by the UPPAAL tool
in our implementation, but we maintain that our results can be adapted to any other tool
producing TDTs.
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We further note that UPPAAL takes a network of timed automata (NTA) as input,
which is a CCS [24] style parallel composition of timed automata 7} | ... | T,,. Since
our analysis and repair techniques focus on timing-related errors rather than synchro-
nization errors, we use TAs rather than NTAs in our formalization. However, our imple-
mentation works on NTAs.

Example 1. The running example that we use throughout the paper consists of an NTA
of two timed automata, depicted in Fig.2. As alluded to in the introduction, the TAs
dbServer and db synchronize via the exchange of messages modeled by the pairs of
send and receive actions req! and req?, respectively, ser! and ser?. The trans-
mission time of the reqg message is controlled by the clock variable x and can range
between 1 and 2 time units. This is achieved by the location invariant x<=2 on the
regReceived location in db together with the transition guard x>=1 on the tran-
sition from reqgReceived to regProcessing. A similar mechanism using clock
variable z is used to constrain the timing of the transfer of message ser to be within
1 and 2 time units. The processing time in dbServer is constrained to exactly 1 time
unit by the location invariant y<=1 and the transition guard y>=1. In dbServer, a
transition to location timeout can be triggered when the guard z==2 is satisfied in
location serReceiving. The clock variable x, which is not reset until the next reqg
message is sent, is recording the time that has elapsed since sending req and is used
in location serReceiving in order to verify if more than 4 time units have passed
since reqg was sent. The timed safety property that we will consider for our example
is I = —@dbServer.serReceiving V (z < 4). For the violation of this property,
UPPAAL produces the TDT S = 6 . . . 63 where

0o = ((initial,regAwaiting),d, 7,0, (reqCreate, regAwaiting))

6, = ((regCreate,regAwaiting),?, 7, {z}, (regSent, regReceived))

0> = ((regSent, regReceived), {z > 1}, 7, {y}, (regSent, regProc.))

05 = ((regSent,regProc.),{y > 1},7,{z}, (serReceiving, reqAwait.)).

3 Logical Encoding of Timed Diagnostic Traces

Our analysis relies on a logical encoding of TDTs in the theory of quantifier-free linear
real arithmetic. For the remainder of this paper, we fix a TA T = (L,1°,C, ¥, 0,1)
with a safety property /I and assume that S = 6g,...,60,_1 is an STT of T'. We use
the following notation for our logical encoding where j € [0,n + 1] is a position in a
realization of .S and ¢ € C' is a clock:

— 1; denotes the location of the pre state of §; for j < n and the location of the post
state of 6;_ for j = n.

— ¢; denotes the value of clock variable ¢ when reaching the state at position j.

— 0; denotes the delay of the delay transition leaving the state at position j < n.

— reset; denotes the set of clock variables that are being reset by action 6; for j < n.

— ibounds(c,l) denotes the set of pairs (3, ~) such that the atomic clock constraint
¢ ~ (3 appears in the location invariant I(1).
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— gbounds(c, ) denotes the set of pairs (3, ~) such that the atomic clock constraint
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initial
~
reqCreate <>timeout
req!
x:=0
7521 () reqSent
ser? z=2
N serReceiving
z<=2

(a) Timed Automaton dbServer

reqAwaiting

req?

reqReceived
y>=1
z:=0 x>=1
y:=0
. reqProcessing
y<= 1
(b) Timed Automaton db

Fig. 2. Network of timed automata - running example

¢ ~ (3 appears in the guard of action 6.

To illustrate the use of ibounds, assume location [ to be labeled with invariants
x>2Ax <4 Ay <1, then ibounds(x,l) = {(2,>), (4, <)}. The usage of ghounds

is accordingly.

Definition 2. The timed diagnostic trace constraint system associated with STT S is the
conjunction T of the following constraints:

C()E /\00:0

ceC
jelon]
R = /\ Cj+1 = 0
cEresetj,
D= /\ Cj+1=Cj+5j
céreset;
7= /\ c;j~BANcj+0;~
(B,~)€ibounds(c,l;)
g= cj + 5]' ~ ﬂ

(B,~)€gbounds(c,0;)

L=al, A )\ -al
l?éln

(clock initialization)

(time advancement)

(clock resets)

(sojourn time)

(location invariants)

(transition guards)

(location predicates)
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Let further @ = II[cy+1/c] where II[cp1/c]| is obtained from II by substituting
all occurrences of clocks ¢ € C with ¢, 41. Then the I11-extended TDT constraint system
associated with S is defined as T"" = T N —®.

To illustrate the encoding consider the transition &3 of the TDT in Example 1
corresponding to the transition from state (regSent, regProcessing) to state
(serReceiving, regAwaiting) while resetting clock z in the NTA of Fig. 2. The
encoding for the constraints on the clocks x, y and z is as following: y3 + ds > 1,
z4=0,14 = x3+ dz and y4 = y3 + d3.

Lemma 1. 4§, ...,0% is a realization of an STT S iff there exists a satisfying variable

ren

assignment v for T such that for all j € [0,n], 1(d;) = &5.
Theorem 1. An STT S witnesses a violation of IT in T iff T™ is satisfiable.

4 Repair

We propose a repair technique that analyzes the responsibility of clock bound values
occurring in a single TDT for causing the violation of a specification /7. The analysis
suggests possible syntactic repairs. In a second step we define an admissibility test
that assesses the admissibility of the repair in the context of the complete TA model.
Throughout this section, we assume that .S is a TDT for T and I1.

Clock Bound Variation. We introduce bound variation variables v that stand for correc-
tion values that the repair will add to the clock bounds occurring in location invariants
and transition guards. The values are chosen such that none of the realizations of .S in
the modified automaton still witnesses a violation of I1. This is done by defining a new
constraint system that captures the conditions on the variable v under which the viola-
tion of I7 will not occur in the corresponding trace of the modified automaton. Using
this constraint system, we then define a maximum satisfiability problem whose solution
minimizes the number of changes to 7" that are needed to achieve the repair.

Recall that the clock bounds occurring in location invariants and in transition guards
are represented by the ibounds and gbounds sets defined for the TDT S. Notice that
each clock variable ¢ may be associated with m,.; different clock bounds in the loca-

tion invariant of I, denoted by the set ibounds(c, 1) = {(8", ~S1), ..., (BGL ,~SL )}

Me,1?  Me,l
Similarly, we enumerate the bounds in ghounds(c, ) as ( ;’0, Nz’e). To reduce nota-
tional clutter, we let the meta variable r stand for the pairs of the form ¢, or ¢, 6. We
then introduce bound variation variables v;; describing the possible static variation in
the TA code for the clock bound 3;; and modify the TDT constraint system accordingly.
A variation of the bounds only affects the location invariant constraints Z and the tran-
sition guard constraints G. We thus define an appropriate invariant variation constraint

7" and guard variation constraint G?" that capture the clock bound modifications:

7" = A ¢j ~k (B + o) A s+ 85~k (B + of)
(85 ,~7) Eibounds(c,l;)
G = A ¢+ 05 ~i (B +of)

(By,~7.) Egbounds(c,05)
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We also need constraints ensuring that the modified clock bounds remain positive:

= A Bi+vi =0
(B~ ) Eibounds(c,l;) U gbounds(c,0;)

Putting all of this together we obtain the bound variation TDT constraint system
TV =CoNAARADANIV NGV ANZV AL

which captures all realizations of S in TAs 7" that are obtained from 7' by modifying
the clock bounds 3}, by some semantically consistent variations vy, .

Consider the bound variation for the guard y > 1 of transition ©3 in Example 1. The
modified guard constraint, a conjunct in G?, is y3 + d3 > 1 + vy . The corresponding
non-negativity constraint from 2% is 1 + vj > 0.

Repair by Bound Variation Analysis. The objective of the bound variation analysis is
to provide hints to the system designer regarding which minimal syntactic changes to
the considered model might prevent the violation of property I/. Minimality here is
considered with respect to the number of clock bound values in invariants and guards
that need to be changed.

We implement this analysis by using the bound variation TDT constraint system 7"
to derive an instance of the partial MaxSMT problem whose solutions yield candidate
repairs for the timed automaton 7. The partial MaxSMT problem takes as input a finite
set of assertion formulas belonging to a fixed first-order theory. These assertions are
partitioned into hard and soft assertions. The hard assertions Fp are assumed to hold
and the goal is to find a maximizing subset 7' C Fg of the soft assertions such that
F' U Fy is satisfiable in the given theory.

For our analysis, the hard assertions consist of the conjunction

fbv = (353'5 Cj. Tbv) AN (V(Sj,Cj. Tbv = QS)

Note that the free variables of F2 are exactly the bound variation variables v . Given
a satisfying assignment ¢ for F2, let T, be the timed automaton obtained from 7' by
adding to each clock bound 3}, the according variation value «(v]) and let S, be the
TDT corresponding to S in 7,. Then F2 guarantees that

1. S, is feasible, and
2. S, has no realization that witnesses a violation of IT in T,.

We refer to such an assignment ¢ as a local clock bound repair for T and S. To obtain a
minimal local clock bound repair, we use the soft assertions given by the conjunction

Fo = /\ vy = 0.

(By,,-)Eibounds(c,l;) U gbounds(c,0;)

Clearly F% A F%' is unsatisfiable because 7% A FZ' is equisatisfiable with 7, and
T A —@ is satisfiable by assumption. However, if there exists at least one local clock
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bound repair for 7" and S, then .7-"2,” alone is satisfiable. In this case, the MaxSMT
instance F’ ZV U F gv has at least one solution. Every satisfying assignment of such a
solution corresponds to a local repair that minimizes the number of clock bounds that
need to be changed in 7.

Note that hard and soft assertions remain within a decidable logic. Using an SMT
solver such as Z3, we can enumerate all the optimal solutions for the partial MaxSMT
instance and obtain a minimal local clock bound repair from each of them.

Example 2. We have applied the bound variation repair analysis to the TDT from
Example 1, using TARTAR, which calls Z3. The following repairs were computed:

1. vf ls = _1. This corresponds to a variation of the location invariant

regarding clock z in location 5 of the TDT, corresponding to location
dbServer.serReceiving, to read z < 1 instead of z < 2. This indicates
that the violation of the bound on the total duration of the transaction, as indicated
by a return to the serReceiving location and a value greater than 4 for clock x,
can be avoided by ensuring that the time taken for transmitting the ser message to
the dbServer is constrained to take exactly 1 time unit.

2. A further computed repair is v;’ e — . Interpreting this variation in the context
of Example 1 means that location db . regReceived will be left when the clock
x has value 1. In other words, the transmission of the message req to the db takes
exactly one time unit, not between 1 and 2 time units as in the unrepaired model.

3. Another possible repair implies the modification of two clock bounds. This is no
longer an optimal solution and no further optimal solution exists. Notice that even
non-optimal solutions might provide helpful insight for the designer, for instance if
optimal repairs turn out not to be implementable, inadmissible or leading to a prop-
erty violation. It is therefore meaningful to allow a practical tool implementation to
compute more than just the optimal repairs.

5 Admissibility of Repair

The synthesized repairs that lead to a TA 7, change the original TA 7" in fundamen-
tal ways, both syntactically and semantically. This brings up the question whether the
synthesized repairs are admissible. In fact, one of the key questions is what notion of
admissibility is meaningful in this context.

A timed trace [7] is a sequence of timed actions £ = (¢1,a4), (t2,as2), ... that is
generated by a run of a TA, where ¢; < ¢;1 for all 4 > 1. The timed language for a TA
T is the set of all its timed traces, which we denote by L7 (7). The untimed language
of T consists of words over T”s alphabet X' so that there exists at least one timed trace
of T forming this word. Formally, for a timed trace £ = (t1,a1), (t2, az) . . ., the untime
operator (&) returns an untimed trace £, = ajas.... We define the untimed language
L,(T)ofthe TAT as L,(T) = {p(&) | £ € Lo(T)}.

Let B be a Biichi automaton (BA) [10] over some alphabet X'. We write £(B) C X
for the language accepted by B. Similarly, we denote by L¢(B) C X* the language
accepted by B if it is interpreted as a nondeterministic finite automaton (NFA). Further,
we write pref(L(B)) to denote the set of all finite prefixes of words in £(B).
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For a given NFA or BA M, the closure c1(M) denotes the automaton obtained from
M by turning all of its states into accepting states. We call M closed iff M = c1(M).
Notice that a Biichi automaton accepts a safety language if and only if it is closed [1].

Admissibility Criteria. From a syntactic point of view the repair obtained from a sat-
isfying assignment ¢ of the MaxSMT instance ensures that 7, is a syntactically valid
TA model by, for instance, placing non-negativity constraints on repaired clock bounds.
In case repairs alter right hand sides of clock constraints to rational numbers, this can
easily be fixed by normalizing all clock constraints in the TA.

From a semantic perspective, the impact of the repairs is more profound. Since the
repairs affect time bounds in location invariants and transition guards, as well as clock
resets, the behavior of T, may be fundamentally different from the behavior of 7.

— First, the computed repair for one property IT may render another property I1’” vio-
lated. To check admissibility of the synthesized repair with respect to the set of all
properties I7 in the system specification, a full re-checking of I7 is necessary.

— Second, a repair may have introduced zenoness and timelock [4] into 7). As dis-
cussed in [4], there exists both an over-approximating static test for zenoness as
well as a model checking based precise test for timelocks that can be used to verify
whether the repair is admissible in this regard.

— Third, due to changes in the possible assignment of time values to clocks, reachable
locations in the TA T" may become unreachable in 7,, and vice versa. On the one
hand, this means that some functionalities of the system may no longer be provided
since part of the actions in 7" will no longer be executable in T,, and vice versa.
Further, a reduction in the set of reachable locations in T, compared to 7' may mean
that certain locations with property violations in 71" are no longer reachable in 7},
which implies that certain property violations are masked by a repair instead of
being fixed. On the other hand, the repair leading to locations becoming reachable
in T, that were unreachable in 7" may have the effect that previously unobserved
property violations become visible and that 7, possesses functionality that 7" does
not have, which may or may not be desirable.

It should be pointed out that we assess admissibility of a repair leading to 7, with respect
to a given TA model 7', and not with respect to a correct TA model T* satisfying II.

Functional Equivalence. While various variants of semantic admissibility may be con-
sidered, we are focusing on a notion of admissibility that ensures that a repair does not
unduly change the functional behavior of the modeled system while adhering to the tim-
ing constraints of the repaired system. We refer to this as functional equivalence. The
functional capabilities of a timed system manifest themselves in the sets of action or
transition traces that the system can execute. For TAs T and 7, this means that we need
to consider the languages over the action or transition alphabets that these TAs define.
Considering the timed languages of T and T,, we can state that Lo (T) # Lr(T),)
since the repair forces at least one timed trace to be purged from L7 (7). This means
that equivalence of the timed languages cannot be an admissibility criterion ensuring
functional equivalence. At the other end of the spectrum we may relate the de-timed
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languages of T and 7T,. The de-time operator «(T') is defined such that it omits all tim-
ing constraints and resets from any TA 7. Requiring L(«(T')) = £L(«(T,)) is tempting
since it states that when eliminating all timing related features from 7" and from the
repaired 7, the resulting action languages will be identical.

However, this admissibility criterion would be flawed, since the repair in 7, may
imply that unreachable locations in T" will be reachable in T, and vice versa. This may
have an impact on the untimed languages, and even though L(«(T)) = L(«(T))) it
may be that £,(T") # £,,(T,). To illustrate this point, consider the running example in
Fig. 2 and assume the invariant in location dbServer .reqgReceiving to be mod-
ified from z < 2 to z < 1 in the repaired TA T,. Applying the de-time operator to 7,
implies that the location dbServer . timeout, which is unreachable in 7}, becomes
reachable in the de-timed model. Since dbServer . timeout is reachable in 7T, the
TA T and T, are not functionally equivalent, even though their de-timed languages are
identical. Notice that for the untimed languages £,,(T') # L£,,(7,) holds since no timed
trace in L7 (7,) reaches location timeout, even though such a timed trace exists in
L7(T). In detail, £,,(T") contains the untimed trace ©y0020360, that is missing in
L,,(T;) and where O, is the transition towards the location dbServer. timeout. As
consequence, we resort to considering the untimed languages of 7" and 7, and require
L,(T) = L,(T,). Itis easy to see that L,(T) = L,(T,) = L(a(T)) = L(a(T})). In
other words, the equivalence of the untimed languages ensures functional equivalence.

Admissibility Test. Designing an algorithmic admissibility test for functional equiv-
alence is challenging due to the computational complexity of determining the equiv-
alence of the untimed languages £, (1) and £, (7,). While language equivalence is
decidable for languages defined by Biichi Automata, it is undecidable for timed lan-
guages [3]. For untimed languages, however, this problem is again decidable [3]. The
algorithmic implementation of the test for functional equivalence that we propose pro-
ceeds in two steps.

— First, the untimed languages £, (") and £, (7,) are constructed. This requires an
untime transformation of T' and 7, yielding Biichi automata representing £, (1")
and £,,(T,). While the standard untime transformation for TAs [3] relies on a region
construction, we propose a transformation that relies on a zone construction [14].
This will provide a more succinct representation of the resulting untimed languages
and, hence, a more efficient equivalence test.

— Second, it needs to be determined whether £, (1) = £,,(7,). As we shall see, the
obtained Biichi automata are closed. Hence, we can reduce the equivalence prob-
lem for these w-regular languages to checking equivalence of the regular languages
obtained by taking the finite prefixes of the traces in £,,(7") and £,,(7,). This allows
us to interpret the Biichi automata obtained in the first step as NFAs, for which the
language equivalence check is a standard construction [15].

Automata for Untimed Languages. The construction of an automaton representing an
untimed language, here referred to as an untime construction, has so far been proposed
based on a region abstraction [3]. The region abstraction is known to be relatively inef-
ficient since the number of regions is, among other things, exponential in the number of
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clocks [4]. We therefore propose an untime construction based on the construction of
a zone automaton [14] which in the worst case is of the same complexity as the region
automaton, but on the average is more succinct [7].

Definition 3 (Untimed Biichi Automaton). Assume a TA T and the corresponding
zone automaton [T]z = (Sz,s%, Xz, ©z). We define the untimed Biichi automaton
as the closed BA By = (S,X,—, S0, F) obtained from [T]z such that S = Sz,
Y =Xz \ {6} and Sy = {s%}. For every transition in © 7z with a label a € X we add
UBDSEDSIGED
(1.2)=(1,2")

Rso}. In addition, we add self-transitions (1, z) < (I, z) to every state (I, z) € Sp.

a transition to — created by the rule with 21 = {v+dJv € z,d €

The following observations justify this definition:

— A timed trace of T' may remain forever in the same location after a finite number of
action transitions. In order to enable B to accept this trace, we add a self-transition
labeled with 7 to — for each state s € S in By, and later define s as accepting.
These 7-self-transitions extend every finite timed trace ¢ leading to a state in S to
an infinite trace ¢.7%.

— The construction of the acceptance set F' is more intricate. Convergent traces are
often excluded from consideration in real-time model checking [4]. As a conse-
quence, in the untime construction proposed in [3], only a subset of the states in S
may be included in F'. A repair may render a subgraph of the location graph of T’
that is only reachable by divergent traces, into a subgraph in 7, that is only reach-
able by convergent traces. However, excluding convergent traces is only meaning-
ful when considering unbounded liveness properties, but not when analyzing timed
safety properties, which in effect are safety properties. As argued in [7], unbounded
liveness properties appear to be less important than timed safety properties in timed
systems. This is due to the observation that divergent traces reflect unrealistic behav-
ior in the limit, but finite prefixes of infinite divergent traces, which only need to be
considered for timed safety properties, correspond to realistic behavior. This obser-
vation is also reflected in the way in which, e.g., UPPAAL treats reachability by
convergent traces. In conclusion, this justifies our choice to define the zone automa-
ton in the untime construction as a closed BA, i.e., F = S.

Theorem 2 (Correctness of Untimed Biichi Automaton Construction). For an
untimed Biichi automaton Bt derived from a TA T according to Definition 3 it holds
that L(Br) = L,(T).

Equivalence Check for Untimed Languages. Given that the zone automaton construc-
tion delivers closed BAs we can reduce the admissibility test £,(T") = £,,(T,) defined
over infinite languages to an equivalence test over the finite prefixes of these languages,
represented by interpreting the zone automata as NFAs. The following theorem justifies
this reduction.

Theorem 3 (Language Equivalence of Closed BA). Given closed Biichi automata B
and B', if Li(B) = L¢(B') then L(B) = L(B').
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Discussion. One may want to adapt the admissibility test so that it only considers
divergent traces, e.g., in cases where only unbounded liveness properties need to be
preserved by a repair. This can be accomplished as follows. First, an overapproximat-
ing non-zenoness test [4] can be applied to 7" and 7. If it shows non-zenoness, then
one knows that the respective TA does not include convergent traces. If this test fails,
a more expensive test needs to be developed. It requires a construction of the untimed
Biichi automata using the approach from [3], and subsequently a language equivalence
test of the untimed languages accepted by the untimed BAs using, for instance, the
automata-theoretic constructions proposed in [9].

6 Case Studies and Experimental Evaluation

We have implemented the repair computation and admissibility test in a proof-of-
concept tool called TARTAR. We present the architecture of TARTAR and then evaluate
the proposed method by applying TARTAR to several case studies.

Tool Architecture. The control loop of TARTAR, depicted in Fig. 3, computes repairs
for a given UPPAAL model and a given property I using the following steps:

1. Counterexample Creation. TARTAR calls UPPAAL with parameters to compute and
store a shortest symbolic TDT in XML format, in case I7 is violated.

2. Diagnostic Trace Creation. Parsing the model and the TDT, TARTAR creates F ZV N
F?% as defined in Sect. 4. Z3 can only solve the MaxSMT problem for quantifier-free
linear real arithmetic. Hence, TARTAR first performs a quantifier elimination on the
constraints V4, ¢;. 7% = @ of F2.

3. Repair Computation. Next, TARTAR attempts to compute a repair, by using Z3 to
solve the generated quantifier-free MaxSMT instance. In case no solution is found,
TARTAR terminates. Otherwise, TARTAR returns the repair that has been computed
from the model of the MaxSMT solution.

4. Admissibility Check. Using adapted routines provided by the opaal model
checker [11], TARTAR checks the admissibility of the computed repair. To do so,
TARTAR modifies the constraints of the considered UPPAAL model as indicated
by the computed repair. It calls opaal in order to compute the timed transition sys-
tem (TTS) of the original and the repaired UPPAAL model. TARTAR then checks
whether the two TTS have equivalent untimed languages, in which case the repair
is admissible. This check is implemented using the library AutomataLib included in
the package LearnLib [16],

5. Iteration. TARTAR is designed to enumerate all repairs, starting with the minimal
ones, in an iterative loop. To accomplish this, at the end of each iteration ¢ a new Vf’j_l
is generated by forcing the bound variation variables that were used in the ¢-th repair
to 0. This excludes the repair computed in iteration ¢ from further consideration.
Using Vﬁl’ TARTAR iterates back to Step 3 to compute another repair.
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Evaluation Strategy. The evaluation of our (54t Uppaal model (1 Counterexample Creafion

analysis is based on ideas taken from muta- 7
{ \ 4

tion testing [18]. Mutation testing evaluates (2. Diagnostic Trace Creation )<~

a test set by systematically modifying the , NG ’

program code to be tested and computing 3. Repair Computation \ L5 lt:ration
the ratio of modifications that are detected 0ol el /,\

by the test set. Real-time system models  (@)<  solution? ("4 Admissibility Check

that contain violations of timed safety prop-
erties are not available in significant num-
bers. We therefore need to seed faults in
existing models and check whether those can be found by our automated repair. An
objective of mutation testing is that testing a proportion of the possible modification
yields satisfactory results [18]. In order to evaluate repairs for erroneous clock bounds
in invariants and transition guards we seed modifications to all bounds of clock con-
straints by the amount of {—10,—1,+1,+40.1-M,+M}, where M is the maximal
bound a clock is compared against in a given model. If a thus seeded modification leads
to a syntactically invalid UPPAAL model, then UPPAAL returns an exception and we
ignore this modification. In analogy to mutation testing, we compute the count of TDTs
for which our analysis finds an admissible repair.

Fig. 3. Control loop of TARTAR

Experiments. We have applied this modification seeding strategy to eight UPPAAL
models (see Table 1). Not all of the models that we considered have been published
with a property that can be violated by mutating a clock constraint. For those models, we
suggest a suitable timed safety property specifying an invariant condition. In particular,
we add a property to the Bando [29] model which ensures that, for as long as the sender
is active, its clock never exceeds the value of 28,116 time units. In the FDDI token
ring protocol [29], the property that we use checks whether the first member of the ring
never remains for more than 140 time units in any given state. The Viking model is
taken from the set of test models of opaal [26]. For this model we use a property that
checks whether one of the Viking processes can only enter a safe state during the first
60 time units. Note that all of these properties are satisfied by the unmodified models.

The results of the clock bound repair computed by TARTAR for all considered mod-
els are summarized in Table 1. The seeded modifications are characterized quantita-
tively by the count #Seed of analyzed modified models, the count #7DT of modified
models that return a TDT for the considered property, the maximal time 7p UPPAAL
needs to create a TDT per analyzed model, and the length Len. of the longest TDT
found. For the computation of a repair we give the count #Rep. of all repairs that were
computed, the count #Adm. of computed admissible repairs, the count of TDTs #Sol. for
which an admissible repair was found, the maximal time Ty that the quantifier elimina-
tion required, the average time effort Tk to compute a repair, the standard deviation SDg
for the computation time of a repair, the time effort T, for an admissibility check, the
maximal count of variables #Var, and the maximal count of constraints #Con. used in
Vf}rl. The maximal memory consumption was at most 17MB for the repair analysis and
478MB for the admissibility test. We performed all experiments on a computer with an
17-6700K CPU (4.0GHz), 60 GB of RAM and a Linux operating system.
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We found 60 TDTs by seeding violations of the timed safety property and TARTAR
returned 204 repairs for these TDTs. TARTAR proposed an admissible repair for 55
(91%) TDTs and at least one repair for 57 (95%) TDTs. For 3 out of the total of 14 TDTs
found for the SBR model no repair was computed since the timeout of the quantifier
elimination was reached after 2 minutes. For all other models, no timeout occurred.

Space limitations do not permit us to describe all models and computed repairs
in detail, we therefore focus on the pacemaker case study. One of the modification
increases a location invariant of this model that controls the minimal heart period from
400 to 1,600. The modification allows the pacemaker to delay an induced ventricular
beat for too long so that this violates the property that the time between two ventric-
ular beats of a heart is never longer than the maximal heart period of 1,000. TARTAR
finds three repairs. Two repairs reduce the maximal time delay between two ventricular
or articular heart beats of the patient. The repairs are classified as inadmissible. In the
model context this appears to be reasonable since the repairs would restrict the environ-
ment of the pacemaker, and not the pacemaker itself. The third repair is admissible and
reduces the bound modified during the seeding of bound modifications by 600.5. The
minimal heart period is then below or equal to the maximal heart period of 1, 000.

Result Interpretation. Our repair strategy minimizes the number of repairs but does
not optimize the computed value. For instance, in the pacemaker model the computed
repair of 600.5 would be a correct and admissible repair even if the value was reduced
to 600, which would be the minimal possible repair value.

A comparison of the values T and T reveals that, perhaps unsurprisingly, the
quantifier elimination step is computationally almost an order of magnitude more
expensive than the repair computation. Overall, the computational cost (Tpg + Tx) cor-
relates with the number of variables in the constraint system, which depends in turn on
the length of the TDT and the number of clocks referenced along the TDT. Consider, for
instance, that the pacemaker model has a TDT of maximal length 9 with 116 variables,
and the repair requires 0.193 s and 2.070 MB. On the other hand, the Bando model pro-
duces a longer maximal TDT of length 279 with 1,156 variables and requires 6.555 s
and 16.650 MB. The impact of the number of clock constraints and clock variables on
the computation costs can be seen, for instance, in the data for the pacemaker and FDDI
models. While the pacemaker model has a shorter TDT than the Viking model (9 vs.
18), the constraint counts (294 vs. 140) of the pacemaker model are higher than for

Table 1. Experimental results for clock bound repair computation using TARTAR

Model #Seed | #TDT | Typ Len. | #Rep. | #Adm. | #Sol. | Tog Tg SDr | Tagm # Var. | # Con.
Repaired db Fig.2 | 35 6 0.006s | 4 12 12 6 0.042s | 0.023s | 0.001 | 2.329s | 25 40
CSMA/CD [17] 90 6 0.012s | 2 36 16 6 0.020s | 0.021s | 0.000 | 3.060s | 16 36
Elevator [8] 35 3 0.004s | 1 6 6 3 0.071s | 0.028s | 0.005 | 2.374s | 6 16
Viking 85 3 0.009s | 18 |6 6 3 0.032s | 0.042s | 0.002 | 2.821s | 120 140
Bando [29] 740 12 0.259s | 279 | 26 24 12 17.227s | 6.555s | 1.776 | 4.067s | 1,156 | 2,441
Pacemaker [19] 240 7 0.044s | 9 34 16 7 0.670s | 0.193s | 0.021 | 3.389s | 116 | 294
SBR [23] 65 14 0.066s | 81 42 26 9 20.776s | 2.568s | 0.441 | 34.120s | 256 | 410
FDDI [29] 100 9 0.025s | 5 42 30 9 0.046s | 0.029s | 0.001 | 2.493s | 59 93




94 M. Kolbl et al.

the Viking model, which coincides with a higher computation time (0.193 s vs. 0.042 s)
and a higher memory consumption (2.070 MB vs. 0.910 MB) compared to the Viking
model.

We analyzed for every TDT the relationship between the length of the TDT and the
computation time for a repair (7). = Tpg + Tr), as well as the relationship between #Var
and T’ by estimating Kendall’s tau [13]. Kendall’s tau is a measurement for the ordinal
association between two measured quantities. A correlation is considered significant
if the probability p that there is actually no correlation in a larger data set is below a
certain threshold. The length of a TDT is significantly related (7, = 0.673, p < .001)
to T).. Also #Var is significantly related (7o = 0.759, p < .001) to T... #Var contains
clocks for every step of a TDT, hence the combination of trace length and clock count
tends to correlate higher than the trace length on its own. This supports our conjecture
that the computation time of a repair depends on the trace length and the clock count.

The admissibility test appears to be quite efficient, with a maximum computation
time of 34.120 s for the SBR model, which is one of the more complex models that
were considered. We observed that most models were action-deterministic, which has a
positive influence on the language equivalence test used during admissibility checking.

7 Conclusion

We have presented an approach to derive minimal repairs for timed reachability prop-
erties of TA and NTA models from TDTs in order to facilitate fault localization and
debugging of such models during the design process. Our approach includes a for-
malization of TDTs using linear real arithmetic, a repair strategy based on MaxSMT
solving, the definition of an admissibility criterion and test for the computed repairs,
the development of a prototypical analysis and repair tool, and the application of the
proposed method to a number of case studies of realistic complexity. To the best of our
knowledge, this is the first rigorous treatment of counterexamples in real-time model
checking. We are also not aware of any existing repair approaches for TA or NTA mod-
els. This makes a comparative experimental evaluation impossible. We have nonetheless
observed that our analysis computes a significant number of admissible repairs within
realistic computation time bounds and memory consumption.

Future research will address the development and implementation of repair strate-
gies for further syntactic features in TAs and NTAs, including false comparison opera-
tors in invariants and guards, erroneous clock variable references, superfluous or miss-
ing resets for clocks, and wrong urgent state choices. We will furthermore address the
interplay between different repairs and develop refined strategies to determine their
admissibility. Finally, we plan to extend the approach developed in this paper to derive
criteria for the actual causation of timing property violations in NTA models based on
the counterfactual reasoning paradigm for causation.
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Abstract. This paper proposes a sound procedure to verify properties
of communicating session automata (CSA), i.e., communicating automata
that include multiparty session types. We introduce a new asynchronous
compatibility property for csa, called k-multiparty compatibility (k-MC),
which is a strict superset of the synchronous multiparty compatibility
used in theories and tools based on session types. It is decomposed into
two bounded properties: (i) a condition called k-safety which guaran-
tees that, within the bound, all sent messages can be received and each
automaton can make a move; and (7¢) a condition called k-exhaustivity
which guarantees that all k-reachable send actions can be fired within
the bound. We show that k-exhaustivity implies existential boundedness,
and soundly and completely characterises systems where each automaton
behaves equivalently under bounds greater than or equal to k. We show
that checking k-McC is PSPACE-complete, and demonstrate its scalability
empirically over large systems (using partial order reduction).

1 Introduction

Communicating automata are a Turing-complete model of asynchronous interac-
tions [10] that has become one of the most prominent for studying point-to-point
communications over unbounded first-in-first-out channels. This paper focuses
on a class of communicating automata, called communicating session automata
(csA), which strictly includes automata corresponding to asynchronous multi-
party session types [28]. Session types originated as a typing discipline for the
m-calculus [27,66], where a session type dictates the behaviour of a process wrt.
its communications. Session types and related theories have been applied to the
verification and specification of concurrent and distributed systems through their
integration in several mainstream programming languages, e.g., Haskell [44,55],
Erlang [49], Ff [48], Go [11,37,38,51], Java [30,31,34,65], OCaml [56], C [52],
Python [16,47,50], Rust [32], and Scala [61,62]. Communicating automata and
asynchronous multiparty session types [28] are closely related: the latter can be
seen as a syntactical representation of the former [17] where a sending state cor-
responds to an internal choice and a receiving state to an external choice. This
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correspondence between communicating automata and multiparty session types
has become the foundation of many tools centred on session types, e.g., for gener-
ating communication API from multiparty session (global) types [30,31,48,61],
for detecting deadlocks in message-passing programs [51,67], and for monitor-
ing session-enabled programs [5,16,47,49,50]. These tools rely on a property
called multiparty compatibility [6,18,39], which guarantees that communicating
automata representing session types interact correctly, hence enabling the iden-
tification of correct protocols or the detection of errors in endpoint programs.
Multiparty compatible communicating automata validate two essential require-
ments for session types frameworks: every message that is sent can be eventually
received and each automaton can always eventually make a move. Thus, they sat-
isfy the abstract safety invariant ¢ for session types from [63], a prerequisite for
session type systems to guarantee safety of the typed processes. Unfortunately,
multiparty compatibility suffers from a severe limitation: it requires that each
execution of the system has a synchronous equivalent. Hence, it rules out many
correct systems. Hereafter, we refer to this property as synchronous multiparty
compatibility (SMC) and explain its main limitation with Example 1.

Example 1. The system in Fig. 1 contains an interaction pattern that is not sup-
ported by any definition of sMmc [6,18,39]. It consists of a client (¢), a server (s),
and a logger (1), which communicate via unbounded FIFO channels. Transition
srla denotes that sender puts (asynchronously) message a on channel sr; and
transition sr?a denotes the consumption of a from channel sr by receiver. The
client sends a request and some data in a fire-and-forget fashion, before waiting
for a response from the server. Because of the presence of this simple pattern,
the system cannot be executed synchronously (i.e., with the restriction that a
send action can only be fired when a matching receive is enabled), hence it is
rejected by all definitions of SMC from previous works, even though the system
is safe (all sent messages are received and no automaton gets stuck).

Synchronous multiparty compatibility is reminiscent of a strong form of exis-
tential boundedness. Among the existing sub-classes of communicating automata
(see [46] for a survey), existentially k-bounded communicating automata [22]
stand out because they can be model-checked [8,21] and they restrict the model
in a natural way: any execution can be rescheduled such that the number of
pending messages that can be received is bounded by k. However, existential
boundedness is generally undecidable [22], even for a fixed bound k. This short-
coming makes it impossible to know when theoretical results are applicable.

To address the limitation of sSMC and the shortcoming of existential bound-
edness, we propose a (decidable) sufficient condition for existential boundedness,
called k-exhaustivity, which serves as a basis for a wider notion of new compati-
bility, called k-multiparty compatibility (k-mcC) where k € N+ is a bound on the
number of pending messages in each channel. A system is k-MC when it is (4)
k-exhaustive, i.e., all k-reachable send actions are enabled within the bound, and
(i1) k-safe, i.e., within the bound k, all sent messages can be received and each
automaton can always eventually progress. For example, the system in Fig. 1 is k-
multiparty compatible for any k£ € N.q, hence it does not lead to communication
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Fig. 1. Client-Server-Logger example.

errors, see Theorem 1. The k-MC condition is a natural constraint for real-world
systems. Indeed any finite-state system is k-exhaustive (for k sufficiently large),
while any system that is not k-exhaustive (resp. k-safe) for any k is unlikely
to work correctly. Furthermore, we show that if a system of csaA validates k-
exhaustivity, then each automaton locally behaves equivalently under any bound
greater than or equal to k, a property that we call local bound-agnosticity. We
give a sound and complete characterisation of k-exhaustivity for CSA in terms of
local bound-agnosticity, see Theorem 3. Additionally, we show that the complex-
ity of checking k-MC is PSPACE-complete (i.e., no higher than related algorithms)
and we demonstrate empirically that its cost can be mitigated through (sound
and complete) partial order reduction.

In this paper, we consider communicating session automata (CSA), which
cover the most common form of asynchronous multiparty session types [15] (see
Remark 3), and have been used as a basis to study properties and extensions of
session types [6,7,18,30,31,41,42,47,49,50]. More precisely, CSA are determin-
istic automata, whose every state is either sending (internal choice), receiving
(external choice), or final. We focus on CSA that preserve the intent of internal
and external choices from session types. In these CSA, whenever an automaton
is in a sending state, it can fire any transition, no matter whether channels are
bounded; when it is in a receiving state then at most one action must be enabled.

Synopsis. In Sect.2, we give the necessary background on communicating
automata and their properties, and introduce the notions of output/input bound
independence which guarantee that internal/external choices are preserved in
bounded semantics. In Sect. 3, we introduce the definition of k-multiparty com-
patibility (k-mMcC) and show that k-MC systems are safe for systems which vali-
date the bound independence properties. In Sect. 4, we formally relate existen-
tial boundedness [22,35], synchronisability [9], and k-exhaustivity. In Sect. 5 we
present an implementation (using partial order reduction) and an experimental
evaluation of our theory. We discuss related works in Sect.6 and conclude in
Sect. 7.

See [43] for a full version of this paper (including proofs and additional exam-
ples). Our implementation and benchmark data are available online [33].

2 Communicating Automata and Bound Independence

This section introduces notations and definitions of communicating automata
(following [12,39]), as well as the notion of output (resp. input) bound indepen-
dence which enforces the intent of internal (resp. external) choice in CSA.
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Fix a finite set P of participants (ranged over by p, g, r, s, etc.) and a
finite alphabet . The set of channels is C < {ra | p,a € Pandp # q},
AL e x {1,7} x X is the set of actions (ranged over by ¢), X* (resp. A*) is the
set of finite words on X' (resp. A). Let w range over X, and ¢, ¢ range over A*.
Also, € (¢ ¥ U A) is the empty word, |w| denotes the length of w, and w-w’ is
the concatenation of w and w’ (these notations are overloaded for words in A*).

Definition 1 (Communicating automaton). A communicating automaton
is a finite transition system given by a triple M = (Q, qo,d) where Q is a finite
set of states, qo € Q is the initial state, and § < QxAXQ is a set of transitions.

The transitions of a communicating automaton are labelled by actions in A of
the form sr!la, representing the emission of message a from participant s to r, or
sr?a representing the reception of a by r. Define subj(pqla) = subj(qp?a) = p,
obj(pqla) = obj(qp?a) = q, and chan(pqla) = chan(pq?a) = pq. The projection
of £ onto p is defined as m,(¢) = £ if subj({) = p and 7,({) = € otherwise. Let f
range over {!,?}, we define: 7l (pqt a) = a and W;;(SI‘T a) = € if either pq # sr
or t # 1'. We extend these definitions to sequences of actions in the natural way.

A state g € @ with no outgoing transition is final; ¢ is sending (resp. receiv-
ing) if it is not final and all its outgoing transitions are labelled by send
(resp. receive) actions, and ¢ is mized otherwise. M = (Q,qo,9) is deter-
ministic if Y(q,4,q),(¢,¢',¢") € 6 : £ =V = ¢ = ¢" M = (Q,q,9)
is send (resp. receive) directed if for all sending (resp. receiving) ¢ € @ and
(¢,4,4),(q,0,q") € § : 0bj(£) = obj(¢'). M is directed if it is send and receive
directed.

Remark 1. In this paper, we consider only deterministic communicating
automata without mixed states, and call them Communicating Session
Automata (CSA). We discuss possible extensions of our results beyond this class
in Sect. 7.

Definition 2 (System). Given a communicating automaton My = (Qp, gop, 0p)
for each p € P, the tuple S = (Mpy)pep is a system. A configuration of S is a
pair s = (q;w) where ¢ = (gp)pep with gy € Qp and where w = (Wpq)pgec
with wpq € X*; component q is the control state and g, € Qp is the local state of
automaton My. The initial configuration of S is so = (qo; €) where go = (qop )pep
and we write € for the |C|-tuple (e, ..., €).

Hereafter, we fix a communicating session automaton M, = (Qp, gop, 0p) for
each p € P and let S = (My)pep be the corresponding system whose initial
configuration is sq. For each p € P, we assume that V(q, 4, ¢') € 0p : subj(¢) = p.
We assume that the components of a configuration are named consistently, e.g.,
for s’ = (q’;w’), we implicitly assume that ¢’ = (g, )pep and w’ = (wy,)pgec-

Definition 3 (Reachable configuration). Configuration s’ = (q';w') is

reachable from configuration s = (g;w) by firing transition ¢, written s L
(or s — s' when ¢ is not relevant), if there are s,r € P and a € X such that
either:
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1. (a) £ = srla and (gs,{,qy) € ds, (b) @, = gp for allp # s, (c) Wi, = wer-a
and w;q = wpq for all pq # sr; or

2. (a) £ =sr?a and (g, !, qy) € 0r, (b) @, = qp for allp # 1, (c) wWer = @ wy,,
and wyy = Wpq for all pq # sr.

Remark 2. Hereafter, we assume that any bound k is finite and k € N..

We write —* for the reflexive and transitive closure of —. Configuration

(g;w) is k-bounded if Vpq € C : |wpq| < k. We write s; REEN Sp+41 When

¢ Ly ;
§1 —> 89+ 8, — Spi1, for some sa,...,s, (with n > 0); and say that the

execution 1 - - - £y, is k-bounded from s1 if V1 < i < n+1 : s; is k-bounded. Given
pe A", we write p & ¢ iff ¢ = ¢o-£-¢p1 = subj(f) # p. We write s ik s’
if s’ is reachable with a k-bounded execution ¢ from s. The set of reachable
configurations of S is RS(S) = {s | so —*s}. The k-reachability set of S is
the largest subset RS (S) of RS(S) within which each configuration s can be
reached by a k-bounded execution from s.

Definition 4 streamlines notions of safety from previous works [6,12,18,39]
(absence of deadlocks, orphan messages, and unspecified receptions).

Definition 4 (k-Safety). S is k-safe if the following holds ¥(q;w) € RSy(S):
(ER’) que C! iprq =a- w/, then (q,w) _)k* _)pq?a k-

*

(PG) Vp € P, if qp is receiving, then (q;w) —y qp—?a>k forqe P and a e X.

We say that S is safe if it validates the unbounded version of k-safety (co-safe).

Property (ER), called eventual reception, requires that any sent message can
always eventually be received (i.e., if a is the head of a queue then there must
be an execution that consumes a), and Property (PG), called progress, requires
that any automaton in a receiving state can eventually make a move (i.e., it can
always eventually receive an exzpected message).

We say that a configuration s is stable iff s = (g;e€), i.e., all its queues
are empty. Next, we define the stable property for systems of communicating
automata, following the definition from [18].

Definition 5 (Stable). S has the stable property (SP) if Vs € RS(S) : 3(q;€) €
RS(S) :s —=*(q;e€).

A system has the stable property if it is possible to reach a stable config-
uration from any reachable configuration. This property is called deadlock-free
in [22]. The stable property implies the eventual reception property, but not
safety (e.g., an automaton may be waiting for an input in a stable configuration,
see Example 2), and safety does not imply the stable property, see Example 4.

Example 2. The following system has the stable property, but it is not safe.

pala | pald Mq: pa?a | pq?h grle M, © ) ar’e
o—O———>0 o o 5——0

M :
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Next, we define two properties related to bound independence. They specify
classes of csA whose branching behaviours are not affected by channel bounds.

Definition 6 (k-oBI). S is k-output bound independent (k-OBI), if Vs =

q;w) € RSi(S) and Vpe P, if s &)k, then (g, prlb, q.) € 5, : pr!b .
P P p:S 7

pqlaz pqla; i prlec qp?b pa’as pq?azirqﬂi qp!b !
M, : TPT!L’ qu!ul My : jrq?d qu?al M; - fpr?c
fq_p'?b qp?z | palaz qp!b aplz | pq?az irq!d
oo paly o«—0 o= pa?y 0«—0

Fig. 2. Example of a non-1BI and non-safe system.

Definition 7 (k-I1BI). S is k-input bound independent (k-1BI), if Vs = (q; w) €
RSk(S) andVpe P, if s qp—?a>k, thenVle A:s Sy A subj(¢) = p = { = qp?a.

If S is k-OBI, then any automaton that reaches a sending state is able to
fire any of its available transitions, i.e., sending states model internal choices
which are not constrained by bounds greater than or equal to k. Note that the
unbounded version of k-OBI (k = o0) is trivially satisfied for any system due to
unbounded asynchrony. If S is k-1BI, then any automaton that reaches a receiving
state is able to fire at most one transition, i.e., receiving states model external
choices where the behaviour of the receiving automaton is controlled exclusively
by its environment. We write 1BI for the unbounded version of k-1BI (k = o).

Checking the IBI property is generally undecidable. However, systems con-
sisting of (send and receive) directed automata are trivially k-I1BI and k-OBI for
all k, this subclass of cSA was referred to as basic in [18]. We introduce larger
decidable approximations of IBI with Definitions 10 and 11.

Proposition 1. (1) If S is send directed, then S is k-0BI for all k € N-g. (2) If
S is receive directed, then S is IBI (and k-IBI for all k € Nog).

Remark 3. CSA validating k-OBI and 1BI strictly include the most common forms
of asynchronous multiparty session types, e.g., the directed csA of [18], and sys-
tems obtained by projecting Scribble specifications (global types) which need to
be receive directed (this is called “consistent external choice subjects” in [31]) and
which validate 1-OBI by construction since they are projections of synchronous
specifications where choices must be located at a unique sender.

3 Bounded Compatibility for csa

In this section, we introduce k-multiparty compatibility (k-MC) and study its
properties wrt. Safety of communicating session automata (CsA) which are k-OBI
and 1BI. Then, we soundly and completely characterise k-exhaustivity in terms
of local bound-agnosticity, a property which guarantees that communicating
automata behave equivalently under any bound greater than or equal to k.
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3.1 Multiparty Compatibility

The definition of k-Mc is divided in two parts: (i) k-ezhaustivity guarantees that
the set of k-reachable configurations contains enough information to make a
sound decision wrt. safety of the system; and (i7) k-safety (Definition 4) guaran-
tees that a subset of all possible executions is free of any communication errors.
Next, we define k-exhaustivity, then k-multiparty compatibility. Intuitively, a
system is k-exhaustive if for all k-reachable configurations, whenever a send
action is enabled, then it can be fired within a k-bounded execution.

pala qp!b , qp!b  qp!b
M,: My: Ny: N
qp?bh pala pa’a qp!b pa’a pa’a pa’a pa’a

Fig. 3. (M, M) is non-exhaustive, (Mp, Ng) is 1-exhaustive, (M, Ny) is 2-exhaustive.

Definition 8 (k-Exhaustivity). S is k-exhaustive if V(q;w) € RSk(S) and
Vp € P, if ¢ is sending, then V(qp,é,ql’)) €dp:dpe A% : (q;w) ﬂkﬁk AP ¢ o.

Definition 9 (k-Multiparty compatibility). S is k-multiparty compatible
(k-McC) if it is k-safe and k-exhaustive.

Definition 9 is a natural extension of the definitions of synchronous multi-
party compatibility given in [18, Definition 4.2] and [6, Definition 4|. The com-
mon key requirements are that every send action must be matched by a receive
action (i.e., send actions are universally quantified), while at least one receive
action must find a matching send action (i.e., receive actions are existentially
quantified). Here, the universal check on send actions is done via the eventual
reception property (ER) and the k-exhaustivity condition; while the existential
check on receive actions is dealt with by the progress property (PG).

Whenever systems are k-OBI and IBI, then k-exhaustivity implies that k-
bounded executions are sufficient to make a sound decision wrt. safety. This is
not necessarily the case for systems outside of this class, see Examples 3 and 5.

Example 3. The system (M, Mg, M;) in Fig.2 is k-0BI for any k, but not 1BI
(it is 1-1BI but not k-1BI for any k > 2). When executing with a bound strictly
greater than 1, there is a configuration where Mj is in its initial state and both
its receive transitions are enabled. The system is 1-safe and 1-exhaustive (hence
1-MC) but it is not 2-exhaustive nor 2-safe. By constraining the automata to
execute with a channel bound of 1, the left branch of M is prevented to execute
together with the right branch of M. Thus, the fact that the y messages are not
received in this case remains invisible in 1-bounded executions. This example can
be easily extended so that it is n-exhaustive (resp. safe) but not n+1-exhaustive
(resp. safe) by sending/receiving n+1 a; messages.
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Example 4. The system in Fig. 1 is directed and 1-MC. The system (Mp, My) in
Fig.3 is safe but not k-McC for any finite £ € N.y. Indeed, for any execution
of this system, at least one of the queues grows arbitrarily large. The system
(Mp, Nq) is 1-MC while the system (My, Ng) is not 1-MC but it is 2-MC.

>
pslz qu!y ps??i
MP : prlw palv | prlu ]\/[q : s ° rs?b
© \ © 1 © rs?a
palv  pslz

Fig. 4. Example of a system which is not 1-0BI.

Ezample 5. The system in Fig. 4 (without the dotted transition) is 1-Mc, but not
2-safe; it is not 1-OBI but it is 2-0BI. In 1-bounded executions, M, can execute
rs!b-rplz, but it cannot fire rs!b-rsla (queue rs is full), which violates the
1-0BI property. The system with the dotted transition is not 1-0BI, but it is
2-0BI and k-MC for any k > 1. Both systems are receive directed, hence IBI.

Theorem 1. If S is k-OBI, 1BI, and k-MC, then it is safe.

Remark 4. It is undecidable whether there exists a bound k for which an arbi-
trary system is k-MC. This is a consequence of the Turing completeness of com-
municating (session) automata [10,20,42].

Although the IBI property is generally undecidable, it is possible to identify
sound approximations, as we show below. We adapt the dependency relation
from [39] and say that action ¢’ depends on £ from s = (q; w), written s - £ < ¢,
iff subj(€) = subj(l’) v (chan(f) = chan(l') A Wepan(ey = €). Action ¢’ depends
on ¢ in ¢ from s, written s - ¢ <4 ¢, if the following holds:

(sHL<l'AsEU" <pl)vsHL<yull ifp=1" 1

sl <yl —
¢ {s 4 otherwise

Definition 10. S is k-chained input bound independent (k-CIBI) if Vs =

(g;w) € RSK(S) and Yp € P, if s qp—?anc s', then ¥(qp,sp?b,q,) € 0p : s #
q = (s ﬂk) AnNVpeAr: s ﬂkﬂk => st qp’a <4 splb).
Definition 11. S is k-strong input bound independent (k-SIBI) if Vs = (q; w) €

RSk(S) and Vp € P, if s qp—?a>k s, then V(qp,sp?b,qy) € & 1 8 # @ =

sp?b ’ « splb
(s — v =" /).
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Definition 10 requires that whenever p can fire a receive action, at most
one of its receive actions is enabled at s, and no other receive transition from
¢p will be enabled until p has made a move. This is due to the existence of a
dependency chain between the reception of a message (qp?a) and the matching
send of another possible reception (sp!b). Property k-siBI (Definition 11) is a
stronger version of k-CIBI, which can be checked more efficiently.

Lemma 1. If S is k-OBI, k-CIBI (resp. k-SIB1) and k-exhaustive, then it is IBI.

The decidability of k-OBI, k-1BI, k-SIBI, k-CIBI, and k-MC is straightforward
since both RSy (S) (which has an exponential number of states wrt. k) and —y,
are finite, given a finite k. Theorem 2 states the space complexity of the proce-
dures, except for k-CIBI for which a complexity class is yet to be determined. We
show that the properties are PSPACE by reducing to an instance of the reacha-
bility problem over a transition system built following the construction of Bollig
et al. [8, Theorem 6.3]. The rest of the proof follows from similar arguments in
Genest et al. [22, Proposition 5.5] and Bouajjani et al. [9, Theorem 3].

Theorem 2. The problems of checking the k-OBI, k-1BI, k-SIBI, k-safety, and
k-exhaustivity properties are all decidable and PSPACE-complete (with k € N-g
given in unary). The problem of checking the k-CIBI property is decidable.

3.2 Local Bound-Agnosticity

We introduce local bound-agnosticity and show that it fully characterises k-
exhaustive systems. Local bound-agnosticity guarantees that each communicat-
ing automaton behave in the same manner for any bound greater than or equal to
some k. Therefore such systems may be executed transparently under a bounded
semantics (a communication model available in Go and Rust).

Definition 12 (Transition system). The k-bounded transition system of S is
the labelled transition system (LTS) TS (S) = (N, so, A) such that N = RS (S),
So 18 the initial configuration of S, A € NxAxN is the transition relation, and

(s,4,8") € Aif and only if s ik s’

Definition 13 (Projection). Let 7 be an LTS over A. The projection of T

onto p, written m5(7T ), is obtained by replacing each label £ in T by m,({).

Recall that the projection of action ¢, written ﬁp(ﬁ), is defined in Sect. 2.
The automaton 75 (T'Sx(S)) is essentially the local behaviour of participant p
within the transition system 7Sj(S). When each automaton in a system S
behaves equivalently for any bound greater than or equal to some k, we say
that S is locally bound-agnostic. Formally, S is locally bound-agnostic for k
when 75 (7S (S5)) and 75( 75, (S)) are weakly bisimilar (=) for each participant
p and any n > k. For k-OBI and IBI systems, local bound-agnosticity is a nec-
essary and sufficient condition for k-exhaustivity, as stated in Theorem 3 and
Corollary 1.
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Theorem 3. Let S be a system.

(1) If 3k e Nog : Vp € P mp(TS1(9)) = mg(TSk41(5)), then S is k-evhaustive.
(2) If S is k-0BI, 1BI, and k-evhaustive, then Vp € P : mg(TSk(S5))~
(TS k11(5)).

Corollary 1. Let S be k-OBI and 1B s.t. Vp € P : (TS (5)) = w5 (TSk+1(5)),
then S is locally bound-agnostic for k.

Theorem 3 (1) is reminiscent of the (PSPACE-complete) checking procedure
for existentially bounded systems with the stable property [22] (an undecidable
property). Recall that k-exhaustivity is not sufficient to guarantee safety, see
Examples 3 and 5. We give an effective procedure (based on partial order reduc-
tion) to check k-exhaustivity and related properties in [43].

k-oBI and 1B1 Communicating Session Automata
' 3S-k-bounded (Def. 16)
3-k-bounded (Def. 15)

(@ k-synchronisable (Def. 17)

k-exhaustive (Def. 8)]

'Eventual reception (Def. 4 (1))

'Stable (Def. 5) @

safe@eL ) @ ® | O® ”

[ smc (18] | k-Mc (Def. 9)

Fig. 5. Relations between k-exhaustivity, existential k-boundedness, and k-synchronis-
ability in k-oBI and 1BI csA (the circled numbers refer to Table 1).

4 Existentially Bounded and Synchronisable Automata

4.1 Kuske and Muscholl’s Existential Boundedness

Existentially bounded communicating automata [21,22,35] are a class of com-
municating automata whose executions can always be scheduled in such a way
that the number of pending messages is bounded by a given value. Traditionally,
existentially bounded communicating automata are defined on communicating
automata that feature (local) accepting states and in terms of accepting runs.
An accepting run is an execution (starting from sg) which terminates in a config-
uration (g;w) where each ¢, is a local accepting state. In our setting, we simply
consider that every local state gp is an accepting state, hence any execution ¢
starting from sg is an accepting run. We first study existential boundedness as
defined in [35] as it matches more closely k-exhaustivity, we study the “classical”
definition of existential boundedness [22] in Sect. 4.2.

Following [35], we say that an execution ¢ € A* is valid if for any prefix
of ¢ and any channel pq € C, we have that w;q(w) is a prefix of ’ﬂ'l!)q(l/J), ie., an
execution is valid if it models the FIFO semantics of communicating automata.
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Definition 14 (Causal equivalence [35]). Given ¢, € A*, we define: ¢ <1
iff ¢ and ¢ are valid ezecutions and Vp € P : m,(¢) = m,(¥). We write [¢].. for
the equivalence class of ¢ wrt. <.

Definition 15 (Existential boundedness [35]). We say that a valid execu-
tion ¢ is k-match-bounded if, for every prefix ¢ of ¢ the difference between the
number of matched events of type pq! and those of type pq? is bounded by k,
i, min{ g (6)], [w2q ()]} ~ Iy (0)] < k.

Write A*|i for the set of k-match-bounded words. An execution ¢ is existentially
k-bounded if [p]o N A*|r # @. A system S is existentially k-bounded, written 3-
k-bounded, if each execution in {¢ | Is: sg—s} is existentially k-bounded.

Example 6. Consider Fig.3. (M, My) is not existentially k-bounded, for any k:
at least one of the queues must grow infinitely for the system to progress. Systems
(Mp, Nq) and (M, N;) are existentially bounded since any of their executions
can be scheduled to an <-equivalent execution which is 2-match-bounded.

The relationship between k-exhaustivity and existential boundedness is
stated in Theorem 4 and illustrated in Fig.5 for k-OBI and IBI CSA, where SMC
refers to synchronous multiparty compatibility [18, Definition 4.2]. The circled
numbers in the figure refer to key examples summarised in Table 1. The strict
inclusion of k-exhaustivity in existential k-boundedness is due to systems that
do not have the eventual reception property, see Example 7.

Ezxample 7. The system below is 3-1-bounded but is not k-exhaustive for any k.

srla
Mp Lo sp?c Ms : ﬁOOO Mr P o> srla
sp!b

For any k, the channel sp eventually gets full and the send action sp!b can no
longer be fired; hence it does not satisfy k-exhaustivity. Note that each execution
can be reordered into a 1-match-bounded execution (the b’s are never matched).

Theorem 4. (1) If S is k-OBI, 1BI, and k-ezhaustive, then it is 3-k-bounded.
(2) If S is 3-k-bounded and satisfies eventual reception, then it is k-exhaustive.

4.2 Existentially Stable Bounded Communicating Automata

The “classical” definition of existentially bounded communicating automata as
found in [22] differs slightly from Definition 15, as it relies on a different notion
of accepting runs, see [22, page 4]. Assuming that all local states are accepting,
we adapt their definition as follows: a stable accepting run is an execution ¢
starting from sy which terminates in a stable configuration.

Definition 16 (Existential stable boundedness [22]). A system S is exis-
tentially stable k-bounded, written 3S-k-bounded, if for each execution ¢ in

{é | I(g;€) € RS(S) : 5o 2, (g;€)} there is ¥ such that sg Yo with .



108 J. Lange and N. Yoshida

A system is existentially stable k-bounded if each of its executions leading to
a stable configuration can be re-ordered into a k-bounded execution (from sg).

Theorem 5. (1) If S is existentially k-bounded, then it is existentially stable
k-bounded. (2) If S is existentially stable k-bounded and has the stable property,
then it is existentially k-bounded.

We illustrate the relationship between existentially stable bounded commu-
nicating automata and the other classes in Fig.5. The example below further
illustrates the strictness of the inclusions, see Table 1 for a summary.

Ezample 8. Consider the systems in Fig.3. (M, My) and (My, Ng) are (triv-
ially) existentially stable 1-bounded since none of their (non-empty) executions
terminate in a stable configuration. The system (M, Ng) is existentially stable
2-bounded since each of its executions can be re-ordered into a 2-bounded one.
The system in Example 7 is (trivially) 3S-1-bounded: none of its (non-empty)
executions terminate in a stable configuration (the b’s are never received).

Theorem 6. Let S be an 3(S)-k-bounded system with the stable property, then
it is k-exhaustive.

Table 1. Properties for key examples, where direct. stands for directed, OBI for k-OBI,
siBl for k-SIBI, ER for eventual reception property, sp for stable property, exh. for k-
exhaustive, 3(S)-b for 3(S)-bounded, and syn. for n-synchronisable (for some n € N>g).

#|System Ref. k |direct. oBI1|siBI|safe ER |sP |exh.|3S-b|3-b|syn.
1 (M., Ms, M) Figure 1 |1 |yes |yes|yes|yes|yes|yes|yes |yes |yes|yes
2 |(Ms, My, M) Example 2/1 |yes |yes|yes|no |yes|yes|yes |yes |yes|yes
3 |(My, My, M) Figure 2 |> 2/no yes/no no |no |no no |yes |yes/no
4 |(Mp, My) Figure 3 |any|yes |yes|yes|yes|yesno [no |yes |no no
5 |(Mp, Ny) Figure 3 |2 |yes |yes|yes|yes|yesno |yes yes |yes|no
6 |(My, My, Mz, M) Figure 4 |2 |no yes|yes|yes|yesno |yes yes |yesno
7 (Mg, Mx, My) Example 7|any yes |yes|yesno no |no no |yes yes|yes
8 |(Mp, My) Example 9]1 |yes |yes|yes|yes |yes|yes|yes yes |yes|no

4.3 Synchronisable Communicating Session Automata

In this section, we study the relationship between synchronisability [9] and k-
exhaustivity via existential boundedness. Informally, communicating automata
are synchronisable if each of their executions can be scheduled in such a way
that it consists of sequences of “exchange phases”, where each phase consists of
a bounded number of send actions, followed by a sequence of receive actions.
The original definition of k-synchronisable systems [9, Definition 1] is based on
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communicating automata with mailbor semantics, i.e., each automaton has one
input queue. Here, we adapt the definition so that it matches our point-to-point
semantics. We write A, for 4 n (C x {!} x X), and A7 for An (C x {7} x X).

Definition 17 (Synchronisability). A wvalid execution ¢ = ¢1 - ¢y, is a k-
exchange if and only if: (1) VI <i<n:¢; € Al - A5 A |di] < 2k; and
(2)Vpa e C: V1 <i<n:my(di) # miy(d) = Vi<j<n:ml(¢;)=e

We write A* || for the set of executions that are k-exchanges and say that
an execution ¢ is k-synchronisable if [p]e N A* || # &. A system S is k-
synchronisable if each execution in {¢ | Is: so—s} is k-synchronisable.

Table 2. Experimental evaluation. |P| is the number of participants, k is the bound,
|RTS| is the number of transitions in the reduced TSk (S) (see [43]), direct. stands for
directed, Time is the time taken to check all the properties shown in this table, and
aMC is yes if the system is generalised multiparty compatible [39].

Example |P] |RTS| | direct. | k-oBI | k-c1BI | k-McC | Time | GMC

Client-Server-Logger 11 yes yes |yes yes | 0.04s|no

4 Player game' [39]
Bargain [39]

Filter collaboration [68]
Alternating bit™ [59]
TPMContract v21 [25]
Sanitary agency' [60]
Logistict [54]

Cloud system v4 [24]
Commit protocol [9]
Elevator [9]
Elevator-dashed’ [9]
Elevator-directed! [9]
Dev system [58]
Fibonacci [48]
SaP-Negot. [48,53]

20 no yes |yes yes |0.05s|yes

8 yes yes |yes yes |0.03s|yes

10 yes yes |yes yes |0.03s yes

8 yes yes |yes yes |0.04s no

14 yes yes |yes yes |0.04s|yes

34 yes yes |yes yes |0.07s|yes

26 yes yes |yes yes |0.05s yes

16 no yes |yes yes |0.04s|yes

12 yes yes |yes yes |0.03s|yes

72 no yes |no yes |0.14s no

80 no yes |no yes |0.16s no

41 yes yes |yes yes |0.07s|yes

20 yes yes |yes yes |0.05s no

6 yes yes |yes yes |0.03s|yes

18 yes yes |yes yes |0.04s | yes

SH [48] 30 |yes yes |yes |yes |0.06s|yes
Travel agency [48,64] 21 |yes |yes |yes |yes |0.05s|yes
HTTP [29,48| 48 |yes |yes |yes |yes |0.07s|yes
sMTP [30,48] 108 | yes yes |yes |yes |0.08s|yes

gen_server (buggy) [67] 56 | no no yes |no |0.03s|no

gen_server (fixed) [67]
Double buffering [45]

45 no yes |yes yes |0.03s|yes

W W W NN W W[ W UU R R R RN NN W s W
R I R R e = T e e T e e e N B B S B N B S B B e B B e e = I

16 yes yes |yes yes |0.0ls no
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Condition (1) says that execution ¢ should be a sequence of an arbitrary
number of send-receive phases, where each phase consists of at most 2k actions.
Condition (2) says that if a message is not received in the phase in which it is
sent, then it cannot be received in ¢. Observe that the bound k is on the number
of actions (over possibly different channels) in a phase rather than the number
of pending messages in a given channel.

Ezample 9. The system below (left) is 1-McC and 3(S)-1-bounded, but it is not
k-synchronisable for any k. The subsequences of send-receive actions in the <-
equivalent executions below are highlighted (right).

My : pala gp?c palb qp7do ¢1 =pqla-qplc-qp?c-qp!d-pq?a-pq!b-qp?d-pq?b
—>0——>0——>0—>0—> i 1L 1 f

My : aplc qp!d pa?a pa?b | @2 = Ppqla-qplc-qp!d-qp?c-pqla-pqlb-qp?d-pq?h
>O- >0 >0 >0 >0 L ] L 1

Execution ¢; is 1-bounded for sg, but it is not a k-exchange since, e.g., a is
received outside of the phase where it is sent. In ¢2, message d is received outside
of its sending phase. In the terminology of [9], this system is not k-synchronisable
because there is a “receive-send dependency” between the exchange of message
c and b, i.e., p must receive ¢ before it sends b. Hence, there is no k-exchange
that is <-equivalent to ¢; and ¢o.

Theorem 7. (1) If S is k-synchronisable, then it is 3-k-bounded. (2) If S is k-
synchronisable and has the eventual reception property, then it is k-exhaustive.

Figure 5 and Table 1 summarise the results of Sect. 4 wrt. k-OBI and IBI CSA.
We note that any finite-state system is k-exhaustive (and 3(S)-k-bounded) for
sufficiently large k, while this does not hold for synchronisability, see Example 9.

5 Experimental Evaluation

We have implemented our theory in a tool [33] which takes two inputs: (i) a
system of communicating automata and (i7) a bound MAX. The tool iteratively
checks whether the system validates the premises of Theorem 1, until it succeeds
or reaches £ = MAX. We note that the k-OBI and IBI conditions are required
for our soundness result (Theorem 1), but are orthogonal for checking k-McC.
Each condition is checked on a reduced bounded transition system, called
RTS(S). Each verification procedure for these conditions is implemented in
Haskell using a simple (depth-first-search based) reachability check on the paths
of RTS(S). We give an (optimal) partial order reduction algorithm to construct
RTS(S) in [43] and show that it preserves our properties.

We have tested our tool on 20 examples taken from the literature, which are
reported in Table 2. The table shows that the tool terminates virtually instan-
taneously on all examples. The table suggests that many systems are indeed
k-MC and most can be easily adapted to validate bound independence. The last
column refers to the GMC condition, a form of synchronous multiparty compat-
ibility (sMc) introduced in [39]. The examples marked with T have been slightly
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modified to make them CSA that validate k-OBI and IBI. For instance, we take
only one of the possible interleavings between mixed actions to remove mixed
states (taking send action before receive action to preserve safety), see [43].

We have assessed the scalability of our approach with automatically gener-
ated examples, which we report in Fig. 6. Each system considered in these bench-
marks consists of 2m (directed) csa for some m > 1 such that S = (My,)1<i<om,
and each automaton My, is of the form (when 7 is odd):

piPi+1la; piPit+1lar  pit1Pi?a; Pi+1Pi?a;
M, : —~o<_ o 3 30 o T30
PiPitilan PiPit1!an  Pit1Pi?an Pi+1Pi?an
k times k times

Each M, sends k messages to participant p;y1, then receives £ messages from

pi+1- Each message is taken from an alphabet {a;,..., a,} (n > 1). My, has the
same structure when i is even, but interacts with p;_; instead. Observe that any
system constructed in this way is k-MC for any k > 1, n > 1, and m > 1. The
shape of these systems allows us to assess how our approach fares in the worst
case, i.e., large number of paths in RTS(S). Figure 6 gives the time taken for
our tool to terminate (y axis) wrt. the number of transitions in RTS(S) where
k is the least natural number for which the system is k-MC. The plot on the left
in Fig. 6 gives the timings when k is increasing (every increment from k = 2 to
k = 100) with the other parameters fixed (n = 1 and m = 5). The middle plot
gives the timings when m is increasing (every increment from m = 1 to m = 26)
with £ = 10 and n = 1. The right-hand side plot gives the timings when n is
increasing (every increment from n = 1 to n = 10) with &£ = 2 and m = 1. The
largest RTS)(S) on which we have tested our tool has 12222 states and 22220
transitions, and the verification took under 17 min.! Observe that partial order
reduction mitigates the increasing size of the transition system on which k-MC
is checked, e.g., these experiments show that parameters £ and m have only a
linear effect on the number of transitions (see horizontal distances between data
points). However the number of transitions increases exponentially with n (since
the number of paths in each automaton increases exponentially with n).

6 Related Work

Theory of communicating automata Communicating automata were introduced,
and shown to be Turing powerful, in the 1980s [10] and have since then been
studied extensively, namely through their connection with message sequence
charts (MSC) [46]. Several works achieved decidability results by using bag or
lossy channels [1,2,13,14] or by restricting the topology of the network [36,57].

Existentially bounded communicating automata stand out because they pre-
serve the FIFO semantics of communicating automata, do not restrict the topol-
ogy of the network, and include infinite state systems. Given a bound k and

1 All the benchmarks in this paper were run on an 8-core Intel i7-7700 machine with
16 GB RAM running a 64-bit Linux.
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Fig. 6. Benchmarks: increasing k (left), increasing m (middle), and increasing n (right).

an arbitrary system of (deterministic) communicating automata S, it is gen-
erally undecidable whether S is existentially k-bounded. However, the ques-
tion becomes decidable (PSPACE-complete) when S has the stable property.
The stable property is itself generally undecidable (it is called deadlock-freedom
in [22,35]). Hence this class is not directly applicable to the verification of mes-
sage passing programs since its membership is overall undecidable. We have
shown that k-OBI, 1BI, and k-exhaustive CSA systems are (strictly) included in
the class of existentially bounded systems. Hence, our work gives a sound prac-
tical procedure to check whether CSA are existentially k-bounded. To the best of
our knowledge, the only tools dedicated to the verification of (unbounded) com-
municating automata are McScM [26] and Chorgram [40]. Bouajjani et al. [9]
study a variation of communicating automata with mailbozes (one input queue
per automaton). They introduce the class of synchronisable systems and a pro-
cedure to check whether a system is k-synchronisable; it relies on executions con-
sisting of k-bounded exchange phases. Given a system and a bound k, it is decid-
able (PSPACE-complete) whether its executions are equivalent to k-synchronous
executions. Section4.3 states that any k-synchronisable system which satisfies
eventual reception is also k-exhaustive, see Theorem 7. In contrast to existen-
tial boundedness, synchronisability does not include all finite-state systems. Our
characterisation result, based on local bound-agnosticity (Theorem 3), is unique
to k-exhaustivity. It does not apply to existential boundedness nor synchro-
nisability, see, e.g., Example 7. The term “synchronizability” is used by Basu
et al. [3,4] to refer to another verification procedure for communicating automata
with mailboxes. Finkel and Lozes [19] have shown that this notion of synchroniz-
ability is undecidable. We note that a system that is safe with a point-to-point
semantics, may not be safe with a mailbox semantics (due to independent send
actions), and vice-versa. For instance, the system in Fig. 2 is safe when executed
with mailbox semantics.

Multiparty Compatibility and Programming Languages. The first definition of
multiparty compatibility appeared in [18, Definition 4.2], inspired by the work
in [23], to characterise the relationship between global types and communicating
automata. This definition was later adapted to the setting of communicating
timed automata in [6]. Lange et al. [39] introduced a generalised version of mul-
tiparty compatibility (GMC) to support communicating automata that feature
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mixed or non-directed states. Because our results apply to automata without
mixed states, k-MC is not a strict extension of GMC, and GMC is not a strict
extension of k-MC either, as it requires the existence of synchronous executions.
In future work, we plan to develop an algorithm to synthesise representative
choreographies from k-MC systems, using the algorithm in [39].

The notion of multiparty compatibility is at the core of recent works that
apply session types techniques to programming languages. Multiparty compat-
ibility is used in [51] to detect deadlocks in Go programs, and in [30] to study
the well-formedness of Scribble protocols [64] through the compatibility of their
projections. These protocols are used to generate various endpoint APIs that
implement a Scribble specification [30,31,48], and to produce runtime monitor-
ing tools [47,49,50]. Taylor et al. [67] use multiparty compatibility and chore-
ography synthesis [39] to automate the analysis of the gen_server library of
Erlang/OTP. We can transparently widen the set of safe programs captured
by these tools by using k-MC instead of synchronous multiparty compatibility
(smc). The k-Mc condition corresponds to a much wider instance of the abstract
safety invariant ¢ for session types defined in [63]. Indeed k-MC includes smcC
(see [43]) and all finite-state systems (for & sufficiently large).

7 Conclusions

We have studied csA via a new condition called k-exhaustivity. The k-
exhaustivity condition is (¢) the basis for a wider notion of multiparty compati-
bility, k-McC, which captures asynchronous interactions and (i7) the first practi-
cal, empirically validated, sufficient condition for existential k-boundedness. We
have shown that k-exhaustive systems are fully characterised by local bound-
agnosticity (each automaton behaves equivalently for any bound greater than
or equal to k). This is a key requirement for asynchronous message passing
programming languages where the possibility of having infinitely many orphan
messages is undesirable, in particular for Go and Rust which provide bounded
communication channels.

For future work, we plan to extend our theory beyond CcsA. We believe that it
is possible to support mixed states and states which do not satisfy IBI, as long as
their outgoing transitions are independent (i.e., if they commute). Additionally,
to make k-MC checking more efficient, we will elaborate heuristics to find optimal
bounds and off-load the verification of k-MC to an off-the-shelf model checker.
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Abstract. HyperLTL is an extension of linear-time temporal logic
for the specification of hyperproperties, i.e., temporal properties that
relate multiple computation traces. HyperLTL can express information
flow policies as well as properties like symmetry in mutual exclusion
algorithms or Hamming distances in error-resistant transmission pro-
tocols. Previous work on HyperLTL model checking has focussed on
the alternation-free fragment of HyperLTL, where verification reduces to
checking a standard trace property over an appropriate self-composition
of the system. The alternation-free fragment does, however, not cover
general hyperliveness properties. Universal formulas, for example, can-
not express the secrecy requirement that for every possible value of a
secret variable there exists a computation where the value is different
while the observations made by the external observer are the same. In
this paper, we study the more difficult case of hyperliveness properties
expressed as HyperLTL formulas with quantifier alternation. We reduce
existential quantification to strategic choice and show that synthesis algo-
rithms can be used to eliminate the existential quantifiers automatically.
We furthermore show that this approach can be extended to reactive
system synthesis, i.e., to automatically construct a reactive system that
is guaranteed to satisfy a given HyperLTL formula.

1 Introduction

HyperLTL [6] is a temporal logic for hyperproperties [7], i.e., for properties that
relate multiple computation traces. Hyperproperties cannot be expressed in stan-
dard linear-time temporal logic (LTL), because LTL can only express trace prop-
erties, i.e., properties that characterize the correctness of individual computa-
tions. Even branching-time temporal logics like CTL and CTL*, which quantify
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over computation paths, cannot express hyperproperties, because quantifying
over a second path automatically means that the subformula can no longer refer
to the previously quantified path. HyperLTL addresses this limitation with quan-
tifiers over trace variables, which allow the subformula to refer to all previously
chosen traces. For example, noninterference [21] between a secret input h and
a public output o can be specified in HyperLTL by requiring that all pairs of
traces m and 7’ that always have the same inputs except for h (i.e., all inputs in
I\ {h} are equal on 7 and 7’) also have the same output o at all times:

vr.va'. O( /\ in =1ix) = O(0r =0n)
i€I\{h}

This formula states that a change in the secret input h alone cannot cause any
difference in the output o.

For certain properties of interest, the additional expressiveness of HyperLTL
comes at no extra cost when considering the model checking problem. To check
a property like noninterference, which only has universal trace quantifiers, one
simply builds the self-composition of the system, which provides a separate copy
of the state variables for each trace. Instead of quantifying over all pairs of traces,
it then suffices to quantify over individual traces of the self-composed system,
which can be done with standard LTL. Model checking universal formulas is
NLOGSPACE-complete in the size of the system and PSPACE-complete in the
size of the formula, which is precisely the same complexity as for LTL.

Universal HyperLTL formulas suffice to express hypersafety properties like
noninterference, but not hyperliveness properties that require, in general, quanti-
fier alternation. A prominent example is generalized noninterference (GNI) [27],
which can be expressed as the following HyperLTL formula:

Va e 3" O(he = her) A O(0g = 0prr)

This formula requires that for every pair of traces m and 7/, there is a third trace
7' in the system that agrees with m on h and with 7’ on o. The existence of an
appropriate trace 7 ensures that in 7 and 7/, the value of o is not determined by
the value of h. Generalized noninterference stipulates that low-security outputs
may not be altered by the injection of high-security inputs, while permitting non-
determinism in the low-observable behavior. The existential quantifier is needed
to allow this nondeterminism. GNI is a hyperliveness property [7] even though
the underlying LTL formula is a safety property. The reason for that is that we
can extend any set of traces that violates GNI into a set of traces that satisfies
GNI, by adding, for each offending pair of traces w, ', an appropriate trace 7.

Hyperliveness properties also play an important role in applications beyond
security. For example, robust cleanness [9] specifies that significant differences in
the output behavior are only permitted after significant differences in the input:

Vo' 3r”. D(iﬂ—/ = Z'ﬂ-//) A (J(Oﬂ—,oﬂ—//) < ko W 62(7;7‘—,2'71—//) > Hi)

The differences are measured by a distance function d and compared to con-
stant thresholds k; for the input and x, for the output. The formula specifies
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the existence of a trace 7’/ that globally agrees with 7/ on the input and where
the difference in the output o between m and 7" is bounded by k,, unless the
difference in the input 7 between m and 7" was greater than x;. Robust cleanness,
thus, forbids unexpected jumps in the system behavior that are, for example,
due to software doping, while allowing for behavioral differences due to nonde-
terminism.

With quantifier alternation, the model checking problem becomes much more
difficult. Model checking HyperLTL formulas of the form V*3*p, where ¢ is
a quantifier-free formula, is PSPACE-complete in the size of the system and
EXPSPACE-complete in the formula. The only known model checking algorithm
replaces the existential quantifier with the negation of a universal quantifier
over the negated subformula; but this requires a complementation of the system
behavior, which is completely impractical for realistic systems.

In this paper, we present an alternative approach to the verification of hyper-
liveness properties. We view the model checking problem of a formula of the form
Vr.3r’. ¢ as a game between the V-player and the 3-player. While the V-player
moves through the state space of the system building trace 7, the 3-player must
match each move in a separate traversal of the state space resulting in a trace 7’
such that the pair m, 7’ satisfies ¢. Clearly, the existence of a winning strategy
for the 3-player implies that Vr.3n’. ¢ is satisfied. The converse is not necessar-
ily true: Even if there always is a trace 7’ that matches the universally chosen
trace 7, the 3-player may not be able to construct this trace, because she only
knows about the choices made by the V-player in the finite prefix of 7 that has
occurred so far, and not the choices that will be made by the V-player in the
infinite future. We address this problem by introducing prophecy variables into
the system. Without changing the behavior of the system, the prophecy vari-
ables give the 3-player the information about the future that is needed to make
the right choice after seeing only the finite prefix. Such prophecy variables can
be provided manually by the user of the model checker to provide a lookahead
on future moves of the V-player.

This game-theoretic approach provides an opportunity for the user to reduce
the complexity of the model checking problem: If the user provides a strategy for
the 3-player, then the problem reduces to the cheaper model checking problem for
universal properties. We show that such strategies can also be constructed auto-
matically using synthesis. Beyond model checking, the game-theoretic approach
also provides a method for the synthesis of systems that satisfy a conjunction
of hypersafety and hyperliveness properties. Here, we do not only synthesize the
strategy, but also construct the system itself, i.e., the game graph on which the
model checking game is played. While the synthesis from V*3* hyperproperties
is known to be undecidable in general, we show that the game-theoretic app-
roach can naturally be integrated into bounded synthesis, which checks for the
existence of a correct system up to a bound on the number of states.

Related Work. While the verification of general HyperLTL formulas has been
studied before [6,17,18], there has been, so far, no practical model checking
algorithm for HyperLTL formulas with quantifier alternation. The existing algo-
rithm involves a complementation of the system automaton, which results in an
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exponential blow-up of the state space [18]. The only existing model checker for
HyperLTL, MCHYPER [18], was therefore, so far, limited to the alternation-
free fragment. Although some hyperliveness properties lie in this fragment,
quantifier alternation is needed to express general hyperliveness properties like
GNI. In this paper, we present a technique to model check these hyperliveness
properties and extend MCHYPER to formulas with quantifier alternation.

The situation is similar in the area of reactive synthesis. There is a syn-
thesis algorithm that automatically constructs implementations from HyperLTL
specifications [13] using the bounded synthesis approach [20]. This algorithm is,
however, also only applicable to the alternation-free fragment of HyperLTL. In
this paper, we extend the bounded synthesis approach to HyperLTL formulas
with quantifier alternation. Beyond the model checking and synthesis problems,
the satisfiability [11,12,14] and monitoring [15,16,22] problems of HyperLTL
have also been studied in the past.

For certain information-flow security policies, there are verification tech-
niques that use methods related to our model checking and synthesis algorithms.
Specifically, the self-composition technique [2,3], a construction based on the
product of copies of a system, has been tailored for various trace-based security
definitions [10,23,28]. Unlike our algorithms, these techniques focus on specific
information-flow policies, not on a general logic like HyperLTL.

The use of prophecy variables [1] to make information about the future acces-
sible is a known technique in the verification of trace properties. It is, for example,
used to establish simulation relations between automata [26] or in the verification
of CTL* properties [8].

In our game-theoretic view on the model checking problem for V*3* hyper-
properties the 3-player has an infinite lookahead. There is some work on finite
lookahead on trace languages [24]. We use the idea of finite lookahead as an
approximation to construct existential strategies and give a novel synthesis con-
struction for strategies with delay based on bounded synthesis [20].

2 Preliminaries

For tuples € X™ and y € X™ over set X, we use ¢ -y € X"™™ to denote
the concatenation of & and y. Given a function f: X — Y and a tuple x € X",
we define by fox € Y™ the tuple (f(x[1]),..., f(x[n])). Let AP be a finite set
of atomic propositions and let X' = 24P be the corresponding alphabet. A trace
t € X¥ is an infinite sequence of elements of Y. We denote a set of traces by
Tr C X*. We define t[i, oo] to be the suffix of ¢ starting at position ¢ > 0.

HyperLTL. HyperLTL [6] is a temporal logic for specifying hyperproperties.
It extends LTL by quantification over trace variables m and a method to link
atomic propositions to specific traces. Let V be an infinite set of trace variables.
Formulas in HyperLTL are given by the grammar

pu=Vmr.o|Ir. |y , and
Vi=ar [ W [YVY |[OY YUY,
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where a € AP and © € V. We allow the standard boolean connectives A, —, <
as well as the derived LTL operators release ¢ R ¢ = —(—¢ U ), eventually
O = true U @, globally e = = —p, and weak until o Wy =0V (p U ).

We call a @ QT ¢ HyperLTL formula (for Q, Q' € {V,3} and quantifier-free
formula ¢) alternation-free iff Q = Q’. Further, we say that Q* Q"¢ has one
quantifier alternation (or lies in the one-alternation fragment) iff Q # Q.

The semantics of HyperLTL is given by the satisfaction relation Fp,. over a
set of traces Tr C X“. We define an assignment IT : V — X“ that maps trace
variables to traces. IT[m — t] updates IT by assigning variable 7 to trace t.

IIiEp ax iff a € II(m)[i]

Hzi':Tr @ iff H,i#Trtp

H7i':Tr (p\/’$ iff H,?;):TrgOOI'H,Z.}:Tr’(/)

Hikn Op iff Ii+1En ¢

it Uy iff 3> i 1, Em O AV <k < j. Ik Eqy @

IIi Ep. Im.p iff there is some t € Tr such that II[r — t],i Eq @
IIiEp Vr.p iff for all t € Tr it holds that II[r — t],i Ep- ¢

We write Tr E ¢ for {},0Fp. ¢ where {} denotes the empty assignment.
Every hyperproperty is an intersection of a hypersafety and a hyperliveness
property [7]. A hypersafety property is one where there is a finite set of finite
traces that is a bad prefix, i.e., that cannot be extended into a set of traces that
satisfies the hypersafety property. A hyperliveness property is a property where
every finite set of finite traces can be extended to a possibly infinite set of infinite
traces such that the resulting trace set satisfies the hyperliveness property.

Transition Systems. We use transition systems as a model of computation for
reactive systems. Transition systems consume sequences over an input alphabet
by transforming their internal state in every step. Let I and O be a finite set
of input and output propositions, respectively, and let T = 2! and I" = 29 be
the corresponding finite alphabets. A I'-labeled T-transition system S is a tuple
(S, s0,7,1), where S is a finite set of states, so € S is the designated initial state,
7: Sx7T — § is the transition function, and [: S — I is the state-labeling func-
tion. We write s — s or (s,v, ') € 7 if 7(s,v) = s'. We generalize the transition
function to sequences over 1" by defining 7*: 7* — S recursively as 7*(e) = s
and 7*(vg - Up_1vn) = T(T* (Vo Un—1),vn) for vy vu_1v, € TT. Given
an infinite word v = vgvy ... € T¥, the transition system produces an infinite
sequence of outputs v = Yoy172... € I'“, such that v; = I(7*(vp ... v;—1)) for
every 4 > 0. The resulting trace p is (vo Uyo)(v1 U~1)... € X where we have
AP = I'UO. The set of traces generated by S is denoted by traces(S). Fur-
thermore, we define ¢ = ({s}, s, 7,l.) as the transition system over I = O =)
that has only a single trace, that is traces(¢) = {@“}. For this transition sys-
tem, 7-(s,0) = s and I.(s) = 0. Given two transition systems S = (S, so, T, ()
and &' = (S’ s, 7',1'), we define S x &' = (S x ', (s0,84),7",1") as the I'*-
labeled T2-transition system where 7/((s,s’), (v,v")) = (7(s,v),7'(s',0")) and
1"((s,8)) = (I(s),'(s")). A transition system S satisfies a general HyperLTL
formula ¢, if, and only if, traces(S) F ¢.
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Automata. An alternating parity automaton A over a finite alphabet X is a tuple
(Q, 0,6, ), where @Q is a finite set of states, o € @ is the designated initial state,
§: Q x X — BT(Q) is the transition function, and a: @ — C'is a function that
maps states of A to a finite set of colors C' C N. For C' = {0,1} and C = {1,2},
we call A a co-Biichi and Biichi automaton, respectively, and we use the sets
F C @ and B C @ to represent the rejecting (C' = 1) and accepting (C = 2)
states in the respective automaton (as a replacement of the coloring function «).
A safety automaton is a Biichi automaton where every state is accepting. The
transition function § maps a state ¢ € @ and some a € X' to a positive Boolean
combination of successor states §(q,a). An automaton is non-deterministic or
universal if § is purely disjunctive or conjunctive, respectively.

A run of an alternating automaton is a @-labeled tree. A tree T is a subset
of N, such that for every node n € N, and every positive integer ¢ € Ny, if
n-i €T then (i) n € T (i.e., T is prefix-closed), and (ii) for every 0 < j < 1,
n-j € T. The root of T is the empty sequence € and for a node n € T, |n|
is the length of the sequence n, in other words, its distance from the root.
A run of A on an infinite word p € X% is a Q-labeled tree (T,7) such that
r(€) = qo and for every node n € T with children ny, ..., n; the following holds:
1<k <|Q| and {r(n1),...,r(nk)} E §(q, p[i]), where ¢ = r(n) and i = |n|. A
path is accepting if the highest color appearing infinitely often is even. A run is
accepting if all its paths are accepting. The language of A, written £(.A), is the
set {p € X | A accepts p}. A transition system S is accepted by an automaton
A, written S E A, if traces(S) C L(A).

Strategies. Given two disjoint finite alphabets 7" and I', a strategy o: 7" — I'
is a mapping from finite histories of 7" to I'. A transition system S = (S, so, 7, 1)
generates the strategy o if o(v) = I(7*(v)) for every v € T™*. A strategy o is
called finite-state if there exists a transition system that generates o.

In the following, we use finite-state strategies to modify the inputs of tran-
sition systems. Let S = (5, sg, 7,1) be a transition system over input and out-
put alphabets 7" and I' and let o: (7')* — T be a finite-state strategy. Let
S = (5", s, 7', I') be the transition system implementing o, then S || o =S || S’
is the transition system (S xS’, (so, sh), 7!, 1l) where 7!l (SxS")xY" — (Sx S’)
is defined as 7!l((s,s"),v") = (7(s,0'(s")),7'(s',0')) and UIl: (S x §') — I is
defined as Ill(s, s') = I(s) for every s € S, s’ € S, and v/ € 1.

Model Checking HyperLTL. We recap the model checking of universal Hyper-
LTL formulas. This case, as well as the dual case of only existential quantifiers,
is well-understood and, in fact, efficiently implemented in the model checker
MCHYPER [18]. The principle behind the model checking approach is self-
composition, where we check a standard trace property on a composition of
an appropriate number of copies of the given system.

Let zip denote the function that maps an n-tuple of sequences to a single
sequence of n-tuples, for example, zip([1, 2, 3], [4,5,6]) = [(1,4), (2,5), (3,6)], and
let unzip denote its inverse. Given S = (5, sg, 7, 1), the n-fold self-composition of
S is the transition system 8™ = (S™, sy, Tp, ln), Where sy == (so,...,50) € S™,
Tn(8,v) == Tozip(s,v) and [,,(s) := los for every s € S™ and v € T™. If traces(S)
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is the set of traces generated by S, then {zip(p1,...,pn) | P1,--.,pn € traces(S)}
is the set of traces generated by S™. We use the notation zip(p, 71, 7o, . . ., 7,) for
some HyperLTL formula ¢ to combine the trace variables 7y, o, ..., m, (occur-
ring free in ¢) into a fresh trace variable 7*.

Theorem 1 (Self-composition for universal HyperLTL formulas [18]).
For a transition system S and a HyperLTL formula of the form V.
Vry.... V. @ it holds that § F VmiVme....Vm,. ¢ iff 8 E Vr*.
2ip(Q, 1, T2y ooy ).

Theorem 2 (Complexity of model checking universal formulas [18]).
The model checking problem for universal HyperLTL formulas is PSPACE-
complete in the size of the formula and NLOGSPACE-complete in the size of
the transition system.

The complexity of verifying universal HyperLTL formulas is exactly the same
as the complexity of verifying LTL formulas. For HyperLTL formulas with quan-
tifier alternations, the model checking problem is significantly more difficult.

Theorem 3 (Complexity of model checking formulas with one quan-
tifier alternation [18]). The model checking problem for HyperLTL formulas
with one quantifier alternation is in EXPSPACE in the size of the formula and
in PSPACE in the size of the transition system.

One way to circumvent this complexity is to fix the existential choice and
strengthen the formula to the universal fragment [9,13,18]. While avoiding the
complexity problem, this transformation requires deep knowledge of the system,
is prone to errors, and cannot be verified automatically as the problem of check-
ing implications becomes undecidable [11]. In the following section, we present a
technique that circumvents the complexity problem while still inheriting strong
correctness guarantees. Further, we provide a method that can, under certain
restrictions, derive a strategy for the existential choice automatically.

3 Model Checking with Quantifier Alternations

3.1 Model Checking with Given Strategies

Our first goal is the verification of HyperLTL formulas with one quantifier alter-
nation, i.e., formulas of the form V*3*yp or 3*V*p, where ¢ is a quantifier-free
formula. Note that the presented techniques can, similar to skolemization, be
extended to more than one quantifier alternation. Quantifier alternation intro-
duces dependencies between the quantified traces. In a V*3*p formula, the
choices of the existential quantifiers depend on the choices of the universal quan-
tifiers preceding them. In a formula of the form 3*V*p, however, there has to
be a single choice for the existential quantifiers that works for all choices of
the universal quantifiers. In this case, the existentially quantified variables do
not depend on the universally quantified variables. Hence, the witnesses for the
existential quantifiers are traces rather than functions that map tuples of traces
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to traces. As established above, the model checking problem for HyperLTL for-
mulas with quantifier alternation is known to be significantly more difficult than
the model checking problem for universal formulas.

Our verification technique for formulas with quantifier alternation is to sub-
stitute strategic choice for existential choice. As discussed in the introduction,
the existence of a strategy implies the existence of a trace.

Theorem 4 (Substituting Strategic Choice for Existential Choice). Let
S be a transition system over input alphabet T.

It holds that S E VmVmy ... Vr,. Ini3Inh. .. 3nl,. ¢ if there is a strategy o :
(r™)* — 1™ such that S™ x (8™ || o) EV7*.zip(p, m1, T2, . .. T, Ty, Thy ooy 7).

It holds that S B ImIAmy ... 3wy, Vo\Vah .. V). ¢ if there is a strategy o :
(YO)* — T™ such that (S™ || 0) x S™ E VT*.2ip (i, T1, T, + « . T, Ty, Ty o ooy Th).

n

Proof. Let o be such a strategy, then we define a witness for the existential
trace quantifiers 37} 3nh ... I, as the sequence of inputs v = vovy ... € (T™)¥
such that v; = o(vjv] ... vj_;) for every i > 0 and every v, € T™; analogously,
we define a witness for the existential trace quantifiers dm3ms ... dw, as the
sequence of inputs v = vovy... € (T™)¥ such that v; = o(vjv]...vi_;) for
every i > 0 and every v} € 1°. a

An application of the theorem reduces the verification problem of a HyperLTL
formula with one quantifier alternation to the verification problem of a universal
HyperLTL formula. If a sufficiently small strategy can be found, the reduction
in complexity is substantial:

Corollary 1 (Model checking with Given Strategies). The model check-
ing problem for HyperLTL formulas with one quantifier alternation and given
strategies for the existential quantifiers is in PSPACE in the size of the formula
and NLOGSPACE in the size of the product of the strategy and the system.

Note that the converse of Theorem 4 is not in general true. The satisfaction
of a V*3* HyperLTL formula does not imply the existence of a strategy, because
at any given point in time the strategy only knows about a finite prefix of the
universally quantified traces. Consider the formula V73r’.Qa, < ar and a
system that can produce arbitrary sequences of @ and —a. Although the system
satisfies the formula, it is not possible to give a strategy that allows us to prove
this fact. Whatever choice our strategy makes, the next move of the V-player can
make sure that the strategy’s choice was wrong. In the following, we present a
method that addresses this problem.

Prophecy Variables. A classic technique for resolving future dependencies
is the introduction of prophecy variables [1]. Prophecy variables are auxiliary
variables that are added to the system without affecting the behavior of the
system. Such variables can be used to make predictions about the future.

We use prophecy variables to define strategies that depend on the future. In
the example discussed above, Vr3n’.Qa, < ax, the choice of the value of a, in
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the first position depends on the value of a, in the second position. We introduce
a prophecy variable p that predicts in the first position whether a, is true in
the second position. With the prophecy variable, there exists a strategy that
correctly assigns the value of p whenever the prediction is correct: The strategy
chooses to set a, if, and only if, p holds.

Technically, the proof technique introduces a set of fresh input variables P
into the system. For a I'-labeled 7 -transition system S = (S, sq, 7,1), we define
the I'-labeled (Y U P)-transition system S¥ = (S, s, 7%, 1) including the inputs
P where 77: Sx (YUP) — S. For all s € S and v’ € YUP, 77 (s,0F) = 7(s,v)
for v € T obtained by removing the variables in P from v” (i.e., v = p v¥).
Moreover, the proof technique modifies the specification so that the original
property only needs to be satisfied if the prediction is actually correct. We obtain
the modified specification Va3n’.(pr <> Qar) — (Oar < ar) in our example.
The following theorem describes the general technique for one prophecy variable.

Theorem 5 (Model checking with Prophecy Variables). For a transition
system S and a quantifier-free formula @, let ¥ be a quantifier-free formula over
the universally quantified trace variables wy, 7y ... 7, and let p be a fresh atomic
proposition. It holds that S E VmVmy .. . Vr,. Imi3nh ... 3nl,. ¢ if, and only if,
S eV Yy .. Y, 3n, 30 . 30 . Ops, < V) — .

Note that v is restricted to refer only to universally quantified trace variables.
Without this restriction, the method would not be sound. In our example, ) =
ar would lead to the modified formula Va3r'.(p, < ar) — (Oar < ap),
which could be satisfied with the strategy that assigns a,s to true iff p, is false,
and thus falsifies the assumption that the prediction is correct, rather than
ensuring that the original formula is true.

Proof. Tt is easy to see that the original specification implies the modified spec-
ification, since the original formula is the conclusion of the implication. Assume
that the modified specification holds. Since the prophecy variable p is a fresh
atomic proposition, and 1 does not refer to the existentially chosen traces, we
can, for every choice of the universally quantified traces, always choose the value
of p such that it guesses correctly, i.e., that p is true whenever 1) holds. In this
case, the conclusion and therefore the original specification must be true. a

Unfortunately, prophecy variables do not provide a complete proof technique.
Consider a system allowing arbitrary sequences of a and b and this specification:

Vﬂﬂﬂ'/.bﬂ/ AN D(bﬂ/ — O—\bﬂ-/)
A (arr — (azx W (bpr A —az)))
A (mar — (ar W (2ber A —ag)))

Intuitively, 7’ has to be able to predict whether = will stop outputting a at
an even or odd position of the trace. There is no HyperLTL formula to be
used as ¥ in Theorem 5, because, like LTL, HyperLTL can only express non-
counting properties. It is worth noting that in our practical experiments, the
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incompleteness was never a problem. In many cases, it is not even necessary to
add prophecy variables at all. The presented proof technique is, thus, practically
useful despite this incompleteness result.

3.2 Model Checking with Synthesized Strategies

We now extend the model checking approach with the automatic synthesis of
the strategies for the existential quantifiers. For a given HyperLTL formula of
the form V"3™¢ and a transition system S, we search for a transition system
S3 = (X, zo, 1, 13), where X is a set of states, 2o € X is the designated initial
state, u: X xT™ — X is the transition function, and I3: X — 7™ is the labeling
function, such that S™ x (8™ || S3) E zip(¢). (Since for formulas of the form
I™VY™p the problem only differs in the input of Sz, we focus on V3 HyperLTL.)

Theorem 6. The strategy realizability problem for V*3* formulas is 2EXPTIME-
complete.

Proof (Sketch). We reduce the strategy synthesis problem to the problem of
synthesizing a distributed reactive system with a single black-box process. This
problem is decidable [19] and can be solved in 2EXPTIME. The lower bound
follows from the LTL realizability problem [30]. O

The decidability result implies that there is an upper bound on the size of
S5 that is doubly exponential in ¢. Thus, the bounded synthesis approach [20]
can be used to search for increasingly larger implementations, until a solution is
found or the maximal bound is reached, yielding an efficient decision procedure
for the strategy synthesis problem. In the following, we describe this approach
in detail.

Bounded Synthesis of Strategies. We transform the synthesis problem into
an SMT constraint satisfaction problem, where we leave the representation of
strategies uninterpreted and challenge the solver to provide an interpretation.
Given a HyperL'TL formula V"3"¢ where ¢ is quantifier-free, the model checking
is based on the product of the n-fold self composition of the transition system
S, the m-fold self-composition of & where the strategy S3 controls the inputs,
and the universal co-Biichi automaton A, representing the language L(¢) of ¢.

For a quantifier-free HyperLTL formula ¢, we construct the universal co-
Biichi automaton A, such that £(A,) is the set of words w such that unzip(w) F
®, i.e., the tuple of traces satisfies . We get this automaton by dualizing the
non-deterministic Biichi automaton for —¢ [6], i.e., changing the branching from
non-deterministic to universal and the acceptance condition from Biichi to co-
Biichi. Hence, S satisfies a universal HyperLTL formula V7 ...Vm,.p if the
traces generated by the self-composition S™ are a subset of L£(A,).

In more detail, the algorithm searches for a transition system S3 =
(X,z0,u,15) such that the run graph of 8™, 8™ || S3, and A,, written
S x (8™ || 83) x Ay, is accepting. Formally, given a I'-labeled T-transition
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system S = (S, 59, 7,l) and a universal co-Biichi automaton A, = (Q, qo, 6, F),
where §: Q x 1™ x I'+™ — 29 the run graph 8™ x (8™ || S3) x A, is the
directed graph (V, E), with the set of vertices V.= 5™ x §™ x X x @, initial
vertex vinit = ((So,---,80), (S0, ---,50), Zo, qo) and the edge relation E CV x V
satisfying ((sn,Sm,,q),(s,,s0,,2',q")) € E if, and only if

Jv e 1. (s" Ls%)/\(sm ﬂs;n)/\<xi>m/)
Tn Tm 12
NG €6(q,v-13(x),1n(8n) “ lm(Sm))-

Theorem 7. Given S, S3, and a HyperLTL formula ¥Y"3™¢p where ¢ is
quantifier-free. Let A, be the universal co-Biichi automaton for . If the run
graph 8™ x (8™ || S3) x A, is accepting, then S EY"I .

Proof. Follows from Theorem 4 and the fact that A, represents L(¢p). O

The acceptance of a run graph is witnessed by an annotation A\: V' — NU{_L}
which is a function mapping every reachable vertex v € V' in the run graph to
a natural number A(v), i.e., A(v) # L. Intuitively, A(v) returns the number of
visits to rejecting states on any path from the initial vertex v, to v. If we can
bound this number for every reachable vertex, the annotation is valid and the
run graph is accepting. Formally, an annotation A is valid, if (1) the initial state
is reachable (A(vinit) # L) and (2) for every (v,v’) € E with A(v) # L it holds
that A(v") # L and A(v) > A(v) where I> is > if v/ is rejecting and > otherwise.
Such an annotation exists if, and only if, the run graph is accepting [20].

We encode the search for S5 and the annotation A as an SMT constraint
system. Therefore, we use uninterpreted function symbols to encode S3 and A.
A transition system S is represented in the constraint system by two functions,
the transition function 7: .S x 7 — S and the labeling function [: S — I'. The
annotation is split into two parts, a reachability constraint A®: V' — B indicating
whether a state in the run graph is reachable and a counter A\#: V — N that
maps every reachable vertex v to the maximal number of rejecting states A# (v)
visited by any path from the initial vertex to v. The resulting constraint asserts
that there is a transition system S5 with an accepting run graph. Note, that the
functions representing the system S (7: S x 71T — S and [: S — I') are given,
that is, they are interpreted.

INE: S xS x X xQ —»B.IN: " x ™ x X x Q — N.

Jp: X xT" - X Jl3: X -7

Vo € ™. Vsy, s, € S". Vs, s, € S".Vq,¢ € Q.Vr,2' € X.
/\B((Sov"'750)3(507'-'750)51703(]0) A

(Aﬁ(sn,sm,x,Q) ANg €d(q,(v-13(2)), (Lo (sn - 8m))) N2’ = p(z,v)

NSl =Tp(sp, V) Asl = Tm(sm,lg(:v)))

= \B(s! s al ') AN (8n, 8m, 1, q) > NY(s) 8!l q)

n’»“m? n’»“m?’
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where > is > if ¢ € F and > otherwise. The bounded synthesis algorithm
increases the bound of the strategy S5 until either the constraints system
becomes satisfiable, or a given upper bound is reached. In the case the constraint
system is satisfiable, we can extract interpretations for the functions p and I3
using a solver that is able to produce models. These functions then represent
the synthesized transition system S3.

Corollary 2. Given S and a HyperLTL formula V*3*p where ¢ is quantifier-
free. If the constraint system is satisfiable for some bound on the size of S then
S EV T p.

Proof. Follows immediately by Theorem 7. O

As the decision problem is decidable, we know that there is an upper bound on
the size of a realizing S3 and, thus, the bounded synthesis approach is a decision
procedure for the strategy realizability problem.

Corollary 3. The bounded synthesis algorithm decides the strategy realizability
problem for ¥V*3* HyperLTL.

Proof. The existence of such an upper bound follows from Theorem 6. a

Approximating Prophecy. We introduce a new parameter to the strategy
synthesis problem to approximate the information about the future that can be
captured using prophecy variables. This bound represents a constant lookahead
into future choices made by the environment. In other words, for a given k& > 0,
the strategy S3 is allowed to depend on choices of the V-player in the next k steps.
While constant lookahead is only an approximation of infinite clairvoyance, it
suffices for many practical situations as shown by prior case studies [9,18].

We present a solution to synthesizing transition systems with constant looka-
head for £ > 0 using bounded synthesis. To simplify the presentation, we
present the stand-alone problem with respect to a specification given as a uni-
versal co-Biichi automaton. The integration into the constraint system for the
V*3* HyperLTL synthesis as presented in the previous section is then straight-
forward. First, we present an extension to the transition system model that
incorporates the notion of constant lookahead. The idea of this extension is to
replace the initial state sq by a function init: T% — S that maps input sequences
of length k to some state. Thus, the transition system observes the first k£ inputs,
chooses some initial state based on those inputs, and then progresses with the
same pace as the input sequence. Next, we define the run graph of such a system
Sk = (S, init, 7,1) and an automaton A = (Q, qo,0, F), where 6: Q x V' x ' — Q,
as the directed graph (V, E) with the set of vertices V = S x Q x T*, the initial
vertices (s,qo,v) € V such that s = init(v) for every v € T, and the edge
relation E C V x V satisfying ((s, ¢, v1v2 - vg), (s', ¢/, vivy - - - vy,)) € E if, and
only if

g €T s =5 A g € 8(q,v1,1(s)) A /\ Ul = Ui
1<i<k
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Lemma 1. Given a universal co-Bichi automaton A and a k-lookahead transi-
tion system Si. Si F A if, and only if, the run graph Sk x A is accepting.

Finally, synthesis amounts to solving the following constraint system:

INE: S x QxTF - B.IN: SxQxTF - N

Jinit: TF — 8. 3r: Sx T — S.3: S —T.

(Vo € T%. 2B (init(v), g0, v)) A

Yorvg - gy € TR Vs, 8" € S.¥q, ¢’ € Q.

()\B(s,q,vl cvp) A ST =T(s,v641) A G E (g, v1,1(s)))

= AB(Slv ¢ va - Upg1) A /\N(qu, vy vg) B AN(Slv q' V2 Ukgr)

Corollary 4. Given some k > 0, if the constraint system is satisfiable for some
bound on the size of Sy then Sk F A.

4 Synthesis with Quantifier Alternations

We now build on the introduced techniques to solve the synthesis problem for
HyperLTL with quantifier alternation, that is, we search for implementations
that satisfy the given properties. In previous work [13], the synthesis problem for
F*V* HyperLTL was solved by a reduction to the distributed synthesis problem.
We present an alternative synthesis procedure that (1) introduces the necessary
concepts for the synthesis of the V*3* fragment and that (2) strictly decomposes
the choice of the existential trace quantifier from the implementation.

Fix a formula of the form 3™V"™yp. We again reduce the verification problem to
the problem of determining whether a run graph is accepting. As the existential
quantifiers do not depend on the universal ones, there is no future dependency
and thus no need for prophecy variables or bounded lookahead. Formally, S5 is
a tuple (X, xo, u,l3) such that X is a set of states, g € X is the designated
initial state, u: X — X is the transition function, and I5: X — 7™ is the
labeling function. S5 produces infinite sequences of (7™)%, without having any
knowledge about the behavior of the universally quantified traces. The run graph
is then (8™ || S3) x 8™ x A,. The constraint system is built analogously to
Sect. 3.2, with the difference that the representation of the system S is now also
uninterpreted. In the resulting SMT constraint system, we have two bounds, one
for the size of the implementation S and one for the size of S3.

Corollary 5. The bounded synthesis algorithm decides the realizability problem
for 3*V' HyperLTL and is a semi-decision procedure for 3*v>1 HyperLTL.

The synthesis problem for formulas in the V*3* HyperLTL fragment uses the
same reduction to a constraint system as the strategy synthesis in Sect. 3.2,
with the only difference that the transition system S itself is uninterpreted. In
the resulting SMT constraint systems, we have three bounds, the size of the
implementation S, the size of the strategy S, and the lookahead k.
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Fig. 1. HyperLTL model checking with MCHYPER

Corollary 6. Given a HyperLTL formula Y"3™ @ where ¢ is quantifier-free.
V"3 is realizable if the SMT constraint system corresponding to the run graph
S™ x (8™ || 83) x Ay is satisfiable for some bounds on S, S3, and lookahead k.

5 Implementations and Experimental Evaluation

We have integrated the model checking technique with a manually provided
strategy into the HyperLTL hardware model checker MCHYPER'. For the syn-
thesis of strategies and reactive systems from hyperproperties, we have developed
a separate bounded synthesis tool based on SMT-solving. In the following, we
describe these implementations and report on experimental results. All experi-
ments ran on a machine with dual-core Core i7, 3.3 GHz, and 16 GB memory.

Hardware Model Checking with Given Strategies. We have extended the
model checker MCHYPER [18] from the alternation-free fragment to formulas
with one quantifier alternation. The input to MCHYPER is a circuit description
as an And-Inverter-Graph in the AIGER format and a HyperLTL formula. Fig-
ures la and 1 show the model checking 