
Isil Dillig
Serdar Tasiran (Eds.)

LN
CS

 1
15

61

31st International Conference, CAV 2019
New York City, NY, USA, July 15–18, 2019
Proceedings, Part I

Computer Aided
Verification

Lecture Notes in Computer Science 11561

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board Members

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology Madras, Chennai, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Isil Dillig • Serdar Tasiran (Eds.)

Computer Aided
Verification
31st International Conference, CAV 2019
New York City, NY, USA, July 15–18, 2019
Proceedings, Part I

Editors
Isil Dillig
University of Texas
Austin, TX, USA

Serdar Tasiran
Amazon Web Services
New York, NY, USA

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-25539-8 ISBN 978-3-030-25540-4 (eBook)
https://doi.org/10.1007/978-3-030-25540-4

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© The Editor(s) (if applicable) and The Author(s) 2019. This book is an open access publication.
Open Access This book is licensed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution
and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons license and indicate if changes were made.
The images or other third party material in this book are included in the book’s Creative Commons license,
unless indicated otherwise in a credit line to the material. If material is not included in the book’s Creative
Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use,
you will need to obtain permission directly from the copyright holder.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-25540-4
http://creativecommons.org/licenses/by/4.0/

Preface

It was our privilege to serve as the program chairs for CAV 2019, the 31st International
Conference on Computer-Aided Verification. CAV 2019 was held in New York, USA,
during July 15–18, 2019. The tutorial day was on July 14, 2019, and the pre-conference
workshops were held during July 13–14, 2019. All events took place in The New
School in New York City.

CAV is an annual conference dedicated to the advancement of the theory and
practice of computer-aided formal analysis methods for hardware and software sys-
tems. The primary focus of CAV is to extend the frontiers of verification techniques by
expanding to new domains such as security, quantum computing, and machine
learning. This put CAV at the cutting edge of formal methods research, and this year’s
program is a reflection of this commitment.

CAV 2019 received a very high number of submissions (258). We accepted 13 tool
papers, two case studies, and 52 regular papers, which amounts to an acceptance rate of
roughly 26%. The accepted papers cover a wide spectrum of topics, from theoretical
results to applications of formal methods. These papers apply or extend formal methods
to a wide range of domains such as concurrency, learning, and industrially deployed
systems. The program featured invited talks by Dawn Song (UC Berkeley), Swarat
Chaudhuri (Rice University), and Ken McMillan (Microsoft Research) as well as
invited tutorials by Emina Torlak (University of Washington) and Ranjit Jhala (UC San
Diego). Furthermore, we continued the tradition of Logic Lounge, a series of discus-
sions on computer science topics targeting a general audience.

In addition to the main conference, CAV 2019 hosted the following workshops: The
Best of Model Checking (BeMC) in honor of Orna Grumberg, Design and Analysis of
Robust Systems (DARS), Verification Mentoring Workshop (VMW), Numerical
Software Verification (NSV), Verified Software: Theories, Tools, and Experiments
(VSTTE), Democratizing Software Verification, Formal Methods for ML-Enabled
Autonomous Systems (FoMLAS), and Synthesis (SYNT).

Organizing a top conference like CAV requires a great deal of effort from the
community. The Program Committee for CAV 2019 consisted of 79 members, a
committee of this size ensures that each member has to review a reasonable number of
papers in the allotted time. In all, the committee members wrote over 770 reviews while
investing significant effort to maintain and ensure the high quality of the conference
program. We are grateful to the CAV 2019 Program Committee for their outstanding
efforts in evaluating the submissions and making sure that each paper got a fair chance.

Like last year’s CAV, we made artifact evaluation mandatory for tool submissions
and optional but encouraged for the rest of the accepted papers. The Artifact Evaluation
Committee consisted of 27 reviewers who put in significant effort to evaluate each
artifact. The goal of this process was to provide constructive feedback to tool devel-
opers and help make the research published in CAV more reproducible. The Artifact
Evaluation Committee was generally quite impressed by the quality of the artifacts,

and, in fact, all accepted tools passed the artifact evaluation. Among regular papers,
65% of the authors submitted an artifact, and 76% of these artifacts passed the eval-
uation. We are also very grateful to the Artifact Evaluation Committee for their hard
work and dedication in evaluating the submitted artifacts.

CAV 2019 would not have been possible without the tremendous help we received
from several individuals, and we would like to thank everyone who helped make CAV
2019 a success. First, we would like to thank Yu Feng and Ruben Martins for chairing
the Artifact Evaluation Committee and Zvonimir Rakamaric for maintaining the CAV
website and social media presence. We also thank Oksana Tkachuk for chairing the
workshop organization process, Peter O’Hearn for managing sponsorship, and Thomas
Wies for arranging student fellowships. We also thank Loris D’Antoni, Rayna
Dimitrova, Cezara Dragoi, and Anthony W. Lin for organizing the Verification
Mentoring Workshop and working closely with us. Last but not least, we would like to
thank Kostas Ferles, Navid Yaghmazadeh, and members of the CAV Steering
Committee (Ken McMillan, Aarti Gupta, Orna Grumberg, and Daniel Kroening) for
helping us with several important aspects of organizing CAV 2019.

We hope that you will find the proceedings of CAV 2019 scientifically interesting
and thought-provoking!

June 2019 Isil Dillig
Serdar Tasiran

vi Preface

Organization

Program Chairs

Isil Dillig The University of Texas at Austin, USA
Serdar Tasiran Amazon, USA

Workshop Chair

Oksana Tkachuk Amazon, USA

Publicity Chair

Zvonimir Rakamaric University of Utah, USA

Sponsorship Chair

Peter O’Hearn Facebook, USA

Fellowship Chair

Thomas Wies NYU, USA

CAV Award Committee

Natarajan Shankar SRI International, USA
Pierre Wolper Liege University, Belgium
Somesh Jha University of Wisconsin, USA
Parosh Abdulla Uppsala University, Sweden

Program Committee

Aws Albarghouthi University of Wisconsin-Madison, USA
Jade Alglave University College London, UK
Rajeev Alur University of Pennsylvania, USA
Christel Baier TU Dresden, Germany
Gilles Barthe Max Planck Institute for Security and Privacy,

Germany; IMDEA Software Institute, Spain
Osbert Bastani University of Pennsylvania, USA
Josh Berdine Facebook, USA
Per Bjesse Synopsys Inc., USA
Nikolaj Bjorner Microsoft, USA
Roderick Bloem Graz University of Technology, Austria

Marc Brockschmidt Microsoft, UK
Pavol Cerny University of Colorado Boulder, USA
Swarat Chaudhuri Rice University, USA
Wei-Ngan Chin National University of Singapore
Adam Chlipala Massachusetts Institute of Technology, USA
Hana Chockler King’s College London, UK
Eva Darulova Max Planck Institute for Software Systems, Germany
Cristina David University of Cambridge, UK
Dana Drachsler Cohen ETH Zurich, Switzerland
Cezara Dragoi Inria Paris, ENS, France
Constantin Enea IRIF, University of Paris Diderot, France
Azadeh Farzan University of Toronto, Canada
Grigory Fedyukovich Princeton University, USA
Yu Feng University of California, Santa Barbara, USA
Dana Fisman Ben-Gurion University, Israel
Milos Gligoric The University of Texas at Austin, USA
Patrice Godefroid Microsoft, USA
Laure Gonnord University of Lyon/Laboratoire d’Informatique du

Parallélisme, France
Aarti Gupta Princeton University, USA
Arie Gurfinkel University of Waterloo, Canada
Klaus Havelund Jet Propulsion Laboratory, USA
Chris Hawblitzel Microsoft, USA
Alan J. Hu The University of British Columbia, Canada
Shachar Itzhaky Technion, Israel
Franjo Ivancic Google, USA
Ranjit Jhala University of California San Diego, USA
Rajeev Joshi Automated Reasoning Group, Amazon Web Services,

USA
Dejan Jovanović SRI International, USA
Laura Kovacs Vienna University of Technology, Austria
Burcu Kulahcioglu Ozkan MPI-SWS, Germany
Marta Kwiatkowska University of Oxford, UK
Shuvendu Lahiri Microsoft, USA
Akash Lal Microsoft, India
Stephen Magill Galois, Inc., USA
Joao Marques-Silva Universidade de Lisboa, Portugal
Ruben Martins Carnegie Mellon University, USA
Ken McMillan Microsoft, USA
Vijay Murali Facebook, USA
Peter Müller ETH Zurich, Switzerland
Mayur Naik Intel, USA
Hakjoo Oh Korea University, South Korea
Oded Padon Stanford University, USA
Corina Pasareanu CMU/NASA Ames Research Center, USA
Ruzica Piskac Yale University, USA

viii Organization

Nir Piterman University of Gothenburg, Sweden
Pavithra Prabhakar Kansas State University, USA
Sylvie Putot LIX, Ecole Polytechnique, France
Grigore Rosu University of Illinois at Urbana-Champaign, USA
Dorsa Sadigh Stanford University, USA
Roopsha Samanta Purdue University, USA
Sriram Sankaranarayanan University of Colorado, Boulder, USA
Koushik Sen University of California, Berkeley, USA
Sanjit A. Seshia University of California, Berkeley, USA
Natarajan Shankar SRI International, USA
Rahul Sharma Microsoft, USA
Natasha Sharygina Università della Svizzera italiana (USI Lugano),

Switzerland
Sharon Shoham Tel Aviv University, Israel
Alexandra Silva University College London, UK
Rishabh Singh Google, USA
Anna Slobodova Centaur Technology, USA
Marcelo Sousa University of Oxford, UK
Cesare Tinelli The University of Iowa, USA
Ufuk Topcu University of Texas at Austin, USA
Caterina Urban Inria, France
Margus Veanes Microsoft, USA
Yakir Vizel The Technion, Israel
Chao Wang USC, USA
Georg Weissenbacher Vienna University of Technology, Austria
Eran Yahav Technion, Israel
Hongseok Yang KAIST, South Korea

Artifact Evaluation Committee

Uri Alon Technion, Israel
Yaniv David Technion, Israel
Yufei Ding University of California, Santa Barbara, USA
Yu Feng (Co-chair) University of California, Santa Barbara, USA
Radu Grigore University of Kent, UK
Saurabh Joshi IIIT Hyderabad, India
William Hallahan Yale University, USA
Travis Hance Carnegie Mellon University, USA
Marijn Heule The University of Texas at Austin, USA
Antti Hyvärinen University of Lugano, Switzerland
Alexey Ignatiev Universidade de Lisboa, Portugal
Tianhan Lu University of Colorado Boulder, USA
Ruben Martins (Co-chair) Carnegie Mellon University, USA
Aina Niemetz Stanford University, USA
Filip Nikšić University of Pennsylvania, USA
Lauren Pick Princeton University, USA

Organization ix

Sorawee Porncharoenwase University of Washington, USA
Mathias Preiner Stanford University, USA
Talia Ringer University of Washington, USA
John Sarracino University of California San Diego, USA
Xujie Si University of Pennsylvania, USA
Calvin Smith University of Wisconsin-Madison, USA
Caleb Stanford University of Pennsylvania, USA
Miguel Terra-Neves INESC-ID/IST, Universidade de Lisboa, Portugal
Jacob Van Geffen University of Washington, USA
Xinyu Wang The University of Texas at Austin, USA
Wei Yang The University of Texas at Dallas, USA

Mentoring Workshop Organizing Committee

Loris D’Antoni (Chair) University of Wisconsin, USA
Anthony Lin Oxford University, UK
Cezara Dragoi Inria, France
Rayna Dimitrova University of Leicester, UK

Steering Committee

Ken McMillan Microsoft, USA
Aarti Gupta Princeton, USA
Orna Grunberg Technion, Israel
Daniel Kroening University of Oxford, UK

Additional Reviewers

Sepideh Asadi
Lucas Asadi
Haniel Barbosa
Ezio Bartocci
Sam Bartocci
Suda Bharadwaj
Erdem Biyik
Martin Biyik
Timothy Bourke
Julien Braine
Steven Braine
Benjamin Caulfield
Eti Chaudhary
Xiaohong Chaudhary
Yinfang Chen
Andreea Costea
Murat Costea

Emanuele D’Osualdo
Nicolas Dilley
Marko Dilley
Bruno Dutertre
Marco Eilers
Cindy Eilers
Yotam Feldman
Jerome Feret
Daniel Feret
Mahsa Ghasemi
Shromona Ghosh
Anthony Ghosh
Bernhard Gleiss
Shilpi Goel
William Goel
Mirazul Haque
Ludovic Henrio

x Organization

Andreas Henrio
Antti Hyvärinen
Duligur Ibeling
Rinat Ibeling
Nouraldin Jaber
Swen Jacobs
Maximilian Jacobs
Susmit Jha
Anja Karl
Jens Karl
Sean Kauffman
Ayrat Khalimov
Bettina Khalimov
Hillel Kugler
Daniel Larraz
Christopher Larraz
Wonyeol Lee
Matt Lewis
Wenchao Lewis
Kaushik Mallik
Matteo Marescotti
David Marescotti
Dmitry Mordvinov
Matthieu Moy
Thanh Toan Moy
Victor Nicolet
Andres Noetzli
Abraham Noetzli
Saswat Padhi
Karl Palmskog

Rong Palmskog
Daejun Park
Brandon Paulsen
Lucas Paulsen
Adi Yoga Prabawa
Dhananjay Raju
Andrew Raju
Heinz Riener
Sriram Sankaranarayanan
Mark Sankaranarayanan
Yagiz Savas
Traian Florin Serbanuta
Fu Serbanuta
Yahui Song
Pramod Subramanyan
Rob Subramanyan
Sol Swords
Martin Tappler
Ta Quang Tappler
Anthony Vandikas
Marcell Vazquex-Chanlatte
Yuke Vazquex-Chanlatte
Min Wen
Josef Widder
Bo Widder
Haoze Wu
Zhe Xu
May Xu
Yi Zhang
Zhizhou Zhang

Organization xi

Contents – Part I

Automata and Timed Systems

Symbolic Register Automata . 3
Loris D’Antoni, Tiago Ferreira, Matteo Sammartino,
and Alexandra Silva

Abstraction Refinement Algorithms for Timed Automata 22
Victor Roussanaly, Ocan Sankur, and Nicolas Markey

Fast Algorithms for Handling Diagonal Constraints in Timed Automata. 41
Paul Gastin, Sayan Mukherjee, and B. Srivathsan

Safety and Co-safety Comparator Automata for Discounted-Sum Inclusion. . . 60
Suguman Bansal and Moshe Y. Vardi

Clock Bound Repair for Timed Systems . 79
Martin Kölbl, Stefan Leue, and Thomas Wies

Verifying Asynchronous Interactions via Communicating
Session Automata . 97

Julien Lange and Nobuko Yoshida

Security and Hyperproperties

Verifying Hyperliveness. 121
Norine Coenen, Bernd Finkbeiner, César Sánchez, and Leander Tentrup

Quantitative Mitigation of Timing Side Channels . 140
Saeid Tizpaz-Niari, Pavol Černý, and Ashutosh Trivedi

Property Directed Self Composition. 161
Ron Shemer, Arie Gurfinkel, Sharon Shoham, and Yakir Vizel

Security-Aware Synthesis Using Delayed-Action Games 180
Mahmoud Elfar, Yu Wang, and Miroslav Pajic

Automated Hypersafety Verification . 200
Azadeh Farzan and Anthony Vandikas

Automated Synthesis of Secure Platform Mappings 219
Eunsuk Kang, Stéphane Lafortune, and Stavros Tripakis

Synthesis

Synthesizing Approximate Implementations for Unrealizable Specifications . . . 241
Rayna Dimitrova, Bernd Finkbeiner, and Hazem Torfah

Quantified Invariants via Syntax-Guided Synthesis 259
Grigory Fedyukovich, Sumanth Prabhu, Kumar Madhukar,
and Aarti Gupta

Efficient Synthesis with Probabilistic Constraints . 278
Samuel Drews, Aws Albarghouthi, and Loris D’Antoni

Membership-Based Synthesis of Linear Hybrid Automata 297
Miriam García Soto, Thomas A. Henzinger, Christian Schilling,
and Luka Zeleznik

Overfitting in Synthesis: Theory and Practice . 315
Saswat Padhi, Todd Millstein, Aditya Nori, and Rahul Sharma

Proving Unrealizability for Syntax-Guided Synthesis 335
Qinheping Hu, Jason Breck, John Cyphert, Loris D’Antoni,
and Thomas Reps

Model Checking

BMC for Weak Memory Models: Relation Analysis for Compact
SMT Encodings . 355

Natalia Gavrilenko, Hernán Ponce-de-León, Florian Furbach,
Keijo Heljanko, and Roland Meyer

When Human Intuition Fails: Using Formal Methods to Find an Error
in the “Proof” of a Multi-agent Protocol . 366

Jennifer A. Davis, Laura R. Humphrey, and Derek B. Kingston

Extending NUXMV with Timed Transition Systems and Timed
Temporal Properties . 376

Alessandro Cimatti, Alberto Griggio, Enrico Magnago, Marco Roveri,
and Stefano Tonetta

Cerberus-BMC: A Principled Reference Semantics and Exploration Tool
for Concurrent and Sequential C . 387

Stella Lau, Victor B. F. Gomes, Kayvan Memarian,
Jean Pichon-Pharabod, and Peter Sewell

xiv Contents – Part I

Cyber-Physical Systems and Machine Learning

Multi-armed Bandits for Boolean Connectives in Hybrid
System Falsification . 401

Zhenya Zhang, Ichiro Hasuo, and Paolo Arcaini

StreamLAB: Stream-based Monitoring of Cyber-Physical Systems 421
Peter Faymonville, Bernd Finkbeiner, Malte Schledjewski,
Maximilian Schwenger, Marvin Stenger, Leander Tentrup,
and Hazem Torfah

VERIFAI: A Toolkit for the Formal Design and Analysis of Artificial
Intelligence-Based Systems. 432

Tommaso Dreossi, Daniel J. Fremont, Shromona Ghosh, Edward Kim,
Hadi Ravanbakhsh, Marcell Vazquez-Chanlatte, and Sanjit A. Seshia

The Marabou Framework for Verification and Analysis of Deep
Neural Networks . 443

Guy Katz, Derek A. Huang, Duligur Ibeling, Kyle Julian,
Christopher Lazarus, Rachel Lim, Parth Shah, Shantanu Thakoor,
Haoze Wu, Aleksandar Zeljić, David L. Dill, Mykel J. Kochenderfer,
and Clark Barrett

Probabilistic Systems, Runtime Techniques

Probabilistic Bisimulation for Parameterized Systems
(with Applications to Verifying Anonymous Protocols) 455

Chih-Duo Hong, Anthony W. Lin, Rupak Majumdar,
and Philipp Rümmer

Semi-quantitative Abstraction and Analysis of Chemical
Reaction Networks . 475

Milan Češka and Jan Křetínský

PAC Statistical Model Checking for Markov Decision Processes
and Stochastic Games . 497

Pranav Ashok, Jan Křetínský, and Maximilian Weininger

Symbolic Monitoring Against Specifications Parametric in Time and Data . . . 520
Masaki Waga, Étienne André, and Ichiro Hasuo

STAMINA: STochastic Approximate Model-Checker
for INfinite-State Analysis . 540

Thakur Neupane, Chris J. Myers, Curtis Madsen, Hao Zheng,
and Zhen Zhang

Contents – Part I xv

Dynamical, Hybrid, and Reactive Systems

Local and Compositional Reasoning for Optimized Reactive Systems 553
Mitesh Jain and Panagiotis Manolios

Robust Controller Synthesis in Timed Büchi Automata:
A Symbolic Approach . 572

Damien Busatto-Gaston, Benjamin Monmege, Pierre-Alain Reynier,
and Ocan Sankur

Flexible Computational Pipelines for Robust Abstraction-Based
Control Synthesis . 591

Eric S. Kim, Murat Arcak, and Sanjit A. Seshia

Temporal Stream Logic: Synthesis Beyond the Bools 609
Bernd Finkbeiner, Felix Klein, Ruzica Piskac, and Mark Santolucito

Run-Time Optimization for Learned Controllers Through
Quantitative Games . 630

Guy Avni, Roderick Bloem, Krishnendu Chatterjee,
Thomas A. Henzinger, Bettina Könighofer, and Stefan Pranger

Taming Delays in Dynamical Systems: Unbounded Verification of Delay
Differential Equations . 650

Shenghua Feng, Mingshuai Chen, Naijun Zhan, Martin Fränzle,
and Bai Xue

Author Index . 671

xvi Contents – Part I

Contents – Part II

Logics, Decision Procedures, and Solvers

Satisfiability Checking for Mission-Time LTL . 3
Jianwen Li, Moshe Y. Vardi, and Kristin Y. Rozier

High-Level Abstractions for Simplifying Extended String Constraints
in SMT . 23

Andrew Reynolds, Andres Nötzli, Clark Barrett, and Cesare Tinelli

Alternating Automata Modulo First Order Theories 43
Radu Iosif and Xiao Xu

Q3B: An Efficient BDD-based SMT Solver for Quantified Bit-Vectors 64
Martin Jonáš and Jan Strejček

CVC4SY: Smart and Fast Term Enumeration for Syntax-Guided Synthesis 74
Andrew Reynolds, Haniel Barbosa, Andres Nötzli, Clark Barrett,
and Cesare Tinelli

Incremental Determinization for Quantifier Elimination
and Functional Synthesis . 84

Markus N. Rabe

Numerical Programs

Loop Summarization with Rational Vector Addition Systems 97
Jake Silverman and Zachary Kincaid

Invertibility Conditions for Floating-Point Formulas 116
Martin Brain, Aina Niemetz, Mathias Preiner, Andrew Reynolds,
Clark Barrett, and Cesare Tinelli

Numerically-Robust Inductive Proof Rules for Continuous Dynamical
Systems . 137

Sicun Gao, James Kapinski, Jyotirmoy Deshmukh, Nima Roohi,
Armando Solar-Lezama, Nikos Arechiga, and Soonho Kong

Icing: Supporting Fast-Math Style Optimizations in a Verified Compiler 155
Heiko Becker, Eva Darulova, Magnus O. Myreen, and Zachary Tatlock

Sound Approximation of Programs with Elementary Functions 174
Eva Darulova and Anastasia Volkova

Verification

Formal Verification of Quantum Algorithms Using Quantum Hoare Logic . . . 187
Junyi Liu, Bohua Zhan, Shuling Wang, Shenggang Ying, Tao Liu,
Yangjia Li, Mingsheng Ying, and Naijun Zhan

SECCSL: Security Concurrent Separation Logic. 208
Gidon Ernst and Toby Murray

Reachability Analysis for AWS-Based Networks. 231
John Backes, Sam Bayless, Byron Cook, Catherine Dodge,
Andrew Gacek, Alan J. Hu, Temesghen Kahsai, Bill Kocik,
Evgenii Kotelnikov, Jure Kukovec, Sean McLaughlin, Jason Reed,
Neha Rungta, John Sizemore, Mark Stalzer, Preethi Srinivasan,
Pavle Subotić, Carsten Varming, and Blake Whaley

Distributed Systems and Networks

Verification of Threshold-Based Distributed Algorithms by Decomposition
to Decidable Logics. 245

Idan Berkovits, Marijana Lazić, Giuliano Losa, Oded Padon,
and Sharon Shoham

Gradual Consistency Checking . 267
Rachid Zennou, Ahmed Bouajjani, Constantin Enea,
and Mohammed Erradi

Checking Robustness Against Snapshot Isolation . 286
Sidi Mohamed Beillahi, Ahmed Bouajjani, and Constantin Enea

Efficient Verification of Network Fault Tolerance
via Counterexample-Guided Refinement. 305

Nick Giannarakis, Ryan Beckett, Ratul Mahajan, and David Walker

On the Complexity of Checking Consistency for Replicated Data Types 324
Ranadeep Biswas, Michael Emmi, and Constantin Enea

Communication-Closed Asynchronous Protocols . 344
Andrei Damian, Cezara Drăgoi, Alexandru Militaru, and Josef Widder

Verification and Invariants

Interpolating Strong Induction. 367
Hari Govind Vediramana Krishnan, Yakir Vizel, Vijay Ganesh,
and Arie Gurfinkel

xviii Contents – Part II

Verifying Asynchronous Event-Driven Programs Using Partial Abstract
Transformers . 386

Peizun Liu, Thomas Wahl, and Akash Lal

Inferring Inductive Invariants from Phase Structures 405
Yotam M. Y. Feldman, James R. Wilcox, Sharon Shoham,
and Mooly Sagiv

Termination of Triangular Integer Loops is Decidable 426
Florian Frohn and Jürgen Giesl

AliveInLean: A Verified LLVM Peephole Optimization Verifier 445
Juneyoung Lee, Chung-Kil Hur, and Nuno P. Lopes

Concurrency

Automated Parameterized Verification of CRDTs . 459
Kartik Nagar and Suresh Jagannathan

What’s Wrong with On-the-Fly Partial Order Reduction. 478
Stephen F. Siegel

Integrating Formal Schedulability Analysis into a Verified OS Kernel 496
Xiaojie Guo, Maxime Lesourd, Mengqi Liu, Lionel Rieg,
and Zhong Shao

Rely-Guarantee Reasoning About Concurrent Memory Management
in Zephyr RTOS . 515

Yongwang Zhao and David Sanán

Violat: Generating Tests of Observational Refinement
for Concurrent Objects. 534

Michael Emmi and Constantin Enea

Author Index . 547

Contents – Part II xix

Automata and Timed Systems

Symbolic Register Automata

Loris D’Antoni1, Tiago Ferreira2, Matteo Sammartino2(B),
and Alexandra Silva2

1 University of Wisconsin–Madison, Madison, WI 53706-1685, USA
loris@cs.wisc.edu

2 University College London, Gower Street, London WC1E 6BT, UK
me@tiferrei.com, {m.sammartino,a.silva}@ucl.ac.uk

Abstract. Symbolic Finite Automata and Register Automata are two
orthogonal extensions of finite automata motivated by real-world prob-
lems where data may have unbounded domains. These automata address
a demand for a model over large or infinite alphabets, respectively. Both
automata models have interesting applications and have been success-
ful in their own right. In this paper, we introduce Symbolic Register
Automata, a new model that combines features from both symbolic and
register automata, with a view on applications that were previously out
of reach. We study their properties and provide algorithms for emptiness,
inclusion and equivalence checking, together with experimental results.

1 Introduction

Finite automata are a ubiquitous formalism that is simple enough to model
many real-life systems and phenomena. They enjoy a large variety of theoret-
ical properties that in turn play a role in practical applications. For example,
finite automata are closed under Boolean operations, and have decidable empti-
ness and equivalence checking procedures. Unfortunately, finite automata have
a fundamental limitation: they can only operate over finite (and typically small)
alphabets. Two orthogonal families of automata models have been proposed to
overcome this: symbolic automata and register automata. In this paper, we show
that these two models can be combined yielding a new powerful model that can
cover interesting applications previously out of reach for existing models.

Symbolic finite automata (SFAs) allow transitions to carry predicates over
rich first-order alphabet theories, such as linear arithmetic, and therefore extend
classic automata to operate over infinite alphabets [12]. For example, an SFA can
define the language of all lists of integers in which the first and last elements are
positive integer numbers. Despite their increased expressiveness, SFAs enjoy the
same closure and decidability properties of finite automata—e.g., closure under
Boolean operations and decidable equivalence and emptiness.

This work was partially funded by NSF Grants CCF-1763871, CCF-1750965, a Face-
book TAV Research Award, the ERC starting grant Profoundnet (679127) and a Lev-
erhulme Prize (PLP-2016-129). See [10] for the full version of this paper.

c© The Author(s) 2019
I. Dillig and S. Tasiran (Eds.): CAV 2019, LNCS 11561, pp. 3–21, 2019.
https://doi.org/10.1007/978-3-030-25540-4_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-25540-4_1&domain=pdf
https://doi.org/10.1007/978-3-030-25540-4_1

4 L. D’Antoni et al.

Register automata (RA) support infinite alphabets by allowing input charac-
ters to be stored in registers during the computation and to be compared against
existing values that are already stored in the registers [17]. For example, an RA
can define the language of all lists of integers in which all numbers appearing in
even positions are the same. RAs do not have some of the properties of finite
automata (e.g., they cannot be determinized), but they still enjoy many useful
properties that have made them a popular model in static analysis, software
verification, and program monitoring [15].

In this paper, we combine the best features of these two models—first order
alphabet theories and registers—into a new model, symbolic register automata
(SRA). SRAs are strictly more expressive than SFAs and RAs. For example,
an SRA can define the language of all lists of integers in which the first and
last elements are positive rational numbers and all numbers appearing in even
positions are the same. This language is not recognizable by either an SFA nor
by an RA.

While other attempts at combining symbolic automata and registers have
resulted in undecidable models with limited closure properties [11], we show
that SRAs enjoy the same closure and decidability properties of (non-symbolic)
register automata. We propose a new application enabled by SRAs and imple-
ment our model in an open-source automata library.

In summary, our contributions are:

– Symbolic Register Automata (SRA): a new automaton model that can handle
complex alphabet theories while allowing symbols at arbitrary positions in the
input string to be compared using equality (Sect. 3).

– A thorough study of the properties of SRAs. We show that SRAs are closed
under intersection, union and (deterministic) complementation, and provide
algorithms for emptiness and forward (bi)simulation (Sect. 4).

– A study of the effectiveness of our SRA implementation on handling regular
expressions with back-references (Sect. 5). We compile a set of benchmarks
from existing regular expressions with back-references (e.g., (\d)[a-z]∗\1)
and show that SRAs are an effective model for such expressions and existing
models such as SFAs and RAs are not. Moreover, we show that SRAs are more
efficient than the java.util.regex library for matching regular expressions
with back-references.

2 Motivating Example

In this section, we illustrate the capabilities of symbolic register automata using
a simple example. Consider the regular expression rp shown in Fig. 1a. This
expression, given a sequence of product descriptions, checks whether the prod-
ucts have the same code and lot number. The reader might not be familiar with
some of the unusual syntax of this expression. In particular, rp uses two back-
references \1 and \2. The semantics of this construct is that the string matched
by the regular expression for \1 (resp. \2) should be exactly the string that
matched the subregular expression r appearing between the first (resp. second)

Symbolic Register Automata 5

C:(.{3}) L:(.) D:[^\s]+(C:\1 L:\2 D:[^\s]+)+
(a) Regular expression rp (with back-reference).

C:X4a L:4 D:bottle C:X4a L:4 D:jar

(b) Example text matched by rp.
C:X4a L:4 D:bottle C:X5a L:4 D:jar

(c) Example text not matched by rp.

C
1

: true/ r1 ‘ ’

D ^\s

true/ r2 true/ r3 L : true/ r4

2
: true/=r1 ‘ ’true/=r2 true/=r3 L : true/=r4 ‘ ’

 ^\s

^\s

 ^\s

:

D‘ ’ :

C

‘ ’

‘ ’

(d) Snippets of a symbolic register automaton Ap corresponding to rp.

Fig. 1. Regular expression for matching products with same code and lot number—i.e.,
the characters of C and L are the same in all the products.

two parenthesis, in this case (.{3}) (resp. (.)). Back-references allow regular
expressions to check whether the encountered text is the same or is different
from a string/character that appeared earlier in the input (see Figs. 1b and c for
examples of positive and negative matches).

Representing this complex regular expression using an automaton model
requires addressing several challenges. The expression rp:

1. operates over large input alphabets consisting of upwards of 216 characters;
2. uses complex character classes (e.g., \s) to describe different sets of characters

in the input;
3. adopts back-references to detect repeated strings in the input.

Existing automata models do not address one or more of these challenges. Finite
automata require one transition for each character in the input alphabet and
blow-up when representing large alphabets. Symbolic finite automata (SFA)
allow transitions to carry predicates over rich structured first-order alphabet
theories and can describe, for example, character classes [12]. However, SFAs
cannot directly check whether a character or a string is repeated in the input.
An SFA for describing the regular expression rp would have to store the charac-
ters after C: directly in the states to later check whether they match the ones of
the second product. Hence, the smallest SFA for this example would require bil-
lions of states! Register automata (RA) and their variants can store characters in
registers during the computation and compare characters against values already
stored in the registers [17]. Hence, RAs can check whether the two products have
the same code. However, RAs only operate over unstructured infinite alphabets
and cannot check, for example, that a character belongs to a given class.

The model we propose in this paper, symbolic register automata (SRA), com-
bines the best features of SFAs and RAs—first-order alphabet theories and
registers—and can address all the three aforementioned challenges. Figure 1d
shows a snippet of a symbolic register automaton Ap corresponding to rp. Each
transition in Ap is labeled with a predicate that describes what characters can

6 L. D’Antoni et al.

trigger the transition. For example, ^\s denotes that the transition can be trig-
gered by any non-space character, L denotes that the transition can be triggered
by the character L, and true denotes that the transition can be triggered by any
character. Transitions of the form ϕ/→ ri denote that, if a character x satisfies
the predicate ϕ, the character is then stored in the register ri. For example, the
transition out of state 1 reads any character and stores it in register r1. Finally,
transitions of the form ϕ/= ri are triggered if a character x satisfies the pred-
icate ϕ and x is the same character as the one stored in ri. For example, the
transition out of state 2 can only be triggered by the same character that was
stored in r1 when reading the transition out state 1—i.e., the first characters in
the product codes should be the same.

SRAs are a natural model for describing regular expressions like rp, where
capture groups are of bounded length, and hence correspond to finitely-many
registers. The SRA Ap has fewer than 50 states (vs. more than 100 billion for
SFAs) and can, for example, be used to check whether an input string matches
the given regular expression (e.g., monitoring). More interestingly, in this paper
we study the closure and decidability properties of SRAs and provide an imple-
mentation for our model. For example, consider the following regular expression
rpC that only checks whether the product codes are the same, but not the lot
numbers:

C:(.{3}) L:. D:[^\s]+(C:\1 L:. D:[^\s]+)+

The set of strings accepted by rpC is a superset of the set of strings accepted by
rp. In this paper, we present simulation and bisimulation algorithms that can
check this property. Our implementation can show that rp subsumes rpC in 25 s
and we could not find other tools that can prove the same property.

3 Symbolic Register Automata

In this section we introduce some preliminary notions, we define symbolic register
automata and a variant that will be useful in proving decidability properties.

Preliminaries. An effective Boolean algebra A is a tuple (D, Ψ, � �,⊥,
�,∧,∨,¬), where: D is a set of domain elements; Ψ is a set of predicates
closed under the Boolean connectives and ⊥,� ∈ Ψ . The denotation func-
tion � � : Ψ → 2D is such that �⊥� = ∅ and ��� = D, for all ϕ,ψ ∈ Ψ ,
�ϕ ∨ ψ� = �ϕ� ∪ �ψ�, �ϕ ∧ ψ� = �ϕ� ∩ �ψ�, and �¬ϕ� = D \ �ϕ�. For ϕ ∈ Ψ ,
we write isSat(ϕ) whenever �ϕ� �= ∅ and say that ϕ is satisfiable. A is decidable
if isSat is decidable. For each a ∈ D, we assume predicates atom(a) such that
�atom(a)� = {a}.

Example 1. The theory of linear integer arithmetic forms an effective BA, where
D = Z and Ψ contains formulas ϕ(x) in the theory with one fixed integer variable.
For example, divk := (x mod k) = 0 denotes the set of all integers divisible by k.

Symbolic Register Automata 7

Notation. Given a set S, we write P(S) for its powerset. Given a function
f : A → B, we write f [a �→ b] for the function such that f [a �→ b](a) = b
and f [a �→ b](x) = f(x), for x �= a. Analogously, we write f [S �→ b], with
S ⊆ A, to map multiple values to the same b. The pre-image of f is the function
f−1 : P(B) → P(A) given by f−1(S) = {a | ∃b ∈ S : b = f(a)}; for readability,
we will write f−1(x) when S = {x}. Given a relation R ⊆ A × B, we write aRb
for (a, b) ∈ R.

Model Definition. Symbolic register automata have transitions of the form:

p
ϕ/E,I,U−−−−−→ q

where p and q are states, ϕ is a predicate from a fixed effective Boolean algebra,
and E, I, U are subsets of a fixed finite set of registers R. The intended inter-
pretation of the above transition is: an input character a can be read in state
q if (i) a ∈ �ϕ�, (ii) the content of all the registers in E is equal to a, and (iii)
the content of all the registers in I is different from a. If the transition succeeds
then a is stored into all the registers U and the automaton moves to q.

Example 2. The transition labels in Fig. 1d have been conveniently simplified to
ease intuition. These labels correspond to full SRA labels as follows:

ϕ/→r =⇒ ϕ/∅, ∅, {r} ϕ/=r =⇒ ϕ/{r}, ∅, ∅ ϕ =⇒ ϕ/∅, ∅, ∅ .

Given a set of registers R, the transitions of an SRA have labels over the following
set: LR = Ψ × {(E, I, U) ∈ P(R) × P(R) × P(R) | E ∩ I = ∅}. The condition
E ∩ I = ∅ guarantees that register constraints are always satisfiable.

Definition 1 (Symbolic Register Automaton). A symbolic register
automaton (SRA) is a 6-tuple (R,Q, q0, v0, F,Δ), where R is a finite set of reg-
isters, Q is a finite set of states, q0 ∈ Q is the initial state, v0 : R → D ∪ {�} is
the initial register assignment (if v0(r) = �, the register r is considered empty),
F ⊆ Q is a finite set of final states, and Δ ⊆ Q × LR × Q is the transition

relation. Transitions (p, (ϕ, �), q) ∈ Δ will be written as p
ϕ/�−−→ q.

An SRA can be seen as a finite description of a (possibly infinite) labeled tran-
sition system (LTS), where states have been assigned concrete register values,
and transitions read a single symbol from the potentially infinite alphabet. This
so-called configuration LTS will be used in defining the semantics of SRAs.

Definition 2 (Configuration LTS). Given an SRA S, the configuration LTS
CLTS(S) is defined as follows. A configuration is a pair (p, v) where p ∈ Q is
a state in S and a v : R → D ∪ {�} is register assignment; (q0, v0) is called the
initial configuration; every (q, v) such that q ∈ F is a final configuration. The
set of transitions between configurations is defined as follows:

p
ϕ/E,I,U−−−−−→ q ∈ Δ E ⊆ v−1(a) I ∩ v−1(a) = ∅

(p, v) a−→ (q, v[U �→ a]) ∈ CLTS(S)

8 L. D’Antoni et al.

Intuitively, the rule says that a SRA transition from p can be instantiated to
one from (p, v) that reads a when the registers containing the value a, namely
v−1(a), satisfy the constraint described by E, I (a is contained in registers E
but not in I). If the constraint is satisfied, all registers in U are assigned a.

A run of the SRA S is a sequence of transitions in CLTS(S) starting from the
initial configuration. A configuration is reachable whenever there is a run ending
up in that configuration. The language of an SRA S is defined as

L (S) := {a1 . . . an ∈ Dn | ∃(q0, v0)
a1−→ . . .

an−−→ (qn, vn) ∈ CLTS(S), qn ∈ F}
An SRA S is deterministic if its configuration LTS is; namely, for every word
w ∈ D� there is at most one run in CLTS(S) spelling w. Determinism is important
for some application contexts, e.g., for runtime monitoring. Since SRAs subsume
RAs, nondeterministic SRAs are strictly more expressive than deterministic ones,
and language equivalence is undecidable for nondeterministic SRAs [27].

We now introduce the notions of simulation and bisimulation for SRAs, which
capture whether one SRA behaves “at least as” or “exactly as” another one.

Definition 3 ((Bi)simulation for SRAs). A simulation R on SRAs S1 and
S2 is a binary relation R on configurations such that (p1, v1)R(p2, v2) implies:

– if p1 ∈ F1 then p2 ∈ F2;
– for each transition (p1, v1)

a−→ (q1, w1) in CLTS(S1), there exists a transition
(p2, v2)

a−→ (q2, w2) in CLTS(S2) such that (q1, w1)R(q2, w2).

A simulation R is a bisimulation if R−1 is a also a simulation. We write S1 ≺ S2
(resp. S1 ∼ S2) whenever there is a simulation (resp. bisimulation) R such that
(q01, v01)R(q02, v02), where (q0i, v0i) is the initial configuration of Si, for i = 1, 2.

We say that an SRA is complete whenever for every configuration (p, v) and
a ∈ D there is a transition (p, v) a−→ (q, w) in CLTS(S). The following results
connect similarity and language inclusion.

Proposition 1. If S1 ≺ S2 then L (S1) ⊆ L (S2). If S1 and S2 are deterministic
and complete, then the other direction also holds.

It is worth noting that given a deterministic SRA we can define its completion
by adding transitions so that every value a ∈ D can be read from any state.

Remark 1. RAs and SFAs can be encoded as SRAs on the same state-space:

– An RA is encoded as an SRA with all transition guards �;
– an SFA can be encoded as an SRA with R = ∅, with each SFA transition

p
ϕ−→ q encoded as p

ϕ/∅,∅,∅−−−−−→ q. Note that the absence of registers implies that
the CLTS always has finitely many configurations.

SRAs are strictly more expressive than both RAs and SFAs. For instance, the
language {n0n1 . . . nk | n0 = nk, even(ni), ni ∈ Z, i = 1, . . . , k} of finite sequences
of even integers where the first and last one coincide, can be recognized by an
SRA, but not by an RA or by an SFA.

Symbolic Register Automata 9

Boolean Closure Properties. SRAs are closed under intersection and union.
Intersection is given by a standard product construction whereas union is
obtained by adding a new initial state that mimics the initial states of both
automata.

Proposition 2 (Closure under intersection and union). Given SRAs S1
and S2, there are SRAs S1∩S2 and S1∪S2 such that L (S1∩S2) = L (S1)∩L (S2)
and L (S1 ∪ S2) = L (S1) ∪ L (S2).

SRAs in general are not closed under complementation, because RAs are not.
However, we still have closure under complementation for a subclass of SRAs.

Proposition 3. Let S be a complete and deterministic SRA, and let S be the
SRA defined as S, except that its final states are Q\F . Then L (S) = D� \L (S).

4 Decidability Properties

In this section we will provide algorithms for checking determinism and emptiness
for an SRA, and (bi)similarity of two SRAs. Our algorithms leverage symbolic
techniques that use the finite syntax of SRAs to indirectly operate over the
underlying configuration LTS, which can be infinite.

Single-Valued Variant. To study decidability, it is convenient to restrict reg-
ister assignments to injective ones on non-empty registers, that is functions
v : R → D ∪ {�} such that v(r) = v(s) and v(r) �= � implies r = s. This is
also the approach taken for RAs in the seminal papers [17,27]. Both for RAs
and SRAs, this restriction does not affect expressivity. We say that an SRA is
single-valued if its initial assignment v0 is injective on non-empty registers. For
single-valued SRAs, we only allow two kinds of transitions:

Read transition: p
ϕ/r=

−−−→ q triggers when a ∈ �ϕ� and a is already stored in r.

Fresh transition: p
ϕ/r•
−−−→ q triggers when the input a ∈ �ϕ� and a is fresh, i.e.,

is not stored in any register. After the transition, a is stored into r.

SRAs and their single-valued variants have the same expressive power. Trans-
lating single-valued SRAs to ordinary ones is straightforward:

p
ϕ/r=

−−−→ q =⇒ p
ϕ/{r},∅,∅−−−−−−→ q p

ϕ/r•
−−−→ q =⇒ p

ϕ/∅,R,{r}−−−−−−→ q

The opposite translation requires a state-space blow up, because we need to
encode register equalities in the states.

Theorem 1. Given an SRA S with n states and r registers, there is a single-
valued SRA S′ with O(nrr) states and r+1 registers such that S ∼ S′. Moreover,
the translation preserves determinism.

10 L. D’Antoni et al.

Normalization. While our techniques are inspired by analogous ones for non-
symbolic RAs, SRAs present an additional challenge: they can have arbitrary
predicates on transitions. Hence, the values that each transition can read, and
thus which configurations it can reach, depend on the history of past transitions
and their predicates. This problem emerges when checking reachability and sim-
ilarity, because a transition may be disabled by particular register values, and so
lead to unsound conclusions, a problem that does not exist in register automata.

Example 3. Consider the SRA below, defined over the BA of integers.

All predicates on transitions are satisfiable, yet L (S) = ∅. To go from 0 to 1, S
must read a value n such that div3(n) and n �= 0 and then n is stored into r. The
transition from 1 to 2 can only happen if the content of r also satisfies div5(n) and
n ∈ [0, 10]. However, there is no n satisfying div3(n)∧n �= 0∧div5(n)∧n ∈ [0, 10],
hence the transition from 1 to 2 never happens.

To handle the complexity caused by predicates, we introduce a way of normaliz-
ing an SRA to an equivalent one that stores additional information about input
predicates. We first introduce some notation and terminology.

A register abstraction θ for S, used to “keep track” of the domain of regis-
ters, is a family of predicates indexed by the registers R of S. Given a register
assignment v, we write v |= θ whenever v(r) ∈ �θr� for v(r) �= �, and θr = ⊥
otherwise. Hereafter we shall only consider “meaningful” register abstractions,
for which there is at least one assignment v such that v |= θ.

With the contextual information about register domains given by θ, we say

that a transition p
ϕ/�−−→ q ∈ Δ is enabled by θ whenever it has at least an instance

(p, v) a−→ (q, w) in CLTS(S), for all v |= θ. Enabled transitions are important when
reasoning about reachability and similarity.

Checking whether a transition has at least one realizable instance in the CLTS
is difficult in practice, especially when � = r•, because it amounts to checking
whether �ϕ� \ img(v) �= ∅, for all injective v |= θ.

To make the check for enabledness practical we will use minterms. For a set
of predicates Φ, a minterm is a minimal satisfiable Boolean combination of all
predicates that occur in Φ. Minterms are the analogue of atoms in a complete
atomic Boolean algebra. E.g. the set of predicates Φ = {x > 2, x < 5} over the
theory of linear integer arithmetic has minterms mint(Φ) = {x > 2∧x < 5, ¬x >
2 ∧ x < 5, x > 2 ∧ ¬x < 5}. Given ψ ∈ mint(Φ) and ϕ ∈ Φ, we will write ϕ � ψ
whenever ϕ appears non-negated in ψ, for instance (x > 2) � (x > 2 ∧ ¬x < 5).
A crucial property of minterms is that they do not overlap, i.e., isSat(ψ1 ∧ ψ2)
if and only if ψ1 = ψ2, for ψ1 and ψ2 minterms.

Lemma 1 (Enabledness). Let θ be a register abstraction such that θr is a

minterm, for all r ∈ R. If ϕ is a minterm, then p
ϕ/�−−→ q is enabled by θ iff:

Symbolic Register Automata 11

(1) if � = r=, then ϕ = θr; (2) if � = r•, then |�ϕ�| > E (θ, ϕ),
where E (θ, ϕ) = |{r ∈ R | θr = ϕ}| is the # of registers with values from �ϕ�.

Intuitively, (1) says that if the transition reads a symbol stored in r satisfying ϕ,
the symbol must also satisfy θr, the range of r. Because ϕ and θr are minterms,
this only happens when ϕ = θr. (2) says that the enabling condition �ϕ� \
img(v) �= ∅, for all injective v |= θ, holds if and only if there are fewer registers
storing values from ϕ than the cardinality of ϕ. That implies we can always
find a fresh element in �ϕ� to enable the transition. Registers holding values
from ϕ are exactly those r ∈ R such that θr = ϕ. Both conditions can be
effectively checked: the first one is a simple predicate-equivalence check, while the
second one amounts to checking whether ϕ holds for at least a certain number
k of distinct elements. This can be achieved by checking satisfiability of ϕ ∧
¬atom(a1) ∧ · · · ∧ ¬atom(ak−1), for a1, . . . , ak−1 distinct elements of �ϕ�.

Remark 2. Using single-valued SRAs to check enabledness might seem like a
restriction. However, if one would start from a generic SRA, the process to
check enabledness would contain an extra step: for each state p, we would have
to keep track of all possible equations among registers. In fact, register equalities
determine whether (i) register constraints of an outgoing transition are satisfi-
able; (ii) how many elements of the guard we need for the transition to happen,
analogously to condition 2 of Lemma 1. Generating such equations is the key
idea behind Theorem 1, and corresponds precisely to turning the SRA into a
single-valued one.

Given any SRA, we can use the notion of register abstraction to build an equiva-
lent normalized SRA, where (i) states keep track of how the domains of registers
change along transitions, (ii) transitions are obtained by breaking the one of the
original SRA into minterms and discarding the ones that are disabled according
to Lemma 1. In the following we write mint(S) for the minterms for the set of

predicates {ϕ | p
ϕ/�−−→ q ∈ Δ} ∪ {atom(v0(r)) | v0(r) ∈ D, r ∈ R}. Observe that

an atomic predicate always has an equivalent minterm, hence we will use atomic
predicates to define the initial register abstraction.

Definition 4 (Normalized SRA). Given an SRA S, its normalization N(S)
is the SRA (R,N(Q),N(q0), v0,N(F),N(Δ)) where:

– N(Q) = {θ | θ is a register abstraction over mint(S)∪{⊥} }×Q; we will write
θ � q for (θ, q) ∈ N(Q).

– N(q0) = θ0 � q0, where (θ0)r = atom(v0(r)) if v0(r) ∈ D, and (θ0)r = ⊥ if
v0(r) = �;

– N(F) = {θ � p ∈ N(Q) | p ∈ F}
– N(Δ) ={θ � p

θr/r=

−−−−→ θ � q | p
ϕ/r=

−−−→ q ∈ Δ,ϕ � θr} ∪
{θ � p

ψ/r•
−−−→ θ[r �→ ψ] � q | p

ϕ/r•
−−−→ q ∈ Δ,ϕ � ψ, |�ψ�| > E (θ, ψ)}

12 L. D’Antoni et al.

The automaton N(S) enjoys the desired property: each transition from θ � p is
enabled by θ, by construction. N(S) is always finite. In fact, suppose S has n
states, m transitions and r registers. Then N(S) has at most m predicates, and
|mint(S)| is O(2m). Since the possible register abstractions are O(r2m), N(S) has
O(nr2m) states and O(mr223m) transitions.

Example 4. We now show the normalized version of Example 3. The first step is
computing the set mint(S) of minterms for S, i.e., the satisfiable Boolean combi-
nations of {atom(0), div3, [0, 10] ∧ div5, < 0∨ > 10}. For simplicity, we represent
minterms as bitvectors where a 0 component means that the corresponding pred-
icate is negated, e.g., [1, 1, 1, 0] stands for the minterm atom(0)∧ ([0, 10]∧div3)∧
div5 ∧ ¬(< 0∨ > 10). Minterms and the resulting SRA N(S) are shown below.

On each transition we show how it is broken down to minterms, and for each
state we show the register abstraction (note that state 1 becomes two states in
N(S)). The transition from 1 to 2 is not part of N(S) – this is why it is dotted. In
fact, in every register abstraction [r �→ m] reachable at state 1, the component
for the transition guard [0, 10]∧div5 in the minterm m (3rd component) is 0, i.e.,
([0, 10] ∧ div5) �� m. Intuitively, this means that r will never be assigned a value
that satisfies [0, 10]∧div5. As a consequence, the construction of Definition 4 will
not add a transition from 1 to 2.

Finally, we show that the normalized SRA behaves exactly as the original one.

Proposition 4. (p, v) ∼ (θ � p, v), for all p ∈ Q and v |= θ. Hence, S ∼ N(S).

Emptiness and Determinism. The transitions of N(S) are always enabled
by construction, therefore every path in N(S) always corresponds to a run in
CLTS(N(S)).

Lemma 2. The state θ�p is reachable in N(S) if and only if there is a reachable
configuration (θ � p, v) in CLTS(N(S)) such that v |= θ. Moreover, if (θ � p, v)
is reachable, then all configurations (θ � p,w) such that w |= θ are reachable.

Therefore, using Proposition 4, we can reduce the reachability and emptiness
problems of S to that of N(S).

Theorem 2 (Emptiness). There is an algorithm to decide reachability of any
configuration of S, hence whether L (S) = ∅.
Proof. Let (p, v) be a configuration of S. To decide whether it is reachable in
CLTS(S), we can perform a visit of N(S) from its initial state, stopping when a

Symbolic Register Automata 13

state θ � p such that v |= θ is reached. If we are just looking for a final state, we
can stop at any state such that p ∈ F . In fact, by Proposition 4, there is a run
in CLTS(S) ending in (p, v) if and only if there is a run in CLTS(N(S)) ending in
(θ � p, v) such that v |= θ. By Lemma 2, the latter holds if and only if there is a
path in N(S) ending in θ � p. This algorithm has the complexity of a standard
visit of N(S), namely O(nr2m + mr223m). ��

Now that we characterized which transitions are reachable, we define what it
means for a normalized SRA to be deterministic and we show that determinism
is preserved by the translation from SRA.

Proposition 5 (Determinism). N(S) is deterministic if and only if for all

reachable transitions p
ϕ1/�1−−−−→ q1, p

ϕ2/�2−−−−→ q2 ∈ N(Δ) the following holds: ϕ1 �= ϕ2

whenever either (1) �1 = �2 and q1 �= q2, or; (2) �1 = r•, �2 = s•, and r �= s;

One can check determinism of an SRA by looking at its normalized version.

Proposition 6. S is deterministic if and only if N(S) is deterministic.

Similarity and Bisimilarity. We now introduce a symbolic technique to
decide similarity and bisimilarity of SRAs. The basic idea is similar to sym-
bolic (bi)simulation [20,27] for RAs. Recall that RAs are SRAs whose transition
guards are all �. Given two RAs S1 and S2 a symbolic simulation between them
is defined over their state spaces Q1 and Q2, not on their configurations. For this
to work, one needs to add an extra piece of information about how registers of
the two states are related. More precisely, a symbolic simulation is a relation on
triples (p1, p2, σ), where p1 ∈ Q1, p2 ∈ Q2 and σ ⊆ R1 × R2 is a partial injective
function. This function encodes constraints between registers: (r, s) ∈ σ is an
equality constraint between r ∈ R1 and s ∈ R2, and (r, s) /∈ σ is an inequality
constraint. Intuitively, (p1, p2, σ) says that all configurations (p1, v1) and (p2, v2)
such that v1 and v2 satisfy σ – e.g., v1(r) = v2(s) whenever (r, s) ∈ σ – are in
the simulation relation (p1, v1) ≺ (p2, v2). In the following we will use v1 �� v2 to
denote the function encoding constraints among v1 and v2, explicitly: σ(r) = s
if and only if v1(r) = v2(s) and v1(r) �= �.

Definition 5 (Symbolic (bi)similarity [27]). A symbolic simulation is a rela-
tion R ⊆ Q1 ×Q1 ×P(R1 ×R2) such that if (p1, p2, σ) ∈ R, then p1 ∈ F1 implies
p2 ∈ F2, and if p1

�−→ q1 ∈ Δ1
1 then:

1. if � = r=:

(a) if r ∈ dom(σ), then there is p2
σ(r)=−−−−→ q2 ∈ Δ2 such that (q1, q2, σ) ∈ R.

(b) if r /∈ dom(σ) then there is p2
s•
−→ q2 ∈ Δ2 s.t. (q1, q2, σ[r �→ s]) ∈ R.

1 We will keep the � guard implicit for succinctness.

14 L. D’Antoni et al.

2 if � = r•:
(a) for all s ∈ R2 \ img(σ), there is p2

s=

−−→ q2 ∈ Δ2 such that (q1, q2, σ[r �→
s]) ∈ R, and;

(b) there is p2
s•
−→ q2 ∈ Δ2 such that (q1, q2, σ[r �→ s]) ∈ R.

Here σ[r �→ s] stands for σ \ (σ−1(s), s) ∪ (r, s), which ensures that σ stays
injective when updated.

Given a symbolic simulation R, its inverse is defined as R−1 = {t−1 | t ∈ R},
where (p1, p2, σ)−1 = (p2, p1, σ−1). A symbolic bisimulation R is a relation such
that both R and R−1 are symbolic simulations.

Case 1 deals with cases when p1 can perform a transition that reads the register
r. If r ∈ dom(σ), meaning that r and σ(r) ∈ R2 contain the same value, then p2
must be able to read σ(r) as well. If r /∈ dom(σ), then the content of r is fresh
w.r.t. p2, so p2 must be able to read any fresh value—in particular the content
of r. Case 2 deals with the cases when p1 reads a fresh value. It ensures that p2
is able to read all possible values that are fresh for p1, be them already in some
register s – i.e., s ∈ R2 \ img(σ), case 2(a) – or fresh for p2 as well – case 2(b). In
all these cases, σ must be updated to reflect the new equalities among registers.

Keeping track of equalities among registers is enough for RAs, because the
actual content of registers does not determine the capability of a transition to
fire (RA transitions have implicit � guards). As seen in Example 3, this is no
longer the case for SRAs: a transition may or may not happen depending on the
register assignment being compatible with the transition guard.

As in the case of reachability, normalized SRAs provide the solution to this
problem. We will reduce the problem of checking (bi)similarity of S1 and S2 to
that of checking symbolic (bi)similarity on N(S1) and N(S2), with minor modifi-
cations to the definition. To do this, we need to assume that minterms for both
N(S1) and N(S2) are computed over the union of predicates of S1 and S2.

Definition 6 (N-simulation). A N-simulation on S1 and S2 is a relation R ⊆
N(Q1) × N(Q2) × P(R1 × R2), defined as in Definition 5, with the following
modifications:

(i) we require that θ1�p1
ϕ1/�1−−−−→ θ′

1�q1 ∈ N(Δ1) must be matched by transitions

θ2 � p2
ϕ2/�2−−−−→ θ′

2 � q2 ∈ N(Δ2) such that ϕ2 = ϕ1.
(ii) we modify case 2 as follows (changes are underlined):

2(a)’ for all s ∈ R2 \ img(σ) such that ϕ1 = (θ2)s, there is θ2 � p2
ϕ1/s=

−−−−→
θ′
2 � q2 ∈ N(Δ2) such that (θ′

1 � q1, θ
′
2 � q2, σ[r �→ s]) ∈ R, and;

2(b)’ if E (θ1, ϕ1) + E (θ2, ϕ1) < |�ϕ1�|, then there is θ2 � p2
ϕ1/s•
−−−−→ θ′

2 � q2 ∈
N(Δ2) such that (θ′

1 � q1, θ
′
2 � q2, σ[r �→ s]) ∈ R.

A N-bisimulation R is a relation such that both R and R−1 are N-simulations.
We write S1

N≺ S2 (resp. S1
N∼ S2) if there is a N-simulation (resp. bisimulation)

R such that (N(q01),N(q02), v01 �� v02) ∈ R.

Symbolic Register Automata 15

The intuition behind this definition is as follows. Recall that, in a normalized
SRA, transitions are defined over minterms, which cannot be further broken
down, and are mutually disjoint. Therefore two transitions can read the same
values if and only if they have the same minterm guard. Thus condition (i) makes
sure that matching transitions can read exactly the same set of values. Analo-
gously, condition (ii) restricts how a fresh transition of N(S1) must be matched
by one of N(S2): 2(a)’ only considers transitions of N(S2) reading registers s ∈ R2

such that ϕ1 = (θ2)s because, by definition of normalized SRA, θ2 � p2 has no
such transition if this condition is not met. Condition 2(b)’ amounts to requiring
a fresh transition of N(S2) that is enabled by both θ1 and θ2 (see Lemma 1), i.e.,
that can read a symbol that is fresh w.r.t. both N(S1) and N(S2).

N-simulation is sound and complete for standard simulation.

Theorem 3. S1 ≺ S2 if and only if S1
N≺ S2.

As a consequence, we can decide similarity of SRAs via their normalized versions.
N-simulation is a relation over a finite set, namely N(Q1)×N(Q2)×P(R1 ×R2),
therefore N-similarity can always be decided in finite time. We can leverage
this result to provide algorithms for checking language inclusion/equivalence for
deterministic SRAs (recall that they are undecidable for non-deterministic ones).

Theorem 4. Given two deterministic SRAs S1 and S2, there are algorithms to
decide L (S1) ⊆ L (S2) and L (S1) = L (S2).

Proof. By Proposition 1 and Theorem 3, we can decide L (S1) ⊆ L (S2) by

checking S1
N≺ S2. This can be done algorithmically by iteratively building a

relation R on triples that is an N-simulation on N(S1) and N(S2). The algorithm
initializes R with (N(q01),N(q02), v01 �� v02), as this is required to be in R

by Definition 6. Each iteration considers a candidate triple t and checks the
conditions for N-simulation. If satisfied, it adds t to R and computes the next
set of candidate triples, i.e., those which are required to belong to the simulation
relation, and adds them to the list of triples still to be processed. If not, the
algorithm returns L (S1) �⊆ L (S2). The algorithm terminates returning L (S1) ⊆
L (S2) when no triples are left to process. Determinism of S1 and S2, and hence
of N(S1) and N(S2) (by Proposition 6), ensures that computing candidate triples
is deterministic. To decide L (S1) = L (S2), at each iteration we need to check
that both t and t−1 satisfy the conditions for N-simulation.

If S1 and S2 have, respectively, n1, n2 states, m1,m2 transitions, and r1, r2
registers, the normalized versions have O(n1r12m1) and O(n2r22m2) states. Each
triple, taken from the finite set N(Q1)×N(Q2)×P(R1×R2), is processed exactly
once, so the algorithm iterates O(n1n2r1r22m1+m2+r1r2) times. ��

5 Evaluation

We have implemented SRAs in the open-source Java library SVPALib [26]. In
our implementation, constructions are computed lazily when possible (e.g., the

16 L. D’Antoni et al.

normalized SRA for emptiness and (bi)similarity checks). All experiments were
performed on a machine with 3.5 GHz Intel Core i7 CPU with 16 GB of RAM
(JVM 8 GB), with a timeout value of 300 s. The goal of our evaluation is to
answer the following research questions:

Q1: Are SRAs more succinct than existing models when processing strings over
large but finite alphabets? (Sect. 5.1)

Q2: What is the performance of membership for deterministic SRAs and how
does it compare to the matching algorithm in java.util.regex? (Sect. 5.2)

Q3: Are SRA decision procedures practical? (Sect. 5.3)

Benchmarks. We focus on regular expressions with back-references, therefore
all our benchmarks operate over the Boolean algebra of Unicode characters with
interval—i.e., the set of characters is the set of all 216 UTF-16 characters and
the predicates are union of intervals (e.g., [a-zA-Z]).2 Our benchmark set con-
tains 19 SRAs that represent variants of regular expressions with back-references
obtained from the regular-expression crowd-sourcing website RegExLib [23]. The
expressions check whether inputs have, for example, matching first/last name ini-
tials or both (Name-F, Name-L and Name), correct Product Codes/Lot number
of total length n (Pr-Cn, Pr-CLn), matching XML tags (XML), and IP addresses
that match for n positions (IPn). We also create variants of the product bench-
mark presented in Sect. 2 where we vary the numbers of characters in the code
and lot number. All the SRAs are deterministic.

5.1 Succinctness of SRAs vs SFAs

In this experiment, we relate the size of SRAs over finite alphabets to the size
of the smallest equivalent SFAs. For each SRA, we construct the equivalent
SFA by equipping the state space with the values stored in the registers at each
step (this construction effectively builds the configuration LTS). Figure 2a shows
the results. As expected, SFAs tend to blow up in size when the SRA contains
multiple registers or complex register values. In cases where the register values
range over small sets (e.g., [0-9]) it is often feasible to build an SFA equivalent
to the SRA, but the construction always yields very large automata. In cases
where the registers can assume many values (e.g., 216) SFAs become prohibitively
large and do not fit in memory. To answer Q1, even for finite alphabets, it is
not feasible to compile SRAs to SFAs. Hence, SRAs are a succinct model.

5.2 Performance of Membership Checking

In this experiment, we measure the performance of SRA membership, and we
compare it with the performance of the java.util.regex matching algorithm.
2 Our experiments are over finite alphabets, but the Boolean algebra can be infinite

by taking the alphabet to be positive integers and allowing intervals to contain ∞ as
upper bound. This modification does not affect the running time of our procedures,
therefore we do not report it.

Symbolic Register Automata 17

SRA SFA
states tr reg |reg| states tr

IP2 44 46 3 10 4,013 4,312
IP3 44 46 4 10 39,113 42,112
IP4 44 46 5 10 372,113 402,112
IP6 44 46 7 10 — —
IP9 44 46 10 10 — —

Name-F 7 10 2 26 201 300
Name-L 7 10 2 26 129 180
Name 7 10 3 26 3,201 4,500
XML 12 16 4 52 — —
Pr-C2 26 28 3 216 — —
Pr-C3 28 30 4 216 — —
Pr-C4 30 32 5 216 — —
Pr-C6 34 36 7 216 — —
Pr-C9 40 42 10 216 — —
Pr-CL2 26 28 3 216 — —
Pr-CL3 28 30 4 216 — —
Pr-CL4 30 32 5 216 — —
Pr-CL6 34 36 7 216 — —
Pr-CL9 40 42 10 216 — —

(a) Size of SRAs vs SFAs. (—) denotes the
SFA didn’t fit in memory. |reg| denotes how
many different characters a register stored.

SRA S1 SRA S2 L1=∅ L1=L1 L2 ⊆ L1
Pr-C2 Pr-CL2 0.125s 0.905s 3.426s
Pr-C3 Pr-CL3 1.294s 5.558s 24.688s
Pr-C4 Pr-CL4 13.577s 55.595s —
Pr-C6 Pr-CL6 — — —
Pr-CL2 Pr-C2 1.067s 0.952s 0.889s
Pr-CL3 Pr-C3 10.998s 11.104s 11.811s
Pr-CL4 Pr-C4 — — —
Pr-CL6 Pr-C6 — — —
IP-2 IP-3 0.125s 0.408s 1.845s
IP-3 IP-4 1.288s 2.953s 21.627s
IP-4 IP-6 18.440s 42.727s —
IP-6 IP-9 — — —

(b) Performance of decision procedures.
In the table Li = L (Si), for i = 1, 2.

101 102 103 104 105 106 107 108 109
10−3

10−2

10−1

100
101
102

Java SR
A

input length

m
em

be
rs
hi
p
ti
m
e
(s
)

(c) SRA membership and Java regex

matching performance. Missing data
points for Java are stack overflows.

Fig. 2. Experimental results.

For each benchmark, we generate inputs of length varying between approxi-
mately 100 and 108 characters and measure the time taken to check member-
ship. Figure 2c shows the results. The performance of SRA (resp. Java) is not
particularly affected by the size of the expression. Hence, the lines for different
expressions mostly overlap. As expected, for SRAs the time taken to check mem-
bership grows linearly in the size of the input (axes are log scale). Remarkably,
even though our implementation does not employ particular input processing
optimizations, it can still check membership for strings with tens of millions of
characters in less than 10 s. We have found that our implementation is more
efficient than the Java regex library, matching the same input an average of
50 times faster than java.util.regex.Matcher. java.util.regex.Matcher
seems to make use of a recursive algorithm to match back-references, which
means it does not scale well. Even when given the maximum stack size, the
JVM will return a Stack Overflow for inputs as small as 20,000 characters. Our
implementation can match such strings in less than 2 s. To answer Q2, deter-
ministic SRAs can be efficiently executed on large inputs and perform
better than the java.util.regex matching algorithm.

18 L. D’Antoni et al.

5.3 Performance of Decision Procedures

In this experiment, we measure the performance of SRAs simulation and bisim-
ulation algorithms. Since all our SRAs are deterministic, these two checks cor-
respond to language equivalence and inclusion. We select pairs of benchmarks
for which the above tests are meaningful (e.g., variants of the problem discussed
at the end of Sect. 2). The results are shown in Fig. 2b. As expected, due to the
translation to single-valued SRAs, our decision procedures do not scale well in
the number of registers. This is already the case for classic register automata
and it is not a surprising result. However, our technique can still check equiva-
lence and inclusion for regular expressions that no existing tool can handle. To
answer Q3, bisimulation and simulation algorithms for SRAs only scale
to small numbers of registers.

6 Conclusions

In this paper we have presented Symbolic Register Automata, a novel class of
automata that can handle complex alphabet theories while allowing symbol com-
parisons for equality. SRAs encompass – and are strictly more powerful – than
both Register and Symbolic Automata. We have shown that they enjoy the same
closure and decidability properties of the former, despite the presence of arbi-
trary guards on transitions, which are not allowed by RAs. Via a comprehensive
set of experiments, we have concluded that SRAs are vastly more succinct than
SFAs and membership is efficient on large inputs. Decision procedures do not
scale well in the number of registers, which is already the case for basic RAs.

Related Work. RAs were first introduced in [17]. There is an extensive lit-
erature on register automata, their formal languages and decidability proper-
ties [7,13,21,22,25], including variants with global freshness [20,27] and totally
ordered data [4,14]. SRAs are based on the original model of [17], but are much
more expressive, due to the presence of guards from an arbitrary decidable
theory.

In recent work, variants over richer theories have appeared. In [9] RA over
rationals were introduced. They allow for a restricted form of linear arithmetic
among registers (RAs with arbitrary linear arithmetic subsume two-counter
automata, hence are undecidable). SRAs do not allow for operations on reg-
isters, but encompass a wider range of theories without any loss in decidability.
Moreover, [9] does not study Boolean closure properties. In [8,16], RAs allow-
ing guards over a range of theories – including (in)equality, total orders and
increments/sums – are studied. Their focus is different than ours as they are
interested primarily in active learning techniques, and several restrictions are
placed on models for the purpose of the learning process. We can also relate
SRAs with Quantified Event Automata [2], which allow for guards and assign-
ments to registers on transitions. However, in QEA guards can be arbitrary,
which could lead to several problems, e.g. undecidable equivalence.

Symbolic Register Automata 19

Symbolic automata were first introduced in [28] and many variants of them
have been proposed [12]. The one that is closer to SRAs is Symbolic Extended
Finite Automata (SEFA) [11]. SEFAs are SFAs in which transitions can read
more than one character at a time. A transition of arity k reads k symbols which
are consumed if they satisfy the predicate ϕ(x1, . . . , xk). SEFAs allow arbitrary
k-ary predicates over the input theory, which results in most problems being
undecidable (e.g., equivalence and intersection emptiness) and in the model not
being closed under Boolean operations. Even when deterministic, SEFAs are
not closed under union and intersection. In terms of expressiveness, SRAs and
SEFAs are incomparable. SRAs can only use equality, but can compare symbols
at arbitrary points in the input while SEFAs can only compare symbols within
a constant window, but using arbitrary predicates.

Several works study matching techniques for extended regular expres-
sions [3,5,18,24]. These works introduce automata models with ad-hoc features
for extended regular constructs – including back-references – but focus on effi-
cient matching, without studying closure and decidability properties. It is also
worth noting that SRAs are not limited to alphanumeric or finite alphabets.
On the negative side, SRAs cannot express capturing groups of an unbounded
length, due to the finitely many registers. This limitation is essential for
decidability.

Future Work. In [21] a polynomial algorithm for checking language equivalence
of deterministic RAs is presented. This crucially relies on closure properties of
symbolic bisimilarity, some of which are lost for SRAs. We plan to investigate
whether this algorithm can be adapted to our setting. Extending SRAs with
more complex comparison operators other than equality (e.g., a total order <)
is an interesting research question, but most extensions of the model quickly
lead to undecidability. We also plan to study active automata learning for SRAs,
building on techniques for SFAs [1], RAs [6,8,16] and nominal automata [19].

References

1. Argyros, G., D’Antoni, L.: The learnability of symbolic automata. In: CAV, pp.
427–445 (2018)

2. Barringer, H., Falcone, Y., Havelund, K., Reger, G., Rydeheard, D.E.: Quantified
event automata: towards expressive and efficient runtime monitors. In: FM, pp.
68–84 (2012)

3. Becchi, M., Crowley, P.: Extending finite automata to efficiently match perl-
compatible regular expressions. In: CoNEXT, pp. 25 (2008)

4. Benedikt, M., Ley, C., Puppis, G.: What you must remember when processing data
words. In: AMW (2010)

5. Bispo, J., Sourdis, I., Cardoso, J.M.P., Vassiliadis, S.: Regular expression matching
for reconfigurable packet inspection. In: FPT, pp. 119–126 (2006)

6. Bollig, B., Habermehl, P., Leucker, M., Monmege, B.: A fresh approach to learning
register automata. In: DLT, pp. 118–130 (2013)

7. Cassel, S., Howar, F., Jonsson, B., Merten, M., Steffen, B.: A succinct canonical
register automaton model. J. Log. Algebr. Meth. Program. 84(1), 54–66 (2015)

20 L. D’Antoni et al.

8. Cassel, S., Howar, F., Jonsson, B., Steffen, B.: Active learning for extended finite
state machines. Formal Asp. Comput. 28(2), 233–263 (2016)

9. Chen, Y., Lengál, O., Tan, T., Wu, Z.: Register automata with linear arithmetic.
In: LICS, pp. 1–12 (2017)

10. D’Antoni, L., Ferreira, T., Sammartino, M., Silva, A.: Symbolic register automata.
CoRR, abs/1811.06968 (2019). http://arxiv.org/abs/1811.06968

11. D’Antoni, L., Veanes, M.: Extended symbolic finite automata and transducers.
Formal Meth. Syst. Des. 47(1), 93–119 (2015)

12. D’Antoni, L., Veanes, M.: The power of symbolic automata and transducers. In:
CAV, pp. 47–67 (2017)

13. Demri, S., Lazic, R.: LTL with the freeze quantifier and register automata. ACM
Trans. Comput. Log. 10(3), 16:1–16:30 (2009)

14. Figueira, D., Hofman, P., Lasota, S.: Relating timed and register automata. Math.
Struct. Comput. Sci. 26(6), 993–1021 (2016)

15. Grigore, R., Distefano, D., Petersen, R.L., Tzevelekos, N.: Runtime verification
based on register automata. In: TACAS, pp. 260–276 (2013)

16. Isberner, M., Howar, F., Steffen, B.: Learning register automata: from languages
to program structures. Mach. Learn. 96(1–2), 65–98 (2014)

17. Kaminski, M., Francez, N.: Finite-memory automata. Theor. Comput. Sci. 134(2),
329–363 (1994)

18. Komendantsky, V.: Matching problem for regular expressions with variables. In:
Loidl, H.-W., Peña, R. (eds.) TFP 2012. LNCS, vol. 7829, pp. 149–166. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-40447-4 10

19. Moerman, J., Sammartino, M., Silva, A., Klin, B., Szynwelski, M.: Learning nom-
inal automata. In: POPL, pp. 613–625 (2017)

20. Murawski, A.S., Ramsay, S.J., Tzevelekos, N.: Bisimilarity in fresh-register
automata. In: LICS, pp. 156–167 (2015)

21. Murawski, A.S., Ramsay, S.J., Tzevelekos, N.: Polynomial-time equivalence testing
for deterministic fresh-register automata. In: MFCS, pp. 72:1–72:14 (2018)

22. Neven, F., Schwentick, T., Vianu, V.: Finite state machines for strings over infinite
alphabets. ACM Trans. Comput. Log. 5(3), 403–435 (2004)

23. RegExLib. Regular expression library (2017). http://regexlib.com/
24. Reidenbach, D., Schmid, M.L.: A polynomial time match test for large classes of

extended regular expressions. In: Domaratzki, M., Salomaa, K. (eds.) CIAA 2010.
LNCS, vol. 6482, pp. 241–250. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-18098-9 26

25. Sakamoto, H., Ikeda, D.: Intractability of decision problems for finite-memory
automata. Theor. Comput. Sci. 231(2), 297–308 (2000)

26. SVPAlib: Symbolic automata library (2018). https://github.com/lorisdanto/
symbolicautomata

27. Tzevelekos, N.: Fresh-register automata. In: POPL, pp. 295–306 (2011)
28. Veanes, M., Halleux, P.D., Tillmann, N.: Rex: symbolic regular expression explorer.

In: ICST, pp. 498–507 (2010)

http://arxiv.org/abs/1811.06968
https://doi.org/10.1007/978-3-642-40447-4_10
http://regexlib.com/
https://doi.org/10.1007/978-3-642-18098-9_26
https://doi.org/10.1007/978-3-642-18098-9_26
https://github.com/lorisdanto/symbolicautomata
https://github.com/lorisdanto/symbolicautomata

Symbolic Register Automata 21

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Abstraction Refinement Algorithms
for Timed Automata

Victor Roussanaly, Ocan Sankur,
and Nicolas Markey(B)

Univ Rennes, Inria, CNRS, IRISA, Rennes, France
nmarkey@irisa.fr

Abstract. We present abstraction-refinement algorithms for model
checking safety properties of timed automata. The abstraction domain
we consider abstracts away zones by restricting the set of clock con-
straints that can be used to define them, while the refinement procedure
computes the set of constraints that must be taken into consideration
in the abstraction so as to exclude a given spurious counterexample.
We implement this idea in two ways: an enumerative algorithm where
a lazy abstraction approach is adopted, meaning that possibly different
abstract domains are assigned to each exploration node; and a symbolic
algorithm where the abstract transition system is encoded with Boolean
formulas.

1 Introduction

Model checking [4,10,12,26] is an automated technique for verifying that the
set of behaviors of a computer system satisfies a given property. Model-checking
algorithms explore finite-state automata (representing the system under study)
in order to decide if the property holds; if not, the algorithm returns an explana-
tion. These algorithms have been extended to verify real-time systems modelled
as timed automata [2,3], an extension of finite automata with clock variables to
measure and constrain the amount of time elapsed between occurrences of transi-
tions. The state-space exploration can be done by representing clock constraints
efficiently using convex polyhedra called zones [8,9]. Algorithms based on this
data structure have been implemented in several tools such as Uppaal [7], and
have been applied in various industrial cases.

The well-known issue in the applications of model checking is the state-space
explosion problem: the size of the state space grows exponentially in the size
of the description of the system. There are several sources for this explosion:
the system might be made of the composition of several subsystems (such as
a distributed system), it might contain several discrete variables (such as in a
piece of software), or it might contain a number of real-valued clocks as in our
case.

This work was funded by ANR project Ticktac (ANR-18-CE40-0015) and by ERC
grant EQualIS (StG-308087).

c© The Author(s) 2019
I. Dillig and S. Tasiran (Eds.): CAV 2019, LNCS 11561, pp. 22–40, 2019.
https://doi.org/10.1007/978-3-030-25540-4_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-25540-4_2&domain=pdf
https://doi.org/10.1007/978-3-030-25540-4_2

Abstraction Refinement Algorithms for Timed Automata 23

Numerous attempts have been made to circumvent this problem. Abstrac-
tion is a generic approach that consists in simplifying the model under study,
so as to make it easier to verify [13]. Existential abstraction may only add extra
behaviors, so that when a safety property holds in an abstracted model, it also
holds in the original model; if on the other hand a safety property fails to hold,
the model-checking algorithms return a witness trace exhibiting the non-safe
behaviour: this either invalidates the property on the original model, if the trace
exists in that model, or gives information about how to automatically refine the
abstraction. This approach, named CEGAR (counter-example guided abstrac-
tion refinement) [11], was further developed and used, for instance, in software
verification (BLAST [20], SLAM [5], ...).

The CEGAR approach has been adapted to timed automata, e.g. in [14,
18], but the abstractions considered there only consist in removing clocks and
discrete variables, and adding them back during refinement. So for most well-
designed models, one ends up adding all clocks and variables which renders the
method useless. Two notable exceptions are [22], in which the zone extrapolation
operators are dynamically adapted during the exploration, and [29], in which
zones are refined when needed using interpolants. Both approaches define “exact”
abstractions in the sense that they make sure that all traces discovered in the
abstract model are feasible in the concrete model at any time.

In this work, we consider a more general setting and study predicate abstrac-
tions on clock variables. Just like in software model checking, we define abstract
state spaces using these predicates, where the values of the clocks and their
relations are approximately represented by these predicates. New predicates are
generated if needed during the refinement step. We instantiate our approach by
two algorithms. The first one is a zone-based enumerative algorithm inspired by
the lazy abstraction in software model checking [19], where we assign a possibly
different abstract domain to each node in the exploration. The second algorithm
is based on binary decision diagrams (BDD): by exploiting the observation that a
small number of predicates was often sufficient to prove safety properties, we use
an efficient BDD encoding of zones similar to one introduced in early work [28].

Let us explain the abstract domains we consider. Assume there are two clock
variables x and y. The abstraction we consider consists in restricting the clock

y

x

y

x

(a) Abstraction of zone 1 ≤ x, y ≤ 2

y

x

y

x

(b) Abstraction of zone y ≤ 1 ∧ 1 ≤ x− y ≤ 2

Fig. 1. The abstract domain is defined by the clock constraints shown in thick red
lines. In each example, the abstraction of the zone shown on the left (shaded area) is
the larger zone on the right. (Color figure online)

24 V. Roussanaly et al.

constraints that can be used when defining zones. Assume that we only allow to
compare x with 2 or 3; that y can only be compared with 2, and x−y can only be
compared with −1 or 2. Then any conjunction of constraints one might obtain
in this manner will be delimited by the thick red lines in Fig. 1; one cannot
define a finer region under this restriction. The figure shows the abstraction
process: given a “concrete” zone, its abstraction is the smallest zone which is a
superset and is definable under our restriction. For instance, the abstraction of
1 ≤ x, y ≤ 2 is 0 ≤ x, y ≤ 2 ∧ −1 ≤ x − y (cf. Fig. 1a).

Related Works. We give more detail on zone abstractions in timed automata.
Most efforts in the literature have been concentrated in designing zone abstrac-
tion operators that are exact in the sense that they preserve the reachability
relation between the locations of a timed automaton; see [6]. The idea is to
determine bounds on the constants to which a given clock can be compared to
in a given part of the automaton, since the clock values do not matter outside
these bounds. In [21,22], the authors give an algorithm where these bounds are
dynamically adapted during the exploration, which allows one to obtain coarser
abstractions. In [29], the exploration tree contains pairs of zones: a concrete zone
as in the usual algorithm, and a coarser abstract zone. The algorithm explores
all branches using the coarser zone and immediately refines the abstract zone
whenever an edge which is disabled in the concrete zone is enabled. In [17], a
CEGAR loop was used to solve timed games by analyzing strategies computed
for each abstract game. The abstraction consisted in collapsing locations.

Some works have adapted the abstraction-refinement paradigm to timed
automata. In [14], the authors apply “localization reduction” to timed automata
within an abstraction-refinement loop: they abstract away clocks and discrete
variables, and only introduce them as they are needed to rule out spurious coun-
terexamples. A more general but similar approach was developed in [18]. In [31],
the authors adapt the trace abstraction refinement idea to timed automata where
a finite automaton is maintained to rule out infeasible edge sequences.

The CEGAR approach was also used recently in the LinAIG framework for
verifying linear hybrid automata [1]. In this work, the backward reachability algo-
rithm exploits don’t-cares to reduce the size of the Boolean circuits representing
the state space. The abstractions consist in enlarging the size of don’t-cares to
reduce the number of linear predicates used in the representation.

2 Timed Automata and Zones

2.1 Timed Automata

Given a finite set of clocks C, we call valuations the elements of R
C
≥0. For a

clock valuation v, a subset R ⊆ C, and a non-negative real d, we denote with
v[R ← d] the valuation w such that w(x) = v(x) for x ∈ C \ R and w(x) = d for
x ∈ R, and with v + d the valuation w′ such that w′(x) = v(x) + d for all x ∈ C.
We extend these operations to sets of valuations in the obvious way. We write 0
for the valuation that assigns 0 to every clock. An atomic guard is a formula of

Abstraction Refinement Algorithms for Timed Automata 25

the form x ≺ k or x−y ≺ k with x, y ∈ C, k ∈ N, and ≺ ∈ {<,≤, >,≥}. A guard
is a conjunction of atomic guards. A valuation v satisfies a guard g, denoted
v |= g, if all atomic guards hold true when each x ∈ C is replaced with v(x).
Let [[g]] = {v ∈ R

C
≥0 | v |= g} denote the set of valuations satisfying g. We write

ΦC for the set of guards built on C.
A timed automaton A is a tuple (L, Inv, �0, C, E), where L is a finite set of

locations, Inv : L → ΦC defines location invariants, C is a finite set of clocks,
E ⊆ L×ΦC × 2C ×L is a set of edges, and �0 ∈ L is the initial location. An edge
e = (�, g, R, �′) is also written as �

g,R−−→ �′. For any location �, we let E(�) denote
the set of edges leaving �.

A configuration of A is a pair q = (�, v) ∈ L × R
C
≥0 such that v |= Inv(�).

A run of A is a sequence q1e1q2e2 . . . qn where for all i ≥ 1, qi = (�i, vi) is
a configuration, and either ei ∈ R>0, in which case qi+1 = (�i, vi + ei), or
ei = (�i, gi, Ri, �i+1) ∈ E, in which case vi |= gi and qi+1 = (�i+1, vi[Ri ← 0]).
A path is a sequence of edges with matching endpoint locations.

2.2 Zones and DBMs

Several tools for timed automata implement algorithms based on zones, which
are particular polyhedra definable with clock constraints. Formally, a zone Z is
a subset of RC

≥0 definable by a guard in ΦC .
We recall a few basic operations defined on zones. First, the intersection Z∩Z ′

of two zones Z and Z ′ is clearly a zone. Given a zone Z, the set of time-successors
of Z, defined as Z↑ = {v + t ∈ R

C
≥0 | t ∈ R≥0, v ∈ Z}, is easily seen to be

a zone; similarly for time-predecessors Z↓ = {v ∈ R
C
≥0 | ∃t ≥ 0. v + t ∈ Z}.

Given R ⊆ C, we let ResetR(Z) be the zone {v[R ← 0] ∈ R
C
≥0 | v ∈ Z}, and

Freex(Z) = {v′ ∈ R
C
≥0 | ∃v ∈ Z, d ∈ R≥0, v

′ = v[x ← d]}.
Zones can be represented as difference-bound matrices (DBM) [8,15].

Let C0 = C ∪ {0}, where 0 is an extra symbol representing a special clock vari-
able whose value is always 0. A DBM is a |C0| × |C0|-matrix taking values in
(Z×{<,≤})∪{(+∞, <)}. Intuitively, cell (x, y) of a DBM M stores a pair (d,≺)
representing an upper bound on the difference x−y. For any DBM M , we let [[M]]
denote the zone it defines.

While several DBMs can represent the same zone, each zone admits a canon-
ical representation, which is obtained by storing the tightest clock constraints
defining the zone. This canonical representation can be obtained by comput-
ing shortest paths in a graph where the vertices are clocks and the edges
weighted by clock constraints, with natural addition and comparison of elements
of (Z×{<,≤})∪{(+∞, <)}. This graph has a negative cycle if, and only if, the
associated DBM represents the empty zone.

All the operations on zones can be performed efficiently (in O(|C0|3)) on their
associated DBMs while maintaining reduced form. For instance, the intersection
N = Z ∩ Z ′ of two canonical DBMs Z and Z ′ can be obtained by first com-
puting the DBM M = min(Z,Z ′) such that M(x, y) = min{Z(x, y), Z ′(x, y)}
for all (x, y) ∈ C0

2, and then turning M into canonical form. We refer to [8] for

26 V. Roussanaly et al.

full details. By a slight abuse of notation, we use the same notations for DBMs
as for zones, writing e.g. M ′ = M↑, where M and M ′ are reduced DBMs such
that [[M ′]] = [[M]]↑. Given an edge e = (�, g, R, �′), and a zone Z, we define
Poste(Z) = Inv(�′) ∩ (g ∩ ResetR(Z))↑, and Pree(Z) = (g ∩ FreeR(Inv(�′) ∩ Z))↓.
For a path ρ = e1e2 . . . en, we define Postρ and Preρ by iteratively applying
Postei

and Preei
respectively.

2.3 Clock-Predicate Abstraction and Interpolation

For all clocks x and y in C0, we consider a finite set Dx,y ⊆ N×{≤, <}, and gather
these in a table D = (Dx,y)x,y∈C0 . D is the abstract domain which restricts zones
to be defined only using constraints of the form x − y ≺ k with (k,≺) ∈ Dx,y,
as seen earlier. Let us call D the concrete domain if Dx,y = N × {≤, <} for
all x, y ∈ C0. A zone Z is D-definable if there exists a DBM D such that Z = [[D]]
and D(x, y) ∈ Dx,y for all x, y ∈ C0. Note that we do not require this witness
DBM D to be reduced; the reduction of such a DBM might introduce additional
values. We say that domain D′ is a refinement of D if for all x, y ∈ C0, we have
Dx,y ⊆ D′

x,y.

An abstract domain D induces an abstraction function αD : 2R
C
≥0 →

2R
C
≥0 where αD(Z) is the smallest D-definable zone containing Z. For any

reduced DBM D, αD([[D]]) can be computed by setting D′(x, y) = min{(k,≺)
∈ Dx,y | D(x, y) ≤ (k,≺)} (with min ∅ = (∞, <)).

An interpolant for a pair of zones (Z1, Z2) with Z1 ∩ Z2 = ∅ is a zone Z3

with Z1 ⊆ Z3 and Z3 ∩ Z2 = ∅1 [29]. We use interpolants to refine our
abstractions; in order not to add too many new constraints when refining,
our aim is to find minimal interpolants: define the density of a DBM D as
d(D) = #{(x, y) ∈ C0

2 | D(x, y) �= (∞, <)}. Notice that while any pair of dis-
joint convex polyhedra can be separated by hyperplanes, not all pairs of disjoint
zones admit interpolants of density 1; this is because not all (half-spaces delim-
ited by) hyperplanes are zones. Still, we can bound the density of a minimal
interpolant:

Lemma 1. For any pair of disjoint, non-empty zones (A,B), there exists an
interpolant of density less than or equal to |C0|/2.

By adapting the algorithm of [29] for computing interpolants, we can compute
minimal interpolants efficiently:

Proposition 2. Computing a minimal interpolant can be performed in O(|C|4).

3 Enumerative Algorithm

The first type of algorithm we present is a zone-based enumerative algorithm
based on the clock-predicate abstractions. Let us first describe the overall
1 It is sometimes also required that the interpolant only involves clocks that have

non-trivial constraints in both Z1 and Z2. We do not impose this requirement in our
definition, but it will hold true in the interpolants computed by our algorithm.

Abstraction Refinement Algorithms for Timed Automata 27

algorithm in Algorithm 1, which is a typical abstraction-refinement loop. We then
explain how the abstract reachability and refinement procedures are instantiated.

Algorithm 1. Enumerative
algorithm checking the reacha-
bility of a target location �T .
Input: A = (L, Inv, �0, C, E), �T

1 Initialize D0;
2 wait:= {node(�0,0↑, D0)};
3 passed:= ∅;
4 while do
5 π := AbsReach(A,wait,

passed, �T);
6 if π = ∅ then
7 return Not reachable;
8 else
9 if trace π is feasible then

10 return Reachable;

11 else
Refine(π,wait, passed);

12 return Not reachable;

Algorithm 2. AbsReach
Input: (L, Inv, l0, C, E), wait, passed,

�T
1 while wait �= ∅ do
2 n := wait.pop();
3 if n.� = �T then
4 return Trace from root to n;

5 if ∃n′ ∈ passed such that n.� =
n′.� ∧ n.Z ⊆ n′.Z then

6 n.covered := n′;
7 else
8 n.Z := α(n.Z, n);
9 passed.add(n);

10 for e = (�, g, R, �′) ∈ E(n.�)
s.t. Z′ := Poste(n.Z) �= ∅
do

11 D′ := choose-dom(n, e);
12 n′ := node(�′, Z′, D′);
13 n′.parent := n;
14 wait.add(n′);

15 return ∅;

The initialization at line 1 chooses an abstract domain for the initial state,
which can be either empty (thus the coarsest abstraction) or defined according
to some heuristics. The algorithm maintains the wait and passed lists that are
used in the forward exploration. As usual, the wait list can be implemented
as a stack, a queue, or another priority list that determines the search order.
The algorithm also uses covering nodes. Indeed if there are two node n and
n′, with n ∈ passed, n′ ∈ wait, n.� = n′.�, and n′.z ⊆ n.Z, then we know
that every location reachable from n′ is also reachable from n. Since we have
already explored n and we generated its successors, there is no need to explore
the successors of n′. The algorithm explicitly creates an exploration tree: line 2
creates a node containing location �0, zone 0↑, and the abstract domain D0 as the
root of our tree, and adds this to the wait list. More details on the tree are given
in the next subsection. Procedure AbsReach then looks for a trace to the target
location �T . If such a trace exists, line 9 checks its feasibility. Here π is a sequence
of node and edges of A. The feasibility check is done by computing predecessors
with zones starting from the final state, without using the abstraction function.
If the last zone intersects our initial zone, this means that the trace is feasible.
More details are given in Sect. 3.2.

28 V. Roussanaly et al.

3.1 Abstract Forward Reachability: AbsReach

We give a generic algorithm independently from the implementations of the
abstraction functions and the refinement procedure.

Algorithm 2 describes the reachability procedure under a given abstract
domain D. It is similar to the standard forward reachability algorithm using
a wait-list and a passed-list. We explicitly create an exploration tree where the
leaves are nodes in wait, covered nodes, or nodes that have no non-empty succes-
sors. Each node n contains the fields �, Z which are labels describing the current
location and zone; field covered points to a node covering the current node (it is
undefined if the current node is not (known to be) covered); field parent points
to the parent node in the tree (it is undefined for the root); and field D is the
abstract domain associated with the node. Thus, the algorithm uses a possibly
different abstract domain for each node in the exploration tree.

The difference of our algorithm w.r.t. the standard reachability can be seen
at lines 8 and 11. At line 8, we apply the abstraction function to the zone taken
from the wait-list before adding it to the passed-list. The abstraction function α
is a function of a zone Z and a node n. This allows one to define variants with
different dependencies; for instance, α might depend on the abstract domain n.D
at the current node, but it can also use other information available in n or on
the path ending in n. For now, it is best to think of α simply as Z �→ αn.D(Z).
At line 11, the function choose-dom chooses an abstract domain for the node n′.
The domain could be chosen global for all nodes, or local to each node. A good
trade-off, which we used in our experiments, is to have domains associated with
locations of the timed automaton.

Remark 1. Note that we use the abstraction function when the node is inserted
in the passed list. This is because we want the node to contain the smallest zone
possible when we test whether the node is covered. We only need to use the
abstracted zone when we compute its successor and when we test whether the
node is covering. This allows us to store a unique zone.

As a first step towards proving correctness of our algorithm, we show that
the following property is preserved by Algorithm AbsReach:

For all nodes n in passed, for all edges e from n.�, if Poste(n.Z) �= ∅,
then n has a child n′ such that Poste(n.Z) ⊆ n′.Z. If n′ is in passed,
then we also have αn′.D(Poste(n.Z)) ⊆ n′.Z.

(1)

Lemma 3. Algorithm AbsReach preserves Property (1).

Note that although we use inclusion in Property (1), AbsReach would actually
preserve equality of zones, but we will not always have equality before running
AbsReach. This is because Refine might change the zones of some nodes without
updating the zones of all their descendants.

Abstraction Refinement Algorithms for Timed Automata 29

3.2 Refinement: Refine

We now describe our refinement procedure Refine. Let us now assume that
AbsReach returns π = A1

σ1−→ A2
σ2−→ . . .

σk−1−−−→ Ak, and write Di for the
domain associated with each Ai. We write C1 for the initial concrete zone, and
for i < k, we define Ci+1 = Postσi

(Ai). We also note Zk = Ak and for i < k,
Zi = Preσi

(Zi+1) ∩ Ai. Then π is not feasible if, and only if, Postσ1...σk
(C1) = ∅,

or equivalently Preσ1...σk
(Ak) ∩ C1 = ∅. Since for all i < k, it holds Ci ⊆ Ai+1,

we have that π is not feasible if, and only if, ∃i ≤ k. Ci ∩ Zi = ∅. We illustrate
this on Fig. 2.

Z1

C1

A1

Z2

C2

A2

C3

A3 = Z3

ost Post

Pre
Pre

Fig. 2. Spurious counter-example: Z1 ∩ C1 = ∅

Let us assume that π is not feasible. Let us denote by i0 the maximal index
such that Ci0 ∩ Zi0 = ∅. This index also has the property that for all j < i0,
we have Zj = ∅ and Zi0 �= ∅. Once we have identified this trace as spurious by
computing the Zj , we have two possibilities:

– if Zi0 ∩ αDi0
(Ci0) �= ∅: this means that we can reach Ak from αDi0

(Ci0) but
not from Ci0 . In other words, our abstraction is too coarse and we must add
some values to Di0 so that Zi0 ∩ αDi0

(Ci0) = ∅. Those values are found by
computing the interpolant of Zi0 and Ci0

– Otherwise it means that αDi0
(Ci0) cannot reach Ak and the only reason the

trace exists is because either Di0 or Ai0−1 has been modified at some point
and Ai0 was not modified accordingly.

We can then update the values of Ci for i > i0 and repeat the process until
we reach an index j0 such that Cj0 = ∅. We then have modified the nodes
ni0 , . . . , nj0 and knowing that nj0 .Z = ∅, we can delete it and all of its descen-
dants. Since some of the descendants of ni0 have not been modified, this might
cause some refinements of the first type in the future. In order to ensure termi-
nation, we sometimes have to cut a subtree from a node in ni0 , . . . , nj0−1 and
reinsert it in the wait list to restart the exploration from there. We call this
action cut, and we can use several heuristics to decide when to use it. In the
rest of this paper we will use the following heuristics: we perform cut on the first
node of ni0 ...nj0 that is covered by some other node. Since this node is covered,
we know that we will not restart the exploration from this node, or that the

30 V. Roussanaly et al.

node was covered by one of its descendant. If none of these nodes are covered,
we delete nj0 and its descendants. Other heuristics are possible, for instance
applying cut on ni0 . We found that the above heuristics was the most efficient
in our experiments.

Lemma 4. Pick a node n, and let Y = n.Z. Then after running Refine, either
node n is deleted, or it holds n.Z ⊆ Y . In other words, the zone of a node can
only be reduced by Refine.

It follows that Refine also preserves Property (1), so that:

Lemma 5. Algorithm 1 satisfies Property (1).

We can then prove that our algorithm correctly decides the reachability prob-
lem and always terminates.

Theorem 6. Algorithm 1 terminates and is correct.

4 Symbolic Algorithm

4.1 Boolean Encoding of Zones

We now present a symbolic algorithm that represents abstract states using
Boolean formulas. Let B = {0, 1}, and V be a set of variables. A Boolean for-
mula f that uses variables from set X ⊆ V will be written f(X) to make the
dependency explicit; we sometimes write f(X,Y) in place of f(X ∪ Y). Such a
formula represents a set [[f]] = {v ∈ B

V | v |= f}. We consider primed versions
of all variables; this will allow us to write formulas relating two valuations. For
any subset X ⊆ V, we define X ′ = {p′ | p ∈ X}.

A literal is either p or ¬p for a variable p. Given a set X of variables, an X-
minterm is the conjunction of literals where each variable of X appears exactly
once. X-minterms can be seen as elements of B

X . Given a vector of Boolean
formulas Y = (Yx)x∈X , formula f [Y /X] is the substitution of X by Y in f ,
obtained by replacing each x ∈ X with the formula Yx. The positive cofactor
of f(X) by x is ∃x. (x ∧ f(X)), and its negative cofactor is ∃x. (¬x ∧ f(X)).

Let us define a generic operator post that computes successors of a
set S(X,Y) given a relation R(X,X ′) (here, Y designates any set of variables
on which S might depend outside of X): postR(S(X,Y)) = (∃X.S(X,Y) ∧
R(X,X ′))[X/X ′]. Similarly, we set preR(S(X,Y)) = (∃X ′.S(X,Y)[X ′/X] ∧
R(X,X ′)), which computes the predecessors of S(X,Y) by the relation R [24].

Clock Predicate Abstraction. We fix a total order � on C0. In this section, abstract
domains are defined as D = (Dx,y)x�y∈C0 , that is only for pairs x � y. In fact,
constraints of the form x − y ≤ k with x � y are encoded using the negation of
y − x < −k since (x − y ≤ k) ⇔ ¬(y − x < −k). We thus define Dx,y = −Dy,x

for all x � y.

Abstraction Refinement Algorithms for Timed Automata 31

For x, y ∈ C0, let Px,y denote the set of clock predicates associated to Dx,y:

PD
x,y = {Px−y≺k | (k,≺) ∈ Dx,y}.

Let PD = ∪x,y∈C0Px,y denote the set of all clock predicates associated
with D (we may omit the superscript D when it is clear). For all (x, y) ∈
C0

2 and (k,≺) ∈ Dx,y, we denote by px−y≺k the literal Px−y≺k if x � y,
and ¬Py−x≺−1−k otherwise (where ≤−1 = < and <−1 = ≤). We also consider a
set B of Boolean variables used to encode locations. Overall, the state space is
described using Boolean formulas on these two types of variables, so states are
elements of BP∪B.

Our Boolean encoding of clock constraints and semantic operations follow
those of [28] for a concrete domain. We define these however for abstract domains,
and show how successor computation and refinement operations can be per-
formed.

Let us define the clock semantics of predicate Px−y�k as [[Px−y�k]]C0 =
{ν ∈ R

C0
≥0 | ν(x) − ν(y) � k}. Since the set C of clocks is fixed, we may omit

the subscript and just write [[Px−y�k]]. We define the conjunction, disjunction,
and negation as intersection, union, and complement, respectively. Given a P-
minterm v ∈ B

P , we define [[v]]D =
⋂

p s.t. v(p)[[p]]D ∩⋂
p s.t. ¬v(p)[[p]]cD. Thus, nega-

tion of a predicate encodes its complement. For a Boolean formula F (P), we set
[[F]] =

⋃
v∈Minterms(F)[[v]]D. Intuitively, the minterms of P define smallest zones

of R
C
≥0 definable using P. A minterm v ∈ B

B∪P defines a pair [[v]]D = (l, Z)
where l is encoded by v|B and Z = [[v|P]]D. A Boolean formula F on B ∪ P
defines a set [[F]]D = ∪v∈Minterms(F)[[v]]D of such pairs. A minterm v is satisfiable
if [[v]]D �= ∅.

An abstract domain D induces an abstraction function αD : 2R
C
≥0 → 2B

P

with αD(Z) = {v | v ∈ B
P and [[v]]D ∩ Z �= ∅}, from the set of zones to the

set of subsets of Boolean valuations on P. We define the concretization function
as [[·]]D : 2B

P → 2R
C
≥0 . The pair (αD, [[·]]D) is a Galois connection, and [[αD(Z)]]D is

the most precise abstraction of Z in the domain induced by D. Notice that αD is
non-convex in general: for instance, if the clock predicates are x ≤ 2, y ≤ 2, then
the set defined by the constraint x = y maps to (px≤2 ∧py≤2)∨ (¬px≤2 ∧¬py≤2).

4.2 Reduction and Successor Computation

We now define the reduction operation, which is similar to the reduction of
DBMs. The idea is to eliminate unsatisfiable minterms from a given Boolean
formula. For example, we would like to make sure that in all minterms, if px−y≤1

holds, then so does px−y≤2, when both are available predicates. Another issue is
to eliminate minterms that are unsatisfiable due to triangle inequality. This is
similar to the shortest path computation used to turn DBMs in canonical form.

Example 1. Given predicates P = {px−y≤1, py−z≤1, px−z≤2}, the formula
px−y≤1 ∧ py−z≤1 is not reduced since it contains the unsatisfiable minterm

32 V. Roussanaly et al.

px−y≤1 ∧ py−z≤1 ∧ ¬px−z≤2. However, the same formula is reduced if P =
{px−y≤1, py−z≤1}.

In this paper, we use limited reduction, since reductions are the most expen-
sive operations in our algorithms. The following formula corresponds to 2-
reduction, which intuitively amounts to applying shortest paths for paths of
lengths 1 and 2:

∧

(x,y)∈C0
2

(k,≺)∈Dx,y

[
px−y≺k ←

(∨

(l1,≺1)∈Dx,y

(l1,≺1)≤(k,≺)

px−y≺1l1 ∨
∨

z∈C0,(l1,≺1)∈Dx,z ,
(l2,≺2)∈Dz,y

(l1,≺1)+(l2,≺2)≤(k,≺)

px−z≺l ∧ pz−y≺′l′
)]

Lemma 7. For all formulas S(P), we have [[S]]D = [[reduce2D(S)]]D and all
minterms of reduce2D(S) are 2-reduced.

Since 2-reduction des not consider shortest paths of all lengths, there are, in
general, 2-reduced unsatisfiable minterms. Nevertheless, any abstraction can be
refined so that the updated 2-reduction eliminates a given unsatisfiable minterm:

Lemma 8. Let v ∈ B
PD

be a minterm such that v |= reduce2D and [[v]] = ∅.
One can compute in polynomial time a refinement D′ ⊃ D such that v �|=
reduce2D′ .

We now explain how successor computation is realized in our encoding. For a
guard g, assume we have computed an abstraction αD(g) in the present abstract
domain. For each transition σ = (�1, g, R, �2), let us define the formula Tσ =
�1 ∧αD(g). We show how each basic operation on zones can be computed in our
BDD encoding. In our algorithm, all formulas A(B,P) representing sets of states
are assumed to be reduced, that is, A(B,P) ⊆ reduce2D(A(B,P)).

The intersection operation is simply logical conjunction:

Lemma 9. For all reduced formulas A(P) and B(P), we have A(P) ∧ B(P) =
αD([[A(P)]]D ∩ [[B(P)]]D).

For the time successors, we define Up(A(B,P)) = reduce(postSUp
(A(B,P)))

where

SUp =
∧

x∈C
(k,≺)∈Dx,0

(¬px−0≺k → ¬p′
x−0≺k)

∧

x,y∈C0,x
=0
(k,≺)∈Dx,y

(p′
x−y≺k ↔ px−y≺k).

Lemma 10. For any Boolean formula A(B,P), αD([[A]]↑) ⊆ Up(A). Moreover,
if D is the concrete domain and A is reduced, then this holds with equality.

Following similar ideas, we handle clock resets by defining Resetz(A) =
reduce(postSResetz

(A)), for a (complex) relation SResetz to encode how predicates
evolve (see the long version [27] of this article for more detailled explanations).

We get:

Lemma 11. For any Boolean formula A(B,P), and any clock z ∈ C, we have
αD(Resetz([[A]]D)) ⊆ Resetz(A). Moreover, if D is the concrete domain, and A
is reduced, then the above holds with equality.

Abstraction Refinement Algorithms for Timed Automata 33

Algorithm 3. Algorithm SymReach that checks the reachability of a target
location lT in a given abstract domain D.
Input: A = (L, Inv, �0, C, E), �T , D

1 ;
2 next := enc(l0) ∧ αD(∧x∈Cx = 0);
3 layers := [];
4 reachable := false;
5 while (¬reachable ∧ next) �= false do
6 reachable := reachable ∨ next;
7 next := ApplyEdges(Up(next)) ∧ ¬reachable;
8 layers.push(next);
9 if (next ∧ enc(lT)) �= false then

10 return ExtractTrace (layers);

11 return Not reachable;

4.3 Model-Checking Algorithm

Algorithm 3 shows how to check the reachability of a target location given an
abstract domain. The list layers contains, at position i, the set of states that
are reachable in i steps. The function ApplyEdges computes the disjunction of
immediate successors by all edges. It consists in looping over all edges e =
(l1, g, R, l2), and gathering the following image by e:

enc(�2) ∧ Resetrk
(Resetrk−1(. . . (Resetr1((((∃B.A(B,P) ∧ enc(�1)) ∧ αD(g))))))),

where R = {r1, . . . , rk}. We thus use a partitioned transition relation and do not
compute the monolithic transition relation.

When the target location is found to be reachable, ExtractTrace(layers)
returns a trace reaching the target location. This is standard and can be done by
computing backwards from the last element of layers, by finding which edge can
be applied to reach the current state. Since both reset and time successor opera-
tions are defined using relations, predecessors in our abstract system can be easily
computed using the operator preR. As it is standard, we omit the precise defini-
tion of this function (the reader can refer to the implementation) but assume that
it returns a trace of the form A1

σ1−→ A2
σ2−→ . . .

σn−1−−−→ An, where the Ai(B,P)
are minterms and the σi belong to the trace alphabet Σ = {up, r∅} ∪ {r(x)}x∈C ,
with the following meaning:

– if Ai
up−→ Ai+1 then Ai+1 = Up(Ai);

– if Ai
r∅−→ Ai+1 then Ai+1 = Ai;

– if Ai
r(x)−−→ Ai+1 then Ai+1 = Resetx(Ai).

The feasibility of such a trace is easily checked using DBMs.
The overall algorithm then follows a classical CEGAR scheme. We initialize D

by adding the clock constraints that appear syntactically in A, which is often

34 V. Roussanaly et al.

a good heuristic. We run the reachability check of Algorithm 3. If no trace is
found, then the target location is not reachable. If a trace is found, then we check
for feasibility. If it is feasible, then the counterexample is confirmed. Otherwise,
the trace is spurious and we run the refinement procedure described in the next
subsection, and repeat the analysis.

4.4 Abstraction Refinement

Since we initialize D with all clock constraints appearing in guards, we can
assume that all guards are represented exactly in the considered abstractions.
Note that the algorithm can be easily extended to the general case; but this
simplifies the presentation.

The abstract transition relation we use is not the most precise abstraction of
the concrete transition relation. Therefore, it is possible to have abstract tran-
sitions A1

a−→ A2 for some action a while no concrete transition exists between
[[A1]] and [[A2]]. This requires care and is not a direct application of the standard
refinement technique from [11]. A second difficulty is due to incomplete reduction
of the predicates using reduce2D. In fact, some reachable states in our abstract
model will be unsatisfiable. Let us explain how we refine the abstraction in each
of these cases.

Consider an algorithm interp which returns an interpolant of given
zones Z1, Z2. In what follows, by the refinement of D by interp(Z1, Z2), we mean
the domain D′ obtained by adding (k,≺) to Dx,y for all constraints x − y ≺ k
of interp(Z1, Z2). Observe that αD′(Z1) ∩ αD′(Z2) = ∅ in this case.

We define concrete successor and predecessor operations for the actions in Σ.
For each a ∈ Σ, let Prec

a denote the concrete predecessor operation on zones
defined straightforwardly, and similarly for Postca.

Consider domain D and the induced abstraction function αD. Assume that
we are given a spurious trace π = A1

σ1−→ A2
σ1−→ . . .

σn−1−−−→ An. Let B1 . . . Bn be
the sequence of concrete states visited along π in A, that is, B1 is the concrete
initial state, and for all 2 ≤ i ≤ n, let Bi = Postcπi−1

(Bi−1). This sequence can
be computed using DBMs.

The trace is realizable if Bn �= ∅, in which case the counterexample is con-
firmed. Otherwise it is spurious. We show how to refine the abstraction to elim-
inate a spurious trace π.

Let i0 be the maximal index such that Bi0 �= ∅. There are three possible
reasons explaining why Bi0+1 is empty:

1. first, if the abstract successor Ai0+1 is unsatisfiable, that is, if it contains
contradictory predicates; in this case, [[Ai0+1]] = ∅, and the abstraction is
refined by Lemma 8 to eliminate this case by strengthening reducek

D.
2. if there are predecessors of Ai0+1 inside Ai0 but none of them are in Bi0 , i.e.,

Prec
πi0

([[Ai0+1]]) ∩ [[Ai0]] �= ∅; in this case, we refine the domain by separating
these predecessors from the rest of Ai0 using interp(Prec

πi0
([[Ai0+1]]), Bi0−1),

as in [11].

Abstraction Refinement Algorithms for Timed Automata 35

3. otherwise, there are no predecessors of Ai0+1 inside Ai0 : we refine the abstrac-
tion according to the type of the transition from step i0 to i0 + 1:
(a) if πi0 = up: refine D by interp([[Ai0]]↑, [[Ai0+1]]↓).
(b) if πi0 = r(x): refine D by interp(Freex([[Ai0]]),Freex([[Ai0+1]])).

Note that the case πi0 = r∅ is not possible since this induces the identity
function both in the abstract and concrete systems.

Given abstraction αD and spurious trace π, let refine(αD, π) denote the
refined abstraction αD′ obtained as described above.

The following two lemmas justify the two subcases of the third case above.
They prove that the detected spurious transition disappears after refinement.
The reset and up operations depend on the abstraction, so we make this depen-
dence explicit below by using superscripts, as in Resetαx and Upα, in order to
distinguish the operations before and after a refinement.

Lemma 12. Consider (A1, A2) ∈ Upα with [[A1]]↑ ∩ [[A2]] = ∅. Then [[A1]]↑ ∩
[[A2]]↓ = ∅. Moreover, if α′ is obtained by refinement of α by interp([[A1]]↑, [[A2]]↓),
then for all (A′

1, A
′
2) ∈ Upα′

, [[A′
1]] ⊆ [[A1]] implies [[A′

2]] ∩ [[A2]] = ∅.

Lemma 13. Consider x ∈ C, and (A1, A2) ∈ Resetαx such that [[A1]][x ← 0] ∩
[[A2]] = ∅. Then Freex([[A1]]) ∩ Freex([[A2]]) = ∅. Moreover, if α′ is obtained
by refinement of α by interp(Freex([[A1]]),Freex([[A2]])), then for all (A′

1, A
′
2) ∈

Resetα
′

x with [[A′
1]] ⊆ [[A1]], we have [[A′

2]] ∩ [[A2]] = ∅.

5 Experiments

We implemented both algorithms. The symbolic version was implemented in
OCaml using the CUDD library2; the explicit version was implemented in C++
within an existing model checker using Uppaal DBM library. Both prototypes
2 http://vlsi.colorado.edu/∼fabio/.

http://vlsi.colorado.edu/~fabio/

36 V. Roussanaly et al.

take as input networks of timed automata with invariants, discrete variables,
urgent and committed locations. The presented algorithms are adapted to these
features without difficulty.

We evaluated our algorithms on three classes of benchmarks we believe are
significant. We compare the performance of the algorithm with that of Uppaal [7]
which is based on zones, as well as the BDD-based model checker engine of
PAT [25]. We were unable to compare with RED [30] which is not maintained
anymore and not open source, and with which we failed to obtain correct results.
The tool used in [16] was not available either. We thus only provide a comparison
here with two well-maintained tools.

Two of our benchmarks are variants of schedulability-analysis problems
where task execution times depend on the internal states of executed processes,
so that an analysis of the state space is necessary to obtain a precise answer.

Monoprocess Scheduling Analysis. In this variant, a single process sequen-
tially executes tasks on a single machine, and the execution time of each cycle
depends on the state of the process. The goal is to determine a bound on the
maximum execution time of a single cycle. This depends on the semantics of the
process since the bound depends on the reachable states.

More precisely, we built a set of benchmarks where the processes are defined
by synchronous circuit models taken from the Synthesis Competition (http://
www.syntcomp.org). We assume that each latch of the circuit is associated with
a resource, and changing the state of the resource takes some amount of time.
So a subset of the latches have clocks associated with them, which measure
the time elapsed since the latest value change (latest moment when the value
changed from 0 to 1, or from 1 to 0). We provide two time positive bounds �0
and �1 for each latch, which determine the execution time as follows: if the value
of latch � changes from 0 to 1 (resp. from 1 to 0), then the execution time of the
present cycle cannot be less than �1 (resp. �0). The execution time of the step is
then the minimum that satisfies these constraints.

Multi-process Stateful Scheduling Analysis. In this variant, three processes
are scheduled on two machines with a round-robin policy. Processes schedule
tasks one after the other without any delay. As in the previous benchmarks,
a process executing a task (on any machine) corresponds to a step of the syn-
chronous circuit model. Each task is described by a tuple (C1, C2,D) which
defines the minimum and maximum execution times, and the relative deadline.
When a task finishes, the next task arrives immediately. The values in the tuple
depend on the state of the process. The goal is to check the absence of any dead-
line miss. Processes are also instantiated with AIG circuits from http://www.
syntcomp.org.

Asynchronous Computation. We consider an asynchronous network of
“threshold gates”, defined as follows: each gate is characterized by a tuple
(n, θ, [l, u]) where n is the number of inputs, 0 ≤ θ ≤ n is the threshold, and l ≤ u
are lower and upper bounds on activation time. Each gate has an output which
is initially undefined. The gate becomes active during the time period [l, u].

http://www.syntcomp.org
http://www.syntcomp.org
http://www.syntcomp.org
http://www.syntcomp.org

Abstraction Refinement Algorithms for Timed Automata 37

During this time, if all inputs are defined, and if at least θ of the inputs have
value 1, then it sets its output to 1. At the end of the time period, it becomes deac-
tivated and the output becomes undefined again, until the next period, which
starts l time units after the deactivation. The goal is to check whether the given
gate can output 1 within a given time bound T .

Results. Figure 3 displays the results of our experiments. All algorithms were
given 8 GB of memory and a timeout of 30 min, and the experiments were run
on laptop with an Intel i7@3.2 Ghz processor running Linux. The symbolic algo-
rithm performs best among all on the monoprocess and multiprocess scheduling
benchmarks. Uppaal is the second best, but does not solve as many benchmarks
as our algorithm. Our enumerative algorithm quickly fails on these benchmarks,
often running out of memory. On asynchronous computation benchmarks, our
enumerative algorithm performs remarkably well, beating all other algorithms.
We ran our tools on the CSMA/CD benchmarks (with 3 to 12 processes); Uppaal
performs the best but our enumerative algorithm is slightly behind. The symbolic
algorithm does not scale, while PAT fails to terminate in all cases.

The tool used for the symbolic algorithm is open source and can be found at
https://github.com/osankur/symrob along with all the benchmarks.

Fig. 3. Comparison of our enumerative and symbolic algorithms (referred to as Abs-
enumerative and Abs-symbolic) with Uppaal and PAT. Each figure is a cactus plot for
the set of benchmarks: a point (X, Y) means X benchmarks were solved within time
bound Y .

https://github.com/osankur/symrob

38 V. Roussanaly et al.

6 Conclusion and Future Work

There are several ways to improve the algorithm. Since the choice of interpolants
determines the abstraction function and the number of refinements, we assumed
that taking the minimal interpolant should be preferable as it should keep the
abstractions as coarse as possible. But it might be better to predict which inter-
polant is the most adapted for the rest of the computation in order to limit
future refinements. The number of refinement also depends on the search order,
and although it has already been studied in [23], it could be interesting to study
it in this case. Generally speaking, it is worth noting that we currently cannot
predict which (variant of) our algorithms is better suited for which model.

Several extensions of our algorithms could be developed, e.g. combining our
algorithms with other methods based on finer abstractions as in [22], integrating
predicate abstraction on discrete variables, or developing SAT-based versions of
our algorithms.

References

1. Althaus, E., et al.: Verification of linear hybrid systems with large discrete states-
paces using counterexample-guided abstraction refinement. Sci. Comput. Program.
1(48), 123–160 (2017)

2. Alur, R., Courcoubetis, C., Dill, D.L.: Model-checking in dense real-time. Inf. Com-
put. 104(1), 2–34 (1993)

3. Alur, R., Dill, D.: Automata for modeling real-time systems. In: Paterson, M.S.
(ed.) ICALP 1990. LNCS, vol. 443, pp. 322–335. Springer, Heidelberg (1990).
https://doi.org/10.1007/BFb0032042

4. Baier, Ch., Katoen, J.-P.: Principles of Model-Checking. MIT Press, Cambridge
(2008)

5. Ball, T., Rajamani, S.K.: The SLAM toolkit. In: Berry, G., Comon, H., Finkel,
A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 260–264. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-44585-4 25

6. Behrmann, G., Bouyer, P., Larsen, K.G., Pelánek, R.: Lower and upper bounds
in zone based abstractions of timed automata. In: Jensen, K., Podelski, A. (eds.)
TACAS 2004. LNCS, vol. 2988, pp. 312–326. Springer, Heidelberg (2004). https://
doi.org/10.1007/978-3-540-24730-2 25

7. Behrmann, G.: Uppaal 4.0. In: Proceedings of the 3rd International Conference on
Quantitative Evaluation of Systems (QEST 2006), pp. 125–126. IEEE Computer
Society Press, September 2006

8. Bengtsson, J., Yi, W.: Timed automata: semantics, algorithms and tools. In: Desel,
J., Reisig, W., Rozenberg, G. (eds.) ACPN 2003. LNCS, vol. 3098, pp. 87–124.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27755-2 3

9. Berthomieu, B., Menasche, M.: An enumerative approach for analyzing time Petri
nets. In: Mason, R.E.A. (eds.) Information Processing–Proceedings of the 9th IFIP
World Computer Congress (WCC 1983), pp. 41–46. North-Holland/IFIP, Septem-
ber 1983

10. Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization skeletons
using branching time temporal logic. In: Kozen, D. (ed.) Logic of Programs 1981.
LNCS, vol. 131, pp. 52–71. Springer, Heidelberg (1982). https://doi.org/10.1007/
BFb0025774

https://doi.org/10.1007/BFb0032042
https://doi.org/10.1007/3-540-44585-4_25
https://doi.org/10.1007/978-3-540-24730-2_25
https://doi.org/10.1007/978-3-540-24730-2_25
https://doi.org/10.1007/978-3-540-27755-2_3
https://doi.org/10.1007/BFb0025774
https://doi.org/10.1007/BFb0025774

Abstraction Refinement Algorithms for Timed Automata 39

11. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement for symbolic model checking. J. ACM 50(5), 752–794 (2003)

12. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge
(2000)

13. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Conference
Record of the 4th ACM Symposium on Principles of Programming Languages
(POPL 1977), pp. 238–252. ACM Press, January 1977

14. Dierks, H., Kupferschmid, S., Larsen, K.G.: Automatic abstraction refinement
for timed automata. In: Raskin, J.-F., Thiagarajan, P.S. (eds.) FORMATS 2007.
LNCS, vol. 4763, pp. 114–129. Springer, Heidelberg (2007). https://doi.org/10.
1007/978-3-540-75454-1 10

15. Dill, D.L.: Timing assumptions and verification of finite-state concurrent systems.
In: Sifakis, J. (ed.) CAV 1989. LNCS, vol. 407, pp. 197–212. Springer, Heidelberg
(1990). https://doi.org/10.1007/3-540-52148-8 17

16. Ehlers, R., Fass, D., Gerke, M., Peter, H.-J.: Fully symbolic timed model checking
using constraint matrix diagrams. In: Proceedings of the 31st IEEE Symposium
on Real-Time Systems (RTSS 2010), pp. 360–371. IEEE Computer Society Press,
November 2010

17. Ehlers, R., Mattmüller, R., Peter, H.-J.: Combining symbolic representations for
solving timed games. In: Chatterjee, K., Henzinger, T.A. (eds.) FORMATS 2010.
LNCS, vol. 6246, pp. 107–121. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-15297-9 10

18. He, F., Zhu, H., Hung, W.N.N., Song, X., Gu, M.: Compositional abstraction
refinement for timed systems. In: 2010 4th IEEE International Symposium on
Theoretical Aspects of Software Engineering, pp. 168–176, August 2010

19. Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstraction. In: Con-
ference Record of the 29th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (POPL 2002). ACM Press, January 2002. ACM SIG-
PLAN Notices 37(1), 58–70

20. Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Software verification with
BLAST. In: Ball, T., Rajamani, S.K. (eds.) SPIN 2003. LNCS, vol. 2648, pp. 235–
239. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-44829-2 17

21. Herbreteau, F., Kini, D., Srivathsan, B., Walukiewicz, I.: Using non-convex approx-
imations for efficient analysis of timed automata. In: Chakraborty, S., Kumar, A.
(eds.) Proceedings of the 31st Conference on Foundations of Software Technology
and Theoretical Computer Science (FSTTCS 2011), volume 13 of Leibniz Inter-
national Proceedings in Informatics, pp. 78–89. Leibniz-Zentrumfür Informatik,
December 2011

22. Herbreteau, F., Srivathsan, B., Walukiewicz, I.: Lazy abstractions for timed
automata. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp.
990–1005. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-
8 71

23. Herbreteau, F., Tran, T.-T.: Improving search order for reachability testing in
timed automata. In: Sankaranarayanan, S., Vicario, E. (eds.) FORMATS 2015.
LNCS, vol. 9268, pp. 124–139. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-22975-1 9

24. McMillan, K.L.: Symbolic model checking—an approach to the state explosion
problem. Ph.D. thesis, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
(1993)

https://doi.org/10.1007/978-3-540-75454-1_10
https://doi.org/10.1007/978-3-540-75454-1_10
https://doi.org/10.1007/3-540-52148-8_17
https://doi.org/10.1007/978-3-642-15297-9_10
https://doi.org/10.1007/978-3-642-15297-9_10
https://doi.org/10.1007/3-540-44829-2_17
https://doi.org/10.1007/978-3-642-39799-8_71
https://doi.org/10.1007/978-3-642-39799-8_71
https://doi.org/10.1007/978-3-319-22975-1_9
https://doi.org/10.1007/978-3-319-22975-1_9

40 V. Roussanaly et al.

25. Nguyen, T.K., Sun, J., Liu, Y., Dong, J.S., Liu, Y.: Improved BDD-based discrete
analysis of timed systems. In: Giannakopoulou, D., Méry, D. (eds.) FM 2012. LNCS,
vol. 7436, pp. 326–340. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-32759-9 28

26. Pnueli, A.: The temporal logic of programs. In: Proceedings of the 18th Annual
Symposium on Foundations of Computer Science (FOCS 1977), pp. 46–57. IEEE
Computer Society Press, October–November 1977

27. Roussanaly, V., Sankur, O., Markey, N.: Abstraction refinement algorithms for
timed automata. Technical report arXiv:1905.07365 arXiv, May 2019

28. Seshia, S.A., Bryant, R.E.: Unbounded, fully symbolic model checking of timed
automata using boolean methods. In: Hun Jr., W.A., Somenzi, F. (eds.) CAV
2003. LNCS, vol. 2725, pp. 154–166. Springer, Heidelberg (2003). https://doi.org/
10.1007/978-3-540-45069-6 16

29. Tóth, T., Majzik, I.: Lazy reachability checking for timed automata using inter-
polants. In: Abate, A., Geeraerts, G. (eds.) FORMATS 2017. LNCS, vol. 10419, pp.
264–280. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-65765-3 15

30. Wang, F.: Symbolic verification of complex real-time systems with clock-restriction
diagram. In: Kim, M., Chin, B., Kang, S., Lee, D. (eds.) Proceedings of the 21st
IFIP TC6/WG6.1 International Conference on Formal Techniques for Networked
and Distributed Systems (FORTE 2001), volume 197 of IFIP Conference Proceed-
ings, pp. 235–250. Chapman & Hall, August 2001

31. Wang, W., Jiao, L.: Trace abstraction refinement for timed automata. In: Cassez,
F., Raskin, J.-F. (eds.) ATVA 2014. LNCS, vol. 8837, pp. 396–410. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-11936-6 28

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-642-32759-9_28
https://doi.org/10.1007/978-3-642-32759-9_28
http://arxiv.org/abs/1905.07365
https://doi.org/10.1007/978-3-540-45069-6_16
https://doi.org/10.1007/978-3-540-45069-6_16
https://doi.org/10.1007/978-3-319-65765-3_15
https://doi.org/10.1007/978-3-319-11936-6_28
http://creativecommons.org/licenses/by/4.0/

Fast Algorithms for Handling Diagonal
Constraints in Timed Automata

Paul Gastin1 , Sayan Mukherjee2 , and B. Srivathsan2(B)

1 LSV, ENS Paris-Saclay, CNRS, Université Paris-Saclay, Cachan, France
paul.gastin@lsv.fr

2 Chennai Mathematical Institute, Chennai, India
{sayanm,sri}@cmi.ac.in

Abstract. A popular method for solving reachability in timed automata
proceeds by enumerating reachable sets of valuations represented as
zones. A naïve enumeration of zones does not terminate. Various ter-
mination mechanisms have been studied over the years. Coming up with
efficient termination mechanisms has been remarkably more challenging
when the automaton has diagonal constraints in guards.

In this paper, we propose a new termination mechanism for timed
automata with diagonal constraints based on a new simulation relation
between zones. Experiments with an implementation of this simulation
show significant gains over existing methods.

Keywords: Timed automata · Diagonal constraints · Reachability ·
Zones · Simulations

1 Introduction

Timed automata have emerged as a popular model for systems with real-time
constraints [2]. Timed automata are finite automata extended with real-valued
variables called clocks. All clocks are assumed to start at 0, and increase at the
same rate. Transitions of the automaton can make use of these clocks to disallow
behaviours which violate timing constraints. This is achieved by making use of
guards which are constraints of the form x ≤ 5, x − y ≥ 3, y > 7, etc. where x, y
are clocks. A transition guarded by x ≤ 5 says that it can be fired only when
the value of clock x is ≤ 5. Another important feature is the reset of clocks in
transitions. Each transition can specify a subset of clocks whose values become
0 once the transition is fired. The combination of guards and resets allows to
track timing distance between events. A basic question that forms the core of
timed automata technology is reachability : given a timed automaton, does there

This work is supported by UMI Relax. The first author is partly supported by ANR
project TickTac (ANR-18-CE40-0015) and third author by CEFIPRA project IoTTTA
(Indo-French program in ICST-DST/CNRS ref. 2016-01). The second and third authors
are partly supported by Infosys Foundation (India) and Tata Consultancy Services -
Innovation Labs (Pune, India).
c© The Author(s) 2019
I. Dillig and S. Tasiran (Eds.): CAV 2019, LNCS 11561, pp. 41–59, 2019.
https://doi.org/10.1007/978-3-030-25540-4_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-25540-4_3&domain=pdf
http://orcid.org/0000-0002-1313-7722
http://orcid.org/0000-0001-6473-3172
http://orcid.org/0000-0003-2666-0691
https://doi.org/10.1007/978-3-030-25540-4_3

42 P. Gastin et al.

exist an execution from its initial state to a final state. This question is known
to be decidable [2]. Various algorithms for this problem have been studied over
the years and have been implemented in tools [6,21,26,28,31,32].

Since the clocks are real valued variables, the space of configurations of a
timed automaton (consisting of a state and a valuation of the clocks) is infinite
and an explicit enumeration is not possible. The earliest solution to reachability
was to partition this space into a finite number of regions and build a region
graph that provides a finite abstraction of the behaviour of the timed automa-
ton [2]. However, this solution was not practical. Subsequent works introduced
the use of zones [14]. Zones are special sets of clock valuations with efficient
data structures and manipulation algorithms [6]. Within zone based algorithms,
there is a division: forward analysis versus backward analysis. The current indus-
try strength tool UPPAAL [28] implements a forward analysis approach, as this
works better in the presence of other discrete data structures used in UPPAAL
models [9]. We focus on this forward analysis approach using zones in this paper.

The forward analysis of a timed automaton essentially enumerates sets of
reachable configurations stored as zones. Some extra care needs to be taken
for this enumeration to terminate. Traditional development of timed automata
made use of extrapolation operators over zones to ensure termination. These are
functions which map a zone to a bigger zone. Importantly, the range of these
functions is finite. The goal was to come up with extrapolation operators which
are sound: adding these extra valuations should not lead to new behaviours.
This is where the role of simulations between configurations was studied and
extrapolation operators based on such simulations were devised [14]. A certain
extrapolation operation, which is now known as ExtraM [5] was proposed and
reachability using ExtraM was implemented in tools [14].

A seminal paper by Bouyer [9] revealed that ExtraM is not correct in the
presence of diagonal constraints in guards. These are constraints of the form
x − y � c where � is either < or ≤, and c is an integer. Moreover, it was proved
that no such extrapolation operation would be correct when there are diago-
nal constraints present. It was shown that for automata without diagonal con-
straints (henceforth referred to as diagonal-free automata), the extrapolation
works. After this result, developments in timed automata reachability focussed
on the class of diagonal-free automata [4,5,23,24], and diagonal constraints were
mostly sidelined. All these developments have led to quite efficient algorithms
for diagonal-free timed automata.

Diagonal constraints are a useful modeling feature and occur naturally in
certain problems, especially scheduling [3,17,20,27] and logic-automata transla-
tions [16,25], also in [29]. It is however known that they do not add any expres-
sive power: every timed automaton can be converted into a diagonal-free timed
automaton [7]. This conversion suffers from an exponential blowup, which was
later shown to be unavoidable: diagonal constraints could potentially give expo-
nentially more succinct models [10]. Therefore, a good forward analysis algorithm
that works directly on a timed automaton with diagonal constraints would be
handy. This is the subject of this paper.

Fast Algorithms for Handling Diagonal Constraints in Timed Automata 43

Related Work. The first attempt at such an algorithm was to split the (extrap-
olated) zones with respect to the diagonal constraints present in the automa-
ton [6]. This gave a correct procedure, but since zones are split, an enumeration
starts from each small zone leading to an exponential blow-up in the number
of visited zones. A second attempt was to do a more refined conversion into a
diagonal free automaton by detecting “relevant” diagonals [13,30] in an iterative
manner. In order to do this, special data structures storing sets of sets of diagonal
constraints were utilized. In [18] we extended the works [5] and [23] on diagonal-
free automata to the case of diagonal constraints. All the approaches suffer from
either a space or time bottleneck and are incomparable to the efficiency and
scalability of tools for diagonal-free automata.

Our Contributions. The goal of this paper is to come up with fast algorithms for
handling diagonal constraints. Since the extrapolation based approach is a dead
end, we work with simulation between zones directly, as in [23] and [18]. We
propose a new simulation relation between zones that is correct in the presence
of diagonal constraints (Sect. 3). We give an algorithm to test this simulation
between zones (Sect. 4). We have incorporated this simulation test in (an older
version of) the tool TChecker [21] checking reachability for timed automata, and
compared our results with the state-of-the-art tool UPPAAL. Experiments show
an encouraging gain, both in the number of zones enumerated and in the time
taken by the algorithm, sometimes upto four orders of magnitude (Sect. 6). The
main advantage of our approach is that it does not split zones, and furthermore
it leverages the optimizations studied for diagonal-free automata.

From a technical point of view, our presentation does not make use of regions
and instead works with valuations, zones and simulation relations. We think
that this presentation provides a clearer perspective - as a justification of this
claim, we extend our simulation to timed automata with general updates of
the form x := c and x := y + d in transitions (where x, y are clocks and c, d
are constants) in a rather natural manner (Sect. 5). In general, reachability for
timed automata with updates is undecidable [12]. Some decidable cases have
been proposed for which the algorithms are based on regions. For decidable
subclasses containing diagonal constraints, no zone based approach has been
studied. Our proposed method includes these classes, and also benefits from
zones and standard optimizations studied for diagonal-free automata.

Missing proofs can be found in the full version of this paper [19].

2 Preliminaries

Let N be the set of natural numbers, R≥0 the set of non-negative reals and Z the
set of integers. Let X be a finite set of variables ranging over R≥0, called clocks.
Let Φ(X) denote the set of constraints ϕ formed using the following grammar:
ϕ := x � c | c � x | x − y � d | ϕ ∧ ϕ, where x, y ∈ X, c ∈ N, d ∈ Z

and � ∈ {<,≤}. Constraints of the form x � c and c � x are called non-diagonal
constraints and those of the form x − y � c are called diagonal constraints. We
have adopted a convention that in non-diagonal constraints x � c and c � x, the

44 P. Gastin et al.

constant c is restricted to N. A clock valuation v is a function which maps every
clock x ∈ X to a real number v(x) ∈ R≥0. A valuation is said to satisfy a guard
g, written as v |= g if replacing every x in g with v(x) makes the constraint
g true. For δ ∈ R≥0 we write v + δ for the valuation which maps every x to
v(x) + δ. Given a subset of clocks R ⊆ X, we write [R]v for the valuation which
maps each x ∈ R to 0 and each x �∈ R to v(x).

A timed automaton A is a tuple (Q,X, q0, T, F) where Q is a finite set of
states, X is a finite set of clocks, q0 ∈ Q is the initial state, F ⊆ Q is a set
of accepting states and T ∈ Q × Φ(X) × 2X × Q is a set of transitions. Each
transition t ∈ T is of the form (q, g,R, q′) where q and q′ are respectively the
source and target states, g is a constraint called the guard, and R is a set of
clocks which are reset in t. We call a timed automaton diagonal-free if guards
in transitions do not use diagonal constraints.

A configuration of A is a pair (q, v) where q ∈ Q and v is a valuation. The
semantics of a timed automaton is given by a transition system SA whose states
are the configurations of A. Transitions in SA are of two kinds: delay transitions
are given by (q, v) δ−→ (q, v + δ) for all δ ≥ 0, and action transitions are given by
(q, v) t−→ (q′, v′) for each t := (q, g,R, q′), if v |= g and v′ = [R]v. We write δ,t−→ for
a sequence of delay δ followed by action t. A run of A is an alternating sequence of
delay-action transitions starting from the initial state q0 and the initial valuation
0 which maps every clock to 0: (q0,0)

δ0,t0−−−→ (q1, v1)
δ1,t1−−−→ · · · (qn, vn). A run of

the above form is said to be accepting if the last state qn ∈ F . The reachability
problem for timed automata is the following: given an automaton A, decide if
there exists an accepting run. This problem is known to be PSPACE-complete [2].
Since the semantics SA is infinite, solutions to the reachability problem work with
a finite abstraction of SA that is sound and complete. Before we explain one of
the popular solutions to reachability, we state a result which allows to convert
every timed automaton into a diagonal-free timed automaton.

Theorem 1. [7] For every timed automaton A, there exists a diagonal-free
timed automaton Adf s.t. there is a bijection between runs of A and Adf . The
number of states in Adf is 2d · n where d is the number of diagonal constraints
and n is the number of states of A.

The above theorem allows to solve the reachability of a timed automaton A
by first converting it into the diagonal free automaton Adf and then checking
reachability on Adf . However, this conversion comes with a systematic exponen-
tial blowup (in terms of the number of diagonal constraints present in A). It was
shown in [10] that such a blowup is unavoidable in general. We will now recall
the general algorithm for analyzing timed automata, and then move into specific
details which depend on whether the automaton has diagonal constraints or not.

Zones and Simulations. Fix a timed automaton A with clock set X for the
rest of the discussion in this section. As the space of valuations of A is infinite,
algorithms work with sets of valuations called zones. A zone is set of clock
valuations given by a conjunction of constraints of the form x − y � c, x � c and

Fast Algorithms for Handling Diagonal Constraints in Timed Automata 45

c � x where c ∈ Z and � ∈ {<,≤}, for example the solutions of x−y < 5∧y ≤ 10
is a zone. The transition relation over configurations (q, v) is extended to (q, Z)
where Z is a zone. We define the following operations on zones given a guard g

and a set of clocks R: time elapse
−→
Z = {v+ δ | v ∈ Z, δ ≥ 0}; guard intersection

Z∧g := {v | v ∈ Z and v |= g} and reset [R]Z := {[R]v | v ∈ Z}. It can be shown
that all these operations result in zones. Zones can be efficiently represented and
manipulated using Difference Bound Matrices (DBMs) [15].

The zone graph ZG(A) of timed automaton A is a transition system whose
nodes are of the form (q, Z) where q is a state of A and Z is a zone. For
each transition t := (q, g,R, q′) of A, and each zone (q, Z) there is a transi-
tion (q, Z) ⇒t (q′, Z ′) where Z ′ =

−−−−−−−→
[R](Z ∧ g). The initial node is (q0, Z0) where

q0 is the initial state of A and Z0 = {0 + δ | δ ≥ 0} is the zone obtained by
elapsing an arbitrary delay from the initial valuation. A path in the zone graph
is a sequence (q0, Z0) ⇒t0 (q1, Z1) ⇒t1 · · · ⇒tn−1 (qn, Zn) starting from the
initial node. The path is said to be accepting if qn is an accepting state. The
zone graph is known to be sound and complete for reachability.

Theorem 2. [14] A has an accepting run iff ZG(A) has an accepting path.

This does not yet give an algorithm as the zone graph ZG(A) is still not
finite. Moreover, there are examples of automata for which the reachable part
of ZG(A) is also infinite: starting from the initial node, applying the successor
computation leads to infinitely many zones. Two different approaches have been
studied to get finiteness, both of them based on the usage of simulation relations.

A (time-abstract) simulation relation (�) between configurations of A is a
reflexive and transitive relation such that (q, v) � (q′, v′) implies q = q′ and (1)
for every δ ≥ 0, there exists δ′ ≥ 0 such that (q, v + δ) � (q, v′ + δ′) and (2)
for every transition t of A, if (q, v) t−→ (q1, v1) then (q, v′) t−→ (q1, v′

1) such that
(q1, v1) � (q1, v′

1).
We say v � v′, read as v is simulated by v′ if (q, v) � (q, v′) for all states

q. The simulation relation can be extended to zones: Z � Z ′ if for every v ∈ Z
there exists v′ ∈ Z ′ such that v � v′. We write ↓Z for {v | ∃v′ ∈ Z s.t. v � v′}.
The simulation relation � is said to be finite if the function mapping zones Z to
the down sets ↓Z has finite range. We now recall a specific simulation relation
�LU [5,23]. Current algorithms and tools for diagonal-free automata are based
on this simulation. The conditions required for v �LU v′ ensure that when all
lower bound constraints c � x satisfy c ≤ L(x) and all upper bound constraints
x � c satisfy c ≤ U(x), whenever v satisfies a constraint, v′ will also satisfy it.

Definition 1 (LU-bounds and the relation �LU [5,23]). An LU -bounds
function is a pair of functions L : X �→ N∪ {−∞} and U : X �→ N∪ {−∞} that
map each clock to either a non-negative constant or −∞. Given an LU -bounds
function, we define v �LU v′ for valuations v, v′ if for every clock x ∈ X:

v′(x) < v(x) implies L(x) < v′(x) and v(x) < v′(x) implies U(x) < v(x).

46 P. Gastin et al.

Reachability in Diagonal-Free Timed Automata. A natural method to
get finiteness of the zone graph is to prune the zone graph computation through
simulations Z � Z ′: do not explore a node (q, Z) if there is an already visited
node (q, Z ′) such that Z � Z ′. Since these simulation tests need to be done often
during the zone graph computation, an efficient algorithm for performing this
test is crucial. Note that Z � Z ′ iff Z ⊆ ↓Z ′. However, it is known that the set
↓Z ′ is not necessarily a zone (this was proved for ↓LUZ ′ in [5]), and hence no
simple zone inclusions are applicable. The first algorithms for timed automata
followed a different approach, which we call the extrapolation approach. In this
approach, whenever a new zone Z is discovered by the algorithm, a new zone
Extra(Z)(⊇ Z) gets computed and stored in the place of Z.

Reachability Algorithm Using Zone Extrapolation. The input to the algorithm is
a timed automaton A. The algorithm maintains two lists, Passed and Waiting.
Initially, the node (q0,Extra(Z0)) is added to the Waiting list (recall that (q0, Z0)
is the initial node of the zone graph ZG(A)). Wlog. we assume that q0 is not
accepting. The algorithm repeatedly performs the following steps:

Step 1. If Waiting is empty, then return “A has no accepting run”; else pick
(and remove) a node (q, Z) from Waiting. Add (q, Z) to Passed.

Step 2. For each transition t := (q, g,R, q1), compute the successor (q, Z) ⇒t

(q1, Z1): if Z1 �= ∅ perform the following operations - if q1 is accepting, return
“A has an accepting run”; else compute Ẑ1 := Extra(Z1) and check if there
exists a node (q1, Z ′

1) in Passed or Waiting such that Ẑ1 ⊆ Z ′
1: if yes, ignore

the node (q1, Ẑ1), otherwise add (q1, Ẑ1) to Waiting.

Several extrapolation operators (ExtraM , ExtraLU , Extra+LU) were introduced
in [5]. The function Extra+LU has nice properties - (1) Extra+LU(Z) ⊆ ↓LUZ and (2)
Extra+LU(Z) is a zone for all Z. These properties give an algorithm that performs
only efficient zone operations: successor computations and zone inclusions.

Reachability Algorithm Using Simulations. The initial node (q0, Z0) is added
to the Waiting list. Wlog. we assume that q0 is not accepting. The algorithm
repeatedly performs the following steps:

Step 1. If Waiting is empty, then return “A has no accepting run”; else pick
(and remove) a node (q, Z) from Waiting. Add (q, Z) to Passed.

Step 2. For each transition t := (q, g,R, q1), compute the successor (q, Z) ⇒t

(q1, Z1): if Z1 �= ∅ perform the following operations - if q1 is accepting, return
“A has an accepting run”; else check if there exists a node (q1, Z ′

1) in Passed
or Waiting such that Z1 � Z ′

1: if yes, ignore the node (q1, Z1), otherwise add
(q1, Z1) to Waiting.

An O(|X|2) algorithm for Z �LU Z ′ was proposed in [23]. The efficiency of
this simulation check makes it well suited for use in practice. Moreover, as
Extra+LU(Z) ⊆ ↓LUZ, we expect to get more simulations (and hence quicker ter-
mination) through �LU .

Fast Algorithms for Handling Diagonal Constraints in Timed Automata 47

Reachability in the Presence of Diagonal Constraints. The �LU relation
is no longer a simulation when diagonal constraints are present. Moreover, it was
shown in [9] that no extrapolation operator (along the lines of Extra+LU) can work
in the presence of diagonal constraints. The first option to deal with diagonals is
to use Theorem 1 to get a diagonal free automaton and then apply the methods
discussed previously. One problem with this is the systematic exponential blowup
introduced in the number of states of the resulting automaton. Another problem
is to get diagnostic information: counterexamples need to be translated back to
the original automaton [6]. Various methods have been studied to circumvent
the diagonal free conversion and instead work on the automaton with diagonal
constraints directly. We recall the approach used in the state-of-the-art tool
UPPAAL below.

Zone Splitting [6]. The paper introducing timed automata gave a notion of equiv-
alence between valuations v �M v′ parameterized by a function M mapping each
clock x to the maximum constant M among the guards of the automaton that
involve x. This equivalence is a finite simulation for diagonal-free automata.
Equivalence classes of �M are called regions. This was extended to the diagonal
case by [6] as: v �d

M v′ if v �M v′ and for all diagonal constraints g present in
the automaton, if v |= g then v′ |= g. The �d

M relation splits the regions further,
such that each region is either entirely included inside g, or entirely outside g for
each g. The next step is to use this notion of equivalence in zones. The paper [6]
follows the extrapolation approach: to each zone Z, an extrapolation operation
ExtraM(Z) is applied; this adds some valuations which are �M equivalent to
valuations in Z; then it is further split into multiple zones, so that each small
zone is either inside g or outside g for each diagonal constraint g. If d is the
number of diagonal constraints present in the automaton, this splitting process
can give rise to 2d zones for each zone Z. From each small zone, the zone graph
computation is started. Essentially, the exponential blow-up at the state level
which appeared in the diagonal-free conversion now appears in the zone level.

In this paper, we propose a new simulation to handle diagonal constraints.
This has two advantages - using this avoids the blow-up in the number of nodes
arising due to zone splitting, and the simulation test between zones has an effi-
cient implementation and is significantly quicker than the simulation of [18].

3 A New Simulation Relation

We start with a definition of a relation between timed automata configurations,
which in some sense “declares” upfront what we need out of a simulation relation
that can be used in a reachability algorithm. As we proceed, we will make its
description more concrete and give an effective simulation algorithm between
zones, that can be implemented. Fix a clock set X. This generates constraints
Φ(X).

Definition 2 (the relation �G). Let G be a (finite or infinite) set of con-
straints. We say v �G v′ if for all ϕ ∈ G and all δ ≥ 0, v + δ |= ϕ implies
v′ + δ |= ϕ.

48 P. Gastin et al.

Our goal is to utilize the above relation in a simulation (as defined in p. xx)
for a timed automaton. Directly from the definition, we get the following lemma
which shows that the �G relation is preserved under time elapse.

Lemma 1. If v �G v′, then v + δ �G v′ + δ for all δ ≥ 0.

The other kind of transformation over valuations is resets. Given sets of
guards G1, G and a set of clocks R, we want to find conditions on G1 and G so
that if v �G1 v′ then [R]v �G [R]v′. To do this, we need to answer this question:
what guarantees should we ensure for v, v′ (via G1) so that [R]v �G [R]v′. This
motivates the next definition.

Definition 3 (weakest pre-condition of �G over resets). For a constraint
ϕ and a set of clocks R, we define a set of constraints wp(�ϕ, R) as follows:
when ϕ is of the form x � c or c � x, then wp(�ϕ, R) is empty if x ∈ R and is
{ϕ} otherwise; when ϕ is a diagonal constraint x − y � c, then wp(�ϕ, R) is:

– {x − y � c} if {x, y} ∩ R = ∅
– {x � c} if y ∈ R, x �∈ R and c ≥ 0
– {−c � y} if x ∈ R, y �∈ R and −c ≥ 0
– empty, otherwise.

For a set of guards G, we define wp(�G, R) :=
⋃

ϕ∈G wp(�ϕ, R).

Note that the relation �G is parameterized by a set of constraints. Addi-
tionally, we desire this set to be finite, so that the relation can be used in an
algorithm. We need to first link an automaton A with such a set of constraints.
One way to do it is to take the set of all guards present in the automaton and
to close it under weakest pre-conditions with respect to all possible subsets of
clocks. A better approach is to consider a set of constraints for each state, as in
[4] where the parameters for extrapolation (the maximum constants appearing
in guards) are calculated at each state.

Definition 4 (State based guards). Let A = (Q,X, q0, T, F) be a timed
automaton. We associate a set of guards G(q) for each state q ∈ Q, which is the
least set of guards (for the coordinate-wise subset inclusion order) such that for
every transition (q, g,R, q1): the guard g and the set wp(�G(q1), R) are present
in G(q). More precisely, {G(q)}q∈Q is the least solution to the following set of
equations written for each q ∈ Q:

G(q) =
⋃

(q,g,R,q1)∈T

{g} ∪ wp(�G(q1), R)

All constraints present in the set wp(�G(q1), R) contain constants which are
already present in �G(q1). The least solution to the above set of equations can
therefore be obtained by a fixed point computation which starts with G(q) set to⋃

(q,g,R,q1)∈T {g} and then repeatedly updates the weakest-preconditions. Since
no new constants are generated in this process, the fixed point computation
terminates. We now have the ingredients to define a simulation relation over
configurations of a timed automaton with diagonal constraints.

Fast Algorithms for Handling Diagonal Constraints in Timed Automata 49

Definition 5 (A-simulation). Let A = (Q,X, q0, T, F) be a timed automaton
and let the set of guards G(q) of Definition 4 be associated to every state q ∈
Q. We define a relation �A between configurations of A as (q, v) �A (q, v′) if
v �G(q) v′.

Lemma 2. The relation �A is a simulation on the configurations of timed
automaton A.

As pointed before, Definition 2 gives a declarative description of the simula-
tion and it is unclear how to work with it algorithmically, even when the set of
constraints G is finite. The main issue is with the ∀δ quantification, which is not
finite. We will first provide a characterization that brings out the fact that this
∀δ quantification is irrelevant for diagonal constraints (essentially because value
of v(x) − v(y) does not change with time elapse). Given a set of constraints G,
let G− ⊆ G be the set of non-diagonal constraints in G.

Proposition 1. v �G v′ iff v �G− v′ and for all diagonal constraints ϕ ∈ G, if
v |= ϕ then v′ |= ϕ.

It now amounts to solving the ∀δ problem for non-diagonals. It turns out
that the �LU simulation achieves this, almost. We will see this in more detail in
the next section.

4 Algorithm for Z �G Z′

Fix a finite set of guards G. Restating the definition of �G extended to zones:
Z �G Z ′ if for all v ∈ Z there exists a v′ ∈ Z ′ such that v �G v′. In this
section, we will view the characterization of �G as in Proposition 1 and give an
algorithm to check Z �G Z ′ that uses as an oracle a test Z �G− Z ′. We discuss
the computation of Z �G− Z ′ later in this section. We start with an observation
following from Proposition 1.

Lemma 3. Let ϕ := x − y � c be a diagonal constraint in G. Then Z �G Z ′ if
and only if Z ∩ ϕ �G′ Z ′ ∩ ϕ and Z ∩ ¬ϕ �G′ Z ′ where G′ = G \ {ϕ}.

If G has no diagonal constraints, Z �G Z ′ if and only if Z �G− Z ′.

This leads to the following algorithm consisting of two mutually recursive
procedures. This algorithm is essentially an implementation of the above lemma,
with two optimizations:

– we start with the non-diagonal check in Line 6 of Algorithm 1 - if this is
already violated, then the algorithm returns false;

– suppose Z �G− Z ′, the next task is to perform the checks in the first statement
of Lemma 3 - this is done by Algorithm 2; note however that when Algorithm
2 is called, we already have Z �G− Z ′, hence Z ∩ ¬ϕ �G− Z ′. Therefore we
use an optimization in Line 7 by calling Algorithm 2 directly (as the check in
Line 6 of Algorithm 1 will be redundant).

50 P. Gastin et al.

1 check Z �G Z ′:
2 if Z = ∅ :
3 return true

4 if Z ′ = ∅ :
5 return false

6 if Z ��G− Z ′ :
7 return false

8 return Z �∗
G Z ′

Algorithm 1

1 check Z �∗
G Z ′:

2 if G does not contain any
diagonal constraints :

3 return true

4 pick a diagonal constraint
ϕ = x − y � c from G

5 G′ ←− G \ {ϕ}
6 if Z ∩ ¬ϕ �= ∅ :
7 if Z ∩ ¬ϕ ��∗

G′ Z ′ :
8 return false

9 return Z ∩ ϕ �G′ Z ′ ∩ ϕ

Algorithm 2

Computing Z �G− Z′. We will use �LU to approximate �G− : in our imple-
mentation of the above algorithms, we replace Z �G− Z ′ with Z �LU Z ′. This
works because for an appropriate choice of LU (explained below), we have
Z �LU(G) Z ′ ⇒ Z �G− Z ′. The converse is not true as the LU bounds func-
tions cannot distinguish between guards with < and ≤ comparisons. Therefore,
the �LU simulation does not characterize v �G− v′ completely. Although we are
aware of the (rather technical) modifications to �LU simulation that are needed
for this characterization, we choose to use the existing �LU directly as it is safe
to do so and it has already been implemented in tools. This gives us a finer
simulation than v �G− v′.

Definition 6 (LU-bounds from G). Let G be a finite set of constraints. We
define LU(G) to denote the pair of functions LG and UG defined as follows:

LG(x) =

{
−∞ if there is no guard of the form c � x in G
max{c | c � x ∈ G} otherwise

UG(x) =

{
−∞ if there is no guard of the form x � c in G
max{c | x � c ∈ G} otherwise

Lemma 4. For every set of constraints G, v �LU(G) v′ implies v �G− v′.

The above observations call for the next definition and subsequent lemmas.

Definition 7 (approximating �G). Let G be a finite set of constraints. We
define a relation �LU

G as follows: v �LU
G v′ if v �LU(G) v′ and for all diagonal

constraints ϕ ∈ G, if v |= ϕ then v′ |= ϕ. Similarly, define �LU
A as (q, v) �LU

A
(q, v′) if v �LU

G(q) v′.

Lemma 5. The relation �LU
A is a finite simulation on the configurations of A.

Fast Algorithms for Handling Diagonal Constraints in Timed Automata 51

The above lemma and the fact that Z �LU(G) Z ′ can be checked in O(|X|2)
[23,33], imply the following theorem.

Theorem 3. When using Z �LU(G) Z ′ in the place of Z �G− Z ′, the algorithm
is correct and it terminates in O(2d · |X|2) where d is the number of diagonal
guards in G.

From a complexity viewpoint, this algorithm is not efficient since it makes
an exponential number of calls in the number of diagonal constraints (in fact
this may not be avoidable due to Lemma 6, which follows from the NP-hardness
result in [18]). Although the above algorithm does involve many calls, the internal
operations involved in each call are simple zone manipulations. Moreover, the
preliminary checks (for instance line 6 of Algorithm 1) cut short the number
of calls. This is visible in our experiments which are very good, especially with
respect to running time, as compared to other methods. A similar hardness was
shown for a different simulation in [18], but the implementation there indeed
witnessed the hardness, as the time taken by that algorithm was unsatisfactory.

Lemma 6. Deciding Z ��LU
G Z ′ is NP-complete.

5 Simulations for Updatable Timed Automata

In the timed automata considered so far, clocks are allowed to be reset to 0 along
transitions. We consider in this section more sophisticated transformations to
clocks in transitions. These are called updates. An update up : R|X|

≥0 �→ R
|X| is a

function mapping non-negative |X|-dimensional reals (valuations) v to general
|X|-dimensional reals (which may apriori not be valuations as the coordinates
may be negative). The syntax of the update function up is given by a set of
atomic updates upx to each x ∈ X, which are of the form x := c or x := y + d
where c ∈ N, d ∈ Z and y ∈ X (possibly equal to x). Note that we want d to be
an integer, since we allow for decrementing clocks, and on the other hand c ∈ N

since we have non-negative clocks. Given a valuation v and an update up, the
valuation up(v) is:

up(v)(x) :=

{
c if upx is x := c

v(y) + d if upx is x := y + d

Note that in general, due to the presence of updates x := y+d, the update up(v)
may not yield a clock valuation. However, when it does give a valuation, it can
be used as a transformation in timed automata transitions. We say up(v) ≥ 0 if
up(v)(x) ≥ 0 for all clocks x ∈ X.

An updateable timed automaton (UTA) A = (Q,X, q0, T, F) is an extension
of a classic timed automaton with transitions of the form (q, g, up, q′) where up
is an update. Semantics extend in the natural way: delay transitions remain the
same, and for action transitions t := (q, g, up, q′) we have (q, v) t−→ (q′, v′) if v |= g,
up(v) ≥ 0, and v′ = up(v). We allow the transition only if the update results

52 P. Gastin et al.

in a valuation. The reachability problem for these automata is known to be
undecidable in general [12]. Various subclasses with decidable reachability have
been discussed in the same paper. Decidability proofs in [12] take the following
flavour, for a given automaton A: (1) divide the space of all valuations into a
finite number of equivalence classes called regions (2) to build the parameters for
the equivalence, derive a set of diophantine equations from the guards of A; if
they have a solution then construct the quotient graph of the equivalence (called
region graph) parameterized by the obtained solution and check reachability on
it; if the equations have no solution, output that reachability for A cannot be
answered. Sufficient conditions on the nature of the updates that give a solution
to the diophantine equations have been tabulated in [12]. When the automaton
is diagonal-free, the “region-equivalence” can be used to build an extrapolation
operation which in turn can be used in a reachability algorithm with zones.
When the automaton contains diagonals, the region-equivalence is used to only
build a region graph - no effective zone based approach has been studied.

We use a similar idea, but we have two fundamental differences: (1) we want
to obtain reachability through the use of simulations on zones, and (2) we build
equations over sets of guards as in Definition 4. The advantage of this approach
is that this allows the use of coarser simulations over zones. Even for automata
with diagonal constraints and updates, we get a zone based algorithm, instead
of resorting to regions which are not efficient in practice.

The notion of simulations as in p. xx remains the same, now using the seman-
tics of transitions with updates. We will re-use the simulation relation �G. We
need to extend Definition 3 to incorporate updates. We do this below. Here is a
notation: for an update function up, we write up(x) to be c if upx is x := c, and
up(x) to be y + c if upx is x := y + c.

Definition 8 (weakest pre-condition of �G over updates).
Let up be an update.
For a constraint ϕ of the form x � c or c � x, we define wp(�ϕ, up) to be

respectively {up(x) � c} or {c � up(x)} if these resulting constraints are of the
form z � d or d � z with z ∈ X and d ≥ 0, otherwise wp(�ϕ, up) is empty.

For a constraint ϕ : x−y � c, we define wp(�ϕ, up) to be {up(x)−up(y) � c}
if this constraint is either a diagonal using different clocks, or it is of the form
z � d or d � z with d ≥ 0, otherwise wp(�ϕ, up) is empty.

For a set of guards G, we define wp(�G, up) :=
⋃

ϕ∈G wp(�ϕ, up).

Some examples: wp(x ≤ 5, x := x + 10) is empty, since up(x) is x + 10, and
the guard x+10 ≤ 5 is not satisfiable; wp(x ≤ 5, x := x− 10) is x ≤ 15, wp(x ≤
5, x := c) is empty, wp(x−y ≤ 5, 〈x := z1, y := z2+10〉) will be z1−(z2+10) ≤ 5,
giving the constraint z1 − z2 ≤ 15, wp(x − y ≤ 5, 〈x := z + c1, y := z + c2〉) is
empty, wp(x − y ≤ 5, 〈x := c1, y := z + c2〉) is c = c1 − 5− c2 ≤ z if c ≥ 0 and is
empty otherwise.

Definition 9 (State based guards). Let A = (Q,X, q0, T, F) be a UTA.
We associate a set of constraints G(q) for each state q ∈ Q, which is the least
set of constraints (for the coordinate-wise subset inclusion order) such that for

Fast Algorithms for Handling Diagonal Constraints in Timed Automata 53

every transition (q, g, up, q1): the guard g and the set wp(�G(q1), up) are present
in G(q), and in addition constraints that allow the update to happen are also
present in G. The last condition is given by the weakest precondition of the set
of constraints {x ≥ 0 | x ∈ X}. Overall, {G(q)}q∈Q is the least solution to the
following set of equations, for each q ∈ Q:

G(q) =
⋃

(q,g,up,q1)∈T

({g} ∪ wp(�{x≥0|x∈X}, up) ∪ wp(�G(q1), up)
)

The least solution {G(q)}q∈Q is said to be finite if each G(q) is a finite set of
constraints.

In contrast to the simple reset case, the above set of equations may not have
a finite solution. Consider a self-looping transition: (q, x � c, x := x − 1, q). We
require x � c ∈ G(q). Now, wp(x � c, x := x − 1) is x � c + 1 which should be
in G(q) according to the above equation. Continuing this process, we need to
add x � d for every natural number d ≥ c. Indeed this is consistent with the
undecidability of reachability when subtraction updates are allowed. We deal
with the subject of finite solutions to the above equations later in this section.
On the other hand, when the above system does have a solution with finite G(q)
at every q, we can use the A simulation of Definition 5 and its approximation
�LU

A to get an algorithm.

Proposition 2. Let A = (Q,X, q0, T, F) be a UTA. Let {G(q)}q∈Q be the least
solution to the equations given in Definition 9. Then, the relation �A is a sim-
ulation on the configurations of A.

Lemma 7. For a UTA A, assume that the least solution {G(q)}q∈Q to the state-
based guards equations is finite. Then the relation �LU

A is a finite simulation on
the configurations of A.

Finite Solution to the State-Based Guards Equations. The least solution
to the equations of Definition 9 can be obtained by a standard Kleene iteration
for fixed points computation. For each i ≥ 0 and each state q, define:

G0(q) =
⋃

(q,g,up,q′)∈T

{g} ∪ wp(�{x≥0|x∈X}, up)

Gi+1(q) =
⋃

(q,g,up,q′)∈T

Gi(q) ∪ wp(�Gi(q′), up)

The iteration stabilizes when there exists a k satisfying Gk+1(q) = Gk(q) for all
q. At stabilization, the values Gk(q) satisfy the equations of Definition 9, and
give the required G(q). However, as we mentioned earlier, this iteration might
not stabilize at any k. We will now develop some observations that will help
detect after finitely many steps if the iteration will stabilize or not.

Suppose we colour the set Gi+1(q) to red if either there exists a diagonal
constraint x − y � c ∈ Gi+1(q) \ Gi(q) (a new diagonal is added) or there exists a

54 P. Gastin et al.

non-diagonal constraint x � c or c � x in Gi+1(q) \ Gi(q) such that the constant
c is strictly bigger than c′ for respectively every non-diagonal x � c′ or c′ � x
in Gi(q) (a non-diagonal with a bigger constant is added). If this condition is
not applicable, we colour the set Gi+1(q) green. The next observations say that
the iteration terminates iff we reach a stage where all sets are green. Intuitively,
once we reach green, the only constraints that can be added are non-diagonals
having smaller (non-negative) constants and hence the procedure terminates.

Lemma 8. Let i > 0. If Gi(q) is green for all q, then Gi+1(q) is green for all q.

Lemma 9. Let K = 1+ |Q| · |X| · (|X|+1). If there is a state p such that GK(p)
is red, then there is no i such that Gi(q) is green for all q.

As to why the bound K = 1+ |Q| · |X| · (|X|+ 1) in the lemma above: a red
state at stage i arises due to the addition of a constraint ϕi at state pi, which in
turn depends on a state pi−1 marked red at stage i−1 due to constraint ϕi−1. If
we iterate sufficiently long, we will hit a state p, a sequence of transitions from
p to p and a constraint ϕ such that computing the weakest precondition over
this loop will give a new constraint with the same set of clocks as ϕ but with a
different constant. This part can be iterated infinitely often.

Proposition 3. The least solution of the local constraint equations for a UTA
is finite iff GK(q) is green for all q and where K = 1 + |Q| · |X| · (|X| + 1).

Theorem 4. Let A be a UTA. It is decidable whether the equations in Defini-
tion 9 have a finite solution. When these equations do have a finite solution, zone
graph enumeration using �LU

A is a sound, complete and terminating procedure
for the reachability problem.

All decidable classes of [12] can be shown decidable with our approach, by
showing stabilization of the G(q) computation.

Lemma 10. Reachability is decidable in UTA where: guards are non-diagonals
and updates are of the form x := c, x := y, x := y + c where c ≥ 0 or, guards
include diagonal constraints and updates are of the form x := c, x := y.

6 Experiments

We have implemented the reachability algorithm for timed automata with diag-
onal constraints (and only resets as updates) based on the simulation approach
(p. xx) using the �LU

A simulation (Definition 7) for pruning zones. The algorithm
for Z �LU

G Z ′ comes from Sect. 4. Experiments are reported in Table 1. We take
model Cex from [8,30] and Fischer from [30]. We are not aware of any other
“standard” benchmarks containing diagonal constraints. In addition to these two
models, we introduce a new benchmark. This is an extension of the job-shop
scheduling using (diagonal-free) timed automata [1]. Here the tasks within a
job were logically independent. We add some timing dependency between them

Fast Algorithms for Handling Diagonal Constraints in Timed Automata 55

Table 1. Experiments: the column #D gives the number of diagonal constraints. Four
methods have been reported in the table. First two methods, TChecker with our sim-
ulation relation �LU

G and UPPAAL engine for diagonals, have been run on A, the
automata containing diagonal constraints. Whereas, the third and fourth methods are
running diagonal-free engines of UPPAAL and TChecker on Adf , a diagonal-free equiv-
alent of A. Experiments were run on macOS X with 2.3 GHz Intel core i5 processor,
and 8 GB RAM. Time is reported in seconds. We set a timeout of 15min.

Model #D A: contains diagonals Adf : diagonal-free equivalent of A
TChecker + �LU

G UPPAAL UPPAAL TChecker

Time Nodes count Time Nodes count Time Nodes count Time Nodes count

Cex 2 4 0.047 241 0.026 2180 0.005 1039 0.067 1039

Cex 3 6 7.399 7111 111.168 182394 1.028 60982 40.092 60982

Cex 4 8 857.662 185209 Timeout - 734.543 3447119 Timeout -

Fischer 4 4 0.032 452 307.836 357687 0.009 1815 0.100 1815

Fischer 5 5 0.257 1842 Timeout - 0.116 12511 1.856 12511

Fischer 7 7 15.032 26812 Timeout - 174.560 693603 Timeout -

Job Shop 3 12 0.420 278 23.093 31711 0.003 845 0.312 845

Job Shop 5 20 285.421 10592 Timeout - 4.633 179607 150.811 179607

which gets naturally modeled using diagonal constraints. Each model considered
above is a product of a number of k timed automata. In the table we write the
name of the model and the number k of automata involved in the product. We
also report the number of diagonal constraints in each of them.

Experimental Results. We report the results of four methods of handling diago-
nal constraints, as mentioned in the caption of Table 1. Under each method, we
report on the number of zones enumerated and the time taken. The first method
gives a huge gain over the second one (upto four orders of magnitude in the
number of nodes, and even better for time) and gives a less marked, but still sig-
nificant, gain over the third and fourth methods. We provide a brief explanation
of this phenomenon. The performance of the reachability algorithm is dependent
on three factors:

– parameters of extrapolation or simulation: M -simulations which use the max-
imum constant appearing in the guards, versus the LU -simulations which
make a distinction between lower bound guards c � x and upper bound
guards x � c (refer to [5] for the exact definitions of extrapolations based
on these parameters, and [23] for simulations based on these parameters);
LU -simulations are superior to M -simulations.

– computation of the parameters: global parameters which associate a bound
to each clock versus the more local state based parameters as in Definition 4
which associate a set of bounds functions to each state [4]; local bounds are
superior to global bounds.

– when diagonal constraints are present, whether zones get split or not: each
time a zone gets split, new enumerations start from each of the new nodes;
clearly, a no-splitting-of-zones approach is superior to zone splitting.

56 P. Gastin et al.

Algorithm of column 1 uses the superior heuristic in all the three optimiza-
tions above. The no-splitting-of-zones was possible thanks to our simulation app-
roach, which temporarily splits zones for checking Z �LU

G Z ′, but never starts a
new exploration from any of the split nodes. The algorithm of column 2, which is
implemented in the current version UPPAAL 4.1 uses the inferior heuristic in all
the three above. In particular, it is not clear how the extrapolation approach can
avoid the zone splitting in an efficient manner. The superiority of our approach
gets amplified (by multiplicative factors) when we consider bigger products with
many more diagonals. In the third and fourth methods, we give a diagonal free
equivalent of the original model (c.f. Theorem 1) and use the UPPAAL and
TChecker engines respectively, for diagonal free timed automata. The UPPAAL
diagonal free engine is highly optimized, and makes use of the superior heuristics
in the first two optimizations mentioned above (the third heuristic is not appli-
cable now as it is a diagonal free automaton). The third and fourth methods
can be considered as a good approximation of the zone splitting approach to
diagonal constraints using LU -abstractions and local guards.

The second and the third methods are the only possibilities of verifying timed
models coming with diagonal constraints in UPPAAL. Both these approaches
are in principle prone to a 2#D blowup compared to the first approach, where
#D gives the number of diagonal constraints. The table shows that a good
extent of this blowup indeed happens. The UPPAAL diagonal free engine uses
“minimal constraint systems” [6] for representing zones, whereas TChecker uses
DBMs [15]. This explains why even with the same number of nodes visited,
UPPAAL performs better in terms of time. We have not included in the table
the comparison with two other works dealing with the same problem: the refined
diagonal free conversion [30] and the extension of LU simulation for diagonals
[18]. However, our results are better than the tables reported in these papers.

7 Conclusion

We have proposed a new algorithm for handling diagonal constraints in timed
automata, and extended it to automata with general updates. Our approach
is based on a simulation relation between zones. From our preliminary exper-
iments, we can infer that the use of simulations is indispensable in the pres-
ence of diagonal constraints as zone-splitting can be avoided. Moreover, the fact
that the simulation approach stores the actual zones (as opposed to abstracted
zones in the extrapolation approach) has enabled optimizations for diagonal-free
automata that work with dynamically changing simulation parameters (LU -
bounds), which are learnt as and when the zones are expanded [22]. Working
with actual zones is also convenient for finding cost-optimal paths in priced timed
automata [11]. Investigating these in the presence of diagonal constraints is part
of future work. Currently, we have not implemented our approach for updateable
timed automata. This will also be part of our future work.

Fast Algorithms for Handling Diagonal Constraints in Timed Automata 57

Working directly with a model containing diagonal constraints could be con-
venient (both during modeling, and during extraction of diagnostic traces) and
can also potentially give a smaller automaton to begin with. We believe that our
experiments provide hope that diagonal constraints can indeed be used.

References

1. Abdeddaim, Y., Asarin, E., Maler, O.: Scheduling with timed automata. Theor.
Comput. Sci. 354(2), 272–300 (2006). https://doi.org/10.1016/j.tcs.2005.11.018

2. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2),
183–235 (1994). https://doi.org/10.1016/0304-3975(94)90010-8

3. Amnell, T., Fersman, E., Mokrushin, L., Pettersson, P., Yi, W.: TIMES b— a tool
for modelling and implementation of embedded systems. In: Katoen, J.-P., Stevens,
P. (eds.) TACAS 2002. LNCS, vol. 2280, pp. 460–464. Springer, Heidelberg (2002).
https://doi.org/10.1007/3-540-46002-0_32

4. Behrmann, G., Bouyer, P., Fleury, E., Larsen, K.G.: Static guard analysis in timed
automata verification. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS,
vol. 2619, pp. 254–270. Springer, Heidelberg (2003). https://doi.org/10.1007/3-
540-36577-X_18

5. Behrmann, G., Bouyer, P., Larsen, K.G., Pelánek, R.: Lower and upper bounds in
zone-based abstractions of timed automata. STTT 8(3), 204–215 (2006). https://
doi.org/10.1007/s10009-005-0190-0

6. Bengtsson, J., Yi, W.: Timed automata: semantics, algorithms and tools. In: Desel,
J., Reisig, W., Rozenberg, G. (eds.) ACPN 2003. LNCS, vol. 3098, pp. 87–124.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27755-2_3

7. Bérard, B., Petit, A., Diekert, V., Gastin, P.: Characterization of the expressive
power of silent transitions in timed automata. Fundamenta Informaticae 36(2,3),
145–182 (1998). https://doi.org/10.3233/FI-1998-36233

8. Bouyer, P.: Untameable timed automata!. In: Alt, H., Habib, M. (eds.) STACS
2003. LNCS, vol. 2607, pp. 620–631. Springer, Heidelberg (2003). https://doi.org/
10.1007/3-540-36494-3_54

9. Bouyer, P.: Forward analysis of updatable timed automata. Form. Methods Syst.
Des. 24(3), 281–320 (2004). https://doi.org/10.1023/B:FORM.0000026093.21513.
31

10. Bouyer, P., Chevalier, F.: On conciseness of extensions of timed automata. J.
Autom. Lang. Comb. 10(4), 393–405 (2005). https://doi.org/10.25596/jalc-2005-
393

11. Bouyer, P., Colange, M., Markey, N.: Symbolic optimal reachability in weighted
timed automata. In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS, vol. 9779,
pp. 513–530. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41528-
4_28

12. Bouyer, P., Dufourd, C., Fleury, E., Petit, A.: Updatable timed automata. Theor.
Comput. Sci. 321(2–3), 291–345 (2004). https://doi.org/10.1016/j.tcs.2004.04.003

13. Bouyer, P., Laroussinie, F., Reynier, P.-A.: Diagonal constraints in timed
automata: forward analysis of timed systems. In: Pettersson, P., Yi, W. (eds.) FOR-
MATS 2005. LNCS, vol. 3829, pp. 112–126. Springer, Heidelberg (2005). https://
doi.org/10.1007/11603009_10

14. Daws, C., Tripakis, S.: Model checking of real-time reachability properties using
abstractions. In: Steffen, B. (ed.) TACAS 1998. LNCS, vol. 1384, pp. 313–329.
Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054180

https://doi.org/10.1016/j.tcs.2005.11.018
https://doi.org/10.1016/0304-3975(94)90010-8
https://doi.org/10.1007/3-540-46002-0_32
https://doi.org/10.1007/3-540-36577-X_18
https://doi.org/10.1007/3-540-36577-X_18
https://doi.org/10.1007/s10009-005-0190-0
https://doi.org/10.1007/s10009-005-0190-0
https://doi.org/10.1007/978-3-540-27755-2_3
https://doi.org/10.3233/FI-1998-36233
https://doi.org/10.1007/3-540-36494-3_54
https://doi.org/10.1007/3-540-36494-3_54
https://doi.org/10.1023/B:FORM.0000026093.21513.31
https://doi.org/10.1023/B:FORM.0000026093.21513.31
https://doi.org/10.25596/jalc-2005-393
https://doi.org/10.25596/jalc-2005-393
https://doi.org/10.1007/978-3-319-41528-4_28
https://doi.org/10.1007/978-3-319-41528-4_28
https://doi.org/10.1016/j.tcs.2004.04.003
https://doi.org/10.1007/11603009_10
https://doi.org/10.1007/11603009_10
https://doi.org/10.1007/BFb0054180

58 P. Gastin et al.

15. Dill, D.L.: Timing assumptions and verification of finite-state concurrent systems.
In: Sifakis, J. (ed.) CAV 1989. LNCS, vol. 407, pp. 197–212. Springer, Heidelberg
(1990). https://doi.org/10.1007/3-540-52148-8_17

16. Ferrère, T.: The compound interest in relaxing punctuality. In: Havelund, K.,
Peleska, J., Roscoe, B., de Vink, E. (eds.) FM 2018. LNCS, vol. 10951, pp. 147–164.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-95582-7_9

17. Fersman, E., Pettersson, P., Yi, W.: Timed automata with asynchronous processes:
schedulability and decidability. In: Katoen, J.-P., Stevens, P. (eds.) TACAS 2002.
LNCS, vol. 2280, pp. 67–82. Springer, Heidelberg (2002). https://doi.org/10.1007/
3-540-46002-0_6

18. Gastin, P., Mukherjee, S., Srivathsan, B.: Reachability in timed automata with
diagonal constraints. In: Schewe, S., Zhang, L. (eds.) CONCUR 2018. Leibniz
International Proceedings in Informatics (LIPIcs), vol. 118, pp. 28:1–28:17. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany (2018). https://
doi.org/10.4230/LIPIcs.CONCUR.2018.28

19. Gastin, P., Mukherjee, S., Srivathsan, B.: Fast algorithms for handling diagonal
constraints in timed automata. CoRR abs/1904.08590 (2019). http://arxiv.org/
abs/1904.08590

20. Hatvani, L., David, A., Seceleanu, C., Pettersson, P.: Adaptive task automata
with earliest-deadline-first scheduling. In: Proceedings of the 14th International
Workshop on Automated Verification of Critical Systems (AVoCS 2014), vol. 70.
Electronic Communications of the EASST (2014). https://doi.org/10.14279/tuj.
eceasst.70.975

21. Herbreteau, F., Point, G.: TChecker, April 2019 https://github.com/fredher/
tchecker (v02)

22. Herbreteau, F., Srivathsan, B., Walukiewicz, I.: Lazy abstractions for timed
automata. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp.
990–1005. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-
8_71

23. Herbreteau, F., Srivathsan, B., Walukiewicz, I.: Better abstractions for timed
automata. Inf. Comput. 251, 67–90 (2016). https://doi.org/10.1016/j.ic.2016.07.
004

24. Herbreteau, F., Tran, T.-T.: Improving search order for reachability testing in
timed automata. In: Sankaranarayanan, S., Vicario, E. (eds.) FORMATS 2015.
LNCS, vol. 9268, pp. 124–139. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-22975-1_9

25. Ho, H.: Revisiting timed logics with automata modalities. In: Proceedings of the
22nd ACM International Conference on Hybrid Systems: Computation and Con-
trol, HSCC 2019, pp. 67–76. ACM, New York (2019). https://doi.org/10.1145/
3302504.3311818

26. Kant, G., Laarman, A., Meijer, J., van de Pol, J., Blom, S., van Dijk, T.: LTSmin:
high-performance language-independent model checking. In: Baier, C., Tinelli, C.
(eds.) TACAS 2015. LNCS, vol. 9035, pp. 692–707. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-46681-0_61

27. Krčál, P., Yi, W.: Decidable and undecidable problems in schedulability analysis
using timed automata. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS,
vol. 2988, pp. 236–250. Springer, Heidelberg (2004). https://doi.org/10.1007/978-
3-540-24730-2_20

28. Larsen, K.G., Pettersson, P., Yi, W.: UPPAAL in a nutshell. STTT 1(1–2), 134–
152 (1997). https://doi.org/10.1007/s100090050010

https://doi.org/10.1007/3-540-52148-8_17
https://doi.org/10.1007/978-3-319-95582-7_9
https://doi.org/10.1007/3-540-46002-0_6
https://doi.org/10.1007/3-540-46002-0_6
https://doi.org/10.4230/LIPIcs.CONCUR.2018.28
https://doi.org/10.4230/LIPIcs.CONCUR.2018.28
http://arxiv.org/abs/1904.08590
http://arxiv.org/abs/1904.08590
https://doi.org/10.14279/tuj.eceasst.70.975
https://doi.org/10.14279/tuj.eceasst.70.975
https://github.com/fredher/tchecker
https://github.com/fredher/tchecker
https://doi.org/10.1007/978-3-642-39799-8_71
https://doi.org/10.1007/978-3-642-39799-8_71
https://doi.org/10.1016/j.ic.2016.07.004
https://doi.org/10.1016/j.ic.2016.07.004
https://doi.org/10.1007/978-3-319-22975-1_9
https://doi.org/10.1007/978-3-319-22975-1_9
https://doi.org/10.1145/3302504.3311818
https://doi.org/10.1145/3302504.3311818
https://doi.org/10.1007/978-3-662-46681-0_61
https://doi.org/10.1007/978-3-540-24730-2_20
https://doi.org/10.1007/978-3-540-24730-2_20
https://doi.org/10.1007/s100090050010

Fast Algorithms for Handling Diagonal Constraints in Timed Automata 59

29. Ponge, J., Benatallah, B., Casati, F., Toumani, F.: Analysis and applications of
timed service protocols. ACM Trans. Softw. Eng. Methodol. 19(4), 11:1–11:38
(2010). https://doi.org/10.1145/1734229.1734230

30. Reynier, P.A.: Diagonal constraints handled efficiently in UPPAAL. In: Research
report LSV-07-02. Laboratoire Spécification et Vérification, ENS Cachan, France
(2007)

31. Wang, F.: Efficient verification of timed automata with BDD-like data structures.
Int. J. Softw. Tools Technol. Transf. 6(1), 77–97 (2004). https://doi.org/10.1007/
s10009-003-0135-4

32. Yovine, S.: Kronos: a verification tool for real-time systems. (Kronos user’s manual
release 2.2). STTT 1, 123–133 (1997). https://doi.org/10.1007/s100090050009

33. Zhao, J., Li, X., Zheng, G.: A quadratic-time dbm-based successor algorithm for
checking timed automata. Inf. Process. Lett. 96(3), 101–105 (2005). https://doi.
org/10.1016/j.ipl.2005.05.027

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1145/1734229.1734230
https://doi.org/10.1007/s10009-003-0135-4
https://doi.org/10.1007/s10009-003-0135-4
https://doi.org/10.1007/s100090050009
https://doi.org/10.1016/j.ipl.2005.05.027
https://doi.org/10.1016/j.ipl.2005.05.027
http://creativecommons.org/licenses/by/4.0/

Safety and Co-safety Comparator
Automata for Discounted-Sum Inclusion

Suguman Bansal(B) and Moshe Y. Vardi

Rice University, Houston, TX 77005, USA
sugumanb@gmail.com

Abstract. Discounted-sum inclusion (DS-inclusion, in short) formalizes
the goal of comparing quantitative dimensions of systems such as cost,
resource consumption, and the like, when the mode of aggregation for the
quantitative dimension is discounted-sum aggregation. Discounted-sum
comparator automata, or DS-comparators in short, are Büchi automata
that read two infinite sequences of weights synchronously and relate their
discounted-sum. Recent empirical investigations have shown that while
DS-comparators enable competitive algorithms for DS-inclusion, they
still suffer from the scalability bottleneck of Büchi operations.

Motivated by the connections between discounted-sum and Büchi
automata, this paper undertakes an investigation of language-theoretic
properties of DS-comparators in order to mitigate the challenges of Büchi
DS-comparators to achieve improved scalability of DS-inclusion. Our
investigation uncovers that DS-comparators possess safety and co-safety
language-theoretic properties. As a result, they enable reductions based
on subset construction-based methods as opposed to higher complex-
ity Büchi complementation, yielding tighter worst-case complexity and
improved empirical scalability for DS-inclusion.

1 Introduction

The analysis of quantitative dimensions of computing systems such as cost,
resource consumption, and distance metrics [6,10,28] has been studied thoroughly
to design efficient computing systems. Cost-aware program-synthesis [14,16] and
low-cost program-repair [25] have found compelling applications in robotics [24,
29], education [22], and the like.Quantitative verification facilitates efficient system
design by automatically determining if a system implementation is more efficient
than a specification model. Investigations in quantitative verification have demon-
strated their high computational complexity and practically intractable [17,23].
This work addresses practical intractability of quantitative verification.

At the core of quantitative verification lies the problem of quantitative inclu-
sion which formalizes the goal of determining which of two given systems is more
efficient [17,23,31]. In quantitative inclusion, quantitative systems are abstracted
as weighted automata [7,21,32]. A run in a weighted automaton is associated
with a sequence of weights. The quantitative dimension of these runs is deter-
mined by the weight of runs, which is computed by taking an aggregate of the
c© The Author(s) 2019
I. Dillig and S. Tasiran (Eds.): CAV 2019, LNCS 11561, pp. 60–78, 2019.
https://doi.org/10.1007/978-3-030-25540-4_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-25540-4_4&domain=pdf
https://doi.org/10.1007/978-3-030-25540-4_4

Safety and Co-safety Comparator Automata for Discounted-Sum Inclusion 61

run’s weight sequence. Quantitative inclusion can be thought of as the quanti-
tative generalization of (qualitative) language inclusion.

A commonly appearing mode of aggregation is that of Discounted-sum (DS)
aggregation which captures the intuition that weights incurred in the near future
are more significant than those incurred later on [19]. The convergence of DS
aggregation for all bounded infinite weight-sequences makes it a preferred mode
of aggregation across domains: Reinforcement learning [37], planning under
uncertainty [34], and game-theory [33]. This work examines the problem of
Discounted-sum inclusion or DS-inclusion that is quantitative inclusion when
discounted sum is the mode of aggregation.

In theory, DS-inclusion is PSPACE-complete [12]. Recent algorithmic
approaches have tapped into language-theoretic properties of discounted-sum
aggregate function [12,18] to design practical algorithms for DS-inclusion [11,12].
These algorithms use DS-comparator automata (DS-comparator, in short) as
their main technique, and are purely automata-theoretic. While these algorithms
outperform other existing approaches for DS-inclusion in runtime [15,17], even
these do not scale well on weighted-automata with more than few hundreds
of states [11]. This work contributes novel techniques and algorithms for DS-
inclusion to address the scalability challenge of DS-inclusion

An in-depth examination of the DS-comparator based algorithm exposes
their scalability bottleneck. DS-comparator is a Büchi automaton that relates
the discounted-sum aggregate of two (bounded) weight-sequences A and B by
determining the membership of the interleaved pair of sequences (A,B) in the
language of the comparator. As a result, DS-comparators reduce DS-inclusion to
language inclusion between (non-deterministic) Büchi automaton. In spite of the
fact that many techniques have been proposed to solve Büchi language inclusion
efficiently in practice [4,20], none of them can avoid at least an exponential blow-
up of 2O(n log n), for an n-sized input, caused by a direct or indirect involvement
of Büchi complementation [36,40].

This work meets the scalability challenge of DS-inclusion by delving deeper
into language-theoretic properties of discounted-sum aggregate functions [18] in
order to obtain algorithms for DS-inclusion that render both tighter theoretical
complexity and improved scalability. Specifically, we prove that DS-comparators
are expressed as safety automata or co-safety automata [26] (Sect. 3.1), and have
compact deterministic constructions (Sect. 3.2). Safety and co-safety automata
have the property that their complementation is performed by simpler and lower
2O(n)-complexity subset-construction methods [27]. As a result, they facilitate
a procedure for DS-inclusion that uses subset-construction based intermediate
steps instead of Büchi complementation, yielding an improvement in theoretical
complexity from 2O(n·log n) to 2O(n). Our subset-construction based procedure
has yet another advantage over Büchi complementation as they support efficient
on-the-fly implementations, yielding practical scalability as well (Sect. 4).

An empirical evaluation of our prototype tool QuIPFly for the proposed pro-
cedure against the prior DS-comparator algorithm and other existing approaches
for DS-inclusion shows that QuIPFly outperforms them by orders of magnitude
both in runtime and the number of benchmarks solved (Sect. 4).

62 S. Bansal and M. Y. Vardi

2 Preliminaries and Related Work

A weight-sequence, finite or infinite, is bounded if the absolute value of all of its
elements are bounded by a fixed number.

Büchi Automaton: A Büchi automaton is a tuple A = (S , Σ, δ, sI , F), where
S is a finite set of states, Σ is a finite input alphabet, δ ⊆ (S × Σ × S) is the
transition relation, state sI ∈ S is the initial state, and F ⊆ S is the set of
accepting states [39]. A Büchi automaton is deterministic if for all states s and
inputs a, |{s′|(s, a, s′) ∈ δ for some s′}| ≤ 1. Otherwise, it is nondeterministic.
A Büchi automaton is complete if for all states s and inputs a, |{s′|(s, a, s′) ∈
δ for some s′}| ≥ 1. For a word w = w0w1 · · · ∈ Σω, a run ρ of w is a sequence of
states s0s1 . . . s.t. s0 = sI , and τi = (si, wi, si+1) ∈ δ for all i. Let inf (ρ) denote
the set of states that occur infinitely often in run ρ. A run ρ is an accepting run
if inf (ρ) ∩ F �= ∅. A word w is an accepting word if it has an accepting run.
The language of Büchi automaton A, denoted by L(A) is the set of all words
accepted by A. By abuse of notation, we write w ∈ A and ρ ∈ A if w and ρ are
an accepting word and an accepting run of A. Büchi automata are closed under
set-theoretic union, intersection, and complementation [39].

Safety and Co-safety Properties: Let L ⊆ Σω be a language over alphabet Σ.
A finite word w ∈ Σ∗ is a bad prefix for L if for all infinite words y ∈ Σω,
x · y /∈ L. A language L is a safety language if every word w /∈ L has a bad
prefix for L. A language L is a co-safety language if its complement language
is a safety language [5]. When a safety or co-safety language is an ω-regular
language, the Büchi automaton representing it is called a safety or co-safety
automaton, respectively [26]. Wlog, safety and co-safety automaton contain a
sink state from which every outgoing transitions loops back to the sink state
and there is a transition on every alphabet symbol. All states except the sink
state are accepting in a safety automaton, while only the sink state is accepting
in a co-safety automaton. Unlike Büchi complementation, complementation of
safety and co-safety automaton is conducted by simpler subset construction with
a lower 2O(n) blow-up. The complementation of safety automaton is a co-safety
automaton, and vice-versa. Safety automata are closed under intersection, and
co-safety automata are closed under union.

Comparator Automaton: For a finite-set of integers Σ, an aggregate function
f : Z

ω → R, and equality or inequality relation R ∈ {<,>,≤,≥,=, �=}, the
comparison language for f with relation R is a language of infinite words over the
alphabet Σ × Σ that accepts a pair (A,B) iff f(A) R f(B) holds. A comparator
automaton (comparator, in short) for aggregate function f and relation R is an
automaton that accepts the comparison language for f with R [12]. A comparator
is said to be regular if its automaton is a Büchi automaton.

Weighted Automaton: A weighted automaton over infinite words is a tuple
A = (M, γ, f), where M = (S , Σ, δ, sI ,S) is a complete Büchi automaton

Safety and Co-safety Comparator Automata for Discounted-Sum Inclusion 63

with all states as accepting, γ : δ → N is a weight function, and f : Nω → R

is the aggregate function [17,31]. Words and runs in weighted automata are
defined as in Büchi automata. The weight-sequence of run ρ = s0s1 . . . of word
w = w0w1 . . . is given by wtρ = n0n1n2 . . . where ni = γ(si, wi, si+1) for all i.
The weight of a run ρ, denoted by f(ρ), is given by f(wtρ). Here the weight of a
word w ∈ Σω in weighted automata is defined as wtA(w) = sup{f(ρ)|ρ is a run
of w in A}.

Quantitative Inclusion: Let P and Q be weighted automata with the same aggre-
gate function. The strict quantitative inclusion problem, denoted by P ⊂ Q, asks
whether for all words w ∈ Σω, wtP (w) < wtQ(w). The non-strict quantitative
inclusion problem, denoted by P ⊆ Q, asks whether for all words w ∈ Σω,
wtP (w) ≤ wtQ(w). Comparison language or comparator of a quantitative inclu-
sion problem refer to the comparison language or comparator of the associated
aggregate function.

Discounted-sum Inclusion: Let A = A0, A1, . . . be a weight sequence, d > 1 be a
rational number. The discounted-sum (DS in short) of A with integer discount-
factor d > 1 is DS (A, d) = Σ∞

i=0
Ai

di . DS-comparison language and DS-comparator
with discount-factor d > 1 are the comparison language and comparator obtained
for the discounted-sum aggregate function with discount-factor d > 1, respec-
tively. Strict or non-strict discounted-sum inclusion is strict or non-strict quan-
titative inclusion with the discounted-sum aggregate function, respectively. For
brevity, we abbreviate discounted-sum inclusion to DS-inclusion.

Related Work. The decidability of DS-inclusion is an open problem when the
discount-factor d > 1 is arbitrary. Recent work has established that DS-inclusion
is PSPACE-complete when the discount-factor is an integer [12]. This work inves-
tigates algorithmic approaches to DS-inclusion with integer discount-factors.

Two contrasting solution approaches have been identified for DS-inclusion.
The first approach is hybrid [17]. It separates out the language-theoretic aspects
of weighted-automata from the numerical aspects, and solves each separately
[15,17]. More specifically, the hybrid approach solves the language-theoretic
aspects by DS-determinization [15] and the numerical aspect is performed by
linear programming [8,9] sequentially. To the best of our knowledge, this pro-
cedure cannot be performed in parallel. As a result, this approach must always
incur the exponential cost of DS-determinization.

The second approach is purely-automata theoretic [12]. This approach uses reg-
ular DS-comparator to reduce DS-inclusion to language inclusion between non-
deterministic Büchi automata [11,12]. While the purely automata-theoretic app-
roach scales better than the hybrid approach in runtime [11], its scalability suf-
fers from fundamental algorithmic limitations of Büchi language inclusion. A key
ingredient of Büchi language-inclusion is Büchi complementation [36]. Büchi com-
plementation is 2O(n log n) in the worst-case, and is practically intractable [40].
These limitations also feature in the theoretical complexity and practical per-
formance of DS-inclusion. The complexity of DS-inclusion between weighted

64 S. Bansal and M. Y. Vardi

automata P and Q with regular DS-comparator C for integer discount-factor d > 1
is |P | · 2O(|P ||Q||C|·log(|P ||Q||C|)).

This work improves the worst-case complexity and practical performance of
the purely automata theoretic approach for DS-inclusion by a closer investiga-
tion of language-theoretic properties of DS-comparators. In particular, we iden-
tify that DS-comparator for integer discount-factor form a safety or co-safety
automata (depending on the relation R). We show that complementation advan-
tage of safety/co-safety automata not only improves the theoretical complexity
of DS-inclusion with integer discount-factor but also facilitate on-the-fly imple-
mentations that significantly improve practical performance.

3 DS-inclusion with Integer Discount-Factor

This section covers the core technical contributions of this paper. We uncover
novel language-theoretic properties of DS-comparison languages and utilize them
to obtain tighter theoretical upper-bound for DS-inclusion with integer discount-
factor. Unless mentioned otherwise, the discount-factor is an integer.

In Sect. 3.1 we prove that DS-comparison languages are either safety or
co-safety for all rational discount-factors. Since DS-comparison languages are ω-
regular for integer discount-factors [12], we obtain that DS-comparators for inte-
ger discount-factors form safety or co-safety automata. Next, Sect. 3.2 makes use
of newly obtained safety/co-safety properties of DS-comparator to present the
first deterministic constructions for DS-comparators. These deterministic con-
struction are compact in the sense that they match their non-deterministic coun-
terparts in number of states [11]. Section 3.3 evaluates the complexity of quan-
titative inclusion with regular safety/co-safety comparators, and observes that
its complexity is lower than the complexity for quantitative inclusion with regu-
lar comparators. Finally, since DS-comparators are regular safety/co-safety, our
analysis shows that the complexity of DS-inclusion is improved as a consequence
of the complexity observed for quantitative-inclusion with regular safety/co-
safety comparators.

We begin with formal definitions of safety/co-safety comparison languages
and safety/co-safety comparators:

Definition 1 (Safety and co-safety comparison languages). Let Σ be a
finite set of integers, f : Z

ω → R be an aggregate function, and R ∈ {≤, <
,≥, >,=, �=} be a relation. A comparison language L over Σ × Σ for aggregate
function f and relation R is said to be a safety comparison language (or a co-
safety comparison language) if L is a safety language (or a co-safety language).

Definition 2 (Safety and co-safety comparators). Let Σ be a finite set
of integers, f : Zω → R be an aggregate function, and R ∈ {≤, <,≥, >,=, �=}
be a relation. A comparator for aggregate function f and relation R is a safety
comparator (or co-safety comparator) is the comparison language for f and R
is a safety language (or co-safety language).

Safety and Co-safety Comparator Automata for Discounted-Sum Inclusion 65

A safety comparator is regular if its language is ω-regular (equivalently, if its
automaton is a safety automaton). Likewise, a co-safety comparator is regular if
its language is ω-regular (equivalently, automaton is a co-safety automaton).

By complementation duality of safety and co-safety languages, comparison
language for an aggregate function f for non-strict inequality ≤ is safety iff
the comparison language for f for strict inequality < is co-safety. Since safety
languages and safety automata are closed under intersection, safety comparison
languages and regular safety comparator for non-strict inequality renders the
same for equality. Similarly, since co-safety languages and co-safety automata
are closed under union, co-safety comparison languages and regular co-safety
comparators for non-strict inequality render the same for the inequality relation.
Therefore, it suffices to examine the comparison language for one relation only.

It is worth noting that for weight-sequences A and B and all relations R,
we have that DS (A, d) R DS (B, d) iff DS (A − B, d) R 0, where (A − B)i =
Ai − Bi for all i ≥ 0. Prior work [11] shows that we can define DS-comparison
language with upper bound μ, discount-factor d > 1, and relation R to accept
infinite and bounded weight-sequence C over {−μ, . . . , μ} iff DS (C, d) R 0 holds.
Similarly, DS-comparator with the same parameters μ, d > 1, accepts the DS-
comparison language with parameters μ, d and R. We adopt these definitions for
DS-comparison languages and DS-comparators

Throughout this section, the concatenation of finite sequence x with finite or
infinite sequence y is denoted by x · y in the following.

3.1 DS-comparison Languages and Their Safety/Co-safety
Properties

The central result of this section is that DS-comparison languages are safety
or co-safety languages for all (integer and non-integer) discount-factors (The-
orem 1). In particular, since DS-comparison languages are ω-regular for inte-
ger discount-factors [12], this implies that DS-comparators for integer discount-
factors form safety or co-safety automata (Corollary 1).

The argument for safety/co-safety of DS-comparison languages depends on
the property that the discounted-sum aggregate of all bounded weight-sequences
exists for all discount-factors d > 1 [35].

Theorem 1. Let μ > 1 be the upper bound. For rational discount-factor d > 1

1. DS-comparison languages are safety languages for relations R ∈ {≤,≥,=}
2. DS-comparison language are co-safety languages for relations R ∈ {<,>, �=}.
Proof (Proof sketch). Due to duality of safety/co-safety languages, it suffices to
show that DS-comparison language with ≤ is a safety language.

Let DS-comparison language with upper bound μ, rational discount-factor
d > 1 and relation ≤ be denoted by Lμ,d

≤ . Suppose that Lμ,d
≤ is not a safety

language. Let W be a weight-sequence in the complement of Lμ,d
≤ such that W

does not have a bad prefix. Then the following hold: (a). DS (W,d) > 0 (b).

66 S. Bansal and M. Y. Vardi

For all i ≥ 0, the i-length prefix W [i] of W can be extended to an infinite and
bounded weight-sequence W [i] · Y i such that DS (W [i] · Y i, d) ≤ 0.

Note that DS (W,d) = DS (W [i], d) + 1
di · DS (W [i . . .], d) where W [i . . .] =

WiWi+1 . . . and DS (W [i], d) is the discounted-sum of the finite sequence W [i]
i.e. DS (W [i], d) = Σj=i−1

j=0
W [j]
dj . Similarly, DS (W [i] · Y i, d) = DS (W [i], d) + 1

di ·
DS (Y i, d). The contribution of tail sequences W [i . . .] and Y i to the discounted-
sum of W and W [i] · Y i, respectively, diminishes exponentially as the value of
i increases. In addition, since W and W [i] · Y i share a common i-length prefix
W [i], their discounted-sum values must converge to each other. The discounted
sum of W is fixed and greater than 0, due to convergence there must be a k ≥ 0
such that DS (W [k] · Y k, d) > 0. Contradiction to (b).

Therefore, DS-comparison language with ≤ is a safety language. ��
Semantically this result implies that for a bounded-weight sequence C and ratio-
nal discount-factor d > 1, if DS (C, d) > 0 then C must have a finite prefix Cpre

such that the discounted-sum of the finite prefix is so large that no infinite exten-
sion by bounded weight-sequence Y can reduce the discounted-sum of Cpre · Y
with the same discount-factor d to zero or below.

Prior work shows that DS-comparison languages are expressed by Büchi
automata iff the discount-factor is an integer [13]. Therefore:

Corollary 1. Let μ > 1 be the upper bound. For integer discount-factor d > 1

1. DS-comparators are regular safety for relations R ∈ {≤,≥,=}
2. DS-comparators are regular co-safety for relations R ∈ {<,>, �=}.
Lastly, it is worth mentioning that for the same reason [13] DS-comparators for
non-integer rational discount-factors do not form safety or co-safety automata.

3.2 Deterministic DS-comparator for Integer Discount-Factor

This section issues deterministic safety/co-safety constructions for DS-
comparators with integer discount-factors. This is different from prior works
since they supply non-deterministic Büchi constructions only [11,12]. An out-
come of DS-comparators being regular safety/co-safety (Corollary 1) is a
proof that DS-comparators permit deterministic Büchi constructions, since non-
deterministic and deterministic safety automata (and co-safety automata) have
equal expressiveness [26]. Therefore, one way to obtain deterministic Büchi con-
struction for DS-comparators is to determinize the non-deterministic construc-
tions using standard procedures [26,36]. However, this will result in exponen-
tially larger deterministic constructions. To this end, this section offers direct
deterministic safety/co-safety automata constructions for DS-comparator that
not only avoid an exponential blow-up but also match their non-deterministic
counterparts in number of states (Theorem 3).

Safety and Co-safety Comparator Automata for Discounted-Sum Inclusion 67

Key ideas. Due to duality and closure properties of safety/co-safety automata,
we only present the construction of deterministic safety automata for DS-
comparator with upper bound μ, integer discount-factor d > 1 and relation
≤, denoted by Aμ,d

≤ . We proceed by obtaining a deterministic finite automaton,
(DFA), denoted by bad(μ, d,≤), for the language of bad-prefixes of Aμ,d

≤ (Theo-
rem 2). Trivial modifications to bad(μ, d,≤) will furnish the coveted deterministic
safety automata for Aμ,d

≤ (Theorem 3).

Construction. We begin with some definitions. Let W be a finite weight-
sequence. By abuse of notation, the discounted-sum of finite-sequence W with
discount-factor d is defined as DS (W,d) = DS (W · 0ω, d). The recoverable-gap
of a finite weight-sequences W with discount factor d, denoted gap(W,d), is its
normalized discounted-sum: If W = ε (the empty sequence), gap(ε, d) = 0, and
gap(W,d) = d|W |−1 · DS (W,d) otherwise [15]. Observe that the recoverable-gap
has an inductive definition i.e. gap(ε, d) = 0, where ε is the empty weight-
sequence, and gap(W · v, d) = d · gap(W,d) + v, where v ∈ {−μ, . . . , μ}.

This observation influences a sketch for bad(μ, d,≤). Suppose all possible
values for recoverable-gap of weight sequences forms the set of states. Then, the
transition relation of the DFA can mimic the inductive definition of recoverable
gap i.e. there is a transition from state s to t on alphabet v ∈ {−μ, . . . , μ} iff
t = d · s + v, where s and v are recoverable-gap values of weight-sequences.
There is one caveat here: There are infinitely many possibilities for the values
of recoverable gap. We need to limit the recoverable gap values to finitely many
values of interest. The core aspect of this construction is to identify these values.

First, we obtain a lower bound on recoverable gap for bad-prefixes of Aμ,d
≤ :

Lemma 1. Let μ and d > 1 be the bound and discount-factor, resp. Let T = μ
d−1

be the threshold value. Let W be a non-empty, bounded, finite weight-sequence.
Weight sequence W is a bad-prefix of Aμ,d

≤ iff gap(W,d) > T.

Proof. Let a finite weight-sequence W be a bad-prefix of Aμ,d
≤ . Then,

DS (W · Y , d) > 0 for all infinite and bounded weight-sequences Y . Since
DS (W · Y , d) = DS (W,d) + 1

d|W | · DS (Y, d), we get inf(DS (W,d) + 1
d|W | ·

DS (Y, d)) > 0 =⇒ DS (W,d) + + 1
d|W | · inf(DS (Y, d)) > 0 as W is a fixed

sequence. Hence DS (W,d) + −T
d|W |−1 > 0 =⇒ gap(W,d) − T > 0. Conversely,

for all infinite, bounded, weight-sequence Y , DS (W · Y , d)·d|W |−1 = gap(W,d)+
1
d · DS (Y, d). Since gap(W,d) > T , inf(DS (Y, d)) = −T · d, we get DS (W · Y , d)
> 0. ��
Since all finite and bounded extensions of bad-prefixes are also bad-prefixes,
Lemma 1 implies that if the recoverable-gap of a finite sequence is strinctly
lower that threshold T, then recoverable gap of all of its extensions also exceed
T. Since recoverable gap exceeding threshold T is the precise condition for bad-
prefixes, all states with recoverable gap exceeding T can be merged into a single
state. Note, this state forms an accepting sink in bad(μ, d,≤).

68 S. Bansal and M. Y. Vardi

Next, we attempt to merge very low recoverable gap value into a single state.
For this purpose, we define very-good prefixes for Aμ,d

≤ : A finite and bounded
weight-sequence W is a very good prefix for language of Aμ,d

≤ if for all infinite,
bounded extensions of W by Y , DS (W · Y , d) ≤ 0. A proof similar to Lemma 1
proves an upper bound for the recoverable gap of very-good prefixes of Aμ,d

≤ :

Lemma 2. Let μ and d > 1 be the bound and discount-factor, resp. Let T = μ
d−1

be the threshold value. Let W be a non-empty, bounded, finite weight-sequence.
Weight-sequence W is a very-good prefix of Aμ,d

≤ iff gap(W,d) ≤ −T.

Clearly, finite extensions of very-good prefixes are also very-good prefixes. Fur-
ther, bad(μ, d,≤) must not accept very-good prefixes. Thus, by reasoning as
earlier we get that all recoverable gap values that are less than or equal to −T
can be merged into one non-accepting sink state in bad(μ, d,≤).

Finally, for an integer discount-factor the recoverable gap is an integer. Let
�x� denote the floor of x ∈ R e.g. �2.3� = 2, �−2� = −2, �−2.3� = −3. Then,

Corollary 2. Let μ be the bound and d > 1 an integer discount-factor. Let
T = μ

d−1 be the threshold. Let W be a non-empty, bounded, finite weight-sequence.

– W is a bad prefix of Aμ,d
≤ iff gap(W,d) > �T�

– W is a very-good prefix of Aμ,d
≤ iff gap(W,d) ≤ �−T�

So, the recoverable gap value is either one of {�−T� + 1, . . . , �T�}, or less than
or equal to �−T�, or greater than �T�. This curbs the state-space to O(μ)-many
values of interest, as T = μ

d−1 < μ·d
d−1 and 1 < d

d−1 ≤ 2. Lastly, since gap(ε, d) = 0,
state 0 must be the initial state.

Construction of bad(μ, d,≤). Let μ be the upper bound, and d > 1 be the integer
discount-factor. Let T = μ

d−1 be the threshold value. The finite-state automata
bad(μ, d,≤) = (S, sI , Σ, δ,F) is defined as follows:

– States S = {�−T� + 1, . . . , �T�} ∪ {bad, veryGood}
– Initial state sI = 0, Accepting states F = {bad}
– Alphabet Σ = {−μ,−μ + 1, . . . , μ − 1, μ}
– Transition function δ ⊆ S × Σ → S where (s, a, t) ∈ δ then:

1. If s ∈ {bad, veryGood}, then t = s for all a ∈ Σ
2. If s ∈ {�−T� + 1, . . . , �T�}, and a ∈ Σ

(a) If �−T� < d · s + a ≤ �T�, then t = d · s + a
(b) If d · s + a > �T�, then t = bad
(c) If d · s + a ≤ �−T�, then t = veryGood

Theorem 2. Let μ be the upper bound, d > 1 be the integer discount-factor.
bad(μ, d,≤) accepts finite, bounded, weight-sequence iff it is a bad-prefix of Aμ,d

≤ .

Proof (Proof sketch). First note that the transition relation is deterministic and
complete. Therefore, every word has a unique run in bad(μ, d,≤). Let last be

Safety and Co-safety Comparator Automata for Discounted-Sum Inclusion 69

the last state in the run of finite, bounded, weight-sequence W in the DFA. Use
induction on the length of W to prove the following:

– last ∈ {�−T� + 1, . . . , �T�} iff gap(W,d) = last
– last = bad iff gap(W,d) > �T�
– last = veryGood iff gap(W,d) ≤ �−T�
Therefore, a finite, bounded weight-sequence is accepted iff its recoverable gap
is greater than �T�. In other words, iff it is a bad-prefix of Aμ,d

≤ . ��

Aμ,d
≤ is obtained from bad(μ, d,≤) by applying co-Büchi acceptance condition.

Theorem 3. Let μ be the upper bound, and d > 1 be the integer discount-factor.
DS-comparator for all inequalities and equality are either deterministic safety or
deterministic co-safety automata with O(μ) states.

As a matter of fact, the most compact non-deterministic DS-comparator con-
structions with parameters μ, d and R also contain O(μ) states [11].

3.3 Quantitative Inclusion with Safety/Co-safety Comparators

This section investigates quantitative language inclusion with regular safety/co-
safety comparators. Unlike quantitative inclusion with regular comparators,
quantitative inclusion with regular safety/co-safety comparators is able to cir-
cumvent Büchi complementation with intermediate subset-construction steps.
As a result, complexity of quantitative inclusion with regular safety/co-safety
comparator is lower than the same with regular comparators [12] (Theorem 4).
Finally, since DS-comparators are regular safety/co-safety comparators, the
algorithm for quantitative inclusion with regular safety/co-safety comparators
applies to DS-inclusion yielding a lower complexity algorithm for DS-inclusion
(Corollary 5).

Key Ideas A run of word w in a weighted-automaton is maximal if its weight
is the supremum weight of all runs of w in the weighted-automaton. A run ρP

of w in P is a counterexample for P ⊆ Q (or P ⊂ Q) iff there exists a maximal
run supQ of w in Q such that wt(ρP) > wt(supQ) (or wt(ρP) ≥ wt(supQ)).
Consequently, P ⊆ Q (or P ⊂ Q) iff there are no counterexample runs in P .
Therefore, the roadmap to solve quantitative inclusion for regular safety/co-
safety comparators is as follows:

1. Use regular safety/co-safety comparators to construct the maximal automaton
of Q i.e. an automaton that accepts all maximal runs of Q (Corollary 3).

2. Use the regular safety/co-safety comparator and the maximal automaton to
construct a counterexample automaton that accepts all counterexample runs
of the inclusion problem P ⊆ Q (or P ⊂ Q) (Lemma 5).

70 S. Bansal and M. Y. Vardi

3. Solve quantitative inclusion for safety/co-safety comparator by checking for
emptiness of the counterexample (Theorem 4).
Finally, since DS-comparators are regular safety/co-safety automaton (Corol-
lary 1), apply Theorem 4 to obtain an algorithm for DS-inclusion that uses
regular safety/co-safety comparators (Corollary 5).

Let W be a weighted automaton. Then the annotated automaton of W , denoted
by Ŵ , is the Büchi automaton obtained by transforming transition s

a−→ t with
weight v in W to transition s

a,v−−→ t in Ŵ . Observe that Ŵ is a safety automaton
since all its states are accepting. A run on word w with weight sequence wt in
W corresponds to an annotated word (w,wt) in Ŵ , and vice-versa.

Maximal Automaton. This section covers the construction of the maximal
automaton from a weighted automaton. Let W and Ŵ be a weighted automaton
and its annotated automaton, respectively. We call an annotated word (w,wt1)
in Ŵ maximal if for all other words of the form (w,wt2) in Ŵ , wt(wt1) ≥
wt(wt2). Clearly, (w,wt1) is a maximal word in Ŵ iff word w has a run with
weight sequence wt1 in W that is maximal. We define maximal automaton of
weighted automaton W , denoted Maximal(W), to be the automaton that accepts
all maximal words of its annotated automata Ŵ .

We show that when the comparator is regular safety/co-safety, the construc-
tion of the maximal automata incurs a 2O(n) blow-up. This section exposes the
construction for maximal automaton when comparator for non-strict inequality
is regular safety. The other case when the comparator for strict inequality is
regular co-safety has been deferred to the appendix.

Lemma 3. Let W be a weighted automaton with regular safety comparator for
non-strict inequality. Then the language of Maximal(W) is a safety language.

Proof (Proof sketch). An annotated word (w,wt1) is not maximal in Ŵ for one
of the following two reasons: Either (w,wt1) is not a word in Ŵ , or there exists
another word (w,wt2) in Ŵ s.t. wt(wt1) < wt(wt2) (equivalently (wt1, wt2) is
not in the comparator non-strict inequality). Both Ŵ and comparator for non-
strict inequality are safety languages, so the language of maximal words must
also be a safety language. ��
We now proceed to construct the safety automata for Maximal(W)

Intuition. The intuition behind the construction of maximal automaton follows
directly from the definition of maximal words. Let Ŵ be the annotated automa-
ton for weighted automaton W . Let Σ̂ denote the alphabet of Ŵ . Then an
annotated word (w,wt1) ∈ Σ̂ω is a word in Maximal(W) if (a) (w,wt1) ∈ Ŵ ,
and (b) For all words (w,wt2) ∈ Ŵ , wt(wt1) ≥ wt(wt2).

The challenge here is to construct an automaton for condition (b). Intuitively,
this automaton simulates the following action: As the automaton reads word
(w,wt1), it must spawn all words of the form (w,wt2) in Ŵ , while also ensuring
that wt(wt1) ≥ wt(wt2) holds for every word (w,wt2) in Ŵ . Since Ŵ is a safety

Safety and Co-safety Comparator Automata for Discounted-Sum Inclusion 71

automaton, for a word (w,wt1) ∈ Σ̂ω, all words of the form (w,wt2) ∈ Ŵ can be
traced by subset-construction. Similarly since the comparator C for non-strict
inequality (≥) is a safety automaton, all words of the form (wt1, wt2) ∈ C can be
traced by subset-construction as well. The construction needs to carefully align
the word (w,wt1) with the all possible (w,wt2) ∈ Ŵ and (wt1, wt2) ∈ C.

Construction of Maximal(W). Let W be a weighted automaton, with annotated
automaton Ŵ and C denote its regular safety comparator for non-strict inequal-
ity. Let SW denote the set of states of W (and Ŵ) and SC denote the set of
states of C. We define Maximal(W) = (S, sI , Σ̂, δ,F) as follows:

– Set of states S consists of tuples of the form (s,X), where s ∈ SW , and
X = {(t, c)|t ∈ SW , c ∈ SC}

– Σ̂ is the alphabet of Ŵ
– Initial state sI = (sw, {(sw, sc)}), where sw and sc are initial states in Ŵ and

C, respectively.
– Let states (s,X), (s,X ′) ∈ S such that X = {(t1, c1), . . . , (tn, cn)} and X ′ =

{(t′1, c
′
1), . . . , (t

′
m, c′

m)} . Then (s,X)
(a,v)−−−→ (s′,X ′) ∈ δ iff

1. s
(a,v)−−−→ s′ is a transition in Ŵ , and

2. (t′j , c
′
j) ∈ X ′ if there exists (ti, ci) ∈ X, and a weight v′ such that ti

a,v′
−−→ t′j

and ci
v,v′
−−→ c′

j are transitions in Ŵ and C, respectively.

– (s, {(t1, c1), . . . , (tn, cn)}) ∈ F iff s and all ti are accepting in Ŵ , and all ci is
accepting in C.

Lemma 4. Let W be a weighted automaton with regular safety comparator C
for non-strict inequality. Then the size of Maximal(W) is |W | · 2O(|W |·|C|).

Proof (Proof sketch). A state (s, {(t1, c1), . . . , (tn, cn)}) is non-accepting in the
automata if one of s,ti or cj is non-accepting in underlying automata Ŵ and
the comparator. Since Ŵ and the comparator automata are safety, all outgoing
transitions from a non-accepting state go to non-accepting state in the underly-
ing automata. Therefore, all outgoing transitions from a non-accepting state in
Maximal(W) go to non-accepting state in Maximal(W). Therefore, Maximal(W)
is a safety automaton. To see correctness of the transition relation, one must
prove that transitions of type (1.) satisfy condition (a), while transitions of type
(2.) satisfy condition (b). Maximal(W) forms the conjunction of (a) and (b),
hence accepts the language of maximal words of W .

A similar construction proves that the maximal automata of weighted
automata W with regular safety comparator C for strict inequality contains
|W | · 2O(|W |·|C|) states. In this case, however, the maximal automaton may not
be a safety automaton. Therefore, Lemma 4 generalizes to:

Corollary 3. Let W be a weighted automaton with regular safety/co-safety com-
parator C. Then Maximal(W) is a Büchi automaton of size |W | · 2O(|W |·|C|).

72 S. Bansal and M. Y. Vardi

Counterexample Automaton. This section covers the construction of the
counterexample automaton. Given weighted-automata P and Q, an annotated
word (w,wtP) in annotated automata P̂ is a counterexample word of P ⊆ Q
(or P ⊂ Q) if there exists (w,wtQ) in Maximal(Q) s.t. wt(wtP) > wt(wtQ)
(or wt(wtP) ≥ wt(wtQ)). Clearly, annotated word (w,wtP) is a counterexample
word iff there exists a counterexample run of w with weight-sequence wtP in P .

For this section, we abbreviate strict and non-strict to strct and nstrct,
respectively. For inc ∈ {strct, nstrct}, the counterexample automaton for inc-
quantitative inclusion, denoted by Counterexample(inc), is the automaton that
contains all counterexample words of the problem instance. We construct the
counterexample automaton as follows:

Lemma 5. Let P , Q be weighted-automata with regular safety/co-safety com-
parators. For inc ∈ {strct, nstrct}, Counterexample(inc) is a Büchi automaton.

Proof. We construct Büchi automaton Counterexample(inc) for inc ∈
{strct, nstrct} that contains the counterexample words of inc-quantitative inclu-
sion. Since the comparator are regular safety/co-safety, Maximal(Q) is a Büchi
automaton (Corollary 3). Construct the product P̂ ×Maximal(Q) such that tran-
sition (p1, q1)

a,v1,v2−−−−→ (p1, q2) is in the product iff p1
a,v1−−→ p1 and q1

a,v2−−→ q2 are
transitions in P̂ and Maximal(Q), respectively. A state (p, q) is accepting if both
p and q are accepting in P̂ and Maximal(Q). One can show that the product
accepts (w,wtP , wtQ) iff (w,wtP) and (w,wtQ) are words in P̂ and Maximal(Q),
respectively.

If inc = strct, intersect P̂ × Maximal(Q) with comparator for ≥. If inc =
nstrct, intersect P̂ × Maximal(Q) with comparator for >. Since the comparator
is a safety or co-safety automaton, the intersection is taken without the cyclic
counter. Therefore, (s1, t1)

a,v1,v2−−−−→ (s2, t2) is a transition in the intersection iff
s1

a,v1,v2−−−−→ s2 and t1
v1,v2−−−→ t2 are transitions in the product and the appropriate

comparator, respectively. State (s, t) is accepting if both s and t are accepting.
The intersection will accept (w,wtP , wtQ) iff (w,wtP) is a counterexample of
inc-quantitative inclusion. Counterexample(inc) is obtained by projecting out the
intersection as follows: Transition m

a,v1,v2−−−−→ n is transformed to m
a,v1−−→ n. ��

Quantitative Inclusion and DS-inclusion. In this section, we give the final
algorithm for quantitative inclusion with regular safety/co-safety comparators.
Since DS-comparators are regular safety/co-safety comparators, this gives us an
algorithm for DS-inclusion with improved complexity than previous results.

Theorem 4. Let P , Q be weighted-automata with regular safety/co-safety com-
parators. Let C≤ and C< be the comparators for ≤ and <, respectively. Then

– Strict quantitative inclusion P ⊂ Q is reduced to emptiness checking of a
Büchi automaton of size |P ||C≤||Q| · 2O(|Q|·|C<|).

– Non-strict quantitative inclusion P ⊆ Q is reduced to emptiness checking of
a Büchi automaton of size |P ||C<||Q| · 2O(|Q|·|C<|).

Safety and Co-safety Comparator Automata for Discounted-Sum Inclusion 73

Proof. Strict and non-strict are abbreviated to strct and nstrct, respectively.
For inc ∈ {strct, nstrct}, inc-quantitative inclusion holds iff Counterexample(inc)
is empty. Size of Counterexample(inc) is the product of size of P , Maximal(Q)
(Corollary 3), and the appropriate comparator as described in Lemma 5. ��

In contrast, quantitative inclusion with regular comparators reduces to empti-
ness of a Büchi automaton with |P | · 2O(|P ||Q||C|·log(|P ||Q||C|)) states [12]. The
2O(n log n) blow-up is unavoidable due to Büchi complementation. Hence, quan-
titative inclusion with regular safety/co-safety has lower worst-case complexity.

Lastly, we use the results of developed in previous sections to solve DS-
inclusion. Since DS-comparators are regular safety/co-safety (Corollary 1), an
immediate consequence of Theorem 4 is an improvement in the worst-case
complexity of DS-inclusion in comparison to prior results with regular DS-
comparators. Furthermore, since the regular safety/co-safety DS-comparators
are of the same size for all inequalities (Theorem 3), we get:

Corollary 4. Let P , Q be weighted-automata, and C be a regular safety/co-
safety DS-comparator with integer discount-factor d > 1. Strict DS-inclusion
reduces to emptiness checking of a safety automaton of size |P ||C||Q|·2O(|Q|·|C|).

Proof (Proof sketch). When comparator for non-strict inequality is safety-
automaton, as it is for DS-comparator, the maximal automaton is a safety
automaton (Lemma 3). One can then show that the counterexample automata
is also a safety automaton.

A similar argument proves non-strict DS-inclusion reduces to emptiness of a
weak-Büchi automaton [27] of size |P ||C||Q| · 2O(|Q|·|C|) (see Appendix).

Corollary 5 ([DS-inclusion with safety/co-safety comparator). Let P , Q be
weighted-automata, and C be a regular (co)-safety DS-comparator with integer
discount-factor d > 1.The complexity of DS-inclusion is |P ||C||Q| · 2O(|Q|·|C|).

4 Implementation and Experimental Evaluation

The goal of the empirical analysis is to examine performance of DS-inclusion
with integer discount-factor with safety/co-safety comparators against existing
tools to investigate the practical merit of our algorithm. We compare against (a)
Regular-comparator based tool QuIP, and (b) DS-determinization and linear-
programming tool DetLP.

QuIP is written in C++, and invokes state-of-the-art Büchi language
inclusion-solver RABIT [2]. We enable the -fast flag in RABIT, and tune its
Java-threads with Xss, Xms, Xmx set to 1GB, 1GB and 8GB, respectively. DetLP
is also written in C++, and uses linear programming solver GLPSOL provided
by GLPK (GNU Linear Prog. Kit) [1]. We compare these tools along two axes:
runtime and number of benchmarks solved.

74 S. Bansal and M. Y. Vardi

Fig. 1. sP = sQ on x-axis, wt = 4, δ = 3, d = 3, P ⊂ Q

Implementation Details. The algorithm for strict-DS-inclusion with integer
discount factor d > 1 proposed in Corollary 4 and non-strict DS-inclusion checks
for emptiness of the counterexample automata. A naive algorithm will construct
the counterexample automata fully, and then check if they are empty by ensuring
the absence of an accepting lasso.

We implement a more efficient algorithm. In our implementation, we make
use of the fact that the constructions for DS-inclusion use subset-construction
intermediate steps. This facilitates an on-the-fly procedure since successor states
of state in the counterexample automata can be determined directly from input
weighted automata and the comparator automata. The algorithm terminates as
soon as an accepting lasso is detected. When an accepting lasso is absent, the
algorithm traverses all states and edges of the counterexample automata.

We implement the optimized on-the-fly algorithm in a prototype QuIPFly.
QuIPFly is written in Python 2.7.12. QuIPFly employs basic implementation-level
optimizations to avoid excessive re-computation.

Design and Setup for Experiments. Due to lack of standardized benchmarks
for weighted automata, we follow a standard approach to performance evaluation
of automata-theoretic tools [3,30,38] by experimenting with randomly generated
benchmarks, using random benchmark generation procedure described in [11].

The parameters for each experiment are number of states sP and sQ of
weighted automata, transition density δ, maximum weight wt, integer discount-
factor d, and inc ∈ {strct, nstrct}. In each experiment, weighted automata P and
Q are randomly generated, and runtime of inc-DS-inclusion for all three tools
is reported with a timeout of 900 s. We run the experiment for each parameter
tuple 50 times. All experiments are run on a single node of a high-performance
cluster consisting of two quad-core Intel-Xeon processor running at 2.83 GHz,

Safety and Co-safety Comparator Automata for Discounted-Sum Inclusion 75

Fig. 2. sP = sQ = 75, wt = 4, δ = 3, d = 3, P ⊂ Q

with 8 GB of memory per node. We experiment with sP = sQ ranging from 0–
1500 in increments of 25, δ ∈ {3, 3.5, 4}, d = 3, and wt ∈ {d1 + 1, d3 − 1, d4 − 1}.

Observations and Inferences.1 For clarity of exposition, we present the obser-
vations for only one parameter-tuple. Trends and observations for other param-
eters were similar.

QuIPFly Outperforms. QuIP by at least an order of magnitude in runtime.
Figure 1 plots the median runtime of all 50 experiments for the given parameter-
values for QuIP and QuIPFly. More importantly, QuIPFly solves all of our bench-
marks within a fraction of the timeout, whereas QuIP struggled to solve at least
50% of the benchmarks with larger inputs (beyond sP = sQ = 1000). Primary
cause of failure is memory overflow inside RABIT. We conclude that regular
safety/co-safety comparators outperform their regular counterpart, giving credit
to the simpler subset-constructions vs. Büchi complementation.

QuIPFly Outperforms. DetLP comprehensively in runtime and in number of
benchmarks solved. We were unable to plot DetLP in Fig. 1 since it solved fewer
than 50% benchmarks even with small input instances. Figure 2 compares the
runtime of both tools on the same set of 50 benchmarks for a representative
parameter-tuple on which all 50 benchmarks were solved. The plot shows that
QuIPFly beats DetLP by 2–4 orders of magnitude on all benchmarks.

Overall Verdict. Overall, QuIPFly outperforms QuIP and DetLP by a significant
margin along both axes, runtime and number of benchmarks solved. This analysis
gives unanimous evidence in favor of our safety/co-safety approach to solving
DS-inclusion.
1 Figures are best viewed online and in color.

76 S. Bansal and M. Y. Vardi

5 Concluding Remarks

The goal of this paper was to build scalable algorithms for DS-inclusion. To
this end, this paper furthers the understanding of language-theoretic proper-
ties of discounted-sum aggregate function by demonstrating that DS-comparison
languages form safety and co-safety languages, and utilizes these properties to
obtain a decision procedure for DS-inclusion that offers both tighter theoretical
complexity and improved scalability. All in all, the key insights of this work are:

1. Pure automata-theoretic techniques of DS-comparator are better for DS-
inclusion;

2. In-depth language-theoretic analysis improve both theoretical complexity and
practical scalability of DS-inclusion;

3. DS-comparators are compact deterministic safety or co-safety automata.

To the best of our knowledge, this is the first work that applies language-theoretic
properties such as safety/co-safety in the context of quantitative reasoning.

More broadly, this paper demonstrates that the close integration of language-
theoretic and quantitative properties can render novel algorithms for quantita-
tive reasoning that can benefit from advances in qualitative reasoning.

Acknowledgements. We thank anonymous reviewers for their comments. We thank
D. Fried, L. M. Tabajara, and A. Verma for their valuable inputs on initial drafts of
the paper. This work was partially supported by NSF Grant No. CCF-1704883.

References

1. GLPK. https://www.gnu.org/software/glpk/
2. Rabit-Reduce. http://www.languageinclusion.org/
3. Abdulla, P.A., et al.: Simulation subsumption in ramsey-based büchi automata

universality and inclusion testing. In: Proceedings of CAV, pp. 132–147. Springer
(2010)

4. Abdulla, P.A., et al.. Advanced ramsey-based büchi automata inclusion testing.
In: Proceedings of CONCUR, vol. 11, pp. 187–202. Springer (2011)

5. Alpern, B., Schneider, F.B.: Recognizing safety and liveness. Distrib. Comput.
2(3), 117–126 (1987)

6. Alur, R., Mamouras, K.: An introduction to the streamqre language. Dependable
Softw. Syst. Eng. 50, 1 (2017)

7. Aminof, B., Kupferman, O., Lampert, R.: Reasoning about online algorithms with
weighted automata. Trans. Algorithms 6(2), 28 (2010)

8. Andersen, G., Conitzer, V.: Fast equilibrium computation for infinitely repeated
games. In: Proceedings of AAAI, pp. 53–59 (2013)

9. Andersson, D.: An improved algorithm for discounted payoff games. In: ESSLLI
Student Session, pp. 91–98 (2006)

10. Baier, C.: Probabilistic model checking. In: Dependable Software Systems Engi-
neering, pp. 1–23 (2016)

11. Bansal, S., Chaudhuri, S., Vardi, M.Y.: Automata vs linear-programming
discounted-sum inclusion. In: Proceedings of International Conference on
Computer-Aided Verification (CAV) (2018)

https://www.gnu.org/software/glpk/
http://www.languageinclusion.org/

Safety and Co-safety Comparator Automata for Discounted-Sum Inclusion 77

12. Bansal, S., Chaudhuri, S., Vardi, M.Y. : Comparator automata in quantitative ver-
ification. In: Proceedings of International Conference on Foundations of Software
Science and Computation Structures (FoSSaCS) (2018)

13. Bansal, S., Chaudhuri, S., Vardi, M.Y.: Comparator automata in quantitative ver-
ification (full version). CoRR, abs/1812.06569 (2018)

14. Bloem, R., Chatterjee, K., Henzinger, T.A., Jobstmann, B.: Better quality in syn-
thesis through quantitative objectives. In: Bouajjani, A., Maler, O. (eds.) CAV
2009. LNCS, vol. 5643, pp. 140–156. Springer, Heidelberg (2009). https://doi.org/
10.1007/978-3-642-02658-4 14

15. Boker, U., Henzinger, T.A.: Exact and approximate determinization of discounted-
sum automata. LMCS 10(1), 1–13 (2014)

16. Chakrabarti, A., Chatterjee, K., Henzinger, T.A., Kupferman, O., Majumdar, R.:
Verifying quantitative properties using bound functions. In: Borrione, D., Paul, W.
(eds.) CHARME 2005. LNCS, vol. 3725, pp. 50–64. Springer, Heidelberg (2005).
https://doi.org/10.1007/11560548 7

17. Chatterjee, K., Doyen, L., Henzinger, T.A.: Quantitative languages. Trans. Com-
putat. Logic 11(4), 23 (2010)

18. Chaudhuri, S., Sankaranarayanan, S., Vardi, M.Y.: Regular real analysis. In: Pro-
ceedings of LICS, pp. 509–518 (2013)

19. de Alfaro, L., Henzinger, T.A., Majumdar, R.: Discounting the future in sys-
tems theory. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J.
(eds.) ICALP 2003. LNCS, vol. 2719, pp. 1022–1037. Springer, Heidelberg (2003).
https://doi.org/10.1007/3-540-45061-0 79

20. Doyen, L., Raskin, J.-F.: Antichain algorithms for finite automata. In: Esparza, J.,
Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 2–22. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-12002-2 2

21. Droste, M., Kuich, W., Vogler, H.: Handbook of Weighted Automata. Springer,
Berlin (2009)

22. D’Antoni, L., Samanta, R., Singh, R.: Qlose: program repair with quantitative
objectives. In: Proceedings of CAV, pp. 383–401. Springer (2016)

23. Filiot, E., Gentilini, R., Raskin, J.-F.: Quantitative languages defined by func-
tional automata. In: Koutny, M., Ulidowski, I. (eds.) CONCUR 2012. LNCS, vol.
7454, pp. 132–146. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-32940-1 11

24. He, K., Lahijanian, M., Kavraki, L.E., Vardi, M.Y.: Reactive synthesis for finite
tasks under resource constraints. In: 2017 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pp. 5326–5332. IEEE (2017)

25. Hu, Q., DAntoni, L.: Syntax-guided synthesis with quantitative syntactic objec-
tives. In: Chockler, H., Weissenbacher, G. (eds.) CAV 2018. LNCS, vol. 10981, pp.
386–403. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96145-3 21

26. Kupferman, O., Vardi, M.Y.: Model checking of safety properties. In: Halbwachs,
N., Peled, D. (eds.) CAV 1999. LNCS, vol. 1633, pp. 172–183. Springer, Heidelberg
(1999). https://doi.org/10.1007/3-540-48683-6 17

27. Kupferman, O., Vardi, M.Y.: Weak alternating automata are not that weak. Trans.
Computat. Logic 2(3), 408–429 (2001)

28. Kwiatkowska, M.: Quantitative verification: models, techniques and tools. In: Pro-
ceedings 6th Joint Meeting of the European Software Engineering Conference
and the ACM SIGSOFT Symposium on the Foundations of Software Engineer-
ing (ESEC/FSE), pp. 449–458. ACM Press, September 2007

https://doi.org/10.1007/978-3-642-02658-4_14
https://doi.org/10.1007/978-3-642-02658-4_14
https://doi.org/10.1007/11560548_7
https://doi.org/10.1007/3-540-45061-0_79
https://doi.org/10.1007/978-3-642-12002-2_2
https://doi.org/10.1007/978-3-642-32940-1_11
https://doi.org/10.1007/978-3-642-32940-1_11
https://doi.org/10.1007/978-3-319-96145-3_21
https://doi.org/10.1007/3-540-48683-6_17

78 S. Bansal and M. Y. Vardi

29. Lahijanian, M., Almagor, S., Fried, D., Kavraki, L.E., Vardi, M.Y.: This time the
robot settles for a cost: a quantitative approach to temporal logic planning with
partial satisfaction. In: AAAI, pp. 3664–3671 (2015)

30. Mayr, R., Clemente, L.: Advanced automata minimization. ACM SIGPLAN Not.
48(1), 63–74 (2013)

31. Mohri, M.: Weighted automata algorithms. In: Droste, M., Kuich, W., Vogler, H.
(eds.) Handbook of Weighted Automata. Monographs in Theoretical Computer
Science. An EATCS Series. Springer, Berlin (2009). https://doi.org/10.1007/978-
3-642-01492-5 6

32. Mohri, M., Pereira, F., Riley, M.: Weighted finite-state transducers in speech recog-
nition. Comput. Speech Lang. 16(1), 69–88 (2002)

33. Osborne, M.J., Rubinstein, A.: A Course in Game Theory. MIT press, Cambridge
(1994)

34. Puterman, M.L.: Markov decision processes. Handbooks Oper. Res. Manag. Sci.
2, 331–434 (1990)

35. Rudin, W.: Principles of Mathematical Analysis, vol. 3. McGraw-Hill, New York
(1964)

36. Safra, S.: On the complexity of ω-automata. In: Proceedings of FOCS, pp. 319–327.
IEEE (1988)

37. Sutton, R.S., Barto, A.G.: Introduction to Reinforcement Learning, vol. 135. MIT
press, Cambridge (1998)

38. Tabakov, D., Vardi, M.Y.: Experimental evaluation of classical automata construc-
tions. In: Sutcliffe, G., Voronkov, A. (eds.) LPAR 2005. LNCS (LNAI), vol. 3835,
pp. 396–411. Springer, Heidelberg (2005). https://doi.org/10.1007/11591191 28

39. Thomas, W., Wilke, T., et al.: Automata, Logics, and Infinite Games: A Guide to
Current Research, vol. 2500. Springer Science & Business Media, Berlin (2002)

40. Vardi, M.Y.: The büchi complementation saga. In: Annual Symposium on Theo-
retical Aspects of Computer Science, pp. 12–22. Springer (2007)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-642-01492-5_6
https://doi.org/10.1007/978-3-642-01492-5_6
https://doi.org/10.1007/11591191_28
http://creativecommons.org/licenses/by/4.0/

Clock Bound Repair for Timed Systems

Martin Kölbl1(B), Stefan Leue1(B), and Thomas Wies2(B)

1 University of Konstanz, Konstanz, Germany
{Martin.Koelbl,Stefan.Leue}@uni-konstanz.de

2 New York University, New York, NY, USA
wies@cs.nyu.edu

Abstract. We present algorithms and techniques for the repair of timed system
models, given as networks of timed automata (NTA). The repair is based on an
analysis of timed diagnostic traces (TDTs) that are computed by real-time model
checking tools, such as UPPAAL, when they detect the violation of a timed safety
property. We present an encoding of TDTs in linear real arithmetic and use the
MaxSMT capabilities of the SMT solver Z3 to compute possible repairs to clock
bound values that minimize the necessary changes to the automaton. We then
present an admissibility criterion, called functional equivalence, that assesses
whether a proposed repair is admissible in the overall context of the NTA. We
have implemented a proof-of-concept tool called TARTAR for the repair and
admissibility analysis. To illustrate the method, we have considered a number of
case studies taken from the literature and automatically injected changes to clock
bounds to generate faulty mutations. Our technique is able to compute a feasible
repair for 91% of the faults detected by UPPAAL in the generated mutants.

Keywords: Timed automata · Automated repair · Admissibility of repair ·
TARTAR tool

1 Introduction

The analysis of system design models using model checking technology is an important
step in the system design process. It enables the automated verification of system prop-
erties against given design models. The automated nature of model checking facilitates
the integration of the verification step into the design process since it requires no further
intervention of the designer once the model has been formulated and the property has
been specified.

Often it is sufficient to abstract from real time aspects when checking system proper-
ties, in particular when the focus is on functional aspects of the system. However, when
non-functional properties, such as response times or the timing of periodic behavior,
play an important role, it is necessary to incorporate real time aspects into the models
and the specification, as well as to use specialized real-time model checking tools, such
as UPPAAL [6], Kronos [31] or opaal [11] during the verification step.

Next to the automatic nature of model checking, the ability to return counterexam-
ples, in real-time model checking often referred to as timed diagnostic traces (TDT), is

c© The Author(s) 2019
I. Dillig and S. Tasiran (Eds.): CAV 2019, LNCS 11561, pp. 79–96, 2019.
https://doi.org/10.1007/978-3-030-25540-4_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-25540-4_5&domain=pdf
https://doi.org/10.1007/978-3-030-25540-4_5

80 M. Kölbl et al.

a further practical benefit of the use of model checking technology. A TDT describes a
timed sequence of steps that lead the design model from the initial state of the system
into a state violating a real-time property. A TDT neither constitutes a causal explana-
tion of the property violation, nor does it provide hints as to how to correct the model.

In this paper we describe an automated method that computes proposals for possible
repairs of a network of timed automata (NTA) that avoid the violation of a timed safety
property. Consider the TDT depicted as a time annotated sequence diagram [5] in Fig. 1.
This scenario describes a simple message exchange where the process dbServer
sends a message req to process db which, after some processing steps returns a mes-
sage ser to dbServer. Assume a requirement on the system to be that the time from
sending req to receiving ser is not to be more than 4 time units. Assume that the tim-
ing interval annotations on the sequence diagram represent the minimum and maximum
time for the message transmission and processing steps that the NTA, from which the
diagram has been derived, permits. It is then easy to see that it is possible to execute the
system in such a way that this property is violated.

Fig. 1. TDT represented as a sequence
diagram with timing annotations

Various changes to the underlying NTA
model, depicted in Fig. 2, may avoid this prop-
erty violation. For instance, the maximum time
it takes to transmit the req and ser messages
can be constrained to be at most 1 time unit,
respectively. Alternatively, it may be possible
to avoid the property violation by reducing two
of the three timings by 0.5 time units. In any
case, proposing such changes to the model may
either serve to correct clerical mistakes made
during the editing of the model, or point to nec-
essary changes in the dimensioning of its time
resources, thus contributing to improved design
space exploration.

The repair method described in this paper
relies on an encoding of a TDT as a constraint
system in linear real arithmetic. This encoding provides a symbolic abstract semantics
for the TDT by constraining the sojourn time of the NTA in the locations visited along
the trace. The constraint system is then augmented by auxiliary model variation vari-
ables which represent syntactic changes to the NTA model, for instance the variation
of a location invariant condition or a transition guard. We assert that the thus modi-
fied constraint system implies the non-reachability of a violation. At the same time, we
assert that the model variation variables have a value that implies that no change of the
NTA model will occur, for instance by setting a clock bound variation variable to 0.
This renders the resulting constraint system unsatisfiable.

In order to compute a repair, we derive a partial MaxSMT instance by turning the
constraints that disable any repair into soft constraints. We solve this MaxSMT instance
using the SMT solver Z3 [25]. If the MaxSMT instance admits a solution, the resulting
model provides values of the model variation variables. These values indicate a repair

Clock Bound Repair for Timed Systems 81

of the NTA model which entails that along the sequence of locations represented by the
TDT, the property violation will no longer be reachable.

In a next step it is necessary to check whether the computed repair is an admissi-
ble repair in the context of the full NTA. This is important since the repair was com-
puted locally with respect to only a single given TDT. Thus, it is necessary to define
a notion of admissibility that is reasonable and helpful in this setting. To this end, we
propose the notion of functional equivalence which states that as a result of the com-
puted repair, neither erstwhile existing functional behavior will be purged, nor will new
functional behavior be added. Functional behavior in this sense is represented by lan-
guages accepted by the untimed automata of the unrepaired and the repaired NTAs.
Functional equivalence is then defined as equivalence of the languages accepted by
these automata. We propose a zone-based automaton construction for implementing the
functional equivalence test that is efficient in practice.

We have implemented our proposed method in a proof-of-concept tool called TAR-
TAR1. Our evaluation of TARTAR is based on several non-trivial NTA models taken
from the literature, including the frequently considered Pacemaker model [19]. For each
model, we automatically generate mutants by injecting clock bound variations which we
then model check using UPPAAL and repair using TARTAR. The evaluation shows that
our technique is able to compute an admissible repair for 91% of the detected faults.

Related Work. There are relatively few results available on a formal treatment of TDTs.
The zone based approach to real-time model checking, which relies on a constraint-
based abstraction of the state space, is proposed in [14]. The use of constraint solving
to perform reachability analysis for NTAs is described in [30]. This approach ultimately
leads to the on-the-fly reachability analysis algorithm used in UPPAAL [7]. [12] defines
the notion of a time-concrete UPPAAL counterexample. Work documented in [27]
describes the computation of concrete delays for symbolic TDTs. The above cited
approaches address neither fault analysis nor repair for TDTs. Our use of MaxSMT
solvers for computing minimal repairs is inspired by the use MaxSAT solvers for fault
localization in C programs, which was first explored in the BugAssist tool [20,21]. Our
approach also shares some similarities with syntax-guided synthesis [2,28], which has
also been deployed in the context of program repair [22]. One key difference is how we
determine the admissibility of a repair in the overall system, which takes advantage of
the semantic restrictions imposed by timed automata.

Structure of the Paper. We will introduce the automata and real-time concepts needed
in our analysis in Sect. 2. In Sect. 3 we present the logical formalization of TDTs. The
repair and admissibility analyses are presented in Sects. 4 and 5, respectively. We report
on tool development, experimental evaluation and case studies in Sects. 6 and 7 con-
cludes.

1 TARTAR and links to all models used in this paper can be found at URL https://github.com/
sen-uni-kn/tartar.

https://github.com/sen-uni-kn/tartar
https://github.com/sen-uni-kn/tartar

82 M. Kölbl et al.

2 Preliminaries

The timed automaton model that we use in this paper is adapted from [7]. Given a
set of clocks C, we denote by B(C) the set of all clock constraints over C, which are
conjunctions of atomic clock constraints of the form c ∼ n, where c ∈ C, ∼∈ {<,≤
,=,≥, >} and n ∈ N. A timed automaton (TA) T is a tuple T = (L, l0, C,Σ,Θ, I)
where L is a finite set of locations, l0 ∈ L is an initial location, C is a finite set of
clocks, Σ is a set of action labels, Θ ⊆fin L × B(C) × Σ × 2C × L is a set of actions,
and I : L → B(C) denotes a labeling of locations with clock constraints, referred to
as location invariants. For θ ∈ Θ with θ = (l, g, a, r, l′) we refer to g as the guard of θ
and to r as its clock resets.

The operational semantics of T is given by a timed transition system consisting of
states s = (l, u) where l is a location and u : C → R+ is a clock valuation. The initial
state s0 is (�, u0) where u0 maps all clocks to 0. For a clock constraint B we write
u |= B iff B evaluates to true in u. There are two types of transitions. An action tran-
sition models the execution of an action whose guard is satisfied. These transitions are
instantaneous and reset the specified clocks. The passing of time in a location is mod-
eled by delay transitions. Both types of transitions guarantee that location invariants are

satisfied in the pre and post state. Formally, we have (l, u) t−→ (l′, u′) iff

– (action transition) t = (l, g, a, r, l′) ∈ Θ, u |= I(l)∧ g, u′ |= I(l′) and for all clocks
c ∈ C, u′(c) = 0 if c ∈ r and u′(c) = u(c) otherwise; or

– (delay transition) t ∈ R+, u |= I(l), u′ |= I(l) and u′ = u + t.

Definition 1. A symbolic timed trace (STT) of T is a sequence of actions S = θ0, . . . ,
θn−1. A realization of S is a sequence of delay values δ0, . . . , δn such that there exists

states s0, . . . , sn, sn+1 with si
δi−→ θi−→ si+1 for all i ∈ [0, n) and sn

δn−→ sn+1. We
say that a STT is feasible if it has at least one realization.

Property Specification. We focus on the analysis of timed safety properties, which we
characterize by an invariant formula that has to hold for all reachable states of a TA.
These properties state, for instance, that there are certain locations in which the value of
a clock variable is not above, equal to or below a certain (integer) bound. Formally, let
T = (L, l0, C,Σ,Θ, I) be a TA. A timed safety propertyΠ is a Boolean combination of
atomic clock constraints and location predicates @l where l ∈ L. A location predicate
@l holds in a state (l′, u) of T iff l′ = l. We say that a STT S witnesses a violation of
Π in T if there exists a realization of S whose induced final state does not satisfy Π .
We refer to such an STT as a timed diagnostic trace of T for Π .

T satisfies Π iff all its reachable states satisfy Π . This problem can be decided
using model checking tools such as Kronos [31] and UPPAAL [6]. UPPAAL in par-
ticular computes a finite abstraction of the state space of an NTA using a zone graph
construction. Reachability analysis is then performed by an on-the-fly search of the
zone graph. If the property is violated, the tool generates a feasible TDT that witnesses
the violation. The objective of our work is to analyze TDTs and to propose repairs for
the property violation that they represent. We use TDTs generated by the UPPAAL tool
in our implementation, but we maintain that our results can be adapted to any other tool
producing TDTs.

Clock Bound Repair for Timed Systems 83

We further note that UPPAAL takes a network of timed automata (NTA) as input,
which is a CCS [24] style parallel composition of timed automata T1 | . . . | Tn. Since
our analysis and repair techniques focus on timing-related errors rather than synchro-
nization errors, we use TAs rather than NTAs in our formalization. However, our imple-
mentation works on NTAs.

Example 1. The running example that we use throughout the paper consists of an NTA
of two timed automata, depicted in Fig. 2. As alluded to in the introduction, the TAs
dbServer and db synchronize via the exchange of messages modeled by the pairs of
send and receive actions req! and req?, respectively, ser! and ser?. The trans-
mission time of the req message is controlled by the clock variable x and can range
between 1 and 2 time units. This is achieved by the location invariant x<=2 on the
reqReceived location in db together with the transition guard x>=1 on the tran-
sition from reqReceived to reqProcessing. A similar mechanism using clock
variable z is used to constrain the timing of the transfer of message ser to be within
1 and 2 time units. The processing time in dbServer is constrained to exactly 1 time
unit by the location invariant y<=1 and the transition guard y>=1. In dbServer, a
transition to location timeout can be triggered when the guard z==2 is satisfied in
location serReceiving. The clock variable x, which is not reset until the next req
message is sent, is recording the time that has elapsed since sending req and is used
in location serReceiving in order to verify if more than 4 time units have passed
since req was sent. The timed safety property that we will consider for our example
is Π = ¬@dbServer.serReceiving ∨ (x < 4). For the violation of this property,
UPPAAL produces the TDT S = θ0 . . . θ3 where

θ0 = ((initial,reqAwaiting), ∅, τ, ∅, (reqCreate,reqAwaiting))
θ1 = ((reqCreate,reqAwaiting), ∅, τ, {x}, (reqSent,reqReceived))
θ2 = ((reqSent,reqReceived), {x ≥ 1}, τ, {y}, (reqSent,reqProc.))
θ3 = ((reqSent,reqProc.), {y ≥ 1}, τ, {z}, (serReceiving,reqAwait.)).

3 Logical Encoding of Timed Diagnostic Traces

Our analysis relies on a logical encoding of TDTs in the theory of quantifier-free linear
real arithmetic. For the remainder of this paper, we fix a TA T = (L, l0, C,Σ,Θ, I)
with a safety property Π and assume that S = θ0, . . . , θn−1 is an STT of T . We use
the following notation for our logical encoding where j ∈ [0, n + 1] is a position in a
realization of S and c ∈ C is a clock:

– lj denotes the location of the pre state of θj for j < n and the location of the post
state of θj−1 for j = n.

– cj denotes the value of clock variable c when reaching the state at position j.
– δj denotes the delay of the delay transition leaving the state at position j ≤ n.
– resetj denotes the set of clock variables that are being reset by action θj for j < n.
– ibounds(c, l) denotes the set of pairs (β,∼) such that the atomic clock constraint

c ∼ β appears in the location invariant I(l).

84 M. Kölbl et al.

Fig. 2. Network of timed automata - running example

– gbounds(c, θ) denotes the set of pairs (β,∼) such that the atomic clock constraint
c ∼ β appears in the guard of action θ.

To illustrate the use of ibounds, assume location l to be labeled with invariants
x > 2 ∧ x ≤ 4 ∧ y ≤ 1, then ibounds(x, l) = {(2, >), (4,≤)}. The usage of gbounds
is accordingly.

Definition 2. The timed diagnostic trace constraint system associated with STT S is the
conjunction T of the following constraints:

C0 ≡
∧

c∈C

c0 = 0 (clock initialization)

A ≡
∧

j∈[0,n]

δj ≥ 0 (time advancement)

R ≡
∧

c∈resetj ,

cj+1 = 0 (clock resets)

D ≡
∧

c/∈resetj

cj+1 = cj + δj (sojourn time)

I ≡
∧

(β,∼)∈ibounds(c,lj)

cj ∼ β ∧ cj + δj ∼ β (location invariants)

G ≡
∧

(β,∼)∈gbounds(c,θj)

cj + δj ∼ β (transition guards)

L ≡ @ln ∧
∧

l �=ln

¬@l (location predicates)

Clock Bound Repair for Timed Systems 85

Let further Φ ≡ Π[cn+1/c] where Π[cn+1/c] is obtained from Π by substituting
all occurrences of clocks c ∈ C with cn+1. Then the Π-extended TDT constraint system
associated with S is defined as T Π = T ∧ ¬Φ.

To illustrate the encoding consider the transition Θ3 of the TDT in Example 1
corresponding to the transition from state (reqSent, reqProcessing) to state
(serReceiving, reqAwaiting) while resetting clock z in the NTA of Fig. 2. The
encoding for the constraints on the clocks x, y and z is as following: y3 + d3 ≥ 1,
z4 = 0, x4 = x3 + d3 and y4 = y3 + d3.

Lemma 1. δc
0, . . . , δ

c
n is a realization of an STT S iff there exists a satisfying variable

assignment ι for T such that for all j ∈ [0, n], ι(δj) = δc
j .

Theorem 1. An STT S witnesses a violation of Π in T iff T Π is satisfiable.

4 Repair

We propose a repair technique that analyzes the responsibility of clock bound values
occurring in a single TDT for causing the violation of a specification Π . The analysis
suggests possible syntactic repairs. In a second step we define an admissibility test
that assesses the admissibility of the repair in the context of the complete TA model.
Throughout this section, we assume that S is a TDT for T and Π .

Clock Bound Variation. We introduce bound variation variables v that stand for correc-
tion values that the repair will add to the clock bounds occurring in location invariants
and transition guards. The values are chosen such that none of the realizations of S in
the modified automaton still witnesses a violation of Π . This is done by defining a new
constraint system that captures the conditions on the variable v under which the viola-
tion of Π will not occur in the corresponding trace of the modified automaton. Using
this constraint system, we then define a maximum satisfiability problem whose solution
minimizes the number of changes to T that are needed to achieve the repair.

Recall that the clock bounds occurring in location invariants and in transition guards
are represented by the ibounds and gbounds sets defined for the TDT S. Notice that
each clock variable c may be associated with mc,l different clock bounds in the loca-
tion invariant of l, denoted by the set ibounds(c, l) = {(βc,l

1 ,∼c,l
1), . . . , (βc,l

mc,l
,∼c,l

mc,l
)}.

Similarly, we enumerate the bounds in gbounds(c, θ) as (βc,θ
k ,∼c,θ

k). To reduce nota-
tional clutter, we let the meta variable r stand for the pairs of the form c, l or c, θ. We
then introduce bound variation variables vr

k describing the possible static variation in
the TA code for the clock bound βr

k and modify the TDT constraint system accordingly.
A variation of the bounds only affects the location invariant constraints I and the tran-
sition guard constraints G. We thus define an appropriate invariant variation constraint
Ibv and guard variation constraint Gbv that capture the clock bound modifications:

Ibv ≡
∧

(βr
k,∼r

k)∈ibounds(c,lj)

cj ∼r
k (βr

k + vr
k) ∧ cj + δj ∼r

k (βr
k + vr

k)

Gbv ≡
∧

(βr
k,∼r

k)∈gbounds(c,θj)

cj + δj ∼r
k (βr

k + vr
k)

86 M. Kölbl et al.

We also need constraints ensuring that the modified clock bounds remain positive:

Zbv ≡
∧

(βr
k,∼r

k)∈ibounds(c,lj) ∪ gbounds(c,θj)

βr
k + vr

k ≥ 0

Putting all of this together we obtain the bound variation TDT constraint system

T bv ≡ C0 ∧ A ∧ R ∧ D ∧ Ibv ∧ Gbv ∧ Zbv ∧ L

which captures all realizations of S in TAs T bv that are obtained from T by modifying
the clock bounds βr

k by some semantically consistent variations vr
k .

Consider the bound variation for the guard y ≥ 1 of transition Θ3 in Example 1. The
modified guard constraint, a conjunct in Gbv, is y3 + d3 ≥ 1 + vy

3 . The corresponding
non-negativity constraint from Zbv is 1 + vy

3 ≥ 0.

Repair by Bound Variation Analysis. The objective of the bound variation analysis is
to provide hints to the system designer regarding which minimal syntactic changes to
the considered model might prevent the violation of property Π . Minimality here is
considered with respect to the number of clock bound values in invariants and guards
that need to be changed.

We implement this analysis by using the bound variation TDT constraint system T bv

to derive an instance of the partial MaxSMT problem whose solutions yield candidate
repairs for the timed automaton T . The partial MaxSMT problem takes as input a finite
set of assertion formulas belonging to a fixed first-order theory. These assertions are
partitioned into hard and soft assertions. The hard assertions FH are assumed to hold
and the goal is to find a maximizing subset F ′ ⊆ FS of the soft assertions such that
F ′ ∪ FH is satisfiable in the given theory.

For our analysis, the hard assertions consist of the conjunction

Fbv
H ≡ (∃δj , cj . T bv) ∧ (∀δj , cj . T bv ⇒ Φ).

Note that the free variables of Fbv
H are exactly the bound variation variables vr

k . Given
a satisfying assignment ι for Fbv

H , let Tι be the timed automaton obtained from T by
adding to each clock bound βr

k the according variation value ι(vr
k) and let Sι be the

TDT corresponding to S in Tι. Then Fbv
H guarantees that

1. Sι is feasible, and
2. Sι has no realization that witnesses a violation of Π in Tι.

We refer to such an assignment ι as a local clock bound repair for T and S. To obtain a
minimal local clock bound repair, we use the soft assertions given by the conjunction

Fbv
S ≡

∧

(βr
k,)∈ibounds(c,lj) ∪ gbounds(c,θj)

vr
k = 0.

Clearly Fbv
H ∧ Fbv

S is unsatisfiable because T bv ∧ Fbv
S is equisatisfiable with T , and

T ∧ ¬Φ is satisfiable by assumption. However, if there exists at least one local clock

Clock Bound Repair for Timed Systems 87

bound repair for T and S, then Fbv
H alone is satisfiable. In this case, the MaxSMT

instance Fbv
H ∪ Fbv

S has at least one solution. Every satisfying assignment of such a
solution corresponds to a local repair that minimizes the number of clock bounds that
need to be changed in T .

Note that hard and soft assertions remain within a decidable logic. Using an SMT
solver such as Z3, we can enumerate all the optimal solutions for the partial MaxSMT
instance and obtain a minimal local clock bound repair from each of them.

Example 2. We have applied the bound variation repair analysis to the TDT from
Example 1, using TARTAR, which calls Z3. The following repairs were computed:

1. vz,l5
1 = −1. This corresponds to a variation of the location invariant

regarding clock z in location 5 of the TDT, corresponding to location
dbServer.serReceiving, to read z ≤ 1 instead of z ≤ 2. This indicates
that the violation of the bound on the total duration of the transaction, as indicated
by a return to the serReceiving location and a value greater than 4 for clock x,
can be avoided by ensuring that the time taken for transmitting the ser message to
the dbServer is constrained to take exactly 1 time unit.

2. A further computed repair is vx,l2
1 = −1. Interpreting this variation in the context

of Example 1 means that location db.reqReceived will be left when the clock
x has value 1. In other words, the transmission of the message req to the db takes
exactly one time unit, not between 1 and 2 time units as in the unrepaired model.

3. Another possible repair implies the modification of two clock bounds. This is no
longer an optimal solution and no further optimal solution exists. Notice that even
non-optimal solutions might provide helpful insight for the designer, for instance if
optimal repairs turn out not to be implementable, inadmissible or leading to a prop-
erty violation. It is therefore meaningful to allow a practical tool implementation to
compute more than just the optimal repairs.

5 Admissibility of Repair

The synthesized repairs that lead to a TA Tι change the original TA T in fundamen-
tal ways, both syntactically and semantically. This brings up the question whether the
synthesized repairs are admissible. In fact, one of the key questions is what notion of
admissibility is meaningful in this context.

A timed trace [7] is a sequence of timed actions ξ = (t1, a1), (t2, a2), . . . that is
generated by a run of a TA, where ti ≤ ti+1 for all i ≥ 1. The timed language for a TA
T is the set of all its timed traces, which we denote by LT (T). The untimed language
of T consists of words over T ’s alphabet Σ so that there exists at least one timed trace
of T forming this word. Formally, for a timed trace ξ = (t1, a1), (t2, a2) . . ., the untime
operator μ(ξ) returns an untimed trace ξμ = a1a2.... We define the untimed language
Lμ(T) of the TA T as Lμ(T) = {μ(ξ) | ξ ∈ LT (T)}.

Let B be a Büchi automaton (BA) [10] over some alphabet Σ. We write L(B) ⊆ Σω

for the language accepted by B. Similarly, we denote by Lf (B) ⊆ Σ∗ the language
accepted by B if it is interpreted as a nondeterministic finite automaton (NFA). Further,
we write pref(L(B)) to denote the set of all finite prefixes of words in L(B).

88 M. Kölbl et al.

For a given NFA or BA M , the closure cl(M) denotes the automaton obtained from
M by turning all of its states into accepting states. We call M closed iff M = cl(M).
Notice that a Büchi automaton accepts a safety language if and only if it is closed [1].

Admissibility Criteria. From a syntactic point of view the repair obtained from a sat-
isfying assignment ι of the MaxSMT instance ensures that Tι is a syntactically valid
TA model by, for instance, placing non-negativity constraints on repaired clock bounds.
In case repairs alter right hand sides of clock constraints to rational numbers, this can
easily be fixed by normalizing all clock constraints in the TA.

From a semantic perspective, the impact of the repairs is more profound. Since the
repairs affect time bounds in location invariants and transition guards, as well as clock
resets, the behavior of Tι may be fundamentally different from the behavior of T .

– First, the computed repair for one property Π may render another property Π ′ vio-
lated. To check admissibility of the synthesized repair with respect to the set of all
properties Π̂ in the system specification, a full re-checking of Π̂ is necessary.

– Second, a repair may have introduced zenoness and timelock [4] into Tι. As dis-
cussed in [4], there exists both an over-approximating static test for zenoness as
well as a model checking based precise test for timelocks that can be used to verify
whether the repair is admissible in this regard.

– Third, due to changes in the possible assignment of time values to clocks, reachable
locations in the TA T may become unreachable in Tι, and vice versa. On the one
hand, this means that some functionalities of the system may no longer be provided
since part of the actions in T will no longer be executable in Tι, and vice versa.
Further, a reduction in the set of reachable locations in Tι compared to T may mean
that certain locations with property violations in T are no longer reachable in Tι,
which implies that certain property violations are masked by a repair instead of
being fixed. On the other hand, the repair leading to locations becoming reachable
in Tι that were unreachable in T may have the effect that previously unobserved
property violations become visible and that Tι possesses functionality that T does
not have, which may or may not be desirable.

It should be pointed out that we assess admissibility of a repair leading to Tι with respect
to a given TA model T , and not with respect to a correct TA model T ∗ satisfying Π .

Functional Equivalence. While various variants of semantic admissibility may be con-
sidered, we are focusing on a notion of admissibility that ensures that a repair does not
unduly change the functional behavior of the modeled system while adhering to the tim-
ing constraints of the repaired system. We refer to this as functional equivalence. The
functional capabilities of a timed system manifest themselves in the sets of action or
transition traces that the system can execute. For TAs T and Tι this means that we need
to consider the languages over the action or transition alphabets that these TAs define.
Considering the timed languages of T and Tι, we can state that LT (T) �= LT (Tι)
since the repair forces at least one timed trace to be purged from LT (T). This means
that equivalence of the timed languages cannot be an admissibility criterion ensuring
functional equivalence. At the other end of the spectrum we may relate the de-timed

Clock Bound Repair for Timed Systems 89

languages of T and Tι. The de-time operator α(T) is defined such that it omits all tim-
ing constraints and resets from any TA T . Requiring L(α(T)) = L(α(Tι)) is tempting
since it states that when eliminating all timing related features from T and from the
repaired Tι, the resulting action languages will be identical.

However, this admissibility criterion would be flawed, since the repair in Tι may
imply that unreachable locations in T will be reachable in Tι, and vice versa. This may
have an impact on the untimed languages, and even though L(α(T)) = L(α(Tι)) it
may be that Lμ(T) �= Lμ(Tι). To illustrate this point, consider the running example in
Fig. 2 and assume the invariant in location dbServer.reqReceiving to be mod-
ified from z ≤ 2 to z ≤ 1 in the repaired TA Tι. Applying the de-time operator to Tι

implies that the location dbServer.timeout, which is unreachable in Tι, becomes
reachable in the de-timed model. Since dbServer.timeout is reachable in T , the
TA T and Tι are not functionally equivalent, even though their de-timed languages are
identical. Notice that for the untimed languages Lμ(T) �= Lμ(Tι) holds since no timed
trace in LT (Tι) reaches location timeout, even though such a timed trace exists in
LT (T). In detail, Lμ(T) contains the untimed trace Θ0Θ1Θ2Θ3Θ4 that is missing in
Lμ(Ti) and where Θ4 is the transition towards the location dbServer.timeout. As
consequence, we resort to considering the untimed languages of T and Tι and require
Lμ(T) = Lμ(Tι). It is easy to see that Lμ(T) = Lμ(Tι) ⇒ L(α(T)) = L(α(Tι)). In
other words, the equivalence of the untimed languages ensures functional equivalence.

Admissibility Test. Designing an algorithmic admissibility test for functional equiv-
alence is challenging due to the computational complexity of determining the equiv-
alence of the untimed languages Lμ(T) and Lμ(Tι). While language equivalence is
decidable for languages defined by Büchi Automata, it is undecidable for timed lan-
guages [3]. For untimed languages, however, this problem is again decidable [3]. The
algorithmic implementation of the test for functional equivalence that we propose pro-
ceeds in two steps.

– First, the untimed languages Lμ(T) and Lμ(Tι) are constructed. This requires an
untime transformation of T and Tι yielding Büchi automata representing Lμ(T)
and Lμ(Tι). While the standard untime transformation for TAs [3] relies on a region
construction, we propose a transformation that relies on a zone construction [14].
This will provide a more succinct representation of the resulting untimed languages
and, hence, a more efficient equivalence test.

– Second, it needs to be determined whether Lμ(T) = Lμ(Tι). As we shall see, the
obtained Büchi automata are closed. Hence, we can reduce the equivalence prob-
lem for these ω-regular languages to checking equivalence of the regular languages
obtained by taking the finite prefixes of the traces in Lμ(T) and Lμ(Tι). This allows
us to interpret the Büchi automata obtained in the first step as NFAs, for which the
language equivalence check is a standard construction [15].

Automata for Untimed Languages. The construction of an automaton representing an
untimed language, here referred to as an untime construction, has so far been proposed
based on a region abstraction [3]. The region abstraction is known to be relatively inef-
ficient since the number of regions is, among other things, exponential in the number of

90 M. Kölbl et al.

clocks [4]. We therefore propose an untime construction based on the construction of
a zone automaton [14] which in the worst case is of the same complexity as the region
automaton, but on the average is more succinct [7].

Definition 3 (Untimed Büchi Automaton). Assume a TA T and the corresponding
zone automaton �T �Z = (SZ , s0Z , ΣZ , ΘZ). We define the untimed Büchi automaton
as the closed BA BT = (S,Σ,→, S0, F) obtained from �T �Z such that S = SZ ,
Σ = ΣZ \ {δ} and S0 = {s0Z}. For every transition in ΘZ with a label a ∈ Σ we add

a transition to → created by the rule (l,z)
δ
�(l,z↑) a

�(l′,z′)

(l,z)
a−→(l′,z′)

with z↑ = {v + d|v ∈ z, d ∈

R≥0}. In addition, we add self-transitions (l, z) τ−→ (l, z) to every state (l, z) ∈ SB .

The following observations justify this definition:

– A timed trace of T may remain forever in the same location after a finite number of
action transitions. In order to enable B to accept this trace, we add a self-transition
labeled with τ to → for each state s ∈ S in BT , and later define s as accepting.
These τ -self-transitions extend every finite timed trace t leading to a state in Sτ to
an infinite trace t.τω .

– The construction of the acceptance set F is more intricate. Convergent traces are
often excluded from consideration in real-time model checking [4]. As a conse-
quence, in the untime construction proposed in [3], only a subset of the states in S
may be included in F . A repair may render a subgraph of the location graph of T
that is only reachable by divergent traces, into a subgraph in Tι that is only reach-
able by convergent traces. However, excluding convergent traces is only meaning-
ful when considering unbounded liveness properties, but not when analyzing timed
safety properties, which in effect are safety properties. As argued in [7], unbounded
liveness properties appear to be less important than timed safety properties in timed
systems. This is due to the observation that divergent traces reflect unrealistic behav-
ior in the limit, but finite prefixes of infinite divergent traces, which only need to be
considered for timed safety properties, correspond to realistic behavior. This obser-
vation is also reflected in the way in which, e.g., UPPAAL treats reachability by
convergent traces. In conclusion, this justifies our choice to define the zone automa-
ton in the untime construction as a closed BA, i.e., F = S.

Theorem 2 (Correctness of Untimed Büchi Automaton Construction). For an
untimed Büchi automaton BT derived from a TA T according to Definition 3 it holds
that L(BT) = Lμ(T).

Equivalence Check for Untimed Languages. Given that the zone automaton construc-
tion delivers closed BAs we can reduce the admissibility test Lμ(T) = Lμ(Tι) defined
over infinite languages to an equivalence test over the finite prefixes of these languages,
represented by interpreting the zone automata as NFAs. The following theorem justifies
this reduction.

Theorem 3 (Language Equivalence of Closed BA). Given closed Büchi automata B
and B′, if Lf(B) = Lf(B′) then L(B) = L(B′).

Clock Bound Repair for Timed Systems 91

Discussion. One may want to adapt the admissibility test so that it only considers
divergent traces, e.g., in cases where only unbounded liveness properties need to be
preserved by a repair. This can be accomplished as follows. First, an overapproximat-
ing non-zenoness test [4] can be applied to T and Tι. If it shows non-zenoness, then
one knows that the respective TA does not include convergent traces. If this test fails,
a more expensive test needs to be developed. It requires a construction of the untimed
Büchi automata using the approach from [3], and subsequently a language equivalence
test of the untimed languages accepted by the untimed BAs using, for instance, the
automata-theoretic constructions proposed in [9].

6 Case Studies and Experimental Evaluation

We have implemented the repair computation and admissibility test in a proof-of-
concept tool called TARTAR. We present the architecture of TARTAR and then evaluate
the proposed method by applying TARTAR to several case studies.

Tool Architecture. The control loop of TARTAR, depicted in Fig. 3, computes repairs
for a given UPPAAL model and a given property Π using the following steps:

1. Counterexample Creation. TARTAR calls UPPAAL with parameters to compute and
store a shortest symbolic TDT in XML format, in case Π is violated.

2. Diagnostic Trace Creation. Parsing the model and the TDT, TARTAR creates Fbv
H ∧

Fbv
S as defined in Sect. 4. Z3 can only solve the MaxSMT problem for quantifier-free

linear real arithmetic. Hence, TARTAR first performs a quantifier elimination on the
constraints ∀δj , cj . T bv ⇒ Φ of Fbv

H .
3. Repair Computation. Next, TARTAR attempts to compute a repair, by using Z3 to

solve the generated quantifier-free MaxSMT instance. In case no solution is found,
TARTAR terminates. Otherwise, TARTAR returns the repair that has been computed
from the model of the MaxSMT solution.

4. Admissibility Check. Using adapted routines provided by the opaal model
checker [11], TARTAR checks the admissibility of the computed repair. To do so,
TARTAR modifies the constraints of the considered UPPAAL model as indicated
by the computed repair. It calls opaal in order to compute the timed transition sys-
tem (TTS) of the original and the repaired UPPAAL model. TARTAR then checks
whether the two TTS have equivalent untimed languages, in which case the repair
is admissible. This check is implemented using the library AutomataLib included in
the package LearnLib [16],

5. Iteration. TARTAR is designed to enumerate all repairs, starting with the minimal
ones, in an iterative loop. To accomplish this, at the end of each iteration i a new Vbv

i+1

is generated by forcing the bound variation variables that were used in the i-th repair
to 0. This excludes the repair computed in iteration i from further consideration.
Using Vbv

i+1, TARTAR iterates back to Step 3 to compute another repair.

92 M. Kölbl et al.

Fig. 3. Control loop of TARTAR

Evaluation Strategy. The evaluation of our
analysis is based on ideas taken from muta-
tion testing [18]. Mutation testing evaluates
a test set by systematically modifying the
program code to be tested and computing
the ratio of modifications that are detected
by the test set. Real-time system models
that contain violations of timed safety prop-
erties are not available in significant num-
bers. We therefore need to seed faults in
existing models and check whether those can be found by our automated repair. An
objective of mutation testing is that testing a proportion of the possible modification
yields satisfactory results [18]. In order to evaluate repairs for erroneous clock bounds
in invariants and transition guards we seed modifications to all bounds of clock con-
straints by the amount of {−10,−1,+1,+0.1·M,+M}, where M is the maximal
bound a clock is compared against in a given model. If a thus seeded modification leads
to a syntactically invalid UPPAAL model, then UPPAAL returns an exception and we
ignore this modification. In analogy to mutation testing, we compute the count of TDTs
for which our analysis finds an admissible repair.

Experiments. We have applied this modification seeding strategy to eight UPPAAL
models (see Table 1). Not all of the models that we considered have been published
with a property that can be violated by mutating a clock constraint. For those models, we
suggest a suitable timed safety property specifying an invariant condition. In particular,
we add a property to the Bando [29] model which ensures that, for as long as the sender
is active, its clock never exceeds the value of 28,116 time units. In the FDDI token
ring protocol [29], the property that we use checks whether the first member of the ring
never remains for more than 140 time units in any given state. The Viking model is
taken from the set of test models of opaal [26]. For this model we use a property that
checks whether one of the Viking processes can only enter a safe state during the first
60 time units. Note that all of these properties are satisfied by the unmodified models.

The results of the clock bound repair computed by TARTAR for all considered mod-
els are summarized in Table 1. The seeded modifications are characterized quantita-
tively by the count #Seed of analyzed modified models, the count #TDT of modified
models that return a TDT for the considered property, the maximal time TUP UPPAAL
needs to create a TDT per analyzed model, and the length Len. of the longest TDT
found. For the computation of a repair we give the count #Rep. of all repairs that were
computed, the count #Adm. of computed admissible repairs, the count of TDTs #Sol. for
which an admissible repair was found, the maximal time TQE that the quantifier elimina-
tion required, the average time effort TR to compute a repair, the standard deviation SDR

for the computation time of a repair, the time effort TAdm for an admissibility check, the
maximal count of variables #Var, and the maximal count of constraints #Con. used in
Vbv

i+1. The maximal memory consumption was at most 17MB for the repair analysis and
478MB for the admissibility test. We performed all experiments on a computer with an
i7-6700K CPU (4.0GHz), 60GB of RAM and a Linux operating system.

Clock Bound Repair for Timed Systems 93

We found 60 TDTs by seeding violations of the timed safety property and TARTAR

returned 204 repairs for these TDTs. TARTAR proposed an admissible repair for 55
(91%) TDTs and at least one repair for 57 (95%) TDTs. For 3 out of the total of 14 TDTs
found for the SBR model no repair was computed since the timeout of the quantifier
elimination was reached after 2 minutes. For all other models, no timeout occurred.

Space limitations do not permit us to describe all models and computed repairs
in detail, we therefore focus on the pacemaker case study. One of the modification
increases a location invariant of this model that controls the minimal heart period from
400 to 1,600. The modification allows the pacemaker to delay an induced ventricular
beat for too long so that this violates the property that the time between two ventric-
ular beats of a heart is never longer than the maximal heart period of 1,000. TARTAR

finds three repairs. Two repairs reduce the maximal time delay between two ventricular
or articular heart beats of the patient. The repairs are classified as inadmissible. In the
model context this appears to be reasonable since the repairs would restrict the environ-
ment of the pacemaker, and not the pacemaker itself. The third repair is admissible and
reduces the bound modified during the seeding of bound modifications by 600.5. The
minimal heart period is then below or equal to the maximal heart period of 1, 000.

Result Interpretation. Our repair strategy minimizes the number of repairs but does
not optimize the computed value. For instance, in the pacemaker model the computed
repair of 600.5 would be a correct and admissible repair even if the value was reduced
to 600, which would be the minimal possible repair value.

A comparison of the values TQE and TR reveals that, perhaps unsurprisingly, the
quantifier elimination step is computationally almost an order of magnitude more
expensive than the repair computation. Overall, the computational cost (TQE + TR) cor-
relates with the number of variables in the constraint system, which depends in turn on
the length of the TDT and the number of clocks referenced along the TDT. Consider, for
instance, that the pacemaker model has a TDT of maximal length 9 with 116 variables,
and the repair requires 0.193 s and 2.070MB. On the other hand, the Bando model pro-
duces a longer maximal TDT of length 279 with 1,156 variables and requires 6.555 s
and 16.650MB. The impact of the number of clock constraints and clock variables on
the computation costs can be seen, for instance, in the data for the pacemaker and FDDI
models. While the pacemaker model has a shorter TDT than the Viking model (9 vs.
18), the constraint counts (294 vs. 140) of the pacemaker model are higher than for

Table 1. Experimental results for clock bound repair computation using TARTAR

Model # Seed # TDT TUP Len. # Rep. # Adm. # Sol. TQE TR SDR TAdm # Var. # Con.

Repaired db Fig. 2 35 6 0.006 s 4 12 12 6 0.042 s 0.023 s 0.001 2.329 s 25 40

CSMA/CD [17] 90 6 0.012 s 2 36 16 6 0.020 s 0.021 s 0.000 3.060 s 16 36

Elevator [8] 35 3 0.004 s 1 6 6 3 0.071 s 0.028 s 0.005 2.374 s 6 16

Viking 85 3 0.009 s 18 6 6 3 0.032 s 0.042 s 0.002 2.821 s 120 140

Bando [29] 740 12 0.259 s 279 26 24 12 17.227 s 6.555 s 1.776 4.067 s 1,156 2,441

Pacemaker [19] 240 7 0.044 s 9 34 16 7 0.670 s 0.193 s 0.021 3.389 s 116 294

SBR [23] 65 14 0.066 s 81 42 26 9 20.776 s 2.568 s 0.441 34.120 s 256 410

FDDI [29] 100 9 0.025 s 5 42 30 9 0.046 s 0.029 s 0.001 2.493 s 59 93

94 M. Kölbl et al.

the Viking model, which coincides with a higher computation time (0.193 s vs. 0.042 s)
and a higher memory consumption (2.070MB vs. 0.910MB) compared to the Viking
model.

We analyzed for every TDT the relationship between the length of the TDT and the
computation time for a repair (Tr = TQE + TR), as well as the relationship between #Var
and Tr by estimating Kendall’s tau [13]. Kendall’s tau is a measurement for the ordinal
association between two measured quantities. A correlation is considered significant
if the probability p that there is actually no correlation in a larger data set is below a
certain threshold. The length of a TDT is significantly related (τ1 = 0.673, p < .001)
to Tr. Also #Var is significantly related (τ2 = 0.759, p < .001) to Tr. #Var contains
clocks for every step of a TDT, hence the combination of trace length and clock count
tends to correlate higher than the trace length on its own. This supports our conjecture
that the computation time of a repair depends on the trace length and the clock count.

The admissibility test appears to be quite efficient, with a maximum computation
time of 34.120 s for the SBR model, which is one of the more complex models that
were considered. We observed that most models were action-deterministic, which has a
positive influence on the language equivalence test used during admissibility checking.

7 Conclusion

We have presented an approach to derive minimal repairs for timed reachability prop-
erties of TA and NTA models from TDTs in order to facilitate fault localization and
debugging of such models during the design process. Our approach includes a for-
malization of TDTs using linear real arithmetic, a repair strategy based on MaxSMT
solving, the definition of an admissibility criterion and test for the computed repairs,
the development of a prototypical analysis and repair tool, and the application of the
proposed method to a number of case studies of realistic complexity. To the best of our
knowledge, this is the first rigorous treatment of counterexamples in real-time model
checking. We are also not aware of any existing repair approaches for TA or NTA mod-
els. This makes a comparative experimental evaluation impossible. We have nonetheless
observed that our analysis computes a significant number of admissible repairs within
realistic computation time bounds and memory consumption.

Future research will address the development and implementation of repair strate-
gies for further syntactic features in TAs and NTAs, including false comparison opera-
tors in invariants and guards, erroneous clock variable references, superfluous or miss-
ing resets for clocks, and wrong urgent state choices. We will furthermore address the
interplay between different repairs and develop refined strategies to determine their
admissibility. Finally, we plan to extend the approach developed in this paper to derive
criteria for the actual causation of timing property violations in NTA models based on
the counterfactual reasoning paradigm for causation.

Acknowledgments. We wish to thank Nikolaj Bjorner and Zvonimir Pavlinovic for advice on
the use of Z3. We are grateful to Sarah Stoll for helping us with the statistical evaluation of the
experimental results. This work is in part supported by the National Science Foundation (NSF)
under grant CCF-1350574.

Clock Bound Repair for Timed Systems 95

References

1. Alpern, B., Schneider, F.B.: Recognizing safety and liveness. Distrib. Comput. 2(3), 117–126
(1987)

2. Alur, R., et al.: Syntax-guided synthesis. In: Dependable Software Systems Engineering,
NATO Science for Peace and Security Series, D: Information and Communication Security,
vol. 40, pp. 1–25. IOS Press (2015). https://doi.org/10.3233/978-1-61499-495-4-1

3. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2), 183–235 (1994)
4. Baier, C., Katoen, J.P.: Principles of Model Checking. The MIT Press, Cambridge (2008)
5. Ben-Abdallah, H., Leue, S.: Timing constraints in message sequence chart specifications. In:

FORTE. IFIP Conference Proceedings, vol. 107, pp. 91–106. Chapman & Hall (1997)
6. Bengtsson, J., Larsen, K., Larsson, F., Pettersson, P., Yi, W.: UPPAAL—a tool suite for

automatic verification of real-time systems. In: Alur, R., Henzinger, T.A., Sontag, E.D. (eds.)
HS 1995. LNCS, vol. 1066, pp. 232–243. Springer, Heidelberg (1996). https://doi.org/10.
1007/BFb0020949

7. Bengtsson, J., Yi, W.: Timed automata: semantics, algorithms and tools. In: Desel, J., Reisig,
W., Rozenberg, G. (eds.) ACPN 2003. LNCS, vol. 3098, pp. 87–124. Springer, Heidelberg
(2004). https://doi.org/10.1007/978-3-540-27755-2 3

8. Tiage Brito: Uppaal elevator example (2015). https://github.com/tfbrito/UPPAAL. Accessed
20 Jan 2019

9. Clarke, E.M., Draghicescu, I.A., Kurshan, R.P.: A unified approach for showing language
inclusion and equivalence between various types of omega-automata. Inf. Process. Lett.
46(6), 301–308 (1993)

10. Clarke, E.M., Henzinger, T.A., Veith, H., Bloem, R. (eds.): Handbook of Model Checking.
Springer, Cham (2018)

11. Dalsgaard, A.E., et al.: A lattice model checker. In: Bobaru, M., Havelund, K., Holzmann,
G.J., Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617, pp. 487–493. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-20398-5 37

12. Dierks, H., Kupferschmid, S., Larsen, K.G.: Automatic abstraction refinement for timed
automata. In: Raskin, J.-F., Thiagarajan, P.S. (eds.) FORMATS 2007. LNCS, vol. 4763, pp.
114–129. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75454-1 10

13. Field, A.: Discovering Statistics Using IBM SPSS Statistics: and Sex and Drugs and Rock
‘n’ Roll. Sage, London (2013)

14. Henzinger, T.A., Nicollin, X., Sifakis, J., Yovine, S.: Symbolic model checking for real-time
systems. Inf. Comput. 111(2), 193–244 (1994)

15. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and Computation,
2nd edn. Addison-Wesley, Stanford (2000)

16. Isberner, M., Howar, F., Steffen, B.: The open-source LearnLib. In: Kroening, D., Păsăreanu,
C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 487–495. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-21690-4 32

17. Jensen, H.E., Larsen, K.G., Skou, A.: Modelling and analysis of a collision avoidance pro-
tocol using spin and uppaal. In: The Spin Verification System. DIMACS Series in Discrete
Mathematics and Theoretical Computer Science, vol. 32, pp. 33–50. DIMACS/AMS (1996)

18. Jia, Y., Harman, M.: An analysis and survey of the development of mutation testing. IEEE
Trans. Software Eng. 37(5), 649–678 (2011)

19. Jiang, Z., Pajic, M., Moarref, S., Alur, R., Mangharam, R.: Modeling and verification of
a dual chamber implantable pacemaker. In: Flanagan, C., König, B. (eds.) TACAS 2012.
LNCS, vol. 7214, pp. 188–203. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-28756-5 14

https://doi.org/10.3233/978-1-61499-495-4-1
https://doi.org/10.1007/BFb0020949
https://doi.org/10.1007/BFb0020949
https://doi.org/10.1007/978-3-540-27755-2_3
https://github.com/tfbrito/UPPAAL
https://doi.org/10.1007/978-3-642-20398-5_37
https://doi.org/10.1007/978-3-540-75454-1_10
https://doi.org/10.1007/978-3-319-21690-4_32
https://doi.org/10.1007/978-3-319-21690-4_32
https://doi.org/10.1007/978-3-642-28756-5_14
https://doi.org/10.1007/978-3-642-28756-5_14

96 M. Kölbl et al.

20. Jose, M., Majumdar, R.: Bug-assist: assisting fault localization in ANSI-C programs. In:
Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 504–509. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1 40

21. Jose, M., Majumdar, R.: Cause clue clauses: error localization using maximum satisfiability.
In: PLDI, pp. 437–446. ACM (2011)

22. Le, X.D., Chu, D., Lo, D., Le Goues, C., Visser, W.: S3: syntax- and semantic-guided repair
synthesis via programming by examples. In: Proceedings of the 2017 11th Joint Meeting on
Foundations of Software Engineering, ESEC/FSE 2017, pp. 593–604. ACM (2017). https://
doi.org/10.1145/3106237.3106309

23. Liu, S.: Analysing Timed Traces using SMT Solving. Master’s thesis, University of Konstanz
(2018)

24. Milner, R. (ed.): A Calculus of Communicating Systems. LNCS, vol. 92. Springer, Heidel-
berg (1980). https://doi.org/10.1007/3-540-10235-3

25. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J.
(eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-78800-3 24

26. opaal: opaal test folder (2011). http://opaal-modelchecker.com/opaal-ltsmin/. Accessed 08
Nov 2018

27. Polsen, D.B., van Vliet, J.: Concrete Delays for Symbolic Traces. Master’s thesis, Depart-
ment of Computer Science, Aalborg University (2010). https://projekter.aau.dk/projekter/
files/32183338/report.pdf

28. Reynolds, A., Kuncak, V., Tinelli, C., Barrett, C., Deters, M.: Refutation-based synthesis
in SMT. Formal Methods in System Design (2017). https://doi.org/10.1007/s10703-017-
0270-2

29. Uppaal: Uppaal benchmarks (2017). http://www.it.uu.se/research/group/darts/uppaal/
benchmarks/#benchmarks. Accessed 20 Jan 2019

30. Yi, W., Pettersson, P., Daniels, M.: Automatic verification of real-time communicating sys-
tems by constraint-solving. In: FORTE. IFIP Conference Proceedings, vol. 6, pp. 243–
258. Chapman & Hall (1994). http://www.it.uu.se/research/group/darts/papers/texts/wpd-
forte94-full.pdf

31. Yovine, S.: KRONOS: a verification tool for real-time systems. STTT 1(1–2), 123–133
(1997)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution
4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder.

https://doi.org/10.1007/978-3-642-22110-1_40
https://doi.org/10.1145/3106237.3106309
https://doi.org/10.1145/3106237.3106309
https://doi.org/10.1007/3-540-10235-3
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
http://opaal-modelchecker.com/opaal-ltsmin/
https://projekter.aau.dk/projekter/files/32183338/report.pdf
https://projekter.aau.dk/projekter/files/32183338/report.pdf
https://doi.org/10.1007/s10703-017-0270-2
https://doi.org/10.1007/s10703-017-0270-2
http://www.it.uu.se/research/group/darts/uppaal/benchmarks/#benchmarks
http://www.it.uu.se/research/group/darts/uppaal/benchmarks/#benchmarks
http://www.it.uu.se/research/group/darts/papers/texts/wpd-forte94-full.pdf
http://www.it.uu.se/research/group/darts/papers/texts/wpd-forte94-full.pdf
http://creativecommons.org/licenses/by/4.0/

Verifying Asynchronous Interactions via
Communicating Session Automata

Julien Lange1(B) and Nobuko Yoshida2

1 University of Kent, Canterbury, UK
j.s.lange@kent.ac.uk

2 Imperial College London, London, UK

Abstract. This paper proposes a sound procedure to verify properties
of communicating session automata (csa), i.e., communicating automata
that include multiparty session types. We introduce a new asynchronous
compatibility property for csa, called k-multiparty compatibility (k-mc),
which is a strict superset of the synchronous multiparty compatibility
used in theories and tools based on session types. It is decomposed into
two bounded properties: (i) a condition called k-safety which guaran-
tees that, within the bound, all sent messages can be received and each
automaton can make a move; and (ii) a condition called k-exhaustivity
which guarantees that all k-reachable send actions can be fired within
the bound. We show that k-exhaustivity implies existential boundedness,
and soundly and completely characterises systems where each automaton
behaves equivalently under bounds greater than or equal to k. We show
that checking k-mc is pspace-complete, and demonstrate its scalability
empirically over large systems (using partial order reduction).

1 Introduction

Communicating automata are a Turing-complete model of asynchronous interac-
tions [10] that has become one of the most prominent for studying point-to-point
communications over unbounded first-in-first-out channels. This paper focuses
on a class of communicating automata, called communicating session automata
(csa), which strictly includes automata corresponding to asynchronous multi-
party session types [28]. Session types originated as a typing discipline for the
π-calculus [27,66], where a session type dictates the behaviour of a process wrt.
its communications. Session types and related theories have been applied to the
verification and specification of concurrent and distributed systems through their
integration in several mainstream programming languages, e.g., Haskell [44,55],
Erlang [49], F� [48], Go [11,37,38,51], Java [30,31,34,65], OCaml [56], C [52],
Python [16,47,50], Rust [32], and Scala [61,62]. Communicating automata and
asynchronous multiparty session types [28] are closely related: the latter can be
seen as a syntactical representation of the former [17] where a sending state cor-
responds to an internal choice and a receiving state to an external choice. This
c© The Author(s) 2019
I. Dillig and S. Tasiran (Eds.): CAV 2019, LNCS 11561, pp. 97–117, 2019.
https://doi.org/10.1007/978-3-030-25540-4_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-25540-4_6&domain=pdf
https://doi.org/10.1007/978-3-030-25540-4_6

98 J. Lange and N. Yoshida

correspondence between communicating automata and multiparty session types
has become the foundation of many tools centred on session types, e.g., for gener-
ating communication API from multiparty session (global) types [30,31,48,61],
for detecting deadlocks in message-passing programs [51,67], and for monitor-
ing session-enabled programs [5,16,47,49,50]. These tools rely on a property
called multiparty compatibility [6,18,39], which guarantees that communicating
automata representing session types interact correctly, hence enabling the iden-
tification of correct protocols or the detection of errors in endpoint programs.
Multiparty compatible communicating automata validate two essential require-
ments for session types frameworks: every message that is sent can be eventually
received and each automaton can always eventually make a move. Thus, they sat-
isfy the abstract safety invariant ϕ for session types from [63], a prerequisite for
session type systems to guarantee safety of the typed processes. Unfortunately,
multiparty compatibility suffers from a severe limitation: it requires that each
execution of the system has a synchronous equivalent. Hence, it rules out many
correct systems. Hereafter, we refer to this property as synchronous multiparty
compatibility (smc) and explain its main limitation with Example 1.

Example 1. The system in Fig. 1 contains an interaction pattern that is not sup-
ported by any definition of smc [6,18,39]. It consists of a client (c), a server (s),
and a logger (l), which communicate via unbounded fifo channels. Transition
sr!a denotes that sender puts (asynchronously) message a on channel sr; and
transition sr?a denotes the consumption of a from channel sr by receiver. The
client sends a request and some data in a fire-and-forget fashion, before waiting
for a response from the server. Because of the presence of this simple pattern,
the system cannot be executed synchronously (i.e., with the restriction that a
send action can only be fired when a matching receive is enabled), hence it is
rejected by all definitions of smc from previous works, even though the system
is safe (all sent messages are received and no automaton gets stuck).

Synchronous multiparty compatibility is reminiscent of a strong form of exis-
tential boundedness. Among the existing sub-classes of communicating automata
(see [46] for a survey), existentially k-bounded communicating automata [22]
stand out because they can be model-checked [8,21] and they restrict the model
in a natural way: any execution can be rescheduled such that the number of
pending messages that can be received is bounded by k. However, existential
boundedness is generally undecidable [22], even for a fixed bound k. This short-
coming makes it impossible to know when theoretical results are applicable.

To address the limitation of smc and the shortcoming of existential bound-
edness, we propose a (decidable) sufficient condition for existential boundedness,
called k-exhaustivity, which serves as a basis for a wider notion of new compati-
bility, called k-multiparty compatibility (k-mc) where k P Ną0 is a bound on the
number of pending messages in each channel. A system is k-mc when it is (i)
k-exhaustive, i.e., all k-reachable send actions are enabled within the bound, and
(ii) k-safe, i.e., within the bound k, all sent messages can be received and each
automaton can always eventually progress. For example, the system in Fig. 1 is k-
multiparty compatible for any k P Ną0, hence it does not lead to communication

Verifying Asynchronous Interactions via Communicating Session Automata 99

Mc :

cs!req

cs!datasc?ko

sc?err sc?ok

Ms : cs?req
sc!ko

cs?data

sc!ok cs?data

sl!log

Ml :
sl?log

Fig. 1. Client-Server-Logger example.

errors, see Theorem 1. The k-mc condition is a natural constraint for real-world
systems. Indeed any finite-state system is k-exhaustive (for k sufficiently large),
while any system that is not k-exhaustive (resp. k-safe) for any k is unlikely
to work correctly. Furthermore, we show that if a system of csa validates k-
exhaustivity, then each automaton locally behaves equivalently under any bound
greater than or equal to k, a property that we call local bound-agnosticity. We
give a sound and complete characterisation of k-exhaustivity for csa in terms of
local bound-agnosticity, see Theorem 3. Additionally, we show that the complex-
ity of checking k-mc is pspace-complete (i.e., no higher than related algorithms)
and we demonstrate empirically that its cost can be mitigated through (sound
and complete) partial order reduction.

In this paper, we consider communicating session automata (csa), which
cover the most common form of asynchronous multiparty session types [15] (see
Remark 3), and have been used as a basis to study properties and extensions of
session types [6,7,18,30,31,41,42,47,49,50]. More precisely, csa are determin-
istic automata, whose every state is either sending (internal choice), receiving
(external choice), or final. We focus on csa that preserve the intent of internal
and external choices from session types. In these csa, whenever an automaton
is in a sending state, it can fire any transition, no matter whether channels are
bounded; when it is in a receiving state then at most one action must be enabled.

Synopsis. In Sect. 2, we give the necessary background on communicating
automata and their properties, and introduce the notions of output/input bound
independence which guarantee that internal/external choices are preserved in
bounded semantics. In Sect. 3, we introduce the definition of k-multiparty com-
patibility (k-mc) and show that k-mc systems are safe for systems which vali-
date the bound independence properties. In Sect. 4, we formally relate existen-
tial boundedness [22,35], synchronisability [9], and k-exhaustivity. In Sect. 5 we
present an implementation (using partial order reduction) and an experimental
evaluation of our theory. We discuss related works in Sect. 6 and conclude in
Sect. 7.

See [43] for a full version of this paper (including proofs and additional exam-
ples). Our implementation and benchmark data are available online [33].

2 Communicating Automata and Bound Independence

This section introduces notations and definitions of communicating automata
(following [12,39]), as well as the notion of output (resp. input) bound indepen-
dence which enforces the intent of internal (resp. external) choice in csa.

100 J. Lange and N. Yoshida

Fix a finite set P of participants (ranged over by p, q, r, s, etc.) and a
finite alphabet Σ. The set of channels is C def“ {pq | p, q P P and p �“ q},
A def“ C ˆ {!, ?} ˆ Σ is the set of actions (ranged over by �), Σ∗ (resp. A∗) is the
set of finite words on Σ (resp. A). Let w range over Σ∗, and φ, ψ range over A∗.
Also, ε (/P Σ ∪ A) is the empty word, |w| denotes the length of w, and w ·w′ is
the concatenation of w and w′ (these notations are overloaded for words in A∗).

Definition 1 (Communicating automaton). A communicating automaton
is a finite transition system given by a triple M “ (Q, q0, δ) where Q is a finite
set of states, q0 P Q is the initial state, and δ Ď QˆAˆQ is a set of transitions.

The transitions of a communicating automaton are labelled by actions in A of
the form sr!a, representing the emission of message a from participant s to r, or
sr?a representing the reception of a by r. Define subj (pq!a) “ subj (qp?a) “ p,
obj (pq!a) “ obj (qp?a) “ q, and chan(pq!a) “ chan(pq?a) “ pq. The projection
of � onto p is defined as πp(�) “ � if subj (�) “ p and πp(�) “ ε otherwise. Let †
range over {!, ?}, we define: π†

pq(pq † a) “ a and π†′
pq(sr † a) “ ε if either pq �“ sr

or † �“ †′. We extend these definitions to sequences of actions in the natural way.
A state q P Q with no outgoing transition is final ; q is sending (resp. receiv-

ing) if it is not final and all its outgoing transitions are labelled by send
(resp. receive) actions, and q is mixed otherwise. M “ (Q, q0, δ) is deter-
ministic if @(q, �, q′), (q, �′, q′′) P δ : � “ �′ “⇒ q′ “ q′′. M “ (Q, q0, δ)
is send (resp. receive) directed if for all sending (resp. receiving) q P Q and
(q, �, q′), (q, �′, q′′) P δ : obj (�) “ obj (�′). M is directed if it is send and receive
directed.

Remark 1. In this paper, we consider only deterministic communicating
automata without mixed states, and call them Communicating Session
Automata (csa). We discuss possible extensions of our results beyond this class
in Sect. 7.

Definition 2 (System). Given a communicating automaton Mp “ (Qp, q0p, δp)
for each p P P, the tuple S “ (Mp)pPP is a system. A configuration of S is a
pair s “ (q;w) where q “ (qp)pPP with qp P Qp and where w “ (wpq)pqPC
with wpq P Σ∗; component q is the control state and qp P Qp is the local state of
automaton Mp. The initial configuration of S is s0 “ (q0; ε) where q0 “ (q0p)pPP
and we write ε for the |C|-tuple (ε, . . . , ε).

Hereafter, we fix a communicating session automaton Mp “ (Qp, q0p, δp) for
each p P P and let S “ (Mp)pPP be the corresponding system whose initial
configuration is s0. For each p P P, we assume that @(q, �, q′) P δp : subj (�) “ p.
We assume that the components of a configuration are named consistently, e.g.,
for s′ “ (q′;w′), we implicitly assume that q′ “ (q′

p)pPP and w′ “ (w′
pq)pqPC .

Definition 3 (Reachable configuration). Configuration s′ “ (q′;w′) is
reachable from configuration s “ (q;w) by firing transition �, written s

�−→ s′

(or s −→ s′ when � is not relevant), if there are s, r P P and a P Σ such that
either:

Verifying Asynchronous Interactions via Communicating Session Automata 101

1. (a) � “ sr!a and (qs, �, q′
s) P δs, (b) q′

p “ qp for all p �“ s, (c) w′
sr “ wsr · a

and w′
pq “ wpq for all pq �“ sr; or

2. (a) � “ sr?a and (qr, �, q′
r) P δr, (b) q′

p “ qp for all p �“ r, (c) wsr “ a ·w′
sr,

and w′
pq “ wpq for all pq �“ sr.

Remark 2. Hereafter, we assume that any bound k is finite and k P Ną0.

We write −→∗ for the reflexive and transitive closure of −→. Configuration
(q;w) is k-bounded if @pq P C : |wpq| ď k. We write s1

�1···�n−−−−→ sn+1 when
s1

�1−→ s2 · · · sn
�n−→ sn+1, for some s2, . . . , sn (with n ě 0); and say that the

execution �1 · · · �n is k-bounded from s1 if @1 ď i ď n+1 : si is k-bounded. Given
φ P A∗, we write p /P φ iff φ “ φ0 · � · φ1 “⇒ subj (�) �“ p. We write s

φ−→k s′

if s′ is reachable with a k-bounded execution φ from s. The set of reachable
configurations of S is RS (S) “ {s | s0 −→∗s}. The k-reachability set of S is
the largest subset RSk(S) of RS (S) within which each configuration s can be
reached by a k-bounded execution from s0.

Definition 4 streamlines notions of safety from previous works [6,12,18,39]
(absence of deadlocks, orphan messages, and unspecified receptions).

Definition 4 (k-Safety). S is k-safe if the following holds @(q;w) P RSk(S):

(er) @pq P C, if wpq “ a · w′, then (q;w) −→k
∗ pq?a−−−→k.

(pg) @p P P, if qp is receiving, then (q;w) −→k
∗ qp?a−−−→k for q P P and a P Σ.

We say that S is safe if it validates the unbounded version of k-safety (8-safe).

Property (er), called eventual reception, requires that any sent message can
always eventually be received (i.e., if a is the head of a queue then there must
be an execution that consumes a), and Property (pg), called progress, requires
that any automaton in a receiving state can eventually make a move (i.e., it can
always eventually receive an expected message).

We say that a configuration s is stable iff s “ (q; ε), i.e., all its queues
are empty. Next, we define the stable property for systems of communicating
automata, following the definition from [18].

Definition 5 (Stable). S has the stable property (sp) if @s P RS (S) : D(q; ε) P
RS (S) : s −→∗(q; ε).

A system has the stable property if it is possible to reach a stable config-
uration from any reachable configuration. This property is called deadlock-free
in [22]. The stable property implies the eventual reception property, but not
safety (e.g., an automaton may be waiting for an input in a stable configuration,
see Example 2), and safety does not imply the stable property, see Example 4.

Example 2. The following system has the stable property, but it is not safe.

Ms : pq!bpq!a Mq : pq?a pq?b qr!c Mr : qr?c

102 J. Lange and N. Yoshida

Next, we define two properties related to bound independence. They specify
classes of csa whose branching behaviours are not affected by channel bounds.

Definition 6 (k-obi). S is k-output bound independent (k-obi), if @s “
(q;w) P RSk(S) and @p P P, if s

pq!a−−→k, then @(qp, pr!b, q′
p) P δp : s

pr!b−−→k.

Mp :

pq!a1pq!a2

pr!c

qp?b
pq!y

pr!c qp?b

pq!a1

pq!a2qp?x

Mq :

pq?a1pq?a2

rq?d

qp!b
pq?y

rq?d qp!b

pq?a1

pq?a2qp!x

Mr : pr?c

rq!d

Fig. 2. Example of a non-ibi and non-safe system.

Definition 7 (k-ibi). S is k-input bound independent (k-ibi), if @s “ (q;w) P
RSk(S) and @p P P, if s

qp?a−−−→k, then @� P A : s
�−→k ^ subj (�) “ p “⇒ � “ qp?a.

If S is k-obi, then any automaton that reaches a sending state is able to
fire any of its available transitions, i.e., sending states model internal choices
which are not constrained by bounds greater than or equal to k. Note that the
unbounded version of k-obi (k “ 8) is trivially satisfied for any system due to
unbounded asynchrony. If S is k-ibi, then any automaton that reaches a receiving
state is able to fire at most one transition, i.e., receiving states model external
choices where the behaviour of the receiving automaton is controlled exclusively
by its environment. We write ibi for the unbounded version of k-ibi (k “ 8).

Checking the ibi property is generally undecidable. However, systems con-
sisting of (send and receive) directed automata are trivially k-ibi and k-obi for
all k, this subclass of csa was referred to as basic in [18]. We introduce larger
decidable approximations of ibi with Definitions 10 and 11.

Proposition 1. (1) If S is send directed, then S is k-obi for all k P Ną0. (2) If
S is receive directed, then S is ibi (and k-ibi for all k P Ną0).

Remark 3. csa validating k-obi and ibi strictly include the most common forms
of asynchronous multiparty session types, e.g., the directed csa of [18], and sys-
tems obtained by projecting Scribble specifications (global types) which need to
be receive directed (this is called “consistent external choice subjects” in [31]) and
which validate 1-obi by construction since they are projections of synchronous
specifications where choices must be located at a unique sender.

3 Bounded Compatibility for csa

In this section, we introduce k-multiparty compatibility (k-mc) and study its
properties wrt. Safety of communicating session automata (csa) which are k-obi
and ibi. Then, we soundly and completely characterise k-exhaustivity in terms
of local bound-agnosticity, a property which guarantees that communicating
automata behave equivalently under any bound greater than or equal to k.

Verifying Asynchronous Interactions via Communicating Session Automata 103

3.1 Multiparty Compatibility

The definition of k-mc is divided in two parts: (i) k-exhaustivity guarantees that
the set of k-reachable configurations contains enough information to make a
sound decision wrt. safety of the system; and (ii) k-safety (Definition 4) guaran-
tees that a subset of all possible executions is free of any communication errors.
Next, we define k-exhaustivity, then k-multiparty compatibility. Intuitively, a
system is k-exhaustive if for all k-reachable configurations, whenever a send
action is enabled, then it can be fired within a k-bounded execution.

Fig. 3. (Mp, Mq) is non-exhaustive, (Mp, Nq) is 1-exhaustive, (Mp, N
′
q) is 2-exhaustive.

Definition 8 (k-Exhaustivity). S is k-exhaustive if @(q;w) P RSk(S) and
@p P P, if qp is sending, then @(qp, �, q′

p) P δp : Dφ P A∗ : (q;w)
φ−→k

�−→k ^p /P φ.

Definition 9 (k-Multiparty compatibility). S is k-multiparty compatible
(k-mc) if it is k-safe and k-exhaustive.

Definition 9 is a natural extension of the definitions of synchronous multi-
party compatibility given in [18, Definition 4.2] and [6, Definition 4]. The com-
mon key requirements are that every send action must be matched by a receive
action (i.e., send actions are universally quantified), while at least one receive
action must find a matching send action (i.e., receive actions are existentially
quantified). Here, the universal check on send actions is done via the eventual
reception property (er) and the k-exhaustivity condition; while the existential
check on receive actions is dealt with by the progress property (pg).

Whenever systems are k-obi and ibi, then k-exhaustivity implies that k-
bounded executions are sufficient to make a sound decision wrt. safety. This is
not necessarily the case for systems outside of this class, see Examples 3 and 5.

Example 3. The system (Mp,Mq,Mr) in Fig. 2 is k-obi for any k, but not ibi
(it is 1-ibi but not k-ibi for any k ě 2). When executing with a bound strictly
greater than 1, there is a configuration where Mq is in its initial state and both
its receive transitions are enabled. The system is 1-safe and 1-exhaustive (hence
1-mc) but it is not 2-exhaustive nor 2-safe. By constraining the automata to
execute with a channel bound of 1, the left branch of Mp is prevented to execute
together with the right branch of Mq. Thus, the fact that the y messages are not
received in this case remains invisible in 1-bounded executions. This example can
be easily extended so that it is n-exhaustive (resp. safe) but not n+1-exhaustive
(resp. safe) by sending/receiving n+1 ai messages.

104 J. Lange and N. Yoshida

Example 4. The system in Fig. 1 is directed and 1-mc. The system (Mp,Mq) in
Fig. 3 is safe but not k-mc for any finite k P Ną0. Indeed, for any execution
of this system, at least one of the queues grows arbitrarily large. The system
(Mp, Nq) is 1-mc while the system (Mp, N

′
q) is not 1-mc but it is 2-mc.

Mp :
pq!y

pq!v

ps!x

pr!u

ps!xpq!v

pr!w
Mq :

rq?z

pq?y

pq?v

Mr :

rs!b
rq!z

pr?upr?w

rs!a

rs!a

pr?upr?w

rq!z

Ms :
ps?x

rs?b

rs?a

Fig. 4. Example of a system which is not 1-obi.

Example 5. The system in Fig. 4 (without the dotted transition) is 1-mc, but not
2-safe; it is not 1-obi but it is 2-obi. In 1-bounded executions, Mr can execute
rs!b · rp!z , but it cannot fire rs!b · rs!a (queue rs is full), which violates the
1-obi property. The system with the dotted transition is not 1-obi, but it is
2-obi and k-mc for any k ě 1. Both systems are receive directed, hence ibi.

Theorem 1. If S is k-obi, ibi, and k-mc, then it is safe.

Remark 4. It is undecidable whether there exists a bound k for which an arbi-
trary system is k-mc. This is a consequence of the Turing completeness of com-
municating (session) automata [10,20,42].

Although the ibi property is generally undecidable, it is possible to identify
sound approximations, as we show below. We adapt the dependency relation
from [39] and say that action �′ depends on � from s “ (q;w), written s $ � ă �′,
iff subj (�) “ subj (�′) _ (chan(�) “ chan(�′) ^ wchan(�) “ ε). Action �′ depends
on � in φ from s, written s $ � ăφ �′, if the following holds:

s $ � ăφ �′ ⇐⇒
{
(s $ � ă �′′ ^ s $ �′′ ăψ �′) _ s $ � ăψ �′ if φ “ �′′ ·ψ
s $ � ă �′ otherwise

Definition 10. S is k-chained input bound independent (k-cibi) if @s “
(q;w) P RSk(S) and @p P P, if s

qp?a−−−→k s′, then @(qp, sp?b, q′
p) P δp : s �“

q “⇒ ¬(s sp?b−−−→k) ^ (@φ P A∗ : s′ φ−→k
sp!b−−→k “⇒ s $ qp?a ăφ sp!b).

Definition 11. S is k-strong input bound independent (k-sibi) if @s “ (q;w) P
RSk(S) and @p P P, if s

qp?a−−−→k s′, then @(qp, sp?b, q′
p) P δp : s �“ q “⇒

¬(s sp?b−−−→k _ s′ −→k
∗ sp!b−−→k).

Verifying Asynchronous Interactions via Communicating Session Automata 105

Definition 10 requires that whenever p can fire a receive action, at most
one of its receive actions is enabled at s, and no other receive transition from
qp will be enabled until p has made a move. This is due to the existence of a
dependency chain between the reception of a message (qp?a) and the matching
send of another possible reception (sp!b). Property k-sibi (Definition 11) is a
stronger version of k-cibi, which can be checked more efficiently.

Lemma 1. If S is k-obi, k-cibi (resp. k-sibi) and k-exhaustive, then it is ibi.

The decidability of k-obi, k-ibi, k-sibi, k-cibi, and k-mc is straightforward
since both RSk(S) (which has an exponential number of states wrt. k) and −→k

are finite, given a finite k. Theorem 2 states the space complexity of the proce-
dures, except for k-cibi for which a complexity class is yet to be determined. We
show that the properties are pspace by reducing to an instance of the reacha-
bility problem over a transition system built following the construction of Bollig
et al. [8, Theorem 6.3]. The rest of the proof follows from similar arguments in
Genest et al. [22, Proposition 5.5] and Bouajjani et al. [9, Theorem 3].

Theorem 2. The problems of checking the k-obi, k-ibi, k-sibi, k-safety, and
k-exhaustivity properties are all decidable and pspace-complete (with k P Ną0

given in unary). The problem of checking the k-cibi property is decidable.

3.2 Local Bound-Agnosticity

We introduce local bound-agnosticity and show that it fully characterises k-
exhaustive systems. Local bound-agnosticity guarantees that each communicat-
ing automaton behave in the same manner for any bound greater than or equal to
some k. Therefore such systems may be executed transparently under a bounded
semantics (a communication model available in Go and Rust).

Definition 12 (Transition system). The k-bounded transition system of S is
the labelled transition system (LTS) TSk(S) “ (N, s0,Δ) such that N “ RSk(S),
s0 is the initial configuration of S, Δ Ď NˆAˆN is the transition relation, and
(s, �, s′) P Δ if and only if s

�−→k s′.

Definition 13 (Projection). Let T be an LTS over A. The projection of T
onto p, written πε

p(T), is obtained by replacing each label � in T by πp(�).

Recall that the projection of action �, written πp(�), is defined in Sect. 2.
The automaton πε

p(TSk(S)) is essentially the local behaviour of participant p
within the transition system TSk(S). When each automaton in a system S
behaves equivalently for any bound greater than or equal to some k, we say
that S is locally bound-agnostic. Formally, S is locally bound-agnostic for k
when πε

p(TSk(S)) and πε
p(TSn(S)) are weakly bisimilar (≈) for each participant

p and any n ě k. For k-obi and ibi systems, local bound-agnosticity is a nec-
essary and sufficient condition for k-exhaustivity, as stated in Theorem 3 and
Corollary 1.

106 J. Lange and N. Yoshida

Theorem 3. Let S be a system.

(1) If Dk P Ną0 : @p P P : πε
p(TSk(S))≈ πε

p(TSk+1(S)), then S is k-exhaustive.
(2) If S is k-obi, ibi, and k-exhaustive, then @p P P : πε

p(TSk(S))≈
πε
p(TSk+1(S)).

Corollary 1. Let S be k-obi and ibi s.t. @p P P : πε
p(TSk(S))≈ πε

p(TSk+1(S)),
then S is locally bound-agnostic for k.

Theorem 3 (1) is reminiscent of the (pspace-complete) checking procedure
for existentially bounded systems with the stable property [22] (an undecidable
property). Recall that k-exhaustivity is not sufficient to guarantee safety, see
Examples 3 and 5. We give an effective procedure (based on partial order reduc-
tion) to check k-exhaustivity and related properties in [43].

Fig. 5. Relations between k-exhaustivity, existential k-boundedness, and k-synchronis-
ability in k-obi and ibi csa (the circled numbers refer to Table 1).

4 Existentially Bounded and Synchronisable Automata

4.1 Kuske and Muscholl’s Existential Boundedness

Existentially bounded communicating automata [21,22,35] are a class of com-
municating automata whose executions can always be scheduled in such a way
that the number of pending messages is bounded by a given value. Traditionally,
existentially bounded communicating automata are defined on communicating
automata that feature (local) accepting states and in terms of accepting runs.
An accepting run is an execution (starting from s0) which terminates in a config-
uration (q;w) where each qp is a local accepting state. In our setting, we simply
consider that every local state qp is an accepting state, hence any execution φ
starting from s0 is an accepting run. We first study existential boundedness as
defined in [35] as it matches more closely k-exhaustivity, we study the “classical”
definition of existential boundedness [22] in Sect. 4.2.

Following [35], we say that an execution φ P A∗ is valid if for any prefix ψ
of φ and any channel pq P C, we have that π?

pq(ψ) is a prefix of π!
pq(ψ), i.e., an

execution is valid if it models the fifo semantics of communicating automata.

Verifying Asynchronous Interactions via Communicating Session Automata 107

Definition 14 (Causal equivalence [35]). Given φ, ψ P A∗, we define: φ�ψ
iff φ and ψ are valid executions and @p P P : πp(φ) “ πp(ψ). We write [φ]� for
the equivalence class of φ wrt. �.

Definition 15 (Existential boundedness [35]). We say that a valid execu-
tion φ is k-match-bounded if, for every prefix ψ of φ the difference between the
number of matched events of type pq! and those of type pq? is bounded by k,
i.e., min{|π!

pq(ψ)|, |π?
pq(φ)|} − |π?

pq(ψ)| ď k.
Write A∗|k for the set of k-match-bounded words. An execution φ is existentially
k-bounded if [φ]� X A∗|k �“ ∅. A system S is existentially k-bounded, written D-
k-bounded, if each execution in {φ | Ds : s0

φ−→s} is existentially k-bounded.

Example 6. Consider Fig. 3. (Mp,Mq) is not existentially k-bounded, for any k:
at least one of the queues must grow infinitely for the system to progress. Systems
(Mp, Nq) and (Mp, N

′
q) are existentially bounded since any of their executions

can be scheduled to an �-equivalent execution which is 2-match-bounded.

The relationship between k-exhaustivity and existential boundedness is
stated in Theorem 4 and illustrated in Fig. 5 for k-obi and ibi csa, where smc
refers to synchronous multiparty compatibility [18, Definition 4.2]. The circled
numbers in the figure refer to key examples summarised in Table 1. The strict
inclusion of k-exhaustivity in existential k-boundedness is due to systems that
do not have the eventual reception property, see Example 7.

Example 7. The system below is D-1-bounded but is not k-exhaustive for any k.

Mp : sp?c Ms :
sr!a

sp!b

Mr : sr?a

For any k, the channel sp eventually gets full and the send action sp!b can no
longer be fired; hence it does not satisfy k-exhaustivity. Note that each execution
can be reordered into a 1-match-bounded execution (the b’s are never matched).

Theorem 4. (1) If S is k-obi, ibi, and k-exhaustive, then it is D-k-bounded.
(2) If S is D-k-bounded and satisfies eventual reception, then it is k-exhaustive.

4.2 Existentially Stable Bounded Communicating Automata

The “classical” definition of existentially bounded communicating automata as
found in [22] differs slightly from Definition 15, as it relies on a different notion
of accepting runs, see [22, page 4]. Assuming that all local states are accepting,
we adapt their definition as follows: a stable accepting run is an execution φ
starting from s0 which terminates in a stable configuration.

Definition 16 (Existential stable boundedness [22]). A system S is exis-
tentially stable k-bounded, written DS-k-bounded, if for each execution φ in
{φ | D(q; ε) P RS (S) : s0

φ−→ (q; ε)} there is ψ such that s0
ψ−→k with φ� ψ.

108 J. Lange and N. Yoshida

A system is existentially stable k-bounded if each of its executions leading to
a stable configuration can be re-ordered into a k-bounded execution (from s0).

Theorem 5. (1) If S is existentially k-bounded, then it is existentially stable
k-bounded. (2) If S is existentially stable k-bounded and has the stable property,
then it is existentially k-bounded.

We illustrate the relationship between existentially stable bounded commu-
nicating automata and the other classes in Fig. 5. The example below further
illustrates the strictness of the inclusions, see Table 1 for a summary.

Example 8. Consider the systems in Fig. 3. (Mp,Mq) and (Mp, N
′
q) are (triv-

ially) existentially stable 1-bounded since none of their (non-empty) executions
terminate in a stable configuration. The system (Mp, Nq) is existentially stable
2-bounded since each of its executions can be re-ordered into a 2-bounded one.
The system in Example 7 is (trivially) DS-1-bounded: none of its (non-empty)
executions terminate in a stable configuration (the b’s are never received).

Theorem 6. Let S be an D(S)-k-bounded system with the stable property, then
it is k-exhaustive.

Table 1. Properties for key examples, where direct. stands for directed, obi for k-obi,
sibi for k-sibi, er for eventual reception property, sp for stable property, exh. for k-
exhaustive, D(S)-b for D(S)-bounded, and syn. for n-synchronisable (for some n P Ną0).

System Ref. k direct. obi sibi safe er sp exh. DS-b D-b syn.

1 (Mc, Ms, Ml) Figure 1 1 yes yes yes yes yes yes yes yes yes yes

2 (Ms, Mq, Mr) Example 2 1 yes yes yes no yes yes yes yes yes yes

3 (Mp, Mq, Mr) Figure 2 ě 2 no yes no no no no no yes yes no

4 (Mp, Mq) Figure 3 any yes yes yes yes yes no no yes no no

5 (Mp, N
′
q) Figure 3 2 yes yes yes yes yes no yes yes yes no

6 (Mp, Mq, Mr, Ms) Figure 4 2 no yes yes yes yes no yes yes yes no

7 (Ms, Mr, Mp) Example 7 any yes yes yes no no no no yes yes yes

8 (Mp, Mq) Example 9 1 yes yes yes yes yes yes yes yes yes no

4.3 Synchronisable Communicating Session Automata

In this section, we study the relationship between synchronisability [9] and k-
exhaustivity via existential boundedness. Informally, communicating automata
are synchronisable if each of their executions can be scheduled in such a way
that it consists of sequences of “exchange phases”, where each phase consists of
a bounded number of send actions, followed by a sequence of receive actions.
The original definition of k-synchronisable systems [9, Definition 1] is based on

Verifying Asynchronous Interactions via Communicating Session Automata 109

communicating automata with mailbox semantics, i.e., each automaton has one
input queue. Here, we adapt the definition so that it matches our point-to-point
semantics. We write A! for A X (C ˆ {!} ˆ Σ), and A? for A X (C ˆ {?} ˆ Σ).

Definition 17 (Synchronisability). A valid execution φ “ φ1 · · · φn is a k-
exchange if and only if: (1) @1 ď i ď n : φi P A∗

! · A∗
? ^ |φi| ď 2k; and

(2) @pq P C : @1 ď i ď n : π!
pq(φi) �“ π?

pq(φi) “⇒ @i ă j ď n : π?
pq(φj) “ ε.

We write A∗‖k for the set of executions that are k-exchanges and say that
an execution φ is k-synchronisable if [φ]� X A∗ ‖k �“ ∅. A system S is k-
synchronisable if each execution in {φ | Ds : s0

φ−→s} is k-synchronisable.

Table 2. Experimental evaluation. |P| is the number of participants, k is the bound,
|RTS | is the number of transitions in the reduced TSk(S) (see [43]), direct. stands for
directed, Time is the time taken to check all the properties shown in this table, and
gmc is yes if the system is generalised multiparty compatible [39].

Example |P| k |RTS | direct. k-obi k-cibi k-mc Time gmc

Client-Server-Logger 3 1 11 yes yes yes yes 0.04 s no

4 Player game† [39] 4 1 20 no yes yes yes 0.05 s yes

Bargain [39] 3 1 8 yes yes yes yes 0.03 s yes

Filter collaboration [68] 2 1 10 yes yes yes yes 0.03 s yes

Alternating bit† [59] 2 1 8 yes yes yes yes 0.04 s no

TPMContract v2† [25] 2 1 14 yes yes yes yes 0.04 s yes

Sanitary agency† [60] 4 1 34 yes yes yes yes 0.07 s yes

Logistic† [54] 4 1 26 yes yes yes yes 0.05 s yes

Cloud system v4 [24] 4 2 16 no yes yes yes 0.04 s yes

Commit protocol [9] 4 1 12 yes yes yes yes 0.03 s yes

Elevator† [9] 5 1 72 no yes no yes 0.14s no

Elevator-dashed† [9] 5 1 80 no yes no yes 0.16s no

Elevator-directed† [9] 3 1 41 yes yes yes yes 0.07 s yes

Dev system [58] 4 1 20 yes yes yes yes 0.05 s no

Fibonacci [48] 2 1 6 yes yes yes yes 0.03 s yes

Sap-Negot. [48,53] 2 1 18 yes yes yes yes 0.04 s yes

sh [48] 3 1 30 yes yes yes yes 0.06 s yes

Travel agency [48,64] 3 1 21 yes yes yes yes 0.05 s yes

http [29,48] 2 1 48 yes yes yes yes 0.07 s yes

smtp [30,48] 2 1 108 yes yes yes yes 0.08 s yes

gen_server (buggy) [67] 3 1 56 no no yes no 0.03 s no

gen_server (fixed) [67] 3 1 45 no yes yes yes 0.03 s yes

Double buffering [45] 3 2 16 yes yes yes yes 0.01 s no

110 J. Lange and N. Yoshida

Condition (1) says that execution φ should be a sequence of an arbitrary
number of send-receive phases, where each phase consists of at most 2k actions.
Condition (2) says that if a message is not received in the phase in which it is
sent, then it cannot be received in φ. Observe that the bound k is on the number
of actions (over possibly different channels) in a phase rather than the number
of pending messages in a given channel.

Example 9. The system below (left) is 1-mc and D(S)-1-bounded, but it is not
k-synchronisable for any k. The subsequences of send-receive actions in the �-
equivalent executions below are highlighted (right).

Mp : pq!a qp?c pq!b qp?d

Mq : qp!c qp!d pq?a pq?b

φ1 “ pq!a · qp!c · qp?c · qp!d · pq?a · pq!b · qp?d · pq?b
φ2 “ pq!a · qp!c · qp!d · qp?c · pq?a · pq!b · qp?d · pq?b

Execution φ1 is 1-bounded for s0, but it is not a k-exchange since, e.g., a is
received outside of the phase where it is sent. In φ2, message d is received outside
of its sending phase. In the terminology of [9], this system is not k-synchronisable
because there is a “receive-send dependency” between the exchange of message
c and b, i.e., p must receive c before it sends b. Hence, there is no k-exchange
that is �-equivalent to φ1 and φ2.

Theorem 7. (1) If S is k-synchronisable, then it is D-k-bounded. (2) If S is k-
synchronisable and has the eventual reception property, then it is k-exhaustive.

Figure 5 and Table 1 summarise the results of Sect. 4 wrt. k-obi and ibi csa.
We note that any finite-state system is k-exhaustive (and D(S)-k-bounded) for
sufficiently large k, while this does not hold for synchronisability, see Example 9.

5 Experimental Evaluation

We have implemented our theory in a tool [33] which takes two inputs: (i) a
system of communicating automata and (ii) a bound max. The tool iteratively
checks whether the system validates the premises of Theorem 1, until it succeeds
or reaches k “ max. We note that the k-obi and ibi conditions are required
for our soundness result (Theorem 1), but are orthogonal for checking k-mc.
Each condition is checked on a reduced bounded transition system, called
RTSk(S). Each verification procedure for these conditions is implemented in
Haskell using a simple (depth-first-search based) reachability check on the paths
of RTSk(S). We give an (optimal) partial order reduction algorithm to construct
RTSk(S) in [43] and show that it preserves our properties.

We have tested our tool on 20 examples taken from the literature, which are
reported in Table 2. The table shows that the tool terminates virtually instan-
taneously on all examples. The table suggests that many systems are indeed
k-mc and most can be easily adapted to validate bound independence. The last
column refers to the gmc condition, a form of synchronous multiparty compat-
ibility (smc) introduced in [39]. The examples marked with † have been slightly

Verifying Asynchronous Interactions via Communicating Session Automata 111

modified to make them csa that validate k-obi and ibi. For instance, we take
only one of the possible interleavings between mixed actions to remove mixed
states (taking send action before receive action to preserve safety), see [43].

We have assessed the scalability of our approach with automatically gener-
ated examples, which we report in Fig. 6. Each system considered in these bench-
marks consists of 2m (directed) csa for some m ě 1 such that S “ (Mpi)1ďiď2m,
and each automaton Mpi is of the form (when i is odd):

Mpi :
pipi+1!a1

pipi+1!an

pipi+1!a1

pipi+1!an

pi+1pi?a1

pi+1pi?an

pi+1pi?a1

pi+1pi?an

k times k times

Each Mpi sends k messages to participant pi+1, then receives k messages from
pi+1. Each message is taken from an alphabet {a1 , . . . , an} (n ě 1). Mpi has the
same structure when i is even, but interacts with pi−1 instead. Observe that any
system constructed in this way is k-mc for any k ě 1, n ě 1, and m ě 1. The
shape of these systems allows us to assess how our approach fares in the worst
case, i.e., large number of paths in RTSk(S). Figure 6 gives the time taken for
our tool to terminate (y axis) wrt. the number of transitions in RTSk(S) where
k is the least natural number for which the system is k-mc. The plot on the left
in Fig. 6 gives the timings when k is increasing (every increment from k “ 2 to
k “ 100) with the other parameters fixed (n “ 1 and m “ 5). The middle plot
gives the timings when m is increasing (every increment from m “ 1 to m “ 26)
with k “ 10 and n “ 1. The right-hand side plot gives the timings when n is
increasing (every increment from n “ 1 to n “ 10) with k “ 2 and m “ 1. The
largest RTSk(S) on which we have tested our tool has 12222 states and 22220
transitions, and the verification took under 17min.1 Observe that partial order
reduction mitigates the increasing size of the transition system on which k-mc
is checked, e.g., these experiments show that parameters k and m have only a
linear effect on the number of transitions (see horizontal distances between data
points). However the number of transitions increases exponentially with n (since
the number of paths in each automaton increases exponentially with n).

6 Related Work

Theory of communicating automata Communicating automata were introduced,
and shown to be Turing powerful, in the 1980s [10] and have since then been
studied extensively, namely through their connection with message sequence
charts (MSC) [46]. Several works achieved decidability results by using bag or
lossy channels [1,2,13,14] or by restricting the topology of the network [36,57].

Existentially bounded communicating automata stand out because they pre-
serve the fifo semantics of communicating automata, do not restrict the topol-
ogy of the network, and include infinite state systems. Given a bound k and
1 All the benchmarks in this paper were run on an 8-core Intel i7-7700 machine with

16GB RAM running a 64-bit Linux.

112 J. Lange and N. Yoshida

Fig. 6. Benchmarks: increasing k (left), increasing m (middle), and increasing n (right).

an arbitrary system of (deterministic) communicating automata S, it is gen-
erally undecidable whether S is existentially k-bounded. However, the ques-
tion becomes decidable (pspace-complete) when S has the stable property.
The stable property is itself generally undecidable (it is called deadlock-freedom
in [22,35]). Hence this class is not directly applicable to the verification of mes-
sage passing programs since its membership is overall undecidable. We have
shown that k-obi, ibi, and k-exhaustive csa systems are (strictly) included in
the class of existentially bounded systems. Hence, our work gives a sound prac-
tical procedure to check whether csa are existentially k-bounded. To the best of
our knowledge, the only tools dedicated to the verification of (unbounded) com-
municating automata are McScM [26] and Chorgram [40]. Bouajjani et al. [9]
study a variation of communicating automata with mailboxes (one input queue
per automaton). They introduce the class of synchronisable systems and a pro-
cedure to check whether a system is k-synchronisable; it relies on executions con-
sisting of k-bounded exchange phases. Given a system and a bound k, it is decid-
able (pspace-complete) whether its executions are equivalent to k-synchronous
executions. Section 4.3 states that any k-synchronisable system which satisfies
eventual reception is also k-exhaustive, see Theorem 7. In contrast to existen-
tial boundedness, synchronisability does not include all finite-state systems. Our
characterisation result, based on local bound-agnosticity (Theorem 3), is unique
to k-exhaustivity. It does not apply to existential boundedness nor synchro-
nisability, see, e.g., Example 7. The term “synchronizability” is used by Basu
et al. [3,4] to refer to another verification procedure for communicating automata
with mailboxes. Finkel and Lozes [19] have shown that this notion of synchroniz-
ability is undecidable. We note that a system that is safe with a point-to-point
semantics, may not be safe with a mailbox semantics (due to independent send
actions), and vice-versa. For instance, the system in Fig. 2 is safe when executed
with mailbox semantics.

Multiparty Compatibility and Programming Languages. The first definition of
multiparty compatibility appeared in [18, Definition 4.2], inspired by the work
in [23], to characterise the relationship between global types and communicating
automata. This definition was later adapted to the setting of communicating
timed automata in [6]. Lange et al. [39] introduced a generalised version of mul-
tiparty compatibility (gmc) to support communicating automata that feature

Verifying Asynchronous Interactions via Communicating Session Automata 113

mixed or non-directed states. Because our results apply to automata without
mixed states, k-mc is not a strict extension of gmc, and gmc is not a strict
extension of k-mc either, as it requires the existence of synchronous executions.
In future work, we plan to develop an algorithm to synthesise representative
choreographies from k-mc systems, using the algorithm in [39].

The notion of multiparty compatibility is at the core of recent works that
apply session types techniques to programming languages. Multiparty compat-
ibility is used in [51] to detect deadlocks in Go programs, and in [30] to study
the well-formedness of Scribble protocols [64] through the compatibility of their
projections. These protocols are used to generate various endpoint APIs that
implement a Scribble specification [30,31,48], and to produce runtime monitor-
ing tools [47,49,50]. Taylor et al. [67] use multiparty compatibility and chore-
ography synthesis [39] to automate the analysis of the gen_server library of
Erlang/OTP. We can transparently widen the set of safe programs captured
by these tools by using k-mc instead of synchronous multiparty compatibility
(smc). The k-mc condition corresponds to a much wider instance of the abstract
safety invariant ϕ for session types defined in [63]. Indeed k-mc includes smc
(see [43]) and all finite-state systems (for k sufficiently large).

7 Conclusions

We have studied csa via a new condition called k-exhaustivity. The k-
exhaustivity condition is (i) the basis for a wider notion of multiparty compati-
bility, k-mc, which captures asynchronous interactions and (ii) the first practi-
cal, empirically validated, sufficient condition for existential k-boundedness. We
have shown that k-exhaustive systems are fully characterised by local bound-
agnosticity (each automaton behaves equivalently for any bound greater than
or equal to k). This is a key requirement for asynchronous message passing
programming languages where the possibility of having infinitely many orphan
messages is undesirable, in particular for Go and Rust which provide bounded
communication channels.

For future work, we plan to extend our theory beyond csa. We believe that it
is possible to support mixed states and states which do not satisfy ibi, as long as
their outgoing transitions are independent (i.e., if they commute). Additionally,
to make k-mc checking more efficient, we will elaborate heuristics to find optimal
bounds and off-load the verification of k-mc to an off-the-shelf model checker.

Acknowledgements. We thank Laura Bocchi and Alceste Scalas for their comments,
and David Castro and Nicolas Dilley for testing the artifact. This work is partially sup-
ported by EPSRC EP/K034413/1, EP/K011715/1, EP/L00058X/1, EP/N027833/1,
and EP/N028201/1.

114 J. Lange and N. Yoshida

References

1. Abdulla, P.A., Bouajjani, A., Jonsson, B.: On-the-fly analysis of systems with
unbounded, lossy FIFO channels. In: Hu, A.J., Vardi, M.Y. (eds.) CAV 1998.
LNCS, vol. 1427, pp. 305–318. Springer, Heidelberg (1998). https://doi.org/10.
1007/BFb0028754

2. Abdulla, P.A., Jonsson, B.: Verifying programs with unreliable channels. In: LICS
1993, pp. 160–170 (1993)

3. Basu, S., Bultan, T.: Automated choreography repair. In: Stevens, P., Wąsowski,
A. (eds.) FASE 2016. LNCS, vol. 9633, pp. 13–30. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-49665-7_2

4. Basu, S., Bultan, T., Ouederni, M.: Deciding choreography realizability. In: POPL
2012, pp. 191–202 (2012)

5. Bocchi, L., Chen, T., Demangeon, R., Honda, K., Yoshida, N.: Monitoring networks
through multiparty session types. Theor. Comput. Sci. 669, 33–58 (2017)

6. Bocchi, L., Lange, J., Yoshida, N.: Meeting deadlines together. In: CONCUR 2015,
pp. 283–296 (2015)

7. Bocchi, L., Yang, W., Yoshida, N.: Timed multiparty session types. In: Baldan, P.,
Gorla, D. (eds.) CONCUR 2014. LNCS, vol. 8704, pp. 419–434. Springer, Heidel-
berg (2014). https://doi.org/10.1007/978-3-662-44584-6_29

8. Bollig, B., Kuske, D., Meinecke, I.: Propositional dynamic logic for message-passing
systems. Log. Methods Comput. Sci. 6(3) (2010). https://lmcs.episciences.org/
1057

9. Bouajjani, A., Enea, C., Ji, K., Qadeer, S.: On the completeness of verifying mes-
sage passing programs under bounded asynchrony. In: Chockler, H., Weissenbacher,
G. (eds.) CAV 2018. LNCS, vol. 10982, pp. 372–391. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-96142-2_23

10. Brand, D., Zafiropulo, P.: On communicating finite-state machines. J. ACM 30(2),
323–342 (1983)

11. Castro, D., Hu, R., Jongmans, S., Ng, N., Yoshida, N.: Distributed program-
ming using role-parametric session types in Go: statically-typed endpoint APIs
for dynamically-instantiated communication structures. PACMPL 3(POPL), 29:1–
29:30 (2019)

12. Cécé, G., Finkel, A.: Verification of programs with half-duplex communication. Inf.
Comput. 202(2), 166–190 (2005)

13. Cécé, G., Finkel, A., Iyer, S.P.: Unreliable channels are easier to verify than perfect
channels. Inf. Comput. 124(1), 20–31 (1996)

14. Clemente, L., Herbreteau, F., Sutre, G.: Decidable topologies for communicating
automata with FIFO and bag channels. In: Baldan, P., Gorla, D. (eds.) CONCUR
2014. LNCS, vol. 8704, pp. 281–296. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-662-44584-6_20

15. Coppo, M., Dezani-Ciancaglini, M., Padovani, L., Yoshida, N.: A gentle introduc-
tion to multiparty asynchronous session types. In: Bernardo, M., Johnsen, E.B.
(eds.) SFM 2015. LNCS, vol. 9104, pp. 146–178. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-18941-3_4

16. Demangeon, R., Honda, K., Hu, R., Neykova, R., Yoshida, N.: Practical interrupt-
ible conversations: distributed dynamic verification with multiparty session types
and Python. Form. Methods Syst. Des. 46(3), 197–225 (2015)

17. Deniélou, P.-M., Yoshida, N.: Multiparty session types meet communicating
automata. In: Seidl, H. (ed.) ESOP 2012. LNCS, vol. 7211, pp. 194–213. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-28869-2_10

https://doi.org/10.1007/BFb0028754
https://doi.org/10.1007/BFb0028754
https://doi.org/10.1007/978-3-662-49665-7_2
https://doi.org/10.1007/978-3-662-44584-6_29
https://lmcs.episciences.org/1057
https://lmcs.episciences.org/1057
https://doi.org/10.1007/978-3-319-96142-2_23
https://doi.org/10.1007/978-3-662-44584-6_20
https://doi.org/10.1007/978-3-662-44584-6_20
https://doi.org/10.1007/978-3-319-18941-3_4
https://doi.org/10.1007/978-3-319-18941-3_4
https://doi.org/10.1007/978-3-642-28869-2_10

Verifying Asynchronous Interactions via Communicating Session Automata 115

18. Deniélou, P.-M., Yoshida, N.: Multiparty compatibility in communicating
automata: characterisation and synthesis of global session types. In: Fomin, F.V.,
Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013. LNCS, vol. 7966, pp.
174–186. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39212-
2_18

19. Finkel, A., Lozes, É.: Synchronizability of communicating finite state machines is
not decidable. In: ICALP 2017, pp. 122:1–122:14 (2017)

20. Finkel, A., McKenzie, P.: Verifying identical communicating processes is undecid-
able. Theor. Comput. Sci. 174(1–2), 217–230 (1997)

21. Genest, B., Kuske, D., Muscholl, A.: A Kleene theorem and model checking algo-
rithms for existentially bounded communicating automata. Inf. Comput. 204(6),
920–956 (2006)

22. Genest, B., Kuske, D., Muscholl, A.: On communicating automata with bounded
channels. Fundam. Inform. 80(1–3), 147–167 (2007)

23. Gouda, M.G., Manning, E.G., Yu, Y.: On the progress of communications between
two finite state machines. Inf. Control 63(3), 200–216 (1984)

24. Güdemann, M., Salaün, G., Ouederni, M.: Counterexample guided synthesis of
monitors for realizability enforcement. In: Chakraborty, S., Mukund, M. (eds.)
ATVA 2012. LNCS, pp. 238–253. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-33386-6_20

25. Hallé, S., Bultan, T.: Realizability analysis for message-based interactions using
shared-state projections. In: SIGSOFT 2010, pp. 27–36 (2010)

26. Heußner, A., Le Gall, T., Sutre, G.: McScM: a general framework for the veri-
fication of communicating machines. In: Flanagan, C., König, B. (eds.) TACAS
2012. LNCS, vol. 7214, pp. 478–484. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-28756-5_34

27. Honda, K., Vasconcelos, V.T., Kubo, M.: Language primitives and type discipline
for structured communication-based programming. In: Hankin, C. (ed.) ESOP
1998. LNCS, vol. 1381, pp. 122–138. Springer, Heidelberg (1998). https://doi.org/
10.1007/BFb0053567

28. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. In:
POPL 2008, pp. 273–284 (2008)

29. Hu, R.: Distributed programming using Java APIs generated from session types.
In: Behavioural Types: Trom Theory to Tools. River Publishers, June 2017

30. Hu, R., Yoshida, N.: Hybrid session verification through endpoint API generation.
In: Stevens, P., Wąsowski, A. (eds.) FASE 2016. LNCS, vol. 9633, pp. 401–418.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49665-7_24

31. Hu, R., Yoshida, N.: Explicit connection actions in multiparty session types. In:
FASE 2017, pp. 116–133 (2017)

32. Jespersen, T.B.L., Munksgaard, P., Larsen, K.F.: Session types for Rust. In:
WGP@ICFP 2015, pp. 13–22 (2015)

33. KMC tool (2019). https://bitbucket.org/julien-lange/kmc-cav19
34. Kouzapas, D., Dardha, O., Perera, R., Gay, S.J.: Typechecking protocols with

Mungo and StMungo. In: PPDP 2016, pp. 146–159 (2016)
35. Kuske, D., Muscholl, A.: Communicating automata (2014). http://eiche.theoinf.

tu-ilmenau.de/kuske/Submitted/cfm-final.pdf
36. La Torre, S., Madhusudan, P., Parlato, G.: Context-bounded analysis of concurrent

queue systems. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS,
vol. 4963, pp. 299–314. Springer, Heidelberg (2008). https://doi.org/10.1007/978-
3-540-78800-3_21

https://doi.org/10.1007/978-3-642-39212-2_18
https://doi.org/10.1007/978-3-642-39212-2_18
https://doi.org/10.1007/978-3-642-33386-6_20
https://doi.org/10.1007/978-3-642-33386-6_20
https://doi.org/10.1007/978-3-642-28756-5_34
https://doi.org/10.1007/978-3-642-28756-5_34
https://doi.org/10.1007/BFb0053567
https://doi.org/10.1007/BFb0053567
https://doi.org/10.1007/978-3-662-49665-7_24
https://bitbucket.org/julien-lange/kmc-cav19
http://eiche.theoinf.tu-ilmenau.de/kuske/Submitted/cfm-final.pdf
http://eiche.theoinf.tu-ilmenau.de/kuske/Submitted/cfm-final.pdf
https://doi.org/10.1007/978-3-540-78800-3_21
https://doi.org/10.1007/978-3-540-78800-3_21

116 J. Lange and N. Yoshida

37. Lange, J., Ng, N., Toninho, B., Yoshida, N.: Fencing off Go: liveness and safety for
channel-based programming. In: POPL 2017, pp. 748–761 (2017)

38. Lange, J., Ng, N., Toninho, B., Yoshida, N.: A static verification framework for
message passing in Go using behavioural types. In: ICSE 2018. ACM (2018)

39. Lange, J., Tuosto, E., Yoshida, N.: From communicating machines to graphical
choreographies. In: POPL 2015, pp. 221–232 (2015)

40. Lange, J., Tuosto, E., Yoshida, N.: A tool for choreography-based analysis of
message-passing software. In: Behavioural Types: from Theory to Tools. River
Publishers, June 2017

41. Lange, J., Yoshida, N.: Characteristic formulae for session types. In: Chechik, M.,
Raskin, J.-F. (eds.) TACAS 2016. LNCS, vol. 9636, pp. 833–850. Springer, Heidel-
berg (2016). https://doi.org/10.1007/978-3-662-49674-9_52

42. Lange, J., Yoshida, N.: On the undecidability of asynchronous session subtyping.
In: Esparza, J., Murawski, A.S. (eds.) FoSSaCS 2017. LNCS, vol. 10203, pp. 441–
457. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54458-7_26

43. Lange, J., Yoshida, N.: Verifying asynchronous interactions via communicating ses-
sion automata. CoRR, abs/1901.09606 (2019). https://arxiv.org/abs/1901.09606

44. Lindley, S., Morris, J.G.: Embedding session types in Haskell. In: Haskell 2016, pp.
133–145 (2016)

45. Mostrous, D., Yoshida, N., Honda, K.: Global principal typing in partially com-
mutative asynchronous sessions. In: Castagna, G. (ed.) ESOP 2009. LNCS, vol.
5502, pp. 316–332. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-00590-9_23

46. Muscholl, A.: Analysis of communicating automata. In: Dediu, A.-H., Fernau, H.,
Martín-Vide, C. (eds.) LATA 2010. LNCS, vol. 6031, pp. 50–57. Springer, Heidel-
berg (2010). https://doi.org/10.1007/978-3-642-13089-2_4

47. Neykova, R., Bocchi, L., Yoshida, N.: Timed runtime monitoring for multiparty
conversations. In: FAOC, pp. 1–34 (2017)

48. Neykova, R., Hu, R., Yoshida, N., Abdeljallal, F.: A session type provider: compile-
time API generation for distributed protocols with interaction refinements in F�.
In: CC 2018. ACM (2018)

49. Neykova, R., Yoshida, N.: Let it recover: multiparty protocol-induced recovery. In:
CC 2017, pp. 98–108. ACM (2017)

50. Neykova, R., Yoshida, N.: Multiparty session actors. In: LMCS, pp. 13:1–30 (2017)
51. Ng, N., Yoshida, N.: Static deadlock detection for concurrent Go by global session

graph synthesis. In: CC 2016, pp. 174–184 (2016)
52. Ng, N., Yoshida, N., Honda, K.: Multiparty session C: safe parallel programming

with message optimisation. In: Furia, C.A., Nanz, S. (eds.) TOOLS 2012. LNCS,
vol. 7304, pp. 202–218. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-30561-0_15

53. Ocean Observatories Initiative. www.oceanobservatories.org
54. OMG: Business Process Model and Notation (2018). https://www.omg.org/spec/

BPMN/2.0/
55. Orchard, D.A., Yoshida, N.: Effects as sessions, sessions as effects. In: POPL 2016,

pp. 568–581 (2016)
56. Padovani, L.: A simple library implementation of binary sessions. J. Funct. Pro-

gram. 27, e4 (2017)
57. Peng, W., Purushothaman, S.: Analysis of a class of communicating finite state

machines. Acta Inf. 29(6/7), 499–522 (1992)
58. Perera, R., Lange, J., Gay, S.J.: Multiparty compatibility for concurrent objects.

In: PLACES 2016, pp. 73–82 (2016)

https://doi.org/10.1007/978-3-662-49674-9_52
https://doi.org/10.1007/978-3-662-54458-7_26
https://arxiv.org/abs/1901.09606
https://doi.org/10.1007/978-3-642-00590-9_23
https://doi.org/10.1007/978-3-642-00590-9_23
https://doi.org/10.1007/978-3-642-13089-2_4
https://doi.org/10.1007/978-3-642-30561-0_15
https://doi.org/10.1007/978-3-642-30561-0_15
www.oceanobservatories.org
https://www.omg.org/spec/BPMN/2.0/
https://www.omg.org/spec/BPMN/2.0/

Verifying Asynchronous Interactions via Communicating Session Automata 117

59. Introduction to protocol engineering (2006). http://cs.uccs.edu/~cs522/pe/pe.htm
60. Salaün, G., Bordeaux, L., Schaerf, M.: Describing and reasoning on web services

using process algebra. IJBPIM 1(2), 116–128 (2006)
61. Scalas, A., Dardha, O., Hu, R., Yoshida, N.: A linear decomposition of multiparty

sessions for safe distributed programming. In: ECOOP 2017, pp. 24:1–24:31 (2017)
62. Scalas, A., Yoshida, N.: Lightweight session programming in scala. In: ECOOP

2016, pp. 21:1–21:28 (2016)
63. Scalas, A., Yoshida, N.: Less is more: multiparty session types revisited. PACMPL

3(POPL), 30:1–30:29 (2019)
64. Scribble Project homepage (2018). www.scribble.org
65. Sivaramakrishnan, K.C., Qudeisat, M., Ziarek, L., Nagaraj, K., Eugster, P.: Effi-

cient sessions. Sci. Comput. Program. 78(2), 147–167 (2013)
66. Takeuchi, K., Honda, K., Kubo, M.: An interaction-based language and its typ-

ing system. In: Halatsis, C., Maritsas, D., Philokyprou, G., Theodoridis, S. (eds.)
PARLE 1994. LNCS, vol. 817, pp. 398–413. Springer, Heidelberg (1994). https://
doi.org/10.1007/3-540-58184-7_118

67. Taylor, R., Tuosto, E., Walkinshaw, N., Derrick, J.: Choreography-based analysis
of distributed message passing programs. In: PDP 2016, pp. 512–519 (2016)

68. Yellin, D.M., Strom, R.E.: Protocol specifications and component adaptors. ACM
Trans. Program. Lang. Syst. 19(2), 292–333 (1997)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://cs.uccs.edu/~cs522/pe/pe.htm
www.scribble.org
https://doi.org/10.1007/3-540-58184-7_118
https://doi.org/10.1007/3-540-58184-7_118
http://creativecommons.org/licenses/by/4.0/

Security and Hyperproperties

Verifying Hyperliveness

Norine Coenen1(B), Bernd Finkbeiner1,
César Sánchez2, and Leander Tentrup1

1 Reactive Systems Group, Saarland University,
Saarbrücken, Germany

coenen@react.uni-saarland.de
2 IMDEA Software Institute, Madrid, Spain

Abstract. HyperLTL is an extension of linear-time temporal logic
for the specification of hyperproperties, i.e., temporal properties that
relate multiple computation traces. HyperLTL can express information
flow policies as well as properties like symmetry in mutual exclusion
algorithms or Hamming distances in error-resistant transmission pro-
tocols. Previous work on HyperLTL model checking has focussed on
the alternation-free fragment of HyperLTL, where verification reduces to
checking a standard trace property over an appropriate self-composition
of the system. The alternation-free fragment does, however, not cover
general hyperliveness properties. Universal formulas, for example, can-
not express the secrecy requirement that for every possible value of a
secret variable there exists a computation where the value is different
while the observations made by the external observer are the same. In
this paper, we study the more difficult case of hyperliveness properties
expressed as HyperLTL formulas with quantifier alternation. We reduce
existential quantification to strategic choice and show that synthesis algo-
rithms can be used to eliminate the existential quantifiers automatically.
We furthermore show that this approach can be extended to reactive
system synthesis, i.e., to automatically construct a reactive system that
is guaranteed to satisfy a given HyperLTL formula.

1 Introduction

HyperLTL [6] is a temporal logic for hyperproperties [7], i.e., for properties that
relate multiple computation traces. Hyperproperties cannot be expressed in stan-
dard linear-time temporal logic (LTL), because LTL can only express trace prop-
erties, i.e., properties that characterize the correctness of individual computa-
tions. Even branching-time temporal logics like CTL and CTL∗, which quantify

This work was partially supported by the German Research Foundation (DFG) as part
of the Collaborative Research Center “Foundations of Perspicuous Software Systems”
(TRR 248, 389792660), and by the European Research Council (ERC) Grant OSARES
(No. 683300)., by Madrid Reg. Government project “S2018/TCS-4339 (BLOQUES-
CM)”, by EU H2020 project 731535 “Elastest” and by Spanish National Project
“BOSCO (PGC2018-102210-B-100)”.

c© The Author(s) 2019
I. Dillig and S. Tasiran (Eds.): CAV 2019, LNCS 11561, pp. 121–139, 2019.
https://doi.org/10.1007/978-3-030-25540-4_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-25540-4_7&domain=pdf
https://doi.org/10.1007/978-3-030-25540-4_7

122 N. Coenen et al.

over computation paths, cannot express hyperproperties, because quantifying
over a second path automatically means that the subformula can no longer refer
to the previously quantified path. HyperLTL addresses this limitation with quan-
tifiers over trace variables, which allow the subformula to refer to all previously
chosen traces. For example, noninterference [21] between a secret input h and
a public output o can be specified in HyperLTL by requiring that all pairs of
traces π and π′ that always have the same inputs except for h (i.e., all inputs in
I \ {h} are equal on π and π′) also have the same output o at all times:

∀π.∀π′.
(∧

i∈I\{h}
iπ = iπ′

) ⇒ (oπ = oπ′)

This formula states that a change in the secret input h alone cannot cause any
difference in the output o.

For certain properties of interest, the additional expressiveness of HyperLTL
comes at no extra cost when considering the model checking problem. To check
a property like noninterference, which only has universal trace quantifiers, one
simply builds the self-composition of the system, which provides a separate copy
of the state variables for each trace. Instead of quantifying over all pairs of traces,
it then suffices to quantify over individual traces of the self-composed system,
which can be done with standard LTL. Model checking universal formulas is
NLOGSPACE-complete in the size of the system and PSPACE-complete in the
size of the formula, which is precisely the same complexity as for LTL.

Universal HyperLTL formulas suffice to express hypersafety properties like
noninterference, but not hyperliveness properties that require, in general, quanti-
fier alternation. A prominent example is generalized noninterference (GNI) [27],
which can be expressed as the following HyperLTL formula:

∀π.∀π′.∃π′′. (hπ = hπ′′) ∧ (oπ′ = oπ′′)

This formula requires that for every pair of traces π and π′, there is a third trace
π′′ in the system that agrees with π on h and with π′ on o. The existence of an
appropriate trace π′′ ensures that in π and π′, the value of o is not determined by
the value of h. Generalized noninterference stipulates that low-security outputs
may not be altered by the injection of high-security inputs, while permitting non-
determinism in the low-observable behavior. The existential quantifier is needed
to allow this nondeterminism. GNI is a hyperliveness property [7] even though
the underlying LTL formula is a safety property. The reason for that is that we
can extend any set of traces that violates GNI into a set of traces that satisfies
GNI, by adding, for each offending pair of traces π, π′, an appropriate trace π′′.

Hyperliveness properties also play an important role in applications beyond
security. For example, robust cleanness [9] specifies that significant differences in
the output behavior are only permitted after significant differences in the input:

∀π.∀π′.∃π′′.
(
iπ′ = iπ′′

) ∧ (
d̂(oπ, oπ′′) ≤ κo W d̂(iπ, iπ′′) > κi

)

The differences are measured by a distance function d̂ and compared to con-
stant thresholds κi for the input and κo for the output. The formula specifies

Verifying Hyperliveness 123

the existence of a trace π′′ that globally agrees with π′ on the input and where
the difference in the output o between π and π′′ is bounded by κo, unless the
difference in the input i between π and π′′ was greater than κi. Robust cleanness,
thus, forbids unexpected jumps in the system behavior that are, for example,
due to software doping, while allowing for behavioral differences due to nonde-
terminism.

With quantifier alternation, the model checking problem becomes much more
difficult. Model checking HyperLTL formulas of the form ∀∗∃∗ϕ, where ϕ is
a quantifier-free formula, is PSPACE-complete in the size of the system and
EXPSPACE-complete in the formula. The only known model checking algorithm
replaces the existential quantifier with the negation of a universal quantifier
over the negated subformula; but this requires a complementation of the system
behavior, which is completely impractical for realistic systems.

In this paper, we present an alternative approach to the verification of hyper-
liveness properties. We view the model checking problem of a formula of the form
∀π.∃π′. ϕ as a game between the ∀-player and the ∃-player. While the ∀-player
moves through the state space of the system building trace π, the ∃-player must
match each move in a separate traversal of the state space resulting in a trace π′

such that the pair π, π′ satisfies ϕ. Clearly, the existence of a winning strategy
for the ∃-player implies that ∀π.∃π′. ϕ is satisfied. The converse is not necessar-
ily true: Even if there always is a trace π′ that matches the universally chosen
trace π, the ∃-player may not be able to construct this trace, because she only
knows about the choices made by the ∀-player in the finite prefix of π that has
occurred so far, and not the choices that will be made by the ∀-player in the
infinite future. We address this problem by introducing prophecy variables into
the system. Without changing the behavior of the system, the prophecy vari-
ables give the ∃-player the information about the future that is needed to make
the right choice after seeing only the finite prefix. Such prophecy variables can
be provided manually by the user of the model checker to provide a lookahead
on future moves of the ∀-player.

This game-theoretic approach provides an opportunity for the user to reduce
the complexity of the model checking problem: If the user provides a strategy for
the ∃-player, then the problem reduces to the cheaper model checking problem for
universal properties. We show that such strategies can also be constructed auto-
matically using synthesis. Beyond model checking, the game-theoretic approach
also provides a method for the synthesis of systems that satisfy a conjunction
of hypersafety and hyperliveness properties. Here, we do not only synthesize the
strategy, but also construct the system itself, i.e., the game graph on which the
model checking game is played. While the synthesis from ∀∗∃∗ hyperproperties
is known to be undecidable in general, we show that the game-theoretic app-
roach can naturally be integrated into bounded synthesis, which checks for the
existence of a correct system up to a bound on the number of states.

Related Work. While the verification of general HyperLTL formulas has been
studied before [6,17,18], there has been, so far, no practical model checking
algorithm for HyperLTL formulas with quantifier alternation. The existing algo-
rithm involves a complementation of the system automaton, which results in an

124 N. Coenen et al.

exponential blow-up of the state space [18]. The only existing model checker for
HyperLTL, MCHyper [18], was therefore, so far, limited to the alternation-
free fragment. Although some hyperliveness properties lie in this fragment,
quantifier alternation is needed to express general hyperliveness properties like
GNI. In this paper, we present a technique to model check these hyperliveness
properties and extend MCHyper to formulas with quantifier alternation.

The situation is similar in the area of reactive synthesis. There is a syn-
thesis algorithm that automatically constructs implementations from HyperLTL
specifications [13] using the bounded synthesis approach [20]. This algorithm is,
however, also only applicable to the alternation-free fragment of HyperLTL. In
this paper, we extend the bounded synthesis approach to HyperLTL formulas
with quantifier alternation. Beyond the model checking and synthesis problems,
the satisfiability [11,12,14] and monitoring [15,16,22] problems of HyperLTL
have also been studied in the past.

For certain information-flow security policies, there are verification tech-
niques that use methods related to our model checking and synthesis algorithms.
Specifically, the self-composition technique [2,3], a construction based on the
product of copies of a system, has been tailored for various trace-based security
definitions [10,23,28]. Unlike our algorithms, these techniques focus on specific
information-flow policies, not on a general logic like HyperLTL.

The use of prophecy variables [1] to make information about the future acces-
sible is a known technique in the verification of trace properties. It is, for example,
used to establish simulation relations between automata [26] or in the verification
of CTL∗ properties [8].

In our game-theoretic view on the model checking problem for ∀∗∃∗ hyper-
properties the ∃-player has an infinite lookahead. There is some work on finite
lookahead on trace languages [24]. We use the idea of finite lookahead as an
approximation to construct existential strategies and give a novel synthesis con-
struction for strategies with delay based on bounded synthesis [20].

2 Preliminaries

For tuples x ∈ Xn and y ∈ Xm over set X, we use x · y ∈ Xn+m to denote
the concatenation of x and y. Given a function f : X → Y and a tuple x ∈ Xn,
we define by f ◦ x ∈ Y n the tuple (f(x[1]), . . . , f(x[n])). Let AP be a finite set
of atomic propositions and let Σ = 2AP be the corresponding alphabet. A trace
t ∈ Σω is an infinite sequence of elements of Σ. We denote a set of traces by
Tr ⊆ Σω. We define t[i,∞] to be the suffix of t starting at position i ≥ 0.

HyperLTL. HyperLTL [6] is a temporal logic for specifying hyperproperties.
It extends LTL by quantification over trace variables π and a method to link
atomic propositions to specific traces. Let V be an infinite set of trace variables.
Formulas in HyperLTL are given by the grammar

ϕ ::= ∀π. ϕ | ∃π. ϕ | ψ , and
ψ ::= aπ | ¬ψ | ψ ∨ ψ | ψ | ψ U ψ ,

Verifying Hyperliveness 125

where a ∈ AP and π ∈ V. We allow the standard boolean connectives ∧, →, ↔
as well as the derived LTL operators release ϕ R ψ ≡ ¬(¬ϕ U ¬ψ), eventually

ϕ ≡ true U ϕ, globally ϕ ≡ ¬ ¬ϕ, and weak until ϕW ψ ≡ ϕ∨ (ϕ U ψ).
We call a Q+Q′+ϕ HyperLTL formula (for Q,Q′ ∈ {∀,∃} and quantifier-free

formula ϕ) alternation-free iff Q = Q′. Further, we say that Q+Q′+ϕ has one
quantifier alternation (or lies in the one-alternation fragment) iff Q �= Q′.

The semantics of HyperLTL is given by the satisfaction relation �Tr over a
set of traces Tr ⊆ Σω. We define an assignment Π : V → Σω that maps trace
variables to traces. Π[π �→ t] updates Π by assigning variable π to trace t.

Π, i �Tr aπ iff a ∈ Π(π)[i]
Π, i �Tr ¬ϕ iff Π, i �Tr ϕ
Π, i �Tr ϕ ∨ ψ iff Π, i �Tr ϕ or Π, i �Tr ψ
Π, i �Tr ϕ iff Π, i + 1 �Tr ϕ
Π, i �Tr ϕ U ψ iff ∃j ≥ i.Π, j �Tr ψ ∧ ∀i ≤ k < j.Π, k �Tr ϕ
Π, i �Tr ∃π. ϕ iff there is some t ∈ Tr such that Π[π �→ t], i �Tr ϕ
Π, i �Tr ∀π. ϕ iff for all t ∈ Tr it holds that Π[π �→ t], i �Tr ϕ

We write Tr � ϕ for {}, 0 �Tr ϕ where {} denotes the empty assignment.
Every hyperproperty is an intersection of a hypersafety and a hyperliveness

property [7]. A hypersafety property is one where there is a finite set of finite
traces that is a bad prefix, i.e., that cannot be extended into a set of traces that
satisfies the hypersafety property. A hyperliveness property is a property where
every finite set of finite traces can be extended to a possibly infinite set of infinite
traces such that the resulting trace set satisfies the hyperliveness property.

Transition Systems. We use transition systems as a model of computation for
reactive systems. Transition systems consume sequences over an input alphabet
by transforming their internal state in every step. Let I and O be a finite set
of input and output propositions, respectively, and let Υ = 2I and Γ = 2O be
the corresponding finite alphabets. A Γ -labeled Υ -transition system S is a tuple
〈S, s0, τ, l〉, where S is a finite set of states, s0 ∈ S is the designated initial state,
τ : S ×Υ → S is the transition function, and l : S → Γ is the state-labeling func-
tion. We write s

υ−→ s′ or (s, υ, s′) ∈ τ if τ(s, υ) = s′. We generalize the transition
function to sequences over Υ by defining τ∗ : Υ ∗ → S recursively as τ∗(ε) = s0
and τ∗(υ0 · · · υn−1υn) = τ(τ∗(υ0 · · · υn−1), υn) for υ0 · · · υn−1υn ∈ Υ+. Given
an infinite word υ = υ0υ1 . . . ∈ Υω, the transition system produces an infinite
sequence of outputs γ = γ0γ1γ2 . . . ∈ Γω, such that γi = l(τ∗(υ0 . . . υi−1)) for
every i ≥ 0. The resulting trace ρ is (υ0 ∪ γ0)(υ1 ∪ γ1) . . . ∈ Σω where we have
AP = I ∪ O. The set of traces generated by S is denoted by traces(S). Fur-
thermore, we define ε = 〈{s}, s, τε, lε〉 as the transition system over I = O = ∅
that has only a single trace, that is traces(ε) = {∅ω}. For this transition sys-
tem, τε(s, ∅) = s and lε(s) = ∅. Given two transition systems S = 〈S, s0, τ, l〉
and S ′ = 〈S′, s′

0, τ
′, l′〉, we define S × S ′ = 〈S × S′, (s0, s′

0), τ
′′, l′′〉 as the Γ 2-

labeled Υ 2-transition system where τ ′′((s, s′), (υ, υ′)) = (τ(s, υ), τ ′(s′, υ′)) and
l′′((s, s′)) = (l(s), l′(s′)). A transition system S satisfies a general HyperLTL
formula ϕ, if, and only if, traces(S) � ϕ.

126 N. Coenen et al.

Automata. An alternating parity automaton A over a finite alphabet Σ is a tuple
〈Q, q0, δ, α〉, where Q is a finite set of states, q0 ∈ Q is the designated initial state,
δ : Q × Σ → B

+(Q) is the transition function, and α : Q → C is a function that
maps states of A to a finite set of colors C ⊂ N. For C = {0, 1} and C = {1, 2},
we call A a co-Büchi and Büchi automaton, respectively, and we use the sets
F ⊆ Q and B ⊆ Q to represent the rejecting (C = 1) and accepting (C = 2)
states in the respective automaton (as a replacement of the coloring function α).
A safety automaton is a Büchi automaton where every state is accepting. The
transition function δ maps a state q ∈ Q and some a ∈ Σ to a positive Boolean
combination of successor states δ(q, a). An automaton is non-deterministic or
universal if δ is purely disjunctive or conjunctive, respectively.

A run of an alternating automaton is a Q-labeled tree. A tree T is a subset
of N

∗
>0 such that for every node n ∈ N

∗
>0 and every positive integer i ∈ N>0, if

n · i ∈ T then (i) n ∈ T (i.e., T is prefix-closed), and (ii) for every 0 < j < i,
n · j ∈ T . The root of T is the empty sequence ε and for a node n ∈ T , |n|
is the length of the sequence n, in other words, its distance from the root.
A run of A on an infinite word ρ ∈ Σω is a Q-labeled tree (T, r) such that
r(ε) = q0 and for every node n ∈ T with children n1, . . . , nk the following holds:
1 ≤ k ≤ |Q| and {r(n1), . . . , r(nk)} � δ(q, ρ[i]), where q = r(n) and i = |n|. A
path is accepting if the highest color appearing infinitely often is even. A run is
accepting if all its paths are accepting. The language of A, written L(A), is the
set {ρ ∈ Σω | A accepts ρ}. A transition system S is accepted by an automaton
A, written S � A, if traces(S) ⊆ L(A).

Strategies. Given two disjoint finite alphabets Υ and Γ , a strategy σ : Υ ∗ → Γ
is a mapping from finite histories of Υ to Γ . A transition system S = 〈S, s0, τ, l〉
generates the strategy σ if σ(υ) = l(τ∗(υ)) for every υ ∈ Υ ∗. A strategy σ is
called finite-state if there exists a transition system that generates σ.

In the following, we use finite-state strategies to modify the inputs of tran-
sition systems. Let S = 〈S, s0, τ, l〉 be a transition system over input and out-
put alphabets Υ and Γ and let σ : (Υ ′)∗ → Υ be a finite-state strategy. Let
S ′ = 〈S′, s′

0, τ
′, l′〉 be the transition system implementing σ, then S || σ = S || S ′

is the transition system 〈S×S′, (s0, s′
0), τ

||, l||〉 where τ || : (S×S′)×Υ ′ → (S×S′)
is defined as τ ||((s, s′), υ′) = (τ(s, l′(s′)), τ ′(s′, υ′)) and l|| : (S × S′) → Γ is
defined as l||(s, s′) = l(s) for every s ∈ S, s′ ∈ S′, and υ′ ∈ Υ ′.

Model Checking HyperLTL. We recap the model checking of universal Hyper-
LTL formulas. This case, as well as the dual case of only existential quantifiers,
is well-understood and, in fact, efficiently implemented in the model checker
MCHyper [18]. The principle behind the model checking approach is self-
composition, where we check a standard trace property on a composition of
an appropriate number of copies of the given system.

Let zip denote the function that maps an n-tuple of sequences to a single
sequence of n-tuples, for example, zip([1, 2, 3], [4, 5, 6]) = [(1, 4), (2, 5), (3, 6)], and
let unzip denote its inverse. Given S = 〈S, s0, τ, l〉, the n-fold self-composition of
S is the transition system Sn = 〈Sn, s′

0, τn, ln〉, where s′
0 := (s0, . . . , s0) ∈ Sn,

τn(s,υ) := τ◦zip(s,υ) and ln(s) := l◦s for every s ∈ Sn and υ ∈ Υn. If traces(S)

Verifying Hyperliveness 127

is the set of traces generated by S, then {zip(ρ1, . . . , ρn) | ρ1, . . . , ρn ∈ traces(S)}
is the set of traces generated by Sn. We use the notation zip(ϕ, π1, π2, . . . , πn) for
some HyperLTL formula ϕ to combine the trace variables π1, π2, . . . , πn (occur-
ring free in ϕ) into a fresh trace variable π∗.

Theorem 1 (Self-composition for universal HyperLTL formulas [18]).
For a transition system S and a HyperLTL formula of the form ∀π1.
∀π2. . . . ∀πn. ϕ it holds that S � ∀π1.∀π2. . . . ∀πn. ϕ iff Sn � ∀π∗.
zip(ϕ, π1, π2, . . . , πn).

Theorem 2 (Complexity of model checking universal formulas [18]).
The model checking problem for universal HyperLTL formulas is PSPACE-
complete in the size of the formula and NLOGSPACE-complete in the size of
the transition system.

The complexity of verifying universal HyperLTL formulas is exactly the same
as the complexity of verifying LTL formulas. For HyperLTL formulas with quan-
tifier alternations, the model checking problem is significantly more difficult.

Theorem 3 (Complexity of model checking formulas with one quan-
tifier alternation [18]). The model checking problem for HyperLTL formulas
with one quantifier alternation is in EXPSPACE in the size of the formula and
in PSPACE in the size of the transition system.

One way to circumvent this complexity is to fix the existential choice and
strengthen the formula to the universal fragment [9,13,18]. While avoiding the
complexity problem, this transformation requires deep knowledge of the system,
is prone to errors, and cannot be verified automatically as the problem of check-
ing implications becomes undecidable [11]. In the following section, we present a
technique that circumvents the complexity problem while still inheriting strong
correctness guarantees. Further, we provide a method that can, under certain
restrictions, derive a strategy for the existential choice automatically.

3 Model Checking with Quantifier Alternations

3.1 Model Checking with Given Strategies

Our first goal is the verification of HyperLTL formulas with one quantifier alter-
nation, i.e., formulas of the form ∀∗∃∗ϕ or ∃∗∀∗ϕ, where ϕ is a quantifier-free
formula. Note that the presented techniques can, similar to skolemization, be
extended to more than one quantifier alternation. Quantifier alternation intro-
duces dependencies between the quantified traces. In a ∀∗∃∗ϕ formula, the
choices of the existential quantifiers depend on the choices of the universal quan-
tifiers preceding them. In a formula of the form ∃∗∀∗ϕ, however, there has to
be a single choice for the existential quantifiers that works for all choices of
the universal quantifiers. In this case, the existentially quantified variables do
not depend on the universally quantified variables. Hence, the witnesses for the
existential quantifiers are traces rather than functions that map tuples of traces

128 N. Coenen et al.

to traces. As established above, the model checking problem for HyperLTL for-
mulas with quantifier alternation is known to be significantly more difficult than
the model checking problem for universal formulas.

Our verification technique for formulas with quantifier alternation is to sub-
stitute strategic choice for existential choice. As discussed in the introduction,
the existence of a strategy implies the existence of a trace.

Theorem 4 (Substituting Strategic Choice for Existential Choice). Let
S be a transition system over input alphabet Υ .
It holds that S � ∀π1∀π2 . . . ∀πn. ∃π′

1∃π′
2 . . . ∃π′

m. ϕ if there is a strategy σ :
(Υn)∗ → Υm such that Sn × (Sm || σ) � ∀π∗.zip(ϕ, π1, π2, . . . πn, π′

1, π
′
2, . . . , π

′
m).

It holds that S � ∃π1∃π2 . . . ∃πm. ∀π′
1∀π′

2 . . . ∀π′
n. ϕ if there is a strategy σ :

(Υ 0)∗ → Υm such that (Sm || σ)×Sn � ∀π∗.zip(ϕ, π1, π2, . . . πm, π′
1, π

′
2, . . . , π

′
n).

Proof. Let σ be such a strategy, then we define a witness for the existential
trace quantifiers ∃π′

1∃π′
2 . . . ∃π′

m as the sequence of inputs υ = υ0υ1 . . . ∈ (Υm)ω

such that υi = σ(υ′
0υ

′
1 . . . υ′

i−1) for every i ≥ 0 and every υ′
i ∈ Υn; analogously,

we define a witness for the existential trace quantifiers ∃π1∃π2 . . . ∃πm as the
sequence of inputs υ = υ0υ1 . . . ∈ (Υm)ω such that υi = σ(υ′

0υ
′
1 . . . υ′

i−1) for
every i ≥ 0 and every υ′

i ∈ Υ 0. ��
An application of the theorem reduces the verification problem of a HyperLTL
formula with one quantifier alternation to the verification problem of a universal
HyperLTL formula. If a sufficiently small strategy can be found, the reduction
in complexity is substantial:

Corollary 1 (Model checking with Given Strategies). The model check-
ing problem for HyperLTL formulas with one quantifier alternation and given
strategies for the existential quantifiers is in PSPACE in the size of the formula
and NLOGSPACE in the size of the product of the strategy and the system.

Note that the converse of Theorem 4 is not in general true. The satisfaction
of a ∀∗∃∗ HyperLTL formula does not imply the existence of a strategy, because
at any given point in time the strategy only knows about a finite prefix of the
universally quantified traces. Consider the formula ∀π∃π′. aπ ↔ aπ′ and a
system that can produce arbitrary sequences of a and ¬a. Although the system
satisfies the formula, it is not possible to give a strategy that allows us to prove
this fact. Whatever choice our strategy makes, the next move of the ∀-player can
make sure that the strategy’s choice was wrong. In the following, we present a
method that addresses this problem.

Prophecy Variables. A classic technique for resolving future dependencies
is the introduction of prophecy variables [1]. Prophecy variables are auxiliary
variables that are added to the system without affecting the behavior of the
system. Such variables can be used to make predictions about the future.

We use prophecy variables to define strategies that depend on the future. In
the example discussed above, ∀π∃π′. aπ ↔ aπ′ , the choice of the value of aπ′ in

Verifying Hyperliveness 129

the first position depends on the value of aπ in the second position. We introduce
a prophecy variable p that predicts in the first position whether aπ is true in
the second position. With the prophecy variable, there exists a strategy that
correctly assigns the value of p whenever the prediction is correct: The strategy
chooses to set aπ′ if, and only if, p holds.

Technically, the proof technique introduces a set of fresh input variables P
into the system. For a Γ -labeled Υ -transition system S = 〈S, s0, τ, l〉, we define
the Γ -labeled (Υ ∪ P)-transition system SP = 〈S, s0, τ

P , l〉 including the inputs
P where τP : S×(Υ ∪P) → S. For all s ∈ S and υP ∈ Υ ∪P , τP (s, υP) = τ(s, υ)
for υ ∈ Υ obtained by removing the variables in P from υP (i.e., υ =\P υP).
Moreover, the proof technique modifies the specification so that the original
property only needs to be satisfied if the prediction is actually correct. We obtain
the modified specification ∀π∃π′.(pπ ↔ aπ) → (aπ ↔ aπ′) in our example.
The following theorem describes the general technique for one prophecy variable.

Theorem 5 (Model checking with Prophecy Variables). For a transition
system S and a quantifier-free formula ϕ, let ψ be a quantifier-free formula over
the universally quantified trace variables π1, π2 . . . πn and let p be a fresh atomic
proposition. It holds that S � ∀π1∀π2 . . . ∀πn. ∃π′

1∃π′
2 . . . ∃π′

m. ϕ if, and only if,
S{p} � ∀π1∀π2 . . . ∀πn. ∃π′

1∃π′
2 . . . ∃π′

m. (pπ1 ↔ ψ) → ϕ.

Note that ψ is restricted to refer only to universally quantified trace variables.
Without this restriction, the method would not be sound. In our example, ψ =
aπ′ would lead to the modified formula ∀π∃π′.(pπ ↔ aπ′) → (aπ ↔ aπ′),
which could be satisfied with the strategy that assigns aπ′ to true iff pπ is false,
and thus falsifies the assumption that the prediction is correct, rather than
ensuring that the original formula is true.

Proof. It is easy to see that the original specification implies the modified spec-
ification, since the original formula is the conclusion of the implication. Assume
that the modified specification holds. Since the prophecy variable p is a fresh
atomic proposition, and ψ does not refer to the existentially chosen traces, we
can, for every choice of the universally quantified traces, always choose the value
of p such that it guesses correctly, i.e., that p is true whenever ψ holds. In this
case, the conclusion and therefore the original specification must be true. ��

Unfortunately, prophecy variables do not provide a complete proof technique.
Consider a system allowing arbitrary sequences of a and b and this specification:

∀π∃π′.bπ′ ∧ (bπ′ ↔ ¬bπ′)
∧ (aπ′ → (aπ W (bπ′ ∧ ¬aπ)))
∧ (¬aπ′ → (aπ W (¬bπ′ ∧ ¬aπ)))

Intuitively, π′ has to be able to predict whether π will stop outputting a at
an even or odd position of the trace. There is no HyperLTL formula to be
used as ψ in Theorem 5, because, like LTL, HyperLTL can only express non-
counting properties. It is worth noting that in our practical experiments, the

130 N. Coenen et al.

incompleteness was never a problem. In many cases, it is not even necessary to
add prophecy variables at all. The presented proof technique is, thus, practically
useful despite this incompleteness result.

3.2 Model Checking with Synthesized Strategies

We now extend the model checking approach with the automatic synthesis of
the strategies for the existential quantifiers. For a given HyperLTL formula of
the form ∀n∃mϕ and a transition system S, we search for a transition system
S∃ = 〈X,x0, μ, l∃〉, where X is a set of states, x0 ∈ X is the designated initial
state, μ : X ×Υn → X is the transition function, and l∃ : X → Υm is the labeling
function, such that Sn × (Sm || S∃) � zip(ϕ). (Since for formulas of the form
∃m∀nϕ the problem only differs in the input of S∃, we focus on ∀∃HyperLTL.)

Theorem 6. The strategy realizability problem for ∀∗∃∗ formulas is 2ExpTime-
complete.

Proof (Sketch). We reduce the strategy synthesis problem to the problem of
synthesizing a distributed reactive system with a single black-box process. This
problem is decidable [19] and can be solved in 2ExpTime. The lower bound
follows from the LTL realizability problem [30]. ��

The decidability result implies that there is an upper bound on the size of
S∃ that is doubly exponential in ϕ. Thus, the bounded synthesis approach [20]
can be used to search for increasingly larger implementations, until a solution is
found or the maximal bound is reached, yielding an efficient decision procedure
for the strategy synthesis problem. In the following, we describe this approach
in detail.

Bounded Synthesis of Strategies. We transform the synthesis problem into
an SMT constraint satisfaction problem, where we leave the representation of
strategies uninterpreted and challenge the solver to provide an interpretation.
Given a HyperLTL formula ∀n∃mϕ where ϕ is quantifier-free, the model checking
is based on the product of the n-fold self composition of the transition system
S, the m-fold self-composition of S where the strategy S∃ controls the inputs,
and the universal co-Büchi automaton Aϕ representing the language L(ϕ) of ϕ.

For a quantifier-free HyperLTL formula ϕ, we construct the universal co-
Büchi automaton Aϕ such that L(Aϕ) is the set of words w such that unzip(w) �
ϕ, i.e., the tuple of traces satisfies ϕ. We get this automaton by dualizing the
non-deterministic Büchi automaton for ¬ψ [6], i.e., changing the branching from
non-deterministic to universal and the acceptance condition from Büchi to co-
Büchi. Hence, S satisfies a universal HyperLTL formula ∀π1 . . . ∀πn. ϕ if the
traces generated by the self-composition Sn are a subset of L(Aϕ).

In more detail, the algorithm searches for a transition system S∃ =
〈X,x0, μ, l∃〉 such that the run graph of Sn, Sm || S∃, and Aϕ, written
Sn × (Sm || S∃) × Aϕ, is accepting. Formally, given a Γ -labeled Υ -transition

Verifying Hyperliveness 131

system S = 〈S, s0, τ, l〉 and a universal co-Büchi automaton Aϕ = 〈Q, q0, δ, F 〉,
where δ : Q × Υn+m × Γn+m → 2Q, the run graph Sn × (Sm || S∃) × Aϕ is the
directed graph (V,E), with the set of vertices V = Sn × Sm × X × Q, initial
vertex vinit = ((s0, . . . , s0), (s0, . . . , s0), x0, q0) and the edge relation E ⊆ V × V
satisfying ((sn , sm , x, q), (s′

n , s′
m , x′, q′)) ∈ E if, and only if

∃υ ∈ Υn.

(
sn

υ−→
τn

s′
n

)
∧

(
sm

l∃(x)−−−→
τm

s′
m

)
∧

(
x

υ−→
μ

x′
)

∧ q′ ∈ δ(q,υ · l∃(x), ln(sn) · lm(sm)).

Theorem 7. Given S, S∃, and a HyperLTL formula ∀n∃mϕ where ϕ is
quantifier-free. Let Aϕ be the universal co-Büchi automaton for ϕ. If the run
graph Sn × (Sm || S∃) × Aϕ is accepting, then S � ∀n∃mϕ.

Proof. Follows from Theorem 4 and the fact that Aϕ represents L(ϕ). ��
The acceptance of a run graph is witnessed by an annotation λ : V → N∪{⊥}

which is a function mapping every reachable vertex v ∈ V in the run graph to
a natural number λ(v), i.e., λ(v) �= ⊥. Intuitively, λ(v) returns the number of
visits to rejecting states on any path from the initial vertex vinit to v. If we can
bound this number for every reachable vertex, the annotation is valid and the
run graph is accepting. Formally, an annotation λ is valid, if (1) the initial state
is reachable (λ(vinit) �= ⊥) and (2) for every (v, v′) ∈ E with λ(v) �= ⊥ it holds
that λ(v′) �= ⊥ and λ(v) � λ(v′) where � is > if v′ is rejecting and ≥ otherwise.
Such an annotation exists if, and only if, the run graph is accepting [20].

We encode the search for S∃ and the annotation λ as an SMT constraint
system. Therefore, we use uninterpreted function symbols to encode S∃ and λ.
A transition system S is represented in the constraint system by two functions,
the transition function τ : S × Υ → S and the labeling function l : S → Γ . The
annotation is split into two parts, a reachability constraint λB : V → B indicating
whether a state in the run graph is reachable and a counter λ# : V → N that
maps every reachable vertex v to the maximal number of rejecting states λ#(v)
visited by any path from the initial vertex to v. The resulting constraint asserts
that there is a transition system S∃ with an accepting run graph. Note, that the
functions representing the system S (τ : S × Υ → S and l : S → Γ) are given,
that is, they are interpreted.

∃λB : Sn × Sm × X × Q → B.∃λN : Sn × Sm × X × Q → N.

∃μ : X × Υn → X.∃l∃ : X → Υm

∀υ ∈ Υn.∀sn , s′
n ∈ Sn.∀sm , s′

m ∈ Sm.∀q, q′ ∈ Q.∀x, x′ ∈ X.

λB((s0, . . . , s0), (s0, . . . , s0), x0, q0) ∧
(
λB(sn , sm , x, q) ∧ q′ ∈ δ(q, (υ · l∃(x)), (l ◦ (sn · sm))) ∧ x′ = μ(x,υ)

∧ s′
n = τn(sn ,υ) ∧ s′

m = τm(sm , l∃(x))
)

⇒ λB(s′
n , s′

m , x′, q′) ∧ λN(sn , sm , x, q) � λN(s′
n , s′

m , x′, q′)

132 N. Coenen et al.

where � is > if q′ ∈ F and ≥ otherwise. The bounded synthesis algorithm
increases the bound of the strategy S∃ until either the constraints system
becomes satisfiable, or a given upper bound is reached. In the case the constraint
system is satisfiable, we can extract interpretations for the functions μ and l∃
using a solver that is able to produce models. These functions then represent
the synthesized transition system S∃.

Corollary 2. Given S and a HyperLTL formula ∀∗∃∗ϕ where ϕ is quantifier-
free. If the constraint system is satisfiable for some bound on the size of S∃ then
S � ∀∗∃∗ϕ.

Proof. Follows immediately by Theorem 7. ��
As the decision problem is decidable, we know that there is an upper bound on
the size of a realizing S∃ and, thus, the bounded synthesis approach is a decision
procedure for the strategy realizability problem.

Corollary 3. The bounded synthesis algorithm decides the strategy realizability
problem for ∀∗∃∗ HyperLTL.

Proof. The existence of such an upper bound follows from Theorem 6. ��

Approximating Prophecy. We introduce a new parameter to the strategy
synthesis problem to approximate the information about the future that can be
captured using prophecy variables. This bound represents a constant lookahead
into future choices made by the environment. In other words, for a given k ≥ 0,
the strategy S∃ is allowed to depend on choices of the ∀-player in the next k steps.
While constant lookahead is only an approximation of infinite clairvoyance, it
suffices for many practical situations as shown by prior case studies [9,18].

We present a solution to synthesizing transition systems with constant looka-
head for k ≥ 0 using bounded synthesis. To simplify the presentation, we
present the stand-alone problem with respect to a specification given as a uni-
versal co-Büchi automaton. The integration into the constraint system for the
∀∗∃∗ HyperLTL synthesis as presented in the previous section is then straight-
forward. First, we present an extension to the transition system model that
incorporates the notion of constant lookahead. The idea of this extension is to
replace the initial state s0 by a function init : Υ k → S that maps input sequences
of length k to some state. Thus, the transition system observes the first k inputs,
chooses some initial state based on those inputs, and then progresses with the
same pace as the input sequence. Next, we define the run graph of such a system
Sk = 〈S, init , τ, l〉 and an automaton A = 〈Q, q0, δ, F 〉, where δ : Q×Υ ×Γ → Q,
as the directed graph (V,E) with the set of vertices V = S × Q × Υ k, the initial
vertices (s, q0,υ) ∈ V such that s = init(υ) for every υ ∈ Υ k, and the edge
relation E ⊆ V × V satisfying ((s, q, υ1υ2 · · · υk), (s′, q′, υ′

1υ
′
2 · · · υ′

k)) ∈ E if, and
only if

∃υk+1 ∈ Υ. s
υk+1−−−→ s′ ∧ q′ ∈ δ(q, υ1, l(s)) ∧

∧

1≤i≤k

υ′
i = υi+1.

Verifying Hyperliveness 133

Lemma 1. Given a universal co-Büchi automaton A and a k-lookahead transi-
tion system Sk. Sk � A if, and only if, the run graph Sk × A is accepting.

Finally, synthesis amounts to solving the following constraint system:

∃λB : S × Q × Υ k → B.∃λN : S × Q × Υ k → N.

∃init : Υ k → S.∃τ : S × Υ → S.∃l : S → Γ.

(∀υ ∈ Υ k. λB(init(υ), q0,υ)) ∧
∀υ1υ2 · · · υk+1 ∈ Υ k+1.∀s, s′ ∈ S.∀q, q′ ∈ Q.
(
λB(s, q, υ1 · · · υk) ∧ s′ = τ(s, υk+1) ∧ q′ ∈ δ(q, υ1, l(s))

)

⇒ λB(s′, q′, υ2 · · · υk+1) ∧ λN(s, q, υ1 · · · υk) � λN(s′, q′, υ2 · · · υk+1)

Corollary 4. Given some k ≥ 0, if the constraint system is satisfiable for some
bound on the size of Sk then Sk � A.

4 Synthesis with Quantifier Alternations

We now build on the introduced techniques to solve the synthesis problem for
HyperLTL with quantifier alternation, that is, we search for implementations
that satisfy the given properties. In previous work [13], the synthesis problem for
∃∗∀∗ HyperLTL was solved by a reduction to the distributed synthesis problem.
We present an alternative synthesis procedure that (1) introduces the necessary
concepts for the synthesis of the ∀∗∃∗ fragment and that (2) strictly decomposes
the choice of the existential trace quantifier from the implementation.

Fix a formula of the form ∃m∀nϕ. We again reduce the verification problem to
the problem of determining whether a run graph is accepting. As the existential
quantifiers do not depend on the universal ones, there is no future dependency
and thus no need for prophecy variables or bounded lookahead. Formally, S∃ is
a tuple 〈X,x0, μ, l∃〉 such that X is a set of states, x0 ∈ X is the designated
initial state, μ : X → X is the transition function, and l∃ : X → Υm is the
labeling function. S∃ produces infinite sequences of (Υm)ω, without having any
knowledge about the behavior of the universally quantified traces. The run graph
is then (Sm || S∃) × Sn × Aϕ. The constraint system is built analogously to
Sect. 3.2, with the difference that the representation of the system S is now also
uninterpreted. In the resulting SMT constraint system, we have two bounds, one
for the size of the implementation S and one for the size of S∃.

Corollary 5. The bounded synthesis algorithm decides the realizability problem
for ∃∗∀1 HyperLTL and is a semi-decision procedure for ∃∗∀>1 HyperLTL.

The synthesis problem for formulas in the ∀∗∃∗ HyperLTL fragment uses the
same reduction to a constraint system as the strategy synthesis in Sect. 3.2,
with the only difference that the transition system S itself is uninterpreted. In
the resulting SMT constraint systems, we have three bounds, the size of the
implementation S, the size of the strategy S∃, and the lookahead k.

134 N. Coenen et al.

Fig. 1. HyperLTL model checking with MCHyper

Corollary 6. Given a HyperLTL formula ∀n∃mϕ where ϕ is quantifier-free.
∀n∃mϕ is realizable if the SMT constraint system corresponding to the run graph
Sn × (Sm || S∃) × Aϕ is satisfiable for some bounds on S, S∃, and lookahead k.

5 Implementations and Experimental Evaluation

We have integrated the model checking technique with a manually provided
strategy into the HyperLTL hardware model checker MCHyper1. For the syn-
thesis of strategies and reactive systems from hyperproperties, we have developed
a separate bounded synthesis tool based on SMT-solving. In the following, we
describe these implementations and report on experimental results. All experi-
ments ran on a machine with dual-core Core i7, 3.3 GHz, and 16 GB memory.

Hardware Model Checking with Given Strategies. We have extended the
model checker MCHyper [18] from the alternation-free fragment to formulas
with one quantifier alternation. The input to MCHyper is a circuit description
as an And-Inverter-Graph in the Aiger format and a HyperLTL formula. Fig-
ures 1a and 1 show the model checking process in MCHyper without and with
quantifier alternation, respectively. For formulas with quantifier alternation, the
model checker now also accepts a strategy as an additional Aiger circuit Cσ.
Based on this strategy, MCHyper creates a new circuit where only the inputs of
the universal system copies are exposed and the inputs of the existential system

1 Try the online tool interface with the latest version of MCHyper: https://www.
react.uni-saarland.de/tools/online/MCHyper/.

https://www.react.uni-saarland.de/tools/online/MCHyper/
https://www.react.uni-saarland.de/tools/online/MCHyper/

Verifying Hyperliveness 135

Table 1. Experimental results for MCHyper on the software doping and mutual exclu-
sion benchmarks. All experiments used the IC3 option for abc. Model and property
names correspond to the ones used in [9] and [18].

Model #Latches Property Time[s]

EC 0.05 17 (10.a) + (10.b) 1.8

EC 0.00625 23 (10.a) + (10.b) 53.4

AEC 0.05 19 (¬10.a) + (¬10.b) 2.8

AEC 0.00625 25 (¬10.a) + (¬10.b) 160.1

Bakery.a.n.s 47 Sym5 50.6

Sym6 27.5

Bakery.a.n.s.5proc 90 Sym7 461.3

Sym8 472.3

copies are determined by the strategy. The new circuit is then model checked as
described in [18] with abc [4].

We evaluate our extension of MCHyper on formulas with quantifier alter-
nation based on benchmarks from software doping [9] and symmetry in mutual
exclusion algorithms [18]. Both considered problems have previously been ana-
lyzed with MCHyper; however, since the properties in both problems require
quantifier alternation, we were previously limited to a (manually obtained)
approximation of the properties as universal formulas. The correctness of manual
approximations is not given but has to be shown separately. By directly model
checking the formula with quantifier alternation we know that we are checking
the correct formula without needing any additional proof of correctness.

Software Doping. D’Argenio et al. [9] examined a clean and a doped version
of an emission control program of a car and used the previous version of
MCHyper to formally verify approximations of these properties. Robust clean-
ness is expressed in the one-alternation fragment using two ∀2∃1 HyperLTL for-
mulas (given in Prop. 19 in [9], cf. Sect. 1). In [9], the formulas were strength-
ened into alternation-free formulas that imply the original properties. Despite
the quantifier alternation, Table 1 shows that the new version of MCHyper
verifies the precise formulas in roughly the same time as the alternation-free
approximations [9] while giving stronger correctness guarantees.

Symmetry in Mutual Exclusion Protocols. ∀∗∃∗ HyperLTL allows us to specify
symmetry for mutual exclusion protocols. In such protocols, we wish to guar-
antee that every request is eventually answered, and the grants are mutually
exclusive. In our experiments, we used an implementation of the Bakery pro-
tocol [25]. Table 1 shows the verification results for the precise ∀1∃1 properties.
Comparing these results to the performance on the approximations of the sym-
metry properties [18], we, again, observe that the verification times are similar.
However, we gain the additional correctness guarantees as described above.

136 N. Coenen et al.

Strategy and System Synthesis. For the synthesis of strategies for existen-
tial quantifiers and for the synthesis of reactive systems from hyperproperties,
we have developed a separate bounded synthesis tool based on SMT-solving with
z3 [29]. Our evaluation is based on two benchmark families, the dining cryptog-
raphers problem [5] and a simplified version of the symmetry problem in mutual
exclusion protocols discussed previously. The results are shown in Table 2. Obvi-
ously, synthesis operates at a vastly smaller scale than model checking with
given strategies. In the dining cryptographers example, z3 was unable to find an
implementation for the full synthesis problem, but could easily synthesize strate-
gies for the existential trace quantifiers when provided with an implementation.
With the progress of constraint solver that employ quantification over Boolean
functions [31] we expect scalability improvements of our synthesis approach.

Table 2. Summary of the experimental results on the benchmarks sets described in
Sect. 5. When no hyperproperty is given, only the LTL part is used.

Instance Hyperproperty |S| |S∃| Time [s]

Dining cryptographers distributed + deniability TO

distributed + deniability with given S (1) 1 1.2

Mutex — 2 – <1

symmetry 3 1 3.4

Mutex w/o spurious grants— 3 – <1

symmetry 3 1 3.9

wait-free 3 3 46

symmetry + wait-free 3 1 + 3840

6 Conclusions

We have presented model checking and synthesis techniques for hyperliveness
properties expressed as HyperLTL formulas with quantifier alternation. The
alternation makes it possible to specify hyperproperties such as generalized non-
interference, symmetry, and deniability. Our approach is the first method for the
synthesis of reactive systems from HyperLTL formulas with quantifier alterna-
tion and the first practical method for the verification of such specifications.

The approach is based on a game-theoretic view of existential quantifiers,
where the ∃-player reacts to decisions of the ∀-player. The key advantage is that
the complementation of the system automaton is avoided (cf. [18]). Instead, a
strategy must be found for the ∃-player. Since this can be done either manually or
through automatic synthesis, the user of the model checking or synthesis tool has
the opportunity to trade some automation for a significant gain in performance.

Acknowledgements. We would like to thank Sebastian Biewer for providing the
software doping models and formulas, Marvin Stenger for his advice on our synthesis
experiments, and Jana Hofmann for her helpful comments on a draft of this paper.

Verifying Hyperliveness 137

References

1. Abadi, M., Lamport, L.: The existence of refinement mappings. Theor. Comput.
Sci. 82(2), 253–284 (1991). https://doi.org/10.1016/0304-3975(91)90224-P

2. Barthe, G., Crespo, J.M., Kunz, C.: Beyond 2-safety: asymmetric product pro-
grams for relational program verification. In: Artemov, S., Nerode, A. (eds.) LFCS
2013. LNCS, vol. 7734, pp. 29–43. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-35722-0 3

3. Barthe, G., D’Argenio, P.R., Rezk, T.: Secure information flow by self-composition.
In: Proceedings of CSFW, pp. 100–114. IEEE Computer Society (2004). https://
doi.org/10.1109/CSFW.2004.17

4. Brayton, R., Mishchenko, A.: ABC: an academic industrial-strength verification
tool. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp.
24–40. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14295-6 5

5. Chaum, D.: Security without identification: transaction systems to make big
brother obsolete. Commun. ACM 28(10), 1030–1044 (1985). https://doi.org/10.
1145/4372.4373

6. Clarkson, M.R., Finkbeiner, B., Koleini, M., Micinski, K.K., Rabe, M.N., Sánchez,
C.: Temporal logics for hyperproperties. In: Abadi, M., Kremer, S. (eds.) POST
2014. LNCS, vol. 8414, pp. 265–284. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-642-54792-8 15

7. Clarkson, M.R., Schneider, F.B.: Hyperproperties. J. Comput. Secur. 18(6), 1157–
1210 (2010). https://doi.org/10.3233/JCS-2009-0393

8. Cook, B., Khlaaf, H., Piterman, N.: On automation of CTL* verification for
infinite-state systems. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS,
vol. 9206, pp. 13–29. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
21690-4 2

9. D’Argenio, P.R., Barthe, G., Biewer, S., Finkbeiner, B., Hermanns, H.: Is your
software on dope? - formal analysis of surreptitiously “enhanced” programs. In:
Yang, H. (ed.) ESOP 2017. LNCS, vol. 10201, pp. 83–110. Springer, Heidelberg
(2017). https://doi.org/10.1007/978-3-662-54434-1 4

10. D’Souza, D., Holla, R., Raghavendra, K.R., Sprick, B.: Model-checking trace-based
information flow properties. J. Comput. Secur. 19(1), 101–138 (2011). https://doi.
org/10.3233/JCS-2010-0400

11. Finkbeiner, B., Hahn, C.: Deciding hyperproperties. In: Proceedings of CONCUR.
LIPIcs, vol. 59, pp. 13:1–13:14. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik
(2016). https://doi.org/10.4230/LIPIcs.CONCUR.2016.13

12. Finkbeiner, B., Hahn, C., Hans, T.: MGHyper: checking satisfiability of HyperLTL
formulas beyond the ∃∗∀∗ fragment. In: Lahiri, S.K., Wang, C. (eds.) ATVA 2018.
LNCS, vol. 11138, pp. 521–527. Springer, Cham (2018). https://doi.org/10.1007/
978-3-030-01090-4 31

13. Finkbeiner, B., Hahn, C., Lukert, P., Stenger, M., Tentrup, L.: Synthesizing reac-
tive systems from hyperproperties. In: Chockler, H., Weissenbacher, G. (eds.) CAV
2018. LNCS, vol. 10981, pp. 289–306. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-96145-3 16

https://doi.org/10.1016/0304-3975(91)90224-P
https://doi.org/10.1007/978-3-642-35722-0_3
https://doi.org/10.1007/978-3-642-35722-0_3
https://doi.org/10.1109/CSFW.2004.17
https://doi.org/10.1109/CSFW.2004.17
https://doi.org/10.1007/978-3-642-14295-6_5
https://doi.org/10.1145/4372.4373
https://doi.org/10.1145/4372.4373
https://doi.org/10.1007/978-3-642-54792-8_15
https://doi.org/10.1007/978-3-642-54792-8_15
https://doi.org/10.3233/JCS-2009-0393
https://doi.org/10.1007/978-3-319-21690-4_2
https://doi.org/10.1007/978-3-319-21690-4_2
https://doi.org/10.1007/978-3-662-54434-1_4
https://doi.org/10.3233/JCS-2010-0400
https://doi.org/10.3233/JCS-2010-0400
https://doi.org/10.4230/LIPIcs.CONCUR.2016.13
https://doi.org/10.1007/978-3-030-01090-4_31
https://doi.org/10.1007/978-3-030-01090-4_31
https://doi.org/10.1007/978-3-319-96145-3_16
https://doi.org/10.1007/978-3-319-96145-3_16

138 N. Coenen et al.

14. Finkbeiner, B., Hahn, C., Stenger, M.: EAHyper: satisfiability, implication, and
equivalence checking of hyperproperties. In: Majumdar, R., Kunčak, V. (eds.) CAV
2017. LNCS, vol. 10427, pp. 564–570. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-63390-9 29

15. Finkbeiner, B., Hahn, C., Stenger, M., Tentrup, L.: Monitoring hyperproperties.
In: Lahiri, S., Reger, G. (eds.) RV 2017. LNCS, vol. 10548, pp. 190–207. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-67531-2 12

16. Finkbeiner, B., Hahn, C., Stenger, M., Tentrup, L.: RVHyper: a runtime verifica-
tion tool for temporal hyperproperties. In: Beyer, D., Huisman, M. (eds.) TACAS
2018. LNCS, vol. 10806, pp. 194–200. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-89963-3 11

17. Finkbeiner, B., Hahn, C., Torfah, H.: Model checking quantitative hyperproperties.
In: Chockler, H., Weissenbacher, G. (eds.) CAV 2018. LNCS, vol. 10981, pp. 144–
163. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96145-3 8

18. Finkbeiner, B., Rabe, M.N., Sánchez, C.: Algorithms for model checking Hyper-
LTL and HyperCTL∗. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS,
vol. 9206, pp. 30–48. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
21690-4 3

19. Finkbeiner, B., Schewe, S.: Uniform distributed synthesis. In: Proceedings of LICS,
pp. 321–330. IEEE Computer Society (2005). https://doi.org/10.1109/LICS.2005.
53

20. Finkbeiner, B., Schewe, S.: Bounded synthesis. STTT 15(5–6), 519–539 (2013).
https://doi.org/10.1007/s10009-012-0228-z

21. Goguen, J.A., Meseguer, J.: Security policies and security models. In: Proceedings
of S&P, pp. 11–20. IEEE Computer Society (1982). https://doi.org/10.1109/SP.
1982.10014

22. Hahn, C., Stenger, M., Tentrup, L.: Constraint-based monitoring of hyperproper-
ties. In: Vojnar, T., Zhang, L. (eds.) TACAS 2019. LNCS, vol. 11428, pp. 115–131.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17465-1 7

23. Huisman, M., Worah, P., Sunesen, K.: A temporal logic characterisation of obser-
vational determinism. In: Proceedings of CSFW, p. 3. IEEE Computer Society
(2006). https://doi.org/10.1109/CSFW.2006.6

24. Klein, F., Zimmermann, M.: How much lookahead is needed to win infinite games?
In: Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann, B. (eds.) ICALP
2015. LNCS, vol. 9135, pp. 452–463. Springer, Heidelberg (2015). https://doi.org/
10.1007/978-3-662-47666-6 36

25. Lamport, L.: A new solution of Dijkstra’s concurrent programming problem. Com-
mun. ACM 17(8), 453–455 (1974). https://doi.org/10.1145/361082.361093

26. Lynch, N.A., Vaandrager, F.W.: Forward and backward simulations: I. untimed
systems. Inf. Comput. 121(2), 214–233 (1995). https://doi.org/10.1006/inco.1995.
1134

27. McCullough, D.: Noninterference and the composability of security properties. In:
Proceedings of S&P, pp. 177–186. IEEE Computer Society (1988). https://doi.org/
10.1109/SECPRI.1988.8110

28. van der Meyden, R., Zhang, C.: Algorithmic verification of noninterference prop-
erties. Electr. Notes Theor. Comput. Sci. 168, 61–75 (2007). https://doi.org/10.
1016/j.entcs.2006.11.002

https://doi.org/10.1007/978-3-319-63390-9_29
https://doi.org/10.1007/978-3-319-63390-9_29
https://doi.org/10.1007/978-3-319-67531-2_12
https://doi.org/10.1007/978-3-319-89963-3_11
https://doi.org/10.1007/978-3-319-89963-3_11
https://doi.org/10.1007/978-3-319-96145-3_8
https://doi.org/10.1007/978-3-319-21690-4_3
https://doi.org/10.1007/978-3-319-21690-4_3
https://doi.org/10.1109/LICS.2005.53
https://doi.org/10.1109/LICS.2005.53
https://doi.org/10.1007/s10009-012-0228-z
https://doi.org/10.1109/SP.1982.10014
https://doi.org/10.1109/SP.1982.10014
https://doi.org/10.1007/978-3-030-17465-1_7
https://doi.org/10.1109/CSFW.2006.6
https://doi.org/10.1007/978-3-662-47666-6_36
https://doi.org/10.1007/978-3-662-47666-6_36
https://doi.org/10.1145/361082.361093
https://doi.org/10.1006/inco.1995.1134
https://doi.org/10.1006/inco.1995.1134
https://doi.org/10.1109/SECPRI.1988.8110
https://doi.org/10.1109/SECPRI.1988.8110
https://doi.org/10.1016/j.entcs.2006.11.002
https://doi.org/10.1016/j.entcs.2006.11.002

Verifying Hyperliveness 139

29. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

30. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: Proceedings of
POPL, pp. 179–190. ACM Press (1989). https://doi.org/10.1145/75277.75293

31. Tentrup, L., Rabe, M.N.: Clausal abstraction for DQBF. In: Janota, M., Lynce, I.
(eds.) SAT 2019. LNCS, vol. 11628, pp. 388–405. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-24258-9 27

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1145/75277.75293
https://doi.org/10.1007/978-3-030-24258-9_27
https://doi.org/10.1007/978-3-030-24258-9_27
http://creativecommons.org/licenses/by/4.0/

Quantitative Mitigation of Timing
Side Channels

Saeid Tizpaz-Niari(B), Pavol Černý,
and Ashutosh Trivedi

University of Colorado Boulder, Boulder, USA
Saeid.TizpazNiari@colorado.edu

Abstract. Timing side channels pose a significant threat to the security
and privacy of software applications. We propose an approach for mitigat-
ing this problem by decreasing the strength of the side channels as mea-
sured by entropy-based objectives, such as min-guess entropy. Our goal
is to minimize the information leaks while guaranteeing a user-specified
maximal acceptable performance overhead. We dub the decision version
of this problem Shannon mitigation, and consider two variants, deter-
ministic and stochastic. First, we show that the deterministic variant is
NP-hard. However, we give a polynomial algorithm that finds an opti-
mal solution from a restricted set. Second, for the stochastic variant, we
develop an approach that uses optimization techniques specific to the
entropy-based objective used. For instance, for min-guess entropy, we
used mixed integer-linear programming. We apply the algorithm to a
threat model where the attacker gets to make functional observations,
that is, where she observes the running time of the program for the
same secret value combined with different public input values. Existing
mitigation approaches do not give confidentiality or performance guar-
antees for this threat model. We evaluate our tool Schmit on a number
of micro-benchmarks and real-world applications with different entropy-
based objectives. In contrast to the existing mitigation approaches, we
show that in the functional-observation threat model, Schmit is scalable
and able to maximize confidentiality under the performance overhead
bound.

1 Introduction

Information leaks through timing side channels remain a challenging problem
[13,16,24,29,35,37,47]. A program leaks secret information through timing side
channels if an attacker can deduce secret values (or their properties) by observ-
ing response times. We consider the problem of mitigating timing side channels.
Unlike elimination techniques [7,31,46] that aim to completely remove timing
leaks without considering the performance penalty, the goal of mitigation tech-
niques [10,26,48] is to weaken the leaks, while keeping the penalty low.

We define the Shannon mitigation problem that decides whether there is
a mitigation policy to achieve a lower bound on a given security entropy-based
c© The Author(s) 2019
I. Dillig and S. Tasiran (Eds.): CAV 2019, LNCS 11561, pp. 140–160, 2019.
https://doi.org/10.1007/978-3-030-25540-4_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-25540-4_8&domain=pdf
https://doi.org/10.1007/978-3-030-25540-4_8

Quantitative Mitigation of Timing Side Channels 141

measure while respecting an upper bound on the performance overhead. Consider
an example where the program-under-analysis has a secret variable with seven
possible values, and has three different timing behaviors, each forming a cluster
of secret values. It takes 1 second if the secret value is 1, it takes 5 seconds if
the secret is between 2 and 5, and it takes 10 seconds if the secret value is 6
or 7. The entropy-based measure quantifies the remaining uncertainty about the
secret after timing observations. Min-guess entropy [11,25,41] for this program
is 1, because if the observed execution time is 1, the attacker guesses the secret in
one try. A mitigation policy involves merging some timing clusters by introducing
delays. A good solution might be to introduce a 9 second delay if the secret is 1,
which merges two timing clusters. But, this might be disallowed by the budget
on the performance overhead. Therefore, another solution must be found, such
as introducing a 4 seconds delay when the secret is one.

We develop two variants of the Shannon mitigation problem: deterministic
and stochastic. The mitigation policy of the deterministic variant requires us
to move all secret values associated to an observation to another observation,
while the policy of the stochastic variant allows us to move only a portion of
secret values in an observation to another one. We show that the deterministic
variant of the Shannon mitigation problem is intractable and propose a dynamic
programming algorithm to approximate the optimal solution for the problem
by searching through a restricted set of solutions. We develop an algorithm
that reduces the problem in the stochastic variant to a well-known optimization
problem that depends on the entropy-based measure. For instance, with min-
guess entropy, the optimization problem is mixed integer-linear programming.

We consider a threat model where an attacker knows the public inputs
(known-message attacks [26]), and furthermore, where the public input changes
much more often than the secret inputs (for instance, secrets such as bank
account numbers do not change often). As a result, for each secret, the attacker
observes a timing function of the public inputs. We call this model functional
observations of timing side channels.

We develop our tool Schmit that has three components: side channel dis-
covery [45], search for the mitigation policy, and the policy enforcement. The
side channel discovery builds the functional observations [45] and measures the
entropy of secret set after the observations. The mitigation policy component
includes the implementation of the dynamic programming and optimization
algorithms. The enforcement component is a monitoring system that uses the
program internals and functional observations to enforce the policy at runtime.
To summarize, we make the following contributions:

– We formalize the Shannon mitigation problem with two variants and show
that the complexity of finding deterministic mitigation policy is NP-hard.

– We describe two algorithms for synthesizing the mitigation policy: one is
based on dynamic programming for the deterministic variant, that is in poly-
nomial time and results in an approximate solution, and the other one solves
the stochastic variant of the problem with optimization techniques.

142 S. Tizpaz-Niari et al.

– We consider a threat model that results in functional observations. On a set
of micro-benchmarks, we show that existing mitigation techniques are not
secure and efficient for this threat model.

– We evaluate our approach on five real-world Java applications. We show that
Schmit is scalable in synthesizing mitigation policy within a few seconds and
significantly improves the security (entropy) of the applications.

Example(int high, int low) {

int t_high = high, t_low = low;

while (t_high > 0) {

if (t_high % 2 == 1) {

while (t_low > 0) {

if (t_low % 2 == 1) {

res += compute(t_low,t_high);}

t_low = t_low >> 1;}}

t_high = t_high >> 1;}

return res;}

Fig. 1. (a) The example used in Sect. 2. (b) The timing functions for each secret value
of the program.

2 Overview

First, we describe the threat model considered in this paper. Second, we
describe our approach on a running example. Third, we compare the results
of Schmit with the existing mitigation techniques [10,26,48] and show that
Schmit achieves the highest entropy (i.e., best mitigation) for all three entropy
objectives.

Threat Model. We assume that the attacker has access to the source code
and the mitigation model, and she can sample the run-time of the application
arbitrarily many times on her own machine. During an attack, she intends to
guess a fixed secret of the target machine by observing the mitigated running
time. Since we consider the attack models where the attacker knows the public
inputs and the secret inputs are less volatile than public inputs, her observations
are functional observations, where for each secret value, she learns a function
from the public inputs to the running time.

Example 2.1. Consider the program shown in Fig. 1(a). It takes secret and
public values as inputs. The running time depends on the number of set bits
in both secret and public inputs. We assume that secret and public inputs can
be between 1 and 1023. Figure 1(b) shows the running time of different secret
values as timing functions, i.e., functions from the public inputs to the running
time.

Quantitative Mitigation of Timing Side Channels 143

Side channel discovery. One can use existing tools to find the initial functional
observations [44,45]. In Example 2.1, functional observations are F = 〈y, 2y,
. . . , 10y〉 where y is a variable whose value is the number of set bits in the
public input. The corresponding secret classes after this observation is SF =
〈11, 12, 13, . . . , 110〉 where 1n shows a set of secret values that have n set bits.
The sizes of classes are B = {10, 45, 120, 210, 252, 210, 120, 45, 10, 1}. We use L1-
norm as metric to calculate the distance between the functional observations
F . This distance (penalty) matrix specifies extra performance overhead to move
from one functional observation to another. With the assumption of uniform
distributions over the secret input, Shannon entropy, guessing entropy, and the
min-guessing entropy are 7.3, 90.1, and 1.0, respectively. These entropies are
defined in Sect. 3 and measure the remaining entropy of the secret set after
the observations. We aim to maximize the entropy measures, while keeping the
performance overhead below a threshold, say 60% for this example.

Mitigation with Schmit. We use our tool Schmit to mitigate timing leaks of
Example 2.1. The mitigation policy for the Shannon entropy objective is shown
in Fig. 2(a). The policy results in two classes of observations. The policy requires
to move functional observations 〈y, 2y, . . . , 5y〉 to 〈6y〉 and all other observations
〈7y, 8y, 9y〉 to 〈10y〉. To enforce this policy, we use a monitoring system at run-
time. The monitoring system uses a decision tree model of the initial functional
observations. The decision tree model characterizes each functional observation
with associated program internals such as method calls or basic block invoca-
tions [43,44]. The decision tree model for the Example 2.1 is shown in Fig. 2(b).
The monitoring system records program internals and matches it with the deci-
sion tree model to detect the current functional observation. Then, it adds delays,
if necessary, to the execution time in order to enforce the mitigation policy. With
this method, the mitigated functional observation is G = 〈6y, 10y〉 and the secret

Fig. 2. (a) Mitigation policy calculation with deterministic algorithm (left). The obser-
vations x1 and x2 stands for all observations from C2−C5 and from C8−C9, resp.; (b)
Leaned discriminant decision tree (center): it characterizes the functional clusters of
Fig. 1(b) with internals of the program in Fig. 1(a); and (c) observations (right) after
the mitigation by Schmit results in two classes of observations.

144 S. Tizpaz-Niari et al.

class is SG = 〈{11, 12, 13, 14, 15, 16}, {17, 18, 19, 110}〉 as shown in Fig. 2 (c). The
performance overhead of this mitigation is 43.1%. The Shannon, guessing, and
min-guess entropies have improved to 9.7, 459.6, and 193.5, respectively.

Comparison with state of the art. We compare our mitigation results to
black-box mitigation scheme [10] and bucketing [26]. Black-box double scheme
technique. We use the double scheme technique [10] to mitigate the leaks
of Example 2.1. This mitigation uses a prediction model to release events
at scheduled times. Let us consider the prediction for releasing the event
i at N -th epoch with S(N, i) = max(inpi, S(N, i−1))+p(N), where inpi is
the time arrival of the i-th request, S(N, i − 1) is the prediction for the
request i−1, and p(N) = 2N−1 models the basis for the prediction scheme
at N -th epoch. We assume that the request are the same type and the
sequence of public input requests for each secret are received in the begin-
ing of epoch N = 1. Figure 3(a) shows the functional observations after
applying the predictive mitigation. With this mitigation, the classes of obser-
vations are SG = 〈11, {12, 13}, {14, 15, 16, 17}, {18, 19, 110}〉. The number of
classes of observations is reduced from 10 to 4. The performance overhead
is 39.9%. The Shannon, guessing, and min-guess entropies have increased
to 9.00, 321.5, and 5.5, respectively. Bucketing. We consider the mitiga-
tion approach with buckets [26]. For Example 2.1, if the attacker does not
know the public input (unknown-message attacks [26]), the observations are
{1.1, 2.1, 3.3, · · · , 9.9, 10.9, · · · , 109.5} as shown in Fig. 3(b). We apply the buck-
eting algorithm in [26] for this observations, and it finds two buckets {37.5, 109.5}
shown with the red lines in Fig. 3(b). The bucketing mitigation requires to
move the observations to the closet bucket. Without functional observations,
there are 2 classes of observations. However, with functional observations, there
are more than 2 observations. Figure 3(c) shows how the pattern of observa-
tions are leaking through functional side channels. There are 7 classes of obser-
vations: SG = 〈{11, 12, 13}, {14}, {15}, {16}, {17}, {18}, {19}, {110}〉. The Shan-
non, guessing, and min-guess entropies are 7.63, 102.3, and 1.0, respectively.

Fig. 3. (a) The execution time after mitigation using the double scheme technique [10].
There are four classes of functional observations after the mitigation. (b) Mitiga-
tion with bucketing [26]. All observations require to move to the closet red line.
(c) Functional observations distinguish 7 classes of observations after mitigating with
bucketing.

Quantitative Mitigation of Timing Side Channels 145

Overall, Schmit achieves the higher entropy measures for all three objectives
under the performance overhead of 60%.

3 Preliminaries

For a finite set Q, we use |Q| for its cardinality. A discrete probability distri-
bution, or just distribution, over a set Q is a function d : Q→[0, 1] such that∑

q∈Q d(q) = 1. Let D(Q) denote the set of all discrete distributions over Q.
We say a distribution d ∈ D(Q) is a point distribution if d(q)=1 for a q ∈ Q.
Similarly, a distribution d ∈ D(Q) is uniform if d(q)=1/|Q| for all q ∈ Q.

Definition 1 (Timing Model). The timing model of a program P is a tuple
[[P]] = (X,Y,S, δ) where X = {x1, . . . , xn} is the set of secret-input variables,
Y = {y1, . . . , ym} is the set of public-input variables, S ⊆ R

n is a finite set of
secret-inputs, and δ : R

n × R
m → R≥0 is the execution-time function of the

program over the secret and public inputs.

We assume that the adversary knows the program and wishes to learn the
value of the secret input. To do so, for some fixed secret value s ∈ S, the
adversary can invoke the program to estimate (to an arbitrary precision) the
execution time of the program. If the set of public inputs is empty, i.e. m = 0, the
adversary can only make scalar observations of the execution time corresponding
to a secret value. In the more general setting, however, the adversary can arrange
his observations in a functional form by estimating an approximation of the
timing function δ(s) : Rm → R≥0 of the program.

A functional observation of the program P for a secret input s ∈ S is the
function δ(s) : Rm → R≥0 defined as y ∈ R

m �→ δ(s,y). Let F ⊆ [Rm → R≥0]
be the finite set of all functional observations of the program P. We define an
order ≺ over the functional observations F : for f, g ∈ F we say that f ≺ g if
f(y) ≤ g(y) for all y ∈ R

m.
The set F characterizes an equivalence relation ≡F , namely secrets with

equivalent functional observations, over the set S, defined as following: s ≡F s′

if there is an f ∈ F such that δ(s) = δ(s′) = f . Let SF = 〈S1, S2, . . . , Sk〉 be
the quotient space of S characterized by the observations F = 〈f1, f2, . . . , fk〉.
We write Sf for the secret set S ∈ SF corresponding to the observations f ∈ F .
Let B = 〈B1, B2, . . . , Bk〉 be the size of observational equivalence class in SF ,
i.e. Bi = |Sfi

| for fi ∈ F and let B = |S| =
∑k

i=1 Bi.
Shannon entropy, guessing entropy, and min-guess entropy are three preva-

lent information metrics to quantify information leaks in programs. Köpf and
Basin [25] characterize expressions for various information-theoretic measures on
information leaks when there is a uniform distribution on S given below.

Proposition 1 (Köpf and Basin [25]). Let F = 〈f1, . . . , fk〉 be a set of
observations and let S be the set of secret values. Let B = 〈B1, . . . , Bk〉 be the

146 S. Tizpaz-Niari et al.

corresponding size of secret set in each class of observation and B =
∑k

i=1 Bi.
Assuming a uniform distribution on S, entropies can be characterized as:

1. Shannon Entropy: SE(S|F) def= (1
B)

∑
1≤i≤k Bi log2(Bi),

2. Guessing Entropy: GE(S|F) def= (1
2B)

∑
1≤i≤k B2

i + 1
2 , and

3. Min-Guess Entropy: mGE(S|F) def= min1≤i≤k {(Bi + 1)/2}.

4 Shannon Mitigation Problem

Our goal is to mitigate the information leakage due to the timing side channels
by adding synthetic delays to the program. An aggressive, but commonly-used,
mitigation strategy aims to eliminate the side channels by adding delays such
that every secret value yields a common functional observation. However, this
strategy may often be impractical as it may result in unacceptable performance
degradations of the response time. Assuming a well-known penalty function asso-
ciated with the performance degradation, we study the problem of maximizing
entropy while respecting a bound on the performance degradation. We dub the
decision version of this problem Shannon mitigation.

Adding synthetic delays to execution-time of the program, so as to mask
the side-channel, can give rise to new functional observations that correspond
to upper-envelopes of various combinations of original observations. Let F =
〈f1, f2, . . . , fk〉 be the set of functional observations. For I ⊆ 1, 2, . . . , k, let
fI = y ∈ R

m �→ supi∈I fi(y) be the functional observation corresponding
to upper-envelope of the functional observations in the set I. Let G(F) =
{fI : I �= ∅ ⊆ {1, 2, . . . , k}} be the set of all possible functional observations
resulting from the upper-envelope calculations. To change the observation of a
secret value with functional observation fi to a new observation fI (we assume
that i ∈ I), we need to add delay function f i

I : y ∈ R
m �→ fI(y) − fi(y).

Mitigation Policies. Let G ⊆ G(F) be a set of admissible post-mitigation obser-
vations. A mitigation policy is a function μ : F → D(G) that for each secret
s ∈ Sf suggests the probability distribution μ(f) over the functional observa-
tions. We say that a mitigation policy is deterministic if for all f ∈ F we have
that μ(f) is a point distribution. Abusing notations, we represent a deterministic
mitigation policy as a function μ : F → G. The semantics of a mitigation pol-
icy recommends to a program analyst a probability μ(f)(g) to elevate a secret
input s ∈ Sf from the observational class f to the class g ∈ G by adding
max {0, g(p) − f(p)} units delay to the corresponding execution-time δ(s, p) for
all p ∈ Y . We assume that the mitigation policies respect the order, i.e. for
every mitigation policy μ and for all f ∈ F and g ∈ G, we have that μ(f)(g) > 0
implies that f ≺ g. Let M(F→G) be the set of mitigation policies from the set of
observational clusters F into the clusters G.

For the functional observations F = 〈f1, . . . , fk〉 and a mitigation policy
μ ∈ M(F→G), the resulting observation set F [μ] ⊆ G is defined as:

F [μ] = {g ∈ G : there exists f ∈ F such that μ(f)(g) > 0} .

Quantitative Mitigation of Timing Side Channels 147

Since the mitigation policy is stochastic, we use average sizes of resulting obser-
vations to represent fitness of a mitigation policy. For F [μ] = 〈g1, g2, . . . , g�〉, we
define their expected class sizes Bμ = 〈C1, C2, . . . , C�〉 as Ci =

∑i
j=1 μ(fj)(fi)·Bj

(observe that
∑�

i=1 Ci = B). Assuming a uniform distribution on S, various
entropies for the expected class size after applying a policy μ ∈ M(F→G) can be
characterized by the following expressions:

1. Shannon Entropy: SE(S|F , μ) def= (1
B)

∑
1≤i≤� Ci log2(Ci),

2. Guessing Entropy: GE(S|F , μ) def= (1
2B)

∑
1≤i≤� C2

i + 1
2 , and

3. Min-Guess Entropy: mGE(S|F , μ) def= min1≤i≤� {(Ci + 1)/2}.

We note that the above definitions do not represent the expected entropies, but
rather entropies corresponding to the expected cluster sizes. However, the three
quantities provide bounds on the expected entropies after applying μ. Since
Shannon and Min-Guess entropies are concave functions, from Jensen’s inequal-
ity, we get that SE(S|F , μ) and mGE(S|F , μ) are upper bounds on expected
Shannon and Min-Guess entropies. Similarly, GE(S|F , μ), being a convex func-
tion, give a lower bound on expected guessing entropy.

We are interested in maximizing the entropy while respecting constraints on
the overall performance of the system. We formalize the notion of performance
by introducing performance penalties: there is a function π : F × G → R≥0

such that elevating from the observation f ∈ F to the functional observation
g ∈ G adds an extra π(f, g) performance overheads to the program. The expected
performance penalty associated with a policy μ, π(μ), is defined as the proba-
bilistically weighted sum of the penalties, i.e.

∑
f∈F,g∈G:f≺g |Sf |·μ(f)(g)·π(f, g).

Now, we introduce our key decision problem.

Definition 2 (Shannon Mitigation). Given a set of functional observations
F = 〈f1, . . . , fk〉, a set of admissible post-mitigation observations G ⊆ G(F),
set of secrets S, a penalty function π : F × G → R≥0, a performance penalty
upper bound Δ ∈ R≥0, and an entropy lower-bound E ∈ R≥0, the Shannon
mitigation problem ShanE(F ,G,S, π, E,Δ), for a given entropy measure E ∈
{SE,GE,mGE}, is to decide whether there exists a mitigation policy μ ∈ M(F→G)

such that E(S|F , μ) ≥ E and π(μ) ≤ Δ. We define the deterministic Shannon
mitigation variant where the goal is to find a deterministic such policy.

5 Algorithms for Shannon Mitigation Problem

5.1 Deterministic Shannon Mitigation

We first establish the intractability of the deterministic variant.

Theorem 1. Deterministic Shannon mitigation problem is NP-complete.

Proof. It is easy to see that the deterministic Shannon mitigation problem is in
NP: one can guess a certificate as a deterministic mitigation policy μ ∈ M(F→G)

148 S. Tizpaz-Niari et al.

and can verify in polynomial time that it satisfies the entropy and overhead con-
straints. Next, we sketch the hardness proof for the min-guess entropy measure
by providing a reduction from the two-way partitioning problem [28]. For the
Shannon entropy and guess entropy measures, a reduction can be established
from the Shannon capacity problem [18] and the Euclidean sum-of-squares clus-
tering problem [8], respectively.

Given a set A = {a1, a2, . . . , ak} of integer values, the two-way partitioning
problem is to decide whether there is a partition A1�A2 = A into two sets A1 and
A2 with equal sums, i.e.

∑
a∈A1

a =
∑

a∈A2
a. W.l.o.g assume that ai ≤ aj for

i ≤ j. We reduce this problem to a deterministic Shannon mitigation problem
ShanmGE(FA,GA,SA, πA, EA,ΔA) with k clusters FA = GA = 〈f1, f2, . . . , fk〉
with the secret set SA = 〈S1, S2, . . . , Sk〉 such that |Si| = ai. If

∑
1≤i≤k ai

is odd then the solution to the two-way partitioning instance is trivially no.
Otherwise, let EA = (1/2)

∑
1≤i≤k ai. Notice that any deterministic mitigation

strategy that achieves min-guess entropy larger than or equal to EA must have
at most two clusters. On the other hand, the best min-guess entropy value can
be achieved by having just a single cluster. To avoid this and force getting
two clusters corresponding to the two partitions of a solution to the two-way
partitions problem instance A, we introduce performance penalties such that
merging more than k − 2 clusters is disallowed by keeping performance penalty
πA(f, g) = 1 and performance overhead ΔA = k − 2. It is straightforward to
verify that an instance of the resulting min-guess entropy problem has a yes
answer if and only if the two-way partitioning instance does. ��

Since the deterministic Shannon mitigation problem is intractable, we design
an approximate solution for the problem. Note that the problem is hard even if we
only use existing functional observations for mitigation, i.e., G = F . Therefore,
we consider this case for the approximate solution. Furthermore, we assume
the following sequential dominance restriction on a deterministic policy μ: for
f, g ∈ F if f ≺ g then either μ(f) ≺ g or μ(f) = μ(g). In other words, for
any given f ≺ g, f can not be moved to a higher cluster than g without having
g be moved to that cluster. For example, Fig. 4(a) shows Shannon mitigation
problem with four functional observations and all possible mitigation policies (we
represent μ(fi)(fj) with μ(i, j)). Figure 4(b) satisfies the sequential dominance
restriction, while Fig. 4(c) does not.

The search for the deterministic policies satisfying the sequential dominance
restriction can be performed efficiently using dynamic programming by effective
use of intermediate results’ memorizations.

Algorithm (1) provides a pseudocode for the dynamic programming solution
to find a deterministic mitigation policy satisfying the sequential dominance.
The key idea is to start with considering policies that produce a single cluster
for subclasses Pi of the problem with the observation from 〈f1, . . . , fi〉, and
then compute policies producing one additional cluster in each step by utilizing
the previously computed sub-problems and keeping track of the performance
penalties. The algorithm terminates as soon as the solution of the current step
respects the performance bound. The complexity of the algorithm is O(k3).

Quantitative Mitigation of Timing Side Channels 149

C4

C3

C2

C1µ(1, 1)

µ(1, 2)

µ(1, 3)

µ(1, 4)

µ(2, 2)

µ(2, 3)

µ(2, 4)

µ(3, 3)

µ(3, 4)

µ(4, 4) C4

C3

C2

C1

µ(1, 3) = 1.0

µ(2, 3) = 1.0

µ(3, 3) = 1.0

µ(4, 4) = 1.0 C4

C3

C2

C1µ(1, 1) = 0.6

µ(1, 3) = 0.4

µ(2, 4) = 1.0

µ(3, 3) = 1.0

µ(4, 4) = 1.0

Fig. 4. (a). Example of Shannon mitigation problem with all possible mitigation poli-
cies for 4 classes of observations. (b,c) Two examples of the mitigation policies that
results in 2 and 3 classes of observations.

5.2 Stochastic Shannon Mitigation Algorithm

Next, we solve the (stochastic) Shannon mitigation problem by posing it as
an optimization problem. Consider the stochastic Shannon mitigation problem
ShanE (F ,G = F ,SF , π, E,Δ) with a stochastic policy μ : F → D(G) and

Algorithm 1. Approximate Deterministic Shannon Mitigation

Input: The Shannon entropy problem ShanMGE(F ,G = F ,SF , π, E,Δ)
Output: The entropy table (T).

1 for i = 1 to k do

2 T (i, 1) = E(
i⋃

j=1

Sj)

3 if
∑

1≤j≤i

π(j, i)(Bj/B) ≤ Δ then Π(i, 1) =
∑

1≤j≤i

π(j, i)(Bj/B)

4 else Π(i, 1) = ∞
5 if Π(k, 1) < ∞ then return T ;
6 for r = 2 to k do
7 for i = 1 to k do
8 Ω(i, r) = {j : 1 ≤ j < i and Π(j, r −1)+

∑

j<q≤i

π(q, i)(Bq/B) ≤ Δ}

9 if Ω �=∅ then T (i, r)= max
j∈Ω(i,r)

(
min

(
T (j, r−1), E(

i⋃

q=j+1

Sq)
))

10 else T (i, r)= − ∞
11 Let j be the index that maximizes T (i, r)
12 if Ω �= ∅ then Π(i, r) =

(
Π(j, r − 1) +

∑

j<q≤i

π(q, i)(Bq/B)
)

13 else Π(i, r) = ∞
14 if Π(k, r) < ∞ then return T ;

15 return T ;

150 S. Tizpaz-Niari et al.

SF = 〈S1, S2, . . . , Sk〉. The following program characterizes the optimization
problem that solves the Shannon mitigation problem with stochastic policy.

Maximize E , subject to:

1. 0 ≤ μ(fi)(fj) ≤ 1 for 1 ≤ i ≤ j ≤ k
2.

∑
i≤j≤k μ(fi)(fj) = 1 for all 1 ≤ i ≤ k.

3.
∑k

i=1

∑k
j=i |Si| · μ(fi)(fj) · π(fi, fj) ≤ Δ.

4. Cj =
∑j

i=1 |Si| · μ(fi)(fj) for 1 ≤ j ≤ k.

Here, the objective function E is one of the following functions:

1. Guessing Entropy EGE =
k∑

j=1

C2
j

2. Min-Guess Entropy EMGE = min
1≤j≤k

{Cj | Cj > 0}

3. Shannon Entropy ESE =
k∑

j=1

Cj · log2(Cj)

The linear constraints for the problem are defined as the following. The con-
dition (1) and (2) express that μ provides a probability distributions, condition
(3) provides restrictions regarding the performance constraint, and the condition
(4) is the entropy specific constraint. The objective function of the optimization
problem is defined based on the entropy criteria from E . For the simplicity, we
omit the constant terms from the objective function definitions. For the guessing
entropy, the problem is an instance of linearly constrained quadratic optimization
problem [33]. The problem with Shannon entropy is a non-linear optimization
problem [12]. Finally, the optimization problem with min-guess entropy is an
instance of mixed integer programming [32]. We evaluate the scalability of these
solvers empirically in Sect. 6 and leave the exact complexity as an open problem.
We show that the min-guess entropy objective function can be efficiently solved
with the branch and bound algorithms [36]. Figure 4(b,c) show two instantiations
of the mitigation policies that are possible for the stochastic mitigation.

6 Implementation Details

A. Environmental Setups. All timing measurements are conducted on an
Intel NUC5i5RYH. We switch off JIT Compilation and run each experiment
multiple times and use the mean running time. This helps to reduce the effects
of environmental factors such as the Garbage Collections. All other analyses are
conducted on an Intel i5-2.7 GHz machine.

B. Implementation of Side Channel Discovery. We use the technique pre-
sented in [45] for the side channel discovery. The technique applies the functional

Quantitative Mitigation of Timing Side Channels 151

data analysis [38] to create B-spline basis and fit functions to the vector of tim-
ing observations for each secret value. Then, the technique applies the functional
data clustering [21] to obtain K classes of observations. We use the number of
secret values in a cluster as the class size metric and the L1 distance norm
between the clusters as the penalty function.

C. Implementation of Mitigation Policy Algorithms. For the stochastic
optimization, we encode the Shannon entropy and guessing entropy with linear
constraints in Scipy [22]. Since the objective functions are non-linear (for the
Shannon entropy) and quadratic (for the guessing entropy), Scipy uses sequential
least square programming (SLSQP) [34] to maximize the objectives. For the
stochastic optimization with the min-guess entropy, we encode the problem in
Gurobi [19] as a mixed-integer programming (MIP) problem [32]. Gurobi solves
the problem efficiently with branch-and-bound algorithms [1]. We use Java to
implement the dynamic programming.

D. Implementation of Enforcement. The enforcement of mitigation pol-
icy is implemented in two steps. First, we use the initial timing functions and
characterize them with program internal properties such as basic block calls. To
do so, we use the decision tree learning approach presented in [45]. The decision
tree model characterizes each functional observations with properties of program
internals. Second, given the policy of mitigation, we enforce the mitigation pol-
icy with a monitoring system implemented on top of the Javassist [15] library.
The monitoring system uses the decision tree model and matches the properties
enabled during an execution with the tree model (detection of the current clus-
ter). Then, it adds extra delays, based on the mitigation policy, to the current
execution-time and enforces the mitigation policy. Note that the dynamic mon-
itoring can result in a few micro-second delays. For the programs with timing
differences in the order of micro-seconds, we transform source code using the
decision tree model. The transformation requires manual efforts to modify and
compile the new program. But, it adds negligible delays.

E. Micro-benchmark Results. Our goal is to compare different mitigation
methods in terms of their security and performance. We examine the computa-
tion time of our tool Schmit in calculating the mitigation policies. See appendix
for the relationships between performance bounds and entropy measures.

Applications: Mod Exp applications [30] are instances of square-and-multiply
modular exponentiation (R = yk mod n) used for secret key operations in
RSA [39]. Branch and Loop series consist of 6 applications where each appli-
cation has conditions over secret values and runs a linear loop over the public
values. The running time of the applications depend on the slope of the linear
loops determined by the secret input.

Computation time comparisons: Fig. 5 shows the computation time for
Branch and Loop applications (the applications are ordered in x-axis based
on the discovered number of observational classes). For the min-guess entropy,
we observe that both stochastic and dynamic programming approaches are effi-
cient and fast as shown in Fig. 5(a). For the Shannon and guessing entropies,

152 S. Tizpaz-Niari et al.

T
a
b
le

1
.

M
ic

ro
-b

en
ch

m
a
rk

re
su

lt
s.

M
E

a
n
d

B
L

st
a
n
d

fo
r

M
o
d

E
x
p

a
n
d

B
ra

n
ch

a
n
d

L
o
o
p

a
p
p
li
ca

ti
o
n
s.

L
eg

en
d
:

#
S
:

n
o
.

o
f

se
cr

et
va

lu
es

,
#
P

:
n
o
.
o
f
p
u
b
li
c

va
lu

es
,
Δ

:
U

p
p
er

b
o
u
n
d

ov
er

p
er

fo
rm

a
n
ce

p
en

a
lt
y,

ε:
cl

u
st

er
in

g
p
a
ra

m
et

er
,
#
K

:
cl

a
ss

es
o
f
o
b
se

rv
a
ti

o
n
s

b
ef

o
re

m
it

ig
a
ti

o
n
,
#
K

X
:
cl

a
ss

es
o
f
o
b
se

rv
a
ti

o
n
s

a
ft

er
m

it
ig

a
ti

o
n

w
it

h
X

te
ch

n
iq

u
e,

m
G
E

:
M

in
-g

u
es

s
en

tr
o
p
y

b
ef

o
re

m
it

ig
a
ti

o
n
,
m
G
E

X
:
M

in
-

g
u
es

s
en

tr
o
p
y

a
ft

er
m

it
ig

a
ti

o
n

w
it

h
X

,
O

X
:
P
er

fo
rm

a
n
ce

ov
er

h
ea

d
a
d
d
ed

a
ft

er
m

it
ig

a
ti

o
n

w
it

h
X

.

In
it
ia
l
C
h
a
ra
ct
er
is
ti
cs

D
o
u
b
le

S
ch

em
e

B
u
ck
et
in
g

S
c
h
m
it

(D
et
er
m
.)

S
c
h
m
it

(S
to
ch

.)

A
p
p
(s
)
#
S

#
P

Δ
ε

#
K

m
G
E

#
K

D
S

m
G
E
D

S
O

D
S
(%

)
#
K

B
m
G
E
B

O
B
(%

)
K

D
#
m
G
E
D

O
D
(%

)
#
K

S
m
G
E
S

O
S
(%

)

M
E

1
3
2

3
2

0
.5

1
.0

1
1
6
.5

1
1
6
.5

0
.0

1
1
6
.5

0
.0

1
1
6
.5

0
.0

1
1
6
.5

0
.0

M
E

2
6
4

6
4

0
.5

1
.0

2
1
6
.5

1
3
2
.5

5
,2
2
1

1
3
2
.5

2
7
.6

1
3
2
.5

2
1
.4

1
3
2
.5

2
1
.4

M
E

3
1
2
8

1
2
8

0
.5

2
.0

2
3
2
.5

1
6
4
.5

5
,4
0
7

1
6
4
.5

3
3
.9

1
6
4
.5

2
2
.7

1
6
4
.5

2
2
.7

M
E

4
2
5
6

2
5
6

0
.5

2
.0

4
1
0
.5

1
1
2
8
.5

6
,6
7
9

1
1
2
8
.5

3
0
.7

1
1
2
8
.5

2
8
.3

1
1
2
8
.5

2
8
.3

M
E

5
5
1
2

5
1
2

0
.5

5
.0

2
3

1
.0

1
2
5
6
.5

7
,2
9
4

2
1
2
8
.5

5
0
.0

1
2
5
6
.5

3
1
.0

1
2
5
3
.0

3
0
.3

M
E

6
1
,0
2
4

1
,0
2
4

0
.5

8
.0

4
0

1
.0

1
5
1
2
.5

7
,8
2
2

2
0

1
.0

3
4
.5

2
2
7
.5

4
6
.7

5
8
5
.5

5
0
.0

B
L

1
2
5

5
0

0
.5

1
0
.0

4
3
.0

3
3
.0

7
3
.0

3
3
.0

1
7
.5

2
5
.5

2
6
.1

2
6
.5

3
4
.9

B
L

2
5
0

5
0

0
.5

1
0
.0

8
3
.0

4
3
.0

6
1
.3

5
3
.0

2
1
.9

2
1
0
.5

4
5
.3

2
1
3
.0

4
5
.3

B
L

3
1
0
0

5
0

0
.5

2
0
.0

1
6

3
.0

4
8
.0

4
2
.4

8
3
.0

3
3
.4

2
2
0
.5

4
8
.3

2
2
1
.5

5
0

B
L

4
2
0
0

5
0

0
.5

2
0
.0

3
2

3
.0

6
3
.0

3
6
.9

1
6

3
.0

2
8
.7

2
4
8
.0

4
8
.7

2
5
0
.5

4
9
.7

B
L

5
4
0
0

5
0

0
.5

2
0
.0

6
4

3
.0

8
3
.0

3
5
.4

3
2

3
.0

2
7
.2

3
6
5
.5

3
2
.0

2
1
0
0
.5

5
0
.0

B
L

6
8
0
0

5
0

0
.5

2
0
.0

1
2
5

3
.0

1
2

8
.0

3
7
.8

2
9

3
.0

5
2
.5

3
1
3
3
.0

3
4
.6

2
2
0
0
.5

4
9
.6

Quantitative Mitigation of Timing Side Channels 153

the dynamic programming is scalable, while the stochastic mitigation is compu-
tationally expensive beyond 60 classes of observations as shown in Fig. 5(b,c).

Mitigation Algorithm Comparisons: Table 1 shows micro-benchmark results that
compare the four mitigation algorithms with the two program series. Double
scheme mitigation technique [10] does not provide guarantees on the perfor-
mance overhead, and we can see that it is increased by more than 75 times
for mod exp 6. Double scheme method reduces the number of classes of obser-
vations. However, we observe that this mitigation has difficulty improving the
min-guess entropy. Second, Bucketing algorithm [26] can guarantee the perfor-
mance overhead, but it is not an effective method to improve the security of
functional observations, see the examples mod exp 6 and Branch and Loop 6.
Third, in the algorithms, Schmit guarantees the performance to be below a
certain bound, while it results in the highest entropy values. In most cases, the
stochastic optimization technique achieves the highest min-entropy value. Here,
we show the results with min-guess entropy measure. Also, we have strong evi-
dences to show that Schmit achieves higher Shannon and guessing entropies.
For example, in B L 5, the initial Shannon entropy has improved from 2.72 to
6.62, 4.1, 7.56, and 7.28 for the double scheme, the bucketing, the stochastic,
and the deterministic algorithms, respectively.

Fig. 5. Computation time for synthesizing mitigation policy over Branch and Loop
applications. Computation time for min-guess entropy (a) takes only few seconds. Com-
putation time for the Shannon entropy (b) and guessing entropy (c) are expensive using
Stochastic optimization. We set time-out to be 10 hours.

7 Case Study

Research Question. Does Schmit scale well and improve the security of appli-
cations (entropy measures) within the given performance bounds?

Methodology. We use the deterministic and stochastic algorithms for mitigat-
ing the leaks. We show our results for the min-guess entropy, but other entropy
measures can be applied as well. Since the task is to mitigate existing leakages,
we assume that the secret and public inputs are given.

Objects of Study. We consider four real-world applications:

In the inset table, we show the basic characteristics of these benchmarks.

154 S. Tizpaz-Niari et al.

Application Num
methods

Num
secret

Num
public

ε Initial
clusters

Initial.
Min-guess

GabFeed 573 1,105 65 6.50 34 1.0

Jetty 63 800 635 0.1 20 4.5

Java Verbal Expressions 61 2,000 10 0.02 9 50.5

Password Checker 6 20 2,620 0.05 6 1.0

GabFeed is a chat server with 573 methods [4]. There is a side channel in the
authentication part of the application where the application takes users’ public
keys and its own private key, and generating a common key [14]. The vulnerabil-
ity leaks the number of set bits in the secret key. Initial functional observations
are shown in Fig. 6a. There are 34 clusters and min-guess entropy is 1. We aim
to maximize the min-guess entropy under the performance overhead of 50%.

Jetty. We mitigate the side channels in util.security package of Eclipse Jetty
web server. The package has Credential class which had a timing side channel.
This vulnerability was analyzed in [14] and fixed initially in [6]. Then, the devel-
opers noticed that the implementation in [6] can still leak information and fixed
this issue with a new implementation in [5]. However, this new implementation
is still leaking information [45]. We apply Schmit to mitigate this timing side
channels. Initial functional observations is shown in Fig. 6d. There are 20 classes
of observations and the initial min-guess entropy is 4.5. We aim to maximize the
min-guess entropy under the performance overhead of 50%.

Java Verbal Expressions is a library with 61 methods that construct regular
expressions [2]. There is a timing side channel in the library similar to password
comparison vulnerability [3] if the library has secret inputs. In this case, start-
ing from the initial character of a candidate expression, if the character matches
with the regular expression, it slightly takes more time to respond the request
than otherwise. This vulnerability can leak all the regular expressions. We con-
sider regular expressions to have a maximum size of 9. There are 9 classes of
observations and the initial min-guess entropy is 50.5. We aim to maximize the
min-guess entropy under the performance overhead of 50%.

Password Checker. We consider the password matching example from loginBad
program [9]. The password stored in the server is secret, and the user’s guess is a
public input. We consider 20 secret (lengths at most 6) and 2,620 public inputs.
There are 6 different clusters, and the initial min-guess entropy is 1.

Findings for GabFeed. With the stochastic algorithm, Schmit calculates the
mitigation policy that results in 4 clusters. This policy improves the min-guess
entropy from 1 to 138.5 and adds an overhead of 42.8%. With deterministic
algorithm, Schmit returns 3 clusters. The performance overhead is 49.7% and
the min-guess entropy improves from 1 to 106. The user chooses the deterministic
policy and enforces the mitigation. We apply CART decision tree learning and
characterizes the classes of observations with GabFeed method calls as shown in

Quantitative Mitigation of Timing Side Channels 155

Fig. 6. Initial functional observations, decision tree, and the mitigated observations
from left to right for Gabfeed, Jetty, and Verbal Expressions from top to bottom.

Fig. 6b. The monitoring system uses the decision tree model and automatically
detects the current class of observation. Then, it adds extra delays based on
the mitigation policy to enforce it. The results of the mitigation is shown in
Fig. 6c. Answer for our research question. Scalability : It takes about 1 second
to calculate the stochastic and the deterministic policies. Security : Stochastic
and deterministic variants improve the min-guess entropy more than 100 times
under the given performance overhead of 50%, respectively.

Findings for Jetty. The stochastic algorithm and the deterministic algorithm
find the same policy that results in 1 cluster with 39.6% performance over-
head. The min-guess entropy improves from 4.5 to 400.5. For the enforcement,
Schmit first uses the initial clusterings and specifies their characteristics with
program internals that result in the decision tree model shown in Fig. 6e. Since
the response time is in the order of micro-seconds, we transform the source code
using the decision tree model by adding extra counter variables. The results of

156 S. Tizpaz-Niari et al.

the mitigation is shown in Fig. 6f. Scalability : It takes less than 1 second to cal-
culate the policies for both algorithms. Security : Stochastic and deterministic
variants improve the min-guess entropy 89 times under the given performance
overhead.

Findings for Java Verbal Expressions. For the stochastic algorithm, the
policy results in 2 clusters, and the min-guess entropy has improved to 500.5. The
performance overhead is 36%. For the dynamic programming, the policy results
in 2 clusters. This adds 28% of performance overhead, while it improves the
min-guess entropy from 50.5 to 450.5. The user chooses to use the deterministic
policy for the mitigation. For the mitigation, we transform the source code using
the decision tree model and add the extra delays based on the mitigation policy.

Findings for Password Matching. Both the deterministic and the stochastic
algorithms result in finding a policy with 2 clusters where the min-guess entropy
has improved from 1 to 5.5 with the performance overhead of 19.6%. For the
mitigation, we transform the source code using the decision tree model and add
extra delays based on the mitigation policy if necessary.

8 Related Work

Quantitative theory of information have been widely used to measure how much
information is being leaked with side-channel observations [11,20,25,41]. Miti-
gation techniques increase the remaining entropy of secret sets leaked through
the side channels, while considering the performance [10,23,26,40,48,49].

Köpf and Dürmuth [26] use a bucketing algorithm to partition programs’
observations into intervals. With the unknown-message threat model, Köpf and
Dürmuth [26] propose a dynamic programming algorithm to find the optimal
number of possible observations under a performance penalty. The works [10,48]
introduce different black-box schemes to mitigate leaks. In particular, Askarov
et al. [10] show the quantizing time techniques, which permit events to release at
scheduled constant slots, have the worst case leakage if the slot is not filled with
events. Instead, they introduce the double scheme method that has a schedule of
predictions like the quantizing approach, but if the event source fails to deliver
events at the predicted time, the failure results in generating a new schedule in
which the interval between predictions is doubled. We compare our mitigation
technique with both algorithms throughout this paper.

Elimination of timing side channels is a common technique to guarantee the
confidentiality of software [7,17,27,30,31,46]. The work [46] aims to eliminate
side channels using static analysis enhanced with various techniques to keep the
performance overheads low without guaranteeing the amounts of overhead. In
contrast, we use dynamic analysis and allow a small amount of information to
leak, but we guarantee an upper-bound on the performance overhead.

Machine learning techniques have been used for explaining timing differences
between traces [42–44]. Tizpaz-Niari et al. [44] consider performance issues in
softwares. They also cluster execution times of programs and then explain what

Quantitative Mitigation of Timing Side Channels 157

program properties distinguish the different functional clusters. We adopt their
techniques for our security problem.

Acknowledgements. The authors would like to thank Mayur Naik for shepherding
our paper and providing useful suggestions. This research was supported by DARPA
under agreement FA8750-15-2-0096.

References

1. Branch and bound algorithm for mip problems. http://www.gurobi.com/
resources/getting-started/mip-basics

2. Verbal expressions library. https://github.com/VerbalExpressions/
JavaVerbalExpressions

3. Timing attack in google keyczar library (2009). https://rdist.root.org/2009/05/
28/timing-attack-in-google-keyczar-library/

4. Gabfeed application (2016). https://github.com/Apogee-Research/STAC/tree/
master/Engagement Challenges/Engagement 2/gabfeed 1

5. Timing side-channel on the length of password in eclipse jetty May 2017.
https://github.com/eclipse/jetty.project/commit/2baa1abe4b1c380a30deacca1ed-
367466a1a62ea

6. Timing side-channel on the password in eclipse jetty May 2017. https://github.
com/eclipse/jetty.project/commit/f3751d70787fd8ab93932a51c60514c2eb37cb58

7. Agat, J.: Transforming out timing leaks. In: Proceedings of the 27th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pp. 40–
53. ACM (2000)

8. Aloise, D., Deshpande, A., Hansen, P., Popat, P.: Np-hardness of euclidean sum-
of-squares clustering. Mach. Learn. 75(2), 245–248 (2009)

9. Antonopoulos, T., Gazzillo, P., Hicks, M., Koskinen, E., Terauchi, T., Wei, S.:
Decomposition instead of self-composition for proving the absence of timing chan-
nels. In: PLDI, pp. 362–375. ACM (2017)

10. Askarov, A., Zhang, D., Myers, A.C.: Predictive black-box mitigation of timing
channels. In: Proceedings of the 17th ACM Conference on Computer and Commu-
nications Security, pp. 297–307. ACM (2010)

11. Backes, M., Köpf, B., Rybalchenko, A.: Automatic discovery and quantification of
information leaks. In: 2009 30th IEEE Symposium on Security and Privacy, pp.
141–153. IEEE (2009)

12. Bertsekas, D.P.: Nonlinear programming. Athena Scientific, 2016. Tech. rep., ISBN
978-1-886529-05-2

13. Brumley, D., Boneh, D.: Remote timing attacks are practical. Comput. Netw.
48(5), 701–716 (2005)

14. Chen, J., Feng, Y., Dillig, I.: Precise detection of side-channel vulnerabilities using
quantitative cartesian hoare logic. In: CCS, pp. 875–890 (2017)

15. Chiba, S.: Javassist - a reflection-based programming wizard for java. In: Proceed-
ings of OOPSLA 1998 Workshop on Reflective Programming in C++ and Java,
vol. 174 (1998)

16. Dhem, J.-F., Koeune, F., Leroux, P.-A., Mestré, P., Quisquater, J.-J., Willems, J.-
L.: A practical implementation of the timing attack. In: Quisquater, J.-J., Schneier,
B. (eds.) CARDIS 1998. LNCS, vol. 1820, pp. 167–182. Springer, Heidelberg (2000).
https://doi.org/10.1007/10721064 15

http://www.gurobi.com/resources/getting-started/mip-basics
http://www.gurobi.com/resources/getting-started/mip-basics
https://github.com/VerbalExpressions/JavaVerbalExpressions
https://github.com/VerbalExpressions/JavaVerbalExpressions
https://rdist.root.org/2009/05/28/timing-attack-in-google-keyczar-library/
https://rdist.root.org/2009/05/28/timing-attack-in-google-keyczar-library/
https://github.com/Apogee-Research/STAC/tree/master/Engagement_Challenges/Engagement_2/gabfeed_1
https://github.com/Apogee-Research/STAC/tree/master/Engagement_Challenges/Engagement_2/gabfeed_1
https://github.com/eclipse/jetty.project/commit/2baa1abe4b1c380a30deacca1ed367466a1a62ea
https://github.com/eclipse/jetty.project/commit/2baa1abe4b1c380a30deacca1ed367466a1a62ea
https://github.com/eclipse/jetty.project/commit/f3751d70787fd8ab93932a51c60514c2eb37cb58
https://github.com/eclipse/jetty.project/commit/f3751d70787fd8ab93932a51c60514c2eb37cb58
https://doi.org/10.1007/10721064_15

158 S. Tizpaz-Niari et al.

17. Eldib, H., Wang, C.: Synthesis of masking countermeasures against side channel
attacks. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 114–130.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08867-9 8

18. Fallgren, M.: On the complexity of maximizing the minimum shannon capacity in
wireless networks by joint channel assignment and power allocation. In: 2010 IEEE
18th International Workshop on Quality of Service (IWQoS), pp. 1–7 (2010)

19. Gurobi, L.: Optimization: Gurobi optimizer reference manual (2018). http://www.
gurobi.com

20. Heusser, J., Malacaria, P.: Quantifying information leaks in software. In: Proceed-
ings of the 26th Annual Computer Security Applications Conference, pp. 261–269.
ACM (2010)

21. Jacques, J., Preda, C.: Functional data clustering: a survey. Adv. Data Anal. Clas-
sif. 8(3), 231–255 (2014)

22. Jones, E., Oliphant, T., Peterson, P., et al.: SciPy: open source scientific tools for
Python (2001). http://www.scipy.org/

23. Kadloor, S., Kiyavash, N., Venkitasubramaniam, P.: Mitigating timing based infor-
mation leakage in shared schedulers. In: 2012 Proceedings IEEE Infocom, pp. 1044–
1052. IEEE (2012)

24. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5 9

25. Köpf, B., Basin, D.: An information-theoretic model for adaptive side-channel
attacks. In: Proceedings of the 14th ACM Conference on Computer and Com-
munications Security, pp. 286–296. CCS 2007, ACM, New York (2007)

26. Köpf, B., Dürmuth, M.: A provably secure and efficient countermeasure against
timing attacks. In: 22nd IEEE Computer Security Foundations Symposium, 2009,
CSF 2009, pp. 324–335. IEEE (2009)

27. Köpf, B., Mantel, H.: Transformational typing and unification for automatically
correcting insecure programs. Int. J. Inf. Secur. 6(2–3), 107–131 (2007)

28. Korf, R.E.: A complete anytime algorithm for number partitioning. AI 106, 181–
203 (1998)

29. Lampson, B.W.: A note on the confinement problem. Commun. ACM 16(10), 613–
615 (1973)

30. Mantel, H., Starostin, A.: Transforming out timing leaks, more or less. In: Pernul,
G., Ryan, P.Y.A., Weippl, E. (eds.) ESORICS 2015. LNCS, vol. 9326, pp. 447–467.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24174-6 23

31. Molnar, D., Piotrowski, M., Schultz, D., Wagner, D.: The program counter security
model: automatic detection and removal of control-flow side channel attacks. In:
Won, D.H., Kim, S. (eds.) ICISC 2005. LNCS, vol. 3935, pp. 156–168. Springer,
Heidelberg (2006). https://doi.org/10.1007/11734727 14

32. Nemhauser, G.L., Wolsey, L.A.: Integer programming and combinatorial opti-
mization. In: Nemhauser, G.L., Savelsbergh, M.W.P., Sigismondi, G.S. (1992).
Constraint Classification for Mixed Integer Programming Formulations. COAL
Bulletin, vol. 20, pp. 8–12. Wiley, Chichester (1988)

33. Nocedal, J., Wright, S.J.: Numerical Optimization 2nd (2006)
34. Nocedal, J., Wright, S.J.: Sequential Quadratic Programming. Springer, New York

(2006)
35. Padlipsky, M., Snow, D., Karger, P.: Limitations of End-to-End Encryption in

Secure Computer Networks. Tech. rep, MITRE CORP BEDFORD MA (1978)
36. Papadimitriou, C.H., Steiglitz, K.: Combinatorial Optimization: Algorithms and

Complexity. Courier Corporation, North Chelmsford (1998)

https://doi.org/10.1007/978-3-319-08867-9_8
http://www.gurobi.com
http://www.gurobi.com
http://www.scipy.org/
https://doi.org/10.1007/3-540-68697-5_9
https://doi.org/10.1007/978-3-319-24174-6_23
https://doi.org/10.1007/11734727_14

Quantitative Mitigation of Timing Side Channels 159

37. Phan, Q.S., Bang, L., Pasareanu, C.S., Malacaria, P., Bultan, T.: Synthesis of
adaptive side-channel attacks. In: 2017 IEEE 30th Computer Security Foundations
Symposium (CSF), pp. 328–342. IEEE (2017)

38. Ramsay, J., Hooker, G., Graves, S.: Functional Data Analysis with R and
MATLAB. Springer Science & Business Media, Berlin (2009)

39. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures
and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)

40. Schinzel, S.: An efficient mitigation method for timing side channels on the web.
In: 2nd International Workshop on Constructive Side-Channel Analysis and Secure
Design (COSADE) (2011)

41. Smith, G.: On the foundations of quantitative information flow. In: de Alfaro, L.
(ed.) FoSSaCS 2009. LNCS, vol. 5504, pp. 288–302. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-00596-1 21

42. Song, L., Lu, S.: Statistical debugging for real-world performance problems. In:
Proceedings of the 2014 ACM International Conference on Object Oriented Pro-
gramming Systems Languages & Applications, pp. 561–578. OOPSLA 2014 (2014).
https://doi.org/10.1145/2660193.2660234

43. Tizpaz-Niari, S., Černý, P., Chang, B.-Y.E., Sankaranarayanan, S., Trivedi, A.:
Discriminating traces with time. In: Legay, A., Margaria, T. (eds.) TACAS 2017.
LNCS, vol. 10206, pp. 21–37. Springer, Heidelberg (2017). https://doi.org/10.1007/
978-3-662-54580-5 2

44. Tizpaz-Niari, S., Černý, P., Chang, B.E., Trivedi, A.: Differential performance
debugging with discriminant regression trees. In: 32nd AAAI Conference on Arti-
ficial Intelligence (AAAI), pp. 2468–2475 (2018)

45. Tizpaz-Niari, S., Černý, P., Trivedi, A.: Data-driven debugging for functional side
channels. arXiv preprint. arXiv:1808.10502 (2018)

46. Wu, M., Guo, S., Schaumont, P., Wang, C.: Eliminating timing side-channel leaks
using program repair. In: Proceedings of the 27th ACM SIGSOFT International
Symposium on Software Testing and Analysis, pp. 15–26. ACM (2018)

47. Yarom, Y., Genkin, D., Heninger, N.: Cachebleed: a timing attack on openssl
constant-time rsa. J. Cryptographic Eng. 7(2), 99–112 (2017)

48. Zhang, D., Askarov, A., Myers, A.C.: Predictive mitigation of timing channels in
interactive systems. In: Proceedings of the 18th ACM Conference on Computer
and Communications Security, pp. 563–574. ACM (2011)

49. Zhang, D., Askarov, A., Myers, A.C.: Language-based control and mitigation of
timing channels. PLDI 47(6), 99–110 (2012)

https://doi.org/10.1007/978-3-642-00596-1_21
https://doi.org/10.1145/2660193.2660234
https://doi.org/10.1007/978-3-662-54580-5_2
https://doi.org/10.1007/978-3-662-54580-5_2
http://arxiv.org/abs/1808.10502

160 S. Tizpaz-Niari et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Property Directed Self Composition

Ron Shemer1(B), Arie Gurfinkel2, Sharon Shoham1, and Yakir Vizel3

1 Tel Aviv University, Tel Aviv, Israel
ronsheme@mail.tau.ac.il

2 University of Waterloo, Waterloo, Canada
3 The Technion, Haifa, Israel

Abstract. We address the problem of verifying k-safety properties: properties
that refer to k interacting executions of a program. A prominent way to verify
k-safety properties is by self composition. In this approach, the problem of check-
ing k-safety over the original program is reduced to checking an “ordinary” safety
property over a program that executes k copies of the original program in some
order. The way in which the copies are composed determines how complicated it
is to verify the composed program. We view this composition as provided by a
semantic self composition function that maps each state of the composed program
to the copies that make a move. Since the “quality” of a self composition func-
tion is measured by the ability to verify the safety of the composed program, we
formulate the problem of inferring a self composition function together with the
inductive invariant needed to verify safety of the composed program, where both
are restricted to a given language. We develop a property-directed inference algo-
rithm that, given a set of predicates, infers composition-invariant pairs expressed
by Boolean combinations of the given predicates, or determines that no such pair
exists. We implemented our algorithm and demonstrate that it is able to find self
compositions that are beyond reach of existing tools.

1 Introduction

Many relational properties, such as noninterference [12], determinism [21], service
level agreements [9], and more, can be reduced to the problem of k-safety. Namely,
reasoning about k different traces of a program simultaneously. A common approach
to verifying k-safety properties is by means of self composition, where the program
is composed with k copies of itself [4,32]. A state of the composed program consists
of the states of each copy, and a trace naturally corresponds to k traces of the original
program. Therefore, k-safety properties of the original program become ordinary safety
properties of the composition, hence reducing k-safety verification to ordinary safety.
This enables reasoning about k-safety properties using any of the existing techniques
for safety verification such as Hoare logic [20] or model checking [7].

While self composition is sound and complete for k-safety, its applicability is ques-
tionable for two main reasons: (i) considering several copies of the program greatly
increases the state space; and (ii) the way in which the different copies are com-
posed when reducing the problem to safety verification affects the complexity of
the resulting self composed program, and as such affects the complexity of verify-
ing it. Improving the applicability of self composition has been the topic of many
c© The Author(s) 2019
I. Dillig and S. Tasiran (Eds.): CAV 2019, LNCS 11561, pp. 161–179, 2019.
https://doi.org/10.1007/978-3-030-25540-4_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-25540-4_9&domain=pdf
https://doi.org/10.1007/978-3-030-25540-4_9

162 R. Shemer et al.

works [2,14,18,26,30,33]. However, most efforts are focused on compositions that are
pre-defined, or only depend on syntactic similarities.

In this paper, we take a different approach; we build upon the observation that by
choosing the “right” composition, the verification can be greatly simplified by leverag-
ing “simple” correlations between the executions. To that end, we propose an algorithm,
called PDSC, for inferring a property directed self composition. Our approach uses a
dynamic composition, where the composition of the different copies can change during
verification, directed at simplifying the verification of the composed program.

Compositions considered in previous work differ in the order in which the copies
of the program execute: either synchronously, asynchronously, or in some mix of the
two [3,14,34]. To allow general compositions, we define a composition function that
maps every state of the composed program to the set of copies that are scheduled in
the next step. This determines the order of execution for the different copies, and thus
induces the self composed program. Unlike most previous works where the composition
is pre-defined based on syntactic rules only, our composition is semantic as it is defined
over the state of the composed program.

To capture the difficulty of verifying the composed program, we consider verifi-
cation by means of inferring an inductive invariant, parameterized by a language for
expressing the inductive invariant. Intuitively, the more expressive the language needs
to be, the more difficult the verification task is. We then define the problem of inferring
a composition function together with an inductive invariant for verifying the safety of
the composed program, where both are restricted to a given language. Note that for a
fixed language L, an inductive invariant may exist for some composition function but
not for another1. Thus, the restriction to L defines a target for the inference algorithm,
which is now directed at finding a composition that admits an inductive invariant in L.
Example 1. To demonstrate our approach, consider the program in Fig. 1. The program
inserts a new value into an array. We assume that the array A and its length len are
“low”-security variables, while the inserted value h is “high”-security. The first loop
finds the location in which hwill be inserted. Note that the number of iterations depends
on the value of h. Due to that, the second loop executes to ensure that the output i (which
corresponds to the number of iterations) does not leak sensitive data. As an example, we
emphasize that without the second loop, i could leak the location of h in A. To express
the property that i does not leak sensitive data, we use the 2-safety property that in any
two executions, if the inputs A and len are the same, so is the output i.

To verify the 2-safety property, consider two copies of the program. Let the language
L for verifying the self composition be defined by the predicates depicted in Fig. 1. The
most natural self composition to consider is a lock-step composition, where the copies
execute synchronously. However, for such a composition the composed program may
reach a state where, for example, i1 = i2+1. This occurs when the first copy exists the
first loop, while the second copy is still executing it. Since the language cannot express
this correlation between the two copies, no inductive invariant suffices to verify that
i1 = i2 when the program terminates.

1 See the extended version [29] for an example that requires a non-linear inductive invariant with
a composition that is based on the control structure but has a linear invariant with another.

Property Directed Self Composition 163

Fig. 1. Constant-time insert to an array.

In contrast, when verifying the 2-safety property, PDSC directs its search towards a
composition function for which an inductive invariant in L does exist. As such, it infers
the composition function depicted in Fig. 1, as well as an inductive invariant in L. The
invariant for this composition implies that i1 = i2 at every state.

As demonstrated by the example, PDSC focuses on logical languages based on pred-
icate abstraction [17], where inductive invariants can be inferred by model checking. In
order to infer a composition function that admits an inductive invariant inL, PDSC starts
from a default composition function, and modifies its definition based on the reasoning
performed by the model checker during verification. As the composition function is
part of the verified model (recall that it is defined over the program state), different
compositions are part of the state space explored by the model checker. As a result, a
key ingredient of PDSC is identifying “bad” compositions that prevent it from finding
an inductive invariant in L. It is important to note that a naive algorithm that tries all
possible composition functions has a time complexity O(22

|P|
), where P is the set of

predicates considered. However, integrating the search for a composition function into
the model checking algorithm allows us to reduce the time complexity of the algorithm
to 2O(|P|), where we show that the problem is in fact PSPACE-hard.2

We implemented PDSC using SEAHORN [19], Z3 [25] and SPACER [22] and evalu-
ated it on examples that demonstrate the need for nontrivial semantic compositions. Our
results clearly show that PDSC can solve complex examples by inferring the required
composition, while other tools cannot verify these examples. We emphasize that for
these particular examples, lock-step composition is not sufficient. We also evaluated
PDSC on the examples from [26,30] that are proven with the trivial lock-step composi-
tion. On these examples, PDSC is comparable to state of the art tools.

Related Work. This paper addresses the problem of verifying k-safety properties (also
called hyperproperties [8]) by means of self composition. Other approaches tackle the
problem without self-composition, and often focus on more specific properties, most
noticeably the 2-safety noninterference property (e.g. [1,33]). Below we focus on works
that use self-composition.

2 Proofs of the claims made in this paper can be found in the extended version [29].

164 R. Shemer et al.

Previous work such as [2–4,14,15,32] considered self composition (also called
product programs) where the composition function is constant and set a-priori, using
syntax-based hints. While useful in general, such self compositions may sometimes
result in programs that are too complex to verify. This is in contrast to our approach,
where the composition function is evolving during verification, and is adapted to the
capabilities of the model checker.

The work most closely related to ours is [30] which introduces Cartesian Hoare
Logic (CHL) for verification of k-safety properties, and designs a verification frame-
work for this logic. This work is further improved in [26]. These works search for a
proof in CHL, and in doing so, implicitly modify the composition. Our work infers the
composition explicitly and can use off-the-shelf model checking tools. More impor-
tantly, when loops are involved both [30] and [26] use lock-step composition and align
loops syntactically. Our algorithm, in contrast, does not rely on syntactic similarities,
and can handle loops that cannot be aligned trivially.

There have been several results in the context of harnessing Constraint Horn Clauses
(CHC) solvers for verification of relational properties [11,24]. Given several copies of
a CHC system, a product CHC system that synchronizes the different copies is created
by a syntactical analysis of the rules in the CHC system. These works restrict the syn-
chronization points to CHC predicates (i.e., program locations), and consider only one
synchronization (obtained via transformations of the system of CHCs). On the other
hand, our algorithm iteratively searches for a good synchronization (composition), and
considers synchronizations that depend on program state.

Equivalence Checking and Regression Verification. Equivalence checking is another
closely related research field, where a composition of several programs is considered.
As an example, equivalence checking is applied to verify the correctness of compiler
optimizations [10,18,28,34]. In [28] the composition is determined by a brute-force
search for possible synchronization points. While this brute-force search resembles our
approach for finding the correct composition, it is not guided by the verification process.
The works in [10,18] identify possible synchronization points syntactically, and try to
match them during the construction of a simulation relation between programs.

Regression verification also requires the ability to show equivalence between dif-
ferent versions of a program [15,16,31]. The problem of synchronizing unbalanced
loops appears in [31] in the form of unbalanced recursive function calls. To allow syn-
chronization in such cases, the user can specify different unrolling parameters for the
different copies. In contrast, our approach relies only on user supplied predicates that
are needed to establish correctness, while synchronization is handled automatically.

2 Preliminaries

In this paper we reason about programs by means of the transition systems defining
their semantics. A transition system is a tuple T = (S,R, F), where S is a set of states,
R ⊆ S×S is a transition relation that specifies the steps in an execution of the program,
and F ⊆ S is a set of terminal states F ⊆ S such that every terminal state s ∈ F has
an outgoing transition to itself and no additional transitions (terminal states allow us to

Property Directed Self Composition 165

reason about pre/post specifications of programs). An execution or trace π = s0, s1, . . .
is a (finite or infinite) sequence of states such that for every i ≥ 0, (si, si+1) ∈ R. The
execution is terminating if there exists 0 ≤ i ≤ |π| such that si ∈ F . In this case, the
suffix of the execution is of the form si, si, . . . and we say that π ends at si.

As usual, we represent transition systems using logical formulas over a set of vari-
ables, corresponding to the program variables. We denote the set of variables by V . The
set of terminal states is represented by a formula over V and the transition relation is
represented by a formula over V � V ′, where V represents the pre-state of a transition
and V ′ = {v′ | v ∈ V} represents its post-state. In the sequel, we use sets of states and
their symbolic representation via formulas interchangeably.

Safety and Inductive Invariants. We consider safety properties defined via pre/post
conditions.3 A safety property is a pair (pre, post) where pre, post are formulas over V ,
representing subsets of S, denoting the pre- and post-condition, respectively. T satisfies
(pre, post), denoted T |= (pre, post), if every terminating execution π of T that starts
in a state s0 such that s0 |= pre ends in a state s such that s |= post. In other words, for
every state s that is reachable in T from a state in pre we have that s |= F → post.

A prominent way to verify safety properties is by finding an inductive invariant.
An inductive invariant for a transition system T and a safety property (pre, post) is a
formula Inv such that(1) pre ⇒ Inv (initiation), (2) Inv ∧ R ⇒ Inv ′ (consecution),
and (3) Inv ⇒ (F → post) (safety), where ϕ ⇒ ψ denotes the validity of ϕ → ψ,
and ϕ′ denotes ϕ(V ′), i.e., the formula obtained after substituting every v ∈ V by the
corresponding v′ ∈ V . If there exists such an inductive invariant, then T |= (pre, post).

k-safety. A k-safety property refers to k interacting executions of T . Similarly to an
ordinary property, it is defined by (pre, post), except that pre and post are defined over
V1 � . . . � Vk where Vi = {vi | v ∈ V} denotes the ith copy of the program variables.
As such, pre and post represent sets of k-tuples of program states (k-states for short):
for a k-tuple (s1, . . . , sk) of states and a formula ϕ over V1 � . . . � Vk, we say that
(s1, . . . , sk) |= ϕ if ϕ is satisfied when for each i, the assignment of Vi is determined
by si. We say that T satisfies (pre, post), denoted T |=k (pre, post), if for every k
terminating executions π1, . . . , πk of T that start in states s1, . . . , sk, respectively, such
that (s1, . . . , sk) |= pre, it holds that they end in states t1, . . . , tk, respectively, such
that (t1, . . . , tk) |= post.

For example, the non interference property may be specified by the following 2-
safety property: pre =

∧
v∈LowIn v1 = v2, post =

∧
v∈LowOut v1 = v2 where LowIn

and LowOut denote subsets of the program inputs, resp. outputs, that are considered
“low security” and the rest are classified as “high security”. This property asserts that
every 2 terminating executions that start in states that agree on the “low security” inputs
end in states that agree on the low security outputs, i.e., the outcome does not depend
on any “high security” input and, hence, does not leak secure information.

Checking k-safety properties reduces to checking ordinary safety properties by cre-
ating a self composed program that consists of k copies of the transition system, each

3 Our results can be extended to arbitrary safety (and k-safety) properties by introducing
“observable” states to which the property may refer.

166 R. Shemer et al.

with its own copy of the variables, that run in parallel in some way. Thus, the self com-
posed program is defined over variables V‖k = V1� . . .�Vk, where Vi = {vi | v ∈ V}
denotes the variables associated with the ith copy. For example, a common compo-
sition is a lock-step composition in which the copies execute simultaneously. The
resulting composed transition system T ‖k = (S‖k, R‖k, F ‖k) is defined such that
S‖k = S × . . . × S, F ‖k =

∧k
i=1 F (Vi) and R‖k =

∧k
i=1 R(Vj ,Vj ′). Note that

R‖k is defined over V‖k � V‖k′
(as usual). Then, the k-safety property (pre, post) is

satisfied by T if and only if an ordinary safety property (pre, post) is satisfied by T ‖k.
More general notions of self composition are investigated in Sect. 3.

3 Inferring Self Compositions for Restricted Languages of
Inductive Invariants

Any self-composition is sufficient for reducing k-safety to safety, e.g., lock-
step, sequential, synchronous, asynchronous, etc. However, the choice of the self-
composition used determines the difficulty of the resulting safety problem. Different
self composed programs would require different inductive invariants, some of which
cannot be expressed in a given logical language.

In this section, we formulate the problem of inferring a self composition function
such that the obtained self composed program may be verified with a given language of
inductive invariants. We are, therefore, interested in inferring both the self composition
function and the inductive invariant for verifying the resulting self composed program.
We start by formulating the kind of self compositions that we consider.

In the sequel, we fix a transition system T = (S,R, F) with a set of
variables V .

3.1 Semantic Self Composition

Roughly speaking, a k self composition of T consists of k copies of T that execute
together in some order, where steps may interleave or be performed simultaneously.
The order is determined by a self composition function, which may also be viewed as
a scheduler that is responsible for scheduling a subset of the copies in each step. We
consider semantic compositions in which the order may depend on the states of the
different copies, as well as the correlations between them (as opposed to syntactic com-
positions that only depend on the control locations of the copies, but may not depend
on the values of other variables):

Definition 1 (Semantic Self Composition Function). A semantic k self composition
function (k-composition function for short) is a function f : Sk → P({1..k}), mapping
each k-state to a nonempty set of copies that are to participate in the next step of the
self composed program4.

4 We consider memoryless composition functions. Compositions that depend on the history of
the (joint) execution are supported via ghost state added to the program to track the history.

Property Directed Self Composition 167

We represent a k-composition function f by a set of logical conditions, with a
condition CM for every nonempty subset M ⊆ {1..k} of the copies. For each such
M ⊆ {1..k}, the condition CM is defined over V‖k = V1 � . . . � Vk, and hence it
represents a set of k-states, with the meaning that all the k-states that satisfy CM are
mapped to M by f :

f(s1, . . . , sk) = M if and only if (s1, . . . , sk) |= CM .

To ensure that the function is well defined, we require that (
∨

M CM) ≡ true, which
ensures that every k-state satisfies at least one of the conditions. We also require that
for every M1 �= M2, CM1 ∧ CM2 ≡ false, hence every k-state satisfies at most one
condition. Together these requirements ensure that the conditions induce a partition of
the set of all k-states. In the sequel, we identify a k-composition function f with its
symbolic representation via conditions {CM}M and use them interchangeably.

Definition 2 (Composed Program). Given a k-composition function f , represented
via conditionsCM for every nonempty setM ⊆ {1..k}, we define the k self composition
of T to be the transition system T f = (S‖k, Rf , F ‖k) over variables V‖k = V1 � . . . �
Vk defined as follows: F ‖k =

∧k
i=1 F i, where F i = F (Vi), and

Rf =
∨

∅�=M⊆{1..k}
(CM ∧ ϕM) where ϕM =

∧

j∈M

R(Vj ,Vj ′
) ∧

∧

j �∈M

Vj = Vj ′

Thus, in T f , the set of states consists of k-states (S‖k = S × . . . × S), the ter-
minal states are k-states in which all the individual states are terminal, and the tran-
sition relation includes a transition from (s1, . . . , sk) to (s′

1, . . . , s
′
k) if and only if

f(s1, . . . , sk) = M and (∀i ∈ M. (si, s′
i) ∈ R) ∧ (∀i �∈ M. si = s′

i). That is,
every transition of T f corresponds to a simultaneous transition of a subset M of the
k copies of T , where the subset is determined by the self composition function f . If
f(s1, . . . , sk) = M , then for every i ∈ M we say that i is scheduled in (s1, . . . , sk).

Example 2. A k self composition that runs the k copies of T sequentially, one after the
other, corresponds to a k-composition function f defined by f(s1, . . . , sk) = {i} where
i ∈ {1..k} is the minimal index of a non-terminal state in {s1, . . . , sk}. If all states in
{s1, . . . , sk} are terminal then i = k (or any other index). This is encoded as follows:
for every 1 ≤ i < k, C{i} = ¬F i ∧ ∧

j<i F
j , C{k} =

∧
j<k F j and CM = false for

every other M ⊆ {1..k}.
Example 3. The lock-step composition that runs the k copies of T synchronously cor-
responds to a k-self composition function f defined by f(s1, . . . , sk) = {1, . . . , k},
and encoded by C{1,...,k} = true and CM = false for every other M ⊆ {1..k}.

In order to ensure soundness of a reduction of k-safety to safety via self composi-
tion, one has to require that the self composition function does not “starve” any copy
of the transition system that is about to terminate if it continues to execute. We refer to
this requirement as fairness.

168 R. Shemer et al.

Definition 3 (Fairness). A k-self composition function f is fair if for every k terminat-
ing executions π1, . . . , πk of T there exists an execution π‖ of T f such that for every
copy i ∈ {1..k}, the projection of π‖ to i is πi.

Note that by the definition of the terminal states of T f , π‖ as above is guaranteed
to be terminating. We say that the ith copy terminates in π‖ if π‖ contains a k-state
(s1, . . . , sk) such that si ∈ F . Fairness may be enforced in a straightforward way by
requiring that whenever f(s1, . . . , sk) = M , the set M includes no index i for which
si ∈ F , unless all have terminated. Since we assume that terminal states may only
transition to themselves, a weaker requirement that suffices to ensure fairness is that M
includes at least one index i for which si �∈ F , unless there is no such index.

The following claim is now straightforward:

Lemma 1. Let T be a transition system, (pre, post) a k-safety property, and f a fair
k-composition function for T and (pre, post). Then

T |=k (pre, post) iff T f |= (pre, post).

Proof (sketch). Every terminating execution of T f corresponds to k terminating execu-
tions of T . Fairness of f ensures that the converse also holds.

To demonstrate the necessity of the fairness requirement, consider a (non-fair) self
composition function f that maps every state to {1}. Then, regardless of what the actual
transition system T does, the resulting self composition T f satisfies every pre-post
specification vacuously, as it never reaches a terminal state.

Remark 1. While we require the conditions {CM}M defining a self composition func-
tion f to induce a partition of S‖k in order to ensure that f is well defined as a (total)
function, the requirement may be relaxed in two ways. First, we may allow CM1 and
CM2 to overlap. This will add more transitions and may make the task of verifying
the composed program more difficult, but it maintains the soundness of the reduction.
Second, it suffices that the conditions cover the set of reachable states of the composed
program rather than the entire state space. These relaxations do not damage sound-
ness. Technically, this means that f represented by the conditions is a relation rather
than a function. We still refer to it as a function and write f(s1, . . . , sk) = M to indi-
cate that (s1, . . . , sk) |= CM , not excluding the possibility that (s1, . . . , sk) |= M ′

for M ′ �= M as well. We note that as long as the language used to describe com-
positions is closed under Boolean operations, we can always extract from the con-
ditions {CM}M a function f ′. This is done as follows: First, to prevent the overlap
between conditions, determine an arbitrary total order < on the sets M ⊆ {1..k} and
set C ′

M := CM ∧ ∧
N<M ¬CN . Second, to ensure that the conditions cover the entire

state space, set C ′
{1..k} := C ′

{1..k} ∨ ¬(∨M CM). It is easy to verify that f ′ defined by
{C ′

M}M is a total self composition function and that if f is fair, then so is f ′.

3.2 The Problem of Inferring Self Composition with Inductive Invariant

Lemma 1 states the soundness of the reduction of k-safety to ordinary safety. Together
with the ability to verify safety by means of an inductive invariant, this leads to a verifi-
cation procedure. However, while soundness of the reduction holds for any self compo-
sition, an inductive invariant in a given language may exist for the composed program

Property Directed Self Composition 169

resulting from some compositions but not from others. We therefore consider the self
composition function and the inductive invariant together, as a pair, leading to the fol-
lowing definition.

Definition 4. Let T be a transition system and (pre, post) a k safety property. For a
formula Inv over V‖k and a self composition function f represented by conditions
{CM}M , we say that (f, Inv) is a composition-invariant pair for T and (pre, post) if
the following conditions hold:

– pre =⇒ Inv (initiation of Inv),
– for every ∅ �= M ⊆ {1..k}, Inv ∧ CM ∧ ϕM =⇒ Inv ′ (consecution of Inv for

Rf),
– Inv =⇒ (

(
∧k

j=1 F j) → post
)

(safety of Inv),
– Inv =⇒ ∨

M CM (f covers the reachable states),
– for every ∅ �= M ⊆ {1..k}, CM ∧ (

∨k
j=1 ¬F j) =⇒ ∨

j∈M ¬F j (f is fair).

As commented in Remark 1, we relax the requirement that (
∨

M CM) ≡ true to
Inv =⇒ ∨

M CM , thus ensuring that the conditions cover all the reachable states.
Since the reachable states of T f are determined by {CM}M (which define f), this
reveals the interplay between the self composition function and the inductive invariant.
Furthermore, we do not require that CM1 ∧ CM2 ≡ false for M1 �= M2, hence a
k-state may satisfy multiple conditions. As explained earlier, these relaxations do not
damage soundness. Furthermore, if we construct from f a self composition function f ′

as described in Remark 1, Inv would be an inductive invariant for T f ′
as well.

Lemma 2. If there exists a composition-invariant pair (f, Inv) for T and (pre, post),
then T |=k (pre, post).

If we do not restrict the language in which f and Inv are specified, then the converse
also holds. However, in the sequel we are interested in the ability to verify k-safety with
a given language, e.g., one for which the conditions of Definition 4 belong to a decidable
fragment of logic and hence can be discharged automatically.

Definition 5 (Inference in L). Let L be a logical language. The problem of inferring a
composition-invariant pair in L is defined as follows. The input is a transition system T
and a k-safety property (pre, post). The output is a composition-invariant pair (f, Inv)
for T and (pre, post) (as defined in Definition 4), where Inv ∈ L and f is represented
by conditions {CM}M such that CM ∈ L for every ∅ �= M ⊆ {1..k}. If no such pair
exists, the output is “no solution”.

When no solution exists, it does not necessarily mean that T �|=k (pre, post). Instead, it
may be that the language L is simply not expressive enough. Unfortunately, for expres-
sive languages (e.g., quantified formulas or even quantifier free linear integer arith-
metic), the problem of inferring an inductive invariant alone is already undecidable,
making the problem of inferring a composition-invariant pair undecidable as well:

Lemma 3. Let L be closed under Boolean operations and under substitution of a vari-
able with a value, and include equalities of the form v = a, where v is a variable and
a is a value (of the same sort). If the problem of inferring an inductive invariant in L is
undecidable, then so is the problem of inferring a composition-invariant pair in L.

170 R. Shemer et al.

For example, linear integer arithmetic satisfies the conditions of the lemma. This
motivates us to restrict the languages of inductive invariants. Specifically, we con-
sider languages defined by a finite set of predicates. We consider relational predicates,
defined over V‖k = V1 � . . . � Vk. For a finite set of predicates P , we define LP to be
the set of all formulas obtained by Boolean combinations of the predicates in P .

Definition 6 (Inference using predicate abstraction). The problem of inferring a
predicate-based composition-invariant pair is defined as follows. The input is a tran-
sition system T , a k-safety property (pre, post), and a finite set of predicates P . The
output is the solution to the problem of inferring a composition-invariant pair for T
and (pre, post) in LP .

Remark 2. It is possible to decouple the language used for expressing the self com-
position function from the language used to express the inductive invariant. Clearly,
different sets of predicates (and hence languages) can be assigned to the self compo-
sition function and to the inductive invariant. However, since inductiveness is defined
with respect to the transitions of the composed system, which are in turn defined by the
self composition function, if the language defining f is not included in the language
defining Inv , the conditions CM themselves would be over-approximated when check-
ing the requirements of Definition 4 and therefore would incur a precision loss. For this
reason, we use the same language for both.

Since the problem of invariant inference in LP is PSPACE-hard [23], a reduc-
tion from the problem of inferring inductive invariants to the problem of inferring
composition-invariant pairs (similar to the one used in the proof of Lemma 3) shows
that composition-invariant inference in LP is also PSPACE-hard:

Theorem 1. Inferring a predicate-based composition-invariant pair is PSPACE-hard.

4 Algorithm for Inferring Composition-Invariant Pairs

In this section, we present Property Directed Self-Composition, PDSC for short—our
algorithm for tackling the composition-invariant inference problem for languages of
predicates (Definition 6). Namely, given a transition system T , a k-safety property
(pre, post) and a finite set of predicates P , we address the problem of finding a pair
(f, Inv), where f is a self composition function and Inv is an inductive invariant for
the composed transition system T f obtained from f , and both of them are in LP , i.e.,
defined by Boolean combinations of the predicates in P .

We rely on the property that a transition system (in our case T f) has an inductive
invariant in LP if and only if its abstraction obtained using P is safe. This is because,
the set of reachable abstract states is the strongest set expressible inLP that satisfies ini-
tiation and consecution. Given T f , this allows us to use predicate abstraction to either
obtain an inductive invariant in LP for T f (if the abstraction of T f is safe) or determine
that no such inductive invariant exists (if an abstract counterexample trace is obtained).
The latter indicates that a different self composition function needs to be considered.
A naive realization of this idea gives rise to an iterative algorithm that starts from an

Property Directed Self Composition 171

1 f ← lockstep , E ← ∅, Unreach ← false
2 while (true) do
3 (res, Inv , cex) ← Abs Reach(P, T f , pre, post,Unreach)
4 if res = safe then return (f, Inv(P))
5 (ŝ, M) ← Last Step(cex)
6 E ← E ∪ {(ŝ, M)}
7 while (All Excluded Or Starving(ŝ, E)) do
8 Unreach ← Unreach ∨ ŝ
9 if Unreach ∧ ϕpre(B) �≡ false then return “no solution in LP”

10 cex ← Remove Last Step(cex)
11 (ŝ, M) ← Last Step(cex)
12 E ← E ∪ {(ŝ, M)}
13 f ← Modify SC(f, ŝ, E)

Algorithm 1. PDSC: Property-Directed Self-Composition.

arbitrary initial composition function and in each iteration computes a new composition
function. At the worst case such an algorithm enumerates all self composition functions
defined in LP , i.e., has time complexity O(22

|P|
). Importantly, we observe that, when

no inductive invariant exists for some composition function, we can use the abstract
counterexample trace returned in this case to (i) generalize and eliminate multiple com-
position functions, and (ii) identify that some abstract states must be unreachable if
there is to be a composition-invariant pair, i.e., we “block” states in the spirit of prop-
erty directed reachability [5,13]. This leads to the algorithm depicted in Algorithm 1
whose worst case time complexity is 2O(|P|). Next, we explain the algorithm in detail.

Finding an Inductive Invariant for a Given Composition Function Using Predicate
Abstraction. We use predicate abstraction [17,27] to check if a given candidate com-
position function has a corresponding inductive invariant. This is done as follows. The
abstraction of T f using P , denoted AP(T f), is a transition system (Ŝ, R̂) defined over
variables B, where B = {bp | p ∈ P} (we omit the terminal states). Ŝ = {0, 1}B, i.e.,
each abstract state corresponds to a valuation of the Boolean variables representing P .
An abstract state ŝ ∈ Ŝ represents the following set of states of T f :

γ(ŝ) = {s‖ ∈ S‖k | ∀p ∈ P. s‖ |= p ⇔ ŝ(bp) = 1}

We extend γ to sets of states and to formulas representing sets of states in the usual
way. The abstract transition relation is defined as usual:

R̂ = {(ŝ1, ŝ2) | ∃s‖
1 ∈ γ(ŝ1) ∃s‖

2 ∈ γ(ŝ2). (s‖
1, s

‖
2) ∈ Rf}

Note that the set of abstract states in AP(T f) does not depend on f .

Notation. We sometimes refer to an abstract state ŝ ∈ Ŝ as the formula
∧

ŝ(bp)=1 bp ∧
∧

ŝ(bp)=0 ¬bp. For a formula ψ ∈ LP , we denote by ψ(B) the result of substituting each
p ∈ P in ψ by the corresponding Boolean variable bp. For the opposite direction, given

172 R. Shemer et al.

a formula ψ over B, we denote by ψ(P) the formula in LP resulting from substituting
each bp ∈ B in ψ by p. Therefore, ψ(P) is a symbolic representation of γ(ψ).

Every set defined by a formulaψ ∈ LP is precisely represented byψ(B) in the sense
that γ(ψ(B)) is equal to the set of states defined by ψ, i.e., ψ(B) is a precise abstraction
of ψ. For simplicity, we assume that the termination conditions as well as the pre/post
specification can be expressed precisely using the abstraction, in the following sense:

Definition 7. P is adequate for T and (pre, post) if there exist ϕpre, ϕpost, ϕF i ∈ LP
such that ϕpre ≡ pre, ϕpost ≡ post and ϕF i ≡ F i (for every copy i ∈ {1..k}).

The following lemma provides the foundation for our algorithm:

Lemma 4. Let T be a transition system, (pre, post) a k safety property, and P a finite
set of predicates adequate for T and (pre, post). For a self composition function f
defined via conditions {CM}M in LP , there exists an inductive invariant Inv in LP
such that (f, Inv) is a composition-invariant pair for T and (pre, post) if and only if
the following three conditions hold:

S1 All reachable states of AP(T f) from ϕpre(B) satisfy (
∧k

i=1 ϕF i(B)) → ϕpost(B),
S2 All reachable states of AP(T f) from ϕpre(B) satisfy

∨
M CM (B), and

S3 For every ∅ �= M ⊆ {1..k}, CM (B)∧ (
∨k

j=1 ¬ϕF j (B)) =⇒ ∨
j∈M ¬ϕF j (B).

Furthermore, if the conditions hold, then the symbolic representation of the set of
abstract states of AP(T f) reachable from ϕpre(B) is a formula Inv over B such that
(f, Inv(P)) is a composition-invariant pair for T and (pre, post).

Algorithm 1 starts from the lock-step self composition function (Line 1), which
is fair5, and constructs the next candidate f such that condition S3 in Lemma 4
always holds (see discussion of Modify SC). Thus, condition S3 need not be checked
explicitly.

Algorithm 1 checks whether conditions S1 and S2 hold for a given candidate
composition function f by calling Abs Reach (Line.3) – both checks are per-
formed via a (non-)reachability check in AP(T f), checking whether a state violating
(
∧k

i=1 ϕF i(B)) → ϕpost(B) or
∨

M CM (B) is reachable from ϕpre(B). Algorithm 1
maintains the abstract states that are not in

∨
M CM (B) by the formulaUnreach defined

over B, which is initialized to false (as the lock-step composition function is defined for
every state) and is updated in each iteration of Algorithm 1 to include the abstract states
violating

∨
M CM (B). If no abstract state violating S1 or S2 is reachable, i.e., the con-

ditions hold, then Abs Reach returns the (potentially overapproximated) set of reach-
able abstract states, represented by a formula Inv over B. In this case, by Lemma 4,
(f, Inv(P)) is a composition-invariant pair (line 4). Otherwise, an abstract counterex-
ample trace is obtained. (We can of course apply bounded model checking to check if
the counterexample is real; we omit this check as our focus is on the case where the
system is safe.)

Remark 3. In practice, we do not construct AP(T f) explicitly. Instead, we use the
implicit predicate abstraction approach [6].
5 Any fair self composition can be chosen as the initial one; we chose lock-step since it is a good
starting point in many applications.

Property Directed Self Composition 173

Eliminating Self Composition Candidates Based on Abstract Counterexamples.
An abstract counterexample to conditions S1 or S2 indicates that the candidate com-
position function f has no corresponding Inv . Violation of S1 can only be resolved by
changing f such that the abstract trace is no longer feasible. Violation of S2 may, in
principle, also be resolved by extending the definition of f such that it is defined for all
the abstract states in the counterexample trace.

However, to prevent the need to explore both options, our algorithm maintains the
following invariant for every candidate self composition function f that it constructs:

Claim. Every abstract state that is not in
∨

M CM (B) is not reachable w.r.t. the abstract
composed program of any composition function that is part of a composition-invariant
pair for T and (pre, post).

This property clearly holds for the lock-step composition function, which the algorithm
starts with, since for this composition,

∨
M CM (B) ≡ true. As we explain in Corol-

lary 2, it continues to hold throughout the algorithm.
As a result of this property, whenever a candidate composition function f does not

satisfy condition S1 or S2, it is never the case that
∨

M CM (B) needs to be extended
to allow the abstract states in cex to be reachable. Instead, the abstract counterexample
obtained in violation of the conditions needs to be eliminated by modifying f .

Let cex = ŝ1, . . . , ŝm+1 be an abstract counterexample of AP(T f) such that ŝ1 |=
ϕpre(B) and ŝm+1 |= (

∧k
i=1 ϕF i(B)) ∧ ¬ϕpost(B) (violating S1) or ŝm+1 |= Unreach

(violating S2). Any self composition f ′ that agrees with f on the states in γ(ŝi) for every
ŝi that appears in cex has the same transitions in Rf and, hence, the same transitions
in R̂. It, therefore, exhibits the same abstract counterexample in AP(T f ′

). Hence, it
violates S1 or S2 and is not part of any composition-invariant pair.

Notation. Recall that f is defined via conditions CM ∈ LP . This ensures that for every
abstract state ŝ, f is defined in the same way for all the states in γ(ŝ). We denote the
value of f on the states in γ(ŝ) by f(ŝ) (in particular, f(ŝ) may be undefined). We get
that f(ŝ) = M if and only if ŝ |= CM (B).
Using this notation, to eliminate the abstract counterexample cex , one needs to elimi-
nate at least one of the transitions in cex by changing the definition of f(ŝi) for some
1 ≤ i ≤ m. For a new candidate function f ′ this may be encoded by the disjunctive
constraint

∨m
i=1 f ′(ŝi) �= f(ŝi). However, we observe that a stronger requirement may

be derived from cex based on the following lemma:

Lemma 5. Let f be a self composition function and cex = ŝ1, . . . , ŝm+1 a coun-
terexample trace in AP(T f) such that ŝ1 |= ϕpre(B) but ŝm+1 |= (

∧k
i=1 ϕF i(B)) ∧

¬ϕpost(B) or ŝm+1 |= Unreach. Then for any self composition function f ′ such that
f ′(ŝm) = f(ŝm), if ŝm is reachable in AP(T f ′

) from ϕpre(B), then a counterexample
trace to S1 or S2 exists.

Corollary 1. If there exists a composition-invariant pair (f ′, Inv ′), then there is also
one where f ′(ŝm) �= f(ŝm).

174 R. Shemer et al.

Therefore, we require that in the next self composition candidates the abstract state
ŝm must not be mapped to its current value in f , i.e., f ′(ŝm) �= M , where f(ŝm) = M 6.

Algorithm 1 accumulates these constraints in the set E (Line 6). Formally, the con-
straint (ŝ,M) ∈ E asserts thatC ′

M must imply ¬(∧ŝ(bp)=1 p∧∧
ŝ(bp)=0 ¬p), and hence

f ′(ŝ) �= M .

Identifying Abstract States that Must Be Unreachable. A new candidate self com-
position is constructed such that it satisfies all the constraints inE (thus ensuring that no
abstract counterexample will re-appear). In the construction, we make sure to satisfy S3
(fairness). Therefore, for every abstract state ŝ, we choose a value f ′(ŝ) that satisfies the
constraints in E and is non-starving: a value M is starving for ŝ if ŝ |= ∨k

j=1 ¬ϕF j (B)
but ŝ �|= ∨

j∈M ¬ϕF j (B), i.e., some of the copies have not terminated in ŝ but none of
the non-terminating copies is scheduled. (Due to adequacy, a value M is starving for ŝ
if and only if it is starving for every s‖ ∈ γ(ŝ).)

If for some abstract state ŝ, all the non-starving values have already been excluded
(i.e., (ŝ,M) ∈ E for every non-starving M), we conclude that there is no f ′ such that
ŝ is reachable in AP(T f ′

) and f ′ is part of a composition-invariant pair:

Lemma 6. Let ŝ ∈ Ŝ be an abstract state such that for every ∅ �= M ⊆ {1..k} either
M is starving for ŝ or (ŝ,M) ∈ E. Then, for every f ′ that satisfies S3, if AP(T f ′

)
satisfies S1 and S2, then ŝ is unreachable in AP(T f ′

).

Corollary 2. If there exists a composition-invariant pair (f ′, Inv ′), then ŝ is unreach-
able in AP(T f ′

).

This is because no matter how the self composition function f ′ would be defined, ŝ is
guaranteed to have an outgoing abstract counterexample trace in AP(T f ′

).
We, therefore, turn f ′(ŝ) to be undefined. As a result, condition S2 of Algorithm 4

requires that ŝ will be unreachable in AP(T f ′
). In Algorithm 1, this is enforced by

adding ŝ to Unreach (Line 8).
Every abstract state ŝ that is added to Unreach is a strengthening of the safety prop-

erty by an additional constraint that needs to be obeyed in any composition-invariant
pair, where obtaining a composition-invariant pair is the target of the algorithm. This
makes our algorithm property directed.

If an abstract state that satisfiesϕpre(B) is added toUnreach, then Algorithm 1 deter-
mines that no solution exists (Line 9). Otherwise, it generates a new constraint for E
based on the abstract state preceding ŝ in the abstract counterexample (Line 12).

Constructing the Next Candidate Self Composition Function. Given the set of con-
straints in E and the formula Unreach, Modify SC (Line 13) generates the next candi-
date composition function by (i) taking a constraint (ŝ,M) such that ŝ �|= Unreach (typ-
ically the one that was added last), (ii) selecting a non-starving value Mnew for ŝ (such

6 If the conditions {CM}M defining f may overlap, we consider the condition CM by which
the transition from ŝm to ŝm+1 was defined.

Property Directed Self Composition 175

a value must exist, otherwise ŝ would have been added to Unreach), and (iii) updating
the conditions defining f ′ as follows:

C ′
M = CM ∧ ¬ŝ(P) C ′

Mnew
= (CMnew ∨ ŝ(P))

The conditions of other values remain as before. This definition is facilitated by the fact
that the same set of predicates is used both for defining f ′ and for defining the abstract
states ŝ ∈ Ŝ (by which Inv is obtained). Note that in practice we do not explicitly
turn f ′ to be undefined for γ(Unreach). However, these definitions are ignored. The
definition ensures that f ′ is non-starving (satisfying condition S3) and that no two con-
ditions C ′

M1
�= C ′

M2
overlap. While the latter is not required, it also does not restrict

the generality of the approach (since the language we consider is closed under Boolean
operations).

Theorem 2. Let T be a transition system, (pre, post) a k-safety property and P a set of
predicates over V‖k. If Algorithm 1 returns “no solution” then there is no composition-
invariant pair for T and (pre, post) in LP . Otherwise, (f, Inv(P)) returned by Algo-
rithm 1 is a composition-invariant pair in LP , and thus T |=k (pre, post).

Complexity. Each iteration of Algorithm 1 adds at least one constraint to E, excluding
a potential value for f over some abstract state ŝ. An excluded values is never re-used.
Hence, the number of iterations is at most the number of abstract states, 2|P|, multiplied
by the number of potential values for each abstract state, n = 2k. Altogether, the num-
ber of iterations is at most O(2|P| · 2k). Each iteration makes one call to Abs Reach
which checks reachability via predicate abstraction, hence, assuming that satisfiability
checks in the original logic are at most exponential, its complexity is 2O(|P|). Therefore,
the overall complexity of the algorithm is 2O(|P|)+k. Typically, k is a small constant,
hence the complexity is dominated by 2O(|P|).

5 Evaluation and Conclusion

Implementation. We implemented PDSC (Algorithm 1) in Python on top of Z3 [25]. Its
input is a transition system encoded by Constrained Horn Clauses (CHC) in SMT2 for-
mat, a k-safety property and a set of predicates. The abstraction is implicitly encoded
using the approach of [6], and is parameterized by a composition function that is mod-
ified in each iteration. For reachability checks (Abs Reach) we use SPACER [22],
which supports LRA and arrays. For the set of predicates used by PDSC, we imple-
mented an automatic procedure that mines these predicates from the CHC. Additional
predicates may be added manually.

Experiments. To evaluate PDSC, we compare it to SYNONYM [26], the current state of
the art in k-safety verification.

To show the effectiveness of PDSC, we consider examples that require a nontrivial
composition (these examples are detailed in [29]). We emphasize that the motivation for
these example is originated in real-life scenarios. For example, Fig. 1 follows a pattern
of constant-time execution. The results of these experiments are summarized in Table 1.

176 R. Shemer et al.

Table 1. Examples that require semantic compositions

Program PDSC SYNONYM

Time(s) Iteations

DoubleSquareNI 7 33 fail

HalfSquareNI 3.4 28 fail

ArrayIntMod 58.2 168 fail

SquaresSum 2.8 4 fail

ArrayInsert 19.5 102 fail

Fig. 2. Runtime comparison (in sec.):
PDSC (x-axis) and SYNONYM (y-axis).

PDSC is able to find the right composition function and prove all of the examples, while
SYNONYM cannot verify any of them. We emphasize that for these examples, lock-step
composition is not sufficient. However, PDSC infers a composition that depends on the
programs’ state (variable values), rather than just program locations.

Next we consider Java programs from [26,30], which we manually converted to C,
and then converted to CHC using SEAHORN [19]. For all but 3 examples, only 2 types
of predicates, which we mined automatically, were sufficient for verification: (i) rela-
tional predicates derived from the pre- and post-conditions, and (ii) for simple loops that
have an index variable (e.g., for iterating over an array), an equality predicate between
the copies of the indices. These predicates were sufficient since we used a large-step
encoding of the transition relation, hence the abstraction via predicates takes effect only
at cut-points. For the remaining 3 examples, we manually added 2–4 predicates. With
the exception of 1 example where a timeout of 10 seconds was reached, all examples
were solved with a lock-step composition function. Yet, we include them to show that
on examples with simple compositions PDSC performs similarly to SYNONYM. This
can be seen in Fig. 2.

Conclusion and Future Work. This work formulates the problem of inferring a self
composition function together with an inductive invariant for the composed program,
thus capturing the interplay between the self composition and the difficulty of verify-
ing the resulting composed program. To address this problem we present PDSC– an
algorithm for inferring a semantic self composition, directed at verifying the composed
program with a given language of predicates. We show that PDSC manages to find non-
trivial self compositions that are beyond reach of existing tools. In future work, we are
interested in further improving PDSC by extending it with additional (possibly lazy)
predicate discovery abilities. This has the potential to both improve performance and
verify properties over wider range of programs. Additionally, we consider exploring
further generalization techniques during the inference procedure.

Acknowledgements. This publication is part of a project that has received funding from the
European Research Council (ERC) under the European Union’s Horizon 2020 research and
innovation programme (grant agreement No [759102-SVIS]). The research was partially sup-
ported by Len Blavatnik and the Blavatnik Family foundation, the Blavatnik Interdisciplinary

Property Directed Self Composition 177

Cyber Research Center, Tel Aviv University, the Israel Science Foundation (ISF) under grant No.
1810/18 and the United States-Israel Binational Science Foundation (BSF) grant No. 2016260.

References

1. Antonopoulos, T., Gazzillo, P., Hicks, M., Koskinen, E., Terauchi, T., Wei, S.: Decomposition
instead of self-composition for proving the absence of timing channels. In: Proceedings of the
38th ACM SIGPLAN Conference on Programming Language Design and Implementation,
PLDI 2017, Barcelona, Spain, June 18–23, 2017. pp. 362–375 (2017). https://doi.org/10.
1145/3062341.3062378

2. Barthe, G., Crespo, J.M., Kunz, C.: Relational verification using product programs. In: Pro-
ceedings of the FM 2011: Formal Methods - 17th International Symposium on Formal Meth-
ods, Limerick, Ireland, June 20–24, 2011, pp. 200–214 (2011). https://doi.org/10.1007/978-
3-642-21437-0 17

3. Barthe, G., Crespo, J.M., Kunz, C.: Beyond 2-safety: asymmetric product programs for rela-
tional program verification. In: Artemov, S., Nerode, A. (eds.) LFCS 2013. LNCS, vol. 7734,
pp. 29–43. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-35722-0 3

4. Barthe, G., D’Argenio, P.R., Rezk, T.: Secure information flow by self-composition. In:
17th IEEE Computer Security Foundations Workshop, (CSFW-17 2004), 28–30 June 2004,
Pacific Grove, CA, USA. pp. 100–114 (2004). https://doi.org/10.1109/CSFW.2004.17

5. Bradley, A.R.: SAT-based model checking without unrolling. In: Jhala, R., Schmidt, D. (eds.)
VMCAI 2011. LNCS, vol. 6538, pp. 70–87. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-18275-4 7

6. Cimatti, A., Griggio, A., Mover, S., Tonetta, S.: IC3 modulo theories via implicit predicate
abstraction. In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413, pp. 46–61.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54862-8 4

7. Clarke, E.M., Henzinger, T.A., Veith, H., Bloem, R. (eds.): Handbook of Model Checking.
Springer, Cham (2018)

8. Clarkson, M.R., Schneider, F.B.: Hyperproperties. In: Proceedings of the 21st IEEE Com-
puter Security Foundations Symposium, CSF 2008, Pittsburgh, Pennsylvania, USA, 23–25
June 2008, pp. 51–65 (2008). https://doi.org/10.1109/CSF.2008.7

9. Clarkson, M.R., Schneider, F.B.: Hyperproperties. J. Comput. Secur. 18(6), 1157–1210
(2010)

10. Dahiya, M., Bansal, S.: Black-box equivalence checking across compiler optimizations. In:
Chang, B.-Y.E. (ed.) APLAS 2017. LNCS, vol. 10695, pp. 127–147. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-71237-6 7

11. De Angelis, E., Fioravanti, F., Pettorossi, A., Proietti, M.: Relational verification through
horn clause transformation. In: Rival, X. (ed.) SAS 2016. LNCS, vol. 9837, pp. 147–169.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53413-7 8

12. Denning, D.E., Denning, P.J.: Certification of programs for secure information flow. Com-
mun. ACM 20(7), 504–513 (1977). https://doi.org/10.1145/359636.359712

13. Eén, N., Mishchenko, A., Brayton, R.K.: Efficient implementation of property directed
reachability. In: International Conference on Formal Methods in Computer-Aided Design,
FMCAD 2011, Austin, TX, USA, October 30 - November 02, 2011, pp. 125–134 (2011).
http://dl.acm.org/citation.cfm?id=2157675

14. Eilers, M., Müller, P., Hitz, S.: Modular product programs. In: Ahmed, A. (ed.) ESOP 2018.
LNCS, vol. 10801, pp. 502–529. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
89884-1 18

https://doi.org/10.1145/3062341.3062378
https://doi.org/10.1145/3062341.3062378
https://doi.org/10.1007/978-3-642-21437-0_17
https://doi.org/10.1007/978-3-642-21437-0_17
https://doi.org/10.1007/978-3-642-35722-0_3
https://doi.org/10.1109/CSFW.2004.17
https://doi.org/10.1007/978-3-642-18275-4_7
https://doi.org/10.1007/978-3-642-18275-4_7
https://doi.org/10.1007/978-3-642-54862-8_4
https://doi.org/10.1109/CSF.2008.7
https://doi.org/10.1007/978-3-319-71237-6_7
https://doi.org/10.1007/978-3-662-53413-7_8
https://doi.org/10.1145/359636.359712
http://dl.acm.org/citation.cfm?id=2157675
https://doi.org/10.1007/978-3-319-89884-1_18
https://doi.org/10.1007/978-3-319-89884-1_18

178 R. Shemer et al.

15. Felsing, D., Grebing, S., Klebanov, V., Rümmer, P., Ulbrich, M.: Automating regression
verification. In: ACM/IEEE International Conference on Automated Software Engineering,
ASE 2014, Vasteras, Sweden - September 15–19, 2014, pp. 349–360 (2014). https://doi.org/
10.1145/2642937.2642987

16. Godlin, B., Strichman, O.: Regression verification. In: Proceedings of the 46th Design
Automation Conference, DAC 2009, San Francisco, CA, USA, July 26–31, 2009. pp. 466–
471 (2009). https://doi.org/10.1145/1629911.1630034

17. Graf, S., Saidi, H.: Construction of abstract state graphs with PVS. In: Grumberg, O. (ed.)
CAV 1997. LNCS, vol. 1254, pp. 72–83. Springer, Heidelberg (1997). https://doi.org/10.
1007/3-540-63166-6 10

18. Gupta, S., Saxena, A., Mahajan, A., Bansal, S.: Effective use of SMT solvers for program
equivalence checking through invariant-sketching and query-decomposition. In: Beyersdorff,
O., Wintersteiger, C.M. (eds.) SAT 2018. LNCS, vol. 10929, pp. 365–382. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-94144-8 22

19. Gurfinkel, A., Kahsai, T., Komuravelli, A., Navas, J.A.: The SeaHorn verification framework.
In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 343–361. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-21690-4 20

20. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM 12(10),
576–580 (1969)

21. Karimpour, J., Isazadeh, A., Noroozi, A.A.: Verifying observational determinism. In: Feder-
rath, H., Gollmann, D. (eds.) SEC 2015. IAICT, vol. 455, pp. 82–93. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-18467-8 6

22. Komuravelli, A., Gurfinkel, A., Chaki, S.: SMT-based model checking for recursive pro-
grams. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 17–34. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-08867-9 2

23. Lahiri, S.K., Qadeer, S.: Complexity and algorithms for monomial and clausal predicate
abstraction. In: Schmidt, R.A. (ed.) CADE 2009. LNCS (LNAI), vol. 5663, pp. 214–229.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02959-2 18

24. Mordvinov, D., Fedyukovich, G.: Synchronizing constrained Horn clauses. In: LPAR-21,
21st International Conference on Logic for Programming, Artificial Intelligence and Rea-
soning, Maun, Botswana, May 7–12, 2017, pp. 338–355 (2017). http://www.easychair.org/
publications/paper/340359

25. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J.
(eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-78800-3 24

26. Pick, L., Fedyukovich, G., Gupta, A.: Exploiting synchrony and symmetry in relational ver-
ification. In: Chockler, H., Weissenbacher, G. (eds.) CAV 2018. LNCS, vol. 10981, pp. 164–
182. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96145-3 9

27. Saı̈di, H., Shankar, N.: Abstract and model check while you prove. In: Halbwachs, N., Peled,
D. (eds.) CAV 1999. LNCS, vol. 1633, pp. 443–454. Springer, Heidelberg (1999). https://
doi.org/10.1007/3-540-48683-6 38

28. Sharma, R., Schkufza, E., Churchill, B.R., Aiken, A.: Data-driven equivalence checking.
In: Proceedings of the 2013 ACM SIGPLAN International Conference on Object Oriented
Programming Systems Languages & Applications, OOPSLA 2013, part of SPLASH 2013,
Indianapolis, IN, USA, October 26–31, 2013. pp. 391–406 (2013). https://doi.org/10.1145/
2509136.2509509

29. Shemer, R., Gurfinkel, A., Shoham, S., Vizel, Y.: Property directed self composition. CoRR
abs/1905.07705 (2019). http://arxiv.org/abs/1905.07705

https://doi.org/10.1145/2642937.2642987
https://doi.org/10.1145/2642937.2642987
https://doi.org/10.1145/1629911.1630034
https://doi.org/10.1007/3-540-63166-6_10
https://doi.org/10.1007/3-540-63166-6_10
https://doi.org/10.1007/978-3-319-94144-8_22
https://doi.org/10.1007/978-3-319-21690-4_20
https://doi.org/10.1007/978-3-319-18467-8_6
https://doi.org/10.1007/978-3-319-08867-9_2
https://doi.org/10.1007/978-3-642-02959-2_18
http://www.easychair.org/publications/paper/340359
http://www.easychair.org/publications/paper/340359
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-319-96145-3_9
https://doi.org/10.1007/3-540-48683-6_38
https://doi.org/10.1007/3-540-48683-6_38
https://doi.org/10.1145/2509136.2509509
https://doi.org/10.1145/2509136.2509509
http://arxiv.org/abs/1905.07705

Property Directed Self Composition 179

30. Sousa, M., Dillig, I.: Cartesian hoare logic for verifying k-safety properties. In: Proceedings
of the 37th ACM SIGPLAN Conference on Programming Language Design and Implemen-
tation, PLDI 2016, Santa Barbara, CA, USA, June 13–17, 2016, pp. 57–69 (2016). https://
doi.org/10.1145/2908080.2908092

31. Strichman, O., Veitsman, M.: Regression verification for unbalanced recursive functions. In:
Fitzgerald, J., Heitmeyer, C., Gnesi, S., Philippou, A. (eds.) FM 2016. LNCS, vol. 9995, pp.
645–658. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48989-6 39

32. Terauchi, T., Aiken, A.: Secure information flow as a safety problem. In: Hankin, C.,
Siveroni, I. (eds.) SAS 2005. LNCS, vol. 3672, pp. 352–367. Springer, Heidelberg (2005).
https://doi.org/10.1007/11547662 24

33. Yang, W., Vizel, Y., Subramanyan, P., Gupta, A., Malik, S.: Lazy self-composition for secu-
rity verification. In: Chockler, H., Weissenbacher, G. (eds.) CAV 2018. LNCS, vol. 10982,
pp. 136–156. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96142-2 11

34. Zaks, A., Pnueli, A.: CoVaC: compiler validation by program analysis of the cross-product.
In: Cuellar, J., Maibaum, T., Sere, K. (eds.) FM 2008. LNCS, vol. 5014, pp. 35–51. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-68237-0 5

Open Access This chapter is licensed under the terms of the Creative Commons Attribution
4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder.

https://doi.org/10.1145/2908080.2908092
https://doi.org/10.1145/2908080.2908092
https://doi.org/10.1007/978-3-319-48989-6_39
https://doi.org/10.1007/11547662_24
https://doi.org/10.1007/978-3-319-96142-2_11
https://doi.org/10.1007/978-3-540-68237-0_5
http://creativecommons.org/licenses/by/4.0/

Security-Aware Synthesis Using
Delayed-Action Games

Mahmoud Elfar(B) , Yu Wang , and Miroslav Pajic

Duke University, Durham, NC 27708, USA
{mahmoud.elfar,yu.wang094,miroslav.pajic}@duke.edu

Abstract. Stochastic multiplayer games (SMGs) have gained attention
in the field of strategy synthesis for multi-agent reactive systems. How-
ever, standard SMGs are limited to modeling systems where all agents
have full knowledge of the state of the game. In this paper, we intro-
duce delayed-action games (DAGs) formalism that simulates hidden-
information games (HIGs) as SMGs, where hidden information is cap-
tured by delaying a player’s actions. The elimination of private vari-
ables enables the usage of SMG off-the-shelf model checkers to implement
HIGs. Furthermore, we demonstrate how a DAG can be decomposed into
subgames that can be independently explored, utilizing parallel compu-
tation to reduce the model checking time, while alleviating the state
space explosion problem that SMGs are notorious for. In addition, we
propose a DAG-based framework for strategy synthesis and analysis.
Finally, we demonstrate applicability of the DAG-based synthesis frame-
work on a case study of a human-on-the-loop unmanned-aerial vehicle
system under stealthy attacks, where the proposed framework is used to
formally model, analyze and synthesize security-aware strategies for the
system.

1 Introduction

Stochastic multiplayer games (SMGs) are used to model reactive systems where
nondeterministic decisions are made by multiple players [4,13,23]. SMGs extend
probabilistic automata by assigning a player to each choice to be made in the
game. This extension enables modeling of complex systems where the behavior of
players is unknown at design time. The strategy synthesis problem aims to find a
winning strategy, i.e., a strategy that guarantees that a set of objectives (or win-
ning conditions) is satisfied [6,21]. Algorithms for synthesis include, for instance,
value iteration and strategy iteration techniques, where multiple reward-based
objectives are satisfied [2,9,17]. To tackle the state-space explosion problem,
[29] presents an assume-guarantee synthesis framework that relies on synthesiz-
ing strategies on the component level first, before composing them into a global
winning strategy. Mean-payoffs and ratio rewards are further investigated in [3]

This work was supported by the NSF CNS-1652544 grant, as well as the ONR N00014-
17-1-2012 and N00014-17-1-2504, and AFOSR FA9550-19-1-0169 awards.

c© The Author(s) 2019
I. Dillig and S. Tasiran (Eds.): CAV 2019, LNCS 11561, pp. 180–199, 2019.
https://doi.org/10.1007/978-3-030-25540-4_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-25540-4_10&domain=pdf
http://orcid.org/0000-0002-5579-1255
http://orcid.org/0000-0002-0431-1039
http://orcid.org/0000-0002-5357-0117
https://doi.org/10.1007/978-3-030-25540-4_10

Security-Aware Synthesis Using Delayed-Action Games 181

to synthesize ε-optimal strategies. Formal tools that support strategy synthesis
via SMGs include PRISM-games [7,19] and Uppaal Stratego [10].

SMGs are classified based on the number of players that can make choices
at each state. In concurrent games, more than one player is allowed to concur-
rently make choices at a given state. Conversely, turn-based games assign one
player at most to each state. Another classification considers the information
available to different players across the game [27]. Complete-information games
(also known as perfect-information games [5]) grant all players complete access
to the information within the game. In symmetric games, some information is
equally hidden from all players. On the contrary, asymmetric games allow some
players to have access to more information than the others [27].

This work is motivated by security-aware systems in which stealthy adversar-
ial actions are potentially hidden from the system, where the latter can proba-
bilistically and intermittently gain full knowledge about the current state. While
hidden-information games (HIGs) can be used to model such systems by using
private variables to capture hidden information [5], standard model checkers can
only synthesize strategies for (full-information) SMGs; thus, demanding for alter-
native representations. The equivalence between turn-based semi-perfect infor-
mation games and concurrent perfect-information games was shown [5]. Since
a player’s strategy mainly rely on full knowledge of the game state [9], using
SMGs for synthesis produces strategies that may violate synthesis specifica-
tions in cases where required information is hidden from the player. Partially-
observable stochastic games (POSGs) allow agents to have different belief states
by incorporating uncertainty about both the current state and adversarial plans
[15]. Techniques such as active sensing for online replanning [14] and grid-based
abstractions of belief spaces [24] were proposed to mitigate synthesis complex-
ity arising from partial observability. The notion of delaying actions has been
studied as means for gaining information about a game to improve future strate-
gies [18,30], but was not deployed as means for hiding information.

To this end, we introduce delayed-action games (DAGs)—a new class of
games that simulate HIGs, where information is hidden from one player by
delaying the actions of the others. The omission of private variables enables the
use of off-the-shelf tools to implement and analyze DAG-based models. We show
how DAGs (under some mild and practical assumptions) can be decomposed
into subgames that can be independently explored, reducing the time required
for synthesis by employing parallel computation. Moreover, we propose a DAG-
based framework for strategy synthesis and analysis of security-aware systems.
Finally, we demonstrate the framework’s applicability through a case study of
security-aware planning for an unmanned-aerial vehicle (UAV) system prone to
stealthy cyber attacks, where we develop a DAG-based system model and further
synthesize strategies with strong probabilistic security guarantees.

The paper is organized as follows. Section 2 presents SMGs, HIGs, and prob-
lem formulation. In Sect. 3, we introduce DAGs and show that they can sim-
ulate HIGs. Section 4 proposes a DAG-based synthesis framework, which we
use for security-aware planning for UAVs in Sect. 5, before concluding the paper
in Sect. 6.

182 M. Elfar et al.

2 Stochastic Games

In this section, we present turn-based stochastic games, which assume that all
players have full information about the game state. We then introduce hidden-
information games and their private-variable semantics.

Notation. We use N0 to denote the set of non-negative integers. P(A) denotes
the powerset of A (i.e., 2A). A variable v has a set of valuations Ev (v), where
η (v) ∈ Ev (v) denotes one. We use Σ∗ to denote the set of all finite words over
alphabet Σ, including the empty word ε. The mapping Eff :Σ∗×Ev (v)→Ev (v)
indicates the effect of a finite word on η (v). Finally, for general indexing, we use
si or s(i), for i ∈ N0, while PLγ denotes Player γ.

Turn-Based Stochastic Games (SMGs). SMGs can be used to model reac-
tive systems that undergo both stochastic and nondeterministic transitions from
one state to another. In a turn-based game,1 actions can be taken at any state
by at most one player. Formally, an SMG can be defined as follows [1,28,29].

Definition 1 (Turn-Based Stochastic Game). A turn-based game (SMG)
with players Γ = {I, II,©} is a tuple G = 〈S, (SI, SII, S©), A, s0, δ〉, where

– S is a finite set of states, partitioned into SI, SII and S©;
– A=AI ∪ AII ∪ {τ} is a finite set of actions where τ is an empty action;
– s0 ∈ SII is the initial state; and
– δ : S × A × S → [0, 1] is a transition function, such that δ(s, a, s′) ∈ {1, 0},

∀s ∈ SI ∪ SII, a ∈ A and s′ ∈ S, and δ(s, τ, s′) ∈ [0, 1] , ∀s ∈ S© and
s′ ∈ SI ∪ SII, where

∑
s′∈SI∪SII

δ(s, τ, s′) = 1 holds.

For all s∈ SI∪SII and a ∈ AI∪AII, we write s
a �� s′ if δ(s, a, s′)=1. Similarly, for

all s∈S© we write s
p
�� s′ if s′ is randomly sampled with probability p=δ(s, τ, s′).

Hidden-Information Games. SMGs assume that all players have full knowl-
edge of the current state, and hence provide perfect-information models [5]. In
many applications, however, this assumption may not hold. A great example
are security-aware models where stealthy adversarial actions can be hidden from
the system; e.g., the system may not even be aware that it is under attack.
On the other hand, hidden-information games (HIGs) refer to games where one
player does not have complete access to (or knowledge of) the current state.
The notion of hidden information can be formalized with the use of private vari-
ables (PVs) [5]. Specifically, a game state can be encoded using variables vT and
vB, representing the true information, which is only known to PLI, and PLII

belief, respectively.
1 The term turn-based indicates that at any state only one player can play an action.

It does not necessarily imply that players take fair turns.

Security-Aware Synthesis Using Delayed-Action Games 183

Definition 2 (Hidden-Information Game). A hidden-information stochas-
tic game (HIG) with players Γ = {I, II, ©} over a set of variables V = {vT , vB}
is a tuple GH = 〈S, (SI, SII, S©), A, s0, β, δ〉, where

– set of states S ⊆ Ev (vT)×Ev (vB)×P (Ev (vT))×Γ , partitioned in SI, SII, S©;
– A=AI∪AII∪{τ, θ} is a finite set of actions, where τ denotes an empty action,

and θ is the action capturing PLII attempt to reveal the true value vT ;
– s0 ∈ SII is the initial state;
– β : AII → P(AI) is a function that defines the set of available PLI actions,

based on PLII action; and
– δ : S × A × S → [0, 1] is a transition function such that δ(sI, a, s©) =

δ(s©, a, sI) = 0, and δ(sII, θ, s©), δ(sII, a, sI), δ(sI, a, sII) ∈ {0, 1} for all
sI ∈ SI, sII ∈ SII, s© ∈ S© and a ∈ A, where

∑
s′∈SII

δ(s©, τ, s′)=1.

In the above definition, δ only allows transitions sI to sII, sII to sI or s©,
with sII to s© conditioned by action θ, and probabilistic transitions s© to sII.
A game state can be written as s = (t, u,Ω, γ), but to simplify notation we use
sγ (t, u,Ω) instead, where t ∈ Ev (vT) is the true value of the game, u ∈ Ev (vB)
is PLII current belief, Ω ∈ P(Ev (vT)) \ {∅} is PLII belief space, and γ ∈ Γ is
the current player’s index. When the truth is hidden from PLII, the belief space
Ω is the information set [27], capturing PLII knowledge about the possible true
values.

A

C DB

Fig. 1. The UAV belief (solid square)
vs. the true value (solid diamond) of
its location.

Example 1 (Belief vs. True Value). Our
motivating example is a system that con-
sists of a UAV and a human operator. For
localization, the UAV mainly relies on a
GPS sensor that can be compromised to
effectively steer the UAV away from its
original path. While aggressive attacks can
be detected, some may remain stealthy by
introducing only bounded errors at each
step [16,20,22,26]. For example, Fig. 1 shows a UAV (PLII) occupying zone A
and flying north (N). An adversary (PLI) can launch a stealthy attack targeting
its GPS, introducing a bounded error (NE, NW) to remain stealthy. The set of
stealthy actions available to the attacker depends on the preceding UAV action,
which is captured by the function β, where β(N)={NE,N,NW}. Being unaware
of the attack, the UAV believes that it is entering zone C, while the true new
location is D due to the attack (NE). Initially, η (vT)=η (vB)=zA, and Ω={zA}
as the UAV is certain it is in zone zA. In s2, η (vB) = zC , yet η (vT) = zD.
Although vT is hidden, PLII is aware that η (vT) is in Ω={zB, zC , zD}.

HIG Semantics. GH semantics is described using the rules shown in Fig. 2,
where H2 and H3 capture PLII and PLI moves, respectively. The rule H4 specifies
that a PLII attempt θ to reveal the true value can succeed with probability pi

where PLII belief is updated (i.e., u′ = t), and remains unchanged otherwise.

184 M. Elfar et al.

Fig. 2. Semantic rules for an HIG.

Example 2 (HIG Semantics). Continuing Example 1, let us assume that the set
of actions AI = AII = {N,S,E,W,NE,NW,SE,SW}, and that θ=GT is a geolo-
cation task that attempts to reveal the true value of the game.2 Now, consider
the scenario illustrated in Fig. 3. At the initial state s0, the UAV attempts to
move north (N), progressing the game to the state s1, where the adversary takes
her turn by selecting an action from the set β(N) = {NE,N,NW}. The players
take turns until the UAV performs a geolocation task GT, moving from the state
s4 to s5. With probability p = δ(s5, τ, s6), the UAV detects its true location
and updates its belief accordingly (i.e., to s6). Otherwise, the belief remains the
same (i.e., equal to s4).

N

0-1 1

0

-1

1

2

WNE NW pGT

Fig. 3. An example of the UAV motion in a 2D-grid map, modeled as an HIG. Solid
squares represent the UAV belief, while solid diamonds represent the ground truth.
The UAV action GT denotes performing a geolocation task.

Problem Formulation. Following the system described in Example 2, we
now consider the composed HIG GH = Madv‖Muav‖Mas shown in Fig. 4; the
HIG-based model incorporates standard models of a UAV (Muav), an adver-
sary (Madv), and a geolocation-task advisory system (Mas) (e.g., as introduced
in [11,12]). Here, the probability of a successful detection p(vT , vB) is a function
of both the location the UAV believes to be its current location (vB) as well

2 A geolocation task is an attempt to localize the UAV by examining its camera feed.

Security-Aware Synthesis Using Delayed-Action Games 185

as the ground truth location that the UAV actually occupies (vT). Reasoning
about the flight plan using such model becomes problematic since the ground
truth vT is inherently unknown to the UAV (i.e., PLII), and thus so is p(vT , vB).
Furthermore, such representation, where some information is hidden, is not sup-
ported by off-the-shelf SMG model checkers. Consequently, for such HIGs, our
goal is to find an alternative representation that is suitable for strategy synthesis
using off-the-shelf SMG model-checkers.

fly

idle

locate

fail

geo
task

a ack

Fig. 4. An example of an HIG-based system model comprised of the UAV (Muav), the
adversary (Madv), and the AS (Mas). Framed information is hidden from the UAV-AS.

3 Delayed-Action Games

In this section, we provide an alternative representation of HIGs that eliminates
the use of private variables—we introduce Delayed-Action Games (DAGs) that
exploit the notion of delayed actions. Furthermore, we show that for any HIG,
a DAG that simulates the former can be constructed.

Delayed Actions. Informally, a DAG reconstructs an HIG such that actions
of PLI (the player with access to perfect information) follow the actions of PLII,
i.e., PLI actions are delayed. This rearrangement of the players’ actions provides
a means to hide information from PLII without the use of private variables,
since in this case, at PLII states, PLI actions have not occurred yet. In this
way, PLII can act as though she has complete information at the moment she
makes her decision, as the future state has not yet happened and so cannot
be known. In essence, the formalism can be seen as a partial ordering of the
players’ actions, exploiting the (partial) superposition property that a wide class
of physical systems exhibit. To demonstrate this notion, let us consider DAG
modeling on our running example.

Example 3 (Delaying Actions). Figure 5 depicts the (HIG-based) scenario from
Fig. 3, but in the corresponding DAG, where the UAV actions are performed first
(in ŝ0, ŝ1, ŝ2), followed by the adversary delayed actions (in ŝ3, ŝ4). Note that,
in the DAG model, at the time the UAV executed its actions (ŝ0, ŝ1, ŝ2) the
adversary actions had not occurred (yet). Moreover, ŝ0 and ŝ6 (Fig. 5) share
the same belief and true values as s0 and s6 (Fig. 3), respectively, though the
transient states do not exactly match. This will be used to show the relationship
between the games.

186 M. Elfar et al.

N W GT pNE NW

0-1 1

0

-1

1

2 p

1-p

1-p

1-p

Fig. 5. The same scenario as in Fig. 3, modeled as a DAG. Solid squares represent UAV
belief, while solid diamonds represent the ground truth. The UAV action GT denotes
performing a geolocation task.

The advantage of this approach is twofold. First, the elimination of private
variables enables simulation of an HIG using a full-information game. Thus,
the formulation of the strategy synthesis problem using off-the-shelf SMG-based
tools becomes feasible. In particular, a PLII synthesized strategy becomes depen-
dent on the knowledge of PLI behavior (possible actions), rather than the specific
(hidden) actions. We formalize a DAG as follows.

Definition 3 (Delayed-Action Game). A DAG of an HIG GH = 〈S, (SI,
SII, S©), A, s0, β, δ〉, with players Γ = {I, II,©} over a set of variables V =
{vT , vB} is a tuple GD = 〈Ŝ, (ŜI, ŜII, Ŝ©), A, ŝ0, β, δ̂〉 where

– Ŝ ⊆ Ev (vT) × Ev (vB) × A∗
II × N0 × Γ is the set of states, partitioned into

ŜI, ŜII and Ŝ©;
– ŝ0 ∈ ŜII is the initial state; and
– δ̂ : Ŝ × A × Ŝ → [0, 1] is a transition function such that δ̂(ŝII, a, ŝ©) =

δ̂(ŝI, a, ŝII) = δ̂(ŝ©, a, ŝI) = 0, and δ̂(ŝII, a, ŝII) ∈ {0, 1}, δ̂(ŝII, θ, ŝI) ∈ {0, 1},
δ̂(ŝI, a, ŝI) ∈ {0, 1}, δ̂(ŝI, a, ŝ©) ∈ {0, 1}, for all ŝI ∈ ŜI, ŝII ∈ ŜII, ŝ© ∈ Ŝ©
and a ∈ A, where

∑
ŝ′∈ŜII

δ(ŝ©, a, ŝ′)=1.

Note that, in contrast to transition function δ in HIG GH, δ̂ in DAG GD only
allows transitions ŝII to ŝII or ŝI, as well as ŝI to ŝI or ŝ©, and probabilistic
transitions ŝ© to ŝII; also note that ŝII to ŝI is conditioned by the action θ.

DAG Semantics. A DAG state is a tuple ŝ=
(
t̂, û, w, j, γ

)
, which for simplicity

we shorthand as ŝγ

(
t̂, û, w, j

)
, where t̂ ∈ Ev (vT) is the last known true value,

û ∈ Ev (vB) is PLII belief, w ∈ A∗
II captures PLII actions taken since the last

known true value, j ∈ N0 is an index on w, and γ ∈ Γ is the current player
index. The game transitions are defined using the semantic rules from Fig. 6.
Note that PLII can execute multiple moves (i.e., actions) before executing θ to
attempt to reveal the true value (D2), moving to a PLI state where PLI executes
all her delayed actions before reaching a ‘revealing’ state ŝ© (D3). Finally, the
revealing attempt can succeed with probability pi where PLII belief is updated
(i.e., û′ = t̂), or otherwise remains unchanged (D4).

Security-Aware Synthesis Using Delayed-Action Games 187

Fig. 6. Semantic rules for DAGs.

In both GH and GD, we label states where all players have full knowledge of
the current state as proper. We also say that two states are similar if they agree
on the belief, and equivalent if they agree on both the belief and ground truth.

Definition 4 (States). Let sγ(t, u,Ω) ∈ S and ŝγ̂(t̂, û, w, j) ∈ Ŝ. We say:

– sγ is proper iff Ω = {t}, denoted by sγ ∈ Prop(GH).
– ŝγ̂ is proper iff w = ε, denoted by ŝγ̂ ∈ Prop(GD).
– sγ and ŝγ̂ are similar iff û = u, t̂ ∈ Ω, and γ = γ̂, denoted by sγ ∼ ŝγ̂ .
– sγ , ŝγ̂ are equivalent iff t = t̂, u = û, w = ε, and γ = γ̂, denoted by sγ
 ŝγ̂ .

From the above definition, we have that s
 ŝ =⇒ s ∈ Prop(GH), ŝ ∈ Prop(GD).
We now define execution fragments, possible progressions from a state to another.

Definition 5 (Execution Fragment). An execution fragment (of either an
SMG, DAG or HIG) is a finite sequence of states, actions and probabilities

 = s0a1p1s1a2p2s2 . . . anpnsn such that (si

ai+1
�� si+1)∨(si

〈pi+1〉
�� si+1),∀i ≥ 0.3

We use first(
) and last(
) to refer to the first and last states of
, respectively. If
both states are proper, we say that
 is proper as well, denoted by
 ∈ Prop(GH).4

Moreover,
 is deterministic if no probabilities appear in the sequence.

Definition 6 (Move). A move mγ of an execution
 from state s ∈
, denoted
by moveγ(s,
), is a sequence of actions a1a2 . . . ai ∈ A∗

γ that player γ performs
in
 starting from s.

By omitting the player index we refer to the moves of all players. To simplify
notation, we use move(
) as a short notation for move(first(
),
). We write
(m)(first(
)) = last(
) to denote that the execution of move m from the first(
)
leads to the last(
). This allows us to now define the delay operator as follows.

3 For deterministic transitions, p = 1, hence omitted from � for readability.
4 An execution fragment lives in the transition system (TS), i.e., � ∈ Prop(TS(G)).

We omit TS for readability.

188 M. Elfar et al.

Definition 7 (Delay Operator). For an GH, let m = move(
) =
a1b1 . . . anbnθ be a move for some deterministic
 ∈ TS(GH), where a1...an ∈
A∗

II, b1...bn ∈ A∗
I . The delay operator, denoted by m, is defined by the rule

m = a1 . . . anθb1 . . . bn.

Intuitively, the delay operator shifts PLI actions to the right of PLII actions up
until the next probabilistic state. For example,

if ρ = s
(0)
II

a1 �� s
(1)
I

b2 �� s
(2)
II

θ �� s
(3)
©

p3 �� s
(4)
II

a4 �� s
(5)
I

b5 �� s
(6)
II

a6 �� s
(7)
I

b7 �� s
(8)
II

then m = a1 b2 θ τ a4 b5 a6 b7,

and m = a1 θ b2 τ a4 a6 b5 b7.

Simulation Relation. Given an HIG GH, we first define the corresponding
DAG GD.

Definition 8 (Correspondence). Given an HIG GH, a corresponding DAG
GD = D[GH] is a DAG that follows the semantic rules displayed in Fig. 7.

Fig. 7. Semantic rules for HIG-to-DAG transformation.

For the rest of this section, we consider GD = D[GH], and use
 ∈ TS(GH) and

̂ ∈ TS(GD) to denote two execution fragments of the HIG and DAG, respec-
tively. We say that
 and
̂ are similar, denoted by
 ∼
̂, iff first(
)
 first(
̂),
last(
) ∼ last(
̂), and move(
) = move(
̂).

Definition 9 (Game Proper Simulation). A game GD properly simulates
GH, denoted by GD � GH, iff ∀
 ∈ Prop(GH), ∃
̂ ∈ Prop(GD) such that
 ∼
̂.

Before proving the existence of the simulation relation, we first show that if a
move is executed on two equivalent states, then the terminal states are similar.

Lemma 1 (Terminal States Similarity). For any s0
 ŝ0 and a determin-
istic
∈TS(GH) where first(
)= s0, last(
) ∈ SII, then last(
)∼

(
move(
)

)
(ŝ0)

holds.

Security-Aware Synthesis Using Delayed-Action Games 189

Proof. Let last(
i) = s
(i)
γi (ti, ui, Ωi) and

(
move(
i)

)
(ŝ0) = ŝ

(i)
γ̂i

(t̂i, ûi, wi, ji),

where move(
i) = a1b1...aibiθ. We then write move(
) = a1...aiθb1...bi. We use
induction over i as follows:

– Base (i=0):
0=s0 =⇒ s(0)
 ŝ(0) where u0 = û0 and t0= t̂0.
– Induction (i > 0): Assume that the claim holds for move(
i−1) = a1

b1...ai−1bi−1θ, i.e., ui−1 = ûi−1 and t̂i−1 ∈ Ωi−1. For
i we have that
ui = Eff(ai, ui−1) and ûi = Eff(ai, ûi−1). Also, ti = Eff(bi, ti−1) ∈ Ωi and
t̂i = Eff

(
bi, t̂i−1

)
. Hence, ui = ûi, t̂i ∈ Ωi and γ̂i = γi = ©. Thus, s(i) ∼ ŝ(i)

holds. The same can be shown for move(
) = a1b1...aibi where no θ
occurs. ��

Theorem 1 (Probabilistic Simulation). For any s0
 ŝ0 and
 ∈ Prop(GH)
where first(
) = s0, it holds that

Pr [last(
) = s′] = Pr
[(

move(
)
)

(ŝ0) = ŝ′
]

∀s′, ŝ′ s.t. s′
 ŝ′.

Proof. We can rewrite
 as
 =
0
p1 ��
1 · · ·
n−1

pn �� s
(n)
II , where
0,
1, . . . ,
n−1

are deterministic. Let first(
i) = s
(i)
II (ti, ui, Ωi), last(
i) = s

(i)
© (t′i, u

′
i, Ω

′
i), and

(
move(
)

)
(ŝ0)= ŝ(n)(t̂n, ûn, wn, jn). We use induction over n as follows:

– Base (n=0): for
 to be deterministic and proper,
=
0=s(0) holds.
– Case (n = 1): p1 = p(t′0, u

′
0). From Lemma 1, û1 = u1 and t̂1 = t1. Hence,

Pr
[
last(
)=s

(1)
II

]
= Pr

[(
move(
)

)
(ŝ0)= ŝ

(1)
II

]
=p(t′0, u

′
0) and s

(1)
II
 ŝ

(1)
II .

– Induction (n>1): It is straightforward to infer that pn =p
(
t′n−1, u

′
n−1

)
, hence

Pr
[
last(
)=s

(n)
II

]
= Pr

[(
move(
)

)(
ŝ(0)

)
= ŝ(n)

]
= P , and s

(n)
II
 ŝ

(n)
II . ��

Note that in case of multiple θ attempts, the above probability P satisfies

P =
n∏

i=1

mi∑

j=1

pi

(
t′i−1, u

′
i−1

) (
1 − pi−1

(
t′i−1, u

′
i−1

))(j−1)
,

where mi is the number of θ attempts at stage i. Finally, since Theorem 1 imposes
no constraints on move(
), a DAG can simulate all proper executions that exist
in the corresponding HIG.

Theorem 2 (DAG-HIG Simulation). For any HIG GH there exists a DAG
GD = D[GH] such that GD � GH (as defined in Definition 9).

4 Properties of DAG and DAG-based Synthesis

We here discuss DAG features, including how it can be decomposed into sub-
games by restricting the simulation to finite executions, and the preservation of
safety properties, before proposing a DAG-based synthesis framework.

190 M. Elfar et al.

Transitions. In DAGs, nondeterministic actions of different players under-
line different semantics. Specifically, PLI nondeterminism captures what is
known about the adversarial behavior, rather than exact actions, where PLI

actions are constrained by the earlier PLII action. Conversely, PLII nondeter-
minism abstracts the player’s decisions. This distinction reflects how DAGs can
be used for strategy synthesis under hidden information. To illustrate this, sup-
pose that a strategy πII is to be obtained based on a worst-case scenario. In that
case, the game is explored for all possible adversarial behaviors. Yet, if a strat-
egy πI is known about PLI, a counter strategy πII can be found by constructing
GπI
D .

Probabilistic behaviors in DAGs are captured by PL©, which is character-
ized by the transition function δ̂ : Ŝ© × ŜII → [0, 1]. The specific definition
of δ̂ depends on the modeled system. For instance, if the transition function
(i.e., the probability) is state-independent, i.e., δ̂(ŝ©, ŝII) = c, c ∈ [0, 1], the
obtained model becomes trivial. Yet, with a state-dependent transition func-
tion, i.e., δ̂(ŝ©, ŝII) = p(t̂, û), the probability that PLII successfully reveals the
true value depends on both the belief and the true value, and the transition
function can then be realized since ŝ© holds both t̂ and û.

Decomposition. Consider an execution
̂∗ = ŝ0a1ŝ1a2ŝ2 . . . that describes a
scenario where PLII performs infinitely many actions with no attempt to reveal
the true value. To simulate
̂∗, the word w needs to infinitely grow. Since we
are interested in finite executions, we impose stopping criteria on the DAG,
such that the game is trapped whenever |w| = hmax is true, where hmax ∈ N

is an upper horizon. We formalize the stopping criteria as a deterministic finite
automaton (DFA) that, when composed with the DAG, traps the game whenever
the stopping criteria hold. Note that imposing an upper horizon by itself is not a
sufficient criterion for a DAG to be considered a stopping game [8]. Conversely,
consider a proper (and hence finite) execution
̂ = ŝ0a1 . . . ŝ′, where ŝ0, ŝ

′ ∈
Prop(GD). From Definition 9, it follows that a DAG initial state is strictly proper,
i.e., ŝ0 ∈ Prop(GD). Hence, when ŝ′ is reached, the game can be seen as if it is
repeated with a new initial state ŝ′. Consequently, a DAG game (complemented
with stopping criteria) can be decomposed into a (possibly infinite) countable
set of subgames that have the same structure yet different initial states.

Definition 10 (DAG Subgames). The subgames of a GD are defined by the
set

{
Ĝi

∣
∣
∣ Ĝi =

〈
Ŝ(i), (Ŝ(i)

I , Ŝ
(i)
II , Ŝ

(i)
©), A, ŝ

(i)
0 , δ̂(i)

〉
, i ∈ N0

}
, where Ŝ =

⋃
i Ŝ(i);

Ŝγ =
⋃

i Ŝ
(i)
γ ∀γ ∈ Γ ; and ŝ

(i)
0 = ŝ

(i)
II s.t. ŝ

(i)
II ∈ Prop(G(i)

D) , ŝ
(i)
II �= ŝ

(j)
II ∀i, j ∈ N0.

Intuitively, each subgame either reaches a proper state (representing the ini-
tial state of another subgame) or terminates by an upper horizon. This decompo-
sition allows for the independent (and parallel) analysis of individual subgames,
drastically reducing both the time required for synthesis and the explored state
space, and hence improving scalability. An example of this decompositional app-
roach is provided in Sect. 5.

Security-Aware Synthesis Using Delayed-Action Games 191

Preservation of Safety Properties. In DAGs, the action θ denotes a transi-
tion from PLII to PLI states and thus the execution of any delayed actions. While
this action can simply describe a revealing attempt, it can also serve as a what-if
analysis of how the true value may evolve at stage i of a subgame. We refer to an
execution of the second type as a hypothetical branch, where Hyp(
̂, h) denotes
the set of hypothetical branches from
̂ at stage h ∈ {1, . . . , n}. Let Lsafe(s) be
a labeling function denoting if a state is safe. The formula Φsafe := [G safe] is
satisfied by an execution
 in HIG iff all s(t, u,Ω) ∈
 are safe.

Now, consider
̂ of the DAG, with
̂ ∼
. We identify the following three cases:

(a) Lsafe(s) depends only on the belief u, then
 |= Φsafe iff all ŝII ∈
̂ are safe;
(b) Lsafe(s) depends only on the true value t, then
 |= Φsafe iff all ŝI ∈ Hyp(
̂, n)

are safe; and
(c) Lsafe(s) depends on both the true value t and belief u, then
 |=

Φsafe iff last(
̂h) is safe for all
̂h ∈ Hyp(
̂, h), h ∈ {1, ..., n}, where n is
the number of PLII actions.

Taking into account such relations, both safety (e.g., never encounter a hazard)
and distance-based requirements (e.g., never exceed a subgame horizon) can be
specified when using DAGs for synthesis, to ensure their satisfaction in the orig-
inal model. This can be generalized to other reward-based synthesis objectives,
which will be part of our future efforts that we discuss in Sect. 6.

Synthesis Framework. We here propose a framework for strategy synthe-
sis using DAGs, which is summarized in Fig. 8. We start by formulating the
automata MI, MII and M©, representing PLI, PLII and PL© abstract behav-
iors, respectively. Next, a FIFO memory stack (mi)n

i=1 ∈ An
II is implemented

using two automata Mmrd and Mmwr to perform reading and writing opera-
tions, respectively.5 The DAG GD is constructed by following Algorithm 1. The
game starts with PLII moves until she executes a revealing attempt θ, allowing
PLI to play her delayed actions. Once an end criterion is met, the game ter-
minates, resembling conditions such as ‘running out of fuel’ or ‘reaching map
boundaries’.

Model Refinement

Primary Components

Auxiliary Components
DAG Construc on

(Algorithm 1)

Strategy Synthesis

(Model Checker,)

Composi on Strategy Analysis
(Model Checker,)

Fig. 8. Synthesis and analysis framework based on the use of DAGs.

5 Specific implementation details are described in Sect. 5.

192 M. Elfar et al.

Algorithm 1. Procedure for DAG construction
Input: Components MI, MII, M©, Mmwr, Mmrd; initial state ŝ0
Result: DAG GD

1 while ¬(end criterion) do
2 while a �= θ do � PLII plays until a revealing attempt
3 MII.vB ← Eff(a, vB), Mmwr.write(a, ++wr)

4 while rd � wr do � PLI plays all delayed actions
5 Mmrd.read(a, ++rd), MI.vT ← Eff(β(a), vT)

6 if draw x ∼ Brn(p(vT , vB)) then � PL© plays successful attempt
7 MII.vB ← MI.vT , wr ← 0, rd ← 0
8 else rd ← 0 � Unsuccessful attempt, forget PLI actions

Algorithm 2 describes the procedure for strategy synthesis based on the
DAG GD, and an rPATL [6] synthesis query φsyn that captures, for example,
a safety requirement. Starting with the initial location, the procedure checks
whether φsyn is satisfied if action θ is performed at stage h, and updates the set
of feasible strategies Πi for subgame Ĝi until hmax is reached or φsyn is not satis-
fied.6 Next, the set Πi is used to update the list of reachable end locations � with
new initial locations of reachable subgames that should be explored. Finally, the
composition of both GH and Π∗

II resolves PLII nondeterminism, where the result-
ing model GΠ∗

II
H is a Markov Decision Process (MDP) of complete information

that can be easily used for further analysis.

5 Case Study

In this section, we consider a case study where a human operator supervises
a UAV prone to stealthy attacks on its GPS sensor. The UAV mission is to
visit a number of targets after being airborne from a known base (initial state),
while avoiding hazard zones that are known a priori. Moreover, the presence
of adversarial stealthy attacks via GPS spoofing is assumed. We use the DAG
framework to synthesize strategies for both the UAV and an operator advisory
system (AS) that schedules geolocation tasks for the operator.

Modeling. We model the system as a delayed-action game GD, where PLI and
PLII represent the adversary and the UAV-AS coalition, respectively. Figure 9
shows the model primary and auxiliary components. In the UAV model Muav,
xB =(xB, yB) encodes the UAV belief, and Auav = {N,S,E,W,NE,NW,SE,SW}
is the set of available movements. The AS can trigger the action activate
to initiate a geolocation task, attempting to confirm the current location.
The adversary behavior is abstracted by Madv where xT = (xT , yT) encodes
the UAV true location. The adversarial actions are limited to one directional
6 Failing to find a strategy at stage i implies the same for all horizons of size j > i.

Security-Aware Synthesis Using Delayed-Action Games 193

Algorithm 2. Procedure for strategy synthesis
Input: Initial location (x0, y0), synthesis query φsyn

Output: PLII strategies Π∗
II

1 � ← [(x0, y0)] , i ← 0
2 while i < |�| do � Explore all reachable subgames
3 ŝ0 ← (�[i], �[i], ε, 0, II), h ← 1, stop ← ⊥ � Construct initial state
4 while h � hmax ∧ ¬stop do � Explore subgame till upper horizon

5 (πII, ϕ) ← Synth
(
Ĝπh

ŝ0
, φsyn

)
� Synthesize strategy for horizon h

6 if πII �= ∅ then
7 Πi ← Πi ∪ (πII, πh, ϕ), h++ � Save synthesized strategy
8 else stop ←

9 Prune (Πt), Π∗

II ← Π∗
II ∪ Πt � Prune subgame strategies

10 � ← � · (Reachable (Πt) \ �), i++ � update reachability

load a ack

locate

fail

geo
taskidle

fly save

Fig. 9. Primary DAG components: UAV (Muav), adversary (Madv), and AS (Mas).
Auxiliary DAG components: memory write (Mmwr) and memory read (Mmrd) mod-
els, capturing the DAG representation. At stage i, the next memory location to
write/read is mi.

increment at most.7 If, for example, the UAV is heading N, then the adver-
sary set of actions is β(N)={N,NE,NW}. The auxiliary components Mmwr and
Mmrd manage a FIFO memory stack (mi)n−1

i=0 ∈ An
uav. The last UAV move-

ment is saved in mi by synchronizing Mmwr with Muav via write, while Mmrd

synchronizes with Madv via read to read the next UAV action from mj . The
subgame terminates whenever action write is attempted and Mmwr is at state
n (i.e., out of memory).

The goal is to find strategies for the UAV-AS coalition based on the following:

– Target reachability. To overcome cases where targets are unreachable due to
hazard zones, the label reach is assigned to the set of states with acceptable
checkpoint locations (including the target) to render the objective incremen-

7 To detect aggressive attacks, techniques from literature (e.g., [16,25,26]) can be
used.

194 M. Elfar et al.

tally feasible. The objective for all encountered subgames is then formalized
as Prmax [F reach] � pmin for some bound pmin.

– Hazard Avoidance. Similar to target reachability, the label hazard is assigned
to states corresponding to hazard zones. The objective Prmax [G ¬hazard] �
pmin is then specified for all encountered subgames.

By refining the aforementioned objectives, synthesis queries are used for both
the subgames and the supergame. Specifically, the query

φsyn(k) :=〈〈uav〉〉Prmax=?

[¬hazard U�k (locate ∧ reach)
]

(1)

is specified for each encountered subgame Ĝi, where locate indicates a successful
geolocation task. By following Algorithm 2 for a q number of reachable subgames,
the supergame is reduced to an MDP G{πi}q

i=1
D (whose states are the reachable

subgames), which is checked against the query

φana(n) :=〈〈adv〉〉Prmin,max=?

[
F�n target

]
(2)

to find the bounds on the probability that the target is reached under a maximum
number of geolocation tasks n.

Experimental Results. Figure 10(a) shows the map setting used for imple-
mentation. The UAV’s ability to actively detect an attack depends on both its
belief and the ground truth. Specifically, the probability of success in a geolo-
cation task mainly relies on the disparity between the belief and true locations,
captured by fdis : Ev (xB) × Ev (xT) → [0, 1], obtained by assigning probabili-
ties for each pair of locations according to their features (e.g., landmarks) and
smoothed using a Gaussian 2D filter. A thorough experimental analysis where
probabilities are extracted from experiments with human operators is described
in [11]. The set of hazard zones include the map boundaries to prevent the UAV
from reaching boundary values. Also, the adversary is prohibited from launching
attacks for at least the first step, a practical assumption to prevent the UAV
model from infinitely bouncing around the target location.

We implemented the model in PRISM-games [7,19] and performed the exper-
iments on an Intel Core i7 4.0 GHz CPU, with 10 GB RAM dedicated to the tool.
Figure 10(b) shows the supergame obtained by following the procedure in Algo-
rithm 2. A vertex Ĝxy represents a subgame (composed with its strategy) that
starts at location (x, y), while the outgoing edges points to subgames reachable
from the current one. Note that each edge represents a probabilistic transition.
Subgames with more than one outgoing transition imply nondeterminism that
is resolved by the adversary actions. Hence, the directed graph depicts an MDP.

The synthesized strategy for (hadv = 2, h = 4) is demonstrated in Fig. 10(c).
For the initial subgame, Fig. 11(a) shows the maximum probability of a suc-
cessful geolocation task if performed at stage h, and the remaining distance to
target. Assuming the adversary can launch attacks after stage hadv = 2, the
detection probability is maximized by performing the geolocation task at step 4,

Security-Aware Synthesis Using Delayed-Action Games 195

target

landmark

hazard

UAV
seascape

landscape

urban

(a) Environment setup. (b) Supergame GD.

Subgame ini al loca on
Path plan
Geoloca on task

(c) Protocols.

Fig. 10. (a) The environment setup used for the case study; (b) the induced supergame
MDP, where the subgames form its states; and (c) the synthesized protocols.

and hazard areas can still be avoided up till h = 6. For hadv = 1, however,
h = 3 has the highest probability of success, which diminishes at h = 6 as
no possible flight plan exists without encountering a hazard zone. The effect of
the maximum number of geolocation tasks (n) on target reachability is studied
by analyzing the supergame against φana as shown in Fig. 11(b). The minimum
number of geolocation tasks to guarantee a non-zero probability of reaching the
target (regardless of the adversary strategy) is 3 with probability bounds of
(33.7%, 94.4%).

0 1 2 3 4 5 6 7
0

2

4

6

8

10

(a) Geolocation task at stage h

D
is
ta
nc

e
to

ta
rg
et

hadv=2

0.0

0.2

0.4

0.6

0.8

1.0

P
ro
b.

of
su
cc
es
s

φ
sy

n

hadv=2
hadv=1

0 1 2 3 4 5 6 7 8 9 10
0.0

0.2

0.4

0.6

0.8

1.0

(b) Max. no. of geolocation tasks n

R
ea
ch
ab

ili
ty

bo
un

ds
φ
an

a

φana,max

φana,min

Δφana,min

Δφana,max

Fig. 11. Analysis results for (a) subgame Ĝ51 and (b) supergame GD.

The experimental data obtained for this case study are listed in Table 1. For
the same grid size, more complex maps require more time for synthesis while the
state space size remains unaffected. The state space grows exponentially with
the explored horizon size, i.e., O (

(|Auav||Aadv|)h
)
, and is typically slowed by,

e.g., the presence of hazard areas, since the branches of the game transitions
are trimmed upon encountering such areas. Interestingly, for h = 6 and h = 7,

196 M. Elfar et al.

while the model construction time (size) for hadv = 1 is almost twice (quadruple)
as those for hadv = 2, the time for checking φsyn declines in comparison. This
reflects the fact that, in case of hadv = 1 compared to hadv = 2, the UAV has
higher chances to reach a hazard zone for the same k, leading to a shorter time
for model checking.

Table 1. Results for strategy synthesis using queries φsyn and φana.

Subgame Ĝ51 Model size Time (sec)

Map tadv k States Transitions Choices Model φsyn φana

8 × 8 1 4 11,608 17,397 15,950 2.810 0.072 –

5 57,129 87,865 83,267 14.729 0.602 –

6 236,714 366,749 359,234 62.582 1.293 –

7 876,550 1,365,478 1,355,932 231.741 6.021 –

2 4 6,678 9,230 8,394 2.381 0.042 –

5 33,904 48,545 45,354 10.251 0.367 –

6 141,622 204,551 198,640 37.192 1.839 –

7 524,942 763,144 754,984 145.407 8.850 –

Supergame GD 6,212 8,306 6,660 2.216 – 2.490

6 Discussion and Conclusion

In this paper, we introduced DAGs and showed how they can simulate HIGs
by delaying players’ actions. We also derived a DAG-based framework for strat-
egy synthesis and analysis using off-the-shelf SMG model checkers. Under some
practical assumptions, we showed that DAGs can be decomposed into indepen-
dent subgames, utilizing parallel computation to reduce the time needed for
model analysis, as well as the size of the state space. We further demonstrated
the applicability of the proposed framework on a case study focused on synthe-
sis and analysis of active attack detection strategies for UAVs prone to cyber
attacks.

DAGs come at the cost of increasing the total state space size as Mmrd and
Mmwr are introduced. This does not present a significant limitation due to the
compositional approach towards strategy synthesis using subgames. However,
the synthesis is still limited to model sizes that off-the-shelf tools can handle.

The concept of delaying actions implicitly assumes that the adversary knows
the UAV actions a priori. This does not present a concern in the presented
case study as an abstract (i.e., nondeterministic) adversary model is analogous
to synthesizing against the worst-case attacking scenario. Nevertheless, strate-
gies synthesized using DAGs (and SMGs in general) are inherently conservative.
Depending on the considered system, this can easily lead to no feasible solution.

Security-Aware Synthesis Using Delayed-Action Games 197

The proposed synthesis framework ensures preservation of safety properties.
Yet, general reward-based strategy synthesis is to be approached with care. For
example, rewards dependent on the belief can appear in any state, and exploring
hypothetical branches is not required. However, rewards dependent on a state’s
true value should only appear in proper states, and all hypothetical branches are
to be explored. A detailed investigation of how various properties are preserved
by DAGs, along with multi-objective synthesis, is a direction for future work.

References

1. Baier, C., Brazdil, T., Grosser, M., Kucera, A.: Stochastic game logic. In: Fourth
International Conference on the Quantitative Evaluation of Systems, QEST 2007,
pp. 227–236. IEEE (2007). https://doi.org/10.1109/QEST.2007.38

2. Basset, N., Kwiatkowska, M., Topcu, U., Wiltsche, C.: Strategy synthesis for
stochastic games with multiple long-run objectives. In: Baier, C., Tinelli, C. (eds.)
TACAS 2015. LNCS, vol. 9035, pp. 256–271. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-46681-0 22

3. Basset, N., Kwiatkowska, M., Wiltsche, C.: Compositional strategy synthesis
forstochastic games with multiple objectives. Information and Computation (2017).
https://doi.org/10.1016/j.ic.2017.09.010

4. Brázdil, T., Chatterjee, K., Křet́ınský, J., Toman, V.: Strategy representation by
decision trees in reactive synthesis. In: Beyer, D., Huisman, M. (eds.) TACAS 2018.
LNCS, vol. 10805, pp. 385–407. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-89960-2 21

5. Chatterjee, K., Henzinger, T.A.: Semiperfect-information games. In: Sarukkai, S.,
Sen, S. (eds.) FSTTCS 2005. LNCS, vol. 3821, pp. 1–18. Springer, Heidelberg
(2005). https://doi.org/10.1007/11590156 1

6. Chen, T., Forejt, V., Kwiatkowska, M., Parker, D., Simaitis, A.: Automatic verifi-
cation of competitive stochastic systems. Form. Methods Syst. Des. 43(1), 61–92
(2013). https://doi.org/10.1007/s10703-013-0183-7

7. Chen, T., Forejt, V., Kwiatkowska, M., Parker, D., Simaitis, A.: PRISM-games: a
model checker for stochastic multi-player games. In: Piterman, N., Smolka, S.A.
(eds.) TACAS 2013. LNCS, vol. 7795, pp. 185–191. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-36742-7 13

8. Chen, T., Forejt, V., Kwiatkowska, M., Simaitis, A., Wiltsche, C.: On stochastic
games with multiple objectives. In: Chatterjee, K., Sgall, J. (eds.) MFCS 2013.
LNCS, vol. 8087, pp. 266–277. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-40313-2 25

9. Chen, T., Kwiatkowska, M., Simaitis, A., Wiltsche, C.: Synthesis for multi-
objective stochastic games: an application to autonomous urban driving. In: Joshi,
K., Siegle, M., Stoelinga, M., D’Argenio, P.R. (eds.) QEST 2013. LNCS, vol.
8054, pp. 322–337. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-40196-1 28

10. David, A., Jensen, P.G., Larsen, K.G., Mikučionis, M., Taankvist, J.H.: UPPAAL
STRATEGO. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp.
206–211. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46681-
0 16

https://doi.org/10.1109/QEST.2007.38
https://doi.org/10.1007/978-3-662-46681-0_22
https://doi.org/10.1007/978-3-662-46681-0_22
https://doi.org/10.1016/j.ic.2017.09.010
https://doi.org/10.1007/978-3-319-89960-2_21
https://doi.org/10.1007/978-3-319-89960-2_21
https://doi.org/10.1007/11590156_1
https://doi.org/10.1007/s10703-013-0183-7
https://doi.org/10.1007/978-3-642-36742-7_13
https://doi.org/10.1007/978-3-642-40313-2_25
https://doi.org/10.1007/978-3-642-40313-2_25
https://doi.org/10.1007/978-3-642-40196-1_28
https://doi.org/10.1007/978-3-642-40196-1_28
https://doi.org/10.1007/978-3-662-46681-0_16
https://doi.org/10.1007/978-3-662-46681-0_16

198 M. Elfar et al.

11. Elfar, M., Zhu, H., Cummings, M.L., Pajic, M.: Security-aware synthesis of human-
UAV protocols. In: Proceedings of 2019 IEEE International Conference on Robotics
and Automation (ICRA). IEEE (2019)

12. Feng, L., Wiltsche, C., Humphrey, L., Topcu, U.: Synthesis of human-in-the-loop
control protocols for autonomous systems. IEEE Trans. Autom. Sci. Eng. 13(2),
450–462 (2016). https://doi.org/10.1109/TASE.2016.2530623

13. Fremont, D.J., Seshia, S.A.: Reactive control improvisation. In: Chockler, H., Weis-
senbacher, G. (eds.) CAV 2018. LNCS, vol. 10981, pp. 307–326. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-96145-3 17

14. Fu, J., Topcu, U.: Integrating active sensing into reactive synthesis with temporal
logic constraints under partial observations. In: 2015 American Control Conference
(ACC), pp. 2408–2413. IEEE (2015). https://doi.org/10.1109/ACC.2015.7171093

15. Hansen, E.A., Bernstein, D.S., Zilberstein, S.: Dynamic programming for partially
observable stochastic games. AAAI 4, 709–715 (2004)

16. Jovanov, I., Pajic, M.: Relaxing integrity requirements for attack-resilient cyber-
physical systems. IEEE Trans. Autom. Control (2019). https://doi.org/10.1109/
TAC.2019.2898510

17. Kelmendi, E., Krämer, J., Křet́ınský, J., Weininger, M.: Value iteration for simple
stochastic games: stopping criterion and learning algorithm. In: Chockler, H., Weis-
senbacher, G. (eds.) CAV 2018. LNCS, vol. 10981, pp. 623–642. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-96145-3 36

18. Klein, F., Zimmermann, M.: How much lookahead is needed to win infinite games?
In: Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann, B. (eds.) ICALP
2015. LNCS, vol. 9135, pp. 452–463. Springer, Heidelberg (2015). https://doi.org/
10.1007/978-3-662-47666-6 36

19. Kwiatkowska, M., Parker, D., Wiltsche, C.: Prism-games: verification and strategy
synthesis for stochastic multi-player games with multiple objectives. Int. J. Softw.
Tools Technol. Transf. 20(2), 195–210 (2018)

20. Lesi, V., Jovanov, I., Pajic, M.: Security-aware scheduling of embedded control
tasks. ACM Trans. Embed. Comput. Syst. (TECS) 16(5s), 188:1–188:21 (2017).
https://doi.org/10.1145/3126518

21. Li, W., Sadigh, D., Sastry, S.S., Seshia, S.A.: Synthesis for human-in-the-loop con-
trol systems. In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014. LNCS, vol.
8413, pp. 470–484. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
642-54862-8 40

22. Mo, Y., Sinopoli, B.: On the performance degradation of cyber-physical systems
under stealthy integrity attacks. IEEE Trans. Autom. Control 61(9), 2618–2624
(2016). https://doi.org/10.1109/TAC.2015.2498708

23. Neider, D., Topcu, U.: An automaton learning approach to solving safety games
over infinite graphs. In: Chechik, M., Raskin, J.-F. (eds.) TACAS 2016. LNCS,
vol. 9636, pp. 204–221. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-49674-9 12

24. Norman, G., Parker, D., Zou, X.: Verification and control of partially observable
probabilistic real-time systems. In: Sankaranarayanan, S., Vicario, E. (eds.) FOR-
MATS 2015. LNCS, vol. 9268, pp. 240–255. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-22975-1 16

25. Pajic, M., Lee, I., Pappas, G.J.: Attack-resilient state estimation for noisy dynami-
cal systems. IEEE Trans. Control Netw. Syst. 4(1), 82–92 (2017). https://doi.org/
10.1109/TCNS.2016.2607420

https://doi.org/10.1109/TASE.2016.2530623
https://doi.org/10.1007/978-3-319-96145-3_17
https://doi.org/10.1109/ACC.2015.7171093
https://doi.org/10.1109/TAC.2019.2898510
https://doi.org/10.1109/TAC.2019.2898510
https://doi.org/10.1007/978-3-319-96145-3_36
https://doi.org/10.1007/978-3-662-47666-6_36
https://doi.org/10.1007/978-3-662-47666-6_36
https://doi.org/10.1145/3126518
https://doi.org/10.1007/978-3-642-54862-8_40
https://doi.org/10.1007/978-3-642-54862-8_40
https://doi.org/10.1109/TAC.2015.2498708
https://doi.org/10.1007/978-3-662-49674-9_12
https://doi.org/10.1007/978-3-662-49674-9_12
https://doi.org/10.1007/978-3-319-22975-1_16
https://doi.org/10.1007/978-3-319-22975-1_16
https://doi.org/10.1109/TCNS.2016.2607420
https://doi.org/10.1109/TCNS.2016.2607420

Security-Aware Synthesis Using Delayed-Action Games 199

26. Pajic, M., Weimer, J., Bezzo, N., Sokolsky, O., Pappas, G.J., Lee, I.: Design and
implementation of attack-resilient cyberphysical systems: with a focus on attack-
resilient state estimators. IEEE Control Syst. 37(2), 66–81 (2017). https://doi.
org/10.1109/MCS.2016.2643239

27. Rasmusen, E., Blackwell, B.: Games and Information, vol. 15. MIT Press, Cam-
bridge (1994)

28. Svoreňová, M., Kwiatkowska, M.: Quantitative verification and strategy synthesis
for stochastic games. Eur. J. Control 30, 15–30 (2016). https://doi.org/10.1016/j.
ejcon.2016.04.009

29. Wiltsche, C.: Assume-guarantee strategy synthesis for stochastic games. Ph.D.
thesis, Ph.D. dissertation, Department of Computer Science, University of Oxford
(2015)

30. Zimmermann, M.: Delay games with WMSO+ U winning conditions. RAIRO
Theor. Inform. Appl. 50(2), 145–165 (2016). https://doi.org/10.1051/ita/2016018

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1109/MCS.2016.2643239
https://doi.org/10.1109/MCS.2016.2643239
https://doi.org/10.1016/j.ejcon.2016.04.009
https://doi.org/10.1016/j.ejcon.2016.04.009
https://doi.org/10.1051/ita/2016018
http://creativecommons.org/licenses/by/4.0/

Automated Hypersafety Verification

Azadeh Farzan(B) and Anthony Vandikas

University of Toronto, Toronto, Canada
azadeh@cs.toronto.edu

Abstract. We propose an automated verification technique for hyper-
safety properties, which express sets of valid interrelations between mul-
tiple finite runs of a program. The key observation is that constructing
a proof for a small representative set of the runs of the product pro-
gram (i.e. the product of the several copies of the program by itself),
called a reduction, is sufficient to formally prove the hypersafety property
about the program. We propose an algorithm based on a counterexample-
guided refinement loop that simultaneously searches for a reduction and
a proof of the correctness for the reduction. We demonstrate that our
tool Weaver is very effective in verifying a diverse array of hypersafety
properties for a diverse class of input programs.

1 Introduction

A hypersafety property describes the set of valid interrelations between multiple
finite runs of a program. A k-safety property [7] is a program safety property
whose violation is witnessed by at least k finite runs of a program. Determinism
is an example of such a property: non-determinism can only be witnessed by
two runs of the program on the same input which produce two different outputs.
This makes determinism an instance of a 2-safety property.

The vast majority of existing program verification methodologies are geared
towards verifying standard (1-)safety properties. This paper proposes an app-
roach to automatically reduce verification of k-safety to verification of 1-safety,
and hence a way to leverage existing safety verification techniques for hypersafety
verification. The most straightforward way to do this is via self-composition [5],
where verification is performed on k memory-disjoint copies of the program,
sequentially composed one after another. Unfortunately, the proofs in these cases
are often very verbose, since the full functionality of each copy has to be captured
by the proof. Moreover, when it comes to automated verification, the invariants
required to verify such programs are often well beyond the capabilities of modern
solvers [26] even for very simple programs and properties.

The more practical approach, which is typically used in manual or auto-
mated proofs of such properties, is to compose k memory-disjoint copies of the
program in parallel (instead of in sequence), and then verify some reduced pro-
gram obtained by removing redundant traces from the program formed in the
previous step. This parallel product program can have many such reductions.

c© The Author(s) 2019
I. Dillig and S. Tasiran (Eds.): CAV 2019, LNCS 11561, pp. 200–218, 2019.
https://doi.org/10.1007/978-3-030-25540-4_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-25540-4_11&domain=pdf
https://doi.org/10.1007/978-3-030-25540-4_11

Automated Hypersafety Verification 201

For example, the program formed from sequential self-composition is one such
reduction of the parallel product program. Therefore, care must be taken to
choose a “good” reduction that admits a simple proof. Many existing approaches
limit themselves to a narrow class of reductions, such as the one where each copy
of the program executes in lockstep [3,10,24], or define a general class of reduc-
tions, but do not provide algorithms with guarantees of covering the entire class
[4,24].

We propose a solution that combines the search for a safety proof with the
search for an appropriate reduction, in a counterexample-based refinement loop.
Instead of settling on a single reduction in advance, we try to verify the entire
(possibly infinite) set of reductions simultaneously and terminate as soon as some
reduction is successfully verified. If the proof is not currently strong enough to
cover at least one of the represented program reductions, then an appropriate
set of counterexamples are generated that guarantee progress towards a proof.

Our solution is language-theoretic. We propose a way to represent sets of
reductions using infinite tree automata. The standard safety proofs are also
represented using the same automata, which have the desired closure properties.
This allows us to check if a candidate proof is in fact a proof for one of the
represented program reductions, with reasonable efficiency.

Our approach is not uniquely applicable to hypersafety properties of sequen-
tial programs. Our proposed set of reductions naturally work well for concurrent
programs, and can be viewed in the spirit of reduction-based methods such
as those proposed in [11,21]. This makes our approach particularly appealing
when it comes to verification of hypersafety properties of concurrent programs,
for example, proving that a concurrent program is deterministic. The parallel
composition for hypersafety verification mentioned above and the parallel com-
position of threads inside the multi-threaded program are treated in a uniform
way by our proof construction and checking algorithms. In summary:

– We present a counterexample-guided refinement loop that simultaneously
searches for a proof and a program reduction in Sect. 7. This refinement loop
relies on an efficient algorithm for proof checking based on the antichain
method of [8], and strong theoretical progress guarantees.

– We propose an automata-based approach to representing a class of program
reductions for k-safety verification. In Sect. 5 we describe the precise class of
automata we use and show how their use leads to an effective proof checking
algorithm incorporated in our refinement loop.

– We demonstrate the efficacy of our approach in proving hypersafety properties
of sequential and concurrent benchmarks in Sect. 8.

2 Illustrative Example

We use a simple program Mult, that computes the product of two non-negative
integers, to illustrate the challenges of verifying hypersafety properties and the
type of proof that our approach targets. Consider the multiplication program in
Fig. 1(i), and assume we want to prove that it is distributive over addition.

202 A. Farzan and A. Vandikas

Fig. 1. Program Mult (i) and the parallel composition of three copies of it (ii).

In Fig. 1(ii), the parallel composition of Mult with two copies of itself is illus-
trated. The product program is formed for the purpose of proving distributivity,
which can be encoded through the postcondition x1 = x2 + x3. Since a, b, and
c are not modified in the program, the same variables are used across all copies.
One way to prove Mult is distributive is to come up with an inductive invariant
φijk for each location in the product program, represented by a triple of program
locations (�i, �j , �k), such that true =⇒ φ111 and φ666 =⇒ x1 = x2 + x3. The
main difficulty lies in finding assignments for locations such as φ611 that are
points in the execution of the program where one thread has finished executing
and the next one is starting. For example, at (�6, �1, �1) we need the assignment
φ611 ← x1 = (a + b) ∗ c which is non-linear. However, the program given in
Fig. 1(ii) can be verified with simpler (linear) reasoning.

i1 0, i2 0, i3 0
x1 0, x2 0, x3 0
while i2 < a

x1 x1 + c
x2 x2 + c
i1 i1 + 1
i2 i2 + 1

while i3 < b
x1 x1 + c
x3 x3 + c
i1 i1 + 1
i3 i3 + 1

The program on the right is a semantically
equivalent reduction of the full composition of
Fig. 1(ii). Consider the program P = (Copy 1 ||
(Copy 2; Copy 3)). The program on the right is
equivalent to a lockstep execution of the two par-
allel components of P . The validity of this reduc-
tion is derived from the fact that the statements
in each thread are independent of the statements
in the other. That is, reordering the statements of
different threads in an execution leads to an equiva-
lent execution. It is easy to see that x1 = x2 + x3 is
an invariant of both while loops in the reduced pro-
gram, and therefore, linear reasoning is sufficient to
prove the postcondition for this program. Conceptually, this reduction (and its
soundness proof) together with the proof of correctness for the reduced program
constitute a proof that the original program Mult is distributive. Our proposed
approach can come up with reductions like this and their corresponding proofs
fully automatically. Note that a lockstep reduction of the program in Fig. 1(ii)
would not yield a solution for this problem and therefore the discovery of the
right reduction is an integral part of the solution.

Automated Hypersafety Verification 203

3 Programs and Proofs

A non-deterministic finite automaton (NFA) is a tuple A = (Q,Σ, δ, q0, F) where
Q is a finite set of states, Σ is a finite alphabet, δ ⊆ Q × Σ × Q is the transition
relation, q0 ∈ Q is the initial state, and F ⊆ Q is the set of final states. A
deterministic finite automaton (DFA) is an NFA whose transition relation is a
function δ : Q × Σ → Q. The language of an NFA or DFA A is denoted L(A),
which is defined in the standard way [18].

3.1 Program Traces

St denotes the (possibly infinite) set of program states. For example, a program
with two integer variables has St = Z × Z. A ⊆ St is a (possibly infinite)
set of assertions on program states. Σ denotes a finite alphabet of program
statements. We refer to a finite string of statements as a (program) trace. For
each statement a ∈ Σ we associate a semantics �a� ⊆ St × St and extend �−�
to traces via (relation) composition. A trace x ∈ Σ∗ is said to be infeasible if
�x�(St) = ∅, where �x�(St) denotes the image of �x� under St. To abstract away
from a particular program syntax, we define a program as a regular language of
traces. The semantics of a program P is simply the union of the semantics of
its traces �P � =

⋃
x∈P �x�. Concretely, one may obtain programs as languages

by interpreting their edge-labelled control-flow graphs as DFAs: each vertex in
the control flow graph is a state, and each edge in the control flow graph is a
transition. The control flow graph entry location is the initial state of the DFA
and all its exit locations are final states.

3.2 Safety

There are many equivalent notions of program safety; we use non-reachability.
A program P is safe if all traces of P are infeasible, i.e. �P �(St) = ∅. Standard
partial correctness specifications are then represented via a simple encoding.
Given a precondition φ and a postcondition ψ, the validity of the Hoare-triple
{φ}P{ψ} is equivalent to the safety of [φ] ·P · [¬ψ], where [] is a standard assume
statement (or the singleton set containing it), and · is language concatenation.

Example 3.1. We use determinism as an example of how k-safety can be encoded
in the framework defined thus far. If P is a program then determinism of P is
equivalent to safety of [φ] · (P1 � P2) · [¬φ] where P1 and P2 are copies of P
operating on disjoint variables, � is a shuffle product of two languages, and [φ]
is an assume statement asserting that the variables in each copy of P are equal.

A proof is a finite set of assertions Π ⊆ A that includes true and false. Each
Π gives rise to an NFA ΠNFA = (Π,St, δΠ , true, {false}) where δΠ(φpre, a) =
{φpost | �a�(φpre) ⊆ φpost}. We abbreviate L(ΠNFA) as L(Π). Intuitively, L(Π)

204 A. Farzan and A. Vandikas

consists of all traces that can be proven infeasible using only assertions in Π.
Thus the following proof rule is sound [12,13,17]:

∃Π ⊆ A. P ⊆ L(Π)
P is safe

(Safe)

When P ⊆ L(Π), we say that Π is a proof for P . A proof does not uniquely
belong to any particular program; a single Π may prove many programs correct.

4 Reductions

The set of assertions used for a proof is usually determined by a particular
language of assertions, and a safe program may not have a (safety) proof in that
particular language. Yet, a subset of the program traces may have a proof in
that assertion language. If it can be proven that the subset of program runs that
have a safety proof are a faithful representation of all program behaviours (with
respect to a given property), then the program is correct. This motivates the
notion of program reductions.

Definition 4.1 (semantic reduction). If for programs P and P ′, P ′ is safe
implies that P is safe, then P ′ is a semantic reduction of P (written P ′
 P).

The definition immediately gives rise to the following proof rule for proving
program safety:

∃P ′
 P,Π ⊆ A. P ′ ⊆ L(Π)
P is safe

(SafeRed1)

This generic proof rule is not automatable since, given a proof Π, verifying
the existence of the appropriate reduction is undecidable. Observe that a program
is safe if and only if ∅ is a valid reduction of the program. This means that
discovering a semantic reduction and proving safety are mutually reducible to
each other. To have decidable premises for the proof rule, we need to formulate
an easier (than proving safety) problem in discovering a reduction. One way to
achieve this is by restricting the set of reductions under consideration from all
reductions (given in Definition 4.1) to a proper subset which more amenable to
algorithmic checking. Fixing a set R of (semantic) reductions, we will have the
rule:

∃P ′ ∈ R. P ′ ⊆ L(Π) ∀P ′ ∈ R. P ′
 P

P is safe
(SafeRed2)

Proposition 4.2. The proof rule SafeRed2 is sound.

Automated Hypersafety Verification 205

The core contribution of this paper is that it provides an algorithmic solution
inspired by the above proof rule. To achieve this, two subproblems are solved:
(1) Given a set R of reductions of a program P and a candidate proof Π, can
we check if there exists a reduction P ′ ∈ R which is covered by the proof Π? In
Sect. 5, we propose a new semantic interpretation of an existing notion of infinite
tree automata that gives rise to an algorithmic check for this step. (2) Given a
program P , is there a general sound set of reductions R that be effectively
represented to accommodate step (1)? In Sect. 6, we propose a construction of
an effective set of reductions, representable by our infinite tree automata, using
inspirations from existing partial order reduction techniques [15].

5 Proof Checking

Given a set of reductions R of a program P , and a candidate proof Π, we want
to check if there exists a reduction P ′ ∈ R which is covered by Π. We call this
proof checking. We use tree automata to represent certain classes of languages
(i.e sets of sets of strings), and then use operations on these automata for the
purpose of proof checking.

Fig. 2. Language {a} as an
infinite tree.

The set Σ∗ can be represented as an infinite tree.
Each x ∈ Σ∗ defines a path to a unique node in the
tree: the root node is located at the empty string ε,
and for all a ∈ Σ, the node located at xa is a child
of the node located at x. Each node is then iden-
tified by the string labeling the path leading to it.
A language L ⊆ Σ∗ (equivalently, L : Σ∗ → B)
can consequently be represented as an infinite tree
where the node at each x is labelled with a boolean
value B ≡ (x ∈ L). An example is given in Fig. 2.

It follows that a set of languages is a set of infi-
nite trees, which can be represented using automata
over infinite trees. Looping Tree Automata (LTAs)
are a subclass of Büchi Tree Automata where all states are accept states [2].
The class of Looping Tree Automata is closed under intersection and union, and
checking emptiness of LTAs is decidable. Unlike Büchi Tree Automata, emptiness
can be decided in linear time [2].

Definition 5.1. A Looping Tree Automaton (LTA) over |Σ|-ary, B-labelled
trees is a tuple M = (Q,Δ, q0) where Q is a finite set of states, Δ ⊆ Q×B×(Σ →
Q) is the transition relation, and q0 is the initial state.

Intuitively, an LTA M = (Q,Δ, q0) performs a parallel and depth-first traversal
of an infinite tree L while maintaining some local state. Execution begins at the
root ε from state q0 and non-deterministically picks a transition (q0, B, σ) ∈ Δ
such that B matches the label at the root of the tree (i.e. B = (ε ∈ L)). If no
such transition exists, the tree is rejected. Otherwise, M recursively works on

206 A. Farzan and A. Vandikas

each child a from state q′ = σ(a) in parallel. This process continues infinitely,
and L is accepted if and only if L is never rejected.

Formally, M ’s execution over a tree L is characterized by a run δ∗ :
Σ∗ → Q where δ∗(ε) = q0 and (δ∗(x), x ∈ L, λa. δ∗(xa)) ∈ Δ for all
x ∈ Σ∗. The set of languages accepted by M is then defined as L(M) = {L |
∃δ∗. δ∗ is a run of M on L }.

Theorem 5.2. Given an LTA M and a regular language L, it is decidable
whether ∃P ∈ L(M). P ⊆ L.

The proof, which appears in [14], reduces the problem to deciding whether
L(M)∩P(L) �= ∅. LTAs are closed under intersection and have decidable empti-
ness checks, and the lemma below is the last piece of the puzzle.

Lemma 5.3. If L is a regular language, then P(L) is recognized by an LTA.

Counterexamples. Theorem 5.2 effectively states that proof checking is decid-
able. For automated verification, beyond checking the validity of a proof, we
require counterexamples to fuel the development of the proof when the proof does
not check. Note that in the simple case of the proof rule safe, when P �⊆ L(Π)
there exists a counterexample trace x ∈ P such that x /∈ L(Π).

With our proof rule SafeRed2, things get a bit more complicated. First,
note that unlike the classic case (safe), where a failed proof check coincides
with the non-emptiness of an intersection check (i.e. P ∩ L(Π) �= ∅), in our
case, a failed proof check coincides with the emptiness of an intersection check
(i.e. R ∩ P(L(Π)) = ∅). The sets R and P(L(Π)) are both sets of languages.
What does the witness to the emptiness of the intersection look like? Each
language member of R contains at least one string that does not belong to any
of the subsets of our proof language. One can collect all such witness strings to
guarantee progress across the board in the next round. However, since LTAs can
represent an infinite set of languages, one must take care not end up with an
infinite set of counterexamples following this strategy. Fortunately, this will not
be the case.

Theorem 5.4. Let M be an LTA and let L be a regular language such that
P �⊆ L for all P ∈ L(M). There exists a finite set of counterexamples C such
that, for all P ∈ L(M), there exists some x ∈ C such that x ∈ P and x /∈ L.

The proof appears in [14]. This theorem justifies our choice of using LTAs instead
of more expressive formalisms such as Büchi Tree Automata. For example, the
Büchi Tree Automaton that accepts the language {{x} | x ∈ Σ∗} would give rise
to an infinite number of counterexamples with respect to the empty proof (i.e.
Π = ∅). The finiteness of the counterexample set presents an alternate proof
that LTAs are strictly less expressive than Büchi Tree Automata [27].

Automated Hypersafety Verification 207

6 Sleep Set Reductions

We have established so far that (1) a set of assertions gives rise to a regular lan-
guage proof, and (2) given a regular language proof and a set of program reduc-
tions recognizable by an LTA, we can check the program (reductions) against
the proof. The last piece of the puzzle is to show that a useful class of program
reductions can be expressed using LTAs.

Recall our example from Sect. 2. The reduction we obtain is sound because,
for every trace in the full parallel-composition program, an equivalent trace exists
in the reduced program. By equivalent, we mean that one trace can be obtained
from the other by swapping independent statements. Such an equivalence is the
essence of the theory of Mazurkiewicz traces [9].

We fix a reflexive symmetric dependence relation D ⊆ Σ×Σ. For all a, b ∈ Σ,
we say that a and b are dependent if (a, b) ∈ D, and say they are independent
otherwise. We define ∼D as the smallest congruence satisfying xaby ∼D xbay
for all x, y ∈ Σ∗ and independent a, b ∈ Σ. The closure of a language L ⊆ Σ∗

with respect to ∼D is denoted [L]D. A language L is ∼D-closed if L = [L]D. It is
worthwhile to note that all input programs considered in this paper correspond
to regular languages that are ∼D-closed.

An equivalence class of ∼D is typically called a (Mazurkiewicz) trace. We
avoid using this terminology as it conflicts with our definition of traces as strings
of statements in Sect. 3.1. We assume D is sound, i.e. �ab� = �ba� for all inde-
pendent a, b ∈ Σ.

Definition 6.1 (D-reduction). A program P ′ is a D-reduction of a program
P , that is P ′
D P , if [P ′]D = P .

Note that the equivalence relation on programs induced by ∼D is a refinement
of the semantic equivalence relation used in Definition 4.1.

Lemma 6.2. If P ′
D P then P ′
 P .

Ideally, we would like to define an LTA that accepts all D-reductions of a
program P , but unfortunately this is not possible in general.

Proposition 6.3 (corollary of Theorem 67 of [9]). For arbitrary regular
languages L1, L2 ∈ Σ∗ and relation D, the proposition ∃L
D L1. L ⊆ L2 is
undecidable.

The proposition is decidable only when D is transitive, which does not hold for
a semantically correct notion of independence for a parallel program encoding
a k-safety property, since statements from the same thread are dependent and
statements from different program copies are independent. Therefore, we have:

Proposition 6.4. Assume P is a ∼D-closed program and Π is a proof. The
proposition ∃P ′
D P. P ′ ⊆ L(Π) is undecidable.

208 A. Farzan and A. Vandikas

In order to have a decidable premise for proof rule SafeRed2 then, we
present an approximation of the set of D-reductions, inspired by sleep sets [15].
The idea is to construct an LTA that recognizes a class of D-reductions of an
input program P , whose language is assumed to be ∼D-closed. This automaton
intuitively makes non-deterministic choices about what program traces to prune
in favour of other ∼D-equivalent program traces for a given reduction. Different
non-deterministic choices lead to different D-reductions.

Fig. 3. Exploring from x
with sleep sets.

Consider two statements a, b ∈ Σ where (a, b) �∈
D. Let x, y ∈ Σ∗ and consider two program runs xaby
and xbay. We know �xbay� = �xaby�. If the automa-
ton makes a non-deterministic choice that the suc-
cessors of xa have been explored, then the successors
of xba need not be explored (can be pruned away)
as illustrated in Fig. 3. Now assume (a, c) ∈ D, for
some c ∈ Σ. When the node xbc is being explored,
we can no longer safely ignore a-transitions, since the
equality �xbcay� = �xabcy� is not guaranteed. There-
fore, the a successor of xbc has to be explored. The
nondeterministic choice of what child node to explore
is modelled by a choice of order in which we explore
each node’s children. Different orders yield different
reductions. Reductions are therefore characterized as
an assignment R : Σ∗ → Lin(Σ) from nodes to lin-
ear orderings on Σ, where (a, b) ∈ R(x) means we
explore child xa after child xb.

Given R : Σ∗ → Lin(Σ), the sleep set sleepR(x) ⊆ Σ at node x ∈ Σ∗ defines
the set of transitions that can be ignored at x:

sleepR(ε) = ∅ (1)
sleepR(xa) = (sleepR(x) ∪ R(x)(a)) \ D(a) (2)

Intuitively, (1) no transition can be ignored at the root node, since nothing has
been explored yet, and (2) at node x, the sleep set of xa is obtained by adding
the transitions we explored before a (R(x)(a)) and then removing the ones that
conflict with a (i.e. are related to a by D). Next, we define the nodes that are
ignored. The set of ignored nodes is the smallest set ignoreR : Σ∗ → B such that

x ∈ ignoreR =⇒ xa ∈ ignoreR (1)
a ∈ sleepR(x) =⇒ xa ∈ ignoreR (2)

Intuitively, a node xa is ignored if (1) any of its ancestors is ignored (ignoreR(x)),
or (2) a is one of the ignored transitions at node x (a ∈ sleepR(x)).

Finally, we obtain an actual reduction of a program P from a characterization
of a reduction R by removing the ignored nodes from P , i.e. P \ ignoreR.

Lemma 6.5. For all R : Σ∗ → Lin(Σ), if P is a ∼D-closed program then
P \ ignoreR is a D-reduction of P .

Automated Hypersafety Verification 209

The set of all such reductions is reduceD(P) = {P \ignoreR | R : Σ∗ → Lin(Σ)}.

Theorem 6.6. For any regular language P , reduceD(P) is accepted by an LTA.

Interestingly, every reduction in reduceD(P) is optimal in the sense that each
reduction contains at most one representative of each equivalence class of ∼D.

Theorem 6.7. Fix some P ⊆ Σ∗ and R : Σ∗ → Lin(Σ). For all (x, y) ∈
P \ ignoreR, if x ∼D y then x = y.

7 Algorithms

Fig. 4. Counterexample-guided refinement loop.

Figure 4 illustrates
the outline of our
verification algo-
rithm. It is a
counterexample-
guided abstraction
refinement loop in
the style of [12,
13,17]. The key
difference is that
instead of check-
ing whether some
proof Π is a
proof for the pro-
gram P , it checks
if there exists a
reduction of the program P that Π proves correct.

The algorithm relies on an oracle Interpolate that, given a finite set of
program traces C, returns a proof Π ′, if one exists, such that C ⊆ L(Π ′). In
our tool, we use Craig interpolation to implement the oracle Interpolate. In
general, since program traces are the simplest form of sequential programs (loop
and branch free), any automated program prover that can handle proving them
may be used.

The results presented in Sects. 5 and 6 give rise to the proof checking sub
routine of the algorithm in Fig. 4 (i.e. the light grey test). Given a program
DFA AP = (QP , Σ, δP , qP0, FP) and a proof DFA AΠ = (QΠ , Σ, δΠ , qΠ0, FΠ)
(obtained by determinizing ΠNFA), we can decide ∃P ′ ∈ reduceD(L(AP)). P ′ ⊆
L(AΠ) by constructing an LTA MPΠ for reduceD(L(AP)) ∩ P(L(AΠ)) and
checking emptiness (Theorem 5.2).

7.1 Progress

The algorithm corresponding to Fig. 4 satisfies a weak progress theorem: none
of the counterexamples from a round of the algorithm will ever appear in a

210 A. Farzan and A. Vandikas

future counterexample set. This, however, is not strong enough to guarantee
termination. Alternatively, one can think of the algorithm’s progress as follows.
In each round new assertions are discovered through the oracle Interpolate,
and one can optimistically hope that one can finally converge on an existing
target proof Π∗. The success of this algorithm depends on two factors: (1) the
counterexamples used by the algorithm belong to L(Π∗) and (2) the proof that
Interpolate discovers for these counterexamples coincide with Π∗. The latter
is a typical known wild card in software model checking, which cannot be guar-
anteed; there is plenty of empirical evidence, however, that procedures based on
Craig Interpolation do well in approximating it. The former is a new problem
for our refinement loop.

In a standard algorithm in the style of [12,13,17], the verification proof rule
dictates that every program trace must be in L(Π∗). In our setting, we only
require a subset (corresponding to some reduction) to be in L(Π∗). This means
one cannot simply rely on program traces as appropriate counterexamples. The-
orem 5.4 presents a solution to this problem. It ensures that we always feed
Interpolate some counterexample from Π∗ and therefore guarantee progress.

Theorem 7.1 (Strong Progress). Assume a proof Π∗ exists for some reduc-
tion P ∗ ∈ R and Interpolate always returns some subset of Π∗ for traces in
L(Π∗). Then the algorithm will terminate in at most |Π∗| iterations.

Theorem 7.1 ensures that the algorithm will never get into an infinite loop
due to a bad choice of counterexamples. The condition on Interpolate ensures
that divergence does not occur due to the wrong choice of assertions by Interpo-
late and without it any standard interpolation-based software model checking
algorithm may diverge. The assumption that there exists a proof for a reduction
of the program in the fixed set R ensures that the proof checking procedure can
verify the target proof Π∗ once it is reached. Note that, in general, a proof may
exist for a reduction of the program which is not in R. Therefore, the algorithm
is not complete with respect to all reductions, since checking the premises of
SafeRed1 is undecidable as discussed in Sect. 4.

7.2 Faster Proof Checking Through Antichains

The state set of MPΠ , the intersection of program and proof LTAs, has size
|QP × B × P(Σ) × QΠ |, which is exponential in |Σ|. Therefore, even a linear
emptiness test for this LTA can be computationally expensive. Antichains have
been previously used [8] to optimize certain operations over NFAs that also suffer
from exponential blowups, such as deciding universality and inclusion tests. The
main idea is that these operations involve computing downwards-closed and
upwards-closed sets according to an appropriate subsumption relation, which
can be represented compactly as antichains. We employ similar techniques to
propose a new emptiness check algorithm.

Antichains. The set of maximal elements of a set X with respect to some
ordering relation � is denoted max(X). The downwards-closure of a set X with

Automated Hypersafety Verification 211

respect to � is denoted �X�. An antichain is a set X where no element of X is
related (by �) to another. The maximal elements max(X) of a finite set X is an
antichain. If X is downwards-closed then �max(X)� = X.

The emptiness check algorithm for LTAs from [2] computes the set of inactive
states (i.e. states which generate an empty language) and checks if the initial
state is inactive. The set of inactive states of an LTA M = (Q,Δ, q0) is defined
as the smallest set inactive(M) satisfying

∀(q,B, σ) ∈ Δ.∃a. σ(a) ∈ inactive(M)
q ∈ inactive(M)

(Inactive)

Alternatively, one can view inactive(M) as the least fixed-point of a monotone
(with respect to ⊆) function FM : P(Q) → P(Q) where

FM (X) = {q | ∀(q,B, σ) ∈ Δ.∃a. σ(a) ∈ X}.

Therefore, inactive(M) can be computed using a standard fixpoint algorithm.
If inactive(M) is downwards-closed with respect to some subsumption relation

(�) ⊆ Q × Q, then we need not represent all of inactive(M). The antichain
max(inactive(M)) of maximal elements of inactive(M) (with respect to �) would
be sufficient to represent the entirety of inactive(M), and can be exponentially
smaller than inactive(M), depending on the choice of relation �.

A trivial way to compute max(inactive(M)) is to first compute inactive(M)
and then find the maximal elements of the result, but this involves doing strictly
more work than the baseline algorithm. However, observe that if FM also pre-
serves downwards-closedness with respect to �, then

max(inactive(M)) = max(lfp(FM))
= max(lfp(FM ◦ �−� ◦ max)) = lfp(max ◦FM ◦ �−�)

That is, max(inactive(M)) is the least fixed-point of a function Fmax
M :

P(Q) → P(Q) defined as Fmax
M (X) = max(FM (�X�)). We can calculate

max(inactive(M)) efficiently if we can calculate Fmax
M (X) efficiently, which is

true in the special case of the intersection automaton for the languages of our
proof P(L(Π)) and our program reduceD(P), which we refer to as MPΠ .

We are most interested in the state space of MPΠ , which is QPΠ = (QP ×
B × P(Σ)) × QΠ . Observe that states whose B part is � are always active:

Lemma 7.2. ((qP ,�, S), qΠ) /∈ inactive(MPΠ) for all qP ∈ QP , qΠ ∈ QΠ , and
S ⊆ Σ.

The state space can then be assumed to be QPΠ = (QP × {⊥} × P(Σ)) × QΠ

for the purposes of checking inactivity. The subsumption relation defined as the
smallest relation �PΠ satisfying

S ⊆ S′ =⇒ ((qP ,⊥, S), qΠ) �PΠ ((qP ,⊥, S′), qΠ)

for all qP ∈ QP , qΠ ∈ QΠ , and S, S′ ⊆ Σ, is a suitable one since:

212 A. Farzan and A. Vandikas

Lemma 7.3. FMP Π
preserves downwards-closedness with respect to �PΠ .

The function Fmax
MP Π

is a function over relations

Fmax
MP Π

: P((QP × {⊥} × P(Σ)) × QΠ) → P((QP × {⊥} × P(Σ)) × QΠ)

but in our case it is more convenient to view it as a function over functions

Fmax
MP Π

: (QP × {⊥} × QΠ → P(P(Σ))) → (QP × {⊥} × QΠ → P(P(Σ)))

Through some algebraic manipulation and some simple observations, we can
define Fmax

MP Π
functionally as follows.

Lemma 7.4. For all qP ∈ QP , qΠ ∈ QΠ , and X : QP × {⊥} × QΠ →
P(P(Σ)),

Fmax
MP Π

(X)(qP ,⊥, qΠ) =

⎧
⎪⎨

⎪⎩

{Σ} if qP ∈ FP ∧ qΠ /∈ FΠ
�

R∈Lin(Σ)

⊔

a∈Σ
S∈X(q′

P ,⊥,q′
Π)

S′ otherwise

where

q′
P = δP (qP , a) X � Y = max{x ∩ y | x ∈ X ∧ y ∈ Y }

q′
Π = δΠ(qΠ , a) X � Y = max(X ∪ Y)

S′ =

{
{(S ∪ D(a)) \ {a}} if R(a) \ D(a) ⊆ S

∅ otherwise

function Check(AP , AΠ , D)

(QP , Σ, δP , q0P , FP) ← AP

(QΠ , Σ, δΠ , q0Π , FΠ) ← AΠ

function FMax(X)((qP , ⊥, qΠ))
if qP ∈ FP ∧ qΠ /∈ FΠ

return {Σ}
X� ← {Σ}
for R ∈ Lin(Σ)

X� ← ∅
for a ∈ Σ, S ∈ X((δP (qP , a), ⊥, δΠ(qΠ , a)))

if R(a) \ D(a) ⊆ S
X� ← X� � {(S ∪ D(a)) \ {a}}

X� ← X�
 X�

return X�

return Fix(FMax)((q0P , ⊥, q0Π)) �= ∅
Algorithm 1. Proof checking algorithm

Automated Hypersafety Verification 213

A full justification appears in [14]. Formulating Fmax
MP Π

as a higher-order func-
tion allows us to calculate max(inactive(MPΠ)) using efficient fixpoint algo-
rithms like the one in [22]. Algorithm 1 outlines our proof checking routine.
Fix : ((A → B) → (A → B)) → (A → B) is a procedure that computes the
least fixpoint of its input. The algorithm simply computes the fixpoint of the
function Fmax

MP Π
as defined in Lemma 7.4, which is a compact representation of

inactive(MPΠ) and checks if the start state of MPΠ is in it.

Counterexamples. Theorem 5.4 states that a finite set of counterexamples
exists whenever ∃P ′ ∈ reduceD(P). P ′ ⊆ L(Π) does not hold. The proof of
emptiness for an LTA, formed using rule Inactive above, is a finite tree. Each
edge in the tree is labelled by an element of Σ (obtained from the existential
in the rule) and the paths through this tree form the counterexample set. To
compute this set, then, it suffices to remember enough information during the
computation of inactive(M) to reconstruct the proof tree. Every time a state q
is determined to be inactive, we must also record the witness a ∈ Σ for each
transition (q,B, σ) ∈ Δ such that σ(a) ∈ inactive(M).

In an antichain-based algorithm, once we determine a state q to be inactive,
we simultaneously determine everything it subsumes (i.e. � q) to be inactive as
well. If we record unique witnesses for each and every state that q subsumes,
then the space complexity of our antichain algorithm will be the same as the
unoptimized version. The following lemma states that it is sufficient to record
witnesses only for q and discard witnesses for states that q subsumes.

Lemma 7.5. Fix some states q, q′ such that q′ �PΠ q. A witness used to prove
q is inactive can also be used to prove q′ is inactive.

Note that this means that the antichain algorithm soundly returns potentially
fewer counterexamples than the original one.

7.3 Partition Optimization

The LTA construction for reduceD(P) involves a nondeterministic choice of lin-
ear order at each state. Since |Lin(Σ)| has size |Σ|!, each state in the automa-
ton would have a large number of transitions. As an optimization, our algo-
rithm selects ordering relations out of Part(Σ) (instead of Lin(Σ)), defined as
Part(Σ) = {Σ1 × Σ2 | Σ1 � Σ2 = Σ} where � is disjoint union. This leads to a
sound algorithm which is not complete with respect to sleep set reductions and
trades the factorial complexity of computing Lin(Σ) for an exponential one.

8 Experimental Results

To evaluate our approach, we have implemented our algorithm in a tool called
Weaver written in Haskell. Weaver accepts a program written in a simple
imperative language as input, where the property is already encoded in the
program in the form of assume statements, and attempts to prove the program

214 A. Farzan and A. Vandikas

correct. The dependence relation for each input program is computed using a
heuristic that ensures ∼D-closedness. It is based on the fact that the shuffle
product (i.e. parallel composition) of two ∼D-closed languages is ∼D-closed.

Weaver employs two verification algorithms: (1) The total order algorithm
presented in Algorithm 1, and (2) the variation with the partition optimization
discussed in Sect. 7.3. It also implements multiple counterexample generation
algorithms: (1) Naive: selects the first counterexample in the difference of the
program and proof language. (2) Progress-Ensuring: selects a set of counterex-
amples satisfying Theorem 5.4. (3) Bounded Progress-Ensuring: selects a few
counterexamples (in most cases just one) from the set computed by the progress-
ensuring algorithm. Our experimentation demonstrated that in the vast majority
of the cases, the bounded progress ensuring algorithm (an instance of the par-
tition algorithm) is the fastest of all options. Therefore, all our reports in this
section are using this instance of the algorithm.

For the larger benchmarks, we use a simple sound optimization to reduce
the proof size. We declare the basic blocks of code as atomic, so that internal
assertions need not be generated for them as part of the proof. This optimization
is incomplete with respect to sleep set reductions.

Benchmarks. We use a set of sequential benchmarks from [24] and include
additional sequential benchmarks that involve more interesting reductions in
their proofs. We have a set of parallel benchmarks, which are beyond the scope
of previous hypersafety verification techniques. We use these benchmarks to
demonstrate that our technique/tool can seamlessly handle concurrency. These
involve proving concurrency specific hypersafety properties such as determinism
and equivalence of parallel and sequential implementations of algorithms. Finally,
since the proof checking algorithm is the core contribution of this paper, we have
a contrived set of instances to stress test our algorithm. These involve proving
determinism of simple parallel-disjoint programs with various numbers of threads
and statements per thread. These benchmarks have been designed to cause a
combinatorial explosion for the proof checker and counterexample generation
routines. More information on the benchmarks can be found in [14].

Evaluation

Due to space restrictions, it is not feasible to include a detailed account of all
our experiments here, for over 50 benchmarks. A detailed table can be found in
[14]. Table 1 includes a summary in the form of averages, and here, we discuss
our top findings.

Proof construction time refers to the time spent to construct L(Π) from
a given set of assertions Π and excludes the time to produce proofs for the
counterexamples in a given round. Proof checking time is the time spent
to check if the current proof candidate is strong enough for a reduction of the
program. In the fastest instances (total time around 0.01 s), roughly equal time
is spent in proof checking and proof construction. In the slowest instances, the
total time is almost entirely spent in proof construction. In contrast, in our stress

Automated Hypersafety Verification 215

Table 1. Experimental results averages for benchmark groups.

Benchmark group Group

count

Proof size Number of

refinement

rounds

Proof

construction

time

Proof

checking

time

Total

time

Looping programs of [24]

2-safety properties

5 63 12 46.69 s 0.1 s 47.03 s

Looping programs of [24]

3-safety properties

8 155 22 475.78 s 11.79 s 448.36 s

Loop-free programs of [24] 27 5 2 0.13 s 0.0004 s 0.15 s

Our sequential benchmarks 13 30 9 14.27 s 2.5 s 17.94 s

Our parallel benchmarks 7 31 8 17.95 0.56 s 18.63 s

tests (designed to stress the proof checking algorithm) the majority of the time
is spent in proof checking. The time spent in proving counterexamples correct
is negligible in all instances. Proof sizes vary from 4 assertions to 298 for the
most complicated instance. Verification times are correlated with the final proof
size; larger proofs tend to cause longer verification times.

Numbers of refinement rounds vary from 2 for the simplest to 33 for the
most complicated instance. A small number of refinement rounds (e.g. 2) implies
a fast verification time. But, for the higher number of rounds, a strong positive
correlation between the number of rounds and verification time does not exist.

For our parallel programs benchmarks (other than our stress tests), the
tool spends the majority of its time in proof construction. Therefore, we designed
specific (unusual) parallel programs to stress test the proof checker. Stress test
benchmarks are trivial tests of determinism of disjoint parallel programs, which
can be proven correct easily by using the atomic block optimization. However,
we force the tool to do the unnecessary hard work. These instances simulate the
worst case theoretical complexity where the proof checking time and number of
counterexamples grow exponentially with the number of threads and the sizes of
the threads. In the largest instance, more than 99% of the total verification time
is spent in proof checking. Averages are not very informative for these instances,
and therefore are not included in Table 1.

Finally, Weaver is only slow for verifying 3-safety properties of large loop-
ing benchmarks from [24]. Note that unlike the approach in [24], which starts
from a default lockstep reduction (that is incidentally sufficient to prove these
instances), we do not assume any reduction and consider them all. The extra
time is therefore expected when the product programs become quite large.

9 Related Work

The notion of a k-safety hyperproperty was introduced in [7] without consider-
ation for automatic program verification. The approach of reducing k-safety to
1-safety by self-composition is introduced in [5]. While theoretically complete,
self-composition is not practical as discussed in Sect. 1. Product programs gener-
alize the self-composition approach and have been used in verifying translation

216 A. Farzan and A. Vandikas

validation [20], non-interference [16,23], and program optimization [25]. A prod-
uct of two programs P1 and P2 is semantically equivalent to P1 · P2 (sequential
composition), but is made easier to verify by allowing parts of each program to
be interleaved. The product programs proposed in [3] allow lockstep interleav-
ing exclusively, but only when the control structures of P1 and P2 match. This
restriction is lifted in [4] to allow some non-lockstep interleavings. However, the
given construction rules are non-deterministic, and the choice of product pro-
gram is left to the user or a heuristic.

Relational program logics [6,28] extend traditional program logics to allow
reasoning about relational program properties, however automation is usually
not addressed. Automatic construction of product programs is discussed in [10]
with the goal of supporting procedure specifications and modular reasoning,
but is also restricted to lockstep interleavings. Our approach does not support
procedure calls but is fully automated and permits non-lockstep interleavings.

The key feature of our approached is the automation of the discovery of
an appropriate program reduction and a proof combined. In this case, the only
other method that compares is the one based on Cartesian Hoare Logic (CHL)
proposed in [24] along with an algorithm for automatic verification based on
CHL. Their proposed algorithm implicitly constructs a product program, using
a heuristic that favours lockstep executions as much as possible, and then priori-
tizes certain rules of the logic over the rest. The heuristic nature of the search for
the proof means that no characterization of the search space can be given, and
no guarantees about whether an appropriate product program will be found. In
contrast, we have a formal characterization of the set of explored product pro-
grams in this paper. Moreover, CHL was not designed to deal with concurrency.

Lipton [19] first proposed reduction as a way to simplify reasoning about
concurrent programs. His ideas have been employed in a semi-automatic set-
ting in [11]. Partial-order reduction (POR) is a class of techniques that reduces
the state space of search by removing redundant paths. POR techniques are
concerned with finding a single (preferably minimal) reduction of the input pro-
gram. In contrast, we use the same underlying ideas to explore many program
reductions simultaneously. The class of reductions described in Sect. 6 is based
on the sleep set technique of Godefroid [15]. Other techniques exist [1,15] that
are used in conjunction with sleep sets to achieve minimality in a normal POR
setting. In our setting, reductions generated by sleep sets are already optimal
(Theorem 6.7). However, employing these additional POR techniques may pro-
pose ways of optimizing our proof checking algorithm by producing a smaller
reduction LTA.

References

1. Abdulla, P.A., Aronis, S., Jonsson, B., Sagonas, K.: Source sets: a foundation for
optimal dynamic partial order reduction. J. ACM (JACM) 64(4), 25 (2017)

Automated Hypersafety Verification 217

2. Baader, F., Tobies, S.: The inverse method implements the automata approach
for modal satisfiability. In: Goré, R., Leitsch, A., Nipkow, T. (eds.) IJCAR 2001.
LNCS, vol. 2083, pp. 92–106. Springer, Heidelberg (2001). https://doi.org/10.1007/
3-540-45744-5 8

3. Barthe, G., Crespo, J.M., Kunz, C.: Relational verification using product programs.
In: Butler, M., Schulte, W. (eds.) FM 2011. LNCS, vol. 6664, pp. 200–214. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-21437-0 17

4. Barthe, G., Crespo, J.M., Kunz, C.: Beyond 2-safety: asymmetric product pro-
grams for relational program verification. In: Artemov, S., Nerode, A. (eds.) LFCS
2013. LNCS, vol. 7734, pp. 29–43. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-35722-0 3

5. Barthe, G., D’argenio, P.R., Rezk, T.: Secure information flow by self-composition.
Math. Struct. Comput. Sci. 21(6), 1207–1252 (2011)

6. Benton, N.: Simple relational correctness proofs for static analyses and program
transformations. In: ACM SIGPLAN Notices, vol. 39, pp. 14–25. ACM (2004)

7. Clarkson, M.R., Schneider, F.B.: Hyperproperties. In: 21st IEEE Computer Secu-
rity Foundations Symposium, pp. 51–65. IEEE (2008)

8. De Wulf, M., Doyen, L., Henzinger, T.A., Raskin, J.-F.: Antichains: a new algo-
rithm for checking universality of finite automata. In: Ball, T., Jones, R.B. (eds.)
CAV 2006. LNCS, vol. 4144, pp. 17–30. Springer, Heidelberg (2006). https://doi.
org/10.1007/11817963 5

9. Diekert, V., Métivier, Y.: Partial commutation and traces. In: Rozenberg, G., Salo-
maa, A. (eds.) Handbook of Formal Languages, pp. 457–533. Springer, Heidelberg
(1997). https://doi.org/10.1007/978-3-642-59126-6 8

10. Eilers, M., Müller, P., Hitz, S.: Modular product programs. In: Ahmed, A. (ed.)
ESOP 2018. LNCS, vol. 10801, pp. 502–529. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-89884-1 18

11. Elmas, T., Qadeer, S., Tasiran, S.: A calculus of atomic actions. In: ACM SIGPLAN
Notices, vol. 44, pp. 2–15. ACM (2009)

12. Farzan, A., Kincaid, Z., Podelski, A.: Inductive data flow graphs. In: ACM SIG-
PLAN Notices, vol. 48, pp. 129–142. ACM (2013)

13. Farzan, A., Kincaid, Z., Podelski, A.: Proof spaces for unbounded parallelism. In:
ACM SIGPLAN Notices, vol. 50, pp. 407–420. ACM (2015)

14. Farzan, A., Vandikas, A.: Reductions for automated hypersafety verification (2019)
15. Godefroid, P. (ed.): Partial-Order Methods for the Verification of Concurrent Sys-

tems: An Approach to the State-Explosion Problem, vol. 1032. Springer, Heidelberg
(1996). https://doi.org/10.1007/3-540-60761-7

16. Goguen, J.A., Meseguer, J.: Security policies and security models. In: 1982 IEEE
Symposium on Security and Privacy, p. 11. IEEE (1982)

17. Heizmann, M., Hoenicke, J., Podelski, A.: Refinement of trace abstraction. In: Pals-
berg, J., Su, Z. (eds.) SAS 2009. LNCS, vol. 5673, pp. 69–85. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-03237-0 7

18. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory,
Languages, and Computation, 3rd edn. Addison-Wesley Longman Publishing Co.
Inc., Boston (2006)

19. Lipton, R.J.: Reduction: a method of proving properties of parallel programs. Com-
mun. ACM 18(12), 717–721 (1975)

20. Pnueli, A., Siegel, M., Singerman, E.: Translation validation. In: Steffen, B. (ed.)
TACAS 1998. LNCS, vol. 1384, pp. 151–166. Springer, Heidelberg (1998). https://
doi.org/10.1007/BFb0054170

https://doi.org/10.1007/3-540-45744-5_8
https://doi.org/10.1007/3-540-45744-5_8
https://doi.org/10.1007/978-3-642-21437-0_17
https://doi.org/10.1007/978-3-642-35722-0_3
https://doi.org/10.1007/978-3-642-35722-0_3
https://doi.org/10.1007/11817963_5
https://doi.org/10.1007/11817963_5
https://doi.org/10.1007/978-3-642-59126-6_8
https://doi.org/10.1007/978-3-319-89884-1_18
https://doi.org/10.1007/978-3-319-89884-1_18
https://doi.org/10.1007/3-540-60761-7
https://doi.org/10.1007/978-3-642-03237-0_7
https://doi.org/10.1007/BFb0054170
https://doi.org/10.1007/BFb0054170

218 A. Farzan and A. Vandikas

21. Popeea, C., Rybalchenko, A., Wilhelm, A.: Reduction for compositional verifica-
tion of multi-threaded programs. In: Formal Methods in Computer-Aided Design
(FMCAD), 2014, pp. 187–194. IEEE (2014)

22. Pottier, F.: Lazy least fixed points in ML (2009)
23. Sabelfeld, A., Myers, A.C.: Language-based information-flow security. IEEE J. Sel.

Areas Commun. 21(1), 5–19 (2003)
24. Sousa, M., Dillig, I.: Cartesian hoare logic for verifying k-safety properties. In:

ACM SIGPLAN Notices, vol. 51, pp. 57–69. ACM (2016)
25. Sousa, M., Dillig, I., Vytiniotis, D., Dillig, T., Gkantsidis, C.: Consolidation of

queries with user-defined functions. In: ACM SIGPLAN Notices, vol. 49, pp. 554–
564. ACM (2014)

26. Terauchi, T., Aiken, A.: Secure information flow as a safety problem. In: Hankin,
C., Siveroni, I. (eds.) SAS 2005. LNCS, vol. 3672, pp. 352–367. Springer, Heidelberg
(2005). https://doi.org/10.1007/11547662 24

27. Vardi, M.Y., Wolper, P.: Reasoning about infinite computations. Inf. Comput.
115(1), 1–37 (1994)

28. Yang, H.: Relational separation logic. Theor. Comput. Sci. 375(1–3), 308–334
(2007)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/11547662_24
http://creativecommons.org/licenses/by/4.0/

Automated Synthesis of Secure
Platform Mappings

Eunsuk Kang1(B), Stéphane Lafortune2,
and Stavros Tripakis3

1 Carnegie Mellon University, Pittsburgh, USA
eskang@cmu.edu

2 University of Michigan, Ann Arbor, USA
stephane@umich.edu

3 Northeastern University, Boston, USA
stavros@northeastern.edu

Abstract. System development often involves decisions about how a high-level
design is to be implemented using primitives from a low-level platform. Certain
decisions, however, may introduce undesirable behavior into the resulting imple-
mentation, possibly leading to a violation of a desired property that has already
been established at the design level. In this paper, we introduce the problem of
synthesizing a property-preserving platform mapping: synthesize a set of imple-
mentation decisions ensuring that a desired property is preserved from a high-
level design into a low-level platform implementation. We formalize this synthe-
sis problem and propose a technique for generating a mapping based on symbolic
constraint search. We describe our prototype implementation, and two real-world
case studies demonstrating the applicability of our technique to the synthesis of
secure mappings for the popular web authorization protocols OAuth 1.0 and 2.0.

1 Introduction

When building a complex software system, one may begin by coming up with an
abstract design, and then construct an implementation that conforms to this design.
In practice, there are rarely enough time and resources available to build an implemen-
tation from scratch, and so this process often involves reuse of an existing platform—a
collection of generic components, data structures, and libraries that are used to build an
application in a particular domain.

The benefits of reuse also come with potential risks. A typical platform exhibits
its own complex behavior, including subtle interactions with the environment that may
be difficult to anticipate and reason about. Typically, the developer must work with
the platform as it exists, and is rarely given the luxury of being able to modify it and
remove unwanted features. For example, when building a web application, a developer
must work with a standard browser and take into account all its features and security
vulnerabilities. As a result, achieving an implementation that perfectly conforms to the
design—in the traditional notion of behavioral refinement [20]—may be too difficult

This work has been supported by NSF award CNS-1801546.

c© The Author(s) 2019
I. Dillig and S. Tasiran (Eds.): CAV 2019, LNCS 11561, pp. 219–237, 2019.
https://doi.org/10.1007/978-3-030-25540-4_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-25540-4_12&domain=pdf
https://doi.org/10.1007/978-3-030-25540-4_12

220 E. Kang et al.

in practice. Worse, the resulting implementation may not necessarily preserve desirable
properties that have already been established at the level of design.

These risks are especially evident in applications where security is a major con-
cern. For example, OAuth 2.0, a popular authorization protocol subjected to rigorous
and formal analysis at an abstract level [9,33,42], has been shown to be vulnerable to
attacks when implemented on a web browser or a mobile device [10,39,41]. Many of
these vulnerabilities are not due to simple programming errors: They arise from logi-
cal flaws that involve a subtle interaction between the protocol logic and the details of
the underlying platform. Unfortunately, OAuth itself does not explicitly guard against
these flaws, since it is intended to be a generic, abstract protocol that deliberately omits
details about potential platforms. On the other hand, anticipating and mitigating against
these risks require an in-depth understanding of the platform and security expertise,
which many developers do not possess.

This paper proposes an approach to help developers overcome these risks and
achieve an implementation that preserves desired properties. In particular, we formu-
late this task as the problem of automatically synthesizing a property-preserving plat-
form mapping: A set of implementation decisions ensuring that a desired property is
preserved from a high-level design into a low-level platform implementation.

Our approach builds on the prior work of Kang et al. [28], which proposes a mod-
eling and verification framework for reasoning about security attacks across multiple
levels of abstraction. The central notion in this framework is that of a mapping, which
captures a developer’s decisions about how abstract system entities are to be realized in
terms of their concrete counterparts. In this paper, we fix a bug in the formalization of
mapping in [28] and extend the framework of [28] with the novel problem of synthe-
sizing a property-preserving mapping. In addition, we present an algorithmic technique
for performing this synthesis task. Our technique, inspired by the highly successful
paradigms of sketching and syntax-guided synthesis [3,26,37,38], takes a constraint
generalization approach to (1) quickly prune the search space and (2) produce a solu-
tion that is maximal (i.e., a largest set of mappings that preserve a given property).

We have built a prototype implementation of the synthesis technique. Our tool
accepts a high-level design model, a desired system property (both specified by the
developer), and a model of a low-level platform (built and maintained separately by
a domain expert). The tool then produces a maximal set of mappings (if one exists)
that would ensure that the resulting platform implementation preserves the given prop-
erty. We have successfully applied our tool to synthesize property-preserving map-
pings for two non-trivial case studies: the authentication protocols OAuth 1.0 and 2.0
implemented on top of HTTP. Our results are promising: The implementation deci-
sions captured by our synthesized mappings describe effective mitigations against some
of the common vulnerabilities that have been found in deployed OAuth implementa-
tions [39,41].

The contributions of this paper include: a formal treatment of mapping, including
a correction in the original definition [28] (Sect. 2); a formulation of the mapping syn-
thesis problem, a novel approach for ensuring the preservation of a property between
a high-level design and its platform implementation (Sect. 3); a technique for auto-
matically synthesizing mappings based on symbolic constraint search (Sect. 4); and a
prototype implementation of the synthesis technique along with a real-world case study

Automated Synthesis of Secure Platform Mappings 221

demonstrating the feasibility of this approach (Sect. 5). We conclude with a discussion
of related work (Sect. 6).

2 Mapping Composition

Our approach builds on the modeling and verification framework proposed by Kang
et al. [28], which is designed to allow modular reasoning about behavior of processes
across multiple abstraction layers. In this framework, a trace-based semantic model
(based on CSP [21]) is extended to represent events as sets of labels, and includes a
new composition operator based on the notion of mappings, which relate event labels
from one abstraction layer to another. In this section, we present the essential elements
of this framework.

{p}SenderAlice

{p.x}

{p}

{s}
{s.x}

{s}

{p.x}

{s.x}{p.y}

{s.y}

{a.b.p}

{a.b.s}
{a.e.p}

E0 E1

{a.e.p}

{a.e.s}

Eve

A0 A1

X0

RecvX

S0

{u.e.s}

{u.e.p}

(a) Abstract Channel (b) Public Channel

LAlice = { a.b.p, a.b.s, a.e.p, a.e.s }

LEve = { a.e.p, a.e.s, u.e.p, u.e.s }

LSender = LRecvX
=

 { p, s, p.x, s.x, p.y, s.y }

EAlice = { {a.b.p}, {a.b.s}, {a.e.p} }

EEve = { {a.e.p}, {a.e.s}, {u.e.p}, {u.e.s} }

ESender = { {p}, {s}, {p.x}, {s.x}, {p.y}, {s.y} }

ERecvX
 = { {p}, {s}, {p.x}, {s.x} }

(c) Labels and events

Fig. 1. A pair of high-level (abstract) and low-level (public) communication models. Note that
each event is a set of labels, where each label describes one possible representation of the event.

Running Example. Consider a simple example involving communication of messages
among a set of processes. In our modeling approach, the communication of a message
is represented by labels of the form sender.receiver.message. For example, label a.e.p
represents Alicesending Eve a public, non-secret message. Similarly, a.b.s represents
Alicesending a secret message to another process (b for Bob, for example). In this sys-
tem, Aliceis unwilling to share its secret with Eve; in Fig. 1(a), this is modeled by the
absence of any transition on event {a.e.s} in the Aliceprocess.

Eve is a malicious character whose goal is to learn Alice’s secret. Beside a.e.p and
a.e.s, Eve is associated with two additional labels, u.e.p and u.e.s, which represent
receiving a public or secret message, respectively, through some unknown sender u.
Conceptually, these two latter labels can be regarded as side channels [30] that Eve
uses to obtain information.

A desirable property of this abstract communication system is that Eve should never
be able to learn Alice’s secret1. In this case, it can be easily observed that the property
holds, since Alice, by design, never sends the secret to Eve.

1 A formalization of this property is provided later in this section.

222 E. Kang et al.

The model in Fig. 1(b) describes communication over a low-level public channel
that is shared among all processes. A message sent over this channel may be encrypted
using a key, as captured by labels of the form message.key. For instance, p.x and s.x
represent the transmission of a public and secret message, respectively, using key x.
A message may also be sent in plaintext by omitting an encryption key (e.g., label s
represents the plaintext transmission of a secret). Each receiver on the public channel is
assumed to have knowledge of only a single key; for instance, RecvX only knows key x
and thus cannot receive messages that are encrypted using key y (i.e., labels p.y and s.y
do not appear in events of RecvX).

Suppose that we wish to reason about the behavior of the abstract communication
system from Fig. 1(a) when it is implemented over the public channel in Fig. 1(b). In
particular, in the low-level implementation, Eve and other processes (e.g., Bob) are
required to share the same channel, no longer benefitting from the separation provided
by the abstraction in Fig. 1(a). Does the property of the abstract communication hold
in every possible implementation? If not, which decisions ensure that Alice’s secret
remains protected from Eve? We formulate these questions as the problem of synthesiz-
ing a property-preserving mapping between a pair of high-level and low-level models.

Events, Traces, and Processes. Let L be a potentially infinite set of labels. An event e
is a finite, non-empty set of labels: e ∈ E(L), where E(L) is the set of all finite subsets
of L except the empty set ∅. Let S∗ be the set of all finite sequences of elements of set S.
A trace t is a finite sequence of events: t ∈ T(L), where T(L) is the set of all traces over
L (i.e., T(L) = (E(L))∗). The empty trace is denoted by 〈〉, and the trace consisting of
a sequence of events e1, e2, ... is denoted 〈e1, e2, ...〉. If t and t′ are traces, then t · t′ is
the trace obtained by concatenating t and t′. Note that 〈〉 · t = t · 〈〉 = t for any trace t.

Let t be a trace over set of labels L, and let A ⊆ L be a subset of L. The projection
of t onto A, denoted t � A, is defined as follows:

〈〉 � A = 〈〉 (〈e〉 · t) � A =
{ 〈e ∩ A〉 · (t � A) if e ∩ A �= ∅
(t � A) otherwise

For example, if t = 〈{a}, {a, c}, {b}〉, then t � {a, b} = 〈{a}, {a}, {b}〉 and t �
{b, c} = 〈{c}, {b}〉.

A process P is defined as a triple (LP, EP, TP). The labels of process P, LP ⊆ L, is
the set of all labels appearing in P, and EP ⊆ E(L) is the set of events that may appear
in traces of P, which are denoted by TP ⊆ T(L). We assume traces in every process P
to be prefix-closed; i.e., 〈〉 ∈ TP and for every non-empty trace t′ = t · 〈e〉 ∈ TP, t ∈ TP.

Parallel Composition. A pair of processes P and Q synchronize with each other by
performing events e1 and e2, respectively, if these two events share at least one label. In
their parallel composition, denoted P ‖ Q, this synchronization is represented by a new
event e′ that is constructed as the union of e1 and e2 (i.e., e′ = e1 ∪ e2).

Formally, let P = (LP, EP, TP) and Q = (LQ, EQ, TQ) be a pair of processes. Their
parallel composition is defined as follows:

EP‖Q = {e ∈ E(LP ∪ LQ) | eventCond(e,P) ∧ eventCond(e,Q) ∧ syncCond(e)}
TP‖Q = {t ∈ (EP‖Q)∗ | (t � LP) ∈ TP ∧ (t � LQ) ∈ TQ} (Def. 1)

Automated Synthesis of Secure Platform Mappings 223

where LP‖Q = LP ∪ LQ, predicate eventCond is defined as

eventCond(e,P) ≡ e ∩ LP = ∅ ∨ e ∩ LP ∈ EP

and a condition on synchronization, syncCond, is defined as

syncCond(e) ≡ e ⊆ LP − LQ ∨ e ⊆ LQ − LP ∨ (∃ a ∈ e : a ∈ LP ∩ LQ) (Cond. 1)

The definition of TP‖Q states that if we take a trace t in the composite process and
ignore labels that appear only in Q, then the resulting trace must be a valid trace of P
(and symmetrically for Q). The condition (Cond. 1) is imposed on every event appear-
ing in TP‖Q to ensure that an event performed together by P and Q contains at least one
common label shared by both processes.

This type of parallel composition can be seen as a generalization of the parallel
composition of CSP [21], from single labels to sets of labels. That is, the CSP parallel
composition is the special case of the composition of Def. 1 where every event is a
singleton (i.e., it contains exactly one label). Note that if event e contains exactly one
label a, then a must belong to the alphabet of P or that of Q, which means syncCond(e)
always evaluates to true. The resulting expression in that case

TP‖Q = {t ∈ T(LP ∪ LQ) | (t � LP) ∈ TP ∧ (t � LQ) ∈ TQ}
is equivalent to the definition of parallel composition in CSP [21, Sec. 2.3.3].

Mapping Composition. A mapping m over set of labels L is a partial function m : L →
L. Informally, m(a) = b stipulates that every event that contains a as a label is to be
assigned b as an additional label. We sometimes use the notations a �→m b or (a, b) ∈ m
as alternatives to m(a) = b. When we write m(a) = b we mean that m(a) is defined
and is equal to b. The emptymapping, denoted m = ∅, is the partial function m : L → L
which is undefined for all a ∈ L.

Mapping composition allows a pair of processes to interact with each other over dis-
tinct labels. Formally, consider two processes P = (LP, EP, TP) andQ = (LQ, EQ, TQ),
and let L = LP ∪ LQ. Given mapping m : L → L, the mapping composition P‖mQ is
defined as follows:

EP‖mQ = {e ∈ E(LP ∪ LQ) | eventCond(e,P) ∧ eventCond(e,Q) ∧
syncCond′(e) ∧ mapCond(e,m)}

TP‖mQ = {t ∈ (EP‖mQ)
∗ | (t � LP) ∈ TP ∧ (t � LQ) ∈ TQ} (Def. 2)

where LP‖mQ = LP ∪ LQ, and syncCond′(e) and mapCond(e,m) are defined as:

syncCond′(e) ≡ syncCond(e) ∨ (∃ a ∈ e ∩ LP,∃ b ∈ e ∩ LQ : m(a) = b ∨ m(b) = a)
mapCond(e,m) ≡ (∀ a ∈ e : a ∈ dom(m) ⇒ m(a) ∈ e)

where dom(m) is the domain of function m. Compared to Def. 1, the additional disjunct
in syncCond′(e) allows P and Q to synchronize even when they do not share any label,

224 E. Kang et al.

if at least one pair of their labels are mapped to each other inm. The predicatemapCond
ensures that if an event e contains a label a and m is defined over a, then e also contains
the label that a is mapped to.

Note that Def. 2 is different from the definition of mapping composition in [28],
and corrects a flaw in the latter. In particular, the definition in [28] omits condition
syncCond′, which permits the undesirable case in which events e1 and e2 from P and Q
are synchronized into union e = e1 ∪ e2 even when the events do not share any label.

Example. Let P and Q be the abstract and public channel communication models from
Fig. 1(a) and (b), respectively. The property that Eve never learns Alice’s secret can be
stated as follows:

Φ ≡ ¬(∃ e ∈ E(L) : l1, l2 ∈ e : l1 = a.*.s ∧ l2 = *.e.s)

where * ∈ {a, b, e, u}. In other words, Eve should never be able to engage in an event
that involves the transmission of Alice’s secret. From Fig. 1(a), it can be observed that
P = Alice‖Eve |= Φ.

Suppose that we decide on a simple implementation scheme where the abstract
messages sent by Aliceare transmitted over the public channel in plaintext; this decision
can be encoded as a mapping, m1, where each abstract label (i.e., LAlice in Fig. 1(c)) is
mapped to concrete label p or s as follows:

a.b.p, a.e.p, u.e.p �→m1 p a.b.s, a.e.s, u.e.s �→m1 s

The resulting implementation can be constructed as process Im1 ≡ (Alice‖m1Sender) ‖
(Eve‖m1RecvX). Due to the definition of mapping composition (Def. 2), the following
event may appear in a trace of the overall composite process:

〈{a.b.s, s, a.e.s}〉 ∈ TIm1

Note that this trace is a violation of the above property (i.e., Im1 �|= Φ). This can be seen
as an example of abstraction violation: As a result of decisions in m1, a.b.s and u.e.s
now share the same underlying representation (s), and Eve is able to engage in an event
with a label (a.b.s) that was not previously available to it in the abstract model.

Properties of the Mapping Composition Operator.Mapping composition is a gener-
alization of parallel composition: The latter is a special case of mapping composition
where the given mapping is empty:

Lemma 1. Given a pair of processes P and Q, if m = ∅ then P‖mQ = P ‖ Q.

Commutativity. The proposed mapping composition operator is commutative: i.e.,
P‖mQ = Q‖mP. This property can be inferred from the fact that Def. 2 is symmetric
with respect to P and Q. It follows that by being a special case of mapping composition,
the parallel composition operator is also commutative.

Associativity. The mapping composition operator is associative under the following
conditions on the alphabets of involved processes and mappings:

Theorem 1. Given processes P, Q, and R, let X = (P‖m1Q)‖m2R and Y =
P‖m3(Q‖m4R). If EX = EY , then X = Y.

Proof. Available in the extended version of this paper [27].

Automated Synthesis of Secure Platform Mappings 225

3 Synthesis Problems

Themapping verification problem is to check, given processes P andQ, mappingm, and
specification Φ, whether (P‖mQ) |= Φ. This problem was studied by Kang et al. [28].
In this paper, we introduce and study, for the first time to our knowledge, the problem
of mapping synthesis. We begin with a simple formulation of the problem and then
generalize it. We will not define what exactly the specification Φ may be, neither the
satisfaction relation |=, as the mapping synthesis problems defined below are generic
and can work with any type of specification or satisfaction relation. In Sect. 5.1, we
discuss how this generic framework is instantiated in our implementation.

Problem 1 (Mapping Synthesis). Given processes P and Q, and specification Φ, find,
if it exists, a mapping m such that (P‖mQ) |= Φ. We call such an m a valid mapping.

Note that if Φ is a trace property [2,29], this problem can be stated as a ∃∀ problem;
that is, finding a witness m to the formula ∃m : ∀ t ∈ TP‖mQ : t ∈ Φ.

Instead of synthesizing m from scratch, the developer may wish to express their
partial system knowledge as a given constraint, and ask the synthesis tool to generate
a mapping that adheres to this constraint. For instance, given labels a, b, c ∈ L, one
may express a constraint that a must be mapped to either b or c as part of every valid
mapping; this gives rise to two possible candidate mappings,m1 andm2, wherem1(a) =
b and m2(a) = c. Formally, let M be the set of all possible mappings between labels L.
A mapping constraint C ⊆ M is a set of mappings that are considered legal candidates
for a final, synthesized valid mapping. Then, the problem of synthesizing a mapping
given a constraint can be formulated as follows:

Problem 2 (Generalized Mapping Synthesis). Given processes P and Q, specification
Φ, and mapping constraint C, find, if it exists, a valid mapping m such that m ∈ C.

Note that Problem 1 is a special case of Problem 2 whereC = M. The synthesis problem
can be further generalized to one that involves synthesizing a constraint that contains a
set of valid mappings:

Problem 3 (Mapping Constraint Synthesis).Given processes P andQ, specification Φ,
and mapping constraint C, generate, if it exists, a non-empty set of valid mappings C′

such that C′ ⊆ C. We call such a C′ valid with respect to P, Q, Φ and C.

A procedure for solving Problem 3 can be used to solve Problem 2: Having generated
constraint C′, we can pick any mapping m ∈ C′. Such an m is guaranteed to be valid
and also to belong in C.

In practice, it is desirable for C′ to be as large as possible while still being valid,
as it provides more implementation choices (i.e., possible mappings). In particular, we
say that a mapping constraint C′ is maximal with respect to P, Q, Φ, and C if and only
if (1) C′ is valid with respect to P, Q, Φ, and C, and (2) there exists no other constraint
C′′ such that C′′ is also valid w.r.t. P, Q, Φ, C, and C′ ⊆ C′′. Then, our final synthesis
problem can be stated as follows:

Problem 4 (Maximal Constraint Synthesis).Given processes P andQ, property Φ, and
constraint C, generate, if it exists, a maximal constraint C′ with respect to P, Q, Φ, C.

226 E. Kang et al.

If found, C′ is a local optimal solution. In general, there may be multiple maximal
constraints for given P, Q, Φ, and C.

Example. Back to our running example, an alternative implementation of the abstract
communication model over the public channel involves encrypting messages sent by
Aliceto Bob using a key (y) that Eve does not possess; this decision can be encoded as
the following valid mapping m2:

a.b.p �→m2 p.y a.b.s �→m2 s.y a.e.p �→m2 p.x a.e.s �→m2 s.y

Since Eve cannot read messages encrypted using key y, she is unable to obtain Alice’s
secret over the public channel; thus, Im2 |= Φ, where Im2 ≡ (Alice‖m2Sender) ‖
(Eve‖m2RecvX).

The following mapping, m3, which leaves non-secret messages unencrypted in the
low-level channel (as p), is also valid with respect to Φ:

a.b.p �→m2 p a.b.s �→m2 s.y a.e.p �→m2 p a.e.s �→m2 s.y

since Eve being able to read non-secret messages does not violate the property. Thus,
the developer may choose either m2 or m3 to implement the abstract channel and ensure
that Alice’s secret remains protected from Eve. In other words, C1 = {m2,m3} is a valid
(but not necessarily maximal) mapping constraint with respect to the desired property.
Furthermore, C1 is arguably more desirable than another constraint C2 = {m2}, since
the former gives the developer more implementation choices than the latter does.

4 Synthesis Technique

Mapping Representation. In our approach, mappings are represented symbolically as
logical expressions over variables that correspond to labels being mapped. The sym-
bolic representation has the following advantages over an explicit one (where the entries
of mapping m are enumerated explicitly): (1) it provides a succinct representation of
implementation decisions to the developer (which is especially important as the size of
the mapping grows large) and (2) it allows the user to specify partial implementation
decisions (i.e., given constraint C) in a declarative manner.

We adopt the symbolic representation and, inspired by SyGuS [3], use a syntactic
approach where the space of candidate mapping constraints is restricted to expressions
that can be constructed from a given grammar. Our grammar is specified as follows:

Term := Var | Const Assign := (Term = Term)
Expr := Assign | ¬Assign | Assign ⇒ Assign | Expr ∧ Expr

where Var is a set of variables that represent parameters inside a label, and Const is
the set of constant values. Intuitively, this grammar captures implementation decisions
that involve assignments of parameters in an abstract label to their counterparts in a
concrete label (represented by the equality operator “=”). A logical implication is used
to construct a conditional assignment of a parameter.

Automated Synthesis of Secure Platform Mappings 227

A mapping constraint is symbolically represented as a set of predicates, each of
the form X (abs, conc) over symbolic labels abs and conc, where abs represents the
label being mapped to conc. The body of each predicate is constructed as an expression
from the above grammar. For example, let abs = a.b.msg be a symbolic encoding of
labels that represent Alicecommunicating to Eve, with variable msg corresponding to
the message being sent; similarly, let conc = msg′.key be a symbolic label in the public
channel model, where msg′ and key correspond to the message being transmitted and
the key used to encrypt it (if any). Then, the expression

X (a.b.msg,msg′.key) ≡ msg = msg′ ∧ (msg = s ⇒ key = y)

states that (1) parameter msg in the abstract label must be equal to that in the concrete
label (i.e., the message being transmitted must be preserved during the mapping) and
(2) if the message is a secret, key y must be used to encrypt it in the implementation.

The set of mappings that predicate X (abs, conc) represents is defined as:

C = {m : L → L | ∀ abs ∈ L :(abs ∈ dom(m) ⇔ ∃ conc ∈ L : X (abs, conc)) ∧
(abs ∈ dom(m) ⇒ X (abs,m(abs)))}

That is, a mapping m is allowed by X (abs, conc) if and only if for each label abs, (1)
m is defined over abs if and only if there exists some label conc for which X (abs, conc)
evaluates to true, and (2) m maps abs to such a label conc.

Algorithmic Considerations. To ensure that the algorithm terminates, the set of
expressions that may be constructed using the given grammar is restricted to a finite
set, by bounding the domains of data types (e.g., distinct messages and keys in our run-
ning example) and the size of expressions. We also assume the existence of a verifier
that is capable of checking whether a candidate mapping satisfies a given specification
Φ. The verifier implements function verify(C,P,Q, Φ) which returns OK if and only if
every mapping allowed by constraint C is valid with respect to P,Q, Φ.

Generalization Algorithm. Once we limit the number of candidate expressions to be
finite, we can use a brute-force algorithm to enumerate and check those candidates one
by one. However, this naive algorithm is likely to suffer from scalability issues. Thus,
we present an algorithm that takes a generalization-based approach to identify and prune
undesirable parts of the search space. A key insight is that only a few implementation
decisions—captured by some minimal subset of the entries in a mapping—may be suf-
ficient to imply that the resulting implementation will be invalid. Thus, given some
invalid mapping, the algorithm attempts to identify this minimal subset and construct a
larger constraint Cbad that is guaranteed to contain only invalid mappings.

The outline of the algorithm is shown in Fig. 2. The function synthesize takes four
inputs: processes P and Q, specification Φ, and a user-specified mapping constraint C.
It also maintains a set of constraints X, which keeps track of “bad” regions of the search
space that do not contain any valid mappings.

In each iteration, the algorithm selects some mapping m from C (line 3) and checks
whether it belongs to one of the constraints in X (meaning, the mapping is guaranteed
to result in an invalid implementation). If so, it is simply discarded (lines 4–5).

228 E. Kang et al.

Otherwise, the verifier is used to check whether m is valid with respect to Φ (line
7). If so, then generalize is invoked to produce a maximal mapping constraint Cmaximal,
which represents the largest set that contains {m}, is contained in C, and is valid with
respect to P,Q, Φ (line 9). If, on the other hand, m is invalid (i.e., it fails to preserve
Φ), then generalize is invoked to compute the largest superset Cbad of {m} that contains
only invalid mappings (i.e., those that satisfy ¬Φ). The set Cbad is then added to X and
used to prune out subsequent, invalid candidates (line 13).

Fig. 2. An algorithm for synthesizing a maximal mapping constraint.

Constraint Generalization. The function generalize(C′,P,Q, Φ,C) computes a maxi-
mal set that contains C′, is contained within C, and only permits mappings that satisfy
Φ. This function is used in two different ways: (1) to identify an undesirable region of
the candidate space that should be avoided, and (2) to produce a maximal version of a
valid mapping constraint.

The procedure works by incrementally growing C′ into a larger set Crelaxed and stop-
ping when Crelaxed contains at least one mapping that violates Φ. Suppose that constraint
C′ is represented by a symbolic expression X , which itself is a conjunction of n subex-
pressions k1 ∧ k2 ∧ ... ∧ kn, where each ki for 1 ≤ i ≤ n represents a (possibly con-
ditional) assignment of a variable or a constant to some label parameter. The function
decompose(C′) takes the given constraint and returns the set of such subexpressions.
The function relax(C′, ki) then computes a new constraint by removing k from C′; this
new constraint, Crelaxed, is a larger set of mappings that subsumes C′.

The verifier is then used to check Crelaxed against Φ (line 22). If Crelaxed is still valid
with respect to Φ, then the implementation decision encoded by k is irrelevant for Φ,
meaning we can safely remove k from the final synthesized constraint C′ (line 24). If
not, k is retained as part of C′, and the algorithm moves onto the next subexpression k
as a candidate for removal (line 20). On line 23, we also make sure that Crelaxed does not
violate the predefined user constraints C.

Automated Synthesis of Secure Platform Mappings 229

Example. Let abs = a.e.msg be a symbolic label that represents Alice sending a mes-
sage (msg) to Eve, and conc = msg′.key be its corresponding label in the public channel
model. Then, one candidate constraint C′ for mappings from the high-level to low-level
labels can be specified as the following expression:

X (a.e.msg,msg′.key) ≡ msg = msg′ ∧ (msg = s ⇒ key = y) ∧ (msg = p ⇒ key = x)

Suppose that this constraint C′ has been verified to be valid with respect to P, Q and
Φ. Next, the generalization procedure removes the subexpression k1 ≡ (msg = p ⇒
key = x) from C′, resulting in constraint Crelaxed that is represented as:

X (a.e.msg,msg′.key) ≡ msg = msg′ ∧ (msg = s ⇒ key = y)

When checked by the verifier (line 22), C′ is still considered valid, meaning that the
decision encoded by k1 is irrelevant to the property; thus, k1 can be safely removed.

However, removing k2 ≡ (msg = s ⇒ key = y) results in a violation of the property.
Thus, k2 is kept as part of the final maximal constraint expression.

5 Implementation and Case Studies

5.1 Implementation

We have built a prototype implementation2 of the synthesis algorithm described in
Sect. 4. Our tool uses the Alloy Analyzer [25] as the underlying modeling and veri-
fication engine. Alloy’s flexible, declarative relational logic is convenient for encoding
the semantics of the mapping composition as well as specifying mapping constraints.
The analysis engine for Alloy uses an off-the-shelf SAT solver to perform bounded
verification [25]. In particular, our current prototype is capable of synthesizing map-
pings to preserve the following types of properties: reachability and safety properties,
which can be expressed in either of the forms ∃ t : t ∈ TP ∧ t ∈ φ (reachability) and
¬∃ t : t ∈ TP ∧ t �∈ φ (safety) for some process P and property φ.

AuthServerClient

User (Alice or Eve)

1 2

3

4 1. initiate(ret_session)
2. authorize(userid, pwd,
 ret_code)
3. forward(code, session)
4. getToken(code, ret_token)

AuthServerClient

User
1

2

3

4

5 1. initiate(ret_session,
 ret_reqToken)
2. getReqToken(ret_reqToken)
3. authorize(userid, pwd,
 reqToken)
4. notify(reqToken)
5. getAccessToken(reqToken,
 ret_accessToken)

(a) OAuth 2.0 (b) OAuth 1.0

Fig. 3. A high-level overview of the two OAuth protocols, with a sequence of event labels that
describe protocol steps in the typical order that they occur. Each arrowed edge indicates the direc-
tion of the communication. Variables inside labels with the prefix ret represent return parame-
ters. For example, in Step 2 of OAuth 2.0, User passes their user ID and password as arguments
to AuthServer, which returns ret code back to User in response.

2 The tool, along with the models used in our case studies, is available at https://github.com/
eskang/MappingSynthesisTool.

https://github.com/eskang/MappingSynthesisTool
https://github.com/eskang/MappingSynthesisTool

230 E. Kang et al.

However, our synthesis approach does not prescribe the use of a particular modeling
and verification engine, and can be implemented using other tools as well (such as an
SMT solver [11,12]).

5.2 Case Studies: OAuth Protocols

As two major case studies, we took on the problem of synthesizing valid mappings
for OAuth 1.0 and OAuth 2.0, two real-world protocols used for third-party authoriza-
tion [24]. The purpose of the OAuth protocol family in general is to allow an application
(called a client in the OAuth terminology) to access a resource from another applica-
tion (an authorization server) without needing the credentials of the resource owner
(a user). For example, a gaming application may initiate an OAuth process to obtain
a list of friends from a particular user’s Facebook account, provided that the user has
authorized Facebook to release this resource to the client.

OAuth 2.0 is the newer version of the protocol, while OAuth 1.0 is an older version.
Although OAuth 2.0 is intended to be a replacement for OAuth 1.0, there has been much
contention within the developer community about whether it actually improves over its
predecessor in terms of security [17]. Since both protocols are designed to provide the
same security guarantees (i.e., both share common properties), our goal was to apply
our synthesis approach to systematically compare what developers would be required
to do in order to construct secure web-based implementations of the two.

5.3 Formal Modeling

For our case studies, we constructed the following set of Alloy models: (1) model P1.0

representing OAuth 1.0; (2) model P2.0 representing OAuth 2.0; (3) model Q represent-
ing generic HTTP interactions between a browser and a server, as well as the behavior of
a web-based attacker; (4) specification Φ describing desired protocol properties (same
for both OAuth 1.0 and 2.0); and (5) mapping constraints C1.0 and C2.0 representing ini-
tial, user-specified partial mappings for OAuth 1.0 and 2.0, respectively. The complete
models are approximately 1800 lines of Alloy code in total, and took around 4 man-
months to build. These models were then provided as inputs to our tool to solve two
instances of Problem 4 from Sect. 3. In particular, we synthesized a maximal mapping
constraint C′

1.0 such that every m ∈ C′
1.0 ensures that P1.0‖mQ |= Φ. and a maximal

mapping constraint C′
2.0 such that every m ∈ C′

2.0 ensures that P2.0‖mQ |= Φ.

OAuth Models (P1.0, P2.0). We constructed Alloy models of OAuth 1.0 and 2.0 based
on the official protocol specifications [23,24]. Due to limited space, we give only a brief
overview of the models. Each model consists of four processes: Client, AuthServer, and
two users, Aliceand Eve (the latter with a malicious intent to access Alice’s resources).

A typical OAuth 2.0 workflow, shown in Fig. 3(a), begins with a user (Aliceor Eve)
initiating a new protocol session with Client (initiate). The user is then asked to prove
their own identity to AuthServer (by providing a user ID and a password) and officially
authorize the client to access their resources (authorize). Given the user’s authorization,
the server then allocates a unique code for the user, and then redirects their back to the

Automated Synthesis of Secure Platform Mappings 231

client. The user forwards the code to the client (forward), which then can exchange the
code for an access token to their resources (getToken).

Like in OAuth 2.0, a typical workflow in OAuth 1.0 (depicted in Fig. 3(b)) begins
with a user initiating a new session with Client (initiate). Instead of immediately direct-
ing the user to AuthServer, however, Client first obtains a request token from Auth-
Server and associates it with the current session (getReqToken). The user is then asked
to present the same request token to AuthServer and authorize Client to access their
resources (authorize). Once notified by the user that the authorization step has taken
place (notify), Client exchanges the request token for an access token that can be used
subsequently to access their resources (getAccessToken).

Specification (Φ). There are two desirable properties of OAuth protocols in general:
(1) Authenticity: When the client receives an access token, it must correspond to the
user who initiated the current protocol session. (2) Completion: There exists at least
one trace in which the protocol interactions are carried out to completion in the order of
steps described in Fig. 3. Authenticity is a safety property while completion is a reacha-
bility property. The input specification Φ consists of these two properties. Completion is
essential for ruling out mappings that over-constrain the resulting implementation and
prevent certain steps of the protocol from being performed.

HTTP PlatformModel (Q). Our goal was to explore and synthesize web-based imple-
mentations of OAuth. For this purpose, we constructed a formal model depicting inter-
actions between a generic HTTP server and web browser. The model contains two types
of processes, Server and Browser (which may be instantiated into multiple processes
representing different servers and browsers). They interact with each other over HTTP
requests, which share the following signature:

req(method : Method, url : URL, headers : List[Header], body : Body, ret resp : Resp)

The parameters of an HTTP request have their own internal structures, each consisting
of its own parameters as follows:

url(host : Host, path : Path, queries : List[Query]) header(name : Name, val : Value)
resp(status : Status, headers : List[Header], body : Body)

Fig. 4. User-specified partial mappings from OAuth 2.0 to HTTP. Terms highlighted in blue and
red are variables that represent the parameters inside OAuth and HTTP labels, respectively. For
example, in forward, the abstract parameters code and session may be transmitted as part of an
URL query, a header, or the request body, although its URL is fixed to http://client.com/forward.
(Color figure online)

http://client.com/forward

232 E. Kang et al.

Our model describes generic, application-independent HTTP interactions. In partic-
ular, each Browser process is a machine that constructs, at each communication step
with Server, an arbitrary HTTP request by non-deterministically selecting a value for
each parameter of the request. The processes, however, follow a platform-specific logic;
for instance, when given a response from Server that instructs a browser cookie to be
stored at a particular URL, Browserwill include this cookie along with every subsequent
request directed at that URL. In addition, the model includes a process that depicts the
behavior of a web attacker, who may operate their own malicious server and exploit
weaknesses in a browser to manipulate the user into sending certain HTTP requests.

Mapping Constraint (C1.0,C2.0). Building a web-based implementation of OAuth
involves decisions about how abstract protocol operations are to be realized in terms of
HTTP requests. As an input to the synthesizer, we specified an initial set of constraints
that describe partial implementation decisions for both OAuth protocols; the ones for
OAuth 2.0 are shown in Fig. 4. These decisions include a designation of fixed host
and path names inside URLs for various OAuth operations (e.g., http:/client.com/initiate
for the OAuth initiate event), and how certain parameters are transmitted as part of an
HTTP request (ret session as a return cookie in initiate). It is reasonable to treat these
constraints as given, since they describe decisions that are common across typical web-
based OAuth implementations.

Insecure Mapping for OAuth 2.0. Let us now give an example of an insecure mapping
that satisfies the user-given constraint in Fig. 4 but could introduce a security vulnera-
bility into the resulting implementation. Later in Sect. 5.4, we describe how our tool can
be used to synthesize a secure mapping that prevents this vulnerability.

Consider the OAuth 2.0 workflow from Fig. 3(a). In order to implement the forward
operation, for instance, the developer must determine how the parameters code and
session of the abstract event label are encoded using their concrete counterparts in an
HTTP request. A number of choices is available. In one possible implementation, the
authorization code may be transmitted as a query parameter inside the URL, and the
session as a browser cookie, as described by the following constraint expression, X1:

X1(a,b) ≡ (b.method = POST) ∧ (b.url.host = client.com) ∧
(b.url.path = forward) ∧ (b.url.queries[0] = a.code) ∧
(b.headers[0].name = cookie) ∧ (b.headers[0].value = a.session)

where POST, client.com, forward, and cookie are predefined constants; and l[i] refers to
i-th element of list l.

This constraint, however, allows a vulnerable implementation where malicious user
Eve performs the first two steps of the workflow in Fig. 3(a) using her own credentials,
and obtains a unique code (codeEve) from the authorization server. Instead of forward-
ing this to Client (as she is expected to), Eve keeps the code herself, and crafts their own
web page that triggers the visiting browser to send the following HTTP request:

req(POST, http://client.com/forward?codeEve, ...)

Suppose that Alice is a naive browser user who may occasionally be enticed or tricked
into visiting malicious web sites. When Alice visits the page set up by Eve, Alice’s

Automated Synthesis of Secure Platform Mappings 233

browser automatically generates the above HTTP request, which, given the decisions in
X1, corresponds to a valid forward event:

forward(codeEve, sessionAlice) �→
req(POST, http://client.com/forward?codeEve, [(cookie, sessionAlice)], ...)

Due to the standard browser logic, the cookie corresponding to sessionAlice is included
in every request to client.com. As a result, Client mistakenly accepts codeEve as the one
for Alice, even though it belongs to Eve, violating the authenticity property of OAuth
(this attack is also called session swapping [39]).

5.4 Results

Our synthesis tool was able to generate valid mapping constraints for both OAuth pro-
tocols. In particular, the constraints describe mitigations against attacks that exploit an
interaction between the OAuth logic and security vulnerabilities in a web browser.

OAuth 2.0. The synthesized symbolic mapping constraint for OAuth 2.0 consists of 39
conjuncts in total, each capturing a (conditional) assignment of a concrete HTTP param-
eter to a constant (e.g., b.url.path = forward) or an abstract OAuth parameter (e.g.,
b.url.queries[0] = a.code). In particular, the constraint captures mitigations against ses-
sion swapping [39] and covert redirect [16]. Due to limited space, we omit the full
constraint, but instead describe how the vulnerability described at the end of Sect. 5.3
can be mitigated by our synthesized mapping.

Consider the insecure mapping expression X1 from Sect. 5.3. The mapping con-
straint synthesized by our tool, X2, fixes the major problem of X1; namely, that in a
browser-based implementation, the client cannot trust an authorization code as hav-
ing originated from a particular user (e.g., Alice), since the code may be intercepted or
interjected by an attacker (Eve) while in transit through a browser. A possible solution
is to explicitly identify the origin of the code by requiring an additional piece of track-
ing information to be provided in each forward request. The mapping expression X2

synthesized by our tool encodes one form of this solution:

X2(a, b) ≡ X1(a, b) ∧ (a.session = sessionAlice ⇒ b.url.queries[1] = nonce0) ∧
(a.session = sessionEve ⇒ b.url.queries[1] = nonce1)

where nonceo, nonce1 ∈ Nonce are constants defined in the HTTP model3. In partic-
ular, X2 stipulates that every forward request must include an additional value (nonce)
as an argument besides the code and the session, and that this nonce be unique for
each session value. X2 ensures that the resulting implementation satisfies the desired
properties of OAuth 2.

OAuth 1.0. The synthesized symbolic mapping constraint for OAuth 1.0 consists of 48
conjuncts in total, capturing how the abstract parameters of the five OAuth 1.0 opera-
tions are related to concrete HTTP parameters. The constraint synthesized by our tool

3 A nonce is a unique piece of string intended to be used once in communication.

234 E. Kang et al.

total
candidates

explored

verified # skipped
Avg. verif.

time

OAuth 1.0 79200 2465 281 2184 2.01

OAuth 2.0 29400 1453 161 1292 1.88

Verif. time
Gen.
time

Total
time

566.05 490.84 1056.89

302.76 1138.85 1441.60

General.Generali-
zation

Verification
(total)Avg. Total

Verification

Fig. 5. Experimental results (all times in seconds). “# total candidates” is the total number of
possible symbolic mapping expressions; “# explored” is the number of iterations taken by the
main synthesis loop (lines 3–15, Fig. 2) before a solution was found. Out of these iterations, “#
verified” mappings were verified (line 7), while the rest were identified as invalid and skipped
(line 5). “Total time” the sum of the Total Verification and Generalization columns) refers to the
time spent by the tool to synthesize a maximal constraint.

for OAuth 1.0 encodes a mitigation against the session fixation [15] attack; in short,
this mitigation involves strengthening the notify operation with unique nonces (similar
to the way the forward operation in OAuth 2.0 was fixed above) to prevent the attacker
from violating the authenticity property.

Performance. Figure 5 shows experimental results for the two OAuth protocols4. Over-
all, the synthesizer took approximately 17.6 and 24.0min to synthesize the constraints
for 1.0 and 2.0, respectively. In both cases, the tool spent a considerable amount of time
on the generalization step to learn the invalid regions of the search space. Note that
generalization is effective at identifying and discarding a very large number of invalid
candidates; it was able to skip 2184 out of 2465 candidates for OAuth 1.0 (≈88.6%) and
1292 out of 1453 for OAuth 2.0 (≈88.9%). Our generalization technique was particu-
larly effective for the OAuth protocols, since a significant percentage of the candidate
constraints would result in an implementation that violates the completion property (i.e.,
it prevents Aliceor Eve from completing a protocol session in an expected order). Often,
the decisions contributing to this violation could be localized to a small subset of entries
in a mapping (for example, attempting to send a cookie to a mismatched URL, which is
inconsistent with the behavior of the browser process). By identifying this subset, our
algorithm was able to discover and eliminate a large number of invalid mappings.

6 Related Work

Our approach has been inspired by the success of recent synthesis paradigms such as
sketching [36–38], oracle-guided synthesis [26] and syntax-guided synthesis [3]. Our
technique shares many similarities with these approaches in that (1) it allows the user to
provide a partial specification of the artifact to be synthesized (in the form of constraints
or examples), therefore having the underlying engine complete the remaining parts; (2)
it relies on an interaction between the verifier, which checks candidate solutions, and
the synthesizer, which prunes that search space based on previous invalid candidates.
Our work also differs in a number of aspects. First, we synthesize mappings from high-
level models to low-level execution platforms, which to our knowledge has not been

4 The experiments were performed on a Mac OS X 2.7 GHz laptop with 8G RAM and Min-
iSat [13] as the underlying SAT solver employed by the Alloy Analyzer.

Automated Synthesis of Secure Platform Mappings 235

considered before. Second, our approach leverages constraint generalization to not only
prune the search space, but also to produce a constraint capturing a (locally) maximal
set of valid mappings. Third, our application domain is in security protocols.

A large body of literature exists on refinement-based methods to system construc-
tion [4,20]. These approaches involve building an implementationQ that is a behavioral
refinement of P; such Q, by construction, would satisfy the properties of P. In compari-
son, we start with an assumption that Q is a given platform, and that the developer may
not have the luxury of being able to modify or build Q from scratch. Thus, instead of
behavioral refinement (which may be too challenging to achieve), we aim to preserve
some critical property φ when P is implemented using Q.

The task of synthesizing a valid mapping can be seen as a type of themodel merging
problem [8]. This problem has been studied in various contexts, including architectural
views [31], behavioral models [6,32,40], and database schemas [34]. Among these, our
work is most closely related to merging of partial behavioral models [6,40]. In these
works, given a pair of modelsM1 andM2, the goal is to constructM′ that is a behavioral
refinement of both M1 and M2. The approach proposed in this paper differs in that (1)
the mapping composition involves merging a pair of events with distinct alphabet labels
into a single event that retains all of those labels, and (2) the composed process (P‖mQ)
need not be a behavioral refinement of P or Q, as long as it satisfies property φ.

Bhargavan and his colleagues presents a compiler that takes a high-level program
written using session types [22] and automatically generates a low-level implemen-
tation [7]. This technique is closer to compilation than to synthesis in that it uses a
fixed translation scheme from high-level to low-level operations in a specific language
environment (.NET), without searching a space of possible translations. Synthesizing a
low-level implementation from a high-level specification has also been studied in the
context of data structures [18,19], although their underlying representation (relational
algebra for data schema specification) is very different from ours (process algebra).

A significant contribution of our work is the production of formal models for real-
world protocols such as OAuth and HTTP. There have been similar efforts by other
researchers in building reusable models of the web for security analysis [1,5,14]. As
far as we know, however, none of these models has been used for synthesis.

7 Conclusions

In this paper, we have proposed a novel system design methodology centered around
the notion of mappings. We have presented novel mapping synthesis problems and an
algorithm for efficiently synthesizing symbolic maximal valid mappings. In addition,
we have validated our approach on realistic case studies involving the OAuth protocols.

Future directions include performance improvements (e.g., exploiting the fact
that our generalization-based algorithm is easily parallelizable), combining our
generalization-based synthesis method with a counter-example guided approach, and
application of our synthesis approach to other domains beside security (e.g., platform-
based design and embedded systems [35]).

236 E. Kang et al.

References

1. Akhawe, D., Barth, A., Lam, P.E., Mitchell, J.C., Song, D.: Towards a formal foundation of
web security. In: CSF, pp. 290–304 (2010)

2. Alpern, B., Schneider, F.B.: Defining liveness. Inf. Process. Lett. 21(4), 181–185 (1985)
3. Alur, R., et al.: Syntax-guided synthesis. In: FMCAD, pp. 1–8 (2013)
4. Back, R.-J.: A calculus of refinements for program derivations. Acta Inf. 25(6), 593–624

(1988)
5. Bansal, C., Bhargavan, K., Maffeis, S.: Discovering concrete attacks on website authorization

by formal analysis. In: CSF, pp. 247–262 (2012)
6. Ben-David, S., Chechik, M., Uchitel, S.: Merging partial behaviour models with different

vocabularies. In: CONCUR, pp. 91–105 (2013)
7. Bhargavan, K., Corin, R., Deniélou, P.-M., Fournet, C., Leifer, J.J.: Cryptographic protocol

synthesis and verification for multiparty sessions. In: CSF, pp. 124–140 (2009)
8. Brunet, G., Chechik, M., Easterbrook, S., Nejati, S., Niu, N., Sabetzadeh, M.: A manifesto

for model merging. In: Proceedings of the 2006 International Workshop on Global Integrated
Model Management, pp. 5–12 (2006)

9. Chari, S., Jutla, C.S., Roy, A.: Universally Composable Security Analysis of OAuth v2.0.
IACR Cryptology ePrint Archive, 2011, 526 (2011)

10. Chen, E.Y., Pei, Y., Chen, S., Tian, Y., Kotcher, R., Tague, P.: OAuth Demystified for Mobile
Application Developers. In: CCS, pp. 892–903 (2014)

11. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J.
(eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-78800-3 24

12. Dutertre, B.: Yices 2.2. In: CAV, pp. 737–744 (2014)
13. Eén, N., Sörensson, N.: An extensible sat-solver. In: SAT, pp. 502–518 (2003)
14. Fett, D., Küsters, R., Schmitz, G.: An expressive model for the web infrastructure: definition

and application to the browser ID SSO system. In: 2014 IEEE Symposium on Security and
Privacy, SP 2014, Berkeley, 18–21 May 2014, pp. 673–688 (2014)

15. OAuth Working Group. OAuth Security Advisory: 2009.1 “Session Fixation”. https://oauth.
net/advisories/2009-1 (2009)

16. OAuth Working Group. OAuth Security Advisory: 2014.1 “Covert Redirect”. https://oauth.
net/advisories/2014-1-covert-redirect (2014)

17. Hanmer. E.: OAuth 2.0 and the Road to Hell. https://hueniverse.com/2012/07/26/oauth-2-0-
and-the-road-to-hell (2012)

18. Hawkins, P., Aiken, A., Fisher, K., Rinard, M.C., Sagiv, M.: Data representation synthesis.
In: PLDI, pp. 38–49 (2011)

19. Hawkins, P., Aiken, A., Fisher, K., Rinard, M.C., Sagiv, M.: Concurrent data representation
synthesis. In: PLDI, pp. 417–428 (2012)

20. Hoare, C.A.R.: Proof of correctness of data representations. Acta Inf. 1, 271–281 (1972)
21. Hoare, C.A.R.: Communicating sequential processes. Commun. ACM 21(8), 666–677

(1978)
22. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. In: POPL, pp.

273–284 (2008)
23. Internet Engineering Task Force. The OAuth 1.0 Protocol. https://tools.ietf.org/html/rfc5849

(2010)
24. Internet Engineering Task Force. OAuth Authorization Framework. http://tools.ietf.org/html/

rfc6749 (2014)
25. Jackson, D.: Software Abstractions: Logic, Language, and Analysis. MIT Press, Cambridge

(2006)

https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://oauth.net/advisories/2009-1
https://oauth.net/advisories/2009-1
https://oauth.net/advisories/2014-1-covert-redirect
https://oauth.net/advisories/2014-1-covert-redirect
https://hueniverse.com/2012/07/26/oauth-2-0-and-the-road-to-hell
https://hueniverse.com/2012/07/26/oauth-2-0-and-the-road-to-hell
https://tools.ietf.org/html/rfc5849
http://tools.ietf.org/html/rfc6749
http://tools.ietf.org/html/rfc6749

Automated Synthesis of Secure Platform Mappings 237

26. Jha, S., Gulwani, S., Seshia, S.A., Tiwari, A.: Oracle-guided component-based program syn-
thesis. In: ICSE, pp. 215–224 (2010)

27. Kang, E., Lafortune, S., Tripakis, S.: Synthesis of property-preserving mappings. CoRR,
abs/1705.03618 (2017)

28. Kang, E., Milicevic, A., Jackson, D.: Multi-representational security analysis. In: FSE (2016)
29. Lamport, L.: Proving the correctness of multiprocess programs. IEEE Trans. Software Eng.

3(2), 125–143 (1977)
30. Lampson, B.W.: A note on the confinement problem. Commun. ACM 16(10), 613–615

(1973)
31. Maoz, S., Ringert, J.O., Rumpe, B.: Synthesis of component and connector models from

crosscutting structural views. In: ESEC/FSE, pp. 444–454 (2013)
32. Nejati, S., Sabetzadeh, M., Chechik, M., Easterbrook, S.M., Zave, P.: Matching and merging

of statecharts specifications. In: ICSE, pp. 54–64 (2007)
33. Pai, S., Sharma, Y., Kumar, S., Pai, R.M., Singh, S.: Formal verification of OAuth 2.0 using

Alloy framework. In: Communication Systems and Network Technologies (CSNT), pp. 655–
659. IEEE (2011)

34. Pottinger, R., Bernstein, P.A.: Merging models based on given correspondences. In: VLDB,
pp. 826–873 (2003)

35. Sangiovanni-Vincentelli, A.L., Martin, G.: Platform-based design and software design
methodology for embedded systems. IEEE Design Test Comput. 18(6), 23–33 (2001)

36. Solar-Lezama, A.: The sketching approach to program synthesis. In: Hu, Z. (ed.) APLAS
2009. LNCS, vol. 5904, pp. 4–13. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-10672-9 3

37. Solar-Lezama, A., Rabbah, R., Bodı́k, R., Ebcioğlu, K.: Programming by sketching for bit-
streaming programs. In: Proceedings of the 2005 ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, PLDI 2005, pp. 281–294. ACM (2005)

38. Solar-Lezama, A., Tancau, L., Bodı́k, R., Seshia, S.A., Saraswat, V.A.: Combinatorial sketch-
ing for finite programs. In: ASPLOS, pp. 404–415 (2006)

39. Sun, S.-T., Beznosov, K.: The devil is in the (implementation) details: an empirical analysis
of OAuth SSO systems. In: CCS, pp. 378–390 (2012)

40. Uchitel, S., Chechik, M.: Merging partial behavioural models. In: SIGSOFT FSE, pp. 43–52
(2004)

41. Wang, R., Chen, S., Wang, X.: Signing me onto your accounts through facebook and google:
a traffic-guided security study of commercially deployed single-sign-on web services. In:
IEEE Symposium on Security and Privacy, pp. 365–379 (2012)

42. Xu, X., Niu, L., Meng, B.: Automatic verification of security properties of OAuth 2.0 proto-
col with cryptoverif in computational model. Inf. Technol. J. 12(12), 2273 (2013)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution
4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder.

https://doi.org/10.1007/978-3-642-10672-9_3
https://doi.org/10.1007/978-3-642-10672-9_3
http://creativecommons.org/licenses/by/4.0/

Synthesis

Synthesizing Approximate Implementations
for Unrealizable Specifications

Rayna Dimitrova1, Bernd Finkbeiner2, and Hazem Torfah2(B)

1 University of Leicester, Leicester, UK
2 Saarland University, Saarbrücken, Germany

torfah@react.uni-saarland.de

Abstract. The unrealizability of a specification is often due to the
assumption that the behavior of the environment is unrestricted. In this
paper, we present algorithms for synthesis in bounded environments,
where the environment can only generate input sequences that are ulti-
mately periodic words (lassos) with finite representations of bounded
size. We provide automata-theoretic and symbolic approaches for solv-
ing this synthesis problem, and also study the synthesis of approximative
implementations from unrealizable specifications. Such implementations
may violate the specification in general, but are guaranteed to satisfy the
specification on at least a specified portion of the bounded-size lassos.
We evaluate the algorithms on different arbiter specifications.

1 Introduction

The objective of reactive synthesis is to automatically construct an implementa-
tion of a reactive system from a high-level specification of its desired behaviour.
While this idea holds a great promise, applying synthesis in practice often faces
significant challenges. One of the main hurdles is that the system designer has to
provide the right formal specification, which is often a difficult task [12]. In par-
ticular, since the system being synthesized is required to satisfy its requirements
against all possible environments allowed by the specification, accurately cap-
turing the designer’s knowledge about the environment in which the system will
execute is crucial for being able to successfully synthesize an implementation.

Traditionally, environment assumptions are included in the specification, usu-
ally given as a temporal logic formula. There are, however less explored ways
of incorporating information about the environment, one of which is to con-
sider a bound on the size of the environment, that is, a bound on the size of
the state space of a transition system that describes the possible environment
behaviours. Restricting the space of possible environments can render an unre-
alizable specification into a realizable one. The temporal synthesis under such

This work was partially supported by the German Research Foundation (DFG) as part
of the Collaborative Research Center “Foundations of Perspicuous Software Systems”
(TRR 248, 389792660), and by the European Research Council (ERC) Grant OSARES
(No. 683300).

c© The Author(s) 2019
I. Dillig and S. Tasiran (Eds.): CAV 2019, LNCS 11561, pp. 241–258, 2019.
https://doi.org/10.1007/978-3-030-25540-4_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-25540-4_13&domain=pdf
https://doi.org/10.1007/978-3-030-25540-4_13

242 R. Dimitrova et al.

bounded environments was first studied in [6], where the authors extensively
study the problem, in several versions, from the complexity-theoretic point of
view.

In this paper, we follow a similar avenue of providing environment assump-
tions. However, instead of bounding the size of the state space of the environ-
ment, we associate a bound with the sequences of values of input signals produced
by the environment. The infinite input sequences produced by a finite-state envi-
ronment which interacts with a finite state system are ultimately periodic, and
thus, each such infinite sequence σ ∈ Σω

I , over the input alphabet ΣI , can be
represented as a lasso, which is a pair (u, v) of finite words u ∈ Σ∗

I and v ∈ Σ+
I ,

such that σ = u · vω. It is the length of such sequences that we consider a bound
on. More precisely, given a bound k ∈ N, we consider the language of all infinite
sequences of inputs that can be represented by a lasso (u, v) with |u · v| = k.
The goal of the synthesis of lasso precise implementations is then to synthesize a
system for which each execution resulting from a sequence of environment inputs
in that language, satisfies a given linear temporal specification.

As an example, consider an arbiter serving two client processes. Each client
issues a request when it wants to access a shared resource, and keeps the request
signal up until it is done using the resource. The goal of the arbiter is to ensure
the classical mutual exclusion property, by not granting access to the two clients
simultaneously. The arbiter has to also ensure that each client request is even-
tually granted. This, however, is difficult since, first, a client might gain access
to the resource and never lower the request signal, and second, the arbiter is not
allowed to take away a grant unless the request has been set to false, or the client
never sets the request to false in the future (the client has become unrespon-
sive). The last two requirements together make the specification unrealizable, as
the arbiter has no way of determining if a client has become unresponsive, or
will lower the request signal in the future. If, however, the length of the lassos
of the input sequences is bounded, then, after a sufficient number of steps, the
arbiter can assume that if the request has not been set to false, then it will not
be lowered in the future either, as the sequence of inputs must already have
run at least once through it’s period that will be ultimately repeated from that
point on.

Formally, we can express the requirements on the arbiter in Linear Temporal
Logic (LTL) as follows. There is one input variable ri (for request) and one output
variable gi (for grant) associated with each client. The specification is then given
as the conjunction ϕ = ϕmutex ∧ ϕresp ∧ ϕrel where we use the LTL operators
Next , Globally and Eventually to define the requirements

ϕmutex = ¬(g1 ∧ g2),
ϕresp =

∧2
i=1(ri → gi),

ϕrel =
∧2

i=1(gi ∧ ri ∧ (¬ri) → gi).

Synthesizing Approximate Implementations 243

Due to the requirement to not revoke grants stated in ϕrel , the specification
ϕ is unrealizable (that is, there exists no implementation for the arbiter process).
For any bound k on the length of the input lassos, however, ϕ is realizable. More
precisely, there exists an implementation in which once client i has not lowered
the request signal for k consecutive steps, the variable gi is set to false.

This example shows that when the system designer has knowledge about
the resources available to the environment processes, taking this knowledge
into account can enable us to synthesize a system that is correct under this
assumption.

In this paper we formally define the synthesis problem for lasso-precise imple-
mentations, that is, implementations that are correct for input lassos of bounded
size, and describe an automata-theoretic approach to this synthesis problem. We
also consider the synthesis of lasso-precise implementations of bounded size, and
provide a symbolic synthesis algorithm based on quantified Boolean satisfiability.

Bounding the size of the input lassos can render some unrealizable specifica-
tions realizable, but, similarly to bounding the size of the environment, comes
at the price of higher computational complexity. To alleviate this problem, we
further study the synthesis of approximate implementations, where we relax the
synthesis problem further, and only require that for a given ε > 0 the ratio
of input lassos of a given size for which the specification is satisfied, to the
total number of input lassos of that size is at least 1 − ε. We then propose an
approximate synthesis method based on maximum model counting for Boolean
formulas [5]. The benefits of the approximate approach are two-fold. Firstly, it
can often deliver high-quality approximate solutions more efficiently than the
lasso-precise synthesis method, and secondly, even when the specification is still
unrealizable for a given lasso bound, we might be able to synthesize an imple-
mentation that is correct for a given fraction of the possible input lassos.

The rest of the paper is organized as follows. In Sect. 2 we discuss related work
on environment assumptions in synthesis. In Sect. 3 we provide preliminaries
on linear temporal properties and omega-automata. In Sect. 3 we define the
synthesis problem for lasso-precise implementations, and describe an automata-
theoretic synthesis algorithm. In Sect. 5 we study the synthesis of lasso-precise
implementations of bounded size, and provide a reduction to quantified Boolean
satisfiability. In Sect. 6 we define the approximate version of the problem, and
give a synthesis procedure based on maximum model counting. Finally, in Sect. 7
we present experimental results, and conclude in Sect. 8.

2 Related Work

Providing good-quality environment specifications (typically in the form of
assumptions on the allowed behaviours of the environment) is crucial for the syn-
thesis of implementations from high-level specifications. Formal specifications,
and thus also environment assumptions, are often hard to get right, and have
been identified as one of the bottlenecks in formal methods and autonomy [12].
It is therefore not surprising, that there is a plethora of approaches addressing

244 R. Dimitrova et al.

the problem of how to revise inadequate environment assumptions in the cases
when these are the cause of unrealizability of the system requirements.

Most approaches in this direction build upon the idea of analyzing the cause
of unrealizability of the specification and extracting assumptions that help elim-
inate this cause. The method proposed in [2] uses the game graph that is used
to answer the realizability question in order to construct a Büchi automaton
representing a minimal assumption that makes the specification realizable. The
authors of [8] provide an alternative approach where the environment assump-
tions are gradually strengthened based on counterstrategies for the environment.
The key ingredient for this approach is using a library of specification tem-
plates and user scenarios for the mining of assumptions, in order to generate
good-quality assumptions. A similar approach is used in [1], where, however,
assumption patterns are synthesized directly from the counterstrategy without
the need for the user to provide patterns. A different line of work focuses on
giving feedback to the user or specification designer about the reason for unre-
alizability, so that they can, if possible, revise the specification accordingly. The
key challenge adressed there lies in providing easy-to-understand feedback to
users, which relies on finding a minimal cause for why the requirements are not
achievable and generating a natural language explanation of this cause [11].

In the above mentioned approaches, assumptions are provided or constructed
in the form of a temporal logic formula or an omega-automaton. Thus, it is on the
one hand often difficult for specification designers to specify the right assump-
tions, and on the other hand special care has to be taken by the assumption
generation procedures to ensure that the constructed assumptions are simple
enough for the user to understand and evaluate. The work [6] takes a differ-
ent route, by making assumptions about the size of the environment. That is,
including as an additional parameter to the synthesis problem a bound on the
state space of the environment. Similarly to temporal logic assumptions, this
relaxation of the synthesis problem can render unrealizable specifications into
realizable ones. From the system designer point of view, however, it might be sig-
nificantly easier to estimate the size of environments that are feasible in practice
than to express the implications of this additional information in a temporal logic
formula. In this paper we take a similar route to [6], and consider a bound on the
cyclic structures in the environment’s behaviour. Thus, the closest to our work is
the temporal synthesis for bounded environments studied in [6]. In fact, we show
that the synthesis problem for lasso-precise implementations and the synthesis
problem under bounded environments can be reduced to each other. However,
while the focus in [6] is on the computational complexity of the bounded syn-
thesis problems, here we provide both automata-theoretic, as well as symbolic
approaches for solving the synthesis problem for environments with bounded
lassos. We further consider an approximate version of this synthesis problem.
The benefits of using approximation are two-fold. Firstly, as shown in [6], while
bounding the environment can make some specifications realizable, this comes
at a high computational complexity price. In this case, approximation might
be able to provide solutions of sufficient quality more efficiently. Furthermore,

Synthesizing Approximate Implementations 245

even after bounding the environment’s input behaviours, the specification might
still remain unrealizable, in which case we would like to satisfy the requirements
for as many input lassos as possible. In that sense, we get closer to synthesis
methods for probabilistic temporal properties in probabilistic environments [7].
However, we consider non-probabilistic environments (i.e., all possible inputs are
equally likely), and provide probabilistic guarantees with desired confidence by
employing maximum model counting techniques. Maximum model counting has
previously been used for the synthesis of approximate non-reactive programs [5].
Here, on the other hand we are concerned with the synthesis of reactive systems
from temporal specifications.

Bounding the size of the synthesized system implementation is a complemen-
tary restriction of the synthesis problem, which has attracted a lot of attention
in recent years [4]. The computational complexity of the synthesis problem when
both the system’s and the environment’s size is bounded has been studied in [6].
In this paper we provide a symbolic synthesis procedure for bounded synthesis
of lasso-precise implementations based on quantified Boolean satisfiability.

3 Preliminaries

We now recall definitions and notation from formal languages and automata,
and notions from reactive synthesis such as implementation and environment.

Linear-Time Properties and Lassos. A linear-time property ϕ over an alphabet Σ
is a set of infinite words ϕ ⊆ Σω. Elements of ϕ are called models of ϕ. A lasso
of length k over an alphabet Σ is a pair (u, v) of finite words u ∈ Σ∗ and v ∈ Σ+

with |u · v| = k that induces the ultimately periodic word u · vω. We call u · v
the base of the lasso or ultimately periodic word, and k the length of the lasso.

If a word w ∈ Σ∗ is a prefix of a word σ ∈ Σ∗ ∪ Σω, we write w < σ. For a
language L ⊆ Σ∗ ∪ Σω, we define Prefix (L) = {w ∈ Σ∗ | ∃σ ∈ L : w < σ} is the
set of all finite words that are prefixes of words in L.

Implementations. We represent implementations as labeled transition systems.
Let I and O be finite sets of input and output atomic propositions respectively. A
2O-labeled 2I -transition system is a tuple T = (T, t0, τ, o), consisting of a finite
set of states T , an initial state t0 ∈ T , a transition function τ : T × 2I → T , and
a labeling function o : T → 2O. We denote by |T | the size of an implementation
T , defined as |T | = |T |. A path in T is a sequence π : N → T × 2I of states and
inputs that follows the transition function, i.e., for all i ∈ N if π(i) = (ti, ei) and
π(i + 1) = (ti+1, ei+1), then ti+1 = τ(ti, ei). We call a path initial if it starts
with the initial state: π(0) = (t0, e) for some e ∈ 2I . For an initial path π, we
call the sequence σπ : i �→ (o(ti) ∪ ei) ∈ (2I∪O)ω the trace of π. We call the set
of traces of a transition system T the language of T , denoted L(T).

Finite-state environments can be represented as labelled transition systems
in a similar way, with the difference that the inputs are the outputs of the
implementation, and the states of the environment are labelled with inputs for

246 R. Dimitrova et al.

the implementation. More precisely, a finite-state environment is a 2I -labeled
2O-transition system E = (E, s0, ρ, ι). The composition of an implementation T
and an environment E results in a set of traces of T , which we denote LE(T),
where σ = σ0σ1 . . . ∈ LE(T) if and only if σ ∈ L(T) and there exists an initial
path s0s1 . . . in E such that for all i ∈ N, si+1 = ρ(si, σi+1∩O) and σi∩I = ι(si).

Linear-Time Temporal Logic. We specify properties of reactive systems (imple-
mentations) as formulas in Linear-time Temporal Logic (LTL) [9]. We consider
the usual temporal operators Next , Until U , and the derived operators Release
R, which is the dual operator of U , Eventually and Globally . LTL formulas
are defined over a set of atomic propositions AP. We denote the satisfaction of
an LTL formula ϕ by an infinite sequence σ ∈ (2AP)ω of valuations of the atomic
propositions by σ |= ϕ and call σ a model of ϕ. For an LTL formula ϕ we define
the language L(ϕ) of ϕ to be the set {σ ∈ (2AP)ω | σ |= ϕ}.

For a set of atomic propositions AP = O ∪ I, we say that a 2O-labeled 2I -
transition system T satisfies an LTL formula ϕ, if and only if L(T) ⊆ L(ϕ), i.e.,
every trace of T satisfies ϕ. In this case we call T a model of ϕ, denoted T |= ϕ.
If T satisfies ϕ for an environment E , i.e. LE(T) ⊆ L(ϕ), we write T |=E ϕ.

For I ⊆ AP and σ ∈ (2AP)∗ ∪ (2AP)ω, we denote with σ|I the projection of
σ on I, obtained by the sequence of valuations of the propositions from I in σ.

Automata Over Infinite Words. The automata-theoretic approach to reactive
synthesis relies on the fact that an LTL specification can be translated to an
automaton over infinite words, or, alternatively, that the specification can be
provided directly as such an automaton. An alternating parity automaton over
an alphabet Σ is a tuple A = (Q, q0, δ, μ), where Q denotes a finite set of states,
Q0 ⊆ Q denotes a set of initial states, δ denotes a transition function, and
μ : Q → C ⊂ N is a coloring function. The transition function δ : Q×Σ → B

+(Q)
maps a state and an input letter to a positive Boolean combination of states [14].

A tree T over a set of directions D is a prefix-closed subset of D∗. The empty
sequence ε is called the root. The children of a node n ∈ T are the nodes {n ·d ∈
T | d ∈ D}. A Σ-labeled tree is a pair (T, l), where l : T → Σ is the labeling
function. A run of A = (Q, q0, δ, μ) on an infinite word σ = α0α1 · · · ∈ Σω is a
Q-labeled tree (T, l) that satisfies the following constraints: (1) l(ε) = q0, and
(2) for all n ∈ T , if l(n) = q, then {l(n′) | n′ is a child of n} satisfies δ(q, α|n|).

A run tree is accepting if every branch either hits a true transition or is an
infinite branch n0n1n2 · · · ∈ T , and the sequence l(n0)l(n1)l(n2) . . . satisfies the
parity condition, which requires that the highest color occurring infinitely often
in the sequence μ(l(n0))μ(l(n1))μ(l(n2)) · · · ∈ N

ω is even. An infinite word σ is
accepted by an automaton A if there exists an accepting run of A on σ. The set
of infinite words accepted by A is called its language, denoted L(A).

A nondeterministic automaton is a special alternating automaton, where for
all states q and input letters α, δ(q, α) is a disjunction. An alternating automaton
is called universal if, for all states q and input letters α, δ(q, α) is a conjunction.
A universal and nondeterministic automaton is called deterministic.

Synthesizing Approximate Implementations 247

A parity automaton is called a Büchi automaton if and only if the image of
μ is contained in {1, 2}, a co-Büchi automaton if and only if the image of α is
contained in {0, 1}. Büchi and co-Büchi automata are denoted by (Q,Q0, δ, F),
where F ⊆ Q denotes the states with the higher color. A run graph of a Büchi
automaton is thus accepting if, on every infinite path, there are infinitely many
visits to states in F ; a run graph of a co-Büchi automaton is accepting if, on
every path, there are only finitely many visits to states in F .

The next theorem states the relation between LTL and alternating Büchi
automata, namely that every LTL formula ϕ can be translated to an alternating
Büchi automaton with the same language and size linear in the length of ϕ.

Theorem 1. [13] For every LTL formula ϕ there is an alternating Büchi
automaton A of size O(|ϕ|) with L(A) = L(ϕ), where |ϕ| is the length of ϕ.

Automata Over Finite Words. We also use automata over finite words as accep-
tors for languages consisting of prefixes of traces. A nondeterministic finite
automaton over an alphabet Σ is a tuple A = (Q,Q0, δ, F), where Q and Q0 ⊆ Q
are again the states and initial states respectively, δ : Q × Σ → 2Q is the tran-
sition function and F is the set of accepting states. A run on a word a1 . . . an is
a sequence of states q0q1 . . . qn, where q0 ∈ Q0 and qi+1 ∈ δ(qi, ai). The run is
accepting if qn ∈ F . Deterministic finite automata are defined similarly with the
difference that there is a single initial state q0, and that the transition function
is of the form δ : Q× Σ → Q. As usual, we denote the set of words accepted by
a nondeterministic or deterministic finite automaton A by L(A).

4 Synthesis of Lasso-Precise Implementations

In this section we first define the synthesis problem for environments producing
input sequences representable as lassos of length bounded by a given number.
We then provide an automata-theoretic algorithm for this synthesis problem.

4.1 Lasso-Precise Implementations

We begin by formally defining the language of sequences of input values repre-
sentable by lassos of a given length k. For the rest of the section, we consider
linear-time properties defined over a set of atomic propositions AP. The subset
I ⊆ AP consists of the input atomic propositions controlled by the environment.

Definition 1 (Bounded Model Languages). Let ϕ be a linear-time property
over a set of atomic propositions AP, let Σ = 2AP, and let I ⊆ AP.

We say that an infinite word σ ∈ Σω is an I-k-model of ϕ, for a bound k ∈ N,
if and only if there are words u ∈ (2I)∗ and v ∈ (2I)+ such that |u · v| = k and
σ|I = u · vω. The language of I-k-models of the property ϕ is defined by the set
LI

k(ϕ) = {σ ∈ Σω | σ is a I-k-model of ϕ}.

248 R. Dimitrova et al.

Note that a model of ϕ might be induced by lassos of different length and by
more than one lasso of the same length, e.g, aω is induced by (a, a) and (ε, aa).
The next lemma establishes that if a model of ϕ can be represented by a lasso
of length k then it can also be represented by a lasso of any larger length.

Lemma 1. For a linear-time property ϕ over Σ = 2AP, subset I ⊆ AP of
atomic propositions, and bound k ∈ N, we have LI

k(ϕ) ⊆ LI
k′(ϕ) for all k′ > k.

Proof. Let σ ∈ LI
k(ϕ). Then, σ |= ϕ and there exists (u, v) ∈ (2I)∗ × (2I)+ such

that |u · v| = k and σ|I = u · vω. Let v = v1 . . . vk. Since u · v1(v2 . . . vkv1)ω =
u · (v1 . . . vk)ω = σ|I , we have σ ∈ LI

k+1(ϕ). The claim follows by induction. ��

Using the definition of I-k-models, the language of infinite sequences of envi-
ronment inputs representable by lassos of length k can be expressed as LI

k(Σω).

Definition 2 (k-lasso-precise Implementations). For a linear-time prop-
erty ϕ over Σ = 2AP, subset I ⊆ AP of atomic propositions, and bound k ∈ N,
we say that a transition system T is a k-lasso-precise implementation of ϕ,
denoted T |=k,I ϕ, if it holds that LI

k(L(T)) ⊆ ϕ.

That is, in a k-lasso-precise implementation T all the traces of T that belong
to the language LI

k(Σω) are I-k-models of the specification ϕ.

Problem definition: Synthesis of Lasso-Precise Implementations
Given a linear-time property ϕ over atomic propositions AP with input atomic
propositions I, and given a bound k ∈ N, construct an implementation T such
that T |=k,I ϕ, or determine that such an implementation does not exist.

Another way to bound the behaviour of the environment is to consider a
bound on the size of its state space. The synthesis problem for bounded envi-
ronments asks for a given linear temporal property ϕ and a bound k ∈ N to
synthesize a transition system T such that for every possible environment E of
size at most k, the transition system T satisfies ϕ under environment E , i.e.,
T |=E ϕ.

We now establish the relationship between the synthesis of lasso-precise
implementations and synthesis under bounded environments. Intuitively, the two
synthesis problems can be reduced to each other since an environment of a given
size, interacting with a given implementation, can only produce ultimately peri-
odic sequences of inputs representable by lassos of length determined by the sizes
of the environment and the implementation. This intuition is formalized in the
following proposition, stating the connection between the two problems.

Proposition 1. Given a specification ϕ over a set of atomic propositions AP
with subset I ⊆ AP of atomic propositions controlled by the environment, and a
bound k ∈ N, for every transition system T the following statements hold:

(1) If T |=E ϕ for all environments E of size at most k, then T |=k,I ϕ.
(2) If T |=k·|T |,I ϕ, then T |=E ϕ for all environments E of size at most k.

Synthesizing Approximate Implementations 249

Proof. For (1), let T be a transition system such that T |=E ϕ for all environ-
ments E of size at most k. Assume, for the sake of contradiction, that T
|=k,I ϕ.
Thus, that there exists a word σ ∈ L(T), such that σ ∈ LI

k(Σω) and σ
|= ϕ.
Since σ ∈ LI

k(Σω), we can construct an environment E of size at most k that
produces the sequence of inputs σ|I . Since E is of size at most k, we have that
T |=E ϕ. Thus, since σ ∈ LE(T), we have σ |= ϕ, which is a contradiction.

For (2), let T be a transition system such that T |=k·|T |,I ϕ. Assume, for
the sake of contradiction that there exists an environment E of size at most k
such that T
|=E ϕ. Since T
|=E ϕ, there exists σ ∈ LE(T) such that σ
|= ϕ. As
the number of states of E is at most k, the input sequences it generates can be
represented as lassos of size k · |T |. Thus, σ ∈ LI

k·|T |(Σ
ω). This is a contradiction

with the choice of T , according to which T |=k·|T |,I ϕ. ��

4.2 Automata-Theoretic Synthesis of Lasso-Precise
Implementations

We now provide an automata-theoretic algorithm for the synthesis of lasso-
precise implementations. The underlying idea of this approach is to first con-
struct an automaton over finite traces that accepts all finite prefixes of traces in
LI

k(Σω). Then, combining this automaton and an automaton representing the
property ϕ we can construct an automaton whose language is non-empty if and
only if there exists an k-lasso-precise implementation of ϕ.

The next theorem presents the construction of a deterministic finite automa-
ton for the language Prefix (LI

k(Σω)).

Theorem 2. For any set AP of atomic propositions, subset I ⊆ AP, and bound
k ∈ N there is a deterministic finite automaton Ak over alphabet Σ = 2AP, with
size (2|I| + 1)k · (k + 1)k, such that L(Ak) = {w ∈ Σ∗ | ∃σ ∈ LI

k(Σω). w < σ}.

Idea & Construction. For given k ∈ N we first define an automaton Âk =
(Q, q0, δ, F) over Σ̂ = 2I , such that L(Âk) = {ŵ ∈ Σ̂∗ | ∃σ̂ ∈ LI

k(Σ̂ω). ŵ < σ̂}.

That, is L(Âk) is the set of all finite prefixes of infinite words over Σ̂ that can
be represented by a lasso of length k. We can then define the automaton Ak as
the automaton that for each w ∈ Σ∗ simulates Âk on the projection w|I of w.

We define the automaton Âk = (Q, q0, δ, F) such that

– Q = (Σ̂ ∪ {#})k × {−, 1, . . . , k}k,
– q0 = (#k, (1, 2, . . . , k)),

250 R. Dimitrova et al.

– δ(q, α) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(w · α · #m−1, t) if q = (w · #m, t) where 1 ≤ m ≤ k,

w ∈ Σ̂(k−m), t ∈ {−, 1, . . . , k}k

(w, (i′1, . . . , i
′
k)) if q = (w, (i1, . . . , ik)) where w ∈ Σ̂k, and

i′j =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

− ij ≤ k ∧ w(ij)
= α or ij = −

ij + 1 ij < k ∧ w(ij) = α

j ij = k ∧ w(ij) = α

– F = Q \ {(w, (−, . . . ,−)) | w ∈ Σ̂k}.

Proof. States of the form (w · α · #m, t) with m ≥ 1 store the portion of the
input word read so far, for input words of length smaller than k. In states of this
form we have t = (1, 2, . . . , k), which implies that all such states are accepting.
In turn, this means that Ak accepts all words of length smaller or equal to k.
This is justified by the fact that, each word of length smaller or equal to k is a
prefix of an infinite word in LI

k(Σ̂ω), obtained by repeating the prefix infinitely
often. Now, let us consider words of length greater than k.

In states of the form (u, (i1, . . . , ik)), with u ∈ Σ̂∗, the word u stores the
first k letters of the input word. Intuitively, the tuple (i1, . . . , ik) stores the
information about the loops that are still possible, given the portion of the
input word that is read thus far. To see this, let us consider a word w ∈ Σ̂∗

such that |w| = l > k, and let q0q1 . . . ql be the run of Ak on w. The state ql

is of the form ql = (w(1) . . . w(k), (il1, . . . , i
l
k)). It can be shown by induction

on l that for each j we have ilj
= − if and only if w is of the form w = w′ ·
w′′ · w′′′ where w′ = w(1) . . . w(j − 1), w′′ = (w(j) . . . w(k))k for some k ≥ 0,
and w′′′ = (w(j) . . . w(ilj − 1)). Thus, if ilj
= −, then it is possible to have a
loop starting at position j, and ilj is such that (w(j) . . . w(ilj − 1)) is the prefix
of w(j) . . . w(k) appearing after the (possibly empty) sequence of repetitions of
w(j) . . . w(k). This means, that if ilj
= −, then w is a prefix of the infinite word
w′ · (w′′)ω ∈ LI

k(Σ̂ω). Therefore, if the run of Ak on a word w with |w| > k is
accepting, then there exists σ ∈ LI

k(Σ̂ω) such that w < σ.
For the other direction, suppose that for each j, we have ilj = −. Take any

j, and consider the first position m in the run q0q1 . . . ql where imj = −. By
the definition of δ we have that w(m)
= w(im−1

j). This means that the prefix
w(1) . . . w(m) cannot be extended to the word w(1) . . . w(j − 1)(w(j) . . . w(k))ω.
Since for every j ∈ {1, . . . , k} we can find such a position m, it holds that there
does not exist σ ∈ LI

k(Σ̂ω) such that w < σ. This concludes the proof. ��

The automaton constructed in the previous theorem has size which is expo-
nential in the length of the lassos. In the next theorem we show that this expo-
nential blow-up is unavoidable. That is, we show that every nondeterministic
finite automaton for the language Prefix (LI

k(Σω)) is of size at least 2Ω(k).

Synthesizing Approximate Implementations 251

Theorem 3. For any bound k ∈ N and sets of atomic propositions AP and ∅
=
I ⊆ AP, every nondeterministic finite automaton N over the alphabet Σ = 2AP

that recognizes L = {w ∈ Σ∗ | ∃σ ∈ LI
k(Σω). w < σ} is of size at least 2Ω(k).

Proof. Let N = (Q,Q0, δ, F) be a nondeterministic finite automaton for L. For
each w ∈ Σk, we have that w · w ∈ L. Therefore, for each w ∈ Σk there exists
at least one accepting run ρ = q0q1 . . . qf of N on w · w. We denote with q(ρ,m)
the state qm that appears at the position indexed m of a run ρ.

Let a ∈ 2I be a letter in 2I , and let Σ′ = Σ\{a′ ∈ Σ | a′|I = a}. Let L′ ⊆ L be
the language L′ = {w ∈ Σk | ∃w′ ∈ (Σ′)k−1, a′ ∈ Σ : w = w′ · a′ and a′|I = a}.
That is, L′ consists of the words of length k in which letters a′ with a′|I = a
appear in the last position and only in the last position.

Let us define the set of states

Qk = {q(ρ, k) | ∃w ∈ L′ : ρ is an accepting run of N on w · w}.

That is, Qk consists of the states that appear at position k on some accepting
run on some word w · w, where w is from L′. We will show that |Qk| ≥ 2k−1.

Assume that this does not hold, i.e., |Qk| < 2k−1. Since |L′| ≥ 2k−1, this
implies that there exist w1, w2 ∈ L′, such that w1|I
= w2|I and there exists
accepting runs ρ1 and ρ2 of N on w1 · w1 and w2 · w2 respectively, such that
q(ρ1, k) = q(ρ2, k). That is, there must be two words in L′ with w1|I
= w2|I ,
which have accepting runs on w1 · w1 and w2 · w2 visiting the same state at
position k.

We now construct a run ρ1,2 on the word w1 · w2 that follows ρ1 for the
first k steps on w1, ending in state q(ρ1, k), and from there on follows ρ2 on w2.
It is easy to see that ρ1,2 is a run on the word w1 · w2. The run is accepting,
since ρ2 is accepting. This means that w1 · w2 ∈ L, which we will show leads to
contradiction.

To see this, recall that w1 = w′
1 · a′ and w2 = w′

2 · a′′, and w1|I
= w2|I , and
a′|I = a′′|I = a. Since w1 · w2 ∈ L, we have that w′

1 · a′ · w′
2 · a′′ < σ for some

σ ∈ LI
k(Σω). That is, there exists a lasso for some word σ, and w′

1 · a′ · w′
2 · a′′ is

a prefix of this word. Since a does not appear in w′
2|I , this means that the loop

in this lasso is the whole word w1|I , which is not possible, since w1|I
= w2|I .
This is a contradiction, which shows that |Q| ≥ |Qk| ≥ 2k−1. Since N was an

arbitrary nondeterministic finite automaton for L, this implies that the minimal
automaton for L has at least 2Ω(k) states, which concludes the proof. ��

Using the automaton from Theorem 2, we can transform every property
automaton A into an automaton that accepts words representable by lassos of
length less than or equal to k if and only if they are in L(A), and accepts all
words that are not representable by lassos of length less than or equal to k.

Theorem 4. Let AP be a set of atomic propositions, and let I ⊆ AP. For every
(deterministic, nondeterministic or alternating) parity automaton A over Σ =
2AP, and k ∈ N, there is a (deterministic, nondeterministic or alternating) parity
automaton A′ of size 2O(k) · |A|, s.t., L(A′) = (LI

k(Σω)∩L(A))∪(Σω \LI
k(Σω)).

252 R. Dimitrova et al.

Proof. The theorem is a consequence of Theorem 2 established as follows. Let
A = (Q,Q0, δ, μ) be a parity automaton, and let D = (Q̂, q̂0, δ̂, F) be the deter-
ministic finite automaton for bound k defined as in Theorem 2. We define the
parity automaton A = (Q′, Q′

0, δ
′, μ′) with the following components:

– Q′ = (Q × Q̂);
– Q′

0 = {(q0, q̂0) | q0 ∈ Q0} (when A is deterministic Q′
0 is a singleton set);

– δ′((q, q̂), α) = δ(q, α)[q′/(q′,̂δ(q̂,α))], where δ(q, α)[q′/(q′,q̂′)] is the Boolean
expression obtained from δ(q, α) by replacing every state q′ by the state
(q′, q̂′);

– μ′((q, q̂)) =

{
μ(q) if q̂ ∈ F,

0 if q̂
∈ F.

Intuitively, the automaton A′ is constructed as the product of A and D, where
runs entering a state in D that is not accepting in D are accepting in A′. To
see this, recall from the construction in Theorem 2 that once D enters a state in
Q̂ \ F̂ it remains in such a state forever. Thus, by setting the color of all states
(q, q̂) where q̂
∈ F to 0, we ensure that words containing a prefix rejected by D
have only runs in which the highest color appearing infinitely often is 0. Thus,
we ensure that all words that are not representable by lassos of length less than
or equal to k are accepted by A′, while words representable by lassos of length
less than or equal to k are accepted if and only if they are in L(A). ��

The following theorem is a consequence of the one above, and provides us with
an automata-theoretic approach to solving the lasso-precise synthesis problem.

Theorem 5 (Synthesis). Let AP be a set of atomic propositions, and I ⊆
AP be a subset of AP consisting of the atomic propositions controlled by the
environment. For a specification, given as a deterministic parity automaton P
over the alphabet Σ = 2AP, and a bound k ∈ N, finding an implementation T ,
such that, T |=k,I P can be done in time polynomial in the size of the automaton
P and exponential in the bound k.

5 Bounded Synthesis of Lasso-Precise Implementations

For a specification ϕ given as an LTL formula, a bound n on the size of the
synthesized implementation and a bound k on the lassos of input sequences,
bounded synthesis of lasso-precise implementations searches for an implementa-
tion T of size n, such that T |=k,I ϕ. Using the automata constructions in the
previous section we can construct a universal co-Büchi automaton for the lan-
guage LI

k(ϕ) ∪ (Σω \ LI
k(Σω)) and construct the constraint system as presented

in [4]. This constraint system is exponential in both |ϕ| and k. In the following
we show how the problem can be encoded as a quantified Boolean formula of
size polynomial in |ϕ| and k.

Synthesizing Approximate Implementations 253

Theorem 6. For a specification given as an LTL formula ϕ, and bounds k ∈ N

and n ∈ N, there exists a quantified Boolean formula φ, such that, φ is satisfiable
if and only if there is a transition system T = (T, t0, τ, o) of size n with T |=k,I ϕ.
The size of φ is in O(|ϕ| + n2 + k2). The number of variables of φ is equal to
n · (n · 2|I| + |O|) + k · (|I| + 1) + n · k(|O| + n + 1).

Construction. We encode the bounded synthesis problem in the following quan-
tified Boolean formula:

∃{τt,i,t′ | t, t′ ∈ T, i ∈ 2I}. ∃{ot | t ∈ T, o ∈ O}. (1)
∀{ij | i ∈ I, 0 ≤ j < k}. ∀{lj | 0 ≤ j < k}. (2)
∀{oj | o ∈ O, 0 ≤ j < n · k}. (3)
∀{tj | t ∈ T, 0 ≤ j < n · k}. (4)
∀{l′j | 0 ≤ j < n · k}. (5)

ϕdet ∧ (ϕlasso ∧ ϕn,k
∈T → �ϕ�k,n·k

0) (6)

which we read as: there is a transition system (1), such that, for all input
sequences representable by lassos of length k (2) the corresponding sequence
of outputs of the system (3) satisfies ϕ. The variables introduced in lines (4) and
(5) are necessary to encode the corresponding output for the chosen input lasso.

An assignment to the variables satisfies the formula in line (6), if it represents
a deterministic transition system (ϕdet) in which lassos of length n·k (ϕlasso∧ϕn,k

∈T
)

satisfy the property ϕ (�ϕ�
(k,n·k)
0)). These constraints are defined as follows.

ϕdet: A transition system is deterministic if for each state t and input i there
is exactly one transition τt,i,t′ to some state t′:

∧

t∈T

∧

i∈2I

∨

t′∈T

(τt,i,t′ ∧
∧

t′ �=t′′
τt,i,t′′).

ϕn,k
∈T : for a certain input lasso of size k we can match a lasso in the system of

size at most n · k. A lasso of this size in the transition system matches the input
lasso if the following constraints are satisfied.

∧

0≤j<n·k

∧

t∈T

(tj →
∧

o∈O

(oj ↔ otj
)) (7)

∧ t00 (8)

∧
∧

0≤j<n·k−1

∧

i∈2I

∧

t,t′∈T

((
∧

0≤j′<k

lj′ → iΔ(j,k,j′)) ∧ tj → (τt,i,t′ ↔ t′j+1)) (9)

∧
∧

i∈2I ,t,t′∈T

((
∧

0≤j′<k

lj′ → iΔ(n·k−1,k,j′)) ∧ tn·k−1 → (τt,i,t′ ↔ (
∨

0≤j<n·k
l′j ∧ t′j)))

(10)

Lines (9) and (10) make sure that the chosen lasso follows the guessed transition
relation τ . Line (10) handles the loop transition of the lasso, and makes sure
that the loop of the lasso follows τ . Line (7) is a necessary requirement in order
to match the output produced on the lasso with ϕ. If the output variables oj

satisfy the constraint �ϕ�
(k,n·k)
0 , then the lasso satisfies ϕ. As the input lasso is

254 R. Dimitrova et al.

smaller than its matching lasso in the system we need to make sure that the
indices of the input variables are correct with respect to the chosen loop. This
is computed using the function Δ which is given by:

Δ(j, k, j′) =

{
j if j < k,

((j − k) mod (k − j′)) + j′ otherwise.

ϕlasso: The formula encodes the additional constraint that exactly one of the
loop variables can be true for a given variable valuation.

�ϕ�k,m
0 : This constraint encodes the satisfaction of ϕ on lassos of size m. The

encoding is similar to the encoding of bounded model checking [3], with the dis-
tinction of encoding the satisfaction relation of the atomic propositions, given
below. As the inputs run with different indices than the outputs, we again,
as in the lines (9) and (10), need to compute the correct indices using the
function Δ.

h < m h = m

�i�k,m
h

∧

0≤j′<k

(lj′ → iΔ(h,k,j′))
∨m−1

j=0 (l′j ∧ ∧

0≤j′<k

(lj′ → iΔ(j,k,j′)))

�¬i�k,m
h

∧

0≤j′<k

(lj′ → ¬iΔ(h,k,j′))
∨m−1

j=0 (l′j ∧ ∧

0≤j′<k

(lj′ → ¬iΔ(j,k,j′)))

�o�k,m
h oh

∨m−1
j=0 (l′j ∧ oj)

�¬o�k,m
h ¬oh

∨m−1
j=0 (l′j ∧ ¬oj)

6 Synthesis of Approximate Implementations

In some cases, specifications remain unrealizable even when considered under
bounded environments. Nevertheless, one might still be able to construct imple-
mentations that satisfy the specification in almost all input sequences of the
environment. Consider for example the following simplified arbiter specification:

(w → g) ∧ (r → g)

The specification defines an arbiter that should give grants g upon requests
r, but is not allowed to provide these grants unless a signal w is true. The
specification is unrealizable, because a sequence of inputs where the signal w
is always false prevents the arbiter from answering any request. Bounding the
environment does not help in this case as a lasso of size 1 already suffices to
violate the specification (the one where w is always false). Nevertheless, one can
still find reasonable implementations that satisfy the specification for a large
fraction of input sequences. In particular, the fraction of input sequences where
w remains false forever is less probable.

Synthesizing Approximate Implementations 255

Definition 3 (ε-k-Approximation). For a specification ϕ, a bound k, and an
error rate ε, we say that a transition system T approximately satisfies ϕ with an
error rate ε for lassos of length at most k, denoted by T |=ε

k,I ϕ, if and only if,
|{σ|σ∈LI

k(L(T)),σ|=ϕ}|
|LI

k((2
I)ω)| ≥ 1 − ε. We call T an ε-k-approximation of ϕ.

Theorem 7. For a specification given as a deterministic parity automaton P , a
bound k and a error rate 0 ≤ ε ≤ 1, checking whether there is an implementation
T , such that, T |=ε

k,I P can be done in time polynomial in |P | and exponential
in k.

Proof. For a given ε and k, we construct a nondeterministic parity tree automa-
ton N that accepts all ε-k-approximations with respect to L(P). For ε, we can
compute the minimal number m of lassos from LI

k((2I)ω) for which an ε-k-
approximation has to satisfy the specification. In its initial state, the automaton
N guesses m many lassos and accepts a transition system if it does not violate
the specification on any of these lassos. The latter check is done by following
the structure of the automaton constructed for P using Theorem 4. In order to
check whether there is an ε-k-approximation for P , we solve the emptiness game
of N . The size of N is (2k)m+1 · |P |. ��

6.1 Symbolic Approach

In the following, we present a symbolic approach for finding ε-k-approximations
based on maximum model counting. We show that we can build a constraint
system and apply a maximum model counting algorithm to compute a transition
system that satisfies a specification for a maximum number of input sequences.

Definition 4 (Maximum Model Counting [5]). Let X,Y and Z be sets of
propositional variables and φ be a formula over X,Y and Z. Let x denote an
assignment to X, y an assignment to Y , and z an assignment to Z. The max-
imum model counting problem for φ over X and Y is computing a solution for
max

x
#y.∃z.φ(x, y, z).

For a specification ϕ, bounds k and n on the length of the lassos and size of
the system, respectively, we can compute an ε-k-approximation for ϕ by applying
a maximum model counting algorithm to the constraint system given below. It
encodes transition systems of size n that have an input lasso of length k that
satisfies ϕ.

∃{τt,i,t′ | t, t′ ∈ T, i ∈ 2I}. ∃{ot | t ∈ T, o ∈ O}. (11)
∃{ij | i ∈ I, 0 ≤ j < k}. ∃{lj | 0 ≤ j < k}. (12)
∃{xi

j | x ∈ I, 0 ≤ i, j < k} (13)
∃{oj | o ∈ O, 0 ≤ j < n · k}. (14)
∃{tj | t ∈ T, 0 ≤ j < n · k}. (15)
∃{l′j | 0 ≤ j < n · k}. (16)

ϕdet ∧ ϕlasso ∧ ϕn,k
∈T ∧ �ϕ�k,n·k

0 ∧ �k�0 (17)

256 R. Dimitrova et al.

To check the existence of a ε-k-approximation, we maximize over the set of
assignment to variables that define the transition system (line 11) and count
over variables that define input sequences of the environment given by lassos of
length k. As two input lassos of the same length may induce the same infinite
input sequence, we count over auxiliary variables that represent unrollings of the
lassos instead of counting over the input propositions themselves (line 13).

The formulas ϕdet, ϕlasso, ϕn,k
∈T and �ϕ�k,n·k

0 are defined as in the previous
section. The formula �k�0 is defined over that variables in line (13) and makes
sure that input lasso that represent the same infinite sequence are not counted
twice by unrolling the lasso to size 2k.

Theorem 8. For a specification given as an LTL formula ϕ, and bounds k and
n, and an error rate ε, the propositional formula φ defined above is of size O(|ϕ|+
n2 + k2). The number of variables of φ is equal to n · (n · 2|I| + |O|)+ k · (k · |I|+
|I| + 1) + n · k(|O| + n + 1).

7 Experimental Results

We implemented the symbolic encodings for the exact and approximate synthesis
methods, and evaluated our approach on a bounded version of the greedy arbiter
specification given in Sect. 1, and another specification of a round-robin arbiter.
The round-robin arbiter is defined by the specification:

w → g1 ∧ g2 ∧ (¬w → (¬g1 ∧ ¬g2)) ∧ (¬g1 ∨ ¬g2)

This specification is realizable, with transition systems of size at least 4. We used
our implementation to check whether we can find approximative solutions with
smaller sizes. We used the tool CAQE [10] for solving the QBF instances and
the tool MaxCount [5] for solving the approximate synthesis instances.

Table 1. Experimental results for the symbolic approaches. The rate in the approxi-
mate approach is the rate of input lassos on which the specification is satisfied.

Instance QBF MaxCount

Spec. Proc. #States Bound Result #Gates ∀ ∃ Time #Max #Count Rate Time

Round-

Robin

Arbiter

2 2 4 Unreal 15556 48 12 9.91 s 12 8 0.5 26 s

2 3 2 Unreal 5338 40 24 2.45 s 24 4 0.88 161 s

2 4 2 Real 13414 60 12 12.15 s 40 4 0.88 283 s

Greedy Arbiter 1 2 2 Real 1597 20 10 0.41 s 10 4 1.0 0.79 s

1 2 3 Unreal 4749 30 10 1.95 s 10 6 0.88 3.86 s

1 3 3 Unreal 16861 48 21 17.26 s 21 6 0.88 20.83 s

1 4 3 Real 43692 78 36 3min 7.44 s 36 6 1.0 2min 43 s

1 4 4 - 169829 104 36 TO 36 8 - TO

2 4 2 Real 24688 62 72 1min. 24 s 72 6 - TO

2 4 3 Unreal 103433 93 72 27min 15.2 72 12 - TO

3 2 2 Unreal 3985 93 72 1.39 s 38 8 0.65 4.18 s

Synthesizing Approximate Implementations 257

The results are presented in Table 1. As usual in synthesis, the size of the
instances grows quickly as the size bound and number of processes increase.
Inspecting the encoding constraints shows that the constraint for the specifica-
tion is responsible for more than 80% of the number of gates in the encoding. The
results show that, using the approach we proposed, we can synthesize implemen-
tations for unrealizable specifications by bounding the environment. The results
for the approximate synthesis method further demonstrate that for the unreal-
izable cases one can still obtain approximative implementations that satisfy the
specification on a large number of input sequences.

8 Conclusion

In many cases, the unrealizability of a specification is due to the assumption
that the environment has unlimited power in producing inputs to the system.
In this paper, we have investigated the problem of synthesizing implementations
under bounded environment behaviors. We have presented algorithms for solv-
ing the synthesis problem for bounded lassos and the synthesis of approximate
implementations that satisfy the specification up to a certain rate.

We have also provided polynomial encodings of the problems into quantified
Boolean formulas and maximum model counting instances. Our experiments
demonstrate the principal feasibility of the approach. Our experiments also show
that the instances can quickly become large. While this is a common phenomenon
for synthesis, there clearly is a lot of room for optimization and experimentation
with both the solvers for quantified Boolean expressions and for maximum model
counting.

References

1. Alur, R., Moarref, S., Topcu, U.: Counter-strategy guided refinement of GR(1) tem-
poral logic specifications. In: Formal Methods in Computer-Aided Design, FMCAD
2013, Portland, OR, USA, October 20–23, 2013, pp. 26–33. IEEE (2013)

2. Chatterjee, K., Henzinger, T.A., Jobstmann, B.: Environment assumptions for syn-
thesis. In: van Breugel, F., Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201, pp.
147–161. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85361-
9 14

3. Clarke, E., Biere, A., Raimi, R., Zhu, Y.: Bounded model checking using satisfia-
bility solving. Form. Methods Syst. Des. 19(1), 7–34 (2001)

4. Finkbeiner, B., Schewe, S.: Bounded synthesis. Int. J. Software Tools Technol.
Transf. 15(5–6), 519–539 (2013)

5. Fremont, D.J., Rabe, M.N., Seshia, S.A.: Maximum model counting. Technical
Report UCB/EECS-2016-169, EECS Department, University of California, Berke-
ley, Nov 2016. This is the extended version of a paper to appear at AAAI 2017

6. Kupferman, O., Lustig, Y., Vardi, M.Y., Yannakakis, M.: Temporal synthesis for
bounded systems and environments. In: Schwentick, T., Dürr, C. (eds.) 28th Inter-
national Symposium on Theoretical Aspects of Computer Science, STACS 2011,
March 10–12, 2011, Dortmund, Germany, vol. 9 of LIPIcs, pages 615–626. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik (2011)

https://doi.org/10.1007/978-3-540-85361-9_14
https://doi.org/10.1007/978-3-540-85361-9_14

258 R. Dimitrova et al.

7. Kwiatkowska, M., Parker, D.: Automated verification and strategy synthesis for
probabilistic systems. In: Van Hung, D., Ogawa, M. (eds.) ATVA 2013. LNCS, vol.
8172, pp. 5–22. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-02444-
8 2

8. Li, W., Dworkin, L., Seshia, S.A.: Mining assumptions for synthesis. In: Singh, S.,
Jobstmann, B., Kishinevsky, M., Brandt, J. (eds.) 9th IEEE/ACM International
Conference on Formal Methods and Models for Codesign, MEMOCODE 2011,
Cambridge, UK, 11–13 July, 2011, pp. 43–50. IEEE (2011)

9. Pnueli, A.: The temporal logic of programs. In: Proceedings of the 18th Annual
Symposium on Foundations of Computer Science, SFCS 1977, Washington, DC,
USA, 1977. IEEE Computer Society (1977)

10. Rabe, M.N., Tentrup, L.: Caqe: a certifying QBF solver. In: Proceedings of the
15th Conference on Formal Methods in Computer-aided Design (FMCAD 2015),
pp. 136–143, September 2015

11. Raman, V., Lignos, C., Finucane, C., Lee, K.C.T., Marcus, M.P., Kress-Gazit, H.:
Sorry dave, i’m afraid I can’t do that: explaining unachievable robot tasks using
natural language. In: Newman, P., Fox, D., Hsu, D. (eds.), Robotics: Science and
Systems IX, Technische Universität Berlin, Berlin, Germany, June 24 - June 28,
2013 (2013)

12. Rozier, K.Y.: Specification: the biggest bottleneck in formal methods and auton-
omy. In: Blazy, S., Chechik, M. (eds.) VSTTE 2016. LNCS, vol. 9971, pp. 8–26.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48869-1 2

13. Vardi, M.Y.: Nontraditional applications of automata theory. In: Hagiya, M.,
Mitchell, J.C. (eds.) TACS 1994. LNCS, vol. 789, pp. 575–597. Springer, Heidelberg
(1994). https://doi.org/10.1007/3-540-57887-0 116

14. Vardi, M.Y.: Alternating automata and program verification. In: van Leeuwen, J.
(ed.) Computer Science Today. LNCS, vol. 1000, pp. 471–485. Springer, Heidelberg
(1995). https://doi.org/10.1007/BFb0015261

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-319-02444-8_2
https://doi.org/10.1007/978-3-319-02444-8_2
https://doi.org/10.1007/978-3-319-48869-1_2
https://doi.org/10.1007/3-540-57887-0_116
https://doi.org/10.1007/BFb0015261
http://creativecommons.org/licenses/by/4.0/

Quantified Invariants via Syntax-Guided
Synthesis

Grigory Fedyukovich1(B) , Sumanth Prabhu2,
Kumar Madhukar2, and Aarti Gupta1

1 Princeton University, Princeton, USA
{grigoryf,aartig}@cs.princeton.edu

2 TCS Research, Pune, India
{sumanth.prabhu,kumar.madhukar}@tcs.com

Abstract. Programs with arrays are ubiquitous. Automated reasoning
about arrays necessitates discovering properties about ranges of elements
at certain program points. Such properties are formally specified by uni-
versally quantified formulas, which are difficult to find, and difficult to
prove inductive. In this paper, we propose an algorithm based on an enu-
merative search that discovers quantified invariants in stages. First, by
exploiting the program syntax, it identifies ranges of elements accessed
in each loop. Second, it identifies potentially useful facts about individ-
ual elements and generalizes them to hypotheses about entire ranges.
Finally, by applying recent advances of SMT solving, the algorithm fil-
ters out wrong hypotheses. The combination of properties is often enough
to prove that the program meets a safety specification. The algorithm
has been implemented in a solver for Constrained Horn Clauses, Freq-
Horn, and extended to deal with multiple (possibly nested) loops. We
show that FreqHorn advances state-of-the-art on a wide range of public
array-handling programs.

1 Introduction

Formally verifying programs against safety specifications is difficult. This prob-
lem worsens in the presence of data structures like lists, arrays, and maps, which
are ubiquitous in real-world applications. For instance, proving an array-handling
program safe often requires discovering an inductive invariant that is univer-
sally quantified over ranges of array elements. Such invariants help to prove the
unreachability of error states independently of the size of the array. However, the
majority of invariant synthesis approaches are limited to quantifier-free numer-
ical invariants. The approach presented in this paper advances the knowledge
by an effective technique to discover quantified invariants over arrays and linear
integer arithmetic.

Syntax-guided techniques [3] have recently been applied to synthesize
quantifier-free numerical invariants [15–17,34] in the approach called Freq-
Horn. In a nutshell, FreqHorn collects various statistics from the syntactical
patterns occurring in the program’s source code and uses them to construct a
c© The Author(s) 2019
I. Dillig and S. Tasiran (Eds.): CAV 2019, LNCS 11561, pp. 259–277, 2019.
https://doi.org/10.1007/978-3-030-25540-4_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-25540-4_14&domain=pdf
http://orcid.org/0000-0003-1727-4043
https://doi.org/10.1007/978-3-030-25540-4_14

260 G. Fedyukovich et al.

set of formal grammars that specify a search space for invariants. It is often suf-
ficient to perform an enumerative search over the formulas produced from these
grammars and identify a set of suitable inductive invariants among them using
an off-the-shelf solver for Satisfiability Modulo Theories (SMT). The presence
of arrays complicates this reasoning in a few respects: it is hard to find suitable
candidates and difficult to prove them inductive.

In this paper, we present a novel technique that extends the approach of
enumerative search in general, and its instantiation in FreqHorn in particular,
to reason about quantifiers. It discovers invariants over arrays in multiple stages.
First, by exploiting the program syntax, it identifies ranges of elements accessed
in each loop. Second, it identifies potentially useful facts about individual ele-
ments and generalizes them to hypotheses about entire ranges. The SMT-based
validation of candidates, which are quantified formulas, is often inexpensive as
they are constructed using the same syntactic patterns that appear in the source
code. Furthermore, for supporting certain corner cases, our approach allows spec-
ifying additional rules that help in generalizing learned properties. The combi-
nation of properties proven inductive by an SMT solver is often enough to prove
that the program meets a safety specification.

We show that FreqHorn advances state-of-the-art on a selection of array-
handling programs from SVCOMP1 and literature. For instance, it can prove
completely automatically that an array is monotone after applying a sorting
algorithm. Furthermore, FreqHorn is able to discover quantifier-free invari-
ants over integer variables in the program, use them as inductive relatives while
checking inductiveness of quantified candidates over arrays; and vice versa.

While a detailed discussion of the related work comes later in the paper
(Sect. 6), it is noteworthy that being syntax-guided crucially helps us overcome
several limitations of other techniques to verify array-handling programs [2,9,
11,35]. Most of them avoid inferring quantified invariants explicitly and thus
do not produce checkable proofs. As a result, tools are fragile and in practice
often output false positives (see Sect. 5 for concrete results). By comparison,
our approach never produces false positives, and its results can be validated by
existing SMT solvers.

The core contributions made through this work are:

– a novel syntax-guided approach to generate universally quantified invariants
for programs manipulating arrays;

– an algorithm and its fully automated implementation; and
– a thorough experimental evaluation comparing our technique with state-of-

the-art in verification of array-handling programs.

The rest of the paper is structured as follows. In Sect. 2, we give background
and notation and illustrate our approach on an example. Our main contributions
are then presented in Sect. 3 (main algorithm) and Sect. 4 (important design
choices). In Sect. 5, we show the evaluation and comparison with state-of-the-
art. Finally, the related work and conclusion complete the paper in Sects. 6 and
7, respectively.
1 Software Verification Competition, http://sv-comp.sosy-lab.org/.

http://sv-comp.sosy-lab.org/

Quantified Invariants via Syntax-Guided Synthesis 261

2 Background

The Satisfiability Modulo Theories (SMT) task is to decide whether there is
an assignment m of values to variables in a first-order logic formula ϕ that
makes it true. We write ϕ =⇒ ψ, if every satisfying assignment to ϕ is also
a satisfying assignment to some formula ψ. By Expr we denote the space of all
possible quantifier-free formulas in our background theory and by Vars a range
of possible variables.

2.1 Programs as Constrained Horn Clauses

To guarantee expected behaviors, programs require proofs, such as inductive
invariants, ranking functions, or recurrence sets. It is becoming increasingly pop-
ular to consider a verification task as a proof synthesis task which is formulated
as a system of SMT formulas involving unknown predicates, also known as con-
strained Horn clauses (CHC). The synthesis goal is to discover a suitable inter-
pretation of all unknown predicates that make all CHCs true. CHCs offer the
advantages of flexibility and modularity in designing verifiers for various systems
and languages. CHCs can be constructed in a way that captures the operational
semantics of a language in question, and an off-the-shelf CHC solver can be used
for solving the resulting formulas.

Definition 1. A linear constrained Horn clause (CHC) over a set of uninter-
preted relation symbols R is a formula in first-order logic that has the form of
one of three implications (called respectively a fact, an inductive clause, and a
query):

ϕ(�x1) =⇒ inv1(�x1)
inv1(�x1) ∧ ϕ(�x1, �x2) =⇒ inv2(�x2)
inv1(�x1) ∧ ϕ(�x1) =⇒ ⊥

where inv1, inv2 ∈ R are uninterpreted symbols, �x1, �x2 are vectors of variables,
and ϕ, called a body, is a fully interpreted formula (i.e., ϕ does not have appli-
cations of inv1 or inv2).

For a CHC C, by src(C) we denote an application of inv ∈ R in the premise
of C (if C is a fact, we write src(C) def= �). Similarly, by dst(C) we denote
an application of inv ∈ R in the conclusion of C (if C is a query, we write
dst(C) def= ⊥). We define functions rel and args, such that for each inv(�x),
rel(inv(�x)) def= inv and args(inv(�x)) def= �x. For a CHC C, by body(C) we denote
the body (i.e., ϕ) of C.

Example 1. Figure 1 gives a program in the C programming language that han-
dles two integer arrays, A and B, both of an unknown size N. The A array has
unknown content, and the program first identifies a value m which is smaller or

262 G. Fedyukovich et al.

int N = nondetInt ();

int *A = nondetArray(N);

int m = 0;

for (int i = N - 1; i ≥ 0; i--) { if (m > A[i]) m = A[i]; }

int *B = malloc(N*sizeof(int));

for (int i = 0; i < N; i++) { B[N - i - 1] = A[i] - m; }

int s = 0;

for (int i = 0; i < N; i++) { s = s + B[i]; }

assert(s ≥ 0);

Fig. 1. Example program: source code in C.

Fig. 2. Example program: CHC encoding.

equal to all elements of A (it might be either a minimal element among the con-
tent of A or 0). Then, the program populates B by values of A with m subtracted.
Interestingly, the order of elements A and B is not preserved, e.g., A[0] - m gets
written to B[N - 1], and so on. Finally, the program computes the sum s of all
elements in B and requires us to prove that s is never negative.

Figure 2 gives a CHC encoding of the program. The system has three uninter-
preted predicates, inv1, inv2, and inv3 corresponding to invariants at heads of
the three loops. The primed variables correspond to modified variables. Rules B,
D, and F encode the loop bodies, and the remaining rules encode the fragments
of code before, after, or between the loops. In particular, rule G ensures that
after the third loop has terminated, a program state with a negative value of s
is unreachable. Before we describe how our technique solves this CHC system
(see Sect. 2.2), we briefly introduce the notion of satisfiability of CHCs.

Definition 2. Given a set of uninterpreted relation symbols R and a set S of
CHCs over R , we say that S is satisfiable if there exists an interpretation that
assigns to each n-ary symbol inv ∈ R a relation over n-tuples and makes all
implications in S valid.

In the paper, we assume that a relation assigned by an interpretation is
represented by a formula ψ over at most n free variables.

We call a CHC C inductive when rel(src(C)) = rel(dst(C)) = inv for some
inv. While accessing an array in a loop, we assume the existence of an integer
counter variable. More formally:

Quantified Invariants via Syntax-Guided Synthesis 263

Definition 3. Let C be an inductive CHC, �x = args(src(C)), and �x′ =
args(dst(C)). We say that C is array-handling if there exist numbers c and
a, such that (1) 1 ≤ c ≤ |�x| and 1 ≤ a ≤ |�x|; (2) �x[c] (and consequently, its
“primed copy” �x′[c]) has type integer, (3) either of these implications holds:

body(C) =⇒ �x[c] < �x′[c] (1)

body(C) =⇒ �x[c] > �x′[c] (2)

(4) �x[a] (and consequently �x′[a]) has type array, and (5) there is an access func-
tion f that identifies a relationship between an access to �x[a] in body(C) and
�x[c].

2.2 Illustrating Example

The CHC system in Fig. 2 has a solution, indicating that the program meets its
specification. In particular:

inv1 �→ ∀j . i < j < N =⇒ m ≤ A[j]
inv2 �→ ∀j . 0 ≤ j < N =⇒ m ≤ A[j]∧

∀j . 0 ≤ j < i =⇒ B[N − j − 1] = A[j] − m

inv3 �→ ∀j . 0 ≤ j < N =⇒ m ≤ A[j]∧
∀j . 0 ≤ j < N =⇒ B[N − j − 1] = A[j] − m

∧ s ≥ 0

The interpretation of inv1 means that as the first loop progresses (i.e, all
elements A[N −1], A[N −2], . . . , A[i+1] are sequentially considered), the value
of m is always smaller than all the considered elements. Thus, we refer to the
interpretation of inv1 as a progress lemma. When the first loop has terminated,
clearly, this property holds for all elements from A[0] to A[N − 1]. Because A
leaks through the second loop without any changes, the interpretation of inv1

gets finalized (thus, it becomes a finalized lemma) and added to an interpretation
of inv2.

Additionally, the interpretation of inv2 gets a relational fact about pairs of
elements A[0] and B[N−1], A[1] and B[N−2], . . . , A[i−1] and B[N−i−2], which
again appears as a progress lemma and then gets finalized in an interpretation of
inv3. With these two quantified invariants about all elements of A, and relation
about pairs of elements of A and B, it is possible to derive the remaining lemma
in the interpretation of inv3, namely, s ≥ 0; which concludes the proof.

3 Invariants via Enumerative Search

In this work, we aim at discovering a solution for a CHC system S over a set
of uninterpreted symbols R enumeratively, i.e., by guessing a candidate formula
for each inv ∈ R , substituting it for all CHCs C ∈ S and checking their validity.

264 G. Fedyukovich et al.

3.1 Quantifier-Free Invariants

We build on top of an algorithm, called FreqHorn, recently proposed in [17]. Its
key insight is an automatic construction of a set of formal grammars G(inv) for
each inv ∈ R based on either source code, program behaviors, or both. Impor-
tantly, these grammars are conjunction-free: they cannot be used to produce
a conjunction of clauses and can give rise to only a finite number of formulas,
potentially related to invariants (otherwise, the approach does not guarantee
strong convergence). Since invariants are often represented by a conjunction
of lemmas, FreqHorn attempts to sample (i.e., recursively apply production
rules) each lemma from a grammar in separation, until a combination of them is
sufficient for the inductiveness and safety, or a search space is exhausted. Freq-
Horn relies on an SMT solver to filter out unsuccessfully sampled lemmas.

The construction of formal grammars is biased by the syntax of CHC encod-
ing. First, FreqHorn collects a set of Seeds by converting the body of each
CHC to a Conjunctive Normal Form, extracting, and normalizing each conjunct.
Then, the set of seeds could be optionally replenished by a set of behavioral seeds
and bounded proofs. They are constructed respectively from the concrete values
of variables obtained from actual program runs, and Craig interpolants from
unsatisfiable finite unrollings of the CHC systems. Finally, the production rules
are created in a way to enable producing seeds and also their mutants (i.e.,
syntactically similar formulas to seeds). In general, no specific restriction on
a grammar-construction method is imposed; so in practice, the grammars are
allowed to be more (or less) general to enable a broader (or more focused) search
space for invariants.

3.2 Quantified Candidates from Quantifier-Free Grammars

The main obstacle for applying the enumerative search to generate array invari-
ants is that the grammars do not allow quantifiers. Because grammars are con-
structed automatically from syntactic patterns which appear in the original pro-
grams, in the presence of arrays, we can expect expressions involving only par-
ticular elements of arrays (such as ones accessed via a loop counter). However,
since each loop repeats certain operations over a range of array elements, we have
to generalize the extracted expressions about individual elements to expressions
about entire ranges.

Let a set of variables associated with a relation symbol inv be Vars(inv) def=
IntVars(inv) ∪ ArrVars(inv), where IntVars(inv) and ArrVars(inv) are dis-
joint and contain integer variables and array variables, respectively. A candidate
quantified invariant over arrays consists of three parts:

– a set of quantified integer variables QVars(inv), which are introduced by our
algorithm and do not appear in Vars(inv);

– a range formula over QVars(inv) ∪ IntVars(inv); and
– a quantifier-free cell property over QVars(inv) ∪ Vars(inv).

Quantified Invariants via Syntax-Guided Synthesis 265

Algorithm 1. Prepare(S,R)
Input: CHCs S over R
Output: Formal grammars G(inv), quantified variables QVars(inv) and

progressRange(inv) for each inv ∈ R

1 for each inv ∈ R do
2 Seeds ← SyntSeeds(inv) ∪ BehavSeeds(inv);
3 cnt ← getCounters(S, inv,ArrVars(inv));
4 if ∅ �= cnt then
5 QVars(inv) ← copy(cnt);
6 progressRange(inv) ← getRange(cnt);

7 G(inv) ← Replace(getGrammar(Seeds), cnt,QVars(inv));

Algorithm 2. SolveArrayCHCs(S,R)
Input: CHCs S over R
Output: res ∈ {sat,unknown}, Lemmas : R → 2Expr

1 〈G,QVars, progressRange〉 ← Prepare(S,R);
2 for each inv ∈ R do Lemmas(inv) ← ∅;

3 while ∃C ∈ S .
(∧

�∈Lemmas(rel(src(C)))

�(args(src(C))) ∧ body(C) �=⇒ ⊥
)
do

4 if ∀inv ∈ R .allBlocked(G(inv)) then return 〈unknown, ∅〉;
5 inv ← pickLoop(R);
6 if QVars(inv) = ∅ then Cand(inv) ← sample(G(inv));
7 else Cand(inv) ← ∀QVars(inv) .

QVars(inv) ∈ progressRange(inv) =⇒ sample(G(inv));
8 ExtCand ← extend(S, {inv},Cand ,Lemmas);
9 if ∀inv′ ∈ R . ExtCand(inv′) = � then G(inv) ← block(G,Cand , inv);

10 else
11 for each inv′ ∈ R do
12 Lemmas(inv′) ← Lemmas(inv′) ∪ {ExtCand(inv′)};
13 G(inv′) ← block(G, ExtCand , inv′);

14 return 〈sat,Lemmas〉;

A naive idea for getting a range formula and a cell property is to sample
them separately, and then to bind them together using some QVars(inv). But it
would result in a large search space. Algorithm 1 gives a more tailored procedure
on the matter. The central role in this process is taken by an analysis of the
loop counters which are used to access array elements (line 3). This analysis is
performed once for each loop before the main verification process, and thus its
results are reused in all iterations of the verification process.

Our algorithm identifies QVars(inv) by creating a fresh variable for each
counter, including counters of nested loops (line 5). It then generates range
formulas based on the results of the analysis (line 6) such that: (1) the range
formula itself is an inductive invariant for inv, and (2) the range formula is
expressed over the initial values of counters of inv and the counters themselves.
Finally, only a cell property is going to be produced from the grammar G(inv),

266 G. Fedyukovich et al.

Algorithm 3. weaken(S′,R ′,Cand ,Lemmas)
Input: CHCs S′ over R ′, candidates Cand(inv); learned Lemmas(inv) for

each inv ∈ R ′

Output: weakened Cand

1 toRecheck ← ⊥;
2 for all C ∈ S′ do
3 if

∧
�∈Lemmas(rel(src(C)))

�(args(src(C))) ∧ Cand(rel(src(C)))(args(src(C))) ∧
body(C) �=⇒ Cand(rel(dst(C)))(args(dst(C))) then

4 if isFinalizedArrayCand(Cand , rel(dst(C))) then
5 Cand(rel(dst(C)))) ← getRegressCand(Cand , rel(dst(C)));
6 else
7 Cand(rel(dst(C))) ← �;
8 toRecheck ← �;
9 break;

10 if toRecheck then return weaken(S′,R ′,Cand ,Lemmas);
11 else return Cand ;

Algorithm 4. extend(S,R ,Cand ,Lemmas), cf [17].
Input: CHCs S over R ; R ′ ⊆ R , candidates Cand(inv); learned Lemmas(inv)

for each inv ∈ R ′

Output: extended Cand
1 Cand ← weaken(S′,R ′,Cand ,Lemmas);
2 for all C ∈ S s.t. rel(src(C)) ∈ R ′ do
3 Cand(rel(dst(C))) ← propagate(C,Cand);
4 Cand ← extend(S,R ′ ∪ {rel(dst(C))},Cand ,Lemmas);
5 return Cand ;

constructed from the seeds (recall Sect. 3.1), in which all counters are replaced
by the corresponding variables from QVars(inv) (line 7). Thus, the only part
of the candidate formula where the counter can appear is the range formula.

Once grammars, QVars, and ranges are detected, our approach proceeds to
sample candidates and to check them with an SMT solver. The general flow of
this algorithm is illustrated in Algorithm 2. For each inv ∈ R , it initiates a set
Lemmas(inv) (line 2). Then it iteratively guesses lemmas until a combination
of them is inductive and safe, or a search space is exhausted (lines 3–4).

Compared to the baseline approach from [17], our new algorithm fixes a
shape for the candidates for arrays. At the same time, it permits to sample
quantifier-free candidates (line 6): they could be either formulas over counters
or any other variables in the loop, or even formulas over isolated array elements
(if, e.g., accessed by a constant). Then (line 8), Algorithm 2 propagates can-
didates through all available implications in CHCs using quantifier elimination
and identifies lemmas among the candidates. This step is similar to the baseline

Quantified Invariants via Syntax-Guided Synthesis 267

approach from [17], but for completeness of presentation, we provide the pseu-
docode in Algorithms 3 and 4. The only differences are (1) in the implementation
of the candidate propagation for array candidates and (2) in the weakening of
failed candidates (both in Algorithm 3, to be discussed in Sects. 4.3 and 4.4,
respectively).

Both successful and unsuccessful candidates are “blocked” from their gram-
mars to avoid re-sampling them in the next iterations. This fact together with
the property of grammars being conjunction-free gives the main hint for proving
the following theorem.

Theorem 1. Algorithm 2 always makes a finite number of iterations, and if it
returns with SAT then the CHC system is satisfiable.

Next section discusses a particular instantiation of important subroutines
that make our invariant synthesizer effective in practice.

4 Design Choices

Our main contribution is a completely automated algorithm for finding quan-
tified invariants for array-handling loops. In this section, we first show how by
exploiting the program syntax we can identify ranges of elements accessed in each
loop (Sect. 4.1). Second, we present an intuitive justification to why our candi-
dates can often be proved as lemmas by an off-the-shelf SMT solver (Sect. 4.2).
Finally, we extend our algorithm to handle more complicated cases of multi-
ple loops (Sects. 4.3–4.4), and benchmarks of the tiling [9] technique, which are
adapted from the industrial code of battery controllers (Sect. 4.5).

4.1 Discovery of Progress Lemmas

We start with the simplest scenario of a single loop handling just one array.
Let S be a system of CHCs over a set of uninterpreted relation symbols R . Let
inv ∈ R correspond to a loop, in which arrays are accessed using some counter
variable i (counters are automatically identified by posing and solving queries of
forms (1) and (2)).

Recall that we do not necessarily require the array elements to be accessed
directly by i, and we allow an access function f to identify relationships between
i and an index of the accessed element. However, we assume that the counter is
unique in the loop because it is the case in most of the practical applications. In
principle, our algorithm can be extended to loops handling several independent
counters (although it is rare in practice), with the help of additionally discovered
lemmas that describe relationships among counters. We leave a discussion about
this to future work.

Definition 4. A range of inv and a counter i is a formula over IntVars(inv)
and a free variable v having form L < v ∧ v < U , such that either of formulas
L < i or i < U is a lemma for inv. A progress lemma is either a formula
L < v ∧ v < i (if L < i is a lemma), or a formula i < v ∧ v < U (if i < U is a
lemma).

268 G. Fedyukovich et al.

Both ranges and progress ranges can be identified statically. Let C1 and C2

be two CHCs, such that inv = rel(dst(C1)) = rel(src(C2)) = rel(dst(C2)) and
inv
= rel(src(C1)). It is common in practice that body(C1) identifies a symbolic
bound b on the initial value of i: it could be either a lower bound (if i increments
in body(C2)) or an upper bound (if i decrements). In this case, a progress range
of inv is simply computed as a lemma for inv over i and b. A range of inv can
often be constructed as a conjunction of the progress range with the negation of
the termination condition of body(C2).2

Example 2. For the CHC-encoding of the program is shown in Fig. 2, the ranges
of inv1, inv2 and inv3 are all equal to −1 < v < N . The progress range of inv1

is i < v < N , and the progress ranges of inv2 and inv3 are −1 < v < i.

We call candidates, that use progress ranges in their left sides, progress can-
didates:

∀�q . progressRange(inv)(�q) =⇒ cand

where �q = QVars(inv) and cand is a quantifier-free formula over QVars(inv)∪
IntVars(inv). As can be seen from Algorithm 1, all sampled candidates are
progress candidates. However, during the next steps of the algorithm (i.e., prop-
agation and weakening) we will use other kind of candidates (namely, regress
and finalized, see Sects. 4.3 and 4.4 respectively).

If a progress candidate is proven inductive, we call it a progress lemma.

4.2 SMT-Based Inductiveness Checking

We rely on recent advances of SMT solving to identify successful candidates, a
conjunction of which is directly used to prove the desired safety specification. In
general, solving quantified formulas for validity is a hard task, however, in certain
cases, the initiation and inductiveness queries can be simplified and reduced to
a sequence of (sometimes even quantifier-free) formulas over integer arithmetic.
We illustrate such proving strategy, inspired by the tiling approach [9], on the
following example.

Example 3. Recall the CHC system from Fig. 2. Consider a progress candidate
∀j . i < j < N =⇒ m ≤ A[j] for inv1. Checking its initiation (i.e., for CHC A)
requires deciding validity of the following quantified formula:

i′ = N ′ − 1 ∧ m′ = 0 =⇒
(
∀j . i′ < j < N ′ =⇒ m′ ≤ A′[j]

)
(3)

The range formula i′ < j < N ′ simplifies to N ′ − 1 < j < N ′, which is always
false, making formula (3) always valid.

2 Thus, we explicitly require guards of loops to have the forms of an inequality, which
is the most common array access pattern.

Quantified Invariants via Syntax-Guided Synthesis 269

Checking the inductiveness of the candidate (i.e., for CHC B) boils down to
solving a more complicated formula:

(
∀j . i < j < N =⇒ m ≤ A[j]

)

∧ i ≥ 0 ∧ m′ = ite(m > A[i], A[i],m) ∧ i′ = i − 1 =⇒(
∀j . i′ < j < N =⇒ m′ ≤ A[j]

)
(4)

Although quantifiers are present on both sides of (4), proving its validity is not
hard. Indeed, the query is reducible to two implications:
(
∀j . i < j < N =⇒ m ≤ A[j]

)
∧ m′ = ite(m > A[i], A[i],m) =⇒ m′ ≤ A[i]

(
∀j . i < j < N =⇒ m ≤ A[j]

)
∧

m′ = ite(m > A[i], A[i],m) =⇒
(
∀j . i < j < N =⇒ m′ ≤ A[j]

)

The former does not require any information about A[i+1], . . . , A[N −1], so
the entire quantified conjunction is ignored, and A[i] could be replaced by a fresh
integer variable. The latter is trickier: it requires to prove that if all elements
in a range are greater or equal than m, then they are also greater or equal to
ite(m > A[i], A[i],m). This again is reduced to a quantifier-free formula over
integer arithmetic:

m ≤ A[j] ∧ m′ = ite(m > A[i], A[i],m) =⇒ m′ ≤ A[j]

Thus, because formulas (3) and (4) are valid, the progress candidate is proved a
progress lemma.

In general, we cannot always conduct proofs that easily. Often, the prereq-
uisite for success is the commonality of an access function f in the candidate
and the body of the CHC. Fortunately, our algorithm ensures that all access
functions used in the candidates are borrowed directly from bodies of CHCs.
Thus, in many cases, FreqHorn is able to check large amounts of candidates
quickly.

4.3 Strategy of Lemma Propagation

In this subsection, we identify a useful strategy for propagation of quantified
lemmas through adjacent CHCs in the given system, inspired by [17]. Let some
inv1 ∈ R have the following lemma:

∀�q . ρ(�q) =⇒ �

where �q = QVars(inv1), formula ρ over �q ∪ IntVars(inv1) is either a range or
a progress range, and � is over �q ∪ Vars(inv1). Let then a CHC C be such that
rel(src(C)) = inv1 and rel(dst(C)) = inv2, and its body be ϕ(�x1, �x2).

270 G. Fedyukovich et al.

Definition 5. Forward propagation of lemma ∀�q . ρ(�q) =⇒ � through C gives
a formula of the following form:

∀�q . (∃�x1 . ρ(�q)(�x1) ∧ ϕ(�x1, �x2)) =⇒ (∃�x1(�x1, �q) . � ∧ ϕ(�x1, �x2))

Example 4. Recall the example from Fig. 2 and the following lemma for inv1:

∀j . i < j < N =⇒ m ≤ A[j]

The body of C is i < 0∧ i′ = 0, thus the forward propagation gives the following
formula:

∀j . (∃i . i < j < N ∧ i < 0 ∧ i′ = 0) =⇒ (∃i .m ≤ A[j] ∧ i < 0 ∧ i′ = 0)

Applying quantifier elimination to both sides of the implication, we get the
following formula:

∀j . 0 ≤ j < N =⇒ m ≤ A[j]

Note that this formula is not going to be immediately learned as a lemma,
but instead should be checked by the solver for inductiveness. Intuitively, such a
candidate represents some facts about array elements that were accessed during a
loop that has terminated. If after the propagation it appeared that the candidate
uses the entire range then we refer to such candidate to as a finalized candidate.

4.4 Weakening Strategy

Whenever a finalized candidate cannot be proven inductive, we often do not want
to withdraw it completely. Instead, our algorithm runs weakening and proposes
regress candidates. The main idea is to calculate a range of elements which have
not been touched by the loop yet. This is an inverse of the procedure outlined
in Sect. 4.1.

Definition 6. Given inv ∈ R , its Range(inv) and progressRange(inv) formu-
las, we call a regress range a formula of the following kind:

regressRange(inv) def= Range(inv) ∧ ¬progressRange(inv)

We call candidates that use regress ranges in their left sides as regress can-
didates. Clearly, a regress candidate is weaker than the corresponding finalized
candidate. Thus, from the failure to prove inductiveness of the finalized candi-
date it does not follow that the regress candidate is not inductive; and it makes
sense to try proving it in the next iteration.

4.5 Learning from Sub-ranges

In complicated scenarios of loops with multiple iterators, multiple array variables
or multiple access functions, the iterative process of lemma discovery, might end
up in a large number of quantified formulas and get lost while checking a can-
didate for inductiveness (recall Sect. 4.2). To overcome current limitations in
existing SMT solvers, it appeared to be useful to help the solver while generaliz-
ing learned lemmas. In particular, a property could be learned for two subranges
of an array, and then combined in the following way:

Quantified Invariants via Syntax-Guided Synthesis 271

int N = nondetInt ();

int *A = nondetArray (2*N);

int val1 = 1, val2 = 3, m = nondetInt ();

for (int i = 1; i ≤ N; i++) {

if (m < val2) A[2*i-2] = val2; else A[2*i-2] = 0;

if (m < val1) A[2*i-1] = val1; else A[2*i-1] = 0; }

for (int i = 0; i < 2*N; i++) assert(A[i]==0 || A[i] ≤ m);

Fig. 3. Learning from sub-ranges.

Lemma 1. Let for some inv ∈ R two lemmas be of the following kind:

∀�q . ρ1(�q) =⇒ � ∀�q . ρ2(�q) =⇒ � (5)

Then, the following is also a lemma for inv:

∀�q . ρ1(�q) ∨ ρ2(�q) =⇒ �

Example 5. Figure 3 shows a program from the tiling benchmark suite [9]. If
lemmas ∀j . 0 < j < N =⇒ A[2 ∗ j − 1] = 0 ∨ A[2 ∗ j − 1] ≤ m and ∀j . 0 <
j < N =⇒ A[2 ∗ j − 2] = 0 ∨ A[2 ∗ j − 2] ≤ m are discovered, then formula
∀j . 0 ≤ j < 2 ∗ N − 1 =⇒ A[j] = 0 ∨ A[j] ≤ m is also a lemma.

5 Evaluation

We have implemented our algorithm on top of the FreqHorn3 tool. It takes
a system of CHCs with arrays as input and performs an enumerative search as
presented in Sect. 4. The tool uses Z3 [12] to solve SMT queries.

We have evaluated FreqHorn on 137 satisfiable CHC-translations of pub-
licly available C programs (whose assertions are safe) taken from the SVCOMP
ReachSafety Array subcategory and literature. These programs include variations
of standard array copying, initializing, maximum, minimum, sorting, and tiling
benchmarks. Among these 137 benchmarks, 79 have a single loop, and 58 have
multiple loops, including 7 that have nested loops. These programs are encoded
using the theories of Arrays, Linear (LIA) and Non-linear Integer Arithmetic
(NIA). Our experiments have been performed on an Ubuntu 18.04 machine run-
ning at 2.5 GHz and having 16 GB memory, with a timeout of 100 s for every
benchmark. FreqHorn solved 129 benchmarks within the timeout, of which 73
solved benchmarks had a single loop and 56 had multiple loops.

We have compared our tool with Spacer (Z3 v4.8.3) [26], that implements a
recent QUIC3 [22] algorithm, Booster (v0.2) [2], VIAP (v1.0) [35], and Veri-
Abs (v1.3.10) [11]. The last two tools performed well in the ReachSafety Array

3 The source code and benchmarks are available at https://github.com/grigoryfedyuk
ovich/aeval/tree/rnd.

https://github.com/grigoryfedyukovich/aeval/tree/rnd
https://github.com/grigoryfedyukovich/aeval/tree/rnd

272 G. Fedyukovich et al.

100 101 102

100

101

102

vs Spacer
100 101 102

100

101

102

vs VeriAbs

100 101 102

100

101

102

vs VIAP
100 101 102

100

101

102

vs Booster

Fig. 4. FreqHorn vs competitors. Each point in a plot represents a pair of the run
times (sec × sec) of FreqHorn (x-axis) and a competitor (y-axis). Timeouts are placed
on the inner dashed lines; false alarms, unsupported cases, and crashes are on the outer
dashed lines.

subcategory at SVCOMP 20194. Figure 4 gives a comparison of FreqHorn
timings against timings of these tools.5

Compare to 129 benchmarks solved by FreqHorn, only 81 were solved by
Spacer, 108 – by VeriAbs, 70 – by VIAP, and 48 – by Booster.

FreqHorn solved 54 benchmarks on which Spacer diverged. Our intuition
is that Spacer works poorly on programs with non-deterministic assignments
and NIA operations, which our tool can handle.

FreqHorn solved 27 benchmarks on which VeriAbs diverged. VeriAbs
failed to solve programs with nested loops and when array values were depen-
dent on access indices. Furthermore, it decided one of the programs as unsafe,
Time-wise, FreqHorn significantly outperformed VeriAbs on all benchmarks.

4 https://sv-comp.sosy-lab.org/2019/results/results-verified/.
5 The time taken for every benchmark is available at: http://bit.ly/2VS5Mtf.

https://sv-comp.sosy-lab.org/2019/results/results-verified/
http://bit.ly/2VS5Mtf

Quantified Invariants via Syntax-Guided Synthesis 273

Importantly, the short time taken by FreqHorn includes the time for generat-
ing a checkable witness – quantified invariant – an essence that VeriAbs cannot
produce by design. On the other side, VeriAbs solved several benchmarks after
merging loops. No quantified invariant satisfying the FreqHorn’s restrictions
exists for these benchmarks before this program transformation.

FreqHorn solved 60 programs on which VIAP diverged. VIAP decided
one program as unsafe. There were no programs on which FreqHorn took more
time than VIAP. Finally, FreqHorn solved 83 programs on which Booster
diverged. And again, Booster decided two programs as unsafe.

6 Related Work

Our algorithm for quantified invariant synthesis extends the prior work on check-
ing satisfiability of CHCs [15–17], where solutions do not permit quantifiers. It
works in a similar – enumerate-and-check – manner, but there are two crucial
changes: (1) introduction of quantifiers, to formulate hypotheses over a subset
of array indices, and (2) a generalization mechanism, to derive properties that
may hold over the entire range of array indices.

Many existing approaches for verifying programs over arrays are extensions of
well-known techniques for programs over scalar variables to quantified invariants.
For example, by extending predicates with Skolem variables in predicate abstrac-
tion [30], by exploiting the MCMT [19] framework in lazy abstraction with inter-
polants [1] and its integration with acceleration [2], and, recently, QUIC3 [22],
that extends IC3 [8,14] to universally quantified invariants. Apart from the skele-
tal similarity, however, these approaches rely on orthogonal techniques.

Partitioning of arrays has also been used to infer invariants in many different
ways. It refers to splitting an array into symbolic segments, and may be based
on syntax [20,23,25] or semantics [10,31]. Invariants may be inferred for each
segment separately and generalized for the entire array. The partitioning need
not be explicit, as in [13]. However, most of these techniques (except [13,31]) are
restricted to contiguous array segments, and work well when different loop itera-
tions write to disjoint array locations or when the segments are non-overlapping.
Tiling [9], a property-driven verification technique, overcomes these limitations
for a class of programs by inferring array access patterns in loops. But identifying
tiles of array accesses is itself a difficult problem, and the approach is currently
based on heuristics developed by observing interesting patterns.

There are a number of approaches that verify array programs without infer-
ring quantified invariants explicitly. A straightforward way is to smash all array
elements into a single memory location [4], but it is quite imprecise. Every array
element might also be considered a separate variable, but it is not possible
with unknown array sizes. There are also techniques that abstract an array
to a fixed number of elements, e.g. k-distinguished cell abstraction [32,33] and
k-shrinkability [24,29]. Such abstractions usually reduce array modifying loops
with unknown bounds to a known, small bound. It may even be possible to get
rid of such loops altogether, by accelerating (computing transitive closures of)

274 G. Fedyukovich et al.

transition relations involving array updates in that loop [7]. Along similar lines,
VIAP [35] resorts to reasoning with recurrences instead of loops. It translates
the input program, including loops, to a set of first-order axioms, and checks if
they derive the property. But all these techniques do not obtain quantified invari-
ants explicitly, unlike ours. Besides, many of these transformations produce an
abstraction of the original program, i.e., they do not preserve safety.

Alternatively, there are approaches that use sufficiently expressive templates
to infer quantified invariants over arrays [5,21,27]. However, the templates need
to be supplied manually. For instance, [6] uses a template space of quantified
invariants and reduces the problem to quantifier-free invariant generation. Thus,
universally quantified solutions for unknown predicates in a CHC system may
be obtained by extending a generic CHC solver to handle quantified predicates.
Learning need not be limited to user-supplied templates; one may do away with
the templates entirely and learn only from examples and counterexamples [18].
Alternatively, [36] chooses a template upfront and refurbishes it with constants
or coefficients appearing in the program source. Similarly, [28] proposes to infer
array invariants without any user guidance or any user-defined templates or pred-
icates. Their method is based on automatic analysis of predicates that update
an array and allows one to generate first-order invariants, including those that
contain alternations of quantifiers. But it does not work for nested loops. By
comparison, our technique supports multiple as well as nested loops, enables
candidate propagation between loops and, more importantly, generates the gram-
mar automatically from the syntactical constructions appearing in the program’s
source.

7 Conclusion

We have presented a new algorithm to synthesize quantified invariants over array
variables, systematically accessed in loops. Our algorithm implements an enu-
merative search that guesses invariants based on syntactic constructions which
appear in the code and checks their initiation, inductiveness, and safety with
an off-the-shelf SMT solver. Key insights behind our approach are that indi-
vidual accesses to array elements performed in the loop can be generalized to
hypotheses about entire ranges, and the existing SMT solvers can be used to val-
idate these hypotheses efficiently. Our implementation on top of a CHC solver
FreqHorn confirmed that such strategy is effective on a variety of practical
examples. In a vast majority of cases, our tool outperformed competitors and
provided checkable guarantees that prevented from reporting false positives.

Acknowledgements. This work was supported in part by NSF Grant 1525936. Any
opinions, findings, and conclusions expressed herein are those of the authors and do
not necessarily reflect those of the NSF.

Quantified Invariants via Syntax-Guided Synthesis 275

References

1. Alberti, F., Bruttomesso, R., Ghilardi, S., Ranise, S., Sharygina, N.: Lazy abstrac-
tion with interpolants for arrays. In: Bjørner, N., Voronkov, A. (eds.) LPAR 2012.
LNCS, vol. 7180, pp. 46–61. Springer, Heidelberg (2012). https://doi.org/10.1007/
978-3-642-28717-6 7

2. Alberti, F., Ghilardi, S., Sharygina, N.: Booster: an acceleration-based verification
framework for array programs. In: Cassez, F., Raskin, J.-F. (eds.) ATVA 2014.
LNCS, vol. 8837, pp. 18–23. Springer, Cham (2014). https://doi.org/10.1007/978-
3-319-11936-6 2

3. Alur, R., et al.: Syntax-guided synthesis. In: FMCAD, pp. 1–17. IEEE (2013)
4. Bertrane, J., et al.: Static analysis and verification of aerospace software by abstract

interpretation. Found. Trends Program. Lang. 2(2–3), 71–190 (2015)
5. Beyer, D., Henzinger, T.A., Majumdar, R., Rybalchenko, A.: Invariant Synthesis

for combined theories. In: Cook, B., Podelski, A. (eds.) VMCAI 2007. LNCS, vol.
4349, pp. 378–394. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-
540-69738-1 27

6. Bjørner, N., McMillan, K., Rybalchenko, A.: On solving universally quantified horn
clauses. In: Logozzo, F., Fähndrich, M. (eds.) SAS 2013. LNCS, vol. 7935, pp. 105–
125. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38856-9 8

7. Bozga, M., Habermehl, P., Iosif, R., Konečný, F., Vojnar, T.: Automatic verifi-
cation of integer array programs. In: Bouajjani, A., Maler, O. (eds.) CAV 2009.
LNCS, vol. 5643, pp. 157–172. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-02658-4 15

8. Bradley, A.R.: SAT-based model checking without unrolling. In: Jhala, R., Schmidt,
D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 70–87. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-18275-4 7

9. Chakraborty, S., Gupta, A., Unadkat, D.: Verifying array manipulating programs
by tiling. In: Ranzato, F. (ed.) SAS 2017. LNCS, vol. 10422, pp. 428–449. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-66706-5 21

10. Cousot, P., Cousot, R., Logozzo, F.: A parametric segmentation functor for fully
automatic and scalable array content analysis. In: POPL, pp. 105–118 (2011)

11. Darke, P., et al.: VeriAbs: verification by abstraction and test generation. In: Beyer,
D., Huisman, M. (eds.) TACAS 2018, Part I. LNCS, vol. 10806, pp. 457–462.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89963-3 32

12. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

13. Dillig, I., Dillig, T., Aiken, A.: Fluid updates: beyond strong vs. weak updates. In:
Gordon, A.D. (ed.) ESOP 2010. LNCS, vol. 6012, pp. 246–266. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-11957-6 14

14. Eén, N., Mishchenko, A., Brayton, R.K.: Efficient implementation of property
directed reachability. In: FMCAD, pp. 125–134. IEEE (2011)

15. Fedyukovich, G., Bod́ık, R.: Accelerating syntax-guided invariant synthesis. In:
Beyer, D., Huisman, M. (eds.) TACAS 2018, Part I. LNCS, vol. 10805, pp. 251–
269. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89960-2 14

16. Fedyukovich, G., Kaufman, S., Bod́ık, R.: Sampling invariants from frequency dis-
tributions. In: FMCAD, pp. 100–107. IEEE (2017)

17. Fedyukovich, G., Prabhu, S., Madhukar, K., Gupta, A.: Solving constrained horn
clauses using syntax and data. In: FMCAD, pp. 170–178. IEEE (2018)

https://doi.org/10.1007/978-3-642-28717-6_7
https://doi.org/10.1007/978-3-642-28717-6_7
https://doi.org/10.1007/978-3-319-11936-6_2
https://doi.org/10.1007/978-3-319-11936-6_2
https://doi.org/10.1007/978-3-540-69738-1_27
https://doi.org/10.1007/978-3-540-69738-1_27
https://doi.org/10.1007/978-3-642-38856-9_8
https://doi.org/10.1007/978-3-642-02658-4_15
https://doi.org/10.1007/978-3-642-02658-4_15
https://doi.org/10.1007/978-3-642-18275-4_7
https://doi.org/10.1007/978-3-319-66706-5_21
https://doi.org/10.1007/978-3-319-89963-3_32
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-642-11957-6_14
https://doi.org/10.1007/978-3-319-89960-2_14

276 G. Fedyukovich et al.

18. Garg, P., Löding, C., Madhusudan, P., Neider, D.: Learning universally quanti-
fied invariants of linear data structures. In: Sharygina, N., Veith, H. (eds.) CAV
2013. LNCS, vol. 8044, pp. 813–829. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-39799-8 57

19. Ghilardi, S., Ranise, S.: MCMT: a model checker modulo theories. In: Giesl, J.,
Hähnle, R. (eds.) IJCAR 2010. LNCS (LNAI), vol. 6173, pp. 22–29. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-14203-1 3

20. Gopan, D., Reps, T., Sagiv, M.: A framework for numeric analysis of array opera-
tions. In: POPL, pp. 338–350 (2005)

21. Gulwani, S., McCloskey, B., Tiwari, A.: Lifting abstract interpreters to quantified
logical domains. In: POPL, pp. 235–246. ACM (2008)

22. Gurfinkel, A., Shoham, S., Vizel, Y.: Quantifiers on demand. In: Lahiri, S.K., Wang,
C. (eds.) ATVA 2018. LNCS, vol. 11138, pp. 248–266. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-01090-4 15

23. Halbwachs, N., Péron, M.: Discovering properties about arrays in simple programs.
In: PLDI, pp. 339–348 (2008)

24. Jana, A., Khedker, U.P., Datar, A., Venkatesh, R., Niyas, C.: Scaling bounded
model checking by transforming programs with arrays. In: Hermenegildo, M.V.,
Lopez-Garcia, P. (eds.) LOPSTR 2016. LNCS, vol. 10184, pp. 275–292. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-63139-4 16

25. Jhala, R., McMillan, K.L.: Array abstractions from proofs. In: Damm, W.,
Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 193–206. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-73368-3 23

26. Komuravelli, A., Gurfinkel, A., Chaki, S.: SMT-based model checking for recursive
programs. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 17–34.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08867-9 2

27. Kong, S., Jung, Y., David, C., Wang, B.-Y., Yi, K.: Automatically inferring quan-
tified loop invariants by algorithmic learning from simple templates. In: Ueda, K.
(ed.) APLAS 2010. LNCS, vol. 6461, pp. 328–343. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-17164-2 23

28. Kovács, L., Voronkov, A.: Finding loop invariants for programs over arrays using
a theorem prover. In: Chechik, M., Wirsing, M. (eds.) FASE 2009. LNCS, vol.
5503, pp. 470–485. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-00593-0 33

29. Kumar, S., Sanyal, A., Venkatesh, R., Shah, P.: Property checking array programs
using loop shrinking. In: Beyer, D., Huisman, M. (eds.) TACAS 2018, Part I.
LNCS, vol. 10805, pp. 213–231. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-89960-2 12

30. Lahiri, S.K., Bryant, R.E.: Constructing quantified invariants via predicate abstrac-
tion. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp. 267–281.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24622-0 22

31. Liu, J., Rival, X.: Abstraction of arrays based on non contiguous partitions. In:
D’Souza, D., Lal, A., Larsen, K.G. (eds.) VMCAI 2015. LNCS, vol. 8931, pp. 282–
299. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46081-8 16

32. Monniaux, D., Alberti, F.: A simple abstraction of arrays and maps by program
translation. In: Blazy, S., Jensen, T. (eds.) SAS 2015. LNCS, vol. 9291, pp. 217–234.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48288-9 13

33. Monniaux, D., Gonnord, L.: Cell morphing: from array programs to array-free horn
clauses. In: Rival, X. (ed.) SAS 2016. LNCS, vol. 9837, pp. 361–382. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-53413-7 18

https://doi.org/10.1007/978-3-642-39799-8_57
https://doi.org/10.1007/978-3-642-39799-8_57
https://doi.org/10.1007/978-3-642-14203-1_3
https://doi.org/10.1007/978-3-030-01090-4_15
https://doi.org/10.1007/978-3-319-63139-4_16
https://doi.org/10.1007/978-3-540-73368-3_23
https://doi.org/10.1007/978-3-319-08867-9_2
https://doi.org/10.1007/978-3-642-17164-2_23
https://doi.org/10.1007/978-3-642-00593-0_33
https://doi.org/10.1007/978-3-642-00593-0_33
https://doi.org/10.1007/978-3-319-89960-2_12
https://doi.org/10.1007/978-3-319-89960-2_12
https://doi.org/10.1007/978-3-540-24622-0_22
https://doi.org/10.1007/978-3-662-46081-8_16
https://doi.org/10.1007/978-3-662-48288-9_13
https://doi.org/10.1007/978-3-662-53413-7_18

Quantified Invariants via Syntax-Guided Synthesis 277

34. Prabhu, S., Madhukar, K., Venkatesh, R.: Efficiently learning safety proofs from
appearance as well as behaviours. In: Podelski, A. (ed.) SAS 2018. LNCS, vol.
11002, pp. 326–343. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
99725-4 20

35. Rajkhowa, P., Lin, F.: Extending VIAP to handle array programs. In: Piskac, R.,
Rümmer, P. (eds.) VSTTE 2018. LNCS, vol. 11294, pp. 38–49. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-03592-1 3

36. Sharma, R., Aiken, A.: From invariant checking to invariant inference using ran-
domized search. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559,
pp. 88–105. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08867-9 6

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-319-99725-4_20
https://doi.org/10.1007/978-3-319-99725-4_20
https://doi.org/10.1007/978-3-030-03592-1_3
https://doi.org/10.1007/978-3-319-08867-9_6
http://creativecommons.org/licenses/by/4.0/

Efficient Synthesis with Probabilistic
Constraints

Samuel Drews(B), Aws Albarghouthi, and Loris D’Antoni

University of Wisconsin-Madison, Madison, USA
sedrews@wisc.edu

Abstract. We consider the problem of synthesizing a program given a
probabilistic specification of its desired behavior. Specifically, we study
the recent paradigm of distribution-guided inductive synthesis (digits),
which iteratively calls a synthesizer on finite sample sets from a given
distribution. We make theoretical and algorithmic contributions: (i) We
prove the surprising result that digits only requires a polynomial num-
ber of synthesizer calls in the size of the sample set, despite its ostensi-
bly exponential behavior. (ii) We present a property-directed version of
digits that further reduces the number of synthesizer calls, drastically
improving synthesis performance on a range of benchmarks.

1 Introduction

Over the past few years, progress in automatic program synthesis has touched
many application domains, including automating data wrangling and data
extraction tasks [2,13,15,21,22,30], generating network configurations that meet
user intents [10,29], optimizing low-level code [25,28], and more [4,14].

The majority of the current work has focused on synthesis under Boolean
constraints. However, often times we require the program to adhere to a prob-
abilistic specification, e.g., a controller that succeeds with a high probability, a
decision-making model operating over a probabilistic population model, a ran-
domized algorithm ensuring privacy, etc. In this work, we are interested in (1)
investigating probabilistic synthesis from a theoretical perspective and (2) devel-
oping efficient algorithmic techniques to tackle this problem.

Our starting point is our recent framework for probabilistic synthesis called
distribution-guided inductive synthesis (digits) [1]. The digits framework is
analogous in nature to the guess-and-check loop popularized by counterexample-
guided approaches to synthesis and verification (cegis and cegar). The key
idea of the algorithm is reducing the probabilistic synthesis problem to a non-
probabilistic one that can be solved using existing techniques, e.g., sat solvers.
This is performed using the following loop: (1) approximating the input proba-
bility distribution with a finite sample set; (2) synthesizing a program for various
possible output assignments of the finite sample set; and (3) invoking a proba-
bilistic verifier to check if one of the synthesized programs indeed adheres to the
given specification.
c© The Author(s) 2019
I. Dillig and S. Tasiran (Eds.): CAV 2019, LNCS 11561, pp. 278–296, 2019.
https://doi.org/10.1007/978-3-030-25540-4_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-25540-4_15&domain=pdf
https://doi.org/10.1007/978-3-030-25540-4_15

Efficient Synthesis with Probabilistic Constraints 279

digits has been shown to theoretically converge to correct programs when
they exist—thanks to learning-theory guarantees. The primary bottleneck of
digits is the number of expensive calls to the synthesizer, which is ostensibly
exponential in the size of the sample set. Motivated by this observation, this
paper makes theoretical, algorithmic, and practical contributions:

– On the theoretical side, we present a detailed analysis of digits and prove
that it only requires a polynomial number of invocations of the synthesizer,
explaining that the strong empirical performance of the algorithm is not
merely due to the heuristics presented in [1] (Sect. 3).

– On the algorithmic side, we develop an improved version of digits that is
property-directed, in that it only invokes the synthesizer on instances that
have a chance of resulting in a correct program, without sacrificing conver-
gence. We call the new approach τ -digits (Sect. 4).

– On the practical side, we implement τ -digits for sketch-based synthesis and
demonstrate its ability to converge significantly faster than digits. We apply
our technique to a range of benchmarks, including illustrative examples that
elucidate our theoretical analysis, probabilistic repair problems of unfair pro-
grams, and probabilistic synthesis of controllers (Sect. 5).

2 An Overview of DIGITS

In this section, we present the synthesis problem, the digits [1] algorithm, and
fundamental background on learning theory.

2.1 Probabilistic Synthesis Problem

Program Model. As discussed in [1], digits searches through some (infinite)
set of programs, but it requires that the set of programs has finite VC dimension
(we restate this condition in Sect. 2.3). Here we describe one constructive way of
obtaining such sets of programs with finite VC dimension: we will consider sets of
programs defined as program sketches [27] in the simple grammar from [1], where
a program is written in a loop-free language, and “holes” defining the sketch
replace some constant terminals in expressions.1 The syntax of the language is
defined below:

P := V ← E | if B then P else P | P P | return V

Here, P is a program, V is the set of variables appearing in P , E (resp. B) is
the set of linear arithmetic (resp. Boolean) expressions over V (where, again,
constants in E and B can be replaced with holes), and V ← E is an assignment.
We assume a vector vI of variables in V that are inputs to the program. We

1 In the case of loop-free program sketches as considered in our program model, we can
convert the input-output relation into a real arithmetic formula that guaranteedly
has finite VC dimension [12].

280 S. Drews et al.

also assume there is a single Boolean variable vr ∈ V that is returned by the
program.2 All variables are real-valued or Boolean. Given a vector of constant
values c, where |c| = |vI |, we use P (c) to denote the result of executing P on
the input c.

In our setting, the inputs to a program are distributed according to some
joint probability distribution D over the variables vI . Semantically, a program P
is denoted by a distribution transformer �P �, whose input is a distribution over
values of vI and whose output is a distribution over vI and vr.

A program also has a probabilistic postcondition, post, defined as an inequality
over terms of the form Pr[B], where B is a Boolean expression over vI and vr.
Specifically, a probabilistic postcondition consists of Boolean combinations of
the form e > c, where c ∈ R and e is an arithmetic expression over terms of the
form Pr[B], e.g., Pr[B1]/Pr[B2] > 0.75.

Given a triple (P,D, post), we say that P is correct with respect to D and
post, denoted �P �(D) |= post, iff post is true on the distribution �P �(D).

Example 1. Consider the set of intervals of the form [0, a] ⊆ [0, 1] and inputs x
uniformly distributed over [0, 1] (i.e. D = Uniform[0, 1]). We can write inclusion
in the interval as a (C-style) program (left) and consider a postcondition stating
that the interval must include at least half the input probability mass (right):

Let Pc denote the interval program where a is replaced by a constant c ∈ [0, 1].
Observe that �Pc�(D) describes a joint distribution over (x, vr) pairs, where
[0, c]×{1} is assigned probability measure c and (c, 1]×{0} is assigned probability
measure 1 − c. Therefore, �Pc�(D) |= post if and only if c ∈ [0.5, 1].

Synthesis Problem. digits outputs a program that is approximately “sim-
ilar” to a given functional specification and that meets a postcondition. This
functional specification is some input-output relation which we quantitatively
want to match as closely as possible: specifically, we want to minimize the
error of the output program P from the functional specification P̂ , defined as
Er(P) := Prx∼D[P (x) �= P̂ (x)]. (Note that we represent the functional specifica-
tion as a program.) The postcondition is Boolean, and therefore we always want
it to be true. digits is guaranteed to converge whenever the space of solutions
satisfying the postcondition is robust under small perturbations. The following
definition captures this notion of robustness:

Definition 1 (α-Robust Programs). Fix an input distribution D, a postcon-
dition post, and a set of programs P. For any P ∈ P and any α > 0, denote the
2 Restricting the output to Boolean is required by the algorithm; other output types

can be turned into Boolean by rewriting. See, e.g., thermostat example in Sect. 5.

Efficient Synthesis with Probabilistic Constraints 281

open α-ball centered at P as Bα(P) = {P ′ ∈ P | Prx∼D[P (x) �= P ′(x)] < α}.
We say a program P is α-robust if ∀P ′ ∈ Bα(P). �P ′�(D) |= post.

We can now state the synthesis problem solved by digits:

Definition 2 (Synthesis Problem). Given an input distribution D, a set of
programs P, a postcondition post, a functional specification P̂ ∈ P, and parame-
ters α > 0 and 0 < ε � α, the synthesis problem is to find a program P ∈ P such
that �P �(D) |= post and such that any other α-robust P ′ has Er(P) � Er(P ′)+ε.

2.2 A Naive DIGITS Algorithm

Algorithm 1 shows a simplified, naive version of digits, which employs a
synthesize-then-verify approach. The idea of digits is to utilize non-probabilistic
synthesis techniques to synthesize a set of programs, and then apply a proba-
bilistic verification step to check if any of the synthesized programs is a solution.

1 Procedure digits (P̂ ,D, post, m)
2 S ← {x ∼ D | i ∈ [1, . . . , m]}
3 progs ← ∅
4 foreach f : S → {0, 1} do
5 P ← Osyn({(x, f(x)) | x ∈ S})
6 if P �= ⊥ then
7 progs ← progs ∪ {P}
8 res ← {P ∈ progs |

Over(P,D, post)}
9 return argminP∈res{Oerr(P)}

Algorithm 1: Naive digits

Specifically, this “Naive digits”
begins by sampling an appropriate
number of inputs from the input
distribution and stores them in the
set S. Second, it iteratively explores
each possible function f that maps
the input samples to a Boolean and
invokes a synthesis oracle to synthe-
size a program P that implements
f , i.e. that satisfies the set of input–
output examples in which each input
x ∈ S is mapped to the output f(x).
Naive digits then finds which of the
synthesized programs satisfy the postcondition (the set res); we assume that
we have access to a probabilistic verifier Over to perform these computations.
Finally, the algorithm outputs the program in the set res that has the lowest
error with respect to the functional specification, once again assuming access to
another oracle Oerr that can measure the error.

Note that the number of such functions f : S → {0, 1} is exponential in the
size of |S|. As a “heuristic” to improve performance, the actual digits algorithm
as presented in [1] employs an incremental trie-based search, which we describe
(alongside our new algorithm, τ -digits) and analyze in Sect. 3. The naive version
described here is, however, sufficient to discuss the convergence properties of the
full algorithm.

2.3 Convergence Guarantees

digits is only guaranteed to converge when the program model P has finite VC
dimension.3 Intuitively, the VC dimension captures the expressiveness of the set
3 Recall that this is largely a “free” assumption since, again, sketches in our loop-free

grammar guaranteedly have finite VC dimension.

282 S. Drews et al.

of ({0, 1}-valued) programs P. Given a set of inputs S, we say that P shatters
S iff, for every partition of S into sets S0 � S1, there exists a program P ∈ P
such that (i) for every x ∈ S0, P (x) = 0, and (ii) for every x ∈ S1, P (x) = 1.

Definition 3 (VC Dimension). The VC dimension of a set of programs P is
the largest integer d such that there exists a set of inputs S with cardinality d
that is shattered by P.

We define the function VCcost(ε, δ, d) = 1
ε (4 log2(

2
δ)+8d log2(

13
ε)) [5], which

is used in the following theorem:

Theorem 1 (Convergence). Assume that there exist an α > 0 and program
P ∗ that is α-robust w.r.t. D and post. Let d be the VC dimension of the set of
programs P. For all bounds 0 < ε � α and δ > 0, for every function Osyn,
and for any m � VCcost(ε, δ, k), with probability � 1 − δ we have that digits
enumerates a program P with Prx∼D[P ∗(x) �= P (x)] � ε and �P �(D) |= post.

To reiterate, suppose P ∗ is a correct program with small error Er(P ∗) = k;
the convergence result follows two main points: (i) P ∗ must be α-robust, meaning
every P with Prx∼D[P (x) �= P ∗(x)] < α must also be correct, and therefore
(ii) by synthesizing any P such that Prx∼D[P (x) �= P ∗(x)] � ε where ε < α,
then P is a correct program with error Er(P) within k ± ε.

2.4 Understanding Convergence

The importance of finite VC dimension is due to the fact that the convergence
statement borrows directly from probably approximately correct (PAC) learning.
We will briefly discuss a core detail of efficient PAC learning that is relevant to
understanding the convergence of digits (and, in turn, our analysis of τ -digits
in Sect. 4), and refer the interested reader to Kearns and Vazirani’s book [16]
for a complete overview. Specifically, we consider the notion of an ε-net, which
establishes the approximate-definability of a target program in terms of points
in its input space.

Definition 4 (ε-net). Suppose P ∈ P is a target program, and points in its
input domain X are distributed x ∼ D. For a fixed ε ∈ [0, 1], we say a set of
points S ⊂ X is an ε-net for P (with respect to P and D) if for every P ′ ∈ P with
Prx∼D[P (x) �= P ′(x)] > ε there exists a witness x ∈ S such that P (x) �= P ′(x).

In other words, if S is an ε-net for P , and if P ′ “agrees” with P on all of S, then
P and P ′ can only differ by at most ε probability mass.

Observe the relevance of ε-nets to the convergence of digits: the synthesis
oracle is guaranteed not to “fail” by producing only programs ε-far from some
ε-robust P ∗ if the sample set happens to be an ε-net for P ∗. In fact, this obser-
vation is exactly the core of the PAC learning argument: having an ε-net exactly
guarantees the approximate learnability.

A remarkable result of computational learning theory is that whenever P has
finite VC dimension, the probability that m random samples fail to yield an ε-net

Efficient Synthesis with Probabilistic Constraints 283

becomes diminishingly small as m increases. Indeed, the given VCcost function
used in Theorem 1 is a dual form of this latter result—that polynomially many
samples are sufficient to form an ε-net with high probability.

3 The Efficiency of Trie-Based Search

After providing details on the search strategy employed by digits, we present our
theoretical result on the polynomial bound on the number of synthesis queries
that digits requires.

3.1 The Trie-Based Search Strategy of DIGITS

Naive digits, as presented in Algorithm 1, performs a very unstructured, expo-
nential search over the output labelings of the sampled inputs—i.e., the possi-
ble Boolean functions f in Algorithm 1. In our original paper [1] we present a
“heuristic” implementation strategy that incrementally explores the set of pos-
sible output labelings using a trie data structure. In this section, we study the
complexity of this technique through the lens of computational learning theory
and discover the surprising result that digits requires a polynomial number
of calls to the synthesizer in the size of the sample set! Our improved search
algorithm (Sect. 4) inherits these results.

For the remainder of this paper, we use digits to refer to this incremental
version. A full description is necessary for our analysis: Fig. 1 (non-framed rules
only) consists of a collection of guarded rules describing the construction of the
trie used by digits to incrementally explore the set of possible output label-
ings. Our improved version, τ -digits (presented in Sect. 4), corresponds to the
addition of the framed parts, but without them, the rules describe digits.

Nodes in the trie represent partial output labelings—i.e., functions f assign-
ing Boolean values to only some of the samples in S = {x1, . . . , xm}. Each node
is identified by a binary string σ = b1 · · · bk (k can be smaller than m) denot-
ing the path to the node from the root. The string σ also describes the partial
output-labeling function f corresponding to the node—i.e., if the i-th bit bi is set
to 1, then f(xi) = true. The set explored represents the nodes in the trie built
thus far; for each new node, the algorithm synthesizes a program consistent with
the corresponding partial output function (“Explore” rules). The variable depth
controls the incremental aspect of the search and represents the maximum length
of any σ in explored ; it is incremented whenever all nodes up to that depth have
been explored (the “Deepen” rule). The crucial part of the algorithm is that, if
no program can be synthesized for the partial output function of a node identi-
fied by σ, the algorithm does not need to issue further synthesis queries for the
descendants of σ.

Figure 2 shows how digits builds a trie for an example run on the interval
programs from Example 1, where we suppose we begin with an incorrect program
describing the interval [0, 0.3]. Initially, we set the root program to [0, 0.3] (left

284 S. Drews et al.

Fig. 1. Full digits description and our new extension, τ -digits, shown in boxes.

figure). The “Deepen” rule applies, so a sample is added to the set of samples—
suppose it’s 0.4. “Explore” rules are then applied twice to build the children of
the root: the child following the 0 branch needs to map 0.4 �→ 0, which [0, 0.3]
already does, thus it is propagated to that child without asking Osyn to perform
a synthesis query. For the child following 1, we instead make a synthesis query,
using the oracle Osyn, for any value of a such that [0, a] maps 0.4 �→ 1—suppose
it returns the solution a = 1, and we associate [0, 1] with this node. At this point
we have exhausted depth 1 (middle figure), so “Deepen” once again applies,
perhaps adding 0.6 to the sample set. At this depth (right figure), only two calls
to Osyn are made: in the case of the call at σ = 01, there is no value of a that
causes both 0.4 �→ 0 and 0.6 �→ 1, so Osyn returns ⊥, and we do not try to explore
any children of this node in the future. The algorithm continues in this manner
until a stopping condition is reached—e.g., enough samples are enumerated.

3.2 Polynomial Bound on the Number of Synthesis Queries

We observed in [1] that the trie-based exploration seems to be efficient in prac-
tice, despite potential exponential growth of the number of explored nodes in
the trie as the depth of the search increases. The convergence analysis of digits
relies on the finite VC dimension of the program model, but VC dimension itself
is just a summary of the growth function, a function that describes a notion

Efficient Synthesis with Probabilistic Constraints 285

Fig. 2. Example execution of incremental digits on interval programs, starting from
[0, 0.3]. Hollow circles denote calls to Osyn that yield new programs; the cross denotes
a call to Osyn that returns ⊥.

of complexity of the set of programs in question. We will see that the growth
function much more precisely describes the behavior of the trie-based search; we
will then use a classic result from computational learning theory to derive better
bounds on the performance of the search. We define the growth function below,
adapting the presentation from [16].

Definition 5 (Realizable Dichotomies). We are given a set P of programs
representing functions from X → {0, 1} and a (finite) set of inputs S ⊂ X . We
call any f : S → {0, 1} a dichotomy of S; if there exists a program P ∈ P that
extends f to its full domain X , we call f a realizable dichotomy in P. We denote
the set of realizable dichotomies as

ΠP(S) := {f : S → {0, 1} | ∃P ∈ P.∀x ∈ S. P (x) = f(x)}.

Observe that for any (infinite) set P and any finite set S that 1 � |ΠP(S)| � 2|S|.
We define the growth function in terms of the realizable dichotomies:

Definition 6 (Growth Function). The growth function is the maximal num-
ber of realizable dichotomies as a function of the number of samples, denoted

Π̂P(m) := max
S⊂X :
|S|=m

{|ΠP(S)|}.

Observe that P has VC dimension d if and only if d is the largest integer satisfying
Π̂P(d) = 2d (and infinite VC dimension when Π̂P(m) is identically 2m)— in fact,
VC dimension is often defined using this characterization.

Example 2. Consider the set of intervals of the form [0, a] as in Examples 1 and
Fig. 2. For the set of two points S = {0.4, 0.6}, we have that |Π[0,a](S)| = 3, since,
by example: a = 0.5 accepts 0.4 but not 0.6, a = 0.3 accepts neither, and a = 1
accepts both, thus these three dichotomies are realizable; however, no interval
with 0 as a left endpoint can accept 0.6 and not 0.4, thus this dichotomy is not
realizable. In fact, for any (finite) set S ⊂ [0, 1], we have that |Π[0,a](S)| = |S|+1;
we then have that Π̂[0,a](m) = m + 1.

286 S. Drews et al.

When digits terminates having used a sample set S, it has considered all
the dichotomies of S: the programs it has enumerated exactly correspond to
extensions of the realizable dichotomies ΠP(S). The trie-based exploration is
effectively trying to minimize the number of Osyn queries performed on non-
realizable ones, but doing so without explicit knowledge of the full functional
behavior of programs in P. In fact, it manages to stay relatively close to per-
forming queries only on the realizable dichotomies:

Lemma 1. digits performs at most |S||ΠP(S)| synthesis oracle queries. More
precisely, let S = {x1, . . . , xm} be indexed by the depth at which each sample was
added: the exact number of synthesis queries is

∑m
�=1|ΠP({x1, . . . , x�−1})|.

Proof. Let Td denote the total number of queries performed once depth d is
completed. We perform no queries for the root,4 thus T0 = 0. Upon completing
depth d − 1, the realizable dichotomies of {x1, . . . , xd−1} exactly specify the
nodes whose children will be explored at depth d. For each such node, one child
is skipped due to solution propagation, while an oracle query is performed on the
other, thus Td = Td−1 + |ΠP({x1, . . . , xd−1})|. Lastly, |ΠP(S)| cannot decrease
by adding elements to S, so we have that Tm =

∑m
�=1|ΠP({x1, . . . , x�−1})| �∑m

�=1|ΠP(S)| � |S||ΠP(S)|. ��
Connecting digits to the realizable dichotomies and, in turn, the growth

function allows us to employ a remarkable result from computational learning
theory, stating that the growth function for any set exhibits one of two asymp-
totic behaviors: it is either identically 2m (infinite VC dimension) or dominated
by a polynomial! This is commonly called the Sauer-Shelah Lemma [24,26]:

Lemma 2 (Sauer-Shelah). If P has finite VC dimension d, then for all m �
d, Π̂P(m) �

(
em
d

)d; i.e. Π̂P(m) = O(md).

Combining our lemma with this famous one yields a surprising result—that
for a fixed set of programs P with finite VC dimension, the number of oracle
queries performed by digits is guaranteedly polynomial in the depth of the
search, where the degree of the polynomial is determined by the VC dimension:

Theorem 2. If P has VC dimension d, then digits performs O(md+1)
synthesis-oracle queries.

In short, the reason an execution of digits seems to enumerate a sub-
exponential number of programs (as a function of the depth of the search) is
because it literally must be polynomial. Furthermore, the algorithm performs
oracle queries on nearly only those polynomially-many realizable dichotomies.

Example 3. A digits run on the [0, a] programs as in Fig. 2 using a sample set
of size m will perform O(m2) oracle queries, since the VC dimension of these
intervals is 1. (In fact, every run of the algorithm on these programs will perform
exactly 1

2m(m + 1) many queries.)

4 We assume the functional specification itself is some P̂ ∈ P and thus can be used—
the alternative is a trivial synthesis query on an empty set of constraints.

Efficient Synthesis with Probabilistic Constraints 287

4 Property-Directed τ -DIGITS

digits has better convergence guarantees when it operates on larger sets of
sampled inputs. In this section, we describe a new optimization of digits that
reduces the number of synthesis queries performed by the algorithm so that it
more quickly reaches higher depths in the trie, and thus allows to scale to larger
samples sets. This optimized digits, called τ -digits, is shown in Fig. 1 as the set
of all the rules of digits plus the framed elements. The high-level idea is to skip
synthesis queries that are (quantifiably) unlikely to result in optimal solutions.
For example, if the functional specification P̂ maps every sampled input in S to
0, then the synthesis query on the mapping of every element of S to 1 becomes
increasingly likely to result in programs that have maximal distance from P̂ as
the size of S increases; hence the algorithm could probably avoid performing
that query.In the following, we make use of the concept of Hamming distance
between pairs of programs:

Definition 7 (Hamming Distance). For any finite set of inputs S and any
two programs P1, P2, we denote HammingS(P1, P2) := |{x ∈ S | P1(x) �= P2(x)}|
(we will also allow any {0, 1}-valued string to be an argument of HammingS).

4.1 Algorithm Description

Fix the given functional specification P̂ and suppose that there exists an ε-robust
solution P ∗ with (nearly) minimal error k = Er(P ∗) := Prx∼D[P̂ (x) �= P ∗(x)];
we would be happy to find any program P in P ∗’s ε-ball. Suppose we angelically
know k a priori, and we thus restrict our search (for each depth m) only to
constraint strings (i.e. σ in Fig. 1) that have Hamming distance not much larger
than km.

To be specific, we first fix some threshold τ ∈ (k, 1]. Intuitively, the optimiza-
tion corresponds to modifying digits to consider only paths σ through the trie
such that HammingS(P̂ , σ) � τ |S|. This is performed using the unblocked func-
tion in Fig. 1. Since we are ignoring certain paths through the trie, we need to
ask: How much does this decrease the probability of the algorithm succeeding?—
It depends on the tightness of the threshold, which we address in Sect. 4.2. In
Sect. 4.3, we discuss how to adaptively modify the threshold τ as τ -digits is
executing, which is useful when a good τ is unknown a priori.

4.2 Analyzing Failure Probability with Thresholding

Using τ -digits, the choice of τ will affect both (i) how many synthesis queries are
performed, and (ii) the likelihood that we miss optimal solutions; in this section
we explore the latter point.5 Interestingly, we will see that all of the analysis is
dependent only on parameters directly related to the threshold; notably, none
of this analysis is dependent on the complexity of P (i.e. its VC dimension).
5 The former point is a difficult combinatorial question that to our knowledge has no

precedent in the computational learning literature, and so we leave it as future work.

288 S. Drews et al.

If we really want to learn (something close to) a program P ∗, then we should
use a value of the threshold τ such that PrS∼Dm [HammingS(P̂ , P ∗) � τm] is
large—to do so requires knowledge of the distribution of HammingS(P̂ , P ∗).
Recall the binomial distribution: for parameters (n, p), it describes the number
of successes in n-many trials of an experiment that has success probability p.

Claim. Fix P and let k = Prx∼D[P̂ (x) �= P (x)]. If S is sampled from Dm, then
HammingS(P̂ , P) is binomially distributed with parameters (m, k).

Next, we will use our knowledge of this distribution to reason about the failure
probability, i.e. that τ -digits does not preserve the convergence result of digits.

The simplest argument we can make is a union-bound style argument: the
thresholded algorithm can “fail” by (i) failing to sample an ε-net, or otherwise
(ii) sampling a set on which the optimal solution has a Hamming distance that
is not representative of its actual distance. We provide the quantification of this
failure probability in the following theorem:

Theorem 3. Let P ∗ be a target ε-robust program with k = Prx∼D[P̂ (x) �= P ∗(x)],
and let δ be the probability that m samples do not form an ε-net for P ∗. If we run
the τ -digits with τ ∈ (k, 1], then the failure probability is at most δ+Pr[X > τm]
where X ∼ Binomial(m, k).

In other words, we can use tail probabilities of the binomial distribution to bound
the probability that the threshold causes us to “miss” a desirable program we
otherwise would have enumerated. Explicitly, we have the following corollary:

Corollary 1. τ -digits increases failure probability (relative to digits) by at
most Pr[X > τm] =

∑m
i=�τm�+1

(
m
i

)
ki(1 − k)m−i.

Informally, when m is not too small, k is not too large, and τ is reasonably forgiv-
ing, these tail probabilities can be quite small. We can even analyze the asymp-
totic behavior by using any existing upper bounds on the binomial distribution’s
tail probabilities—importantly, the additional error diminishes exponentially as
m increases, dependent on the size of τ relative to k.

Corollary 2. τ -digits increases failure probability by at most e−2m(τ−k)2 .6

Example 4. Suppose m = 100, k = 0.1, and τ = 0.2. Then the extra failure
probability term in Theorem 3 is less than 0.001.

As stated at the beginning of this subsection, the balancing act is to choose
τ (i) small enough so that the algorithm is still fast for large m, yet (ii) large
enough so that the algorithm is still likely to learn the desired programs. The fur-
ther challenge is to relax our initial strong assumption that we know the optimal
k a priori when determining τ , which we address in the following subsection.

6 A more precise (though less convenient) bound is e−m(τ ln τ
k
+(1−τ) ln 1−τ

1−k
).

Efficient Synthesis with Probabilistic Constraints 289

4.3 Adaptive Threshold

Of course, we do not have the angelic knowledge that lets us pick an ideal
threshold τ ; the only absolutely sound choice we can make is the trivial τ = 1.
Fortunately, we can begin with this choice of τ and adaptively refine it as the
search progresses. Specifically, every time we encounter a correct program P such
that k = Er(P), we can refine τ to reflect our newfound knowledge that “the
best solution has distance of at most k.”

We refer to this refinement as adaptive τ -digits. The modification involves
the addition of the following rule to Fig. 1:

best �= ⊥
Refine Threshold (for some g : [0, 1] → [0, 1])

τ ← g(Oerr(best))

We can use any (non-decreasing) function g to update the threshold τ ←
g(k). The simplest choice would be the identity function (which we use in our
experiments), although one could use a looser function so as not to over-prune
the search. If we choose functions of the form g(k) = k + b, then Corollary 2
allows us to make (slightly weak) claims of the following form:

Claim. Suppose the adaptive algorithm completes a search of up to depth m
yielding a best solution with error k (so we have the final threshold value τ =
k + b). Suppose also that P ∗ is an optimal ε-robust program at distance k − η.
The optimization-added failure probability (as in Corollary 1) for a run of (non-
adaptive) τ -digits completing depth m and using this τ is at most e−2m(b+η)2 .

5 Evaluation

Implementation. In this section, we evaluate our new algorithm τ -digits
(Fig. 1) and its adaptive variant (Sect. 4.3) against digits (i.e., τ -digits with
τ = 1). Both algorithms are implemented in Python and use the SMT solver
Z3 [8] to implement a sketch-based synthesizer Osyn. We employ statistical ver-
ification for Over and Oerr: we use Hoeffding’s inequality for estimating proba-
bilities in post and Er. Probabilities are computed with 95% confidence, leaving
our oracles potentially unsound.

Research Questions. Our evaluation aims to answer the following questions:

RQ1 Is adaptive τ -digits more effective/precise than τ -digits?
RQ2 Is τ -digits more effective/precise than digits?
RQ3 Can τ -digits solve challenging synthesis problems?

We experiment on three sets of benchmarks: (i) synthetic examples for which
the optimal solutions can be computed analytically (Sect. 5.1), (ii) the set of
benchmarks considered in the original digits paper (Sect. 5.2), (iii) a variant of
the thermostat-controller synthesis problem presented in [7] (Sect. 5.3).

290 S. Drews et al.

5.1 Synthetic Benchmarks

We consider a class of synthetic programs for which we can compute the opti-
mal solution exactly; this lets us compare the results of our implementation
to an ideal baseline. Here, the program model P is defined as the set of axis-
aligned hyperrectangles within [−1, 1]d (d ∈ {1, 2, 3} and the VC dimension is
2d), and the input distribution D is such that inputs are distributed uniformly
over [−1, 1]d. We fix some probability mass b ∈ {0.05, 0.1, 0.2} and define the
benchmarks so that the best error for a correct solution is exactly b (for details,
see [9]).

We run our implementation using thresholds τ ∈ {0.07, 0.15, 0.3, 0.5, 1},
omitting those values for which τ < b; additionally, we also consider an adaptive
run where τ is initialized as the value 1, and whenever a new best solution is
enumerated with error k, we update τ ← k. Each combination of parameters
was run for a period of 2 min. Figure 3 fixates on d = 1, b = 0.1 and shows each
of the following as a function of time: (i) the depth completed by the search
(i.e. the current size of the sample set), and (ii) the best solution found by the
search. (See our full version of the paper [9] for other configurations of (d, b).)

Fig. 3. Synthetic hyperrectangle problem instance with parameters d = 1, b = 0.1.

By studying Fig. 3 we see that the adaptive threshold search performs at
least as well as the tight thresholds fixed a priori because reasonable solutions
are found early. In fact, all search configurations find solutions very close to the
optimal error (indicated by the horizontal dashed line). Regardless, they reach
different depths, and the main advantage of reaching large depths concerns the
strength of the optimality guarantee. Note, also, that small τ values are neces-
sary to see improvements in the completed depth of the search. Indeed, the dis-
crepancy between the depth-versus-time functions diminishes drastically for the
problem instances with larger values of b (See our full version of the paper [9]);
the gains of the optimization are contingent on the existence of correct solutions
close to the functional specification.

Efficient Synthesis with Probabilistic Constraints 291

Findings (RQ1): τ -digits does tend to find reasonable solutions at early
depths and near-optimal solutions at later depths, thus adaptive τ -digits is
more effective than τ -digits, and we use it throughout our remaining experi-
ments.

5.2 Original DIGITS Benchmarks

The original digits paper [1] evaluates on a set of 18 repair problems of varying
complexity. The functional specifications are machine-learned decision trees and
support vector machines, and each search space P involves the set of programs
formed by replacing some number of real-valued constants in the program with
holes. The postcondition is a form of algorithmic fairness—e.g., the program
should output true on inputs of type A as often as it does on inputs of type
B [11]. For each such repair problem, we run both digits and adaptive τ -digits
(again, with initial τ = 1 and the identity refinement function). Each benchmark
is run for 10 min, where the same sample set is used for both algorithms.

Fig. 4. Improvement of using adaptive τ -digits on the original digits benchmarks.
Left: the dotted line marks the 2.4× average increase in depth.

Figure 4 shows, for each benchmark, (i) the largest sample set size completed
by adaptive τ -digits versus digits (left—above the diagonal line indicates adap-
tive τ -digits reaches further depths), and (ii) the error of the best solution
found by adaptive τ -digits versus digits (right—below the diagonal line indi-
cates adaptive τ -digits finds better solutions). We see that adaptive τ -digits
reaches further depths on every problem instance, many of which are substantial
improvements, and that it finds better solutions on 10 of the 18 problems. For
those which did not improve, either the search was already deep enough that
digits was able to find near-optimal solutions, or the complexity of the synthesis
queries is such that the search is still constrained to small depths.

Findings (RQ2): Adaptive τ -digits can find better solutions than those found
by digits and can reach greater search depths.

292 S. Drews et al.

5.3 Thermostat Controller

We challenge adaptive τ -digits with the task of synthesizing a thermostat con-
troller, borrowing the benchmark from [7]. The input to the controller is the
initial temperature of the environment; since the world is uncertain, there is a
specified probability distribution over the temperatures. The controller itself is a
program sketch consisting primarily of a single main loop: iterations of the loop
correspond to timesteps, during which the synthesized parameters dictate an
incremental update made by the thermostat based on the current temperature.
The loop runs for 40 iterations, then terminates, returning the absolute value of
the difference between its final actual temperature and the target temperature.

The postcondition is a Boolean probabilistic correctness property intuitively
corresponding to controller safety, e.g. with high probability, the temperature
should never exceed certain thresholds. In [7], there is a quantitative objective
in the form of minimizing the expected value E[|actual − target |]—our setting
does not admit optimizing with respect to expectations, so we must modify the
problem. Instead, we fix some value N (N ∈ {2, 4, 8}) and have the program
return 0 when |actual − target | < N and 1 otherwise. Our quantitative objective
is to minimize the error from the constant-zero functional specification P̂ (x) := 0
(i.e. the actual temperature always gets close enough to the target). The full
specification of the controller is provided in the full version of our paper [9].

We consider variants of the program where the thermostat runs for fewer
timesteps and try loop unrollings of size {5, 10, 20, 40}. We run each benchmark
for 10 min: the final completed search depths and best error of solutions are
shown in Fig. 5. For this particular experiment, we use the SMT solver CVC4 [3]
because it performs better than Z3 on the occurring SMT instances.

Fig. 5. Thermostat controller results.

As we would expect, for larger values of N it is “easier” for the thermostat to
reach the target temperature threshold and thus the quality of the best solution
increases in N . However, with small unrollings (i.e. 5) the synthesized controllers
do not have enough iterations (time) to modify the temperature enough for the

Efficient Synthesis with Probabilistic Constraints 293

probability mass of extremal temperatures to reach the target: as we increase
the number of unrollings to 10, we see that better solutions can be found since
the set of programs are capable of stronger behavior.

On the other hand, the completed depth of the search plummets as the
unrolling increases due to the complexity of the Osyn queries. Consequently, for
20 and 40 unrollings, adaptive τ -digits synthesizes worse solutions because it
cannot reach the necessary depths to obtain better guarantees.

One final point of note is that for N = 8 and 10 unrollings, it seems that there
is a sharp spike in the completed depth. However, this is somewhat artificial:
because N = 8 creates a very lenient quantitative objective, an early Osyn query
happens to yield a program with an error less than 10−3. Adaptive τ -digits
then updates τ ←≈ 10−3 and skips most synthesis queries.

Findings (RQ3): Adaptive τ -digits can synthesize small variants of a com-
plex thermostat controller, but cannot solve variants with many loop iterations.

6 Related Work

Synthesis and Probability. Program synthesis is a mature area with many
powerful techniques. The primary focus is on synthesis under Boolean con-
straints, and probabilistic specifications have received less attention [1,7,17,19].
We discuss the works that are most related to ours.

digits [1] is the most relevant work. First, we show for the first time that
digits only requires a number of synthesis queries polynomial in the number of
samples. Second, our adaptive τ -digits further reduces the number of synthesis
queries required to solve a synthesis problem without sacrificing correctness.

The technique of smoothed proof search [7] approximates a combination of
functional correctness and maximization of an expected value as a smooth, con-
tinuous function. It then uses numerical methods to find a local optimum of
this function, which translates to a synthesized program that is likely to be cor-
rect and locally maximal. The benchmarks described in Sect. 5.3 are variants
of benchmarks from [7]. Smoothed proof search can minimize expectation; τ -
digits minimizes probability only. However, unlike τ -digits, smoothed proof
search lacks formal convergence guarantees and cannot support the rich proba-
bilistic postconditions we support, e.g., as in the fairness benchmarks.

Works on synthesis of probabilistic programs are aimed at a different prob-
lem [6,19,23]: that of synthesizing a generative model of data. For example,
Nori et al. [19] use sketches of probabilistic programs and complete them with
a stochastic search. Recently, Saad et al. [23] synthesize an ensemble of proba-
bilistic programs for learning Gaussian processes and other models.

Kǔcera et al. [17] present a technique for automatically synthesizing program
transformations that introduce uncertainty into a given program with the goal of
satisfying given privacy policies—e.g., preventing information leaks. They lever-
age the specific structure of their problem to reduce it to an SMT constraint
solving problem. The problem tackled in [17] is orthogonal to the one targeted
in this paper and the techniques are therefore very different.

294 S. Drews et al.

Stochastic Satisfiability. Our problem is closely related to e-majsat [18], a
special case of stochastic satisfiability (ssat) [20] and a means for formalizing
probabilistic planning problems. e-majsat is of nppp complexity. An e-majsat
formula has deterministic and probabilistic variables. The goal is to find an
assignment of deterministic variables such that the probability that the formula
is satisfied is above a given threshold. Our setting is similar, but we operate over
complex program statements and have an additional optimization objective (i.e.,
the program should be close to the functional specification). The deterministic
variables in our setting are the holes defining the search space; the probabilistic
variables are program inputs.

Acknowledgements. We thank Shuchi Chawla, Yingyu Liang, Jerry Zhu, the entire
fairness reading group at UW-Madison, and Nika Haghtalab for all of the detailed
discussions. This material is based upon work supported by the National Science
Foundation under grant numbers 1566015, 1704117, and 1750965.

References

1. Albarghouthi, A., D’Antoni, L., Drews, S.: Repairing decision-making programs
under uncertainty. In: Majumdar, R., Kunčak, V. (eds.) Computer Aided Verifica-
tion, pp. 181–200. Springer International Publishing, Cham (2017)

2. Barowy, D.W., Gulwani, S., Hart, T., Zorn, B.G.: Flashrelate: extracting relational
data from semi-structured spreadsheets using examples. In: Proceedings of the 36th
ACM SIGPLAN Conference on Programming Language Design and Implementa-
tion, Portland, OR, USA, 15–17 June 2015, pp. 218–228 (2015). https://doi.org/
10.1145/2737924.2737952

3. Barrett, C., Conway, C.L., Deters, M., Hadarean, L., Jovanović, D., King, T.,
Reynolds, A., Tinelli, C.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV
2011. LNCS, vol. 6806, pp. 171–177. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-22110-1 14

4. Bastani, O., Sharma, R., Aiken, A., Liang, P.: Synthesizing program input gram-
mars. In: Proceedings of the 38th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2017, Barcelona, Spain, 18–23 June
2017, pp. 95–110 (2017). https://doi.org/10.1145/3062341.3062349

5. Blumer, A., Ehrenfeucht, A., Haussler, D., Warmuth, M.K.: Learnability and the
vapnik-chervonenkis dimension. J. ACM (JACM) 36(4), 929–965 (1989)

6. Chasins, S., Phothilimthana, P.M.: Data-driven synthesis of full probabilistic pro-
grams. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp.
279–304. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63387-9 14

7. Chaudhuri, S., Clochard, M., Solar-Lezama, A.: Bridging boolean and quantitative
synthesis using smoothed proof search. In: POPL, vol. 49, pp. 207–220. ACM (2014)

8. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

9. Drews, S., Albarghouthi, A., D’Antoni, L.: Efficient synthesis with probabilistic
constraints (2019). http://arxiv.org/abs/1905.08364

10. El-Hassany, A., Tsankov, P., Vanbever, L., Vechev, M.: Network-wide configuration
synthesis. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10427, pp.
261–281. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63390-9 14

https://doi.org/10.1145/2737924.2737952
https://doi.org/10.1145/2737924.2737952
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1145/3062341.3062349
https://doi.org/10.1007/978-3-319-63387-9_14
https://doi.org/10.1007/978-3-540-78800-3_24
http://arxiv.org/abs/1905.08364
https://doi.org/10.1007/978-3-319-63390-9_14

Efficient Synthesis with Probabilistic Constraints 295

11. Feldman, M., Friedler, S.A., Moeller, J., Scheidegger, C., Venkatasubramanian,
S.: Certifying and removing disparate impact. In: Proceedings of the 21th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.
259–268. ACM (2015)

12. Goldberg, P.W., Jerrum, M.: Bounding the vapnik-chervonenkis dimension of con-
cept classes parameterized by real numbers. Mach. Learn. 18(2–3), 131–148 (1995).
https://doi.org/10.1007/BF00993408

13. Gulwani, S.: Automating string processing in spreadsheets using input-output
examples. In: Proceedings of the 38th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL 2011, Austin, TX, USA, 26–28
January 2011, pp. 317–330 (2011). https://doi.org/10.1145/1926385.1926423

14. Gulwani, S.: Program synthesis. In: Software Systems Safety, pp. 43–75 (2014).
https://doi.org/10.3233/978-1-61499-385-8-43

15. Gulwani, S.: Programming by examples - and its applications in data wrangling.
In: Dependable Software Systems Engineering, pp. 137–158 (2016). https://doi.
org/10.3233/978-1-61499-627-9-137

16. Kearns, M.J., Vazirani, U.V.: An Introduction to Computational Learning Theory.
MIT Press, Cambridge (1994)

17. Kučera, M., Tsankov, P., Gehr, T., Guarnieri, M., Vechev, M.: Synthesis of proba-
bilistic privacy enforcement. In: Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security, CCS 2017, pp. 391–408. ACM, New
York (2017). https://doi.org/10.1145/3133956.3134079

18. Littman, M.L., Goldsmith, J., Mundhenk, M.: The computational complexity of
probabilistic planning. J. Artif. Intell. Res. 9, 1–36 (1998)

19. Nori, A.V., Ozair, S., Rajamani, S.K., Vijaykeerthy, D.: Efficient synthesis ofproba-
bilistic programs. SIGPLAN Not. 50(6), 208–217 (2015). https://doi.org/10.1145/
2813885.2737982

20. Papadimitriou, C.H.: Games against nature. J. Comput. Syst. Sci. 31(2), 288–301
(1985)

21. Polozov, O., Gulwani, S.: Flashmeta: a framework for inductive program synthesis.
In: Proceedings of the 2015 ACM SIGPLAN International Conference on Object-
Oriented Programming, Systems, Languages, and Applications, OOPSLA 2015,
part of SPLASH 2015, Pittsburgh, PA, USA, 25–30 October 2015, pp. 107–126
(2015). https://doi.org/10.1145/2814270.2814310

22. Raza, M., Gulwani, S.: Automated data extraction using predictive program syn-
thesis. In: Proceedings of the Thirty-First AAAI Conference on Artificial Intel-
ligence, 4–9 February 2017, San Francisco, California, USA, pp. 882–890 (2017).
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/15034

23. Saad, F.A., Cusumano-Towner, M.F., Schaechtle, U., Rinard, M.C., Mansinghka,
V.K.: Bayesian synthesis of probabilistic programs for automatic data modeling.
Proc. ACM Program. Lang. 3(POPL), 37 (2019)

24. Sauer, N.: On the density of families of sets. J. Comb. Theory, Seri. A 13(1),
145–147 (1972)

25. Schkufza, E., Sharma, R., Aiken, A.: Stochastic program optimization. Commun.
ACM 59(2), 114–122 (2016). https://doi.org/10.1145/2863701

26. Shelah, S.: A combinatorial problem; stability and order for models and theories
in infinitary languages. Pac. J. Math. 41(1), 247–261 (1972)

27. Solar-Lezama, A.: Program Synthesis by Sketching. Ph.D. thesis, Berkeley, CA,
USA (2008), aAI3353225

https://doi.org/10.1007/BF00993408
https://doi.org/10.1145/1926385.1926423
https://doi.org/10.3233/978-1-61499-385-8-43
https://doi.org/10.3233/978-1-61499-627-9-137
https://doi.org/10.3233/978-1-61499-627-9-137
https://doi.org/10.1145/3133956.3134079
https://doi.org/10.1145/2813885.2737982
https://doi.org/10.1145/2813885.2737982
https://doi.org/10.1145/2814270.2814310
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/15034
https://doi.org/10.1145/2863701

296 S. Drews et al.

28. Srinivasan, V., Reps, T.W.: Synthesis of machine code from semantics. In: Proceed-
ings of the 36th ACM SIGPLAN Conference on Programming Language Design
and Implementation, Portland, OR, USA, 15–17 June 2015, pp. 596–607 (2015).
https://doi.org/10.1145/2737924.2737960

29. Subramanian, K., D’Antoni, L., Akella, A.: Genesis: synthesizing forwarding tables
in multi-tenant networks. In: Proceedings of the 44th ACM SIGPLAN Sympo-
sium on Principles of Programming Languages, POPL 2017, Paris, France, 18–20
January 2017, pp. 572–585 (2017). http://dl.acm.org/citation.cfm?id=3009845

30. Wang, X., Gulwani, S., Singh, R.: FIDEX: filtering spreadsheet data using exam-
ples. In: Proceedings of the 2016 ACM SIGPLAN International Conference on
Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA
2016, part of SPLASH 2016, Amsterdam, The Netherlands, 30 October - 4
November 2016, pp. 195–213 (2016). https://doi.org/10.1145/2983990.2984030

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1145/2737924.2737960
http://dl.acm.org/citation.cfm?id=3009845
https://doi.org/10.1145/2983990.2984030
http://creativecommons.org/licenses/by/4.0/

Membership-Based Synthesis of Linear
Hybrid Automata

Miriam Garćıa Soto(B) , Thomas A. Henzinger , Christian Schilling ,
and Luka Zeleznik

IST Austria, Klosterneuburg, Austria
{miriam.garciasoto,tah,christian.schilling,

luka.zeleznik}@ist.ac.at

Abstract. We present two algorithmic approaches for synthesiz-
ing linear hybrid automata from experimental data. Unlike previous
approaches, our algorithms work without a template and generate an
automaton with nondeterministic guards and invariants, and with an
arbitrary number and topology of modes. They thus construct a suc-
cinct model from the data and provide formal guarantees. In particular,
(1) the generated automaton can reproduce the data up to a specified
tolerance and (2) the automaton is tight, given the first guarantee. Our
first approach encodes the synthesis problem as a logical formula in the
theory of linear arithmetic, which can then be solved by an smt solver.
This approach minimizes the number of modes in the resulting model but
is only feasible for limited data sets. To address scalability, we propose
a second approach that does not enforce to find a minimal model. The
algorithm constructs an initial automaton and then iteratively extends
the automaton based on processing new data. Therefore the algorithm
is well-suited for online and synthesis-in-the-loop applications. The core
of the algorithm is a membership query that checks whether, within the
specified tolerance, a given data set can result from the execution of a
given automaton. We solve this membership problem for linear hybrid
automata by repeated reachability computations. We demonstrate the
effectiveness of the algorithm on synthetic data sets and on cardiac-cell
measurements.

Keywords: Synthesis · Linear hybrid automaton · Membership

1 Introduction

Natural sciences pursue to understand the mechanisms of real systems and to
make this understanding accessible. Achieving these two goals requires observa-
tion, analysis, and modeling of the system. Typically, physical components of a

This research was supported in part by the Austrian Science Fund (FWF) under
grants S11402-N23 (RiSE/SHiNE) and Z211-N23 (Wittgenstein Award) and the Euro-
pean Union’s Horizon 2020 research and innovation programme under the Marie
Sklodowska-Curie grant agreement No. 754411.

c© The Author(s) 2019
I. Dillig and S. Tasiran (Eds.): CAV 2019, LNCS 11561, pp. 297–314, 2019.
https://doi.org/10.1007/978-3-030-25540-4_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-25540-4_16&domain=pdf
http://orcid.org/0000-0003-2936-5719
http://orcid.org/0000-0002-2985-7724
http://orcid.org/0000-0003-3658-1065
https://doi.org/10.1007/978-3-030-25540-4_16

298 M. Garćıa Soto et al.

system evolve continuously in real time, while the system may switch among a
finite set of discrete states. This applies to cyber-physical systems but also to
purely analog systems; e.g., an animal’s hunger affects its movement. A proper
formalism for modeling such types of systems with mixed discrete-continuous
behavior is a hybrid automaton [11]. Unlike black-box models such as neural
networks, hybrid automata are easy to interpret by humans. However, designing
such models is a time-intensive and error-prone process, usually conducted by
an expert who analyzes the experimental data and makes decisions.

In this paper, we propose two automatic approaches for synthesizing a linear
hybrid automaton [1] from experimental data. The approaches provide two main
properties. The first property is soundness, which ensures that the generated
model has enough executions: these executions approximate the given data up to
a predefined accuracy. The second property is precision, which ensures that
the generated model does not have too many executions. The behavior of a
hybrid automaton is constrained by so-called invariants and guards. Precision
expresses that the boundaries of these invariants and guards are witnessed by
the data, which indicates that the constraints cannot be made tighter. Moreover,
the proposed synthesis algorithm is complete for a general class of linear hybrid
automata, i.e., the algorithm can synthesize any given model from this class.

The first approach reduces the synthesis problem to a satisfiability ques-
tion for a linear-arithmetic formula. The formula allows us to encode a min-
imality constraint (namely in the number of so-called modes) on the resulting
model. This approach is, however, not scalable, which motivates our second app-
roach. Our second approach follows an iterative model-adaptation scheme. Apart
from scalability advantages, this online algorithm is thus also well-suited for
synthesis-in-the-loop applications.

After constructing an initial model, the second approach iteratively improves
and expands the model by considering new experiments. After each iteration, the
model will capture all behaviors exhibited in the previous experiments. Given
an automaton and new experimental data, the algorithm proceeds as follows.
First we ask whether the current automaton already captures the data. We
pose this question as a membership query for a piecewise-linear function in the
set of executions of the automaton. For the membership query, we present an
algorithm based on reachability inside a tube around the function. If the data is
not captured, we need to modify the automaton accordingly by adding behavior.
We first try to relax the above-mentioned invariants and guards, which we reduce
to another membership query. If that query is negative as well, we choose a path
in the automaton that closely resembles the given data and then modify the
automaton along that path by also adding new discrete structure (called modes
and transitions). This modification step is again guided by membership queries
to identify the aspects of the model that require improvement and expansion.

As the main contributions, (1) we present an online algorithm for automatic
synthesis of linear hybrid automata from data that is sound, i.e., guarantees
that the generated model approximates the data up to a user-defined threshold,
precise, i.e., the generated model is tight, and complete for a general class of

Membership-Based Synthesis of Linear Hybrid Automata 299

models (2) we solve the membership problem of a piecewise-linear function in a
linear hybrid automaton. This is a critical step in our synthesis algorithm

Related Work. The synthesis of hybrid systems was initially studied in control
theory under the term identification, mainly focused on (discrete-time) switched
autoregressive exogenous (SARX) and piecewise-affine autoregressive exogenous
(PWARX) models [7,18]. SARX models constitute a subclass of linear hybrid
automata with deterministic switching behavior. PWARX models are specific
SARX models where the mode invariants form a state-space partition. Fixing
the number of modes, the identification problem from input-output data can be
solved algebraically by inferring template parameters. However, in contrast to
linear hybrid automata, the lack of nondeterminism and the underlying assump-
tion that there is no hidden state (mode) limits the applicability of these models.
An algorithm by Bemporad et al. constructs a PWARX model that satisfies a
global error bound [5]. Ozay presents an algorithm for SARX models where the
switching is purely time-triggered [17]. There also exist a few online algorithms
for the recursive synthesis of PWARX models based on pattern recognition [19]
or lifting to a high-dimensional identification problem for ARX models [10,22].

Synthesis is also known as process mining, and as learning models from traces;
the latter refers to approaches based on learning finite-state machines [3] or
other machine-learning techniques. More recently, synthesis of hybrid automaton
models has gained attention. All existing approaches that we are aware of have
structural restrictions of some sort, which we describe below. We synthesize,
for the first time, a general class of linear hybrid automata which (1) allows
nondeterminism to capture many behaviors by a concise representation and
(2) provides formal soundness and precision guarantees. The algorithm is also
the first online synthesis approach for linear hybrid automata.

The general synthesis problem for hybrid automata is hard: for deterministic
timed automata (a subclass of linear hybrid automata with globally identical
continuous dynamics), one may already require data of exponential length [21].
The approach by Niggemann et al. constructs an automaton with acyclic dis-
crete structure [16], while the approach by Grosu et al., intended to model purely
periodic behavior, constructs a cyclic-linear hybrid automaton whose discrete
structure consists of a loop [8]. Ly and Lipson use symbolic regression to infer a
non-linear hybrid automaton [14]. However, their model neither contains state
variables (i.e., the model is purely input-driven, comparable to the SARX model)
nor invariants, and the number of modes needs to be fixed in advance. Medhat
et al. describe an abstract framework, based on heuristics, to learn linear hybrid
automata from input/output traces [15]. They first employ Angluin’s algorithm
for learning a finite-state machine [3], which serves as the discrete structure of the
hybrid automaton, before they decorate the automaton with continuous dynam-
ics. This strict separation inherently makes their approach offline. The work by
Summerville et al. based on least-squares regression requires an exhaustive con-
struction of all possible models for later optimizing a cost function over all of
them [20]. Lamrani et al. learn a completely deterministic model with urgent
transitions using ideas from information theory [12].

300 M. Garćıa Soto et al.

2 Preliminaries

Sets. Let R, R�0, and N denote the set of real numbers, non-negative real num-
bers, and natural numbers, respectively. We write x for points (x1, . . . , xn) in R

n.
Let cpoly(n) be the set of compact and convex polyhedral sets over R

n. A set
X ∈ cpoly(n) is characterized by its set of vertices vert(X). For a set of points
Y , chull(Y) ∈ cpoly(n) denotes the convex hull. Given a set X ∈ cpoly(n)
and ε ∈ R�0, we define the ε-bloating of X as �X�ε := {x ∈ R

n | ∃x0 ∈ X :
‖x − x0‖ � ε} ∈ cpoly(n), where ‖ · ‖ is the infinity norm. Given an interval
I = [l, u] ∈ cpoly(1), lb(I) = l and ub(I) = u denote its lower and upper bound.

Functions and Sequences. Given a function f , let dom(f) resp. img(f) denote its
domain resp. image. Let f�A denote the restriction of f to domain A ⊆ dom(f).
We define a distance between functions f and g with the same domain and
codomain by d(f, g) := maxt∈dom(f) ‖f(t) − g(t)‖. A sequence of length m is a
function s : D → A over an ordered finite domain D = {i1, . . . , im} ⊆ N and
a set A, and we write len(s) to denote the length of s. A sequence s is also
represented by enumerating its elements, as in s(i1), . . . , s(im).

Affine and Piecewise-Linear Functions. An affine piece is a function p : I → R
n

over an interval I = [t0, t1] ⊆ R defined as p(t) = at +b where a,b ∈ R
n. Given

an affine piece p, init(p) denotes the start point p(t0), end(p) denotes the end
point p(t1), and slope(p) denotes the slope a. We call two affine pieces p and
p′ adjacent if end(p) = init(p′) and ub(dom(p)) = lb(dom(p′)). For m ∈ N, an
m-piecewise-linear (m-pwl) function f : I → R

n over interval I = [0,T] ⊆ R

consists of m affine pieces p1, . . . , pm, such that I = ∪1�j�mdom(pj), f(t) = pj(t)
for t ∈ dom(pj), and for every 1 < j � m we have end(pj−1) = init(pj). We
show a 3-pwl function in Fig. 1 on the left. Let pieces(f) denote the set of affine
pieces of f . We refer to f and the sequence p1, . . . , pm interchangeably and write
“pwl function” if m is clear from the context. A kink of a pwl function is the
point between two adjacent pieces. Given a pwl function f : I → R

n and a
value ε ∈ R�0, the ε-tube of f is the function tubef,ε : I → cpoly(n) such that
tubef,ε(t) = �f(t)�ε.

Graphs. A graph is a pair (V,E) of a finite set V and a relation E ⊆ V × V .
A path π in (V,E) is a sequence v1, . . . , vm with (vj−1, vj) ∈ E for 1 < j � m.

Hybrid Automata. We consider a particular class of hybrid automata [1,11].

Definition 1. A n-dimensional linear hybrid automaton (lha) is a tuple H =
(Q,E,X,Flow, Inv,Grd), where (1) Q is a finite set of modes, (2) E ⊆ Q×Q is a
transition relation, (3) X = R

n is the continuous state-space, (4) Flow : Q → R
n

is the flow function, (5) Inv : Q → cpoly(n) is the invariant function, and (6)
Grd : E → cpoly(n) is the guard function

We sometimes annotate the elements of lha H by a subscript, as in QH for
the set of modes. We refer to (QH,EH) as the graph of lha H.

An lha evolves continuously according to the flow function in each mode.
The behavior starts in some mode q ∈ Q and some continuous state x ∈ Inv(q).

Membership-Based Synthesis of Linear Hybrid Automata 301

For every mode q ∈ Q, the continuous evolution follows the differential equation
ẋ = Flow(q) while satisfying the invariant Inv(q). The behavior can switch from
one mode q1 to another mode q2 if there is a transition (q1, q2) ∈ E and the guard
Grd((q1, q2)) is satisfied. During a switch, the continuous state does not change.
This type of system is sometimes called a switched linear hybrid system [13].

Definition 2. Given an n-dimensional lha H = (Q,E,X,Flow, Inv,Grd), an
execution σ is a triple σ = (I, γ, δ), where I is a sequence of consecutive intervals
[t0, t1], [t1, t2], . . . , [tm−1, tm] with [[I]] = ∪0�j<m[tj , tj+1], and γ : [[I]] → R

n and
δ : {1, . . . , m} → Q are functions with the following restrictions:

– for all 1 � j < m, γ(t) ∈ Inv(δ(j)) for t ∈ I(j) and γ̇(t′) = Flow(δ(j)) for
all t′ in the interior of I(j), i.e., γ�I(j) is an affine function satisfying the
invariant and following the flow, and

– for all 1 � j < m, (δ(j), δ(j + 1)) ∈ E and γ(t) ∈ Grd((δ(j), δ(j + 1))) where
t = ub(I(j)), i.e., if a transition is taken, then the guard is satisfied.

We denote the set of all executions of H by exec(H). Given an lha H, we
say that an execution σ follows a path π in H, that is, in the graph (QH,EH),
denoted as σ

H� π, if len(I) = len(π) and δ(j) = π(j) for every 0 � j < len(I).

From Time-series Data to pwl Functions. Experimental data typically comes
as time series, i.e., data is only available at sampled points in time. A time series
is a sampling s : D → R

n over a finite time domain D ⊆ [0,T]. Since the lha
model features piecewise-linear executions, we focus on piecewise-linear approx-
imation of the data. pwl functions can approximate any continuous behavior
with arbitrary precision. There are different yet valid choices for approximating
data. For a single time series, linear interpolation gives a perfect fit, but contains
many kinks; other algorithms minimize the number of kinks for a given error
bound [6,9]. One can preprocess multiple time series into a single pwl function
using, e.g., linear regression. In this paper, we leave the choice of abstraction
open and assume that the input is given as pwl functions.

3 Synthesis of Linear Hybrid Automata

In this section, we specify the synthesis problem, consider two different speci-
fications, synchronous and asynchronous, and present the automated approach
for solving the synchronous problem. The overall goal is to synthesize a linear
hybrid automaton from a set of pwl functions such that the automaton captures
the behavior described by each of the pwl functions up to a bound ε.

Definition 3 (Soundness). Given a pwl function f and a value ε ∈ R�0,
we say that an lha H ε-captures f if there exists an execution σ = (I, γ, δ) in
exec(H) with d(f, γ) � ε.

The value ε quantifies the acceptable deviation of an execution’s continuous
function γ from the pwl function f . For ε = 0, γ must precisely follow f . A
straightforward formulation of the problem we want to solve is the following.

302 M. Garćıa Soto et al.

Problem 1 (Synthesis). Given a finite set of pwl functions F and ε ∈ R�0,
construct an lha H that ε-captures every function f ∈ F .

Observe that this problem is not well-posed, as it can be satisfied by an
automaton that exhibits an excessive amount of behavior. Hence our second
goal for the synthesis algorithm is to ensure constraints on the automaton’s size.
We start with the synthesis of an lha with minimal number of modes.

3.1 Synchronous Switching Specification

For now, we require that the executions in the lha switch synchronously with the
given pwl functions. Under this assumption, we tackle a refinement of Problem 1:

Problem 2 (Synchronous synthesis). Given a finite set of pwl functions F and
a value ε ∈ R�0, construct an lha H that ε-captures every function f ∈ F syn-
chronously, and furthermore require that H has the minimal number of modes.

In the following, we present an algorithm to solve Problem 2. The idea is,
given a pwl function f , to synthesize an execution σ that is ε-close to f . Recall
that the continuous function γ of an execution is essentially just another pwl
function. Any lha that contains the execution σ has to comprise a mode for
each different slope in γ. Thus a minimal number of modes can be achieved by
minimizing the number of different slopes in γ. By fixing a number of different
slopes, we encode the existence of γ as a logical formula φf,ε, which will be
satisfiable if and only if there exists a suitable function γ.

Let m be the number of affine pieces p1, . . . , pm in f with dom(pj) = [tj−1, tj]
for 1 � j � m. We refer to the time instants tj as the switching times of f ,
and to xj = f(tj) as the switching points of f . Fixing a number � ∈ N, we
want to construct a pwl function γ�, consisting of m affine pieces p′

1, . . . , p
′
m

with � different slopes, with the same switching times as in f , with switching
points y0, . . . ,ym ε-close to those in f (which is necessary and sufficient for
d(f, γ�) � ε), and with unknown slopes b1 = slope(p′

1), . . . ,bm = slope(p′
m).

We define the logical formula

φf,ε(�) :=
m∧

j=1

yj = yj−1 + bj(tj − tj−1) ∧
m∧

j=0

yj ∈ �xj�ε ∧
m∧

j=1

�∨

k=1

bj = ck,

which is satisfiable if and only if there exists a suitable pwl function γ�. For
lifting to a set of functions F , we define the formula φF,ε(�) :=

∧
f∈F φf,ε(�).

These formulae fall into the theory of linear arithmetic and can be effectively
solved by an smt solver. Now, we can state the following results.

Lemma 1. Let F be a finite set of pwl functions and ε ∈ R�0. If φF,ε(�) is
satisfiable for some integer value �, then there exists a set of pwl functions F ′

such that |F ′| = |F|, each function in F is ε-close to some function in F ′, and
the number of distinct slopes in F ′ does not exceed �.

Membership-Based Synthesis of Linear Hybrid Automata 303

The set F ′ can be extracted from a satisfying assignment. We define a hybrid
automaton with minimal number of locations 0-capturing a given pwl function.

Definition 4 (Canonical automaton). Let f be an n-pwl function. The
canonical automaton of f is Hf := (Q,E,Rn,Flow, Inv,Grd) with

– Q = {qa | ∃p ∈ pieces(f) : slope(p) = a},
– E = {(qa, qa′) | ∃p, p′ ∈ pieces(f)adjacent : slope(p) = a, slope(p′) = a′},
– Flow(qa) = a,
– Inv(qa) = chull({img(p) | p ∈ pieces(f) : slope(p) = a}), and
– Grd((qa, qa′)) = chull({end(p) | ∃p, p′ ∈ pieces(f) adjacent : slope(p) = a,

slope(p′) = a′}).

Lemma 2. Given a pwl function f , the canonical automaton Hf 0-captures f ,
and every lha that 0-captures f has at least as many modes as Hf .

Definition 5 (Merging). Given two hybrid automata Hi = (Qi,Ei,X,Flowi,
Invi,Grdi), i = 1, 2 with Q1 ∩ Q2 = ∅, let Qa = QH1

a ∪ QH2
a be the locations

with flow equal to a. We define the merging of H1and H2 as H1
 H2 :=
(Q,E,X,Flow, Inv,Grd) with Q = {qa | a ∈ R

n, Qa �= ∅}, E = {(qa, qa′) |
∃(q, q′) ∈ E1 ∪ E2, q ∈ Qa, q ∈ Q′

a}, Flow(qa) = a, Inv(qa) = chull({Invi(q) |
q ∈ Qa, i = 1, 2}), and Grd((qa, qa′)) = chull({Grdi((q, q′)) | (q, q′) ∈ Ei,
q ∈ Qa, q

′ ∈ Qa′ , i = 1, 2}).

Theorem 1. Given a finite set of pwl functions F and a value ε ∈ R�0, let
� be the smallest integer such that φF,ε(�) is satisfiable and let F ′ be a set of
pwl functions corresponding to a satisfying assignment. Then, the merging of
canonical automata
f∈F ′Hf solves Problem 2.

The above synthesis algorithm works well with short and low-dimensional
pwl functions but does not scale to realistic problem sizes due to the heavy use
of disjunctions. We next address scalability with a new online algorithm.

3.2 Asynchronous Switching Specification

We now change the requirement from the previous subsection (minimality in the
models’ discrete structure) to tightness in the model’s state-space constraints.
Intuitively, for every vertex v of an invariant or guard in H there should be some
witness data f ∈ F that is close to v (at some point in time).

Definition 6 (Precision). Given an lha H = (Q,E,X,Flow, Inv,Grd), let
vert(H) denote the union of the vertices of the invariants and guards:

vert(H) =
⋃

q∈Q

vert(Inv(q)) ∪
⋃

e∈E

vert(Grd(e))

Given a set of pwl functions F and a value ε ∈ R�0, we say that H is ε -precise
(with respect to F) if the following holds:

∀v ∈ vert(H) ∃f ∈ F ∃t ∈ dom(f) : ‖v − f(t)‖ � ε.

304 M. Garćıa Soto et al.

The restriction to the vertices is reasonable because all sets are compact
convex polyhedra. Note that ε-capturing compares functions to the automaton’s
executions, while ε-precision compares functions to the automaton’s state-space.

We also relax the limitation to synchronously switching executions. Instead,
we allow asynchronous switching, characterized as follows: for every function f
ε-captured by H, there exists an execution σ ∈ exec(H) with the same number
of switches as there are kinks in f , i.e., len(I) = |pieces(f)|, and where the
j-th switch in the execution should take place during the time period between
the kinks j − 1 and j + 1. We close this section with the new problem statement
(a refinement of Problem 1), and present a solution in the next section.

Problem 3 (Asynchronous synthesis). Given a finite set of pwl functions F and
a value ε ∈ R�0, construct an ε-precise lha H that ε-captures every function
f ∈ F asynchronously.

4 Membership-based Synthesis Approach

In this section, we present an algorithm for solving Problem 3. The core of
the algorithm is a reachability computation for providing the polyhedral regions
where executions of an lha that are ε-close to a given pwl function f are allowed
to switch. More precisely, given a path π and the ε-tube of f , the algorithm
iteratively constructs the set inside the ε-tube where an execution following π
can switch, without escaping from the tube. These reachable set are, in general,
computed with respect to a starting compact convex polyhedron P , a pair of
adjacent affine pieces p and p′, and a pair of modes q and q′ along π.

Definition 7. Given an lha H = (Q,E,X,Flow, Inv,Grd) and a value ε ∈ R�0,
a reachable switching set switchH(P, p, p′, q, q′) from a set P with respect to two
adjacent affine pieces p, p′ and a path π := q, q′ in H is defined as

{x ∈ Grd((q, q′)) | ∃σ = (I, γ, δ) ∈ exec(H) : σ
H� π, dom(γ) = dom(p) ∪ dom(p′),

γ(0) ∈ P, γ(t) ∈ tubep,ε(t) ∪ tubep′,ε(t), and x = γ(ub(I(0)))}.

Inductive Reachable Switching Computation. Given an lha H, an m-pwl
function f = p1, . . . , pm, a value ε ∈ R�0 and a path π = q1, . . . , qm in the graph
(QH,EH), we compute the reachable switching set Pπ

j for every 0 � j � m:

– Pπ
0 := InvH(q1) ∩ tubef,ε(0),

– Pπ
j := switchH(Pπ

j−1, pj−1, pj , qj−1, qj) for 1 < j < m, and

– Pπ
m := {x ∈ Inv(qm) | ∃σ = (I, γ, δ) ∈ exec(H) : σ

H� qm, γ(0) ∈ Pπ
m−1,

dom(γ) = dom(pm), γ(t) ∈ tubepm,ε(t) and x = γ(ub(I(m)))}.

We denote the set of all reachable switching sets Pπ
j by Pπ. We are now ready

to present the complete synthesis algorithm.

Membership-Based Synthesis of Linear Hybrid Automata 305

Algorithm 1. Synthesis
Input: A set of pwl functions F = {f0, . . . , fN} and a value ε ∈ R�0

Output: A linear hybrid automaton H that solves Problem 3
1: H := InitLha(f0, ε) � construct initial model for ε-capturing f0
2: for f ∈ F \ {f0} do
3: (ans, π) := Membership(f, H, ε)
4: if not ans then
5: H := RelaxAll(H, f, ε) � relax model constraints entirely
6: (ans, π) := Membership(f, H, ε)
7: if ans then
8: H := RelaxPath(H, f, ε, π) � relax model constraints for ε-capturing f
9: else

10: H := Adapt(H, f, ε, π) � adapt model for ε-capturing f
11: return H

4.1 Membership-based Synthesis Algorithm

The synthesis algorithm outlined in Algorithm 1 computes an lha H solving
Problem 3 for a given finite set of pwl functions F and a value ε ∈ R�0. The
algorithm initially infers an lha H that ε-captures the first function f0 of F in
an ε-precise manner in line 1. The remaining pwl functions are handled in an
iterative loop. For each pwl function f , the algorithm performs a membership
query, where it checks if f is ε-captured by the lha H in line 3. If the query
results in a positive answer (ans = True), nothing needs to be done. Otherwise,
the query returns a path π and the lha H needs to be modified. The modi-
fication of the automaton H is performed in two attempts. The first attempt,
in line 5, temporarily increases invariants and guards of H. If such a modifi-
cation is sufficient to let the membership query succeed, the modifications are
made permanent in line 8. Otherwise, in the second attempt the algorithm adds
new modes and/or transitions to H along the path π. Below we describe every
procedure of Algorithm 1 in detail.

Initialization. The procedure InitLha(f, ε) constructs an initial lha H that
ε-captures an m-pwl function f . Observe that by Lemma 2 the canonical
automaton Hf 0-captures (and hence ε-captures) the function f . In order to
allow similar dynamical behaviors in a given lha H, the procedure InitLha(f, ε)
ε-bloats both invariant and guards polyhedra. The procedure InitLha(f, ε) out-
puts the ε-bloated canonical automaton Hε

f and is illustrated in Fig. 1.

Definition 8. Given an lha H = (Q,E,X,Flow, Inv,Grd), we define the
ε -bloated lha of H as Hε = (Q,E,X,Flow, Inv ε,Grd ε) where Inv ε(q) =
�Inv(q)�ε for every q ∈ Q and Grd ε(e) = �Grd(e)�ε for every e ∈ E.

Lemma 3. Given a pwl function f and ε ∈ R�0, Hε
f ε-captures f .

306 M. Garćıa Soto et al.

t
0 1 2 3

x

1

2

3 f0

p0

p1

p2
q0: ẋ = 1

x ∈ �[1, 3]�ε

q1: ẋ = 0

x ∈ �[2, 2]�ε

x ∈ �[2, 2]�ε

x ∈ �[2, 2]�ε

Fig. 1. Example describing the procedure InitLha(f, ε) for a 3-pwl function f = f0
(depicted on the left). The function f0 consists of three pieces p0, p1, p2 with slopes
1, 0, 1, respectively. The lha on the right is constructed as follows. Mode q0 corresponds
to pieces p0 and p2; the invariant is the ε-bloating of interval [1, 3] (which is the convex
hull of every start and end point in both pieces). Likewise, mode q1 corresponds to
piece p1. Transitions and their guards correspond to the kinks of f0 at t = 1 and t = 2.

Membership. The procedure Membership(f,H, ε) checks whether there
exists an asynchronous execution σ = (I, γ, δ) in H such that d(f, γ) � ε holds.
Let us introduce the required notions to formalize the membership problem.

Definition 9. An execution σ = (I, γ, δ) of an lha H is consistent with an
m-pwl function f , described by the affine pieces p1, . . . , pm, if len(I) = m,
[[I]] = dom(f), and ub(I(j)) ∈ dom(pj) ∪ dom(pj+1) for every 1 � j < m.

Problem 4 (Membership). Given an m-pwl function f , an lha H, and a value
ε ∈ R�0, decide if there exists an execution σ = (I, γ, δ) in exec(H) that is
consistent with f and such that d(f, γ) � ε holds.

The procedure Membership(f,H, ε) solves Problem 4 by computing the
reachable switching sets for every path π of length m in H until finding a path π
where every reachable switching set Pπ

j for 0 � j � m is nonempty. Upon finding
a path π satisfying the previous constraints, Membership(f,H, ε) returns True
as answer, together with the path π. If there does not exist such a path π, it
returns False as answer. We show an example in Fig. 2(a). We remark that, for a
fixed path, Problem 4 is a timestamp-generation problem [2] with the restriction
to time intervals for switching and the ε-tube as solution corridor.

Lemma 4. Let H be an lha and f be an m-pwl function. Then there exists
a path π of length m in H such that the final reachable switching set Pπ

m is not
empty if and only if there exists an execution σ in exec(H) solving Problem 4.

Relaxation. If Membership(f,H, ε) returns False, RelaxAll(H, f, ε) con-
structs an automaton H that is equivalent to H except that its invariants and
guards are enlarged to allow additional executions inside the tubef,ε. Then, the
algorithm computes Membership(f,H, ε). If the answer is False again, the algo-
rithm proceeds to the adaptation procedure in line 10. Otherwise (if the answer
is True), we obtain a path π in H. Then the algorithm executes the procedure
RelaxPath(H, f, ε, π), which extends the constraints of invariants and guards

Membership-Based Synthesis of Linear Hybrid Automata 307

t
0 1 2 3

x

1

2

3 f1

t
0 1 2 3

x

1

2

3 σ

(a)

t
0 1 2 3

x

0

1

2 p

(b)

Fig. 2. (a) Example describing the procedure Membership(f, H, ε). On the left we
depict a 3-pwl function f1 and its ε-tube. On the right we show a possible execution
in the lha from Fig. 1. (b) Given an affine piece p, we say that another piece has a
similar slope if it does not leave the tube. In the figure, we show the minimal and the
maximal allowed slopes by dashed segments.

in H for the modes in π by taking the convex hull with the corresponding reach-
able switching sets Pπ

j ∈ Pπ. The relaxation procedure applied on the running
example is shown in Fig. 3.

Adaptation. If both the membership query and the relaxation procedure fail,
the procedure Adapt(H, f, ε, π) modifies the lha H for ε-capturing f . Con-
ceptually, we construct a new path π′, based on some path π, and modify H
accordingly such that the graph of H contains π′. Recalling Lemma 4, we need
to ensure that every reachable switching set in Pπ′

is nonempty. We construct π′

by trying to preserve the modes in path π. If this is not possible, we try to replace
them by existing modes in the lha H whenever possible, potentially adding new
transitions. The last option is to create new modes. Finally, we extend the lha
H by adding the new transitions and/or modes determined by the new path π′.

In more detail, given an lha H, an m-pwl function f and a path π =
q1, . . . , qm in H, we start with path π′ = π. Then, the adaptation procedure
checks whether there is an empty reachable switching set in Pπ′

. Every time we
detect emptiness of the set Pπ′

j for some 0 � j � m, a mode in the path π′ is
replaced in order to make Pπ′

j nonempty. We first try to replace the mode qj+1

if it exists. If Pπ′
j is still empty or qj+1 does not exist, we repeat the replacement

for qj , qi−1, and so on, until Pπ′
j finally becomes nonempty.

For the replacement of the j-th mode q in the path π′ we follow two strategies.
The first strategy is to replace the mode q by an existing mode q′ �= q in H such
that FlowH(q′) is similar to slope(pj). Formally, let T be the duration of piece
pj . FlowH(q′) is similar to slope(pj) if ‖init(pj)+T·FlowH(q′)−end(pj)‖ � 2ε.
See Fig. 2(b) for an example. If the first strategy fails, the second strategy is to
create a new mode q∗ with flow newflow(q∗) = slope(pj) for replacement in π′.
We denote the set of existing modes similar to some mode q in π by sim(π′),
and the set of new modes q∗ by new(π′). Once the path π′ is constructed, the
adaptation of the lha H is performed with respect to π′. Figure 4 exemplifies
the adaptation of the lha in Fig. 1.

308 M. Garćıa Soto et al.

t
0 1 2 3

x

0

1

2 f2
q0: ẋ = 1

x ∈ �[1, 3]�ε

q1: ẋ = 0

x ∈ �[1, 2]�ε

x ∈ �[2, 2]�ε

x ∈ �[1, 2]�ε

Fig. 3. Example describing the procedure RelaxPath(H, f, ε, π) for H given in Fig. 1,
f = f2 (depicted on the left), and path π = q1, q0, q1. The algorithm increases the
invariant of mode q1 by computing the convex hull of the old invariant �[2, 2]�ε and
the set �[1, 1]�ε. Analogously, the guard of the transition (q1, q0) is increased.

Definition 10. The adaptation of the lha H = (Q,E,X,Flow, Inv,Grd) with
respect to an m-pwl function f with affine pieces p1, . . . , pm and a path π =
q1, . . . , qm is the lha H′ = (Q ′,E ′,X,Flow ′, Inv ′,Grd ′) defined as:

– Q ′ := Q ∪ new(π′),
– E ′ := E ∪ {(qj , qj+1) | 1 � j < m},

– Flow ′(q) :=

{
newflow(q) if q ∈ new(π′),

Flow(q) otherwise,

– Inv ′(q) :=

⎧
⎪⎪⎨

⎪⎪⎩

chull(
⋃

q=qj ,q �=q1
Pπ′

j−1 ∪ ⋃
q=qj

Pπ′
j) if q ∈ new(π′),

chull(Inv(q) ∪ ⋃
q=qj ,q �=q1

Pπ′
j−1 ∪ ⋃

q=qj
Pπ′

j) if q ∈ sim(π′),

Inv(q) otherwise,

– Grd ′((q, q′)) :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

chull(
⋃

q=qj ,q′=qj+1
Pπ′

j) if q ∈ new(π′)
or q′ ∈ new(π′),

chull(Grd((q, q′)) ∪ ⋃
q=qj ,q′=qj+1

Pπ′
j) if q ∈ sim(π′)

or q′ ∈ sim(π′),

Grd((q, q′)) otherwise.

If there is no path of length m in the graph of H, we choose a shorter path π
in H of length m′ for the adaptation procedure. Then, for every position j � m′,
we define the reachable switching set Pπ

j as an empty set and proceed as usual.

4.2 Discussion

The construction of the initial lha (line 1 in Algorithm 1) can be modified
to clustering pieces with similar slopes. This can help reducing the number of
modes in the initial automaton, but does not guarantee that the first pwl func-
tion f0 is ε-captured. To fix this, f0 can be included in the loop of Algorithm 1.

Algorithm 1 follows a local repair strategy, based on a single pwl function.
Thanks to this, the algorithm can be used in an online setting where new data
arrives after the algorithm has started. However, the resulting model is influenced

Membership-Based Synthesis of Linear Hybrid Automata 309

t
0 1 2 3

x

0

1

2

f3

P Q q0: ẋ = 1

x ∈ �[1, 3]�ε

q1: ẋ = 0

x ∈ �[0.5, 2]�ε

q∗: ẋ = −1

x ∈ �[0.5, 1.5]�ε

x ∈ �[2, 2]�ε

x ∈ �[1, 2]�ε

x ∈ �[1.5, 1.5]�ε

x ∈ �[0.5, 0.5]�ε

Fig. 4. Example describing the procedure Adapt(H, f, π, ε) for the lha H in Fig. 1
with respect to the 3-pwl function f = f3 and the path π = q1, q0, q1 and ε = 0.25. The
initial reachable switching set P π

0 is the projection of the set P on state x. Considering
the flows in q1 and q0, the next reachable switching set P π

1 is the projection of the set
Q on state x. Observe that from Q, using the flow of q1, the reachable switching set
P π
2 is empty. We thus add a new mode q∗ and obtain the new path π′ = q1, q

∗, q1.

by the order in which the algorithm processes the functions f ∈ F . In the
simple case that F only contains affine functions with the same slope, all models
resulting from different processing orders will consist of a single mode with the
same flow, and the invariant bounds differ by at most ε. Furthermore, for a
precision value ε = 0, the result is always order-independent.

We now discuss the restrictions of the models we obtain from Algorithm 1.
We did not include a set of initial states in our presentation, but the gener-
alization is straightforward. Our transitions do not include assignments, which
would make executions discontinuous. The usual assumption in many applica-
tion domains, e.g., life sciences, is that the underlying system is continuous, so
having assignments would not be desirable. In the setting where the input is
given as time-series data, discrete events would typically be approximated by
steep slopes in the pwl function. In the setting where the input is given as dis-
continuous pwl functions f , in order to ε-capture f , one would generally require
that the automaton switches synchronously with f (cf. Sect. 3.1), instead of asyn-
chronous switching as in our algorithm. Under this additional assumption, we
can pose the procedures Membership and RelaxPath as a single linear pro-
gram (similar to formula φf,ε). This linear program can also be used to identify
assignments.

The continuous dynamics of our models are defined by constant differential
equations. As mentioned before, this class generally suffices to approximate an
arbitrary continuous function (by increasing the number of modes). An exten-
sion of our approach to use polyhedral differential inclusions (also called linear
envelopes) is by merging modes of “similar” dynamics. This may, however, lead
to the dilemma that several modes are equally similar.

4.3 Theoretical Properties of the Membership-based Synthesis

The following theorem asserts that Algorithm 1 solves Problem 3.

310 M. Garćıa Soto et al.

Theorem 2 (Soundness and precision). Given a finite set of pwl functions
F and a value ε ∈ R�0, let H be an automaton resulting from Synthesis(F , ε).
Then H both ε-captures all functions in F and is ε-precise with respect to F .

Algorithm 1 satisfies a completeness property in the following sense. For every
model H from a certain class we can find a set F of pwl functions and a value
ε such that Synthesis(F , ε) results in H. Before we can characterize the class
of models, we first need to introduce some terminology.

Definition 11. Let q ∈ Q be a mode with invariant X = Inv(q) and flow
Flow(q). We call a continuous state x2 ∈ X forward reachable in q if there
is a continuous state x1 ∈ X such that x2 is reachable from x1 by just letting
time pass, i.e., ∃t > 0 : x2 = x1 + Flow(q) · t. Analogously, we call state x2 ∈ X
backward reachable in q if there is a state x1 ∈ X such that x2 is reachable
from x1. A continuous state is dead in q if it is neither forward reachable nor
backward reachable in q.

We characterize the class of automata H = (Q,E,X,Flow, Inv,Grd) for which
the algorithm is complete by considering the following assumptions: (1) no invari-
ant contains a dead continuous state. Furthermore, if e = (q1, q2) is a transition,
then all continuous states in the guard Grd(e) are forward reachable in q1 and
backward reachable in q2, and (2) no two modes have the same slope �

Roughly speaking, Assumption (1) asserts that, after every switch, an exe-
cution can stay in the new mode for a positive amount of time.

Theorem 3 (Completeness). Given an lha H satisfying Assumptions (1)
and (2), there exist pwl functions F such that Synthesis(F , 0) results in H.

5 Experimental Results

In this section, we present the experiments used to evaluate our algorithm. The
algorithm was implemented in Python and relies on the standard scientific com-
putation packages. For the computations involving polyhedra we used the pplpy
wrapper to the Parma Polyhedra Library [4].

Case Study: Online Synthesis. We evaluate the precision of our algorithm by
collecting data from the executions of existing linear hybrid automata. For each
given automaton, we randomly sample ten executions and pass them to our algo-
rithm, which then constructs a new model. After that, we run our algorithm with
another 90 executions, but we reuse the intermediate model, thus demonstrating
the online feature of the algorithm. We show the different models for two hand-
crafted examples in Table 1. We tried both sampling from random states and
from a fixed state. The examples show the latter case, which makes sampling
the complete state-space and thus learning a precise model harder.

The first example contains a sink with two incoming transitions, which
requires at least two simulations to observe both transitions. Consequently, the
algorithm had to make use of the adaptation step at least once to add one of the

Membership-Based Synthesis of Linear Hybrid Automata 311

Table 1. Synthesis results for two automaton models. The original model is shown in
blue. The synthesis result after 10 iterations is shown in bright red, and after another 90
iterations in dark red. On the bottom left we show three sample executions starting from
the same point (top: original model, bottom: synthesized model after 100 iterations).
We used ε = 0.2 in all cases. Numbers are rounded to two places.

ẋ = 1
x ∈ [0, 10]

ẋ = −1

x ∈ [0, 10]

ẋ = 0
x ∈ [5, 7]

x ∈ [5, 10]

x ∈ [6, 7]

x ∈ [0, 5]

x ∈ [5, 6]

ẋ = 1
x ∈ [1.58, 9.02]

ẋ = −1

x ∈ [1.45, 9.02]

ẋ = 0
x ∈ [5.17, 7.13]

x ∈ [5.55, 9.02]

x ∈ [6.31, 7.13]

x ∈ [1.58, 5.06]

x ∈ [5.17, 5.58]

ẋ = 1
x ∈ [0.58, 9.80]

ẋ = −1

x ∈ [0.48, 9.80]

ẋ = 0
x ∈ [4.97, 7.13]

x ∈ [5.11, 9.80]

x ∈ [5.86, 7.13]

x ∈ [0.58, 5.06]

x ∈ [4.97, 6.02]

ẋ = 2
x ∈ [0, 10]

ẋ = −1

x ∈ [0, 10]

ẋ = 1
x ∈ [0, 10]

ẋ = −2

x ∈ [0, 10]

x ∈ [5, 10]
x ∈ [0, 2]

x ∈ [3, 7] x ∈ [3, 7]

x ∈ [8, 10]
x ∈ [0, 5]

ẋ = 2
x ∈ [0.43, 9.87]

ẋ = −1

x ∈ [0.43, 9.87]

ẋ = 1
x ∈ [−0.09, 9.32]

ẋ = −2

x ∈ [−0.09, 9.81]

x ∈ [4.85, 9.87]
x ∈ [0.43, 1.31]

x ∈ [4.02, 6.03] x ∈ [5.04, 6.18]

x ∈ [7.85, 9.81]
x ∈ [−0.09, 1.83]

ẋ = 2
x ∈ [−0.10, 9.87]

ẋ = −1

x ∈ [−0.10, 9.87]

ẋ = 1
x ∈ [−0.09, 10.14]

ẋ = −2

x ∈ [−0.09, 10.14]

x ∈ [4.85, 10.18]
x ∈ [−0.10, 2.12]

x ∈ [3.14, 7.00] x ∈ [2.82, 6.79]

x ∈ [7.85, 10.14]
x ∈ [−0.09, 4.32]

transitions. In the second example, some parts of the state-space are explored
less frequently by the sampled executions. Hence the first model obtained after
ten iterations does not represent all behavior of the original model yet. After
the additional 90 iterations, the remaining parts of the state space have been
visited, which is reflected in the precise bounds of the resulting model. In the
table, we also show three sample executions from both the original and the final
synthesized automaton to illustrate the similarity in the dynamical behavior.

312 M. Garćıa Soto et al.

ẋ = 0.00
x ∈ [−76.04, −73.92]

ẋ = 130.02
x ∈ [−76.04, 46.02]

ẋ = −2.13

x ∈ [−76.04, −4.00]

ẋ = −0.76

x ∈ [−6.05, 36.02]

ẋ = −1.52

x ∈ [33.79, 46.02]

x ∈ [−76.04, −73.92]

x ∈ [43.96, 46.02]
x ∈ [33.79, 36.02]

x ∈ [−6.05, −4.00]

x ∈ [−76.04, −73.92]

Fig. 5. Results for the cell model. Top: synthesized model using our algorithm. Bottom:
three input traces (left) and random simulations of the synthesized model (right).

Case Study: Cell Model. For our case study we synthesize a hybrid automaton
from voltage traces of excitable cells. Excitable cells are an important class of
cells comprising neurons, cardiac cells, and other muscle cells. The main property
of excitable cells is that they exhibit electrical activity which in the case of
neurons enables signal transmission and in the case of muscle cells allows them
to contract. The excitation signal usually follows distinct dynamics called action
potential. Grosu et al. construct a cyclic-linear hybrid automaton from action-
potential traces of cardiac cells [8]. In their model they identify six modes, two
of which exhibit the same dynamics and are just used to model an input signal.

Our algorithm successfully synthesizes a model, depicted in Fig. 5, consisting
of five modes that roughly match the normal phases of an action potential. We
evaluate the quality of the synthesized model by simulating random executions
and visually comparing to the original data (see the bottom of Fig. 5).

6 Conclusion

In this paper we have presented two fully automatic approaches to synthesize a
linear hybrid automaton from data. As key features, the synthesized automaton
captures the data up to a user-defined bound and is tight. Moreover, the online
feature of the membership-based approach allows to combine the approach with
alternative synthesis techniques, e.g., for constructing initial models.

A future line of work is to design a methodology for identification of weak
generalizations in the model, and use them for driving the experiments and, in
consequence, adjusting the model. We would first synthesize a model as before,
but then identify the aspects of the model that are least substantiated by the

Membership-Based Synthesis of Linear Hybrid Automata 313

data (e.g., areas in the state space or specific sequences in the executions). Then
we would query the system for data about those aspects, and repair the model
accordingly. As another line of work, we plan to extend the approach to go
from dynamics defined by piecewise-constant differential equations toward linear
envelopes. Our approach can be seen as a generalization, to lha, of Angluin’s
algorithm for constructing a finite-state machine from finite traces [3], and we
plan to pursue this connection further.

References

1. Alur, R., Courcoubetis, C., Henzinger, T.A., Ho, P.-H.: Hybrid automata: an
algorithmic approach to the specification and verification of hybrid systems. In:
Grossman, R.L., Nerode, A., Ravn, A.P., Rischel, H. (eds.) HS 1991-1992. LNCS,
vol. 736, pp. 209–229. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-
57318-6 30

2. Alur, R., Kurshan, R.P., Viswanathan, M.: Membership questions for timed and
hybrid automata. In: RTSS, pp. 254–263. IEEE Computer Society (1998). https://
doi.org/10.1109/REAL.1998.739751

3. Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput.
75(2), 87–106 (1987). https://doi.org/10.1016/0890-5401(87)90052-6

4. Bagnara, R., Hill, P.M., Zaffanella, E.: The Parma Polyhedra Library: toward a
complete set of numerical abstractions for the analysis and verification of hardware
and software systems. Sci. Comput. Program. 72(1–2), 3–21 (2008). https://doi.
org/10.1016/j.scico.2007.08.001

5. Bemporad, A., Garulli, A., Paoletti, S., Vicino, A.: A bounded-error approach to
piecewise affine system identification. IEEE Trans. Autom. Control 50(10), 1567–
1580 (2005). https://doi.org/10.1109/TAC.2005.856667

6. Douglas, D.H., Peucker, T.K.: Algorithms for the reduction of the number of points
required to represent a digitized line or its caricature. Cartographica 10(2), 112–
122 (1973)

7. Garulli, A., Paoletti, S., Vicino, A.: A survey on switched and piecewise affine
system identification. IFAC Proc. Vol. 45(16), 344–355 (2012). https://doi.org/10.
3182/20120711-3-BE-2027.00332

8. Grosu, R., Mitra, S., Ye, P., Entcheva, E., Ramakrishnan, I.V., Smolka, S.A.:
Learning cycle-linear hybrid automata for excitable cells. In: Bemporad, A., Bic-
chi, A., Buttazzo, G. (eds.) HSCC 2007. LNCS, vol. 4416, pp. 245–258. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-71493-4 21

9. Hakimi, S.L., Schmeichel, E.F.: Fitting polygonal functions to a set of points in
the plane. CVGIP Graph. Model. Image Process. 53(2), 132–136 (1991). https://
doi.org/10.1016/1049-9652(91)90056-P

10. Hashambhoy, Y., Vidal, R.: Recursive identification of switched ARX models with
unknown number of models and unknown orders. In: CDC, pp. 6115–6121 (2005).
https://doi.org/10.1109/CDC.2005.1583140

11. Henzinger, T.A.: The theory of hybrid automata. In: Inan, M.K., Kurshan, R.P.
(eds.) Verification of Digital and Hybrid Systems. NATO ASI Series (Series
F: Computer and Systems Sciences), vol. 170, pp. 265–292. Springer, Berlin,
Heidelberg (2000). https://doi.org/10.1007/978-3-642-59615-5 13

https://doi.org/10.1007/3-540-57318-6_30
https://doi.org/10.1007/3-540-57318-6_30
https://doi.org/10.1109/REAL.1998.739751
https://doi.org/10.1109/REAL.1998.739751
https://doi.org/10.1016/0890-5401(87)90052-6
https://doi.org/10.1016/j.scico.2007.08.001
https://doi.org/10.1016/j.scico.2007.08.001
https://doi.org/10.1109/TAC.2005.856667
https://doi.org/10.3182/20120711-3-BE-2027.00332
https://doi.org/10.3182/20120711-3-BE-2027.00332
https://doi.org/10.1007/978-3-540-71493-4_21
https://doi.org/10.1016/1049-9652(91)90056-P
https://doi.org/10.1016/1049-9652(91)90056-P
https://doi.org/10.1109/CDC.2005.1583140
https://doi.org/10.1007/978-3-642-59615-5_13

314 M. Garćıa Soto et al.

12. Lamrani, I., Banerjee, A., Gupta, S.K.S.: HyMn: mining linear hybrid automata
from input output traces of cyber-physical systems. In: ICPS, pp. 264–269. IEEE
(2018). https://doi.org/10.1109/ICPHYS.2018.8387670

13. Liberzon, D.: Switching in Systems and Control. Birkhäuser, Boston (2003).
https://doi.org/10.1007/978-1-4612-0017-8

14. Ly, D.L., Lipson, H.: Learning symbolic representations of hybrid dynamical sys-
tems. JMLR 13, 3585–3618 (2012). http://dl.acm.org/citation.cfm?id=2503356

15. Medhat, R., Ramesh, S., Bonakdarpour, B., Fischmeister, S.: A framework for
mining hybrid automata from input/output traces. In: EMSOFT, pp. 177–186.
IEEE (2015). https://doi.org/10.1109/EMSOFT.2015.7318273

16. Niggemann, O., Stein, B., Vodencarevic, A., Maier, A., Kleine Büning, H.: Learning
behavior models for hybrid timed systems. In: AAAI. AAAI Press (2012). http://
www.aaai.org/ocs/index.php/AAAI/AAAI12/paper/view/4993

17. Ozay, N.: An exact and efficient algorithm for segmentation of ARX models. In:
ACC, pp. 38–41. IEEE (2016). https://doi.org/10.1109/ACC.2016.7524888

18. Paoletti, S., Juloski, A.L., Ferrari-Trecate, G., Vidal, R.: Identification of hybrid
systems: a tutorial. Eur. J. Control 13(2–3), 242–260 (2007). https://doi.org/10.
3166/ejc.13.242-260

19. Skeppstedt, A., Lennart, L., Millnert, M.: Construction of composite models from
observed data. Int. J. Control 55(1), 141–152 (1992). https://doi.org/10.1080/
00207179208934230

20. Summerville, A., Osborn, J.C., Mateas, M.: CHARDA: causal hybrid automata
recovery via dynamic analysis. In: IJCAI, pp. 2800–2806. ijcai.org (2017). https://
doi.org/10.24963/ijcai.2017/390

21. Verwer, S.: Efficient identification of timed automata: theory and practice. Ph.D.
thesis, Delft University of Technology, Netherlands (2010). http://resolver.tudelft.
nl/uuid:61d9f199-7b01-45be-a6ed-04498113a212

22. Vidal, R., Anderson, B.D.O.: Recursive identification of switched ARX hybrid
models: exponential convergence and persistence of excitation. In: CDC, vol. 1,
pp. 32–37 (2004). https://doi.org/10.1109/CDC.2004.1428602

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1109/ICPHYS.2018.8387670
https://doi.org/10.1007/978-1-4612-0017-8
http://dl.acm.org/citation.cfm?id=2503356
https://doi.org/10.1109/EMSOFT.2015.7318273
http://www.aaai.org/ocs/index.php/AAAI/AAAI12/paper/view/4993
http://www.aaai.org/ocs/index.php/AAAI/AAAI12/paper/view/4993
https://doi.org/10.1109/ACC.2016.7524888
https://doi.org/10.3166/ejc.13.242-260
https://doi.org/10.3166/ejc.13.242-260
https://doi.org/10.1080/00207179208934230
https://doi.org/10.1080/00207179208934230
https://doi.org/10.24963/ijcai.2017/390
https://doi.org/10.24963/ijcai.2017/390
http://resolver.tudelft.nl/uuid:61d9f199-7b01-45be-a6ed-04498113a212
http://resolver.tudelft.nl/uuid:61d9f199-7b01-45be-a6ed-04498113a212
https://doi.org/10.1109/CDC.2004.1428602
http://creativecommons.org/licenses/by/4.0/

Overfitting in Synthesis: Theory
and Practice

Saswat Padhi1(B), Todd Millstein1, Aditya Nori2, and Rahul Sharma3

1 University of California, Los Angeles, USA
{padhi,todd}@cs.ucla.edu

2 Microsoft Research, Cambridge, UK
adityan@microsoft.com

3 Microsoft Research, Bengaluru, India
rahsha@microsoft.com

Abstract. In syntax-guided synthesis (SyGuS), a synthesizer’s goal is
to automatically generate a program belonging to a grammar of possi-
ble implementations that meets a logical specification. We investigate
a common limitation across state-of-the-art SyGuS tools that perform
counterexample-guided inductive synthesis (CEGIS). We empirically
observe that as the expressiveness of the provided grammar increases,
the performance of these tools degrades significantly.

We claim that this degradation is not only due to a larger search
space, but also due to overfitting. We formally define this phenomenon
and prove no-free-lunch theorems for SyGuS, which reveal a fundamental
tradeoff between synthesizer performance and grammar expressiveness.

A standard approach to mitigate overfitting in machine learning is to
run multiple learners with varying expressiveness in parallel. We demon-
strate that this insight can immediately benefit existing SyGuS tools.
We also propose a novel single-threaded technique called hybrid enumer-
ation that interleaves different grammars and outperforms the winner
of the 2018 SyGuS competition (Inv track), solving more problems and
achieving a 5× mean speedup.

1 Introduction

The syntax-guided synthesis (SyGuS) framework [3] provides a unified format to
describe a program synthesis problem by supplying (1) a logical specification for
the desired functionality, and (2) a grammar of allowed implementations. Given
these two inputs, a SyGuS tool searches through the programs that are permitted
by the grammar to generate one that meets the specification. Today, SyGuS is at
the core of several state-of-the-art program synthesizers [5,14,23,24,29], many
of which compete annually in the SyGuS competition [1,4].

We demonstrate empirically that five state-of-the-art SyGuS tools are very
sensitive to the choice of grammar. Increasing grammar expressiveness allows the
tools to solve some problems that are unsolvable with less-expressive grammars.
However, it also causes them to fail on many problems that the tools are able
to solve with a less expressive grammar. We analyze the latter behavior both

S. Padhi—Contributed during an internship at Microsoft Research, India.
c© The Author(s) 2019
I. Dillig and S. Tasiran (Eds.): CAV 2019, LNCS 11561, pp. 315–334, 2019.
https://doi.org/10.1007/978-3-030-25540-4_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-25540-4_17&domain=pdf
https://doi.org/10.1007/978-3-030-25540-4_17

316 S. Padhi et al.

theoretically and empirically and present techniques that make existing tools
much more robust in the face of increasing grammar expressiveness.

We restrict our investigation to a widely used approach [6] to SyGuS called
counterexample-guided inductive synthesis (CEGIS) [37, §5]. In this approach,
the synthesizer is composed of a learner and an oracle. The learner iteratively
identifies a candidate program that is consistent with a given set of examples (ini-
tially empty) and queries the oracle to either prove that the program is correct,
i.e., meets the given specification, or obtain a counterexample that demonstrates
that the program does not meet the specification. The counterexample is added
to the set of examples for the next iteration. The iterations continue until a
correct program is found or resource/time budgets are exhausted.

Overfitting. To better understand the observed performance degradation, we
instrumented one of these SyGuS tools (Sect. 2.2). We empirically observe that
for a large number of problems, the performance degradation on increasing gram-
mar expressiveness is often accompanied by a significant increase in the number
of counterexamples required. Intuitively, as grammar expressiveness increases so
does the number of spurious candidate programs, which satisfy a given set of
examples but violate the specification. If the learner picks such a candidate, then
the oracle generates a counterexample, the learner searches again, and so on.

In other words, increasing grammar expressiveness increases the chances for
overfitting, a well-known phenomenon in machine learning (ML). Overfitting
occurs when a learned function explains a given set of observations but does not
generalize correctly beyond it. Since SyGuS is indeed a form of function learning,
it is perhaps not surprising that it is prone to overfitting. However, we identify
its specific source in the context of SyGuS—the spurious candidates induced by
increasing grammar expressiveness—and show that it is a significant problem
in practice. We formally define the potential for overfitting (Ω), in Definition 7,
which captures the number of spurious candidates.

No Free Lunch. In the ML community, this tradeoff between expressiveness
and overfitting has been formalized for various settings as no-free-lunch (NFL)
theorems [34, §5.1]. Intuitively such a theorem says that for every learner there
exists a function that cannot be efficiently learned, where efficiency is defined by
the number of examples required. We have proven corresponding NFL theorems
for the CEGIS-based SyGuS setting (Theorems 1 and 2).

A key difference between the ML and SyGuS settings is the notion of
m-learnability. In the ML setting, the learned function may differ from the true
function, as long as this difference (expressed as an error probability) is rela-
tively small. However, because the learner is allowed to make errors, it is in turn
required to learn given an arbitrary set of m examples (drawn from some dis-
tribution). In contrast, the SyGuS learning setting is all-or-nothing—either the
tool synthesizes a program that meets the given specification or it fails. There-
fore, it would be overly strong to require the learner to handle an arbitrary set
of examples.

Overfitting in Synthesis: Theory and Practice 317

Instead, we define a much weaker notion of m-learnability for SyGuS, which
only requires that there exist a set of m examples for which the learner succeeds.
Yet, our NFL theorem shows that even this weak notion of learnability can always
be thwarted: given an integer m ≥ 0 and an expressive enough (as a function
of m) grammar, for every learner there exists a SyGuS problem that cannot be
learned without access to more than m examples. We also prove that overfitting
is inevitable with an expressive enough grammar (Theorems 3 and 4) and that
the potential for overfitting increases with grammar expressiveness (Theorem 5).

Mitigating Overfitting. Inspired by ensemble methods [13] in ML, which aggre-
gate results from multiple learners to combat overfitting (and underfitting), we
propose PLearn—a black-box framework that runs multiple parallel instances
of a SyGuS tool with different grammars. Although prior SyGuS tools run mul-
tiple instances of learners with different random seeds [7,20], to our knowledge,
this is the first proposal to explore multiple grammars as a means to improve
the performance of SyGuS. Our experiments indicate that PLearn significantly
improves the performance of five state-of-the-art SyGuS tools—CVC4 [7,33],
EUSolver [5], LoopInvGen [29], SketchAC [20,37], and Stoch [3, III F].

However, running parallel instances of a synthesizer is computationally
expensive. Hence, we also devise a white-box approach, called hybrid enumera-
tion, that extends the enumerative synthesis technique [2] to efficiently interleave
exploration of multiple grammars in a single SyGuS instance. We implement
hybrid enumeration within LoopInvGen1 and show that the resulting single-
threaded learner, LoopInvGen+HE, has negligible overhead but achieves per-
formance comparable to that of PLearn for LoopInvGen. Moreover, LoopIn-
vGen+HE significantly outperforms the winner [28] of the invariant-synthesis
(Inv) track of 2018 SyGuS competition [4]—a variant of LoopInvGen specifi-
cally tuned for the competition—including a 5× mean speedup and solving two
SyGuS problems that no tool in the competition could solve.

Contributions. In summary, we present the following contributions:

(Section 2) We empirically observe that, in many cases, increasing grammar
expressiveness degrades performance of existing SyGuS tools due to over-
fitting.

(Section 3) We formally define overfitting and prove no-free-lunch theorems for
the SyGuS setting, which indicate that overfitting with increasing grammar
expressiveness is a fundamental characteristic of SyGuS.

(Section 4) We propose two mitigation strategies – (1) a black-box technique
that runs multiple parallel instances of a synthesizer, each with a different
grammar, and (2) a single-threaded enumerative technique, called hybrid enu-
meration, that interleaves exploration of multiple grammars.

(Section 5) We show that incorporating these mitigating measures in existing
tools significantly improves their performance.

1 Our implementation is available at https://github.com/SaswatPadhi/LoopInvGen.

https://github.com/SaswatPadhi/LoopInvGen

318 S. Padhi et al.

2 Motivation

In this section, we first present empirical evidence that existing SyGuS tools are
sensitive to changes in grammar expressiveness. Specifically, we demonstrate that
as we increase the expressiveness of the provided grammar, every tool starts fail-
ing on some benchmarks that it was able to solve with less-expressive grammars.
We then investigate one of these tools in detail.

2.1 Grammar Sensitivity of SyGuS Tools

We evaluated 5 state-of-the-art SyGuS tools that use very different techniques:

– SketchAC [20] extends the Sketch synthesis system [37] by combining both
explicit and symbolic search techniques.

– Stoch [3, III F] performs a stochastic search for solutions.
– EUSolver [5] combines enumeration with unification strategies.
– Reynolds et al. [33] extend CVC4 [7] with a refutation-based approach.
– LoopInvGen [29] combines enumeration and Boolean function learning.

Fig. 1. Grammars of quantifier-free predi-
cates over integers (We use the |=+ operator
to append new rules to previously defined
nonterminals.)

We ran these five tools on 180
invariant-synthesis benchmarks, which
we describe in Sect. 5. We ran the
benchmarks with each of the six
grammars of quantifier-free predi-
cates, which are shown in Fig. 1.
These grammars correspond to widely
used abstract domains in the analy-
sis of integer-manipulating programs—
Equalities, Intervals [11], Octagons [25],
Polyhedra [12], algebraic expressions
(Polynomials) and arbitrary integer
arithmetic (Peano) [30]. The *S opera-
tor denotes scalar multiplication, e.g.,
(*S 2 x), and *N denotes nonlinear mul-
tiplication, e.g., (*N x y).

In Fig. 2, we report our findings
on running each benchmark on each
tool with each grammar, with a 30-
minute wall-clock timeout. For each
〈tool, grammar〉 pair, the y-axis shows
the number of failing benchmarks that the same tool is able to solve with a less-
expressive grammar. We observe that, for each tool, the number of such failures
increases with the grammar expressiveness. For instance, introducing the scalar
multiplication operator (*S) causes CVC4 to fail on 21 benchmarks that it is
able to solve with Equalities (4/21), Intervals (18/21), or Octagons (10/21). Similarly,
adding nonlinear multiplication causes LoopInvGen to fail on 10 benchmarks
that it can solve with a less-expressive grammar.

Overfitting in Synthesis: Theory and Practice 319

Fig. 2. For each grammar, each tool, the ordinate shows the number of benchmarks
that fail with the grammar but are solvable with a less-expressive grammar.

Fig. 3. Observed correlation between synthesis time and number of rounds, upon
increasing grammar expressiveness, with LoopInvGen [29] on 180 benchmarks

2.2 Evidence for Overfitting

To better understand this phenomenon, we instrumented LoopInvGen [29] to
record the candidate expressions that it synthesizes and the number of CEGIS
iterations (called rounds henceforth). We compare each pair of successful runs
of each of our 180 benchmarks on distinct grammars.2 In 65% of such pairs, we
observe performance degradation with the more expressive grammar. We also
report the correlation between performance degradation and number of rounds
for the more expressive grammar in each pair in Fig. 3.

In 67% of the cases with degraded performance upon increased grammar
expressiveness, the number of rounds remains unaffected—indicating that this
slowdown is mainly due to a larger search space. However, there is significant evi-
dence of performance degradation due to overfitting as well. We note an increase
in the number of rounds for 27% of the cases with degraded performance. More-
over, we notice performance degradation in 79% of all cases that required more
rounds on increasing grammar expressiveness.

Thus, a more expressive grammar not only increases the search space, but also
makes it more likely for LoopInvGen to overfit—select a spurious expression,
which the oracle rejects with a counterexample, hence requiring more rounds. In
the remainder of this section, we demonstrate this overfitting phenomenon on
the verification problem shown in Fig. 4, an example by Gulwani and Jojic [17],
which is the fib_19 benchmark in the Inv track of SyGuS-Comp 2018 [4].

2 We ignore failing runs since they require an unknown number of rounds.

320 S. Padhi et al.

Fig. 4. The fib_19 benchmark [17]

For Fig. 4, we require an inductive
invariant that is strong enough to prove
that the assertion on line 6 always holds.
In the SyGuS setting, we need to synthe-
size a predicate I : Z

4 → B defined on a
symbolic state σ = 〈m,n, x, y〉, that satis-
fies ∀σ : ϕ(I, σ) for the specification ϕ:3

ϕ(I, σ)
def
=

(
0 ≤ n ∧ 0 ≤ m ≤ n ∧ x = 0 ∧ y = m

)
=⇒ I(σ) (precondition)

∧ ∀σ′ :
(
I(σ) ∧ T (σ, σ′)

)
=⇒ I(σ′) (inductiveness)

∧ (
x ≥ n ∧ I(σ)

)
=⇒ y = n (postcondition)

where σ′ = 〈m′, n′, x′, y′〉 denotes the new state after one iteration, and T is a
transition relation that describes the loop body:

T (σ, σ′) def
= (x < n) ∧ (x′ = x + 1) ∧ (m′ = m) ∧ (n′ = n)

∧ [
(x′ ≤ m ∧ y′ = y) ∨ (x′ > m ∧ y′ = y + 1)

]

Fig. 5. Performance of LoopInvGen [29] on the fib_19 benchmark (Fig. 4). In (b)
and (c), we show predicates generated at various rounds (numbered in bold).

In Fig. 5(a), we report the performance of LoopInvGen on fib_19 (Fig. 4)
with our six grammars (Fig. 1). It succeeds with all but the least-expressive
grammar. However, as grammar expressiveness increases, the number of rounds
increase significantly—from 19 rounds with Intervals to 88 rounds with Peano.

LoopInvGen converges to the exact same invariant with both Polyhedra and
Peano but requires 30 more rounds in the latter case. In Figs. 5(b) and (c), we
list some expressions synthesized with Polyhedra and Peano respectively. These
expressions are solutions to intermediate subproblems—the final loop invariant
is a conjunction of a subset of these expressions [29, §3.2]. Observe that the
expressions generated with the Peano grammar are quite complex and unlikely
to generalize well. Peano’s extra expressiveness leads to more spurious candidates,
increasing the chances of overfitting and making the benchmark harder to solve.
3 We use B, N, and Z to denote the sets of all Boolean values, all natural numbers

(positive integers), and all integers respectively.

Overfitting in Synthesis: Theory and Practice 321

3 SyGuS Overfitting in Theory

In this section, first we formalize the counterexample-guided inductive synthesis
(CEGIS) approach [37] to SyGuS, in which examples are iteratively provided
by a verification oracle. We then state and prove no-free-lunch theorems, which
show that there can be no optimal learner for this learning scheme. Finally, we
formalize a natural notion of overfitting for SyGuS and prove that the potential
for overfitting increases with grammar expressiveness.

3.1 Preliminaries

We borrow the formal definition of a SyGuS problem from prior work [3]:

Definition 1 (SyGuS Problem). Given a background theory T, a function
symbol f : X → Y , and constraints on f : (1) a semantic constraint, also called
a specification, φ(f, x) over the vocabulary of T along with f and a symbolic
input x, and (2) a syntactic constraint, also called a grammar, given by a (pos-
sibly infinite) set E of expressions over the vocabulary of the theory T; find an
expression e ∈ E such that the formula ∀x ∈ X : φ(e, x) is valid modulo T.

We denote this SyGuS problem as 〈fX→Y | φ, E〉
T

and say that it is satisfiable
iff there exists such an expression e, i.e., ∃ e ∈ E : ∀x ∈ X : φ(e, x). We call e a
satisfying expression for this problem, denoted as e |= 〈fX→Y | φ, E〉

T
.

Recall, we focus on a common class of SyGuS learners, namely those that
learn from examples. First we define the notion of input-output (IO) examples
that are consistent with a SyGuS specification:

Definition 2 (Input-Output Example). Given a specification φ defined on
f : X → Y over a background theory T, we call a pair 〈x, y〉 ∈ X × Y an input-
output (IO) example for φ, denoted as 〈x, y〉 �≈ T φ iff it is satisfied by some valid
interpretation of f within T, i.e.,

〈x, y〉 �≈ T φ
def= ∃ e∗ ∈ T : e∗(x) = y ∧ (

∀x ∈ X : φ(e∗, x)
)

The next two definitions respectively formalize the two key components of a
CEGIS-based SyGuS tool: the verification oracle and the learner.

Definition 3 (Verification Oracle). Given a specification φ defined on a
function f : X → Y over theory T, a verification oracle Oφ is a partial func-
tion that given an expression e, either returns ⊥ indicating ∀x ∈ X : φ(e, x)
holds, or gives a counterexample 〈x, y〉 against e, denoted as e �×φ 〈x, y〉, such
that

e �×φ 〈x, y〉 def= ¬φ(e, x) ∧ e(x) �= y ∧ 〈x, y〉 �≈ T φ

We omit φ from the notations Oφ and �×φ when it is clear from the context.

322 S. Padhi et al.

Definition 4 (CEGIS-based Learner). A CEGIS-based learner LO(q, E) is
a partial function that given an integer q ≥ 0, a set E of expressions, and access
to an oracle O for a specification φ defined on f : X → Y , queries O at most q
times and either fails with ⊥ or generates an expression e ∈ E. The trace

[
e0 �× 〈x0, y0〉, . . . , ep−1 �× 〈xp−1, yp−1〉, ep

]
where 0 ≤ p ≤ q

summarizes the interaction between the oracle and the learner. Each ei denotes
the ith candidate for f and 〈xi, yi〉 is a counterexample ei, i.e.,

(
∀j < i : ei(xj) = yj ∧ φ(ei, xj)

) ∧ (
ei �×φ 〈xi, yi〉

)

Note that we have defined oracles and learners as (partial) functions, and
hence as deterministic. In practice, many SyGuS tools are deterministic and this
assumption simplifies the subsequent theorems. However, we expect that these
theorems can be appropriately generalized to randomized oracles and learners.

3.2 Learnability and No Free Lunch

In the machine learning (ML) community, the limits of learning have been for-
malized for various settings as no-free-lunch theorems [34, §5.1]. Here, we provide
a natural form of such theorems for CEGIS-based SyGuS learning.

In SyGuS, the learned function must conform to the given grammar, which
may not be fully expressive. Therefore we first formalize grammar expressiveness:

Definition 5 (k-Expressiveness). Given a domain X and range Y , a gram-
mar E is said to be k-expressive iff E can express exactly k distinct X → Y
functions.

A key difference from the ML setting is our notion of m-learnability, which
formalizes the number of examples that a learner requires in order to learn a
desired function. In the ML setting, a function is considered to m-learnable by a
learner if it can be learned using an arbitrary set of m i.i.d. examples (drawn from
some distribution). This makes sense in the ML setting since the learned function
is allowed to make errors (up to some given bound on the error probability), but
it is much too strong for the all-or-nothing SyGuS setting.

Instead, we define a much weaker notion of m-learnability for CEGIS-based
SyGuS, which only requires that there exist a set of m examples that allows the
learner to succeed. The following definition formalizes this notion.

Definition 6 (CEGIS-based m-Learnability). Given a SyGuS problem S =
〈fX→Y | φ, E〉

T
and an integer m ≥ 0, we say that S is m-learnable by a CEGIS-

based learner L iff there exists a verification oracle O under which L can learn a
satisfying expression for S with at most m queries to O, i.e., ∃O : LO(m, E) |= S.

Finally we state and prove the no-free-lunch (NFL) theorems, which make
explicit the tradeoff between grammar expressiveness and learnability. Intu-
itively, given an integer m and an expressive enough (as a function of m) gram-
mar, for every learner there exists a SyGuS problem that cannot be solved with-
out access to at least m + 1 examples. This is true despite our weak notion of
learnability.

Overfitting in Synthesis: Theory and Practice 323

Put another way, as grammar expressiveness increases, so does the number
of examples required for learning. On one extreme, if the given grammar is
1-expressive, i.e., can express exactly one function, then all satisfiable SyGuS
problems are 0-learnable—no examples are needed because there is only one
function to learn—but there are many SyGuS problems that cannot be satisfied
by this function. On the other extreme, if the grammar is |Y ||X|-expressive, i.e.,
can express all functions from X to Y , then for every learner there exists a
SyGuS problem that requires all |X| examples in order to be solved.

Below we first present the NFL theorem for the case when the domain X
and range Y are finite. We then generalize to the case when these sets may
be countably infinite. We provide the proofs of these theorems in the extended
version of this paper [27, Appendix A.1].

Theorem 1 (NFL in CEGIS-based SyGuS on Finite Sets). Let X and Y
be two arbitrary finite sets, T be a theory that supports equality, E be a grammar
over T, and m be an integer such that 0 ≤ m < |X|. Then, either:

– E is not k-expressive for any k >
∑m

i=0
|X|! |Y |i
(|X| − i)!

, or
– for every CEGIS-based learner L, there exists a satisfiable SyGuS problem

S = 〈fX→Y | φ, E〉
T
such that S is not m-learnable by L. Moreover, there exists

a different CEGIS-based learner for which S is m-learnable.

Theorem 2 (NFL in CEGIS-based SyGuS on Countably Infinite Sets).
Let X be an arbitrary countably infinite set, Y be an arbitrary finite or countably
infinite set, T be a theory that supports equality, E be a grammar over T, and m
be an integer such that m ≥ 0. Then, either:

– E is not k-expressive for any k > ℵ0, where ℵ0
def= |N|, or

– for every CEGIS-based learner L, there exists a satisfiable SyGuS problem
S = 〈fX→Y | φ, E〉

T
such that S is not m-learnable by L. Moreover, there exists

a different CEGIS-based learner for which S is m-learnable.

3.3 Overfitting

Last, we relate the above theory to the notion of overfitting from ML. In the
context of SyGuS, overfitting can potentially occur whenever there are multiple
candidate expressions that are consistent with a given set of examples. Some of
these expressions may not generalize to satisfy the specification, but the learner
has no way to distinguish among them (using just the given set of examples) and
so can “guess” incorrectly. We formalize this idea through the following measure:

Definition 7 (Potential for Overfitting). Given a problem S =
〈fX→Y | φ, E〉

T
and a set Z of IO examples for φ, we define the potential for

overfitting Ω as the number of expressions in E that are consistent with Z but
do not satisfy S, i.e.,

Ω(S, Z) def=

{∣
∣{e ∈ E | e �|= S ∧ ∀〈x, y〉 ∈ Z : e(x) = y

}∣
∣ ∀z ∈ Z : z �≈ T φ

⊥ (undefined) otherwise

324 S. Padhi et al.

Intuitively, a zero potential for overfitting means that overfitting is not pos-
sible on the given problem with respect to the given set of examples, because
there is no spurious candidate. A positive potential for overfitting means that
overfitting is possible, and higher values imply more spurious candidates and
hence more potential for a learner to choose the “wrong” expression.

The following theorems connect our notion of overfitting to the earlier NFL
theorems by showing that overfitting is inevitable with an expressive enough
grammar. The proofs of these theorems can be found in the extended version of
this paper [27, Appendix A.2].

Theorem 3 (Overfitting in SyGuS on Finite Sets). Let X and Y be two
arbitrary finite sets, m be an integer such that 0 ≤ m < |X|, T be a theory
that supports equality, and E be a k-expressive grammar over T for some k >
|X|! |Y |m

m! (|X| −m)!
. Then, there exists a satisfiable SyGuS problem S = 〈fX→Y | φ, E〉

T

such that Ω(S, Z) > 0, for every set Z of m IO examples for φ.

Theorem 4 (Overfitting in SyGuS on Countably Infinite Sets). Let X
be an arbitrary countably infinite set, Y be an arbitrary finite or countably infinite
set, T be a theory that supports equality, and E be a k-expressive grammar over T

for some k > ℵ0. Then, there exists a satisfiable SyGuS problem S = 〈fX→Y | φ, E〉
T

such that Ω(S, Z) > 0, for every set Z of m IO examples for φ.

Finally, it is straightforward to show that as the expressiveness of the gram-
mar provided in a SyGuS problem increases, so does its potential for overfitting.

Theorem 5 (Overfitting Increases with Expressiveness). Let X and Y
be two arbitrary sets, T be an arbitrary theory, E1 and E2 be grammars over T

such that E1 ⊆ E2, φ be an arbitrary specification over T and a function symbol
f : X → Y , and Z be a set of IO examples for φ. Then, we have

Ω
(
〈fX→Y | φ, E1〉 T

, Z
)

≤ Ω
(
〈fX→Y | φ, E2〉 T

, Z
)

4 Mitigating Overfitting

Ensemble methods [13] in machine learning (ML) are a standard approach to
reduce overfitting. These methods aggregate predictions from several learners to
make a more accurate prediction. In this section we propose two approaches,
inspired by ensemble methods in ML, for mitigating overfitting in SyGuS. Both
are based on the key insight from Sect. 3.3 that synthesis over a subgrammar has
a smaller potential for overfitting as compared to that over the original grammar.

4.1 Parallel SyGuS on Multiple Grammars

Our first idea is to run multiple parallel instances of a synthesizer on the same
SyGuS problem but with grammars of varying expressiveness. This framework,
called PLearn, is outlined in Algorithm1. It accepts a synthesis tool T , a SyGuS

Overfitting in Synthesis: Theory and Practice 325

Algorithm 1. The PLearn framework for SyGuS tools.
1 func PLearn (T : Synthesis Tool, 〈fX→Y | φ, E〉

T
: Problem, E1...p : Subgrammars)

2 � Requires: ∀ Ei ∈ E1...p : Ei ⊆ E
3 parallel for i ← 1, . . . , p do
4 Si ← 〈fX→Y | φ, Ei〉

T

5 ei ← T (Si)

6 if ei �= ⊥ then return ei
7 return ⊥

problem 〈fX→Y | φ, E〉
T
, and subgrammars E1...p,4 such that Ei ⊆ E . The parallel

for construct creates a new thread for each iteration. The loop in PLearn
creates p copies of the SyGuS problem, each with a different grammar from E1...p,
and dispatches each copy to a new instance of the tool T . PLearn returns the
first solution found or ⊥ if none of the synthesizer instances succeed.

Since each grammar in E1...p is subsumed by the original grammar E , any
expression found by PLearn is a solution to the original SyGuS problem. More-
over, from Theorem5 it is immediate that PLearn indeed reduces overfitting.

Theorem 6 (PLearn Reduces Overfitting). Given a SyGuS problem S =
〈fX→Y | φ, E〉

T
, if PLearn is instantiated with S and subgrammars E1...p such that

∀ Ei ∈ E1...p : Ei ⊆ E, then for each Si = 〈fX→Y | φ, Ei〉 T
constructed by PLearn,

we have that Ω(Si, Z) ≤ Ω(S, Z) on any set Z of IO examples for φ.

A key advantage of PLearn is that it is agnostic to the synthesizer’s imple-
mentation. Therefore, existing SyGuS learners can immediately benefit from
PLearn, as we demonstrate in Sect. 5.1. However, running p parallel SyGuS
instances can be prohibitively expensive, both computationally and memory-
wise. The problem is worsened by the fact that many existing SyGuS tools
already use multiple threads, e.g., the SketchAC [20] tool spawns 9 threads.
This motivates our hybrid enumeration technique described next, which is a
novel synthesis algorithm that interleaves exploration of multiple grammars in
a single thread.

4.2 Hybrid Enumeration

Hybrid enumeration extends the enumerative synthesis technique, which enu-
merates expressions within a given grammar in order of size and returns the
first candidate that satisfies the given examples [2]. Our goal is to simulate
the behavior of PLearn with an enumerative synthesizer in a single thread.
However, a straightforward interleaving of multiple PLearn threads would be
highly inefficient because of redundancies – enumerating the same expression
(which is contained in multiple grammars) multiple times. Instead, we propose
a technique that (1) enumerates each expression at most once, and (2) reuses
previously enumerated expressions to construct larger expressions.
4 We use the shorthand X1,...,n to denote the sequence 〈X1, . . . , Xn〉.

326 S. Padhi et al.

To achieve this, we extend a widely used [2,15,31] synthesis strategy, called
component-based synthesis [21], wherein the grammar of expressions is induced
by a set of components, each of which is a typed operator with a fixed arity.
For example, the grammars shown in Fig. 1 are induced by integer components
(such as 1, +, mod, =, etc.) and Boolean components (such as true, and, or, etc.).
Below, we first formalize the grammar that is implicit in this synthesis style.

Definition 8 (Component-Based Grammar). Given a set C of typed com-
ponents, we define the component-based grammar E as the set of all expressions
formed by well-typed component application over C , i.e.,

E = { c(e1, . . . , ea) | (c : τ1 × · · · × τa → τ) ∈ C ∧ e1 . . . a ⊂ E
∧ e1 : τ1 ∧ · · · ∧ ea : τa }

where e : τ denotes that the expression e has type τ .

We denote the set of all components appearing in a component-based gram-
mar E as components(E). Henceforth, we assume that components(E) is known
(explicitly provided by the user) for each E . We also use values(E) to denote the
subset of nullary components (variables and constants) in components(E), and
operators(E) to denote the remaining components with positive arities.

The closure property of component-based grammars significantly reduces the
overhead of tracking which subexpressions can be combined together to form
larger expressions. Given a SyGuS problem over a grammar E , hybrid enumer-
ation requires a sequence E1...p of grammars such that each Ei is a component-
based grammar and that E1 ⊂ · · · ⊂ Ep ⊆ E . Next, we explain how the subset
relationship between the grammars enables efficient enumeration of expressions.

Given grammars E1 ⊂ · · · ⊂ Ep, observe that an expression of size k in Ei

may only contain subexpressions of size {1, . . . , (k − 1)} belonging to E1...i. This
allows us to enumerate expressions in an order such that each subexpression e is
synthesized (and cached) before any expressions that have e as a subexpression.
We call an enumeration order that ensures this property a well order.

Definition 9 (Well Order). Given arbitrary grammars E1...p, we say that a
strict partial order � on E1...p × N is a well order iff

∀ Ea, Eb ∈ E1...p : ∀ k1, k2 ∈ N : [Ea ⊆ Eb ∧ k1 < k2] =⇒ (Ea, k1) � (Eb, k2)

Motivated by Theorem 5, our implementation of hybrid enumeration uses a
particular well order that incrementally increases the expressiveness of the space
of expressions. For a rough measure of the expressiveness (Definition 5) of a pair
(E , k), i.e., the set of expressions of size k in a given grammar E , we simply
overapproximate the number of syntactically distinct expressions:

Theorem 7. Let E1...p be component-based grammars and Ci = components(Ei).
Then, the following strict partial order �∗ on E1...p × N is a well order

∀ Ea, Eb ∈ E1...p : ∀m,n ∈ N : (Ea,m) �∗ (Eb, n) ⇐⇒ |Ca |m < |Cb |n

Overfitting in Synthesis: Theory and Practice 327

We now describe the main hybrid enumeration algorithm, which is listed in
Algorithm2. The HEnum function accepts a SyGuS problem 〈fX→Y | φ, E〉

T
, a set

E1...p of component-based grammars such that E1 ⊂ · · · ⊂ Ep ⊆ E , a well order
�, and an upper bound q ≥ 0 on the size of expressions to enumerate. In lines
4–8, we first enumerate all values and cache them as expressions of size one. In
general C[j, k][τ] contains expressions of type τ and size k from Ej \Ej−1. In line
9 we sort (grammar, size) pairs in some total order consistent with �. Finally, in
lines 10–20, we iterate over each pair (Ej , k) and each operator from E1...j and
invoke the Divide procedure (Algorithm3) to carefully choose the operator’s
argument subexpressions ensuring (1) correctness – their sizes sum up to k − 1,
(2) efficiency – expressions are enumerated at most once, and (3) completeness
– all expressions of size k in Ej are enumerated.

The Divide algorithm generates a set of locations for selecting arguments
to an operator. Each location is a pair (x, y) indicating that any expression
from C[x, y][τ] can be an argument, where τ is the argument type required by
the operator. Divide accepts an arity a for an operator o, a size budget q, the
index l of the least-expressive grammar containing o, the index j of the least-
expressive grammar that should contain the constructed expressions of the form
o(e1, . . . , ea), and an accumulator α that stores the list of argument locations.
In lines 7–9, the size budget is recursively divided among a − 1 locations. In
each recursive step, the upper bound (q −a+1) on v ensures that we have a size
budget of at least q − (q − a + 1) = a − 1 for the remaining a − 1 locations. This
results in a call tree such that the accumulator α at each leaf node contains the
locations from which to select the last a−1 arguments, and we are left with some
size budget q ≥ 1 for the first argument e1. Finally in lines 4–5, we carefully
select the locations for e1 to ensure that o(e1, . . . , ea) has not been synthesized
before—either o ∈ components(Ej) or at least one argument belongs to Ej \Ej−1.5

We conclude by stating some desirable properties satisfied by HEnum. Their
proofs are provided in the extended version of this paper [27, Appendix A.3].

Theorem 8 (HEnum is Complete up to Size q). Given a SyGuS problem
S = 〈fX→Y | φ, E〉

T
, let E1...p be component-based grammars over theory T such

that E1 ⊂ · · · ⊂ Ep = E, � be a well order on E1...p × N, and q ≥ 0 be an upper
bound on size of expressions. Then, HEnum(S, E1...p,�, q) will eventually find a
satisfying expression if there exists one with size ≤ q.

Theorem 9 (HEnum is Efficient). Given a SyGuS problem S =
〈fX→Y | φ, E〉

T
, let E1...p be component-based grammars over theory T such that

E1 ⊂ · · · ⊂ Ep ⊆ E, � be a well order on E1...p × N, and q ≥ 0 be an upper bound
on size of expressions. Then, HEnum(S, E1...p,�, q) will enumerate each distinct
expression at most once.

5 We use
 as the cons operator for sequences, e.g., x
 〈y, z〉 = 〈x, y, z〉.

328 S. Padhi et al.

Algorithm 2. Hybrid enumeration to combat overfitting in SyGuS
1 func HEnum (〈fX→Y | φ, E〉

T
: Problem, E1...p : Grammars, � : WO, q : Max. Size)

2 � Requires: component-based grammars E1 ⊂ · · · ⊂ Ep ⊆ E and v as the input variable

3 C ← {}
4 for i ← 1 to p do
5 V ← if i = 1 then values(E1) else [values(Ei) \ values(Ei−1)]

6 for each (e : τ) ∈ V do
7 C[i, 1][τ] ← C[i, 1][τ] ∪ {e}
8 if ∀x ∈ X : φ(λv. e, x) then return λv. e

9 R ← Sort(�, E1...p × {2, . . . , q})
10 for i ← 1 to | R | do
11 (Ej , k) ← R[i]

12 for l ← 1 to j do
13 O ← if l = 1 then operators(E1) else [operators(El) \ operators(El−1)]

14 for each (o : τ1 × · · · × τa → τ) ∈ O do
15 L ← Divide(a, k − 1, l, j, 〈〉)
16 for each

〈
(x1, y1), . . . , (xa, ya)

〉
∈ L do

17 for each e1 . . . a ∈ C[x1, y1][τ1] × · · · × C[xa, ya][τa] do
18 e ← o(e1, . . . , ea)

19 C[j, k][τ] ← C[j, k][τ] ∪ {e}
20 if ∀x ∈ X : φ(λv. e, x) then return λv. e

21 return ⊥

Algorithm 3. An algorithm to divide a given size budget among subexpres-
sions 5

1 funcDivide (a : Arity, q : Size, l : Op. Level, j : Expr. Level, α : Accumulated Args.)
2 � Requires: 1 ≤ a ≤ q ∧ l ≤ j

3 if a = 1 then
4 if l = j ∨ ∃ 〈x, y〉 ∈ α : x = j then return

{
(1, q)
 α, . . . , (j, q)
 α

}

5 return
{
(j, q)
 α

}

6 L = {}
7 for u ← 1 to j do
8 for v ← 1 to (q − a + 1) do
9 L ← L ∪ Divide(a − 1, q − v, l, j, (u, v)
 α)
10 return L

5 Experimental Evaluation

In this section we empirically evaluate PLearn and HEnum. Our evaluation
uses a set of 180 synthesis benchmarks,6 consisting of all 127 official benchmarks
from the Inv track of 2018 SyGuS competition [4] augmented with benchmarks
from the 2018 Software Verification competition (SV-Comp) [8] and challenging
verification problems proposed in prior work [9,10]. All these synthesis tasks are

6 All benchmarks are available at https://github.com/SaswatPadhi/LoopInvGen.

https://github.com/SaswatPadhi/LoopInvGen

Overfitting in Synthesis: Theory and Practice 329

defined over integer and Boolean values, and we evaluate them with the six gram-
mars described in Fig. 1. We have omitted benchmarks from other tracks of the
SyGuS competition as they either require us to construct E1...p (Sect. 4) by hand
or lack verification oracles. All our experiments use an 8-core Intel® Xeon® E5
machine clocked at 2.30GHz with 32GB memory running Ubuntu® 18.04.

5.1 Robustness of PLearn

For five state-of-the-art SyGuS solvers – (a) LoopInvGen [29], (b) CVC4
[7,33], (c) Stoch [3, III F], (d) SketchAC [8,20], and (e) EUSolver [5] – we
have compared the performance across various grammars, with and without the
PLearn framework (Algorithm1). In this framework, to solve a SyGuS problem
with the pth expressiveness level from our six integer-arithmetic grammars (see
Fig. 1), we run p independent parallel instances of a SyGuS tool, each with one of
the first p grammars. For example, to solve a SyGuS problem with the Polyhedra
grammar, we run four instances of a solver with the Equalities, Intervals, Octagons
and Polyhedra grammars. We evaluate these runs for each tool, for each of the
180 benchmarks and for each of the six expressiveness levels.

Fig. 6. The number of failures on increasing grammar expressiveness, for state-of-the-
art SyGuS tools, with and without the PLearn framework (Algorithm 1)

Figure 6 summarizes our findings. Without PLearn the number of failures
initially decreases and then increases across all solvers, as grammar expressive-
ness increases. However, with PLearn the tools incur fewer failures at a given
level of expressiveness, and there is a trend of decreased failures with increased
expressiveness. Thus, we have demonstrated that PLearn is an effective mea-
sure to mitigate overfitting in SyGuS tools and significantly improve their
performance.

330 S. Padhi et al.

5.2 Performance of Hybrid Enumeration

To evaluate the performance of hybrid enumeration, we augment an existing syn-
thesis engine with HEnum (Algorithm2). We modify our LoopInvGen tool [29],
which is the best-performing SyGuS synthesizer from Fig. 6. Internally, Loop-
InvGen leverages Escher [2], an enumerative synthesizer, which we replace
with HEnum. We make no other changes to LoopInvGen. We evaluate the
performance and resource usage of this solver, LoopInvGen+HE, relative to
the original LoopInvGen with and without PLearn (Algorithm1).

Performance. In Fig. 7(a), we show the number of failures across our six gram-
mars for LoopInvGen, LoopInvGen+HE and LoopInvGen with PLearn,
over our 180 benchmarks. LoopInvGen+HE has a significantly lower failure
rate than LoopInvGen, and the number of failures decreases with grammar
expressiveness. Thus, hybrid enumeration is a good proxy for PLearn.

Fig. 7. L �LoopInvGen, H �LoopInvGen+HE, P �PLearn (LoopInvGen). H is
not only significantly robust against increasing grammar expressiveness, but it also has
a smaller total-time cost (τ) than P and a negligible overhead over L.

Resource Usage. To estimate how computationally expensive each solver is, we
compare their total-time cost (τ). Since LoopInvGen and LoopInvGen+HE
are single-threaded, for them we simply use the wall-clock time for synthesis as
the total-time cost. However, for PLearn with p parallel instances of LoopIn-
vGen, we consider the total-time cost as p times the wall-clock time for synthesis.

In Fig. 7(b), we show the median overhead (ratio of τ) incurred by PLearn
over LoopInvGen+HE and LoopInvGen+HE over LoopInvGen, at various
expressiveness levels. As we move to grammars of increasing expressiveness, the
total-time cost of PLearn increases significantly, while the total-time cost of
LoopInvGen+HE essentially matches that of LoopInvGen.

5.3 Competition Performance

Finally, we evaluate the performance of LoopInvGen+HE on the benchmarks
from the Inv track of the 2018 SyGuS competition [4], against the official winning
solver, which we denote LIG [28]—a version of LoopInvGen [29] that has been
extensively tuned for this track. In the competition, there are some invariant-
synthesis problems where the postcondition itself is a satisfying expression.

Overfitting in Synthesis: Theory and Practice 331

LIG starts with the postcondition as the first candidate and is extremely fast on
such programs. For a fair comparison, we added this heuristic to LoopInvGen
+HE as well. No other change was made to LoopInvGen+HE.

LoopInvGen solves 115 benchmarks in a total of 2191 seconds whereas
LoopInvGen+HE solves 117 benchmarks in 429 seconds, for a mean speedup of
over 5×. Moreover, no entrants to the competition could solve [4] the two addi-
tional benchmarks (gcnr_tacas08 and fib_20) that LoopInvGen+HE solves.

6 Related Work

The most closely related work to ours investigates overfitting for verification
tools [36]. Our work differs from theirs in several respects. First, we address
the problem of overfitting in CEGIS-based synthesis. Second, we formally define
overfitting and prove that all synthesizers must suffer from it, whereas they only
observe overfitting empirically. Third, while they use cross-validation to combat
overfitting in tuning a specific hyperparameter of a verifier, our approach is to
search for solutions at different expressiveness levels.

The general problem of efficiently searching a large space of programs for
synthesis has been explored in prior work. Lee et al. [24] use a probabilistic model,
learned from known solutions to synthesis problems, to enumerate programs in
order of their likelihood. Other approaches employ type-based pruning of large
search spaces [26,32]. These techniques are orthogonal to, and may be combined
with, our approach of exploring grammar subsets.

Our results are widely applicable to existing SyGuS tools, but some tools
fall outside our purview. For instance, in programming-by-example (PBE) sys-
tems [18, §7], the specification consists of a set of input-output examples. Since
any program that meets the given examples is a valid satisfying expression, our
notion of overfitting does not apply to such tools. However in a recent work, Inala
and Singh [19] show that incrementally increasing expressiveness can also aid
PBE systems. They report that searching within increasingly expressive gram-
mar subsets requires significantly fewer examples to find expressions that gener-
alize better over unseen data. Other instances where the synthesizers can have a
free lunch, i.e., always generate a solution with a small number of counterexam-
ples, include systems that use grammars with limited expressiveness [16,21,35].

Our paper falls in the category of formal results about SyGuS. In one such
result, Jha and Seshia [22] analyze the effects of different kinds of counterexam-
ples and of providing bounded versus unbounded memory to learners. Notably,
they do not consider variations in “concept classes” or “program templates,”
which are precisely the focus of our study. Therefore, our results are comple-
mentary: we treat counterexamples and learners as opaque and instead focus on
grammars.

7 Conclusion

Program synthesis is a vibrant research area; new and better synthesizers are
being built each year. This paper investigates a general issue that affects all

332 S. Padhi et al.

CEGIS-based SyGuS tools. We recognize the problem of overfitting, formalize it,
and identify the conditions under which it must occur. Furthermore, we provide
mitigating measures for overfitting that significantly improve the existing tools.

Acknowledgement. We thank Guy Van den Broeck and the anonymous reviewers for
helpful feedback for improving this work, and the organizers of the SyGuS competition
for making the tools and benchmarks publicly available.

This work was supported in part by the National Science Foundation (NSF) under
grants CCF-1527923 and CCF-1837129. The lead author was also supported by an
internship and a PhD Fellowship from Microsoft Research.

References

1. The SyGuS Competition (2019). http://sygus.org/comp/. Accessed 10 May 2019
2. Albarghouthi, A., Gulwani, S., Kincaid, Z.: Recursive program synthesis. In: Shary-

gina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 934–950. Springer, Hei-
delberg (2013). https://doi.org/10.1007/978-3-642-39799-8_67

3. Alur, R., et al.: Syntax-guided synthesis. In: Formal Methods in Computer-Aided
Design, FMCAD, pp. 1–8. IEEE (2013). http://ieeexplore.ieee.org/document/
6679385/

4. Alur, R., Fisman, D., Padhi, S., Singh, R., Udupa, A.: SyGuS-Comp 2018: Results
and Analysis. CoRR abs/1904.07146 (2019). http://arxiv.org/abs/1904.07146

5. Alur, R., Radhakrishna, A., Udupa, A.: Scaling enumerative program synthesis via
divide and conquer. In: Legay, A., Margaria, T. (eds.) TACAS 2017. LNCS, vol.
10205, pp. 319–336. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-
662-54577-5_18

6. Alur, R., Singh, R., Fisman, D., Solar-Lezama, A.: Search-based program synthesis.
Commun. ACM 61(12), 84–93 (2018). https://doi.org/10.1145/3208071

7. Barrett, C., et al.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011.
LNCS, vol. 6806, pp. 171–177. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-22110-1_14

8. Beyer, D.: Software verification with validation of results. In: Legay, A., Margaria,
T. (eds.) TACAS 2017. LNCS, vol. 10206, pp. 331–349. Springer, Heidelberg (2017).
https://doi.org/10.1007/978-3-662-54580-5_20

9. Bounov, D., DeRossi, A., Menarini, M., Griswold, W.G., Lerner, S.: Inferring loop
invariants through gamification. In: Proceedings of the 2018 CHI Conference on
Human Factors in Computing Systems, CHI, p. 231. ACM (2018). https://doi.org/
10.1145/3173574.3173805

10. Bradley, A.R., Manna, Z., Sipma, H.B.: The polyranking principle. In: Caires, L.,
Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS,
vol. 3580, pp. 1349–1361. Springer, Heidelberg (2005). https://doi.org/10.1007/
11523468_109

11. Cousot, P., Cousot, R.: Static determination of dynamic properties of generalized
type unions. In: Language Design for Reliable Software, pp. 77–94 (1977). https://
doi.org/10.1145/800022.808314

12. Cousot, P., Halbwachs, N.: Automatic Discovery of Linear Restraints Among Vari-
ables of a Program. In: Conference Record of the Fifth Annual ACM Symposium
on Principles of Programming Languages. pp. 84–96. ACM Press (1978), https://
doi.org/10.1145/512760.512770

http://sygus.org/comp/
https://doi.org/10.1007/978-3-642-39799-8_67
http://ieeexplore.ieee.org/document/6679385/
http://ieeexplore.ieee.org/document/6679385/
http://arxiv.org/abs/1904.07146
https://doi.org/10.1007/978-3-662-54577-5_18
https://doi.org/10.1007/978-3-662-54577-5_18
https://doi.org/10.1145/3208071
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/978-3-662-54580-5_20
https://doi.org/10.1145/3173574.3173805
https://doi.org/10.1145/3173574.3173805
https://doi.org/10.1007/11523468_109
https://doi.org/10.1007/11523468_109
https://doi.org/10.1145/800022.808314
https://doi.org/10.1145/800022.808314
https://doi.org/10.1145/512760.512770
https://doi.org/10.1145/512760.512770

Overfitting in Synthesis: Theory and Practice 333

13. Dietterich, T.G.: Ensemble methods in machine learning. In: Kittler, J., Roli, F.
(eds.) MCS 2000. LNCS, vol. 1857, pp. 1–15. Springer, Heidelberg (2000). https://
doi.org/10.1007/3-540-45014-9_1

14. Ezudheen, P., Neider, D., D’Souza, D., Garg, P., Madhusudan, P.: Horn-ICE learn-
ing for synthesizing invariants and contracts. PACMPL 2(OOPSLA), 131:1–131:25
(2018). https://doi.org/10.1145/3276501

15. Feng, Y., Martins, R., Geffen, J.V., Dillig, I., Chaudhuri, S.: Component-based syn-
thesis of table consolidation and transformation tasks from examples. In: Proceed-
ings of the 38th ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI, pp. 422–436. ACM (2017). https://doi.org/10.1145/
3062341.3062351

16. Godefroid, P., Taly, A.: Automated synthesis of symbolic instruction encodings
from I/O samples. In: ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI, pp. 441–452. ACM (2012). https://doi.org/10.
1145/2254064.2254116

17. Gulwani, S., Jojic, N.: Program verification as probabilistic inference. In: Pro-
ceedings of the 34th ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, POPL, pp. 277–289. ACM (2007). https://doi.org/10.1145/
1190216.1190258

18. Gulwani, S., Polozov, O., Singh, R.: Program synthesis. Found. Trends Program.
Lang. 4(1–2), 1–119 (2017). https://doi.org/10.1561/2500000010

19. Inala, J.P., Singh, R.: WebRelate: Integrating Web Data with Spreadsheets using
Examples. PACMPL 2(POPL), 2:1–2:28 (2018). https://doi.org/10.1145/3158090

20. Jeon, J., Qiu, X., Solar-Lezama, A., Foster, J.S.: Adaptive concretization for paral-
lel program synthesis. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS,
vol. 9207, pp. 377–394. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
21668-3_22

21. Jha, S., Gulwani, S., Seshia, S.A., Tiwari, A.: Oracle-guided component-based pro-
gram synthesis. In: Proceedings of the 32nd ACM/IEEE International Conference
on Software Engineering. ICSE, vol. 1, pp. 215–224. ACM (2010). https://doi.org/
10.1145/1806799.1806833

22. Jha, S., Seshia, S.A.: A theory of formal synthesis via inductive learning. Acta
Informatica 54(7), 693–726 (2017). https://doi.org/10.1007/s00236-017-0294-5

23. Le, X.D., Chu, D., Lo, D., Le Goues, C., Visser, W.: S3: syntax- and semantic-
guided repair synthesis via programming by examples. In: Proceedings of the 11th
Joint Meeting on Foundations of Software Engineering. ESEC/FSE, pp. 593–604.
ACM (2017). https://doi.org/10.1145/3106237.3106309

24. Lee, W., Heo, K., Alur, R., Naik, M.: Accelerating search-based program synthesis
using learned probabilistic models. In: Proceedings of the 39th ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI 2018,
pp. 436–449. ACM (2018). https://doi.org/10.1145/3192366.3192410

25. Miné, A.: The octagon abstract domain. In: Proceedings of the Eighth Work-
ing Conference on Reverse Engineering, WCRE, p. 310. IEEE Computer Society
(2001). https://doi.org/10.1109/WCRE.2001.957836

26. Osera, P., Zdancewic, S.: Type-and-example-directed program synthesis. In: Pro-
ceedings of the 36th ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI, pp. 619–630. ACM (2015). https://doi.org/
10.1145/2737924.2738007

27. Padhi, S., Millstein, T., Nori, A., Sharma, R.: Overfitting in Synthesis: Theory and
Practice. CoRR abs/1905.07457 (2019). https://arxiv.org/pdf/1905.07457

https://doi.org/10.1007/3-540-45014-9_1
https://doi.org/10.1007/3-540-45014-9_1
https://doi.org/10.1145/3276501
https://doi.org/10.1145/3062341.3062351
https://doi.org/10.1145/3062341.3062351
https://doi.org/10.1145/2254064.2254116
https://doi.org/10.1145/2254064.2254116
https://doi.org/10.1145/1190216.1190258
https://doi.org/10.1145/1190216.1190258
https://doi.org/10.1561/2500000010
https://doi.org/10.1145/3158090
https://doi.org/10.1007/978-3-319-21668-3_22
https://doi.org/10.1007/978-3-319-21668-3_22
https://doi.org/10.1145/1806799.1806833
https://doi.org/10.1145/1806799.1806833
https://doi.org/10.1007/s00236-017-0294-5
https://doi.org/10.1145/3106237.3106309
https://doi.org/10.1145/3192366.3192410
https://doi.org/10.1109/WCRE.2001.957836
https://doi.org/10.1145/2737924.2738007
https://doi.org/10.1145/2737924.2738007
https://arxiv.org/pdf/1905.07457

334 S. Padhi et al.

28. Padhi, S., Sharma, R., Millstein, T.: LoopInvGen: A Loop Invariant Generator
based on Precondition Inference. CoRR abs/1707.02029 (2018). http://arxiv.org/
abs/1707.02029

29. Padhi, S., Sharma, R., Millstein, T.D.: Data-driven precondition inference with
learned features. In: Proceedings of the 37th ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, PLDI, pp. 42–56. ACM (2016).
https://doi.org/10.1145/2908080.2908099

30. Peano, G.: Calcolo geometrico secondo l’Ausdehnungslehre di H. Grassmann: pre-
ceduto dalla operazioni della logica deduttiva, vol. 3. Fratelli Bocca (1888)

31. Perelman, D., Gulwani, S., Grossman, D., Provost, P.: Test-driven synthesis. In:
ACM SIGPLAN Conference on Programming Language Design and Implementa-
tion, PLDI, pp. 408–418. ACM (2014). https://doi.org/10.1145/2594291.2594297

32. Polikarpova, N., Kuraj, I., Solar-Lezama, A.: Program synthesis from polymor-
phic refinement types. In: Proceedings of the 37th ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI, pp. 522–538. ACM
(2016). https://doi.org/10.1145/2908080.2908093

33. Reynolds, A., Deters, M., Kuncak, V., Tinelli, C., Barrett, C.: Counterexample-
guided quantifier instantiation for synthesis in SMT. In: Kroening, D., Păsăreanu,
C.S. (eds.) CAV 2015. LNCS, vol. 9207, pp. 198–216. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-21668-3_12

34. Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory
to Algorithms. Cambridge University Press, Cambridge (2014)

35. Sharma, R., Gupta, S., Hariharan, B., Aiken, A., Liang, P., Nori, A.V.: A data
driven approach for algebraic loop invariants. In: Felleisen, M., Gardner, P. (eds.)
ESOP 2013. LNCS, vol. 7792, pp. 574–592. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-37036-6_31

36. Sharma, R., Nori, A.V., Aiken, A.: Bias-variance tradeoffs in program analysis.
In: The 41st Annual ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, POPL, pp. 127–138. ACM (2014). https://doi.org/10.1145/
2535838.2535853

37. Solar-Lezama, A.: Program sketching. STTT 15(5–6), 475–495 (2013)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://arxiv.org/abs/1707.02029
http://arxiv.org/abs/1707.02029
https://doi.org/10.1145/2908080.2908099
https://doi.org/10.1145/2594291.2594297
https://doi.org/10.1145/2908080.2908093
https://doi.org/10.1007/978-3-319-21668-3_12
https://doi.org/10.1007/978-3-642-37036-6_31
https://doi.org/10.1007/978-3-642-37036-6_31
https://doi.org/10.1145/2535838.2535853
https://doi.org/10.1145/2535838.2535853
http://creativecommons.org/licenses/by/4.0/

Proving Unrealizability for Syntax-Guided
Synthesis

Qinheping Hu1(B), Jason Breck1, John Cyphert1, Loris D’Antoni1,
and Thomas Reps1,2

1 University of Wisconsin-Madison, Madison, USA
qhu28@wisc.edu

2 GrammaTech, Inc., Ithaca, USA

Abstract. We consider the problem of automatically establishing
that a given syntax-guided-synthesis (SyGuS) problem is unrealizable
(i.e., has no solution). Existing techniques have quite limited ability to
establish unrealizability for general SyGuS instances in which the gram-
mar describing the search space contains infinitely many programs. By
encoding the synthesis problem’s grammar G as a nondeterministic pro-
gram PG, we reduce the unrealizability problem to a reachability problem
such that, if a standard program-analysis tool can establish that a certain
assertion in PG always holds, then the synthesis problem is unrealizable.

Our method can be used to augment existing SyGuS tools so that
they can establish that a successfully synthesized program q is optimal
with respect to some syntactic cost—e.g., q has the fewest possible if-
then-else operators. Using known techniques, grammar G can be trans-
formed to generate the set of all programs with lower costs than q—e.g.,
fewer conditional expressions. Our algorithm can then be applied to show
that the resulting synthesis problem is unrealizable. We implemented the
proposed technique in a tool called nope. nope can prove unrealizability
for 59/132 variants of existing linear-integer-arithmetic SyGuS bench-
marks, whereas all existing SyGuS solvers lack the ability to prove that
these benchmarks are unrealizable, and time out on them.

1 Introduction

The goal of program synthesis is to find a program in some search space that
meets a specification—e.g., satisfies a set of examples or a logical formula.
Recently, a large family of synthesis problems has been unified into a frame-
work called syntax-guided synthesis (SyGuS). A SyGuS problem is specified
by a regular-tree grammar that describes the search space of programs, and a
logical formula that constitutes the behavioral specification. Many synthesizers
now support a specific format for SyGuS problems [1], and compete in annual
synthesis competitions [2]. Thanks to these competitions, these solvers are now
quite mature and are finding a wealth of applications [9].

Consider the SyGuS problem to synthesize a function f that computes the
maximum of two variables x and y, denoted by (ψmax2(f, x, y), G1). The goal is to
c© The Author(s) 2019
I. Dillig and S. Tasiran (Eds.): CAV 2019, LNCS 11561, pp. 335–352, 2019.
https://doi.org/10.1007/978-3-030-25540-4_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-25540-4_18&domain=pdf
https://doi.org/10.1007/978-3-030-25540-4_18

336 Q. Hu et al.

create ef—an expression-tree for f—where ef is in the language of the following
regular-tree grammar G1:

Start ::= Plus(Start,Start) | IfThenElse(BExpr,Start,Start) | x | y | 0 | 1
BExpr ::= GreaterThan(Start,Start) | Not(BExpr) | And(BExpr,BExpr)

and ∀x, y.ψmax2([[ef]], x, y) is valid, where [[ef]] denotes the meaning of ef , and

ψmax2(f, x, y) := f(x, y) ≥ x ∧ f(x, y) ≥ y ∧ (f(x, y) = x ∨ f(x, y) = y).

SyGuS solvers can easily find a solution, such as

e := IfThenElse(GreaterThan(x, y), x, y).

Although many solvers can now find solutions efficiently to many SyGuS
problems, there has been effectively no work on the much harder task of proving
that a given SyGuS problem is unrealizable—i.e., it does not admit a solution.
For example, consider the SyGuS problem (ψmax2(f, x, y), G2), where G2 is the
more restricted grammar with if-then-else operators and conditions stripped out:

Start ::= Plus(Start,Start) | x | y | 0 | 1

This SyGuS problem does not have a solution, because no expression generated
by G2 meets the specification.1 However, to the best of our knowledge, current
SyGuS solvers cannot prove that such a SyGuS problem is unrealizable.2

A key property of the previous example is that the grammar is infinite. When
such a SyGuS problem is realizable, any search technique that systematically
explores the infinite search space of possible programs will eventually identify a
solution to the synthesis problem. In contrast, proving that a problem is unre-
alizable requires showing that every program in the infinite search space fails
to satisfy the specification. This problem is in general undecidable [6]. Although
we cannot hope to have an algorithm for establishing unrealizability, the chal-
lenge is to find a technique that succeeds for the kinds of problems encountered
in practice. Existing synthesizers can detect the absence of a solution in cer-
tain cases (e.g., because the grammar is finite, or is infinite but only generate
a finite number of functionally distinct programs). However, in practice, as our

1 Grammar G2 only generates terms that are equivalent to some linear function of x
and y; however, the maximum function cannot be described by a linear function.

2 The synthesis problem presented above is one that is generated by a recent tool
called QSyGuS, which extends SyGuS with quantitative syntactic objectives [10].
The advantage of using quantitative objectives in synthesis is that they can be used
to produce higher-quality solutions—e.g., smaller, more readable, more efficient, etc.
The synthesis problem (ψmax2(f, x, y), G2) arises from a QSyGuS problem in which
the goal is to produce an expression that (i) satisfies the specification ψmax2(f, x, y),
and (ii) uses the smallest possible number of if-then-else operators. Existing SyGuS
solvers can easily produce a solution that uses one if-then-else operator, but cannot
prove that no better solution exists—i.e., (ψmax2(f, x, y), G2) is unrealizable.

Proving Unrealizability for Syntax-Guided Synthesis 337

experiments show, this ability is limited—no existing solver was able to show
unrealizability for any of the examples considered in this paper.

In this paper, we present a technique for proving that a possibly infinite
SyGuS problem is unrealizable. Our technique builds on two ideas.

1. We observe that unrealizability can often be proven using finitely many input
examples. In Sect. 2, we show how the example discussed above can be proven
to be unrealizable using four input examples—(0, 0), (0, 1), (1, 0), and (1, 1).

2. We devise a way to encode a SyGuS problem (ψ(f, x̄), G) over a finite set
of examples E as a reachability problem in a recursive program P [G,E]. In
particular, the program that we construct has an assertion that holds if and
only if the given SyGuS problem is unrealizable. Consequently, unrealizability
can be proven by establishing that the assertion always holds. This property
can often be established by a conventional program-analysis tool.

The encoding mentioned in item 2 is non-trivial for three reasons. The following
list explains each issue, and sketches how they are addressed

(1) Infinitely many terms. We need to model the infinitely many terms generated
by the grammar of a given synthesis problem (ψ(f, x̄), G).

To address this issue, we use non-determinism and recursion, and give an
encoding P [G,E] such that (i) each non-deterministic path p in the program
P [G,E] corresponds to a possible expression ep that G can generate, and (ii) for
each expression e that G can generate, there is a path pe in P [G,E]. (There is
an isomorphism between paths and the expression-trees of G)
(2) Nondeterminism. We need the computation performed along each path p
in P [G,E] to mimic the execution of expression ep. Because the program uses
non-determinism, we need to make sure that, for a given path p in the program
P [G,E], computational steps are carried out that mimic the evaluation of ep for
each of the finitely many example inputs in E.

We address this issue by threading the expression-evaluation computations
associated with each example in E through the same non-deterministic choices.
(3) Complex Specifications. We need to handle specifications that allow for nested
calls of the programs being synthesized.

For instance, consider the specification f(f(x)) = x. To handle this specifi-
cation, we introduce a new variable y and rewrite the specification as f(x) =
y ∧ f(y) = x. Because y is now also used as an input to f , we will thread both
the computations of x and y through the non-deterministic recursive program.

Our work makes the following contributions:

– We reduce the SyGuS unrealizability problem to a reachability problem to
which standard program-analysis tools can be applied (Sects. 2 and 4).

– We observe that, for many SyGuS problems, unrealizability can be proven
using finitely many input examples, and use this idea to apply the Counter-
Example-Guided Inductive Synthesis (CEGIS) algorithm to the problem of
proving unrealizability (Sect. 3).

338 Q. Hu et al.

– We give an encoding of a SyGuS problem (ψ(f, x̄), G) over a finite set of
examples E as a reachability problem in a nondeterministic recursive program
P [G,E], which has the following property: if a certain assertion in P [G,E]
always holds, then the synthesis problem is unrealizable (Sect. 4).

– We implement our technique in a tool nope using the ESolver synthesizer [2]
as the SyGuS solver and the SeaHorn tool [8] for checking reachability. nope
is able to establish unrealizability for 59 out of 132 variants of benchmarks
taken from the SyGuS competition. In particular, nope solves all benchmarks
with no more than 15 productions in the grammar and requiring no more than
9 input examples for proving unrealizability. Existing SyGuS solvers lack the
ability to prove that these benchmarks are unrealizable, and time out on
them.

Section 6 discusses related work. Some additional technical material, proofs, and
full experimental results are given in [13].

2 Illustrative Example

In this section, we illustrate the main components of our framework for estab-
lishing the unrealizability of a SyGuS problem.

Consider the SyGuS problem to synthesize a function f that computes the
maximum of two variables x and y, denoted by (ψmax2(f, x, y), G1). The goal is to
create ef—an expression-tree for f—where ef is in the language of the following
regular-tree grammar G1:

Start ::= Plus(Start,Start) | IfThenElse(BExpr,Start,Start) | x | y | 0 | 1
BExpr ::= GreaterThan(Start,Start) | Not(BExpr) | And(BExpr,BExpr)

and ∀x, y.ψmax2([[ef]], x, y) is valid, where [[ef]] denotes the meaning of ef , and

ψmax2(f, x, y) := f(x, y) ≥ x ∧ f(x, y) ≥ y ∧ (f(x, y) = x ∨ f(x, y) = y).

SyGuS solvers can easily find a solution, such as

e := IfThenElse(GreaterThan(x, y), x, y).

Although many solvers can now find solutions efficiently to many SyGuS
problems, there has been effectively no work on the much harder task of proving
that a given SyGuS problem is unrealizable—i.e., it does not admit a solution.
For example, consider the SyGuS problem (ψmax2(f, x, y), G2), where G2 is the
more restricted grammar with if-then-else operators and conditions stripped out:

Start ::= Plus(Start,Start) | x | y | 0 | 1
This SyGuS problem does not have a solution, because no expression generated
by G2 meets the specification.3 However, to the best of our knowledge, current
3 Grammar G2 generates all linear functions of x and y, and hence generates an infinite

number of functionally distinct programs; however, the maximum function cannot
be described by a linear function.

Proving Unrealizability for Syntax-Guided Synthesis 339

SyGuS solvers cannot prove that such a SyGuS problem is unrealizable. As an
example, we use the problem (ψmax2(f, x, y), G2) discussed in Sect. 1, and show
how unrealizability can be proven using four input examples: (0, 0), (0, 1), (1, 0),
and (1, 1).

Fig. 1. Program P [G2, E1] created during the course of proving the unrealizability of
(ψmax2(f, x, y), G2) using the set of input examples E1 = {(0, 1)}.

Our method can be seen as a variant of Counter-Example-Guided Inductive
Synthesis (CEGIS), in which the goal is to create a program P in which a
certain assertion always holds. Until such a program is created, each round of
the algorithm returns a counter-example, from which we extract an additional
input example for the original SyGuS problem. On the ith round, the current
set of input examples Ei is used, together with the grammar—in this case G2—
and the specification of the desired behavior—ψmax2(f, x, y), to create a candidate
program P [G2, Ei]. The program P [G2, Ei] contains an assertion, and a standard
program analyzer is used to check whether the assertion always holds.

Suppose that for the SyGuS problem (ψmax2(f, x, y), G2) we start with just
the one example input (0, 1)—i.e., E1 = {(0, 1)}. Figure 1 shows the initial pro-
gram P [G2, E1] that our method creates. The function spec implements the
predicate ψmax2(f, x, y). (All of the programs {P [G2, Ei]} use the same func-
tion spec). The initialization statements “int x_0 = 0; int y_0 = 1;” at line
(21) in procedure main correspond to the input example (0, 1). The recur-
sive procedure Start encodes the productions of grammar G2. Start is non-
deterministic; it contains four calls to an external function nd(), which returns

340 Q. Hu et al.

a non-deterministically chosen Boolean value. The calls to nd() can be under-
stood as controlling whether or not a production is selected from G2 during a
top-down, left-to-right generation of an expression-tree: lines (3)–(8) correspond
to “Start ::= Plus(Start, Start),” and lines (10), (11), (12), and (13) correspond
to “Start ::= x,” “Start ::= y,” “Start ::= 1,” and “Start ::= 0,” respectively.
The code in the five cases in the body of Start encodes the semantics of the
respective production of G2; in particular, the statements that are executed
along any execution path of P [G2, E1] implement the bottom-up evaluation of
some expression-tree that can be generated by G2. For instance, consider the
path that visits statements in the following order (for brevity, some statement
numbers have been elided):

21 22 (Start 3 4 (Start 10)Start 6 (Start 12)Start 8)Start 23, (1)

where (Start and)Start indicate entry to, and return from, procedure Start,
respectively. Path (1) corresponds to the top-down, left-to-right generation of
the expression-tree Plus(x,1), interleaved with the tree’s bottom-up evaluation.

Note that with path (1), when control returns to main, variable I_0 has the
value 1, and thus the assertion at line (23) fails.

A sound program analyzer will discover that some such path exists in the
program, and will return the sequence of non-deterministic choices required to
follow one such path. Suppose that the analyzer chooses to report path (1); the
sequence of choices would be t, f, t, f, f, f, t, which can be decoded to create the
expression-tree Plus(x,1). At this point, we have a candidate definition for f :
f = x + 1. This formula can be checked using an SMT solver to see whether it
satisfies the behavioral specification ψmax2(f, x, y). In this case, the SMT solver
returns “false.” One counter-example that it could return is (0, 0).

At this point, program P [G2, E2] would be constructed using both of the
example inputs (0, 1) and (0, 0). Rather than describe P [G2, E2], we will describe
the final program constructed, P [G2, E4] (see Fig. 2).

As can be seen from the comments in the two programs, program P [G2, E4]
has the same basic structure as P [G2, E1].

– main begins with initialization statements for the four example inputs.
– Start has five cases that correspond to the five productions of G2.

The main difference is that because the encoding of G2 in Start uses non-
determinism, we need to make sure that along each path p in P [G2, E4], each of
the example inputs is used to evaluate the same expression-tree. We address this
issue by threading the expression-evaluation computations associated with each
of the example inputs through the same non-deterministic choices. That is, each
of the five “production cases” in Start has four encodings of the production’s
semantics—one for each of the four expression evaluations. By this means, the
statements that are executed along path p perform four simultaneous bottom-up
evaluations of the expression-tree from G2 that corresponds to p.

Programs P [G2, E2] and P [G2, E3] are similar to P [G2, E4], but their paths
carry out two and three simultaneous bottom-up evaluations, respectively. The

Proving Unrealizability for Syntax-Guided Synthesis 341

Fig. 2. Program P [G2, E4] created during the course of proving the unrealizability of
(ψmax2(f, x, y), G2) using the set of input examples E4 = {(0, 0), (0, 1), (1, 0), (1, 1)}.

actions taken during rounds 2 and 3 to generate a new counter-example—and
hence a new example input—are similar to what was described for round 1. On
round 4, however, the program analyzer will determine that the assertion on lines
(34)–(35) always holds, which means that there is no path through P [G2, E4]
for which the behavioral specification holds for all of the input examples. This
property means that there is no expression-tree that satisfies the specification—
i.e., the SyGuS problem (ψmax2(f, x, y), G2) is unrealizable.

Our implementation uses the program-analysis tool SeaHorn [8] as the
assertion checker. In the case of P [G2, E4], SeaHorn takes only 0.5 s to establish
that the assertion in P [G2, E4] always holds.

342 Q. Hu et al.

3 SyGuS, Realizability, and CEGIS

3.1 Background

Trees and Tree Grammars. A ranked alphabet is a tuple (Σ, rkΣ) where Σ is a
finite set of symbols and rkΣ : Σ → N associates a rank to each symbol. For
every m ≥ 0, the set of all symbols in Σ with rank m is denoted by Σ(m). In
our examples, a ranked alphabet is specified by showing the set Σ and attaching
the respective rank to every symbol as a superscript—e.g., Σ = {+(2), c(0)}. (For
brevity, the superscript is sometimes omitted). We use TΣ to denote the set of all
(ranked) trees over Σ—i.e., TΣ is the smallest set such that (i) Σ(0) ⊆ TΣ , (ii) if
σ(k) ∈ Σ(k) and t1, . . . , tk ∈ TΣ , then σ(k)(t1, · · · , tk) ∈ TΣ . In what follows, we
assume a fixed ranked alphabet (Σ, rkΣ).

In this paper, we focus on typed regular tree grammars, in which each non-
terminal and each symbol is associated with a type. There is a finite set of types
{τ1, . . . , τk}. Associated with each symbol σ(i) ∈ Σ(i), there is a type assignment
aσ(i) = (τ0, τ1, . . . , τi), where τ0 is called the left-hand-side type and τ1, . . . , τi are
called the right-hand-side types. Tree grammars are similar to word grammars,
but generate trees over a ranked alphabet instead of words.

Definition 1 (Regular Tree Grammar). A typed regular tree grammar
(RTG) is a tuple G = (N,Σ, S, a, δ), where N is a finite set of non-terminal
symbols of arity 0; Σ is a ranked alphabet; S ∈ N is an initial non-terminal; a
is a type assignment that gives types for members of Σ ∪ N ; and δ is a finite
set of productions of the form A0 → σ(i)(A1, . . . , Ai), where for 1 ≤ j ≤ i, each
Aj ∈ N is a non-terminal such that if a(σ(i)) = (τ0, τ1, . . . , τi) then a(Aj) = τj.

In a SyGuS problem, each variable, such as x and y in the example RTGs
in Sect. 1, is treated as an arity-0 symbol—i.e., x(0) and y(0).

Given a tree t ∈ TΣ∪N , applying a production r = A → β to t produces
the tree t′ resulting from replacing the left-most occurrence of A in t with the
right-hand side β. A tree t ∈ TΣ is generated by the grammar G—denoted by
t ∈ L(G)—iff it can be obtained by applying a sequence of productions r1 · · · rn

to the tree whose root is the initial non-terminal S.

Syntax-Guided Synthesis. A SyGuS problem is specified with respect to a back-
ground theory T—e.g., linear arithmetic—and the goal is to synthesize a function
f that satisfies two constraints provided by the user. The first constraint, ψ(f, x̄),
describes a semantic property that f should satisfy. The second constraint limits
the search space S of f , and is given as a set of expressions specified by an RTG
G that defines a subset of all terms in T .

Definition 2 (SyGuS). A SyGuS problem over a background theory T is a
pair sy = (ψ(f, x̄), G) where G is a regular tree grammar that only contains
terms in T—i.e., L(G) ⊆ T—and ψ(f, x̄) is a Boolean formula constraining the
semantic behavior of the synthesized program f .

A SyGuS problem is realizable if there exists a expression e ∈ L(G) such
that ∀x̄.ψ([[e]], x̄) is true. Otherwise we say that the problem is unrealizable.

Proving Unrealizability for Syntax-Guided Synthesis 343

Theorem 1 (Undecidability [6]). Given a SyGuS problem sy, it is undecid-
able to check whether sy is realizable.

Counterexample-Guided Inductive Synthesis. The Counterexample-Guided
Inductive Synthesis (CEGIS) algorithm is a popular approach to solving syn-
thesis problems. Instead of directly looking for an expression that satisfies the
specification ϕ on all possible inputs, the CEGIS algorithm uses a synthesizer
S that can find expressions that are correct on a finite set of examples E. If S
finds a solution that is correct on all elements of E, CEGIS uses a verifier V
to check whether the discovered solution is also correct for all possible inputs to
the problem. If not, a counterexample obtained from V is added to the set of
examples, and the process repeats. More formally, CEGIS starts with an empty
set of examples E and repeats the following steps:

1. Call the synthesizer S to find an expression e such that ψE([[e]], x̄) def= ∀x̄ ∈
E.ψ([[e]], x̄) holds and go to step 2; return unrealizable if no expression exists.

2. Call the verifier V to find a model c for the formula ¬ψ([[e]], x̄), and add c to
the counterexample set E; return e as a valid solution if no model is found.

Because SyGuS problems are only defined over first-order decidable theories,
any SMT solver can be used as the verifier V to check whether the formula
¬ψ([[e]], x̄) is satisfiable. On the other hand, providing a synthesizer S to find
solutions such that ∀x̄ ∈ E.ψ([[e]], x̄) holds is a much harder problem because
e is a second-order term drawn from an infinite search space. In fact, checking
whether such an e exists is an undecidable problem [6].

The main contribution of our paper is a reduction of the unrealizability
problem—i.e., the problem of proving that there is no expression e ∈ L(G)
such that ∀x̄ ∈ E.ψ([[e]], x̄) holds—to an unreachability problem (Sect. 4). This
reduction allows us to use existing (un)reachability verifiers to check whether a
SyGuS instance is unrealizable.

3.2 CEGIS and Unrealizability

The CEGIS algorithm is sound but incomplete for proving unrealizability. Given
a SyGuS problem sy = (ψ(f, x̄), G) and a finite set of inputs E, we denote with
syE := (ψE(f, x̄), G) the corresponding SyGuS problem that only requires the
function f to be correct on the examples in E.

Lemma 1 (Soundness). If syE is unrealizable then sy is unrealizable.

Even when given a perfect synthesizer S—i.e., one that can solve a problem
syE for every possible set E—there are SyGuS problems for which the CEGIS
algorithm is not powerful enough to prove unrealizability.

Lemma 2 (Incompleteness). There exists an unrealizable SyGuS problem
sy such that for every finite set of examples E the problem syE is realizable.

Despite this negative result, we will show that a CEGIS algorithm can prove
unrealizability for many SyGuS instances (Sect. 5).

344 Q. Hu et al.

4 From Unrealizability to Unreachability

In this section, we show how a SyGuS problem for finitely many examples can
be reduced to a reachability problem in a non-deterministic, recursive program
in an imperative programming language.

4.1 Reachability Problems

A program P takes an initial state I as input and outputs a final state O,
i.e., [[P]](I) = O where [[·]] denotes the semantic function of the programming
language. As illustrated in Sect. 2, we allow a program to contain calls to an
external function nd(), which returns a non-deterministically chosen Boolean
value. When program P contains calls to nd(), we use P̂ to denote the program
that is the same as P except that P̂ takes an additional integer input n, and each
call nd() is replaced by a call to a local function nextbit() defined as follows:

bool nextbit(){bool b = n%2; n=n»1; return b;}.

In other words, the integer parameter n of P̂ [n] formalizes all of the non-
deterministic choices made by P in calls to nd().

For the programs P [G,E] used in our unrealizability algorithm, the only
calls to nd() are ones that control whether or not a production is selected from
grammar G during a top-down, left-to-right generation of an expression-tree.
Given n, we can decode it to identify which expression-tree n represents.

Example 1. Consider again the SyGuS problem (ψmax2(f, x, y), G2) discussed in
Sect. 2. In the discussion of the initial program P [G2, E1] (Fig. 1), we hypoth-
esized that the program analyzer chose to report path (1) in P , for which the
sequence of non-deterministic choices is t, f, t, f, f, f, t. That sequence means that
for P̂ [n], the value of n is 1000101 (base 2) (or 69 (base 10)). The 1s, from low-
order to high-order position, represent choices of production instances in a top-
down, left-to-right generation of an expression-tree. (The 0s represent rejected
possible choices). The rightmost 1 in n corresponds to the choice in line (3) of
“Start ::= Plus(Start, Start)”; the 1 in the third-from-rightmost position
corresponds to the choice in line (10) of “Start ::= x” as the left child of the
Plus node; and the 1 in the leftmost position corresponds to the choice in line
(12) of “Start ::= 1” as the right child. By this means, we learn that the
behavioral specification ψmax2(f, x, y) holds for the example set E1 = {(0, 1)} for
f �→ Plus(x,1). �

Definition 3 (Reachability Problem). Given a program P̂ [n], containing
assertion statements and a non-deterministic integer input n, we use reP to
denote the corresponding reachability problem. The reachability problem reP is
satisfiable if there exists a value n that, when bound to n, falsifies any of the
assertions in P̂ [n]. The problem is unsatisfiable otherwise.

Proving Unrealizability for Syntax-Guided Synthesis 345

4.2 Reduction to Reachability

The main component of our framework is an encoding enc that given a SyGuS
problem syE = (ψE(f, x), G) over a set of examples E = {c1, . . . , ck}, outputs
a program P [G,E] such that syE is realizable if and only if reenc(sy,E) is
satisfiable. In this section, we define all the components of P [G,E], and state
the correctness properties of our reduction.
Remark: In this section, we assume that in the specification ψ(f, x) every occur-
rence of f has x as input parameter. We show how to overcome this restriction
in App. A [13]. In the following, we assume that the input x has type τI , where
τI could be a complex type—e.g., a tuple type.
Program Construction. Recall that the grammar G is a tuple (N,Σ, S, a, δ). First,
for each non-terminal A ∈ N , the program P [G,E] contains k global variables
{g_1_A, . . . , g_k_A} of type a(A) that are used to express the values resulting
from evaluating expressions generated from non-terminal A on the k examples.
Second, for each non-terminal A ∈ N , the program P [G,E] contains a function

void funcA(τI v1, . . . , τI vk){ bodyA }

We denote by δ(A) = {r1, . . . , rm} the set of production rules of the form
A → β in δ. The body bodyA of funcA has the following structure:

if(nd()) {Enδ(r1)}
else if(nd()) {Enδ(r2)}
. . .
else {Enδ(rm)}

The encoding Enδ(r) of a production r = A0 → b(j)(A1, · · · , Aj) is defined
as follows (τi denotes the type of the term Ai):

funcA1(v1,...,vk);
τ1 child_1_1 = g_1_A1; . . . ; τ1 child_1_k = g_k_Aj;
. . .
funcAj(v1,...,vk);
τj child_j_1 = g_1_A1; . . . ; τj child_j_k = g_k_Aj;
g_1_A0 = enc1b(child_1_1, . . . , child_1_k)
. . .
g_k_A0 = enck

b (child_j_1, . . . , child_j_k)

Note that if b(j) is of arity 0—i.e., if j = 0—the construction yields k assignments
of the form g_m_A0 = encm

b ().
The function encm

b interprets the semantics of b on the mth input example.
We take Linear Integer Arithmetic as an example to illustrate how encm

b works.

encm
0(0) := 0 encm

1(0) := 1
encm

x(0) := vi encm
Equals(2)(L,R) := (L=R)

encm
Plus(2)(L,R) := L+R encm

Minus(2)(L,R) := L-R
encm

IfThenElse(3)(B,L,R) := if(B) L else R

346 Q. Hu et al.

We now turn to the correctness of the construction. First, we formalize the
relationship between expression-trees in L(G), the semantics of P [G,E], and
the number n. Given an expression-tree e, we assume that each node q in e is
annotated with the production that has produced that node. Recall that δ(A) =
{r1, . . . , rm} is the set of productions with head A (where the subscripts are
indexes in some arbitrary, but fixed order). Concretely, for every node q, we
assume there is a function pr(q) = (A, i), which associates q with a pair that
indicates that non-terminal A produced n using the production ri (i.e., ri is the
ith production whose left-hand-side non-terminal is A).

We now define how we can extract a number #(e) for which the program
P̂ [#(e)] will exhibit the same semantics as that of the expression-tree e. First,
for every node q in e such that pr(q) = (A, i), we define the following number:

#nd(q) =

⎧
⎪⎪⎨

⎪⎪⎩

1 0 · · · 0︸ ︷︷ ︸
i−1

if i < |δ(A)|

0 · · · 0︸ ︷︷ ︸
i−1

if i = |δ(A)|.

The number #nd(q) indicates what suffix of the value of n will cause funcA to
trigger the code corresponding to production ri. Let q1 · · · qm be the sequence of
nodes visited during a pre-order traversal of expression-tree e. The number corre-
sponding to e, denoted by #(e), is defined as the bit-vector #nd(qm) · · ·#nd(q1).

Finally, we add the entry-point of the program, which calls the function funcS
corresponding to the initial non-terminal S, and contains the assertion that
encodes our reachability problem on all the input examples E = {c1, . . . , ck}.

void main(){
τI x1 = c1; · · · ;τI xk = ck;
funcS(x1, . . . , xk);
assert

∨
1≤i≤k ¬ψ(f, ci)[g_i_S/f(x)]; // At least one ci fails }

Correctness. We first need to show that the function #(·) captures the correct
language of expression-trees. Given a non-terminal A, a value n, and input values
i1, . . . , ik, we use [[funcA[n]]](i1, . . . , ik) = (o1, . . . ok) to denote the values of the
variables {g_1_A, . . . , g_k_A} at the end of the execution of funcA[n] with the
initial value of n = n and input values x1, . . . , xk. Given a non-terminal A, we
write L(G,A) to denote the set of terms that can be derived starting with A.

Lemma 3. Let A be a non-terminal, e ∈ L(G,A) an expression, and {i1, . . . , ik}
an input set. Then, ([[e]](i1), . . . , [[e]](ik)) = [[funcA[#(e)]]](i1, . . . , ik).

Each procedure funcA[n](i1, . . . , ik) that we construct has an explicit depen-
dence on variable n, where n controls the non-deterministic choices made by the
funcA and procedures called by funcA. As a consequence, when relating numbers
and expression-trees, there are two additional issues to contend with:

Non-termination. Some numbers can cause funcA[n] to fail to terminate.
For instance, if the case for “Start ::= Plus(Start, Start)” in program

Proving Unrealizability for Syntax-Guided Synthesis 347

P [G2, E1] from Fig. 1 were moved from the first branch (lines (3)–(8)) to the
final else case (line (13)), the number n = 0 = . . . 0000000 (base 2) would
cause Start to never terminate, due to repeated selections of Plus nodes.
However, note that the only assert statement in the program is placed at the
end of the main procedure. Now, consider a value of n such that reenc(sy,E) is
satisfiable. Definition 3 implies that the flow of control will reach and falsify
the assertion, which implies that funcA[n] terminates.4

Shared suffixes of sufficient length. In Example 1, we showed how for pro-
gram P [G2, E1] (Fig. 1) the number n = 1000101 (base 2) corresponds to the
top-down, left-to-right generation of Plus(x,1). That derivation consumed
exactly seven bits; thus, any number that, written in base 2, shares the suffix
1000101—e.g., 11010101000101—will also generate Plus(x,1).

The issue of shared suffixes is addressed in the following lemma:

Lemma 4. For every non-terminal A and number n such that
[[funcA[n]]](i1, . . . , ik) �= ⊥ (i.e., funcA terminates when the non-deterministic
choices are controlled by n), there exists a minimal n′ that is a (base 2) suffix
of n for which (i) there is an e ∈ L(G) such that #(e) = n′, and (ii) for every
input {i1, . . . , ik}, we have [[funcA[n]]](i1, . . . , ik) = [[funcA[n′]]](i1, . . . , ik).

We are now ready to state the correctness property of our construction.

Theorem 2. Given a SyGuS problem syE = (ψE(f, x), G) over a finite set of
examples E, the problem syE is realizable iff reenc(sy,E) is satisfiable.

5 Implementation and Evaluation

nope is a tool that can return two-sided answers to unrealizability problems of
the form sy = (ψ,G). When it returns unrealizable, no expression-tree in L(G)
satisfies ψ; when it returns realizable, some e ∈ L(G) satisfies ψ; nope can also
time out. nope incorporates several existing pieces of software.

1. The (un)reachability verifier SeaHorn is applied to the reachability problems
of the form reenc(sy,E) created during successive CEGIS rounds.

2. The SMT solver Z3 is used to check whether a generated expression-tree e
satisfies ψ. If it does, nope returns realizable (along with e); if it does not,
nope creates a new input example to add to E.

It is important to observe that SeaHorn, like most reachability verifiers, is
only sound for unsatisfiability—i.e., if SeaHorn returns unsatisfiable, the
reachability problem is indeed unsatisfiable. Fortunately, SeaHorn’s one-sided

4 If the SyGuS problem deals with the synthesis of programs for a language that
can express non-terminating programs, that would be an additional source of non-
termination, different from that discussed in item Non-termination. That issue
does not arise for LIA SyGuS problems. Dealing with the more general kind of
non-termination is postponed for future work.

348 Q. Hu et al.

answers are in the correct direction for our application: to prove unrealizability,
nope only requires the reachability verifier to be sound for unsatisfiability.

There is one aspect of nope that differs from the technique that has been
presented earlier in the paper. While SeaHorn is sound for unreachability, it
is not sound for reachability—i.e., it cannot soundly prove whether a synthesis
problem is realizable. To address this problem, to check whether a given SyGuS
problem syE is realizable on the finite set of examples E, nope also calls the
SyGuS solver ESolver [2] to synthesize an expression-tree e that satisfies syE .5

In practice, for every intermediate problem syE generated by the CEGIS
algorithm, nope runs the ESolver on syE and SeaHorn on reenc(sy,E) in par-
allel. If ESolver returns a solution e, SeaHorn is interrupted, and Z3 is used
to check whether e satisfies ψ. Depending on the outcome, nope either returns
realizable or obtains an additional input example to add to E. If SeaHorn
returns unsatisfiable, nope returns unrealizable.

Modulo bugs in its constituent components, nope is sound for both realiz-
ability and unrealizability, but because of Lemma 2 and the incompleteness of
SeaHorn, nope is not complete for unrealizability.
Benchmarks. We perform our evaluation on 132 variants of the 60 LIA bench-
marks from the LIA SyGuS competition track [2]. We do not consider the other
SyGuS benchmark track, Bit-Vectors, because the SeaHorn verifier is unsound
for most bit-vector operations–e.g., bit-shifting. We used three suites of bench-
marks. LimitedIf (resp. LimitedPlus) contains 57 (resp. 30) benchmarks in
which the grammar bounds the number of times an IfThenElse (resp. Plus)
operator can appear in an expression-tree to be 1 less than the number required
to solve the original synthesis problem. We used the tool Quasi to automati-
cally generate the restricted grammars. LimitedConst contains 45 benchmarks
in which the grammar allows the program to contain only constants that are
coprime to any constants that may appear in a valid solution—e.g., the solution
requires using odd numbers, but the grammar only contains the constant 2. The
numbers of benchmarks in the three suites differ because for certain benchmarks
it did not make sense to create a limited variant—e.g., if the smallest program
consistent with the specification contains no IfThenElse operators, no variant
is created for the LimitedIf benchmark. In all our benchmarks, the grammars
describing the search space contain infinitely many terms.

Our experiments were performed on an Intel Core i7 4.00GHz CPU, with
32GB of RAM, running Lubuntu 18.10 via VirtualBox. We used version 4.8 of
Z3, commit 97f2334 of SeaHorn, and commit d37c50e of ESolver. The timeout
for each individual SeaHorn/ESolver call is set at 10min.
Experimental Questions. Our experiments were designed to answer the ques-
tions posed below.

EQ 1. Can nope prove unrealizability for variants of real SyGuS bench-
marks, and how long does it take to do so?

5 We chose ESolver because on the benchmarks we considered, ESolver outperformed
other SyGuS solvers (e.g., CVC4 [3]).

Proving Unrealizability for Syntax-Guided Synthesis 349

Finding: nopecan prove unrealizability for 59/132 benchmarks. For the 59
benchmarks solved by nope, the average time taken is 15.59 s. The time taken
to perform the last iteration of the algorithm—i.e., the time taken by SeaHorn
to return unsatisfiable—accounts for 87% of the total running time.

nope can solve all of the LimitedIf benchmarks for which the grammar
allows at most one IfThenElse operator. Allowing more IfThenElse operators in
the grammar leads to larger programs and larger sets of examples, and conse-
quently the resulting reachability problems are harder to solve for SeaHorn.

For a similar reason, nope can solve only one of the LimitedPlus bench-
marks. All other LimitedPlus benchmarks allow 5 or more Plus statements,
resulting in grammars that have at least 130 productions.

nope can solve all LimitedConst benchmarks because these require few
examples and result in small encoded programs.

EQ 2. How many examples does nope use to prove unrealizability and how
does the number of examples affect the performance of nope?

Note that Z3 can produce different models for the same query, and thus different
runs of NOPE can produce different sequences of examples. Hence, there is no
guarantee that NOPE finds a good sequence of examples that prove unrealiz-
ability. One measure of success is whether nope is generally able to find a small
number of examples, when it succeeds in proving unrealizability.

Finding: Nope used 1 to 9 examples to prove unrealizability for the bench-
marks on which it terminated. Problems requiring large numbers of examples
could not be solved because either ESolver or times out—e.g., on the problem
max4, nope gets to the point where the CEGIS loop has generated 17 examples,
at which point ESolver exceeds the timeout threshold.

Fig. 3. Time vs examples.

Finding: The number of examples required to
prove unrealizability depends mainly on the arity of
the synthesized function and the complexity of the
grammar. The number of examples seems to grow
quadratically with the number of bounded opera-
tors allowed in the grammar. In particular, prob-
lems in which the grammar allows zero IfThenElse
operators require 2–4 examples, while problems in
which the grammar allows one IfThenElse operator
require 7–9 examples.

Figure 3 plots the running time of nope against the number of examples
generated by the CEGIS algorithm. Finding: The solving time appears to grow
exponentially with the number of examples required to prove unrealizability.

6 Related Work

The SyGuS formalism was introduced as a unifying framework to express several
synthesis problems [1]. Caulfield et al. [6] proved that it is undecidable to deter-
mine whether a given SyGuS problem is realizable. Despite this negative result,

350 Q. Hu et al.

there are several SyGuS solvers that compete in yearly SyGuS competitions [2]
and can efficiently produce solutions to SyGuS problems when a solution exists.
Existing SyGuS synthesizers fall into three categories: (i) Enumeration solvers
enumerate programs with respect to a given total order [7]. If the given prob-
lem is unrealizable, these solvers typically only terminate if the language of the
grammar is finite or contains finitely many functionally distinct programs. While
in principle certain enumeration solvers can prune infinite portions of the search
space, none of these solvers could prove unrealizability for any of the benchmarks
considered in this paper. (ii) Symbolic solvers reduce the synthesis problem to
a constraint-solving problem [3]. These solvers cannot reason about grammars
that restrict allowed terms, and resort to enumeration whenever the candidate
solution produced by the constraint solver is not in the restricted search space.
Hence, they also cannot prove unrealizability. (iii) Probabilistic synthesizers ran-
domly search the search space, and are typically unpredictable [14], providing
no guarantees in terms of unrealizability.
Synthesis as Reachability. CETI [12] introduces a technique for encoding
template-based synthesis problems as reachability problems. The CETI encod-
ing only applies to the specific setting in which (i) the search space is described
by an imperative program with a finite number of holes—i.e., the values that the
synthesizer has to discover—and (ii) the specification is given as a finite number
of input-output test cases with which the target program should agree. Because
the number of holes is finite, and all holes correspond to values (and not terms),
the reduction to a reachability problem only involves making the holes global
variables in the program (and no more elaborate transformations).

In contrast, our reduction technique handles search spaces that are described
by a grammar, which in general consist of an infinite set of terms (not just val-
ues). Due to this added complexity, our encoding has to account for (i) the seman-
tics of the productions in the grammar, and (ii) the use of non-determinism to
encode the choice of grammar productions. Our encoding creates one expression-
evaluation computation for each of the example inputs, and threads these com-
putations through the program so that each expression-evaluation computation
makes use of the same set of non-deterministic choices.

Using the input-threading, our technique can handle specifications that con-
tain nested calls of the synthesized program (e.g., f(f(x)) = x). (App. A [13]).

The input-threading technique builds a product program that performs mul-
tiple executions of the same function as done in relational program verification
[4]. Alternatively, a different encoding could use multiple function invocations
on individual inputs and require the verifier to thread the same bit-stream for
all input evaluations. In general, verifiers perform much better on product pro-
grams [4], which motivates our choice of encoding.
Unrealizability in Program Synthesis. For certain synthesis problems—e.g., reac-
tive synthesis [5]—the realizability problem is decidable. The framework tackled
in this paper, SyGuS, is orthogonal to such problems, and it is undecidable to
check whether a given SyGuS problem is realizable [6].

Proving Unrealizability for Syntax-Guided Synthesis 351

Mechtaev et al. [11] propose to use a variant of SyGuS to efficiently prune
irrelevant paths in a symbolic-execution engine. In their approach, for each path
π in the program, a synthesis problem pπ is generated so that if pπ is unrealizable,
the path π is infeasible. The synthesis problems generated by Mechtaev et al.
(which are not directly expressible in SyGuS) are decidable because the search
space is defined by a finite set of templates, and the synthesis problem can be
encoded by an SMT formula. To the best of our knowledge, our technique is the
first one that can check unrealizability of general SyGuS problems in which the
search space is an infinite set of functionally distinct terms.

Acknowledgment. This work was supported, in part, by a gift from Rajiv and Ritu
Batra; by AFRL under DARPA MUSE award FA8750-14-2-0270 and DARPA STAC
award FA8750-15-C-0082; by ONR under grant N00014-17-1-2889; by NSF under grants
CNS-1763871 and CCF-1704117; and by the UW-Madison OVRGE with funding from
WARF.

References

1. Alur, R., et al.: Syntax-guided synthesis. In: Formal Methods in Computer-Aided
Design (FMCAD), pp. 1–8. IEEE (2013)

2. Alur, R., Fisman, D., Singh, R., Solar-Lezama, A.: SyGuS-Comp 2016: results and
analysis. arXiv preprint arXiv:1611.07627 (2016)

3. Barrett, C., et al.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011.
LNCS, vol. 6806, pp. 171–177. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-22110-1_14

4. Barthe, G., Crespo, J.M., Kunz, C.: Relational verification using product programs.
In: Butler, M., Schulte, W. (eds.) FM 2011. LNCS, vol. 6664, pp. 200–214. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-21437-0_17

5. Bloem, R.: Reactive synthesis. In: Formal Methods in Computer-Aided Design
(FMCAD), p. 3 (2015)

6. Caulfield, B., Rabe, M.N., Seshia, S.A., Tripakis, S.: What’s decidable about
syntax-guided synthesis? arXiv preprint arXiv:1510.08393 (2015)

7. ESolver. https://github.com/abhishekudupa/sygus-comp14
8. Gurfinkel, A., Kahsai, T., Navas, J.A.: SeaHorn: a framework for verifying C pro-

grams (competition contribution). In: Baier, C., Tinelli, C. (eds.) TACAS 2015.
LNCS, vol. 9035, pp. 447–450. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-46681-0_41

9. Hu, Q., D’Antoni, L.: Automatic program inversion using symbolic transducers. In:
Proceedings of the 38th ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), pp. 376–389 (2017)

10. Hu, Q., D’Antoni, L.: Syntax-guided synthesis with quantitative syntactic objec-
tives. In: Chockler, H., Weissenbacher, G. (eds.) CAV 2018. LNCS, vol. 10981, pp.
386–403. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96145-3_21

11. Mechtaev, S., Griggio, A., Cimatti, A., Roychoudhury, A.: Symbolic execution with
existential second-order constraints. In: Proceedings of the 2018 26th ACM Joint
Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (ESEC/FSE), pp. 389–399 (2018)

http://arxiv.org/abs/1611.07627
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/978-3-642-21437-0_17
http://arxiv.org/abs/1510.08393
https://github.com/abhishekudupa/sygus-comp14
https://doi.org/10.1007/978-3-662-46681-0_41
https://doi.org/10.1007/978-3-662-46681-0_41
https://doi.org/10.1007/978-3-319-96145-3_21

352 Q. Hu et al.

12. Nguyen, T.V., Weimer, W., Kapur, D., Forrest, S.: Connecting program synthesis
and reachability: automatic program repair using test-input generation. In: Legay,
A., Margaria, T. (eds.) TACAS 2017. LNCS, vol. 10205, pp. 301–318. Springer,
Heidelberg (2017). https://doi.org/10.1007/978-3-662-54577-5_17

13. Qinheping, H., Jason, B., John, C., Loris, D., Reps, T.: Proving unrealizability for
syntax-guided synthesis. arXiv preprint arXiv:1905.05800 (2019)

14. Schkufza, E., Sharma, R., Aiken, A.: Stochastic program optimization. Commun.
ACM 59(2), 114–122 (2016)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-662-54577-5_17
http://arxiv.org/abs/1905.05800
http://creativecommons.org/licenses/by/4.0/

Model Checking

BMC for Weak Memory Models: Relation
Analysis for Compact SMT Encodings

Natalia Gavrilenko1,4(B), Hernán Ponce-de-León2,
Florian Furbach3, Keijo Heljanko4,

and Roland Meyer3

1 Aalto University, Helsinki, Finland
2 fortiss GmbH, Munich, Germany

3 TU Braunschweig, Brunswick, Germany
4 University of Helsinki and HIIT, Helsinki, Finland

natalia.gavrilenko@helsinki.fi

Abstract. We present Dartagnan, a bounded model checker (BMC)
for concurrent programs under weak memory models. Its distinguishing
feature is that the memory model is not implemented inside the tool
but taken as part of the input. Dartagnan reads CAT, the standard
language for memory models, which allows to define x86/TSO, ARMv7,
ARMv8, Power, C/C++, and Linux kernel concurrency primitives.
BMC with memory models as inputs is challenging. One has to encode
into SMT not only the program but also its semantics as defined by
the memory model. What makes Dartagnan scale is its relation anal-
ysis, a novel static analysis that significantly reduces the size of the
encoding. Dartagnan matches or even exceeds the performance of the
model-specific verification tools Nidhugg and CBMC, as well as the
performance of Herd, a CAT-compatible litmus testing tool. Compared
to the unoptimized encoding, the speed-up is often more than two orders
of magnitude.

Keywords: Weak memory models · CAT · Concurrency · BMC · SMT

1 Introduction

When developing concurrency libraries or operating system kernels, performance
and scalability of the concurrency primitives is of paramount importance. These
primitives rely on the synchronization guarantees of the underlying hardware
and the programming language runtime environment. The formal semantics of
these guarantees are often defined in terms of weak memory models. There is
considerable interest in verification tools that take memory models into account
[5,9,13,22].

A successful approach to formalizing weak memory models is CAT [11,12,16],
a flexible specification language in which all memory models considered so far can
be expressed succinctly. CAT, together with its accompanying tool Herd [4],

c© The Author(s) 2019
I. Dillig and S. Tasiran (Eds.): CAV 2019, LNCS 11561, pp. 355–365, 2019.
https://doi.org/10.1007/978-3-030-25540-4_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-25540-4_19&domain=pdf
https://doi.org/10.1007/978-3-030-25540-4_19

356 N. Gavrilenko et al.

has been used to formalize the semantics not only of assembly for x86/TSO,
Power, ARMv7 and ARMv8, but also high-level programming languages, such
as C/C++, transactional memory extensions, and recently the Linux kernel
concurrency primitives [11,15,16,18,20,24,29]. This success indicates the need
for universal verification tools that are not limited to a specific memory model.

We present Dartagnan [3], a bounded model checker that takes memory
models as inputs. Dartagnan expects a concurrent program annotated with an
assertion and a memory model for which the verification should be conducted. It
verifies the assertion on those executions of the program that are valid under the
given memory model and returns a counterexample execution if the verification
fails. As is typical of BMC, the verification results hold relative to an unrolling
bound [21]. The encoding phase, however, is new. Not only the program but also
its semantics as defined by the CAT model are translated into an SMT formula.

Having to take into account the semantics quickly leads to large encodings.
To overcome this problem, Dartagnan implements a novel relation analysis,
which can be understood as a static analysis of the program semantics as defined
by the memory model. More precisely, CAT defines the program semantics in
terms of relations between the events that may occur in an execution. Depending
on constraints over these relations, an execution is considered valid or invalid.
Relation analysis determines the pairs of events that may influence a constraint of
the memory model. Any remaining pair can be dropped from the encoding. The
analysis is compatible with optimized fixpoint encodings presented in [27,28].

The second novelty is the support for advanced programming constructs.
We redesigned Dartagnan’s heap model, which now has pointers and arrays.
Furthermore, we enriched the set of synchronization primitives, including read-
modify-write and read-copy-update (RCU) instructions [26]. One motivation for
this richer set of programming constructs is the Linux kernel memory model [15]
that has recently been added to the kernel documentation [2]. This model has
already been used by kernel developers to find bugs in and clarify details of the
concurrency primitives. Since the model is expected to be refined with further
development of the kernel, verification tools will need to quickly accommodate
updates in the specification. So far, only Herd [4] has satisfied this require-
ment. Unfortunately, it is limited to fairly small programs (litmus tests). The
present version of Dartagnan offers an alternative with substantially better
performance.

We present experiments on a series of benchmarks consisting of 4751 Linux
litmus tests and 7 mutual exclusion algorithms executed on TSO, ARM, and
Linux. Despite the flexibility of taking memory models as inputs, Dartagnan’s
performance is comparable to CBMC [13] and considerably better than that of
Nidhugg [5,9]. Both are model-specific tools. Compared to the previous version
of Dartagnan [28] and compared to Herd [4], we gain a speed-up of more than
two orders of magnitude, thanks to the relation analysis.

Related Work. In terms of the verification task to be solved, the following
tools are the closest to ours. CBMC [13] is a scalable bounded model checker
supporting TSO, but not ARM. An earlier version also supported Power.

Relation Analysis for Compact SMT Encodings 357

Nidhugg [5,9] is a stateless model checker supporting TSO, Power, and a
subset of ARMv7. It is excellent for programs with a small number of executions.
RCMC [22] implements a stateless model checking algorithm targeting C11.
We cannot directly benchmark against it because the source code of the tool
is not yet publicly available, nor do we fully support C11. Herd [4] is the
only tool aside from ours that takes a CAT memory model as input. Herd
does not scale well to programs with a large number of executions, including
some of the Linux kernel tests. Other verification tasks (e.g., fence insertion to
restore sequential consistency) are tackled by Memorax [6–8], offence [14],
Fender [23], DFence [25], and trencher [19].

Relation Analysis on an Example. Consider the program (in the .litmus
format) given to the left in the figure below. The assertion asks whether there
is a reachable state with final values EBX = 1, ECX = 0. We analyze the program
under the x86-TSO memory model shown below the program. The semantics of
the program under TSO is a set of executions. An execution is a graph, similar
to the one given below, where the nodes are events and the edges correspond to
the relations defined by the memory model. Events are instances of instructions
that access the shared memory: R (loads), W (stores, including initial stores),
and M (the union of both). The atomic exchange instruction xchg [x], EAX gives
rise to a pair of read and write events related by a (dashed) rmw edge. Such
reads and writes belong to the set A of atomic read-modify-write events.

X86

{x = 0; y = 0; P0:EAX = 1;}
P0 | P1 ;

xchg [x], EAX | mov EBX, [y] ;

mov [y], 1 | mov ECX, [x] ;

exists (P1:EBX = 1 ∧ P1:ECX = 0)

f : Winit x = 0 g : Winit y = 0

a : Rx d : Ry

b : Wx = 1 e : Rx

c : Wy = 1

rfe

rfe

co

rfe

co

po-tso fr
rmw

po-tso

po-tso
fr

po-tso
rfe

fr

rfe

acyclic po-loc ∪ com acyclic ghb-tso empty rmw ∩ (fre ; coe)
com = co ∪ fr ∪ rf com-tso = co ∪ fr ∪ rfe po-tso = (po \ W × R) ∪ mfence
implied = po ∩ (W × R) ∩ ((M × A) ∪ (A × M)) ghb-tso = po-tso ∪ com-tso ∪ implied

x86-TSO

The relations rf, co, and fr model the communication of instructions via the
shared memory (reading from a write, coherence, overwriting a read). Their
restrictions rfe, coe, and fre denote (external) communication between instruc-
tions from different threads. Relation po is the program order within the same
thread and po-loc is its restriction to events addressing the same memory loca-
tion. Edges of mfence relate events separated by a fence. Further relations are
derived from these base relations. To belong to the TSO semantics of the
program, an execution has to satisfy the constraints of the memory model:
empty rmw ∩ (fre ; coe), which enforces atomicity of read-modify-write events,
and the two acyclicity constraints.

358 N. Gavrilenko et al.

Dartagnan encodes the semantics of the given program under the given
memory model into an SMT formula. The problem is that each edge (a, b) that
may be present in a relation r gives rise to a variable r(a, b). The goal of our
relation analysis is to reduce the number of edges that need to be encoded. We
illustrate this on the constraint acyclic ghb-tso. The graph next to the program
shows the 14 (dotted and solid) edges which may contribute to the relation ghb-
tso. Of those, only the 6 solid edges can occur in a cycle. The dotted edges
can be dropped from the SMT encoding. Our relation analysis determines the
solid edges—edges that may have an influence on a constraint of the memory
model. Additionally, ghb-tso is a composition of various subrelations (e.g., po-tso
or co ∪ fr) that also require encoding into SMT. Relation analysis applies to
subrelations as well. Applied to all constraints, it reduces the number of encoded
edges for all (sub)relations from 221 to 58.

2 Input, Functionality, and Implementation

Dartagnan has the ambition of being widely applicable, from assembly over
operating system code written in C/C++ to lock-free data structures. The tool
accepts programs in PPC, x86, AArch64 assembly, and a subset of C11, all
limited to the subsets supported by Herd’s .litmus format. It also reads our own
.pts format with C11-like syntax [28]. We refer to global variables as memory
locations and to local variables as registers. We support pointers, i.e., a register
may hold the address of a location. Addresses and values are integers, and we
allow the same arithmetic operations for addresses as for regular integer values.
Different synchronization mechanisms are available, including variants of read-
modify-write, various fences, and RCU instructions [26].

We support the assertion language of Herd. Assertions define inequalities
over the values of registers and locations. They come with quantifiers over the
reachable states that should satisfy the inequalities.

We use the CAT language [11,12,16] to define memory models. A memory
model consists of named relations between events that may occur in an execution.
Whether or not an execution is valid is defined by constraints over these relations:

〈MM 〉 ::= 〈const〉 | 〈rel〉 | 〈MM 〉 ∧ 〈MM 〉 〈r〉 ::= 〈b〉 | 〈name〉 | 〈r〉 ∪ 〈r〉 | 〈r〉 \ 〈r〉
〈const〉 ::= acyclic(〈r〉) | irreflexive(〈r〉) | 〈r〉 ∩ 〈r〉 | 〈r〉−1 | 〈r〉+ | 〈r〉∗ | 〈r〉; 〈r〉

| empty(〈r〉) 〈b〉 ::= id | int | ext | po | fencerel(fence)
〈rel〉 ::= 〈name〉 := 〈r〉 | rmw | ctrl | data | addr | loc | rf | co.

CAT has a rich relational language, and we only show an excerpt above. So-
called base relations 〈b〉 model the control flow, data flow, and synchronization
constraints. The language provides intuitive operators to derive further rela-
tions. One may define relations recursively by referencing named relations. Their
semantics is the least fixpoint.

Relation Analysis for Compact SMT Encodings 359

Dartagnan is invoked with two inputs: the program, annotated with an
assertion over the final states, and the memory model. There are two optional
parameters related to the verification. The SMT encoding technique for recursive
relations is defined by mode chosen between knastertarski (default) and idl (see
below). The parameter alias, chosen between none and andersen (default), defines
whether to use an alias analysis for our relation analysis (cf. Sect. 3).

Being a bounded model checker, Dartagnan computes an unrolled program
with conditionals but no loops. It encodes this acyclic program together with the
memory model into an SMT formula and passes it to the Z3 solver. The formula
has the form ψprog ∧ ψassert ∧ ψmm , where ψprog encodes the program, ψassert

the assertion, and ψmm the memory model. We elaborate on the encoding of the
program and the memory model. The assertion is already given as a formula.

We model the heap by encoding a new memory location for each variable
and a set of locations for each memory allocation of an array. Every location has
an address encoded as an integer variable whose value is chosen by the solver. In
an array, the locations are required to have consecutive addresses. Instances of
instructions are modeled as events, most notably stores (to the shared memory)
and loads (from the shared memory).

We encode relations by associating pairs of events with Boolean variables.
Whether the pair (e1, e2) is contained in relation r is indicated by the vari-
able r(e1, e2). Encoding the relations r1 ∩ r2, r1 ∪ r2, r1 ; r2, r1 \ r2 and r−1 is
straightforward [27]. For recursively defined and (reflexive and) transitive rela-
tions, Dartagnan lets the user choose between two methods for computing
fixed points by setting the appropriate parameter. The integer-difference logic
(IDL) method encodes a Kleene iteration by means of integer variables (one for
each pair of events) representing the step in which the pair was added to the
relation [27]. The Knaster-Tarski encoding simply looks for a post fixpoint. We
have shown in [28] that this is sufficient for reachability analysis.

3 Relation Analysis

To optimize the size of the encoding (and the solving times), we found it essential
to reduce the domains of the relations. We determine for each relation a static
over-approximation of the pairs of events that may be in this relation. Even more,
we restrict the relation to the set of pairs that may influence a constraint of the
given memory model. These restricted sets are the relation analysis information
(of the program relative to the memory model). Technically, we compute, for
each relation r, two sets of event pairs, M (r) and A(r). The former contains so-
called may pairs, pairs of events that may be in relation r. This does not yet
take into account whether the may pairs occur in some constraint of the memory
model. The active pairs A(r) incorporate this information, and hence restrict the
set of may pairs. As a consequence of the relation analysis, we only introduce
Boolean variables r(e1, e2) for the pairs (e1, e2) ∈ A(r) to the SMT encoding.

The algorithm for constructing the may set and the active set is a fix-
point computation. What is unconventional is that the two sets propagate their

360 N. Gavrilenko et al.

information in different directions. For A(r), the computation proceeds from the
constraints and propagates information down the syntax tree of the CAT mem-
ory model. The sets M (r) are computed bottom-up the syntax tree. Interestingly,
in our implementation, we do not compute the full fixpoint but let the top-down
process trigger the required bottom-up computation.

Both sets are computed as least solutions to a common system of inequalities.
As we work over powerset lattices (relations are sets after all), the order of the
system will be inclusion. We understand each set M (r) and A(r) as a variable,
thereby identifying it with its least solution. To begin with, we give the definition
for A(r). In the base case, we have a relation r that occurs in a constraint of the
memory model. The inequality is defined based on the shape of the constraint:

A(r) ⊇ M (r) (empty) A(r) ⊇ M (r) ∩ id (irrefl .) A(r) ⊇ M (r) ∩ M (r+)−1 (acyclic).

For the emptiness constraint, all pairs of events that may be contained in the
relation are relevant. If the constraint requires irreflexivity, what matters are
the pairs (e, e). If the constraint requires acyclicity, we concentrate on the pairs
(e1, e2), where (e1, e2) may be in relation r and (e2, e1) may be in relation r+.
Note how the definition of active pairs triggers the computation of may pairs.

If the relation in the constraint is a composed one, the following inequalities
propagate the information about the active pairs down the syntax tree of the
CAT memory model:

A(r1) ⊇ A(r)−1 if r = r−1
1

A(r1) ⊇ A(r) if r = r1 ∩ r2 or r = r1 \ r2

A(r1) ⊇ A(r) ∩ M (r1) if r = r1 ∪ r2 or r = r2 \ r1

A(r1) ⊇ {x ∈ M (r1) | x;M (r2) ∩ A(r) �= ∅} if r = r1; r2

A(r1) ⊇ {x ∈ M (r1) | M (r∗1);x;M (r∗1) ∩ A(r) �= ∅} if r = r+1 or r = r∗1.

The definition maintains the invariant A(r) ⊆ M (r). If a pair (e1, e2) is relevant
to relation r = r−1

1 , then (e2, e1) will be relevant to r1. We do not have to
intersect A(r)−1 with M (r)−1 because A(r) ⊆ M (r) ensures A(r)−1 ⊆ M (r)−1.
We can avoid the intersection with the may pairs for the next case as well. There,
A(r) ⊆ M (r) holds by the invariant and M (r) = M (r1)∩M (r2) by definition (see
below). For union and the other case of subtraction, the intersection with M (r1)
is necessary. There are symmetric definitions for union and intersection for r2.
For a relation r1 that occurs in a relational composition r = r1; r2, the pairs
(e1, e3) become relevant if they may be composed with a pair (e3, e2) in r2 to
obtain a pair (e1, e2) relevant to r. Note that for r2 we again need the may pairs.
The definition for r2 is similar. The definition for the (reflexive and) transitive
closure follows the ideas for relational composition.

The definition of the may sets follows the syntax of the CAT memory model
bottom-up. With ⊕ ∈ {∪,∩, ; } and ⊗ ∈ {+, ∗,−1}, we have:

M (r1 ⊕ r2) ⊇ M (r1) ⊕ M (r2) M (r⊗) ⊇ M (r)⊗ M (r1 \ r2) ⊇ M (r1).

Relation Analysis for Compact SMT Encodings 361

1 10 20 30 40 50 60 70

1 min

2 min

3 min

4 min

5 min

Parker

1 10 20 30 40 50 60 70

1 min

2 min

3 min

4 min

Peterson

1 2 3 4 5 6 7 8 9 10

1 min

2 min

3 min

4 min

5 min

Dekker

CBMC-TSO
Nidhugg-TSO
Nidhugg-ARM
Dartagnan-TSO
Dartagnan-ARM
FMCAD-TSO
FMCAD-ARM

1 2 3 4 5 6 7 8 9 10

5 min

10 min

15 min

20 min

25 min

30 min

Burns

1 2 3 4 5

5 min

10 min

15 min

20 min

25 min

30 min

Bakery

1 2 3 4 5

5 min

10 min

15 min

20 min

25 min

30 min

Lamport

1 2 3 4 5

5 min

10 min

15 min

20 min

25 min

30 min

Szymanski

Fig. 1. Impact of the unrolling bound (x-axis) on the verification time (y-axis).

This simply executes the operator of the relation on the corresponding may sets.
Subtraction (r1 \ r2) is the exception, it is not sound to over-approximate r2.

At the bottom level, the may sets are determined by the base relations. They
depend on the shape of the relations and the positions of the events in the
control flow. The relations loc, co and rf are concerned with memory accesses.
What makes it difficult to approximate these relations is our support for pointers
and pointer arithmetic. Without further information, we have to conservatively
assume that a memory event may access any address. To improve the precision of
the may sets for loc, co, and rf, our fixpoint computation incorporates a may-alias
analysis. We use a control-flow insensitive Andersen-style analysis [17]. It incurs
only a small overhead and produces a close over-approximation of the may sets.
The analysis returns1 a set of pairs of memory events PTS ⊆ (W∪R)×(W∪R)
such that every pair of events outside PTS definitely accesses different addresses.
Here, W are the store events in the program and R are the loads. Note that the
analysis has to be control-flow insensitive as the given memory model may be
very weak [10]. We have M (loc) ⊇ PTS. Similarly, M (co) and M (rf) are defined
by PTS restricted to (W × W) and (W × R), respectively.

We stress the importance of the alias analysis for our relation analysis: loc,
co, and rf are frequently used as building blocks of composite relations. Excessive
may sets will therefore negatively affect the over-approximations of virtually all
relations in a memory model, and keep the overall encoding unnecessarily large.

Illustration. We illustrate the relation analysis on the example from the intro-
duction. Consider constraint acyclic ghb-tso. The computation of the active set
for the relation ghb-tso triggers the calculation of the may set, following the
inequality A(ghb-tso) ⊇ M (ghb-tso) ∩M (ghb-tso+)−1. The may set is the union
of the may sets for the subrelations, shown by colored (dotted and solid) edges.

1 This is a simplification, Andersen returns points-to sets, and we check by an inter-
section PTS(r1) ∩ PTS(r2) whether two registers may alias.

362 N. Gavrilenko et al.

10
m
s

10
0
m
s

1
s

10
s

1
m
in

10
m
in

30
m
in

10 ms

100 ms

1 s

10 s

1 min

10 min
30 min

No Alias

A
lia

s

10
m
s

10
0
m
s

1
s

10
s

1
m
in

10
m
in

30
m
in

10 ms

100 ms

1 s

10 s

1 min

10 min
30 min

Herd

D
a
rt

ag
n
a
n

Fig. 2. Execution times (logarithmic scale) on Linux kernel litmus tests: impact of
alias analysis (left) and comparison against Herd (right).

The intersection yields the edges that may lie on cycles of ghb-tso. They are
drawn in solid. These solid edges in A(ghb-tso) are propagated down to the sub-
relations. For example, A(po-tso) ⊇ A(ghb-tso)∩M (po-tso) yields the solid black
edges.

4 Experiments

We compare Dartagnan to CBMC [13] and Nidhugg [5,9], both model-
specific tools, and to Herd [4,16] and the Dartagnan FMCAD-18 version
[3,28] (without relation analysis), both taking CAT models as inputs. We also
evaluate the impact of the alias analysis on the execution time.

Benchmarks. For CBMC, Nidhugg, and the FMCAD-18 Dartagnan, we
evaluate the performance on 7 mutual exclusion benchmarks executed on TSO
(all tools) and a subset of ARMv7 (only Nidhugg and Dartagnan). The
results on Power are similar to those on ARM and thus omitted. We excluded
Herd from this experiment since it did not scale even for small unrolling bounds
[28]. We set a 5 min timeout for Parker, Dekker, and Peterson as this is sufficient
to show the trends in the runtimes, and a 30 min timeout for the remaining
benchmarks. To compare against Herd, and to evaluate the impact of the alias
analysis, we run 4751 Linux kernel litmus tests (all tests from [1] without Linux
spinlocks). The tests contain kernel primitives, such as RCU, on the Linux kernel
model. We set a 30 min timeout.

Evaluation. The times for CBMC, Nidhugg-ARM, and the FMCAD-2018
version of Dartagnan grow exponentially for Parker (see Fig. 1). The growth
in CBMC and FMCAD-2018 is due to the explosion of the encoding. For the
latter, the solver runs out of memory with unrolling bounds 20 (TSO) and 10
(ARM). For Nidhugg-ARM, the tool explores many unnecessary executions.
The verification times for Nidhugg-TSO and the current version of Dartag-
nan grow linearly. The latter is due to the relation analysis. For Peterson, the
results are similar except for CBMC, which matches Dartagnan’s performance.

For Dekker, Nidhugg outperforms both CBMC and Dartagnan. This is
because the number of executions grows slowly compared to the explosion of the

Relation Analysis for Compact SMT Encodings 363

number of instructions. The executions in both memory models coincide, mak-
ing the performance on ARM comparable to that on TSO for Nidhugg. The
difference is due to the optimal exploration in TSO, but not in ARM. Relation
analysis has some impact on the performance (see FMCAD-2018 vs. Dartag-
nan), but the encoding size still grows faster than the number of executions.

The benchmarks Burns, Bakery, and Lamport demonstrate the opposite
trend: the number of executions grows much faster than the size of the encoding.
Here, CBMC and Dartagnan outperform Nidhugg. Notice that for Burns,
Nidhugg performs better on ARM than on TSO with unrolling bound 5.
This is counter-intuitive since one expects more executions on ARM. Although
the number of executions coincide, the exploration time is higher on TSO due
to a different search algorithm. For Szymanski, similar results hold except for
Dartagnan-ARM where the encoding grows exponentially.

Figure 2 (left) shows the verification times for the current version of Dartag-
nan with and without alias analysis. The alias analysis results in a speed-up of
more than two orders of magnitude in benchmarks with several threads accessing
up to 18 locations. Figure 2 (right) compares the performance of Dartagnan
against Herd. We used the Knaster-Tarski encoding and alias analysis since
they yield the best performance. Herd outperforms Dartagnan on small test
instances (less than 1 s execution time). This is due to the JVM startup time and
the preprocessing costs of Dartagnan. However, on large benchmarks, Herd
times out while Dartagnan takes less than 10 s.

References

1. Linux kernel litmus test suite. https://github.com/paulmckrcu/litmus
2. Linux Memory Model. https://github.com/torvalds/linux/tree/master/tools/

memory-model
3. The Dat3M tool suite. https://github.com/hernanponcedeleon/Dat3M
4. The herdtools7 tool suite. https://github.com/herd/herdtools7
5. Abdulla, P.A., Aronis, S., Atig, M.F., Jonsson, B., Leonardsson, C., Sagonas, K.:

Stateless model checking for TSO and PSO. In: Baier, C., Tinelli, C. (eds.) TACAS
2015. LNCS, vol. 9035, pp. 353–367. Springer, Heidelberg (2015). https://doi.org/
10.1007/978-3-662-46681-0 28

6. Abdulla, P.A., Atig, M.F., Chen, Y.-F., Leonardsson, C., Rezine, A.: Automatic
fence insertion in integer programs via predicate abstraction. In: Miné, A., Schmidt,
D. (eds.) SAS 2012. LNCS, vol. 7460, pp. 164–180. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-33125-1 13

7. Abdulla, P.A., Atig, M.F., Chen, Y.-F., Leonardsson, C., Rezine, A.: Counter-
example guided fence insertion under TSO. In: Flanagan, C., König, B. (eds.)
TACAS 2012. LNCS, vol. 7214, pp. 204–219. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-28756-5 15

8. Abdulla, P.A., Atig, M.F., Chen, Y.-F., Leonardsson, C., Rezine, A.: Memorax,
a precise and sound tool for automatic fence insertion under TSO. In: Piterman,
N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp. 530–536. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-36742-7 37

https://github.com/paulmckrcu/litmus
https://github.com/torvalds/linux/tree/master/tools/memory-model
https://github.com/torvalds/linux/tree/master/tools/memory-model
https://github.com/hernanponcedeleon/Dat3M
https://github.com/herd/herdtools7
https://doi.org/10.1007/978-3-662-46681-0_28
https://doi.org/10.1007/978-3-662-46681-0_28
https://doi.org/10.1007/978-3-642-33125-1_13
https://doi.org/10.1007/978-3-642-28756-5_15
https://doi.org/10.1007/978-3-642-28756-5_15
https://doi.org/10.1007/978-3-642-36742-7_37

364 N. Gavrilenko et al.

9. Abdulla, P.A., Atig, M.F., Jonsson, B., Leonardsson, C.: Stateless model checking
for POWER. In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS, vol. 9780, pp.
134–156. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41540-6 8

10. Alglave, J., Kroening, D., Lugton, J., Nimal, V., Tautschnig, M.: Soundness of data
flow analyses for weak memory models. In: Yang, H. (ed.) APLAS 2011. LNCS,
vol. 7078, pp. 272–288. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-25318-8 21

11. Alglave, Jade: A Shared Memory Poetics. Thèse de doctorat, L’université Paris
Denis Diderot (2010)

12. Alglave, J., Cousot, P., Maranget, L.: Syntax and semantics of the weak consistency
model specification language CAT. CoRR, arXiv:1608.07531 (2016)

13. Alglave, J., Kroening, D., Tautschnig, M.: Partial orders for efficient bounded
model checking of concurrent software. In: Sharygina, N., Veith, H. (eds.) CAV
2013. LNCS, vol. 8044, pp. 141–157. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-39799-8 9

14. Alglave, J., Maranget, L.: Stability in weak memory models. In: Gopalakrishnan,
G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 50–66. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-22110-1 6

15. Alglave, J., Maranget, L., McKenney, P.E., Parri, A., Stern, A.S.: Frightening
small children and disconcerting grown-ups: Concurrency in the linux kernel. In:
ASPLOS, pp. 405–418. ACM (2018)

16. Alglave, J., Maranget, L., Tautschnig, M.: Herding cats: Modelling, simulation,
testing, and data mining for weak memory. ACM Trans. Program. Lang. Syst
36(2), 7:1–7:74 (2014)

17. Andersen, L.O.: Program Analysis and Specialization for the C Programming Lan-
guage. PhD thesis, University of Copenhagen (1994)

18. Batty, M., Donaldson, A.F., Wickerson, J.: Overhauling SC atomics in C11 and
OpenCL. In: POPL, pp. 634–648. ACM (2016)

19. Bouajjani, A., Derevenetc, E., Meyer, R.: Checking and enforcing robustness
against TSO. In: Felleisen, M., Gardner, P. (eds.) ESOP 2013. LNCS, vol. 7792, pp.
533–553. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37036-
6 29

20. Chong, N., Sorensen, T., Wickerson, J.: The semantics of transactions and weak
memory in x86, Power, ARM, and C++. In: PLDI, pp. 211–225. ACM (2018)

21. Clarke, E.M., Biere, A., Raimi, R., Zhu, Y.: Bounded model checking using satis-
fiability solving. Form. Methods Syst. Des. 19(1), 7–34 (2001)

22. Kokologiannakis, M., Lahav, O., Sagonas, K., Vafeiadis, V.: Effective stateless
model checking for C/C++ concurrency. PACMPL 2(POPL), 17:1–7:32 (2018)

23. Kuperstein, M., Vechev, M.T., Yahav, E.: Automatic inference of memory fences.
SIGACT News 43(2), 108–123 (2012)

24. Lahav, O., Vafeiadis, V., Kang, J., Hur, C.-H., Kil, Dreyer, D.: Repairing sequential
consistency in C/C++11. In: PLDI, pp. 618–632. ACM (2017)

25. Liu, F., Nedev, N., Prisadnikov, N., Vechev, M.T., Yahav, E.: Dynamic synthesis
for relaxed memory models. In: PLDI, pp. 429–440. ACM (2012)

26. McKenney, P.E., Slingwine, J.: Read-copy update: Using execution history to solve
concurrency problems. In: Parallel and Distributed Computing and Systems, pp
509–518 (1998)

27. Ponce-de-León, H., Furbach, F., Heljanko, K., Meyer, R.: Portability analysis for
weak memory models porthos: One Tool for all Models. In: Ranzato, F. (ed.)
SAS 2017. LNCS, vol. 10422, pp. 299–320. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-66706-5 15

https://doi.org/10.1007/978-3-319-41540-6_8
https://doi.org/10.1007/978-3-642-25318-8_21
https://doi.org/10.1007/978-3-642-25318-8_21
http://arxiv.org/abs/1608.07531
https://doi.org/10.1007/978-3-642-39799-8_9
https://doi.org/10.1007/978-3-642-39799-8_9
https://doi.org/10.1007/978-3-642-22110-1_6
https://doi.org/10.1007/978-3-642-37036-6_29
https://doi.org/10.1007/978-3-642-37036-6_29
https://doi.org/10.1007/978-3-319-66706-5_15
https://doi.org/10.1007/978-3-319-66706-5_15

Relation Analysis for Compact SMT Encodings 365

28. Ponce de León, H., Furbach, F., Heljanko, K., Meyer, R.: BMC with memory
models as modules. In: FMCAD, pp. 1–9. IEEE (2018)

29. Pulte, C., Flur, S., Deacon, W., French, J., Sarkar, S., Sewell, P.: Simplifying ARM
concurrency: multicopy-atomic axiomatic and operational models for ARMv8.
PACMPL 2(POPL), 19:1–19:29 (2018)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

When Human Intuition Fails: Using
Formal Methods to Find an Error

in the “Proof” of a Multi-agent Protocol

Jennifer A. Davis1, Laura R. Humphrey2(B), and Derek B. Kingston3

1 Collins Aerospace, Cedar Rapids, IA 52498, USA
jen.davis@collins.com

2 Air Force Research Lab, Dayton, OH 45433, USA
laura.humphrey@us.af.mil

3 Aurora Flight Sciences, Manassas, VA 20110, USA
kingston.derek@aurora.aero

Abstract. Designing protocols for multi-agent interaction that achieve
the desired behavior is a challenging and error-prone process. The stan-
dard practice is to manually develop proofs of protocol correctness that
rely on human intuition and require significant effort to develop. Even
then, proofs can have mistakes that may go unnoticed after peer review,
modeling and simulation, and testing. The use of formal methods can
reduce the potential for such errors. In this paper, we discuss our expe-
rience applying model checking to a previously published multi-agent
protocol for unmanned air vehicles. The original publication provides a
compelling proof of correctness, along with extensive simulation results
to support it. However, analysis through model checking found an error
in one of the proof’s main lemmas. In this paper, we start by provid-
ing an overview of the protocol and its original “proof” of correctness,
which represents the standard practice in multi-agent protocol design.
We then describe how we modeled the protocol for a three-vehicle sys-
tem in a model checker, the counterexample it returned, and the insight
this counterexample provided. We also discuss benefits, limitations, and
lessons learned from this exercise, as well as what future efforts would be
needed to fully verify the protocol for an arbitrary number of vehicles.

Keywords: Multi-agent systems · Distributed systems · Autonomy ·
Model checking

1 Introduction

Many robotics applications require multi-agent interaction. However, designing
protocols for multi-agent interaction that achieve the desired behavior can be

D. B. Kingston—Supported by AFRL/RQ contract #FA8650-17-F-2220 and AFOSR
award #17RQCOR417. DISTRIBUTION A. Approved for public release: distribution
unlimited. Case #88ABW-2018-4275.

This is a U.S. government work and not under copyright protection in the U.S.;
foreign copyright protection may apply 2019
I. Dillig and S. Tasiran (Eds.): CAV 2019, LNCS 11561, pp. 366–375, 2019.
https://doi.org/10.1007/978-3-030-25540-4_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-25540-4_20&domain=pdf
https://doi.org/10.1007/978-3-030-25540-4_20

Formal Methods to Find an Error in the “Proof” of a Multi-agent Protocol 367

challenging. The design process is often manual, i.e. performed by humans, and
generally involves creating mathematical models of possible agent behaviors and
candidate protocols, then manually developing a proof that the candidate proto-
cols are correct with respect to the desired behavior. However, human-generated
proofs can have mistakes that may go unnoticed even after peer review, modeling
and simulation, and testing of the resulting system.

Formal methods have the potential to reduce such errors. However, while the
use of formal methods in multi-agent system design is increasing [2,6,8,11], it
is our experience that manual approaches are still the norm. Here, we hope to
motivate the use of formal methods for multi-agent system design by demon-
strating their value in a case study involving a manually designed decentralized
protocol for dividing surveillance of a perimeter across multiple unmanned aerial
vehicles (UAVs). This protocol, called the Decentralized Perimeter Surveillance
System (DPSS), was previously published in 2008 [10], has received close to 200
citations to date, and provides a compelling “proof” of correctness backed by
extensive simulation results.

We start in Sect. 2 by giving an overview of DPSS, the convergence bounds
that comprise part of its specification, and the original “proof” of correctness.
In Sect. 3, we give an overview of the three-UAV DPSS model we developed in
the Assume Guarantee REasoning Environment (AGREE) model checker [3]. In
Sect. 4, we present the analysis results returned by AGREE, including a coun-
terexample to one of the convergence bounds. Section 5 concludes with a dis-
cussion of benefits, challenges, and limitations of our modeling process and how
to help overcome them, and what future work would be required to modify and
fully verify DPSS for an arbitrary number of UAVs.

2 Decentralized Perimeter Surveillance System (DPSS)

UAVs can be used to perform continual, repeated surveillance of a large perime-
ter. In such cases, more frequent coverage of points along the perimeter can be
achieved by evenly dividing surveillance of it across multiple UAVs. However,
coordinating this division is challenging in practice for several reasons. First,
the exact location and length of the perimeter may not be known a priori, and
it may change over time, as in a growing forest fire or oil spill. Second, UAVs
might go offline and come back online, e.g. for refueling or repairs. Third, inter-
UAV communication is unreliable, so it is not always possible to immediately
communicate local information about perimeter or UAV changes. However, such
information is needed to maintain an even division of the perimeter as changes
occur. DPSS provides a method to solve this problem with minimal inter-UAV
communication for perimeters that are isomorphic to a line segment.

Let the perimeter start as a line segment along the x-axis with its left end-
point at x = 0 and its right at x = P . Let N be the number of UAVs in the
system or on the “team,” indexed from left to right as 1, . . . , N . Divide the
perimeter into segments of length P/N , one per UAV. Then the optimal con-
figuration of DPSS as depicted in Fig. 1 is defined as follows (see Ref. [10] for
discussion of why this definition is desirable).

368 J. A. Davis et al.

Definition 1. Consider two sets of perimeter locations: (1) �i + 1
2 (−1)i�P/N

and (2) �i− 1
2 (−1)i�P/N , where �·� returns the largest integer less than or equal

to its argument. The optimal configuration is realized when UAVs synchronously
oscillate between these two sets of locations, each moving at constant speed V .

2 4

1 3

x = 0

x = PP/N 1 3

2 4 2 4

1 3

Fig. 1. Optimal DPSS configuration, in which UAVs are evenly spaced along the
perimeter and synchronously oscillate between segment boundaries.

The goal of DPSS is to achieve the optimal configuration in the steady state,
i.e. when the perimeter and involved UAVs remain constant. The DPSS protocol
itself is relatively simple. Each UAV i stores a vector ξi = [PRi

PLi
NRi

NLi
]T

of coordination variables that capture its beliefs (which may be incorrect) about
perimeter length PRi

and PLi
and number of UAVs NRi

and NLi
to its right

and left. When neighboring UAVs meet, “left” UAV i learns updated values for
its “right” variables P ′

Ri
= PRi+1 and N ′

Ri
= NRi+1 + 1 from “right” UAV i + 1,

and likewise UAV i + 1 updates its “left” variables P ′
Li+1

= PLi
and N ′

Li+1
=

NLi
+ 1. While values for these variables may still be incorrect, the two UAVs

will at least have matching coordination variables and thus a consistent estimate
of their shared segment boundary. The two UAVs then “escort” each other to
their estimated shared segment boundary, then split apart to surveil their own
segment. Note that UAVs only change direction when they reach a perimeter
endpoint or when starting or stopping an escort, which means a UAV will travel
outside its segment unless another UAV arrives at the segment boundary at the
same time (or the end of the segment is a perimeter endpoint).

Eventually, leftmost UAV 1 will discover the actual left perimeter endpoint,
accurately set NL1 = 0 and PL1 = 0, then turn around and update PL1 con-
tinuously as it moves. A similar situation holds for rightmost UAV n. Accurate
information will be passed along to other UAVs as they meet, and eventually all
UAVs will have correct coordination variables and segment boundary estimates.
Since UAVs also escort each other to shared segment boundaries whenever they
meet, eventually the system reaches the optimal configuration, in which UAVs
oscillate between their true shared segment boundaries.

An important question is how long it takes DPSS to converge to the optimal
configuration. Each time the perimeter or number of UAVs changes, it is as if the
system is reinitialized; UAVs no longer have correct coordination variables and
so the system is no longer converged. However, if DPSS is able to re-converge
relatively quickly, it will often be in its converged state.

Ref. [10] claims that DPSS converges within 5T , where T = P/V is the
time it would take a single UAV to traverse the entire perimeter if there were no
other UAVs in the system. It describes DPSS as two algorithms: Algorithm A, in

Formal Methods to Find an Error in the “Proof” of a Multi-agent Protocol 369

which UAVs start with correct coordination variables, and Algorithm B, in which
they do not. The proof strategy is then to argue that Algorithm A converges in
2T (Theorem 1) and Algorithm B achieves correct coordination variables in 3T
(Lemma 1)1. At that point, Algorithm B converts to Algorithm A, so the total
convergence time is 2T + 3T = 5T (Theorem 2)2.

N
t = 0

1

N
t ≈ T

1

N
t ≈ T

1

N
t ≈ 2T

1

N
t ≈ 2T

1

N
t ≈ 2T

1

N
t ≈ 3T

1

N
t ≈ 3T

1

Fig. 2. Claimed worst-case coordination variable convergence for Algorithm B.

Informally, the original argument for Lemma 1 is that information takes
time T to travel along the perimeter. The worst case occurs when all UAVs
start near one end of the perimeter, e.g. the left endpoint, so that the rightmost
UAV N reaches the right endpoint around time T . UAV N then turns around
and through a fast series of meetings, correct “right” coordination variables
are propagated to the other UAVs, all of which then start moving left. Due to
incorrect “left” coordination variables, UAV N − 1 and UAV N might think
their shared segment boundary is infinitesimally close to the left endpoint. The
UAVs travel left until they are almost at the left perimeter endpoint around
time 2T . However, since UAV N thinks its segment boundary is near the left
endpoint, it ends its escort and goes right without learning the true location of
the left perimeter endpoint. Leftmost UAV 1 learns the true location of the left
perimeter endpoint and this information will be passed to the other UAVs as
they meet, but the information will have to travel the perimeter once again to
reach the rightmost UAV N around time 3T . This situation is depicted in Fig. 2.

Through model checking, we were able to find a counterexample to this
claimed bound, which will be presented in Sect. 4. But first, we overview the
model used for analysis through model checking.

3 Formal Models

We briefly overview the formal models developed in AGREE for a three-UAV
version of DPSS as described by Algorithm B. Models for Algorithm A and

1 We label this Lemma 1 for convenience; it is unlabeled in [10].
2 A version of the original proof is on GitHub [1] in file dpssOriginalProof.pdf.

370 J. A. Davis et al.

Algorithm B along with a more detailed description of the Algorithm B model
are available on GitHub [1]3.

AGREE is an infinite-state model checker capable of analyzing systems with
real-valued variables, as is the case with DPSS. AGREE uses assume/guarantee
reasoning to verify properties of architectures modeled as a top-level system with
multiple lower-level components, each having a formally specified assume/guar-
antee contract. Each contract consists of a set of assumptions on the inputs
and guarantees on the outputs, where inputs and outputs can be reals, integers,
or booleans. System assumptions and component assume/guarantee contracts
are assumed to be true. AGREE then attempts to verify that (a) component
assumptions hold given system assumptions, and (b) system guarantees hold
given component guarantees. AGREE poses this verification problem as a satis-
fiability modulo theory (SMT) problem [4] and uses a k-induction model check-
ing approach [7] to search for counterexamples that violate system-level guar-
antees given system-level assumptions and component-level assume/guarantee
contracts. The language used by AGREE is an “annex” to the Architecture
Analysis and Design Language (AADL) [5].

AGREE’s ability to analyze systems modeled as a top-level system with
multiple lower-level components provides a natural fit for DPSS. The three-
UAV AGREE DPSS model consists of a single top-level system model, which
we call the “System,” and a component-level UAV model that is instantiated
three times, which we call the “UAV(s).” The System essentially coordinates a
discrete event simulation of the UAVs as they execute the DPSS protocol, where
events include a UAV reaching a perimeter endpoint or two UAVs starting or
stopping an escort. In the initial state, the System sets valid ranges for each
UAV’s initial position through assumptions that constrain the UAVs to be ini-
tialized between the perimeter endpoints and ordered by ID number from left to
right. System assumptions also constrain UAV initial directions to be either left
or right (though a UAV might have to immediately change this value, e.g., if it
is initialized at the left endpoint headed left). These values become inputs to the
UAVs. The System determines values for other UAV inputs, including whether
a UAV is co-located with its right or left neighbor and the true values for the
left and right perimeter endpoints. Note the true perimeter endpoints are only
used by the UAVs to check whether they have reached the end of the perime-
ter, not to calculate boundary segment endpoints. The System also establishes
data ports between UAVs, so that each UAV can receive updated coordination
variable values from its left or right neighbor as inputs and use them (but only
if they are co-located).

The last System output that serves as a UAV input is the position of the
UAV. At initialization and after each event, the System uses the globally known
constant UAV speed V and other information from each UAV to determine the
amount of time δt until the next event, and then it updates the position of each

3 AADL projects are in AADL sandbox projects. Algorithm A and B models for
three UAVs are in projects DPSS-3-AlgA-for-paper and DPSS-3-AlgB-for-paper. A
description of the Algorithm B model is in file modelAlgorithmB.pdf.

Formal Methods to Find an Error in the “Proof” of a Multi-agent Protocol 371

UAV. Determining the time of the next event requires knowing the direction and
next anticipated “goal” location of each UAV, e.g. estimated perimeter endpoint
or shared segment boundary. Each UAV outputs these values, which become
inputs to the System. Each UAV also outputs its coordination variables PRi

, PLi
,

NRi
, and NLi

, which become System inputs that are used in System guarantees
that formalize Theorem 1, Lemma 1, and Theorem 2 of Sect. 2. Note that we
bound integers NRi

and NLi
because in order to calculate estimated boundary

segments, which requires dividing perimeter length by the number of UAVs, we
must implement a lookup table that copies the values of NRi

and NLi
to real-

valued versions of these variables. This is due to an interaction between AGREE
and the Z3 SMT solver [4] used by AGREE. If we directly cast NRi

and NLi

to real values in AGREE, they are encoded in Z3 using the to real function.
Perimeter values PRi

and PLi
are directly declared as reals. However, Z3 views

integers converted by the to real function as constrained to have integer values,
so it cannot use the specialized solver for reals that is able to analyze this model.

4 Formal Analysis Results

In this section, we discuss the analysis results provided by AGREE for Algo-
rithm A and Algorithm B, though we focus on Algorithm B.

Algorithm A: Using AGREE configured to utilize the JKind k-induction model
checker [7] and the Z3 SMT solver, we have proven Theorem 1, that Algorithm A
converges within 2T , for N = 1, 2, 3, 4, 5, and 6 UAVs. Computation time pre-
vented us from analyzing more than six UAVs. For reference, N = 1 through
N = 4 ran in under 10 min each on a laptop with two cores and 8 GB RAM. The
same laptop analyzed N = 5 overnight. For N = 6, the analysis took approxi-
mately twenty days on a computer with 40 cores and 128 GB memory.

Algorithm B: We were able to prove Theorem 2, that DPSS converges within
5T , for N = 1, 2, and 3 UAVs and with each UAV’s coordination variables NRi

and NLi
bounded between 0 and 20. In fact, we found the convergence time to

be within (4+ 1
3T). However, AGREE produced a counterexample to Lemma 1,

that every UAV obtains correct coordination variables within 3T , for N = 3. In
fact, we incrementally increased this bound and found counterexamples up to
(3 + 1

2)T but that convergence is guaranteed in (3 + 2
3)T .

One of the shorter counterexamples provided by AGREE shows the UAVs
obtaining correct coordination variables in 3.0129T. Full details are available on
GitHub [1],4 but we outline the steps in Fig. 3. In this counterexample, UAV 1
starts very close to the left perimeter heading right, and UAVs 2 and 3 start
in the middle of segment 3 headed left. UAVs 1 and 2 meet near the middle
of the perimeter and head left toward what they believe to be their shared
segment boundary. This is very close to the left perimeter endpoint because,
due to initial conditions, they believe the left perimeter endpoint to be much
4 A spreadsheet with counterexample values for all model variables is located under

AADL sandbox projects/DPSS-3-AlgB-for-paper/results 20180815 eispi.

372 J. A. Davis et al.

farther away than it actually is. Then they split, and UAV 1 learns where the
left perimeter endpoint actually is, but UAV 2 does not. UAV 2 heads right and
meets UAV 3 shortly afterward, and they move to what they believe to be their
shared segment boundary, which is likewise very close to the right perimeter
endpoint. Then they split, and UAV 3 learns where the right perimeter endpoint
is, but UAV 2 does not. UAV 2 heads left, meets UAV 1 shortly after, and
learns correct “left” coordination variables. However, UAV 2 still believes the
right perimeter endpoint to be farther away than it actually is, so UAV 1 and 2
estimate their shared segment boundary to be near the middle of the perimeter.
They then head toward this point and split apart, with UAV 1 headed left and
still not having correct “right” coordination variables. UAV 2 and 3 then meet,
exchange information, and now both have correct coordination variables. They
go to their actual shared boundary, split apart, and UAV 2 heads left toward
UAV 1. UAV 1 and 2 then meet on segment 1, exchange information, and now
all UAVs have correct coordination variables.

The counterexample reveals a key intuition that was missing in Lemma 1.
The original argument did not fully consider the effects of initial conditions and
so only considered a case in which UAVs came close to one end of the perimeter
without actually reaching it. The counterexample shows it can happen at both
ends if initial conditions cause the UAVs to believe the perimeter endpoints to
be farther away than they actually are. This could happen if the perimeter were
to quickly shrink, causing the system to essentially “reinitialize” with incorrect
coordination variables.

2
t = 0

1 3

2
t ≈ 0.426 T

1 3

2
t ≈ 0.851 T

1 3

2
t ≈ 0.853 T

.1 3

2
t ≈ 1.848 T

.1 3

.2
t ≈ 1.850 T

.1 3.

.2
t ≈ 2.346 T

.1 3.

.2.
t ≈ 2.348 T

.1 .3.

.2.
t ≈ 2.513 T

.1 .3.

.2.
t ≈ 2.846 T

.1 .3.

.2.
t ≈ 3.013 T

.1. .3.

Fig. 3. Counterexample to Lemma 1. Dots to the left of a UAV number indicate it has
correct “left” variables, and likewise for the right.

Analysis for three UAVs for Algorithm B completed in 18 days on a machine
with 256 GB RAM and 80 cores.

Formal Methods to Find an Error in the “Proof” of a Multi-agent Protocol 373

5 Discussion and Conclusions

Formal modeling and analysis through AGREE had many benefits. First, it
allowed us to analyze DPSS, a decentralized protocol for distributing a surveil-
lance task across multiple UAVs. Though the original publication on DPSS pro-
vided a convincing human-generated proof and simulation results to support
claims about its convergence bounds, analysis revealed that one of the key lem-
mas was incorrect. Furthermore, the counterexample returned by AGREE pro-
vided insight into why it was incorrect. Second, formal modeling in and of itself
allowed us to find what were essentially technical typos in the original paper. For
example, the formula for dividing the perimeter across UAVs only accounted for
changes in estimates of the right perimeter endpoint and not the left, so we cor-
rected the formula for our model. We also discovered that certain key aspects of
the protocol were underspecified. In particular, it is unclear what should happen
if more than two UAVs meet at the same time. Analysis showed this occurring
for as little as three UAVs in Algorithm B, and simulations in the original paper
showed this happening frequently, but this behavior was not explicitly described.
Here, we decided that if all three UAVs meet to the left of UAV 3’s estimated
segment, UAV 3 immediately heads right and the other two follow the normal
protocol to escort each other to their shared border. Otherwise, the UAVs all
travel left together to the boundary between segments 2 and 3, then UAV 3
breaks off and heads right while the other two follow the normal protocol.

This brings us to a discussion of challenges and limitations. First, in terms
of more than two UAVs meeting at a time, simulations in the original paper
implement a more complex behavior in which UAVs head to the closest shared
boundary and then split apart into smaller and smaller groups until reaching the
standard case of two co-located UAVs. This behavior requires a more complex
AGREE model that can track “cliques” of more than two UAVs, and it is difficult
to validate the model due to long analysis run times. Second, we noted in Sect. 4
that in our model, UAV coordination variables NRi

and NLi
have an upper

bound of 20. In fact, with an earlier upper bound of 3, we found the bound for
Lemma 1 to be (3 + 1

3)T and did not consider that it would depend on upper
bounds for NRi

and NLi
. We therefore cannot conclude that even (3 + 2

3)T is
the convergence time for Lemma 1. Third and related to the last point, model
checking with AGREE can only handle up to three UAVs for Algorithm B. Due
to these limitations, we cannot say for sure what the upper bound for DPSS
actually is, even if we believe it to be 5T . If it is higher, then it takes DPSS
longer to converge, meaning it can handle less frequent changes than originally
believed. We are therefore attempting to transition to theorem provers such as
ACL2 [9] and PVS [12] to develop a proof of convergence bounds for an arbitrary
number of UAVs, upper bound on NRi

and NLi
, and perimeter length (which

was set to a fixed size to make the model small enough to analyze).
In terms of recommendations and lessons learned, it was immensely useful to

work with the author of DPSS to formalize our model. Multi-agent protocols like
DPSS are inherently complex, and it is not surprising that the original paper
contained some typos, underspecifications, and errors. In fact, the original paper

374 J. A. Davis et al.

explains DPSS quite well and is mostly correct, but it is still challenging for
formal methods experts to understand complex systems from other disciplines,
so access to subject matter experts can greatly speed up formalization.

Acknowledgment. We thank John Backes for his guidance on efficiently modeling
DPSS in AGREE and Aaron Fifarek for running some of the longer AGREE analyses.

References

1. OpenUxAS GitHub repository, dpssModel branch. https://github.com/afrl-rq/
OpenUxAS/tree/dpssModel

2. Alur, R., Moarref, S., Topcu, U.: Compositional synthesis of reactive controllers
for multi-agent systems. In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS,
vol. 9780, pp. 251–269. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
41540-6 14

3. Cofer, D., Gacek, A., Miller, S., Whalen, M.W., LaValley, B., Sha, L.: Compo-
sitional verification of architectural models. In: Goodloe, A.E., Person, S. (eds.)
NFM 2012. LNCS, vol. 7226, pp. 126–140. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-28891-3 13

4. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

5. Feiler, P.H., Lewis, B.A., Vestal, S.: The SAE architecture analysis & design lan-
guage (AADL): a standard for engineering performance critical systems. In: IEEE
International Conference Computer Aided Control System Design, pp. 1206–1211.
IEEE (2006)

6. Fisher, M., Dennis, L., Webster, M.: Verifying autonomous systems. Commun.
ACM 56(9), 84–93 (2013)

7. Gacek, A., Backes, J., Whalen, M., Wagner, L., Ghassabani, E.: The JKind model
checker. In: Chockler, H., Weissenbacher, G. (eds.) CAV 2018. LNCS, vol. 10982,
pp. 20–27. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96142-2 3

8. Guo, M., Tumova, J., Dimarogonas, D.V.: Cooperative decentralized multi-agent
control under local LTL tasks and connectivity constraints. In: 2014 IEEE 53rd
Annual Conference on Decision and Control (CDC), pp. 75–80. IEEE (2014)

9. Kaufmann, M., Moore, J.S.: An industrial strength theorem prover for a logic based
on common lisp. IEEE Trans. Softw. Eng. 23(4), 203–213 (1997)

10. Kingston, D., Beard, R.W., Holt, R.S.: Decentralized perimeter surveillance using
a team of UAVs. IEEE Trans. Robot. 24(6), 1394–1404 (2008)

11. Kupermann, O., Vardi, M.: Synthesizing distributed systems. In: Proceedings 16th
Annual IEEE Symposium Logic in Computer Science, pp. 389–398. IEEE (2001)

12. Owre, S., Rushby, J.M., Shankar, N.: PVS: a prototype verification system. In:
Kapur, D. (ed.) CADE 1992. LNCS, vol. 607, pp. 748–752. Springer, Heidelberg
(1992). https://doi.org/10.1007/3-540-55602-8 217

https://github.com/afrl-rq/OpenUxAS/tree/dpssModel
https://github.com/afrl-rq/OpenUxAS/tree/dpssModel
https://doi.org/10.1007/978-3-319-41540-6_14
https://doi.org/10.1007/978-3-319-41540-6_14
https://doi.org/10.1007/978-3-642-28891-3_13
https://doi.org/10.1007/978-3-642-28891-3_13
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-319-96142-2_3
https://doi.org/10.1007/3-540-55602-8_217

Formal Methods to Find an Error in the “Proof” of a Multi-agent Protocol 375

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Extending NUXMV with Timed Transition
Systems and Timed Temporal Properties

Alessandro Cimatti, Alberto Griggio,

Enrico Magnago, Marco Roveri(B),
and Stefano Tonetta

Fondazione Bruno Kessler, Trento, Italy
roveri@fbk.eu

Abstract. NUXMV is a well-known symbolic model checker, which implements
various state-of-the-art algorithms for the analysis of finite- and infinite-state tran-
sition systems and temporal logics. In this paper, we present a new version that
supports timed systems and logics over continuous super-dense semantics. The
system specification was extended with clocks to constrain the timed evolution.
The support for temporal properties has been expanded to include MTL0,∞ for-
mulas with parametric intervals. The analysis is performed via a reduction to
verification problems in the discrete-time case. The internal representation of
traces has been extended to go beyond the lasso-shaped form, to take into account
the possible divergence of clocks. We evaluated the new features by comparing
NUXMV with other verification tools for timed automata and MTL0,∞, consid-
ering different benchmarks from the literature. The results show that NUXMV is
competitive with and in many cases performs better than state-of-the-art tools,
especially on validity problems for MTL0,∞.

1 Introduction

NUXMV [1] is a symbolic model checker for the analysis of synchronous finite- and
infinite-state transition systems. For the finite-state case, NUXMV features strong ver-
ification engines based on state-of-the-art SAT-based algorithms. For the infinite-state
case, NUXMV features SMT-based verification techniques, implemented through a tight
integration with the MATHSAT5 solver [2]. NUXMV has taken part to recent editions
of the hardware model checking competition, where it has shown to be very compet-
itive with the state-of-the-art. NUXMV also compares well with other model checkers
for infinite-state systems. Moreover, it has been successfully used in several applica-
tion domains both in research and industrial settings. It is currently the core verification
engine for many other tools (also industrial ones) for requirements analysis, contract
based design, model checking of hybrid systems, safety assessment, and software model
checking.

In this paper, we put emphasis on the novel extensions to NUXMV to support timed
synchronous transition systems, which extend symbolically-represented infinite-state
transition systems with clocks. The main novelties of this new version are the follow-
ing. The NUXMV input language was extended to enable the description of symbolic
c© The Author(s) 2019
I. Dillig and S. Tasiran (Eds.): CAV 2019, LNCS 11561, pp. 376–386, 2019.
https://doi.org/10.1007/978-3-030-25540-4_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-25540-4_21&domain=pdf
https://doi.org/10.1007/978-3-030-25540-4_21

Extending NUXMV with Timed Transition Systems 377

nuXmv

AIGERSBMC

Finite LS Traces

MiniSAT+ITPCUDD

Boolean Engines

MSATIC3MathSAT

SMT Engines

TypeCheckSymbTab UtilitiesUIFlattener

Advanced Model Checking Algorithms

Common Infrastrucure

SBMC K−Ind K−Ind IA

Finite LS Traces Infinite LS Traces

SBMC

MTLSTTS2STS

Finite Domain Infinite Domain Timed Domain

IC3 k−L

ITPIC3

CEGAR IC3 k−LL2S

IC3

L2S

IC3 IA

L2S

ITP

IC3 k−L

Fig. 1. The high level architecture of NUXMV.

synchronous timed transition systems with super-dense time semantics (where signals
can have a sequence of values at any real time t). The support for temporal proper-
ties has been expanded to include MTL0,∞ formulas with parametric intervals [3,4].
Therefore, NUXMV now supports model checking of invariant, LTL and MTL0,∞ prop-
erties over (symbolic) timed transition systems, as well as validity/satisfiability check-
ing of LTL and MTL0,∞ formulas. This is done via a correct and complete reduction
to verification problems in the discrete-time case (thus allowing for the use of mature
and efficient verification engines). In order to represent and find infinite traces where
clocks may diverge, we extended the representation for lasso-shape traces (over discrete
semantics) and we modified the bounded model checking algorithm to properly encode
timed traces. We remark that, NUXMV is more expressive than timed automata, since
the native management of time is added on top of an infinite state transition system.
This makes it straightforward to encode stopwatches and comparison between clocks.
We carried out an experimental evaluation comparing NUXMV with other state-of-the-
art verification tools for timed automata, considering different benchmarks taken from
competitor tools distributions.

2 Software Architecture

The high level architecture of NUXMV is depicted in Fig. 1. For symbolic transition sys-
tems NUXMV behaves like the previous version of the system [1], thus allowing for full
backward compatibility (apart from some new reserved keywords). It provides the user
with all the basic model checking algorithms for finite domains both using BDDs (using
CUDD [5]) and SAT (e.g. MINISAT [6]). It supports various SMT-based model check-
ing algorithms (implemented through a tight integration with the MATHSAT5 solver
[2]) for the analysis of finite and infinite state systems (e.g. IC3 [7–9], k-liveness [10],

378 A. Cimatti et al.

liveness to safety [11]). We refer the reader to [1] for a thorough discussion of these
consolidated functionalities for the discrete-time setting.

Fig. 2. A simple TIMED-NUXMV program.

To support the specification and model checking of invariant, LTL and MTL0,∞
properties for timed transitions systems, and for the validity checking of properties over
dense time semantics, NUXMV has been extended w.r.t. [1] as discussed here after.

– We extended the parser to allow the user to choose the time semantics to use for
the read model. Depending on the time model some parse constructs and checks are
enabled and/or disabled. For instance, variables of type clock and MTL0,∞ proper-
ties are only allowed if the dense time semantics has been specified. By default the
system uses the discrete time semantics of the original NUXMV. Notice also that,
depending on the specified semantics, the commands available to the user change to
allow only the analyses supported for the chosen semantics.

– We extended the parser to support the specification of symbolic timed automata
(definition of clock variables, specification of urgent transitions and state invariants,
etc.). Moreover, we extended the parser to allow for the specification of MTL0,∞
properties, and we extended the LTL bounded operators not only to contain con-
stants, but also complex expressions over clock variables. See Fig. 2 for a simple
example showing some of the new language constructs.

– We extended the symbol table to support the specification of clock variables, and we
extended the type checker to properly handle the new defined variables, expression
types and language constructs.

– We added new modules for the encoding of the symbolic timed automata into equiv-
alent transition systems to verify with the existing algorithms of NUXMV.

– We extended the traces for NUXMV to support timed traces (lasso-shaped traces
where some clock variables may diverge).

Extending NUXMV with Timed Transition Systems 379

– We modified the encoding for the loops in the bounded model checking algorithms
to take into account that traces may contain diverging variables to allow for the
verification and validation of LTL and MTL0,∞ properties.

For portability, NUXMV has been developed mainly in standard C with some new
parts in standard C++. It compiles and executes on Linux, MS Windows, and MacOS.

3 Language Extensions

Timed Transition Systems. Discrete-time transition systems are described in NUXMV

by a set V of variables, an initial condition I(V), a transition condition T (V, V ′) and
an invariant condition Z(V). Variables are introduced with the keyword VAR and can
have type Boolean, scalar, integer, real or array. The initial and the invariant conditions
are introduced with the keyword INIT and INVAR and are expressions over the vari-
ables in V . The transition condition is introduced with TRANS and is an expression over
variables in V and V ′, where for each variable v in V , V ′ contains the “next” version
denoted in the language by next(v). Expressions may use standard symbols in the the-
ory associated to the variable types and user-defined rigid functions that are declared
with the keyword FUN.

The input language of NUXMV has been extended to allow the specification of
timed transition systems (TTS), which are enabled by the annotation @TIME DOMAIN

continuous at the beginning of a model description.
Besides the standard types, in the timed case, state variables can be declared of type

clock. All variables of type different from clock are discrete variables.
The language provides a built-in clock variable, accessible through the reserved

keyword time. It represents the amount of time elapsed from the initial state until now.
time is initialized to 0 and its value does not change in discrete transitions. While all
other clock variables can be used in any expression in the model definition, time can
be used only in comparison with constants.

Initial, transition, and invariant conditions are specified in NUXMV with the key-
words INIT, TRANS, and INVAR, as in the discrete case. In particular, TRANS allows to
specify “arbitrary” clock resets. Like all other NUXMV state variables, if a clock is not
constrained during a discrete transition, its next value is chosen non-deterministically.

Clock variables can be used in INVAR only in the form ϕ → φ, where ϕ is a for-
mula built using only the discrete variables and φ is convex over the clock variables.
This closely maps the concept of location invariant described for timed automata: all
locations satisfying ϕ have invariant φ.

An additional constraint, not allowed in the discrete-time case, is introduced with
the keyword URGENT followed by a predicate over the discrete variables, which allows
to specify a set of locations in which time cannot elapse.

Comparison with Timed Automata. Timed automata can be represented by TTSs by
simply introducing a variable representing the locations of the automaton. Note that,
in TTS, it is possible to express any kind of constraint over clock variables in discrete
transitions, while in timed automata it is only possible to reset them to 0 in transi-
tions or compare them to constants in guards. Moreover, the discrete variables of a

380 A. Cimatti et al.

timed automaton always have finite domain, while in TTSs, also the discrete variables
might have an infinite domain. This additional expressiveness allows to describe more
complex behaviors (e.g. it is straightforward to encode stopwatches and comparison
between clocks) losing the decidability of the model checking problem.

Specifications. NUXMV’s support for LTL has been extended to allow for the use of
MTL0,∞ operators [12] and other operators such as event-freezing functions [13] and
dense version of LTL X and Y operators. MTL0,∞ bounded operators extend the LTL
ones of NUXMV to allow for bounds either of the form [c,∞), where c is a constant
greater or equal to 0, e.g. F[0,+oo) ϕ, or generic expressions over parametric/frozen
variables: e.g. F [0, 3+v] ϕ where v is a frozen variable.

In timed setting, next and previous operators come in two possible versions. The
standard LTL operators X and Y require to hold, respectively after and before, a dis-
crete transition. Dually, X˜ and Y˜ have been introduced to allow to predicate about the
evolution over time of the system. They are always FALSE in discrete steps and hold in
time elapses if the argument holds in the open interval immediately after/before (resp.)
the current step. The disjunction X(ϕ)∨ X˜(ϕ) allows to check if the argument ϕ holds
after the current state without distinction between time or discrete evolution.

The event-freezing operators at next and at last, written @F˜ and @O˜, are binary
operators allowed in LTL specifications. The left-hand side is a term, while the right-
hand side is a temporal formula. They return the value of the term respectively at the
next and at the last point in time in which the formula is true. If the formula will [has]
never happen [happened] the operator evaluates to a default value.

time until and time since are two additional unary operators that can be used
in LTL specifications of timed models. Their argument must be a Boolean predicate
over current and next variables. time until(ϕ) evaluates to the amount of time elapse
required to reach the next state in which ϕ holds, while time since(ϕ) evaluates to
the amount of time elapsed from the last state in which ϕ held. As for the @F˜ and @O˜

operators if no such state exists they are assigned to a default value.

4 Extending Traces

Timed Traces. The semantics of NUXMV has been extended to take into account the
timing aspects in case of super-dense time. While in the discrete time case, the exe-
cution trace is given by a sequence of states connected by discrete transitions (i.e.,
satisfying the transition condition), in the super-dense time case the execution trace is
such that every pair of consecutive states is a discrete or a timed transition. As in the
discrete case, discrete transitions are pair of states satisfying the transition condition.
As in timed automata, in a timed transition time elapses for a certain amount (referred
to as delta time), clocks increase of the same amount, while discrete variables do not
change.

Lasso-Shaped Traces with Diverging Variables. Traditionally, the only infinite paths
supported by NUXMV have been those in lasso shape, i.e. those traces which can be

Extending NUXMV with Timed Transition Systems 381

represented by a finite prefix s0, s1, . . . , sl (called the stem) followed by a finite suffix
sl+1, . . . , sk ≡ sl (called the loop), which can be repeated infinitely many times. While
this representation is sufficient for finite-state systems (because in a finite-state setting if
a system does not satisfy an LTL property, then a lasso-shaped counter-example trace
is guaranteed to exist), this is an important limitation in an infinite-state context, in
which lasso-shaped counter-examples are not guaranteed to exist. (As a simple example,
consider a system M := 〈{x}, (x = 0), (x′ = x + 1)〉 in which x ∈ Z. Then M 	|=
GF(x = 0), but clearly M has no lasso-shaped trace). In fact, this is especially relevant
for timed transition systems, which, by the presence of the always-diverging variable
time, admit no lasso-shaped trace.

In order to overcome this limitation, we introduce new kinds of infinite traces, which
we call lasso-shape traces with diverging variables (to allow also for representing traces
with variables whose value might be diverging). Wemodified the bounded model check-
ing algorithms to leverage on this new representation to then extend the capabilities to
find witnesses for a given property. This representation significantly extends the capa-
bilities of NUXMV to find witnesses for violated LTL and MTL properties on timed
transition systems (see experimental evaluation).

Definition 1. Let π := s0, s1, . . . , sl, . . . be an infinite trace of a system M over vari-
ables V . We say that π is a lasso-shaped trace with diverging variables iff there exist
indexes 0 ≤ l ≤ k, a partitioning of V into sets X and Y (V = X � Y) and an
expression fy(V) over V for every variable y ∈ Y such that, for every i > k,

si(v) :=
{

sl+((i−l) mod (k−l))(v) if v ∈ X (like in lasso-shaped traces);
fv(si−1) if v ∈ Y (as function of previous state).

Intuitively, the idea of lasso-shaped traces with diverging variables is to provide a
finite representation for infinite traces that is more general then simple lasso-shaped
ones, and which allows to capture more interesting behaviors of timed transition sys-
tems.

Example 1. Consider the system M := 〈{y, b},¬b ∧ y = 0, (b′ = ¬b) ∧ (b → y′ =
y+1)∧(¬b → y′ = y)〉. Then one lasso-shaped trace forM is given by: π := s0, s1, s2,
where s0 := {b
→ ⊥, y
→ 0}, s1 := {b
→ �, y
→ 0}, and s2 := {b
→ ⊥, y
→ 1};
the trace is lasso-shaped with diverging variables considering Y := {y}; the loop-back
at index 0, and fy(b, y) := b ? y + 1 : y.

Extended BMC for Traces with Divergent Clocks. The definition above requires the
existence of the functions fy for computing the updates of diverging variables. In case
y is a clock variable, we can define a region �φy� in which y can diverge (i.e., fy = y+δ,
where δ is the delta time variable).

In order to capture lasso-shaped traces with diverging variables, we can modify
the BMC encoding as follows. Let

∨k
l=0(

∧
v∈X�Y (v

l = vk) ∧ l�ϕ�0k) be the formula

382 A. Cimatti et al.

representing the BMC encoding of [14] at depth k with all possible loop-backs 0 ≤ l ≤
k for a given formula ϕ. The encoding is extended as follows:

k∨
l=0

⎛
⎝

⎛
⎝ ∧

x∈X

(xl = xk) ∧
∧
y∈Y

(yl = yk ∨
k∧

i=l

�φy�i)

⎞
⎠ ∧ l�ϕ�0k

⎞
⎠ .

The correctness of the encoding relies on a safe choice of the set Y , falling back to
the incomplete lasso-shaped case when some syntactic restrictions on the expressions
containing clocks are not met (see appendix for more details).

5 Related Work

There are many tools that allow for the specification and verification of infinite state
symbolic synchronous transition systems. Given the focus of this paper, here we restrict
our attention to tools supporting timed systems and/or MTL properties.

Uppaal [15], the reference tool for timed systems verification, supports only
bounded variable types and therefore finite asynchronous TTS. Properties are limited to
a subset of the branching-time logic TCTL [16,17]. LTSmin [18] and Divine [19] are
two model checkers that support the Uppaal specification language and properties spec-
ified in LTL. RTD-Finder [20] handles only safety properties for real-time component-
based systems specified in RT-BIP. The verification is based on a compositional compu-
tation of an invariant over-approximating the set of reachable states of the system and
leverages on counterexample-based invariant refinement algorithm. The ZOT Bounded
Model/Satisfiability Checker [21] supports different logic languages through a multi-
layered approach based on LTL with past operators. Similarly to NUXMV, ZOT sup-
ports dense-time MTL. It leverages only on SMT-based Bounded Model Checking, and
is therefore unable to prove that properties hold. Atmoc [22] implements an extension of
IC3 [7] and K-induction [23] to deal with symbolic timed transition systems. It supports
both invariant and MTL0,∞ properties, although for the latter it only supports bounded
model checking. CTAV [24] reduces the model checking problem for an MTL0,∞ prop-
erty ϕ to a symbolic language emptiness check of a timed Büchi automata for ϕ.

Differently from all the above tools NUXMV is able to prove MTL0,∞ properties
on timed transition systems with infinite domain variables.

6 Experimental Evaluation

We compared NUXMV with Atmoc [22], CTAV [24], ZOT [21], Divine [19], LTSmin
[18], and Uppaal [25].

For the evaluation we considered (i) scalable benchmarks taken from competitor
tools distributions and from the literature; (ii) handcrafted benchmarks to stress various
language features. In particular, we considered different versions of the Fisher mutual
exclusion protocol (correct and buggy) with different properties, different versions of
the emergency diesel generator problem (previously studied with Atmoc [22]). Finally
we considered also the validity checks of some MTL properties also taken from [22].

Extending NUXMV with Timed Transition Systems 383

(a) correct (b) buggy (c) LTL-0

(d) LTL-1 (e) MTL-0 (f) MTL-1

Fig. 3. Runtime for the Fisher mutual exclusion problem; x-axis: number of processes, y-axis:
time (s). LTL-1 and MTL-1 properties are the bounded version of resp. LTL-0 and MTL-0.

We run all the experiments on a PC equipped with a 3.7GHz Xeon quad core CPU and
16Gb of RAM, using a time/memory limit of 1000 s/10Gb for each test. We refer the
reader to [26] to retrieve all the data to reproduce this experimental evaluation.

Fig. 4. Result for the runtime
(s) for the emergency diesel
generator family of problems:
NUXMV (x) vs Atmoc (y).

The results of the evaluation are reported in Fig. 3
for the Fisher family of experiments, and in Fig. 4
for the emergency diesel generator family of problems
(CTAV does not appear in the plot of MTL-0 because
it wrongly reports a counterexample although MTL-0 is
the bounded version of LTL-0). While the results for the
validity check of pure MTL properties are reported in
Fig. 5. In the plots NUXMV refers to runtime for the IC3
with implicit abstraction in lockstep with BMC with the
modified loop condition algorithm, and NUXMV-bmc
refers to runtime for BMC alone with the modified loop
condition algorithm. The results show that NUXMV is
competitive with and in many cases performs better than
other state-of-the-art tools, especially on validity prob-
lems for MTL0,∞.

384 A. Cimatti et al.

(a) valid using NUXMV (b) false proved with NUXMV (c) false proved with NUXMV-bmc

Fig. 5. Runtime (s) for the validity checks of MTL properties.

7 Conclusions

We presented the new version of NUXMV, a state-of-the art symbolic model checker
for finite and infinite-state transition systems, that we extended to allow for the spec-
ification of synchronous timed transition systems and of MTL0,∞ properties. To sup-
port the new features, we extended the NUXMV language, we allowed for the speci-
fication MTL0,∞ formulas with parametric intervals, we adapted the model checking
algorithms to find for lasso-shaped traces (over discrete semantics) where clocks may
diverge. We evaluated the new features comparing NUXMV with other verification tools
for timed automata, considering different benchmarks. The results show that NUXMV

is competitive with and in many cases performs better than state-of-the-art tools, espe-
cially on validity problems for MTL0,∞.

References

1. Cavada, R., et al.: The NUXMV symbolic model checker. In: Biere, A., Bloem, R. (eds.) CAV
2014. LNCS, vol. 8559, pp. 334–342. Springer, Cham (2014). https://doi.org/10.1007/978-
3-319-08867-9 22

2. Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: The MathSAT5 SMT Solver. In:
Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp. 93–107. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-36742-7 7

3. Koymans, R.: Specifying real-time properties with metric temporal logic. Real-Time Syst.
2(4), 255–299 (1990)

4. Ouaknine, J., Worrell, J.: On the decidability of metric temporal logic. In: Proceedings of
the 20th Annual IEEE Symposium on Logic in Computer Science. LICS 2005, pp. 188–197.
IEEE (2005)

5. Somenzi, F.: CUDD: Colorado University Decision Diagram package – release 2.4.1
6. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.)

SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004). https://doi.org/10.
1007/978-3-540-24605-3 37

7. Bradley, A.R.: SAT-based model checking without unrolling. In: Jhala, R., Schmidt, D. (eds.)
VMCAI 2011. LNCS, vol. 6538, pp. 70–87. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-18275-4 7

https://doi.org/10.1007/978-3-319-08867-9_22
https://doi.org/10.1007/978-3-319-08867-9_22
https://doi.org/10.1007/978-3-642-36742-7_7
https://doi.org/10.1007/978-3-540-24605-3_37
https://doi.org/10.1007/978-3-540-24605-3_37
https://doi.org/10.1007/978-3-642-18275-4_7
https://doi.org/10.1007/978-3-642-18275-4_7

Extending NUXMV with Timed Transition Systems 385

8. Hassan, Z., Bradley, A.R., Somenzi, F.: Better generalization in IC3. In: FMCAD, pp. 157–
164. IEEE (2013)

9. Vizel, Y., Grumberg, O., Shoham, S.: Lazy abstraction and sat-based reachability in hardware
model checking. In: Cabodi, G., Singh, S. (eds.) FMCAD, pp. 173–181. IEEE (2012)

10. Claessen, K., Sörensson, N.: A liveness checking algorithm that counts. In: Cabodi, G.,
Singh, S. (eds.) FMCAD, pp. 52–59. IEEE (2012)

11. Schuppan, V., Biere, A.: Liveness checking as safety checking for infinite state spaces. Electr.
Notes Theor. Comput. Sci. 149(1), 79–96 (2006)

12. Alur, R., Feder, T., Henzinger, T.A.: The benefits of relaxing punctuality. J. ACM 43(1),
116–146 (1996)

13. Tonetta, S.: Linear-time Temporal Logic with Event Freezing Functions. In: GandALF, pp.
195–209 (2017)

14. Biere, A., Cimatti, A., Clarke, E.M., Strichman, O., Zhu, Y.: Bounded model checking. Adv.
Comput. 58, 117–148 (2003)

15. Behrmann, G., David, A., Larsen, K.G.: A tutorial on UPPAAL. In: Bernardo, M., Corradini,
F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 200–236. Springer, Heidelberg (2004). https://
doi.org/10.1007/978-3-540-30080-9 7

16. Bouyer, P.: Model-checking timed temporal logics. In: Areces, C., Demri, S. (eds.) Proceed-
ings of the 4th Workshop on Methods for Modalities (M4M–5). Electronic Notes in Theo-
retical Computer Science, vol. 1, pp. 323–341. Elsevier Science Publishers, Cachan, March
2009

17. Bouyer, P., Laroussinie, F., Markey, N., Ouaknine, J., Worrell, J.: Timed temporal logics.
In: Aceto, L., Bacci, G., Bacci, G., Ingólfsdóttir, A., Legay, A., Mardare, R. (eds.) Models,
Algorithms, Logics and Tools. LNCS, vol. 10460, pp. 211–230. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-63121-9 11

18. Kant, G., Laarman, A., Meijer, J., van de Pol, J., Blom, S., van Dijk, T.: LTSmin: high-
performance language-independent model checking. In: Baier, C., Tinelli, C. (eds.) TACAS
2015. LNCS, vol. 9035, pp. 692–707. Springer, Heidelberg (2015). https://doi.org/10.1007/
978-3-662-46681-0 61

19. Baranová, Z., et al.: Model checking of C and C++ withDIVINE 4. In: D’Souza, D., Narayan
Kumar, K. (eds.) ATVA 2017. LNCS, vol. 10482, pp. 201–207. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-68167-2 14

20. Ben-Rayana, S., Bozga, M., Bensalem, S., Combaz, J.: RTD-finder: a tool for compositional
verification of real-time component-based systems. In: Chechik, M., Raskin, J.-F. (eds.)
TACAS 2016. LNCS, vol. 9636, pp. 394–406. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-49674-9 23

21. Pradella, M.: A user’s guide to zot. CoRR abs/0912.5014 (2009)
22. Kindermann, R., Junttila, T.A., Niemelä, I.: Smt-based induction methods for timed systems.

CoRR abs/1204.5639 (2012)
23. Sheeran, M., Singh, S., Stålmarck, G.: Checking safety properties using induction and a SAT-

solver. In: Hunt, W.A., Johnson, S.D. (eds.) FMCAD 2000. LNCS, vol. 1954, pp. 127–144.
Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-40922-X 8

24. Li, G.: Checking timed büchi automata emptiness using LU-abstractions. In: Ouaknine,
J., Vaandrager, F.W. (eds.) FORMATS 2009. LNCS, vol. 5813, pp. 228–242. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-04368-0 18

25. Larsen, K.G., Lorber, F., Nielsen, B.: 20 years of UPPAAL enabled industrial model-based
validation and beyond. In: Margaria, T., Steffen, B. (eds.) ISoLA 2018. LNCS, vol. 11247,
pp. 212–229. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03427-6 18

26. Cimatti, A., Griggio, A., Magnago, E., Roveri, M., Tonetta, S.: Extending nuXmv with timed
transition systems and timed temporal properties (extended version) (2019). Extended ver-
sion with data to reproduce experiments https://nuxmv.fbk.eu/papers/cav2019

https://doi.org/10.1007/978-3-540-30080-9_7
https://doi.org/10.1007/978-3-540-30080-9_7
https://doi.org/10.1007/978-3-319-63121-9_11
https://doi.org/10.1007/978-3-662-46681-0_61
https://doi.org/10.1007/978-3-662-46681-0_61
https://doi.org/10.1007/978-3-319-68167-2_14
https://doi.org/10.1007/978-3-662-49674-9_23
https://doi.org/10.1007/978-3-662-49674-9_23
https://doi.org/10.1007/3-540-40922-X_8
https://doi.org/10.1007/978-3-642-04368-0_18
https://doi.org/10.1007/978-3-030-03427-6_18
https://nuxmv.fbk.eu/papers/cav2019

386 A. Cimatti et al.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution
4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Cerberus-BMC: A Principled Reference
Semantics and Exploration Tool
for Concurrent and Sequential C

Stella Lau1,2(B), Victor B. F. Gomes2,
Kayvan Memarian2, Jean Pichon-Pharabod2,

and Peter Sewell2

1 MIT, Cambridge, USA
stellal@mit.edu

2 University of Cambridge, Cambridge, UK
{victor.gomes,kayvan.memarian,

jean.pichon-pharabod,peter.sewell}@cl.cam.ac.uk

Abstract. C remains central to our infrastructure, making verification
of C code an essential and much-researched topic, but the semantics of
C is remarkably complex, and important aspects of it are still unsettled,
leaving programmers and verification tool builders on shaky ground. This
paper describes a tool, Cerberus-BMC, that for the first time provides a
principled reference semantics that simultaneously supports (1) a choice
of concurrency memory model (including substantial fragments of the
C11, RC11, and Linux kernel memory models), (2) a modern memory
object model, and (3) a well-validated thread-local semantics for a large
fragment of the language. The tool should be useful for C programmers,
compiler writers, verification tool builders, and members of the C/C++
standards committees.

1 Introduction

C remains central to our infrastructure, widely used for security-critical com-
ponents of hypervisors, operating systems, language runtimes, and embedded
systems. This has prompted much research on the verification of C code, but
the semantics of C is remarkably complex, and important aspects of it are still
unsettled, leaving programmers and verification tool builders on shaky ground.
Here we are concerned with three aspects:

1. The Concurrency Memory Model. The 2011 versions of the ISO C++ and
C standards adopted a new concurrency model [3,12,13], formalised during the
development process [11], but the model is still in flux: various fixes have been
found to be necessary [9,14,26]; the model still suffers from the “thin-air prob-
lem” [10,15,35]; and Linux kernel C code uses a different model, itself recently
partially formalised [7].

c© The Author(s) 2019
I. Dillig and S. Tasiran (Eds.): CAV 2019, LNCS 11561, pp. 387–397, 2019.
https://doi.org/10.1007/978-3-030-25540-4_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-25540-4_22&domain=pdf
https://doi.org/10.1007/978-3-030-25540-4_22

388 S. Lau et al.

2. The Memory Object Model. A priori, one might imagine C follows one of two
language-design extremes: a concrete byte-array model with pointers that are
simply machine words, or an abstract model with pointers combining abstract
block IDs and structured offsets. In fact C is neither of these: it permits casts
between pointer and integer types, and manipulation of their byte representa-
tions, to support low-level systems programming, but, while at runtime a C
pointer will typically just be a machine word, compiler analyses and optimi-
sations reason about abstract notions of the provenance of pointers [27,29,31].
This is a subject of active discussion in the ISO C and C++ committees and in
compiler development communities.

3. The Thread-Local Sequential Semantics. Here, there are many aspects, e.g. the
loosely specified evaluation order, the semantics of integer promotions, many
kinds of undefined behaviour, and so on, that are (given an expert reading)
reasonably well-defined in the standard, but that are nonetheless very complex
and widely misunderstood. The standard, being just a prose document, is not
executable as a test oracle; it is not a reference semantics usable for exploration
or automated testing.

Each of these is challenging in isolation, but there are also many subtle
interactions between them. For example, between (1) and (3), the pre-C11 ISO
standard text was in terms of sequential stepwise execution of an (informally
specified) abstract machine, while the C11 concurrency model is expressed as
a predicate over complete candidate executions, and the two have never been
fully reconciled – e.g. in the standard’s treatment of object lifetimes. Then there
are fundamental issues in combining the ISO treatment of undefined behaviour
with that axiomatic-concurrency-model style [10, §7]. Between (1) and (2), one
has to ask about the relationships between the definition of data race and the
treatment of uninitialised memory and padding. Between (2) and (3), there are
many choices for what the C memory object model should be, and how it should
be integrated with the standard, which are currently under debate. Between all
three one has to consider the relationships between uninitialised and thin-air
values and the ISO notions of unspecified values and trap representations. These
are all open questions in what the C semantics and ISO standard are (or should
be). We do not solve them here, but we provide a necessary starting point: a
tool embodying a precise reference semantics that lets one explore examples and
debate the alternatives.

We describe a tool, Cerberus-BMC, that for the first time lets one explore
the allowed behaviours of C test programs that involve all three of the above. It
is available via a web interface at http://cerberus.cl.cam.ac.uk/bmc.html.

For (1), Cerberus-BMC is parameterised on an axiomatic memory concur-
rency model: it reads in a definition of the model in a Herd-like format [6], and so
can be instantiated with (substantial fragments of) either the C11 [3,9,12–14],
RC11 [26], or Linux kernel [7] memory models. The model can be edited in the
web interface. Then the user can load (or edit in the web interface) a small C
program. The tool first applies the Cerberus compositional translation (or elab-

http://cerberus.cl.cam.ac.uk/bmc.html

Cerberus-BMC 389

oration) into a simple Core language, as in [29,31]; this elaboration addresses (3)
by making many of the thread-local subtleties of C explicit, including the loose
specification of evaluation order, arithmetic conversions, implementation-defined
behaviour, and many kinds of undefined behaviour. Core computation is simply
over mathematical integers, with explicit memory actions to interface with the
concurrency and memory object models. However, there is a mismatch between
the axiomatic style of the concurrency models for C (expressed as predicates
on arbitrary candidate executions) with the operational style of the previous
thread-local operational semantics for Core. We address this by replacing the
latter with a new translation from Core into SMT problems. This is integrated
with the concurrency model, also translated into SMT, following the ideas of [5].
These are furthermore integrated with an SMT version of parts of the PNVI
(provenance-not-via-integers) memory object model of [29], the basis for ongo-
ing work within the ISO WG14 C standards committee, addressing (2). The
resulting SMT problems are passed to Z3 [32]. The web interface then provides
a graphical view of the allowed concurrent executions for small test programs.

The Cerberus-BMC tool should be useful for programmers, compiler writers,
verification tool builders, and members of the C/C++ standards committees.
We emphasise that it is intended as an executable reference semantics for small
test programs, not itself as a verification tool that can be applied to larger bodies
of C: we have focussed on making it transparently based on principled semantics
for all three aspects, without the complexities needed for a high-performance
verification tool. But it should aid the construction of such.

Caveats and Limitations. Cerberus-BMC covers many features of 1–3, but far
from all. With respect to the concurrency memory model, we support substan-
tial fragments of the C11, RC11, and Linux kernel memory models. We omit
locks and the (deprecated) C11/RC11 consume accesses. We only cover compare-
exchange read-modify-write operations, and the fragment of RCU restricted to
read_rcu_lock(), read_rcu_unlock(), and synchronize_rcu() used in a linear
way, without control-flow-dependent calls to RCU, and without nesting.

With respect to the memory object model, we do not currently support
dynamic allocation or manipulation of byte representations (such as with char*
pointers), and we do not address issues such as subobject provenance (an open
question within WG14).

With respect to the thread semantics, our translation to SMT does not cur-
rently cover arbitrary pointer type-casting, function pointers, multi-dimensional
arrays, unions, floating point, bitwise operations, and variadic functions, and
only covers simple structs. In addition, we inherit the limitations of the Cer-
berus thread semantics as per [29].

Related Work. There is substantial prior work on tools for concurrency semantics
and for C semantics, but almost none that combines the two. On the concurrency
semantics side, CppMem [1,11] is a web-interface tool that computes the allowed
concurrent behaviours of small tests with respect to variants (now somewhat

390 S. Lau et al.

outdated) of the C11 model, but it does not support other concurrency mod-
els or a memory object model, and it supports only a small fragment of C.
Herd [6,8] is a command-line tool that computes the allowed concurrent
behaviours of small tests with respect to arbitrary axiomatic concurrency models
expressed in its cat language, but without a memory object model and for tests
which essentially just comprise memory events, without a C semantics. MemAl-
loy [38] and MemSynth [16] also support reasoning about axiomatic concurrency
models, but again not integrated with a C language semantics.

On the C semantics side, several projects address sequential C semantics
but without concurrency. We build here on Cerberus [28,29,31], a web-interface
tool that computes the allowed behaviours (interactively or exhaustively) for
moderate-sized tests in a substantial fragment of sequential C, incorporating
various memory object models (an early version supported Nienhuis’s opera-
tional model for C11 concurrency [33], but that is no longer integrated). KCC
and RV-Match [19,21,22] provide a command-line semantics tool for a substan-
tial fragment of C, again without concurrency. Krebbers gives a Coq semantics
for a somewhat smaller fragment [24].

Then there is another large body of work on model-checking tools for sequen-
tial and concurrent C. These are all optimised for model-checking performance,
in contrast to the Cerberus-BMC emphasis on expressing the semantic envelope
of allowed behaviour as clearly as we can (and, where possible, closely linked
to the ISO standard). The former include tis-interpreter [18,36], CBMC [17,25],
and ESBMC [20]. On the concurrent side, as already mentioned, we build on
the approach of [5], which integrated various hardware memory concurrency
models with CBMC. CDSChecker [34] supports something like the C/C++11
concurrency model, but subject to various limitations [34, §1.3]. It is imple-
mented using a dynamically-linked shared library for the C and C++ atomic
types, so implicitly adopts the C semantic choices of whichever compiler is used.
RCMC [23], supports memory models that do not exhibit Load Buffering (LB),
for an idealised thread-local language. Nidhugg [4] supports only hardware mem-
ory models: SC, TSO, PSO, and versions of POWER and ARM.

2 Examples

We now illustrate some of what Cerberus-BMC can do, by example.

Concurrency Models. First, for C11 concurrency, Fig. 1 shows a screenshot for a
classic message-passing test, with non-atomic writes and reads of x, synchronised
with release/acquire writes and reads of y. The test uses an explicit parallel
composition, written , to avoid the noise from the extra memory
actions in pthread_create. The consistent race-free UB-free execution on the
right shows the synchronisation working correctly: after the i read-acquire of y=1,
the l non-atomic read of x has to read x=1 (there are no consistent executions
in which it does not). As usual in C/C++ candidate execution graphs, rf are
reads-from edges, sb is sequenced-before (program order), mo is modification

Cerberus-BMC 391

Fig. 1. Cerberus-BMC Screenshot: C11 Release/Acquire Message Passing. If the read
of y is 1, then the last thread has to see the write of 1 to x.

Fig. 2. Linux kernel memory model RCU lock. Without synchronize_rcu(), the reads
of x and y can see 0 and 1 (as shown), even though they are enclosed in an RCU lock.
With synchronization, after reading x=1, the last thread has to see y=1.

392 S. Lau et al.

order (the coherence order between atomic writes to the same address), and
asw is additional-synchronised-with, between parent and child threads and vice
versa. Read and write events (R/W) are annotated na for non-atomic and rel/acq
for release/acquire.

For the Linux kernel memory model, the example in Fig. 2 shows an RCU
(read-copy-update) synchronisation.

Memory Object Model. The example below illustrates a case where one cannot
assume that C has a concrete memory object model: pointer provenance matters.

#include <stdint.h>

int x = 1, y = 2;

int main() {

int *p = &x + 1;

int *q = &y;
__BMC_ASSUME((intptr_t)p==(intptr_t)q);

if ((intptr_t)p==(intptr_t)q)

*p = 11; // does this have UB?

}

In some C implementations, x and
y will happen to be allocated adja-
cent (the _ _BMC_ASSUME restricts
attention to those executions). Then
&x+1 will have the same numeric
address as &y, but the write *p=11

is undefined behaviour rather than
a write to y. This was informally
described in the 2004 ISO WG14
C standards committee response to
Defect Report 260 [37], but has never been incorporated into the stan-
dard itself. Cerberus-BMC correctly reports UB found: source.c:8:5-7,

UB043_indirection_invalid_value following the PNVI (provenance-not-via-
integers) memory object model of [29].

ISO Subtleties. Turning to areas where the ISO standard is clear to experts but
widely misunderstood, in the example on the right ISO leaves it implementation-

int main() {

char c1 = 0xff;

unsigned char c2 = 0xff;

return 1 / (c1 == c2);

}

defined whether char is signed or unsigned. In the for-
mer case, the ISO integer promotion and conversion
semantics will make the equality test false, leading to
a division by 0, which is undefined behaviour.

The example below shows the correct treatment
of the ISO standard’s loose specification of evaluation order, together with detec-
tion of the concurrency model’s unsequenced races (ur in the diagram): there are
write and read accesses to x that are unrelated by sequenced-before (sb), and
not otherwise synchronised and hence unrelated by happens-before, which makes
this program undefined behaviour.

Cerberus-BMC 393

Treiber Stack. Finally, demonstrating the combination of all three aspects, we
implemented a modified Treiber stack (the push() function is shown in Fig. 3)
with relaxed accesses to struct fields. Although the Treiber stack is traditionally
implemented by spinning on a compare-and-swap, as that can spin unbound-
edly, we instead use __BMC_ASSUME to restrict executions to those where the
compare-and-swap succeed. Our tool correctly detects the different results from
the concurrent relaxed-memory execution of threads concurrently executing the
push and pop functions.

Fig. 3. Treiber stack push()

Fig. 4. Core program corresponding to int main(){int x = 1}. Core is essentially a
typed, first-order lambda calculus with explicit memory actions such as create and
store to interface with the concurrency and memory object models.

3 Implementation

After translating a C program into Core (see Fig. 4), Cerberus-BMC does a
sequence of Core-to-Core rewrites in the style of bounded model checkers such
as CBMC: it unwinds loops and inlines function calls (to a given bound), and
renames symbols to generate an SSA-style program.

The explicit representation of memory operations in Core as first-order con-
structs allows the SMT translation to be easily separated into three components:
the translation from Core to SMT, the memory object model constraints, and
the concurrency model constraints.

394 S. Lau et al.

1. Core to SMT. Each value in Core is represented as an SMT expression, with
fresh SMT constants for memory actions such as create and store (e.g. lines
2 and 4), the concrete values of which are constrained by the memory object
and concurrency models. The elaboration of C to Core makes thread-local unde-
fined behaviour (as opposed to undefined behaviour from concurrency or memory
layout), like signed integer overflow, explicit with a primitive undef construct.
Undefined behaviour is then encoded in SMT as reachability of undef expres-
sions, that is, satisfiability of the control-flow guards up to them.

2. Memory Object Model. As in the PNVI semantics [30], Cerberus-BMC rep-
resents pointers as pairs (π, a) of a provenance π and an integer address a. The
provenance of a pointer is taken into account when doing memory accesses,
pointer comparisons, and casts between integer and pointer values. Our tool
models address allocation nondeterminism by constraining address values based
on allocations to be appropriately aligned and non-overlapping, but not con-
straining the addresses otherwise.

3. Concurrency Model. Cerberus-BMC statically extracts memory actions and
computes an extended pre-execution containing relations such as program order.
As control flow can not be statically determined, memory actions are associated
with an SMT boolean guard representing the control flow conditions upon which
the memory action is executed.

Cerberus-BMC reads in a model definition in a subset of the herd cat lan-
guage large enough to express C11, RC11, and Linux, and generates a set of
quantifier-free SMT expressions corresponding to the model’s constraints on
relations. These constraints are based on a set of “built-in” relations defined
in SMT such as rf. Cerberus-BMC then queries Z3 to extract all the executions,
displaying the load/store values and computed relations for the user.

4 Validation

We validate correctness of the three aspects of Cerberus-BMC as follows, though,
as ever, additional testing would be desirable. Performance data, demonstrating
practical usability, is from a MacBook Pro 2.9GHz Intel Core i5.

For C11 and RC11 concurrency, we check on 12 classic litmus tests. For Linux
kernel concurrency, we hand-translated the 9 non-RCU tests and 4 of the RCU
tests of [7] into C, and automatically translated the 40 tests of [2]. Running all
the non-RCU tests takes less than 5 min; the RCU tests are slower, of the order
of one hour, perhaps because of the recursive definitions involved.

For the memory object model, we take the supported subset (36 tests) of the
provenance semantics test suite of [29]. These single-threaded tests each run in
less than a second.

For the thread-local semantics, the Cerberus pipeline to Core has previously
been validated using GCC Torture, Toyota ITC, KCC, and Csmith-generated
test suites [29]. We check the mapping to BMC using 50 hand-written tests and

Cerberus-BMC 395

the supported subset (400 tests) of the Toyota ITC test suite, each running in
less than two minutes.

These test suites and the examples in the paper can be accessed via the CAV
2019 pop-up in the File menu of the tool.

Acknowledgments. This work was partially supported by EPSRC grant EP/
K008528/1 (REMS), ERC Advanced Grant ELVER 789108, and an MIT EECS Grad-
uate Alumni Fellowship.

References

1. CppMem: Interactive C/C++ memory model. http://svr-pes20-cppmem.cl.cam.
ac.uk/cppmem/index.html

2. Litmus tests for validation LISA-language Linux-kernel memory models. https://
github.com/paulmckrcu/litmus/tree/master/manual/lwn573436

3. Programming Languages — C: ISO/IEC 9899:2011 (2011). A non-final but recent
version is available at http://www.open-std.org/jtc1/sc22/wg14/docs/n1539.pdf

4. Abdulla, P.A., Aronis, S., Atig, M.F., Jonsson, B., Leonardsson, C., Sagonas, K.:
Stateless model checking for TSO and PSO. In: Baier, C., Tinelli, C. (eds.) TACAS
2015. LNCS, vol. 9035, pp. 353–367. Springer, Heidelberg (2015). https://doi.org/
10.1007/978-3-662-46681-0_28

5. Alglave, J., Kroening, D., Tautschnig, M.: Partial orders for efficient bounded
model checking of concurrent software. In: Sharygina, N., Veith, H. (eds.) CAV
2013. LNCS, vol. 8044, pp. 141–157. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-39799-8_9

6. Alglave, J., Maranget, L.: Herd7 (in the diy tool suite) (2015). http://diy.inria.fr/
7. Alglave, J., Maranget, L., McKenney, P.E., Parri, A., Stern, A.S.: Frightening small

children and disconcerting grown-ups: concurrency in the Linux kernel. In: Pro-
ceedings of the Twenty-Third International Conference on Architectural Support
for Programming Languages and Operating Systems, ASPLOS 2018, Williams-
burg, VA, USA, 24–28 March 2018, pp. 405–418 (2018). https://doi.org/10.1145/
3173162.3177156

8. Alglave, J., Maranget, L., Tautschnig, M.: Herding cats: modelling, simulation,
testing, and data mining for weak memory. ACM TOPLAS 36(2), 7:1–7:74 (2014)

9. Batty, M., Donaldson, A.F., Wickerson, J.: Overhauling SC atomics in C11 and
OpenCl. In: Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL 2016, St. Petersburg, FL, USA,
20–22 January 2016, pp. 634–648 (2016). https://doi.org/10.1145/2837614.2837637

10. Batty, M., Memarian, K., Nienhuis, K., Pichon-Pharabod, J., Sewell, P.: The prob-
lem of programming language concurrency semantics. In: Vitek, J. (ed.) ESOP
2015. LNCS, vol. 9032, pp. 283–307. Springer, Heidelberg (2015). https://doi.org/
10.1007/978-3-662-46669-8_12

11. Batty, M., Owens, S., Sarkar, S., Sewell, P., Weber, T.: Mathematizing C++ con-
currency. In: Proceeding POPL (2011)

12. Becker, P. (ed.): Programming Languages — C++, iSO/IEC 14882:2011 (2011).
A non-final but recent version is available at http://www.open-std.org/jtc1/sc22/
wg21/docs/papers/2011/n3242.pdf

13. Boehm, H.J., Adve, S.V.: Foundations of the C++ concurrency memory model.
In: Proceedings of PLDI, pp. 68–78. ACM, New York (2008)

http://svr-pes20-cppmem.cl.cam.ac.uk/cppmem/index.html
http://svr-pes20-cppmem.cl.cam.ac.uk/cppmem/index.html
https://github.com/paulmckrcu/litmus/tree/master/manual/lwn573436
https://github.com/paulmckrcu/litmus/tree/master/manual/lwn573436
http://www.open-std.org/jtc1/sc22/wg14/docs/n1539.pdf
https://doi.org/10.1007/978-3-662-46681-0_28
https://doi.org/10.1007/978-3-662-46681-0_28
https://doi.org/10.1007/978-3-642-39799-8_9
https://doi.org/10.1007/978-3-642-39799-8_9
http://diy.inria.fr/
https://doi.org/10.1145/3173162.3177156
https://doi.org/10.1145/3173162.3177156
https://doi.org/10.1145/2837614.2837637
https://doi.org/10.1007/978-3-662-46669-8_12
https://doi.org/10.1007/978-3-662-46669-8_12
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3242.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3242.pdf

396 S. Lau et al.

14. Boehm, H.J., Giroux, O., Vafeiadis, V.: P0668R2: Revising the C++ memory
model. ISO WG21 paper (2018). http://www.open-std.org/jtc1/sc22/wg21/docs/
papers/2018/p0668r2.html

15. Boehm, H., Demsky, B.: Outlawing ghosts: avoiding out-of-thin-air results. In:
Proceedings of the Workshop on Memory Systems Performance and Correct-
ness, MSPC 2014, Edinburgh, United Kingdom, 13 June 2014, pp. 7:1–7:6 (2014).
https://doi.org/10.1145/2618128.2618134

16. Bornholt, J., Torlak, E.: Synthesizing memory models from framework sketches
and litmus tests. In: Proceedings of the 38th ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, PLDI 2017, Barcelona, Spain,
18–23 June 2017, pp. 467–481 (2017). https://doi.org/10.1145/3062341.3062353

17. Clarke, E., Kroening, D., Lerda, F.: A tool for checking ANSI-C programs. In:
Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168–176.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24730-2_15

18. Cuoq, P., Runarvot, L., Cherepanov, A.: Detecting strict aliasing violations in the
wild. In: Bouajjani, A., Monniaux, D. (eds.) VMCAI 2017. LNCS, vol. 10145, pp.
14–33. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-52234-0_2

19. Ellison, C., Roşu, G.: An executable formal semantics of C with applications. In:
Proceedings of POPL (2012)

20. Gadelha, M.Y.R., Monteiro, F.R., Morse, J., Cordeiro, L.C., Fischer, B., Nicole,
D.A.: ESBMC 5.0: an industrial-strength C model checker. In: Proceedings of the
33rd ACM/IEEE International Conference on Automated Software Engineering,
ASE 2018, Montpellier, France, 3–7 September 2018, pp. 888–891 (2018)

21. Guth, D., Hathhorn, C., Saxena, M., Roşu, G.: RV-Match: practical semantics-
based program analysis. In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016, Part I.
LNCS, vol. 9779, pp. 447–453. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-41528-4_24

22. Hathhorn, C., Ellison, C., Rosu, G.: Defining the undefinedness of C. In: Proceed-
ings of the 36th ACM SIGPLAN Conference on Programming Language Design
and Implementation, Portland, OR, USA, 15–17 June 2015, pp. 336–345 (2015).
https://doi.org/10.1145/2737924.2737979

23. Kokologiannakis, M., Lahav, O., Sagonas, K., Vafeiadis, V.: Effective stateless
model checking for C/C++ concurrency. PACMPL 2(POPL), 17:1–17:32 (2018).
https://doi.org/10.1145/3158105

24. Krebbers, R.: The C standard formalized in CoQ. Ph.D. thesis, Radboud University
Nijmegen, December 2015

25. Kroening, D., Tautschnig, M.: CBMC – C bounded model checker (competition
contribution). In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014. LNCS, vol.
8413, pp. 389–391. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
642-54862-8_26

26. Lahav, O., Vafeiadis, V., Kang, J., Hur, C., Dreyer, D.: Repairing sequential con-
sistency in C/C++11. In: Proceedings of the 38th ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI 2017, Barcelona, Spain,
18–23 June 2017, pp. 618–632 (2017). https://doi.org/10.1145/3062341.3062352

27. Lee, J., Hur, C.K., Jung, R., Liu, Z., Regehr, J., Lopes, N.P.: Reconciling high-level
optimizations and low-level code with twin memory allocation. In: Proceedings of
the 2018 ACM SIGPLAN International Conference on Object Oriented Program-
ming Systems Languages & Applications, OOPSLA 2018, part of SPLASH 2018,
Boston, MA, USA, 4–9 November 2018. ACM (2018)

28. Memarian, K., Gomes, V., Sewell, P.: Cerberus (2018). http://cerberus.cl.cam.ac.
uk/cerberus

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0668r2.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0668r2.html
https://doi.org/10.1145/2618128.2618134
https://doi.org/10.1145/3062341.3062353
https://doi.org/10.1007/978-3-540-24730-2_15
https://doi.org/10.1007/978-3-319-52234-0_2
https://doi.org/10.1007/978-3-319-41528-4_24
https://doi.org/10.1007/978-3-319-41528-4_24
https://doi.org/10.1145/2737924.2737979
https://doi.org/10.1145/3158105
https://doi.org/10.1007/978-3-642-54862-8_26
https://doi.org/10.1007/978-3-642-54862-8_26
https://doi.org/10.1145/3062341.3062352
http://cerberus.cl.cam.ac.uk/cerberus
http://cerberus.cl.cam.ac.uk/cerberus

Cerberus-BMC 397

29. Memarian, K., et al.: Exploring C semantics and pointer provenance. In: Proceed-
ings of 46th ACM SIGPLAN Symposium on Principles of Programming Languages,
January 2019. Proc. ACM Program. Lang. 3, POPL, Article 67

30. Memarian, K., et al.: Exploring C semantics and pointer provenance. PACMPL
3(POPL), 67:1–67:32 (2019). https://dl.acm.org/citation.cfm?id=3290380

31. Memarian, K., et al.: Into the depths of C: elaborating the de facto standards. In:
PLDI 2016: 37th Annual ACM SIGPLAN Conference on Programming Language
Design and Implementation (Santa Barbara), June 2016. http://www.cl.cam.ac.
uk/users/pes20/cerberus/pldi16.pdf. PLDI 2016 Distinguished Paper award

32. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3_24

33. Nienhuis, K., Memarian, K., Sewell, P.: An operational semantics for C/C++11
concurrency. In: Proceedings of the ACM SIGPLAN International Conference on
Object-Oriented Programming, Systems, Languages, and Applications. ACM, New
York (2016). https://doi.org/10.1145/2983990.2983997

34. Norris, B., Demsky, B.: CDSchecker: checking concurrent data structures written
with C/C++ atomics. In: Proceedings of OOPSLA (2013)

35. Ou, P., Demsky, B.: Towards understanding the costs of avoiding out-of-thin-
air results. PACMPL 2(OOPSLA), 136:1–136:29 (2018). https://doi.org/10.1145/
3276506

36. TrustInSoft: tis-interpreter (2017). http://trust-in-soft.com/tis-interpreter/.
Accessed 11 Nov 2017

37. WG14: Defect report 260, September 2004. http://www.open-std.org/jtc1/sc22/
wg14/www/docs/dr_260.htm

38. Wickerson, J., Batty, M., Sorensen, T., Constantinides, G.A.: Automatically com-
paring memory consistency models. In: Proceedings of the 44th ACM SIGPLAN
Symposium on Principles of Programming Languages, POPL 2017, pp. 190–204.
ACM, New York (2017). https://doi.org/10.1145/3009837.3009838

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://dl.acm.org/citation.cfm?id=3290380
http://www.cl.cam.ac.uk/users/pes20/cerberus/pldi16.pdf
http://www.cl.cam.ac.uk/users/pes20/cerberus/pldi16.pdf
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1145/2983990.2983997
https://doi.org/10.1145/3276506
https://doi.org/10.1145/3276506
http://trust-in-soft.com/tis-interpreter/
http://www.open-std.org/jtc1/sc22/wg14/www/docs/dr_260.htm
http://www.open-std.org/jtc1/sc22/wg14/www/docs/dr_260.htm
https://doi.org/10.1145/3009837.3009838
http://creativecommons.org/licenses/by/4.0/

Cyber-Physical Systems
and Machine Learning

Multi-armed Bandits for Boolean Connectives
in Hybrid System Falsification

Zhenya Zhang1,2(B) , Ichiro Hasuo1,2 ,
and Paolo Arcaini1

1 National Institute of Informatics, Tokyo, Japan
{zhangzy,hasuo,arcaini}@nii.ac.jp

2 SOKENDAI (The Graduate University for Advanced Studies),
Hayama, Japan

Abstract. Hybrid system falsification is an actively studied topic, as a scalable
quality assurance methodology for real-world cyber-physical systems. In falsifi-
cation, one employs stochastic hill-climbing optimization to quickly find a coun-
terexample input to a black-box system model. Quantitative robust semantics is
the technical key that enables use of such optimization. In this paper, we tackle the
so-called scale problem regarding Boolean connectives that is widely recognized
in the community: quantities of different scales (such as speed [km/h] vs. rpm, or
worse, rph) can mask each other’s contribution to robustness. Our solution con-
sists of integration of the multi-armed bandit algorithms in hill climbing-guided
falsification frameworks, with a technical novelty of a new reward notion that we
call hill-climbing gain. Our experiments show our approach’s robustness under
the change of scales, and that it outperforms a state-of-the-art falsification tool.

1 Introduction

Hybrid System Falsification. Quality assurance of cyber-physical systems (CPS) is
attracting growing attention from both academia and industry, not only because it is
challenging and scientifically interesting, but also due to the safety-critical nature of
many CPS. The combination of physical systems (with continuous dynamics) and dig-
ital controllers (that are inherently discrete) is referred to as hybrid systems, capturing
an important aspect of CPS. To verify hybrid systems is intrinsically hard, because the
continuous dynamics therein leads to infinite search spaces.

More researchers and practitioners are therefore turning to optimization-based falsi-
fication as a quality assurance measure for CPS. The problem is formalized as follows.

The authors are supported by ERATO HASUO Metamathematics for Systems Design Project
(No. JPMJER1603), JST.

c© The Author(s) 2019
I. Dillig and S. Tasiran (Eds.): CAV 2019, LNCS 11561, pp. 401–420, 2019.
https://doi.org/10.1007/978-3-030-25540-4_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-25540-4_23&domain=pdf
http://orcid.org/0000-0002-3854-9846
http://orcid.org/0000-0002-8300-4650
http://orcid.org/0000-0002-6253-4062
https://doi.org/10.1007/978-3-030-25540-4_23

402 Z. Zhang et al.

The falsification problem

– Given: a model M (that takes an input signal u and

yields an output signal M(u)), and a specification ϕ (a u �� M M(u)

�|=ϕ ?
��

temporal formula)
– Find: a falsifying input, that is, an input signal u such
that the corresponding output M(u) violates ϕ

In optimization-based falsification, the above problem is turned into an optimiza-
tion problem. It is robust semantics of temporal formulas [12,17] that makes it possible.
Instead of the Boolean satisfaction relation v |= ϕ, robust semantics assigns a quantity
�v, ϕ� ∈ R∪{∞,−∞} that tells us, not only whether ϕ is true or not (by the sign), but
also how robustly the formula is true or false. This allows one to employ hill-climbing
optimization: we iteratively generate input signals, in the direction of decreasing robust-
ness, hoping that eventually we hit negative robustness.

Table 1. Boolean satisfactionw |= ϕ, and quantitative robustness values �w, ϕ�, of three signals
of speed for the STL formula ϕ ≡ �[0,30](speed < 120)

An illustration of robust semantics is in Table 1. We use signal temporal logic (STL)
[12], a temporal logic that is commonly used in hybrid system specification. The spec-
ification says the speed must always be below 120 during the time interval [0, 30]. In
the search of an input signal u (e.g. of throttle and brake) whose corresponding out-
put M(u) violates the specification, the quantitative robustness �M(u), ϕ� gives much
more information than the Boolean satisfaction M(u) |= ϕ. Indeed, in Table 1, while
Boolean satisfaction fails to discriminate the first two signals, the quantitative robust-
ness indicates a tendency that the second signal is closer to violation of the specification.

In the falsification literature, stochastic algorithms are used for hill-climbing opti-
mization. Examples include simulated annealing (SA), globalized Nelder-Mead (GNM
[30]) and covariance matrix adaptation evolution strategy (CMA-ES [6]). Note that
the system model M can be black-box: we have only to observe the correspondence
between input u and output M(u). Observing an error M(u′) for some input u′ is suf-
ficient evidence for a system designer to know that the system needs improvement.
Besides these practical advantages, optimization-based falsification is an interesting
scientific topic: it combines two different worlds of formal reasoning and stochastic
optimization.

Multi-armed Bandits for Boolean Connectives in Hybrid System Falsification 403

Optimization-based falsification started in [17] and has been developed vigorously
[1,3–5,9,11–13,15,27,28,34,36,38]. See [26] for a survey. There are mature tools such
as Breach [11] and S-Taliro [5]; they work with industry-standard Simulink models.

Challenge: The Scale Problem in Boolean Superposition. In the field of hybrid
falsification—and more generally in search-based testing—the following problem is
widely recognized. We shall call the problem the scale problem (in Boolean superposi-
tion).

Consider an STL specification ϕ ≡ �[0,30](¬(rpm > 4000) ∨ (speed > 20))
for a car; it is equivalent to �[0,30]((rpm > 4000) → (speed > 20)) and says that
the speed should not be too small whenever the rpm is over 4000. According to the
usual definition in the literature [11,17], the Boolean connectives ¬ and ∨ are inter-
preted by − and the supremum �, respectively; and the “always” operator �[0,30] is by
infimum

⊔
. Therefore the robust semantics of ϕ under the signal (rpm, speed), where

rpm, speed : [0, 30] → R, is given as follows.

�(rpm, speed), ϕ� =
�

t∈[0,30]

((
4000 − rpm(t)

) � (
speed(t) − 20

))
(1)

A problem is that, in the supremum of two real values in (1), one component can totally
mask the contribution of the other. In this specific example, the former (rpm) compo-
nent can have values as big as thousands, while the latter (speed) component will be
in the order of tens. This means that in hill-climbing optimization it is hard to use the
information of both signals, as one will be masked.

Another related problem is that the efficiency of a falsification algorithm would
depend on the choice of units of measure. Imagine replacing rpm with rph in (1), which
makes the constant 4000 into 240000, and make the situation even worse.

These problems—that we call the scale problem—occur in many falsification exam-
ples, specifically when a specification involves Boolean connectives. We do need
Boolean connectives in specifications: for example, many real-world specifications in
industry are of the form �I(ϕ1 → ϕ2), requiring that an event ϕ1 triggers a counter-
measure ϕ2 all the time.

One could use different operators for interpreting Boolean connectives. For exam-
ple, in [21], ∨ and ∧ are interpreted by + and × over R, respectively. However, these
choices do not resolve the scale problem, either. In general, it does not seem easy to
come up with a fixed set of operators over R that interpret Boolean connectives and are
free from the scale problem.

ϕ1 ϕ2

Fig. 1.Amulti-armed bandit for
falsifying �I(ϕ1 ∧ ϕ2)

Contribution: Integrating Multi-Armed Bandits into
Optimization-Based Falsification. As a solution to the
scale problem in Boolean superposition that we just
described, we introduce a new approach that does not
superpose robustness values. Instead, we integratemulti-
armed bandits (MAB) in the existing framework of fal-
sification guided by hill-climbing optimization.

404 Z. Zhang et al.

The MAB problem is a prototypical reinforcement learning problem: a gambler sits
in front of a row of slot machines; their performance (i.e. average reward) is not known;
the gambler plays a machine in each round and he continues with many rounds; and the
goal is to optimize cumulative rewards. The gambler needs to play different machines
and figure out their performance, at the cost of the loss of opportunities in the form of
playing suboptimal machines.

In this paper, we focus on specifications of the form �I(ϕ1 ∧ ϕ2) and
�I(ϕ1 ∨ ϕ2); we call them (conjunctive/disjunctive) safety properties. We identify
an instance of the MAB problem in the choice of the formula (out of ϕ1, ϕ2) to
try to falsify by hill climbing. See Fig. 1. We combine MAB algorithms (such as
ε-greedy and UCB1, see Sect. 3.2) with hill-climbing optimization, for the purpose of
coping with the scale problem in Boolean superposition. This combination is made pos-
sible by introducing a novel reward notion for MAB, called hill-climbing gain, that is
tailored for this purpose.

We have implemented our MAB-based falsification framework in MATLAB, build-
ing on Breach [11].1 Our experiments with benchmarks from [7,24,25] demonstrate
that our MAB-based approach is a viable one against the scale problem. In particular,
our approach is observed to be (almost totally) robust under the change of scaling (i.e.
changing units of measure, such as from rpm to rph that we discussed after the for-
mula (1)). Moreover, for the benchmarks taken from the previous works—they do not
suffer much from the scale problem—our algorithm performs better than the state-of-
the-art falsification tool Breach [11].

Related Work. Besides those we mentioned, we shall discuss some related works.
Formal verification approaches to correctness of hybrid systems employ a wide

range of techniques, including model checking, theorem proving, rigorous numerics,
nonstandard analysis, and so on [8,14,18,20,22,23,29,32]. These are currently not
very successful in dealing with complex real-world systems, due to issues like scala-
bility and black-box components.

Our use of MAB in falsification exemplifies the role of the exploration-exploitation
trade-off, the core problem in reinforcement learning. The trade-off has been already
discussed for the verification of quantitative properties (e.g., [33]) and also in some
works on falsification. A recent example is [36], where they use Monte Carlo tree search
to force systematic exploration of the space of input signals. Besides MCTS, Gaussian
process learning (GP learning) has also attracted attention in machine learning as a
clean way of balancing exploitation and exploration. The GP-UCB algorithm is a widely
used strategy there. Its use in hybrid system falsification is pursued e.g. in [3,34].

More generally, coverage-guided falsification [1,9,13,28] aims at coping with the
exploration-exploitation trade-off. One can set the current work in this context—the
difference is that we force systematic exploration on the specification side, not in the
input space.

There have been efforts to enhance expressiveness of MTL and STL, so that engi-
neers can express richer intentions—such as time robustness and frequency—in speci-

1 Code obtained at https://github.com/decyphir/breach.

https://github.com/decyphir/breach

Multi-armed Bandits for Boolean Connectives in Hybrid System Falsification 405

fications [2,31]. This research direction is orthogonal to ours; we plan to investigate the
use of such logics in our current framework.

A similar masking problem around Boolean connectives is discussed in
[10,19]. Compared to those approaches, our technique does not need the explicit dec-
laration of input vacuity and output robustness, but it relies on the “hill-climbing gain”
reward to learn the significance of each signal.

Finally, the interest in the use of deep neural networks is rising in the field of falsi-
fication (as well as in many other fields). See e.g. [4,27].

2 Preliminaries: Hill Climbing-Guided Falsification

We review a well-adopted methodology for hybrid system falsification, namely the
one guided by hill-climbing optimization. It makes essential use of quantitative robust
semantics of temporal formulas, which we review too.

2.1 Robust Semantics for STL

Our definitions here are taken from [12,17].

Definition 1 ((time-bounded) signal). Let T ∈ R+ be a positive real. An M -
dimensional signal with a time horizon T is a function w : [0, T] → R

M .
Let w : [0, T] → R

M and w′ : [0, T ′] → R
M be M -dimensional signals. Their

concatenation w · w′ : [0, T + T ′] → R
M is the M -dimensional signal defined by

(w · w′)(t) = w(t) if t ∈ [0, T], and (w · w′)(t) = w′(t − T) if t ∈ (T, T + T ′].
Let 0 < T1 < T2 ≤ T . The restriction w|[T1,T2] : [0, T2 − T1] → R

M of
w : [0, T] → R

M to the interval [T1, T2] is defined by (w|[T1,T2])(t) = w(T1 + t).

One main advantage of optimization-based falsification is that a system model can be a
black box—observing the correspondence between input and output suffices. We there-
fore define a system model simply as a function.

Definition 2 (system model M). A system model, with M -dimensional input and N -
dim. output, is a function M that takes an input signal u : [0, T] → R

M and returns
a signal M(u) : [0, T] → R

N . Here the common time horizon T ∈ R+ is arbitrary.
Furthermore, we impose the following causality condition on M: for any time-bounded
signals u : [0, T] → R

M and u′ : [0, T ′] → R
M , we require that M(u · u′)

∣
∣
[0,T]

=
M(u).

Definition 3 (STL syntax). We fix a set Var of variables. In STL, atomic
propositions and formulas are defined as follows, respectively: α ::≡ f(x1, . . . , xN) >
0, and ϕ ::≡ α | ⊥ | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ UI ϕ. Here f is an N -ary function
f : RN → R, x1, . . . , xN ∈ Var, and I is a closed non-singular interval in R≥0, i.e.
I = [a, b] or [a,∞) where a, b ∈ R and a < b.

We omit subscripts I for temporal operators if I = [0,∞). Other common connec-
tives such as →,�, �I (always) and ♦I (eventually), are introduced as abbreviations:
♦Iϕ ≡ � UI ϕ and �Iϕ ≡ ¬♦I¬ϕ. An atomic formula f(x) ≤ c, where c ∈ R, is
accommodated using ¬ and the function f ′(x) :=f(x) − c.

406 Z. Zhang et al.

Definition 4 (robust semantics [12]). Let w : [0, T] → R
N be an N -dimensional

signal, and t ∈ [0, T). The t-shift of w, denoted by wt, is the time-bounded signal
wt : [0, T − t] → R

N defined by wt(t′) :=w(t + t′).
Let w : [0, T] → R

|Var| be a signal, and ϕ be an STL formula. We define the
robustness �w, ϕ� ∈ R ∪ {∞,−∞} as follows, by induction on the construction of
formulas. Here

�
and

⊔
denote infimums and supremums of real numbers, respectively.

Their binary version
 and � denote minimum and maximum.

�w, f(x1, · · · , xn) > 0� := f
(
w(0)(x1), · · · ,w(0)(xn)

)

�w,⊥� := − ∞ �w,¬ϕ� := − �w, ϕ�

�w, ϕ1 ∧ ϕ2� := �w, ϕ1�
 �w, ϕ2� �w, ϕ1 ∨ ϕ2� := �w, ϕ1� � �w, ϕ2�

�w, ϕ1 UI ϕ2� :=
⊔

t∈I∩[0,T]

(
�wt, ϕ2�
 �

t′∈[0,t)�w
t′
, ϕ1�

)
(2)

For atomic formulas, �w, f(x) > c� stands for the vertical margin f(x)− c for the
signal w at time 0. A negative robustness value indicates how far the formula is from
being true. It follows from the definition that the robustness for the eventually modality
is given by �w,♦[a,b](x > 0)� =

⊔
t∈[a,b]∩[0,T]w(t)(x).

The above robustness notion taken from [12] is therefore spatial. Other robustness
notions take temporal aspects into account, too, such as “how long before the deadline
the required event occurs”. See e.g. [2,12]. Our choice of spatial robustness in this paper
is for the sake of simplicity, and is thus not essential.

The original semantics of STL is Boolean, given as usual by a binary relation |=
between signals and formulas. The robust semantics refines the Boolean one in the fol-
lowing sense: �w, ϕ� > 0 implies w |= ϕ, and �w, ϕ� < 0 implies w �|= ϕ, see [17,
Prop. 16]. Optimization-based falsification via robust semantics hinges on this refine-
ment.

2.2 Hill Climbing-Guided Falsification

As we discussed in the introduction, the falsification problem attracts growing industrial
and academic attention. Its solution methodology by hill-climbing optimization is an
established field, too: see [1,3,5,9,11–13,15,26,28,34,38] and the tools Breach [11]
and S-TaLiRo [5]. We formulate the problem and the methodology, for later use in
describing our multi-armed bandit-based algorithm.

Definition 5 (falsifying input). Let M be a system model, and ϕ be an STL formula.
A signal u : [0, T] → R

|Var| is a falsifying input if �M(u), ϕ� < 0; the latter implies
M(u) �|= ϕ.

The use of quantitative robust semantics �M(u), ϕ� ∈ R ∪ {∞,−∞} in the above
problem enables the use of hill-climbing optimization.

Definition 6 (hill climbing-guided falsification). Assume the setting in Definition 5.
For finding a falsifying input, the methodology of hill climbing-guided falsification is
presented in Algorithm 1.

Multi-armed Bandits for Boolean Connectives in Hybrid System Falsification 407

Here the function HILL-CLIMB makes a guess of an input signal uk, aiming at
minimizing the robustness �M(uk), ϕ�. It does so, learning from the previous observa-
tions

(
ul, �M(ul), ϕ�

)
l∈[1,k−1]

of input signals u1, . . . ,uk−1 and their corresponding
robustness values (cf. Table 1).

The HILL-CLIMB function can be implemented by various stochastic optimization
algorithms. Examples are CMA-ES [6] (used in our experiments), SA, and GNM [30].

3 Our Multi-armed Bandit-Based Falsification Algorithm

In this section, we present our contribution, namely a falsification algorithm that
addresses the scale problem in Boolean superposition (see Sect. 1). The main novel-
ties in the algorithm are as follows.

1. (Use of MAB algorithms) For binary Boolean connectives, unlike most works in
the field, we do not superpose the robustness values of the constituent formulas ϕ1

and ϕ2 using a fixed operator (such as
 and � in (2)). Instead, we view the situation
as an instance of the multi-armed bandit problem (MAB): we use an algorithm for
MAB to choose one formula ϕi to focus on (here i ∈ {1, 2}); and then we apply hill
climbing-guided falsification to the chosen formula ϕi.

2. (Hill-climbing gain as rewards in MAB) For our integration of MAB and hill-
climbing optimization, the technical challenge is find a suitable notion of reward for
MAB. We introduce a novel notion that we call hill-climbing gain: it formulates the
(downward) robustness gain that we would obtain by applying hill-climbing opti-
mization, suitably normalized using the scale of previous robustness values.

Later, in Sect. 4, we demonstrate that combining those two features gives rise to falsifi-
cation algorithms that successfully cope with the scale problem in Boolean superposi-
tion.

Our algorithms focus on a fragment of STL as target specifications. They are called
(disjunctive and conjunctive) safety properties. In Sect. 3.1 we describe this fragment
of STL, and introduce necessary adaptation of the semantics. After reviewing the MAB
problem in Sect. 3.2, we present our algorithms in Sects. 3.3, 3.4.

Algorithm 1. Hill climbing-guided falsification
Require: a system model M, an STL formula ϕ, and a budget K
1: function HILL-CLIMB-FALSIFY(M, ϕ, K)
2: rb ← ∞ ; k ← 0 � rb is the smallest robustness so far, initialized to ∞
3: while rb ≥ 0 and k ≤ K do
4: k ← k + 1

5: uk ← HILL-CLIMB
((

ul, �M(ul), ϕ�
)

l∈[1,k−1]

)

6: rbk ← �M(uk), ϕ�
7: if rbk < rb then rb ← rbk

8: u ←
{
uk if rb < 0, that is, rbk = �M(uk), ϕ� < 0

Failure otherwise, that is, no falsifying input found within budget K
9: return u

408 Z. Zhang et al.

3.1 Conjunctive and Disjunctive Safety Properties

Definition 7 (conjunctive/disjunctive safety property). An STL formula of the form
�I(ϕ1 ∧ ϕ2) is called a conjunctive safety property; an STL formula of the form
�I(ϕ1 ∨ ϕ2) is called a disjunctive safety property.

It is known that, in industry practice, a majority of specifications is of the form
�I(ϕ1 → ϕ2), where ϕ1 describes a trigger and ϕ2 describes a countermeasure that
should follow. This property is equivalent to �I(¬ϕ1 ∨ ϕ2), and is therefore a disjunc-
tive safety property.

In Sects. 3.3, 3.4, we present two falsification algorithms, for conjunctive and dis-
junctive safety properties respectively. For the reason we just discussed, we expect the
disjunctive algorithm should be more important in real-world application scenarios. In
fact, the disjunctive algorithm turns out to be more complicated, and it is best introduced
as an extension of the conjunctive algorithm.

We define the restriction of robust semantics to a (sub)set of time instants. Note that
we do not require S ⊆ [0, T] to be a single interval.

Definition 8 (�w, ψ�S , robustness restricted to S ⊆ [0, T]). Let w : [0, T] → R
|Var|

be a signal, ψ be an STL formula, and S ⊆ [0, T] be a subset. We define the robustness
of w under ψ restricted to S by

�w, ψ�S :=
�

t∈S �wt, ψ�. (3)

Obviously, �w, ψ�S < 0 implies that there exists t ∈ S such that �wt, ψ�S < 0. We
derive the following easy lemma; it is used later in our algorithm.

Lemma 9. In the setting of Definition 8, consider a disjunctive safety property ϕ ≡
�I(ϕ1 ∨ϕ2), and let S :={t ∈ I ∩ [0, T] | �wt, ϕ1� < 0}. Then �w, ϕ2�S < 0 implies
�w,�I(ϕ1 ∨ ϕ2)� < 0.
�

3.2 The Multi-Armed Bandit (MAB) Problem

The multi-armed bandit (MAB) problem describes a situation where,

– a gambler sits in front of a row A1, . . . , An of slot machines;
– each slot machine Ai gives, when its arm is played (i.e. in each attempt), a reward

according to a prescribed (but unknown) probability distribution μi;
– and the goal is to maximize the cumulative reward after a number of attempts, play-
ing a suitable arm in each attempt.

The best strategy of course is to keep playing the best arm Amax, i.e. the one whose
average reward avg(μmax) is the greatest. This best strategy is infeasible, however,
since the distributions μ1, . . . , μn are initially unknown. Therefore the gambler must
learn about μ1, . . . , μn through attempts.

The MAB problem exemplifies the “learning by trying” paradigm of reinforcement
learning, and is thus heavily studied. The greatest challenge is to balance between
exploration and exploitation. A greedy (i.e. exploitation-only) strategy will play the

Multi-armed Bandits for Boolean Connectives in Hybrid System Falsification 409

arm whose empirical average reward is the maximum. However, since the rewards are
random, this way the gambler can miss another arm whose real performance is even
better but which is yet to be found so. Therefore one needs to mix exploration, too,
occasionally trying empirically non-optimal arms, in order to identity their true perfor-
mance.

The relevance of MAB to our current problem is as follows. Falsifying a conjunctive
safety property �I(ϕ1 ∧ ϕ2) amounts to finding a time instant t ∈ I at which either ϕ1

or ϕ2 is falsified. We can see the two subformulas (ϕ1 and ϕ2) as two arms, and this
constitutes an instance of the MAB problem. In particular, playing an arm translates to
a falsification attempt by hill climbing, and collecting rewards translates to spending
time to minimize the robustness. We show in Sects. 3.3–3.4 that this basic idea extends
to disjunctive safety properties �I(ϕ1 ∨ ϕ2), too.

Algorithm 2. The ε-greedy algorithm for multi-armed bandits
Require: the setting of Def. 10, and a constant ε > 0 (typically very small)

At the k-th attempt, choose the arm Aik as follows
1: jemp-opt ← arg max

j∈[1,n]

R(j, k − 1) � the arm that is empirically optimal

2: Sample ik ∈ [1, n] from the distribution[
jemp-opt 	−→ (1 − ε) + ε

n

j 	−→ ε
n

for each j ∈ [1, n] \ {jemp-opt}
]

3: return ik

A rigorous formulation of the MAB problem is presented for the record.

Definition 10 (the multi-armed bandit problem). The multi-armed bandit (MAB)
problem is formulated as follows.
Input: arms (A1, . . . , An), the associated probability distributions μ1, . . . , μn over R,
and a time horizon H ∈ N ∪ {∞}.
Goal: synthesize a sequence Ai1Ai2 . . . AiH , so that the cumulative reward

∑H
k=1 rewk

is maximized. Here the reward rewk of the k-th attempt is sampled from the distribution
μik associated with the arm Aik played at the k-th attempt.

We introduce some notations for later use. Let (Ai1 . . . Aik , rew1 . . . rewk) be a his-
tory, i.e. the sequence of arms played so far (here i1, . . . , ik ∈ [1, n]), and the sequence
of rewards obtained by those attempts (rewl is sampled from μil).

For an arm Aj , its visit count N(j, Ai1Ai2 . . . Aik , rew1rew2 . . . rewk) is given
by the number of occurrences of Aj in Ai1Ai2 . . . Aik . Its empirical average reward
R(j, Ai1Ai2 . . . Aik , rew1rew2 . . . rewk) is given by

∑
l∈{l∈[1,k]|il=j} rewl, i.e. the

average return of the arm Aj in the history. When the history is obvious from the con-
text, we simply write N(j, k) and R(j, k).

MAB Algorithms. There have been a number of algorithms proposed for the MAB
problem; each of them gives a strategy (also called a policy) that tells which arm to
play, based on the previous attempts and their rewards. The focus here is how to resolve
the exploration-exploitation trade-off. Here we review two well-known algorithms.

410 Z. Zhang et al.

The ε-Greedy Algorithm. This is a simple algorithm that spares a small fraction ε of
chances for empirically non-optimal arms. The spared probability ε is uniformly dis-
tributed. See Algorithm 2.

The UCB1 Algorithm. The UCB1 (upper confidence bound) algorithm is more com-
plex; it comes with a theoretical upper bound for regrets, i.e. the gap between the
expected cumulative reward and the optimal (but infeasible) cumulative reward (i.e.
the result of keep playing the optimal arm Amax). It is known that the UCB1 algo-
rithm’s regret is at most O(

√
nH logH) after H attempts, improving the naive random

strategy (which has the expected regret O(H)).
See Algorithm 3. The algorithm is deterministic, and picks the arm that maximizes

the value shown in Line 1. The first term R(j, k−1) is the exploitation factor, reflecting
the arm’s empirical performance. The second term is the exploration factor. Note that
it is bigger if the arm Aj has been played less frequently. Note also that the exploration
factor eventually decays over time: the denominator grows roughly with O(k), while
the numerator grows with O(ln k).

Algorithm 3. The UCB1 algorithm for multi-armed bandits
Require: the setting of Def. 10, and a constant c > 0

At the k-th attempt, choose the arm Aik as follows

1: ik ← arg max
j∈[1,n]

(
R(j, k − 1) + c

√
2 ln(k−1)
N(j,k−1)

)

2: return ik

Algorithm 4. Our MAB-guided algorithm I: conjunctive safety properties
Require: a system model M, an STL formula ϕ ≡ �I(ϕ1 ∧ ϕ2), and a budget K
1: function MAB-FALSIFY-CONJ-SAFETY(M, ϕ, K)
2: rb ← ∞ ; k ← 0

� rb is the smallest robustness seen so far, for either �Iϕ1 or �Iϕ2

3: while rb ≥ 0 and k ≤ K do � iterate if not yet falsified, and within budget
4: k ← k + 1

5: ik ← MAB
(
(ϕ1, ϕ2),

(R(ϕ1), R(ϕ2)
)
, ϕi1 . . . ϕik−1 , rew1 . . . rewk−1

)

� an MAB choice of ik ∈ {1, 2} for optimizing the reward R(ϕik)

6: uk ← HILL-CLIMB
((

(ul, rbl)
)

l∈[1,k−1] such that il=ik

)

� suggestion of the next input uk by hill climbing, based on the previous observa-
tions on the formula ϕik (those on the other formula are ignored)

7: rbk ← �M(uk), �Iϕik�
8: if rbk < rb then rb ← rbk

9: u ←
{
uk if rb < 0

Failure otherwise, that is, no falsifying input found within budget K
10: return u

Multi-armed Bandits for Boolean Connectives in Hybrid System Falsification 411

Algorithm 5. Our MAB-guided algorithm II: disjunctive safety properties
Require: a system model M, an STL formula ϕ ≡ �I(ϕ1 ∨ ϕ2), and a budget K
1: function MAB-FALSIFY-DISJ-SAFETY(M, ϕ, K)

The same as Algorithm 4, except that Line 7 is replaced by the following Line 7’.

7’: rbk ← �M(uk), ϕik�Sk where Sk =
{

t ∈ I ∩ [0, T]
∣∣ �M(ut

k), ϕik
� < 0

}
� here ϕik

denotes the other formula than ϕik , among ϕ1, ϕ2

3.3 Our MAB-Guided Algorithm I: Conjunctive Safety Properties

Our first algorithm targets at conjunctive safety properties. It is based on our identifi-
cation of MAB in a Boolean conjunction in falsification—this is as we discussed just
above Definition 10. The technical novelty lies in the way we combine MAB algorithms
and hill-climbing optimization; specifically, we introduce the notion of hill-climbing
gain as a reward notion in MAB (Definition 11). This first algorithm paves the way to
the one for disjunctive safety properties, too (Sect. 3.4).

The algorithm is in Algorithm 4. Some remarks are in order.
Algorithm 4 aims to falsify a conjunctive safety property ϕ ≡ �I(ϕ1 ∧ ϕ2). Its

overall structure is to interleave two sequences of falsification attempts, both of which
are hill climbing-guided. These two sequences of attempts aim to falsify �Iϕ1 and
�Iϕ2, respectively. Note that �M(u), ϕ� ≤ �M(u),�Iϕ1�, therefore falsification of
�Iϕ1 implies falsification of ϕ; the same holds for �Iϕ2, too.

In Line 5 we run an MAB algorithm to decide which of �Iϕ1 and �Iϕ2

to target at in the k-th attempt. The function MAB takes the following as its
arguments: (1) the list of arms, given by the formulas ϕ1, ϕ2; (2) their rewards
R(ϕ1),R(ϕ2); (3) the history ϕi1 . . . ϕik−1 of previously played arms (il ∈
{1, 2}); and 4) the history rew1 . . . rewk−1 of previously observed rewards. This
way, the type of the MAB function in Line 5 matches the format in Defini-
tion 10, and thus the function can be instantiated with any MAB algorithm such as
Algorithms 2–3.

The only missing piece is the definition of the rewards R(ϕ1),R(ϕ2). We introduce
the following notion, tailored for combining MAB and hill climbing.

Definition 11 (hill-climbing gain). In Algorithm 4, in Line 5, the reward R(ϕi) of the
arm ϕi (where i ∈ {1, 2}) is defined by

R(ϕi) =

⎧
⎨

⎩

max-rb(i, k − 1) − last-rb(i, k − 1)
max-rb(i, k − 1)

if ϕi has been played before

0 otherwise

Here max-rb(i, k − 1) :=max{rbl | l ∈ [1, k − 1], il = i} (i.e. the greatest rbl so far,
in those attempts where ϕi was played), and last-rb(i, k − 1) :=rbllast with llast being
the greatest l ∈ [1, k − 1] such that il = i (i.e. the last rbl for ϕi).

Since we try to minimize the robustness values rbl through falsification attempts, we
can expect that rbl for a fixed arm ϕi decreases over time. (In the case of the hill-
climbing algorithm CMA-ES that we use, this is in fact guaranteed). Therefore the value

412 Z. Zhang et al.

max-rb(i, k − 1) in the definition of R(ϕi) is the first observed robustness value. The
numerator max-rb(i, k − 1) − last-rb(i, k − 1) then represents how much robustness
we have reduced so far by hill climbing—hence the name “hill-climbing gain.” The
denominator max-rb(i, k − 1) is there for normalization.

In Algorithm 4, the value rbk is given by the robustness �M(uk),�Iϕik�. There-
fore the MAB choice in Line 5 essentially picks ik for which hill climbing yields greater
effect (but also taking exploration into account—see Sect. 3.2).

In Line 6 we conduct hill-climbing optimization—see Sect. 2.2. The function
HILL-CLIMB learns from the previous attempts ul1 , . . . ,ulm regarding the same for-
mula ϕik , and their resulting robustness values rbl1 , . . . , rblm . Then it suggests the next
input signal uk that is likely to minimize the (unknown) function that underlies the
correspondences

[
ulj �→ rblj

]
j∈[1,m]

.
Lines 6–8 read as follows: the hill-climbing algorithm suggests a single input uk,

which is then selected or rejected (Line 8) based on the robustness value it yields
(Line 7). We note that this is a simplified picture: in our implementation that uses CMA-
ES (it is an evolutionary algorithm), we maintain a population of some ten particles, and
each of them is moved multiple times (our choice is three times) before the best one is
chosen as uk.

3.4 Our MAB-Guided Algorithm II: Disjunctive Safety Properties

The other main algorithm of ours aims to falsify a disjunctive safety property ϕ ≡
�I(ϕ1 ∨ ϕ2). We believe this problem setting is even more important than the con-
junctive case, since it encompasses conditional safety properties (i.e. of the form
�I(ϕ1 → ϕ2)). See Sect. 3.1 for discussions.

In the disjunctive setting, the challenge is that falsification of�Iϕi (with i ∈ {1, 2})
does not necessarily imply falsification of �I(ϕ1 ∨ ϕ2). This is unlike the conjunctive
setting. Therefore we need some adaptation of Algorithm 4, so that the two interleaved
sequences of falsification attempts for ϕ1 and ϕ2 are not totally independent of each
other. Our solution consists of restricting time instants to those where ϕ2 is false, in a
falsification attempt for ϕ1 (and vice versa), in the way described in Definition 8.

Algorithm 5 shows our MAB-guided algorithm for falsifying a disjunctive safety
property �I(ϕ1 ∨ ϕ2). The only visible difference is that Line 7 in Algorithm 4 is
replaced with Line 7’. The new Line 7’ measures the quality of the suggested input
signal uk in the way restricted to the region Sk in which the other formula is already
falsified. Lemma 9 guarantees that, if rbk < 0, then indeed the input signal uk falsifies
the original specification �I(ϕ1 ∨ ϕ2).

The assumption that makes Algorithm 5 sensible is that, although it can be hard
to find a time instant at which both ϕ1 and ϕ2 are false (this is required in falsifying
�I(ϕ1 ∨ ϕ2)), falsifying ϕ1 (or ϕ2) individually is not hard. Without this assumption,
the region Sk in Line 7’ would be empty most of the time. Our experiments in Sect. 4
demonstrate that this assumption is valid in many problem instances, and that Algo-
rithm 5 is effective.

Multi-armed Bandits for Boolean Connectives in Hybrid System Falsification 413

4 Experimental Evaluation

We name MAB-UCB and MAB-ε-greedy the two versions of MAB algorithm using
strategies ε-Greedy (see Algorithm 2) and UCB1 (see Algorithm 3). We compared the
proposed approach (both versions MAB-UCB and MAB-ε-greedy) with a state-of-the-
art falsification framework, namely Breach [11]. Breach encapsulates several hill-
climbing optimization algorithms, including CMA-ES (covariance matrix adaptation
evolution strategy) [6], SA (simulated annealing), GNM (global Nelder-Mead) [30],
etc. According to our experience, CMA-ES outperforms other hill-climbing solvers in
Breach, so the experiments for both Breach and our approach rely on the CMA-ES
solver.

Experiments have been executed using Breach 1.2.13 on an Amazon EC2 c4.large
instance, 2.9GHz Intel Xeon E5-2666, 2 virtual CPU cores, 4GB RAM.

Benchmarks. We selected three benchmark models from the literature, each one hav-
ing different specifications. The first one is the Automatic Transmission (AT) model
[16,24]. It has two input signals, throttle ∈ [0, 100] and brake ∈ [0, 325], and com-
putes the car’s speed , engine rotation in rounds per minute rpm , and the automatically
selected gear . The specifications concern the relation between the three output signals
to check whether the car is subject to some unexpected or unsafe behaviors. The second
benchmark is the Abstract Fuel Control (AFC) model [16,25]. It takes two input sig-
nals, pedal angle ∈ [8.8, 90] and engine speed ∈ [900, 1100], and outputs the critical
signal air-fuel ratio (AF), which influences fuel efficiency and car performance. The
value is expected to be close to a reference value AFref ;mu ≡ |AF − AFref |/AFref
is the deviation of AF from AFref . The specifications check whether this property
holds under both normal mode and power enrichment mode. The third benchmark is a
model of a magnetic levitation system with a NARMA-L2 neurocontroller (NN) [7,16].
It takes one input signal, Ref ∈ [1, 3], which is the reference for the output signal Pos ,
the position of a magnet suspended above an electromagnet. The specifications say that
the position should approach the reference signal in a few seconds when these two are
not close.

Table 2. Benchmark sets Bbench and Sbench

414 Z. Zhang et al.

We built the benchmark set Bbench, as shown in Table 2a that reports the name of
the model and its specifications (ID and formula). In total, we found 11 specifications.
In order to increase the benchmark set and obtain specifications of different complexity,
we artificially modified a constant (turned into a parameter named τ if it is contained
in a time interval, named ρ otherwise) of the specification: for each specification S, we
generated m different versions, named as Si with i ∈ {1, . . . , m}; the complexity of
the specification (in terms of difficulty to falsify it) increases with increasing i.2 In total,
we produced 60 specifications. Column parameter in the table shows which concrete
values we used for the parameters ρ and τ . Note that all the specifications but one are
disjunctive safety properties (i.e., �I(ϕ1 ∨ ϕ2)), as they are the most difficult case and
they are the main target of our approach; we just add AT5 as example of conjunctive
safety property (i.e., �I(ϕ1 ∧ ϕ2)).

Our approach has been proposed with the aim of tackling the scale problem. There-
fore, to better show how our approach mitigates this problem, we generated a second
benchmark set Sbench as follows. We selected 15 specifications from Bbench (with
concrete values for the parameters) and, for each specification S, we changed the cor-
responding Simulink model by multiplying one of its outputs by a factor 10k, with
k ∈ {−2, 0, 1, 2, 3} (note that we also include the original one using scale factor 100);
the specification has been modified accordingly, by multiplying with the scale factor the
constants that are compared with the scaled output. We name a specification S scaled
with factor 10k as Sk. Table 2b reports the IDs of the original specifications, the output
that has been scaled, and the used scaled factors; in total, the benchmark set Sbench
contains 60 specifications.

Experiment. In our context, an experiment consists in the execution of an approach
A (either Breach, MAB-ε-greedy, or MAB-UCB) over a specification S for 30 tri-
als, using different initial seeds. For each experiment, we record the success SR as the
number of trials in which a falsifying input was found, and average execution time of
the trials. Complete experimental results are reported in Appendix A in the extended
version [37]3. We report aggregated results in Table 3.

For benchmark set Bbench, it reports aggregated results for each group of spec-
ifications obtained from S (i.e., all the different versions Si obtained by changing the
value of the parameter); for benchmark set Sbench, instead, results are aggregated
for each scaled specification Sk (considering the versions Sk

i obtained by changing the
parameter value). We report minimum, maximum and average number of successes SR,
and time in seconds. For MAB-ε-greedy and MAB-UCB, both for SR and time, we
also report the average percentage difference4 (Δ) w.r.t. to the corresponding value of
Breach.

Comparison. In the following, we compare two approaches A1, A2 ∈ {Breach,
MAB-ε-greedy, MAB-UCB} by comparing the number of their successes SR and
average execution time using the non-parametric Wilcoxon signed-rank test with 5%

2 Note that we performed this classification based on the falsification results of Breach.
3 The code, models, and specifications are available online at https://github.com/
ERATOMMSD/FalStar-MAB.

4 Δ = ((m − b) ∗ 100)
/
(0.5 ∗ (m + b))wherem is the result of MAB and b the one of Breach.

https://github.com/ERATOMMSD/FalStar-MAB
https://github.com/ERATOMMSD/FalStar-MAB

Multi-armed Bandits for Boolean Connectives in Hybrid System Falsification 415

Table 3. Aggregated results for benchmark sets Bbench and Sbench (SR: # successes out 30
trials. Time in secs. Δ: percentage difference w.r.t. Breach). Outperformance cases are high-
lighted, indicated by positive Δ of SR, and negative Δ of time.

level of significance5 [35]; the null hypothesis is that there is no difference in applying
A1 A2 in terms of the compared measure (SR or time).

4.1 Evaluation

We evaluate the proposed approach with some research questions.

RQ1Which is the best MAB algorithm for our purpose?
In Sect. 3.2, we described that the proposed approach can be executed using two

different strategies for choosing the arm in theMAB problem, namely MAB-ε-greedy
and MAB-UCB. We here assess which one is better in terms of SR and time. From the
results in Table 3, it seems that MAB-UCB provides slightly better performance in terms
of SR; this has been confirmed by the Wilcoxon test applied over all the experiments
(i.e., on the non-aggregated data reported in Appendix A in the extended version [37]):
the null hypothesis that using anyone of the two strategies has no impact on SR is
rejected with p-value equal to 0.005089, and the alternative hypothesis that SR is better
is accepted with p-value = 0.9975; in a similar way, the null hypothesis that there is
no difference in terms of time is rejected with p-value equal to 3.495e−06, and the
alternative hypothesis that is MAB-UCB is faster is accepted with p-value = 1. Therefore,
in the following RQs, we compare Breach with only the MAB-UCB version of our
approach.

5 We checked that the distributions are not normal with the non-parametric Shapiro-Wilk test.

416 Z. Zhang et al.

RQ2 Does the proposed approach effectively solve the scale problem?
We here assess if our approach is effective in tackling the scale problem. Table 4

reports the complete experimental results over Sbench for Breach and MAB-UCB;
for each specification S, all its scaled versions are reported in increasing order of the
scaling factor. We observe that changing the scaling factor affects (sometimes greatly)
the number of successes SR of Breach; for example, for AT55 and AT57 it goes from
30 to 0. For MAB-UCB, instead, SR is similar across the scaled versions of each spec-
ification: this shows that the approach is robust w.r.t. to the scale problem as the “hill-
climbing gain” reward in Definition 11 eliminates the impact of scaling and UCB1 algo-
rithm balances the exploration and exploitation of two sub-formulas. The observation is
confirmed by the Wilcoxon test over SR: the null hypothesis is rejected with p-value =
1.808e−09, and the alternative hypothesis accepted with p-value = 1. Instead, the null
hypothesis that there is no difference in terms of time cannot be rejected with p-value =
0.3294.

RQ3 How does the proposed process behave with not scaled benchmarks?
In RQ2, we checked whether the proposed approach is able to tackle the scale

problem for which it has been designed. Here, instead, we are interested in inves-
tigating how it behaves on specifications that have not been artificially scaled
(i.e., those in Bbench). From Table 3 (upper part), we observe that MAB-UCB
is always better than Breach both in terms of SR and time, which is shown
by the highlighted cases. This is confirmed by Wilcoxon test over SR and time:
null hypotheses are rejected with p-values equal to, respectively, 6.02e−08 and
1.41e−08, and the alternative hypotheses that MAB-UCB is better are both accepted

Table 4. Experimental results – Sbench (SR: # successes out of 30 trials. Time in secs)

Multi-armed Bandits for Boolean Connectives in Hybrid System Falsification 417

with p-value = 1. This means that the proposed approach can also handle specifica-
tions that do not suffer from the scale problem, and so it can be used with any kind of
specification.

RQ4 Is the proposed approach more effective than an approach based on rescaling?
A naı̈ve solution to the scale problem could be to rescale the signals used in specifi-

cation at the same scale. Thanks to the results of RQ2, we can compare to this possible
baseline approach, using the scaled benchmark set Sbench. For example, AT5 suffers
from the scale problem as speed is one order of magnitude less than rpm . However,
from Table 3, we observe that the scaling that would be done by the baseline approach
(i.e., running Breach over AT51) is not effective, as SR is 0.4/30, that is much lower
than the original SR 14.1/30 of the unscaled approach using Breach. Our approach,
instead, raises SR to 28.4/30 and to 27.6/30 using the two proposed versions. By mon-
itoring Breach execution, we notice that the naı̈ve approach fails because it tries to
falsify rpm < 4780, which, however, is not falsifiable; our approach, instead, under-
stands that it must try to falsify speed < ρ. More details are given in the extended
version [37].

5 Conclusion and Future Work

In this paper, we propose a solution to the scale problem that affects falsification of spec-
ifications containing Boolean connectives. The approach combines multi-armed bandit
algorithms with hill climbing-guided falsification. Experiments show that the approach
is robust under the change of scales, and it outperforms a state-of-the-art falsification
tool. The approach currently handles binary specifications. As future work, we plan to
generalize it to complex specifications having more than two Boolean connectives.

References

1. Adimoolam, A., Dang, T., Donzé, A., Kapinski, J., Jin, X.: Classification and coverage-based
falsification for embedded control systems. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017.
LNCS, vol. 10426, pp. 483–503. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
63387-9 24

2. Akazaki, T., Hasuo, I.: Time robustness in MTL and expressivity in hybrid system falsifi-
cation. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9207, pp. 356–374.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21668-3 21

3. Akazaki, T., Kumazawa, Y., Hasuo, I.: Causality-aided falsification. In: Proceedings First
Workshop on Formal Verification of Autonomous Vehicles, FVAV@iFM 2017. EPTCS,
Turin, Italy, 19th September 2017, vol. 257, pp. 3–18 (2017)

4. Akazaki, T., Liu, S., Yamagata, Y., Duan, Y., Hao, J.: Falsification of cyber-physical systems
using deep reinforcement learning. In: Havelund, K., Peleska, J., Roscoe, B., de Vink, E.
(eds.) FM 2018. LNCS, vol. 10951, pp. 456–465. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-95582-7 27

5. Annpureddy, Y., Liu, C., Fainekos, G., Sankaranarayanan, S.: S-TALIRO: a tool for temporal
logic falsification for hybrid systems. In: Abdulla, P.A., Leino, K.R.M. (eds.) TACAS 2011.
LNCS, vol. 6605, pp. 254–257. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-19835-9 21

https://doi.org/10.1007/978-3-319-63387-9_24
https://doi.org/10.1007/978-3-319-63387-9_24
https://doi.org/10.1007/978-3-319-21668-3_21
https://doi.org/10.1007/978-3-319-95582-7_27
https://doi.org/10.1007/978-3-319-95582-7_27
https://doi.org/10.1007/978-3-642-19835-9_21
https://doi.org/10.1007/978-3-642-19835-9_21

418 Z. Zhang et al.

6. Auger, A., Hansen, N.: A restart CMA evolution strategy with increasing population size.
In: Proceedings of the IEEE Congress on Evolutionary Computation, CEC 2005, pp. 1769–
1776. IEEE (2005)

7. Beale, M.H., Hagan, M.T., Demuth, H.B.: Neural Network ToolboxTM User’s Guide. The
Mathworks Inc., Natick (1992)

8. Chen, X., Ábrahám, E., Sankaranarayanan, S.: Flow*: an analyzer for non-linear hybrid sys-
tems. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 258–263. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8 18

9. Deshmukh, J., Jin, X., Kapinski, J., Maler, O.: Stochastic local search for falsification of
hybrid systems. In: Finkbeiner, B., Pu, G., Zhang, L. (eds.) ATVA 2015. LNCS, vol. 9364,
pp. 500–517. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24953-7 35

10. Dokhanchi, A., Yaghoubi, S., Hoxha, B., Fainekos, G.E.: Vacuity aware falsification for MTL
request-response specifications. In: 13th IEEE Conference on Automation Science and Engi-
neering, CASE 2017, Xi’an, China, 20–23 August 2017, pp. 1332–1337. IEEE (2017)

11. Donzé, A.: Breach, a toolbox for verification and parameter synthesis of hybrid systems. In:
Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 167–170. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-14295-6 17

12. Donzé, A., Maler, O.: Robust satisfaction of temporal logic over real-valued signals. In: Chat-
terjee, K., Henzinger, T.A. (eds.) FORMATS 2010. LNCS, vol. 6246, pp. 92–106. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-15297-9 9

13. Dreossi, T., Dang, T., Donzé, A., Kapinski, J., Jin, X., Deshmukh, J.V.: Efficient guiding
strategies for testing of temporal properties of hybrid systems. In: Havelund, K., Holzmann,
G., Joshi, R. (eds.) NFM 2015. LNCS, vol. 9058, pp. 127–142. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-17524-9 10

14. Dreossi, T., Dang, T., Piazza, C.: Parallelotope bundles for polynomial reachability. In: Pro-
ceedings of the 19th International Conference on Hybrid Systems: Computation and Control,
HSCC 2016, pp. 297–306. ACM, New York (2016)

15. Dreossi, T., Donzé, A., Seshia, S.A.: Compositional falsification of cyber-physical systems
with machine learning components. In: Barrett, C., Davies, M., Kahsai, T. (eds.) NFM 2017.
LNCS, vol. 10227, pp. 357–372. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
57288-8 26

16. Ernst, G., et al.: ARCH-COMP 2019 category report: Falsification. In: Frehse, G., Althoff,
M. (eds.) 6th International Workshop on Applied Verification of Continuous and Hybrid
Systems, ARCH19. EPiC Series in Computing, vol. 61 pp. 129–140. EasyChair (2019)

17. Fainekos, G.E., Pappas, G.J.: Robustness of temporal logic specifications for continuous-
time signals. Theor. Comput. Sci. 410(42), 4262–4291 (2009)

18. Fan, C., Qi, B., Mitra, S., Viswanathan, M., Duggirala, P.S.: Automatic reachability analysis
for nonlinear hybrid models with C2E2. In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016.
LNCS, vol. 9779, pp. 531–538. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
41528-4 29

19. Ferrère, T., Nickovic, D., Donzé, A., Ito, H., Kapinski, J.: Interface-aware signal temporal
logic. In: Ozay, N., Prabhakar, P. (eds.) Proceedings of the 22nd ACM International Con-
ference on Hybrid Systems: Computation and Control, HSCC 2019, Montreal, QC, Canada,
16–18 April 2019, pp. 57–66. ACM (2019)

20. Frehse, G., et al.: SpaceEx: scalable verification of hybrid systems. In: Gopalakrishnan, G.,
Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 379–395. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-22110-1 30

21. Fu, Z., Su, Z.: XSat: a fast floating-point satisfiability solver. In: Chaudhuri, S., Farzan, A.
(eds.) CAV 2016, Part II. LNCS, vol. 9780, pp. 187–209. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-41540-6 11

https://doi.org/10.1007/978-3-642-39799-8_18
https://doi.org/10.1007/978-3-319-24953-7_35
https://doi.org/10.1007/978-3-642-14295-6_17
https://doi.org/10.1007/978-3-642-15297-9_9
https://doi.org/10.1007/978-3-319-17524-9_10
https://doi.org/10.1007/978-3-319-57288-8_26
https://doi.org/10.1007/978-3-319-57288-8_26
https://doi.org/10.1007/978-3-319-41528-4_29
https://doi.org/10.1007/978-3-319-41528-4_29
https://doi.org/10.1007/978-3-642-22110-1_30
https://doi.org/10.1007/978-3-319-41540-6_11
https://doi.org/10.1007/978-3-319-41540-6_11

Multi-armed Bandits for Boolean Connectives in Hybrid System Falsification 419

22. Gao, S., Avigad, J., Clarke, E.M.: δ-complete decision procedures for satisfiability over the
reals. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS (LNAI), vol. 7364,
pp. 286–300. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31365-3 23

23. Hasuo, I., Suenaga, K.: Exercises in nonstandard static analysis of hybrid systems. In: Mad-
husudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 462–478. Springer, Heidel-
berg (2012). https://doi.org/10.1007/978-3-642-31424-7 34

24. Hoxha, B., Abbas, H., Fainekos, G.E.: Benchmarks for temporal logic requirements for auto-
motive systems. In: Frehse, G., Althoff, M. (eds.) 1st and 2nd International Workshop on
Applied veRification for Continuous and Hybrid Systems, ARCH@CPSWeek 2014, Berlin,
Germany, 14 April 2014/ARCH@CPSWeek 2015, Seattle, USA, 13 April 2015. EPiC Series
in Computing, vol. 34, pp. 25–30. EasyChair (2014)

25. Jin, X., Deshmukh, J.V., Kapinski, J., Ueda, K., Butts, K.: Powertrain control verification
benchmark. In: Proceedings of the 17th International Conference on Hybrid Systems: Com-
putation and Control, HSCC 2014, pp. 253–262. ACM, New York (2014)

26. Kapinski, J., Deshmukh, J.V., Jin, X., Ito, H., Butts, K.: Simulation-based approaches for ver-
ification of embedded control systems: An overview of traditional and advanced modeling,
testing, and verification techniques. IEEE Control. Syst. 36(6), 45–64 (2016)

27. Kato, K., Ishikawa, F., Honiden, S.: Falsification of cyber-physical systems with reinforce-
ment learning. In: 3rd Workshop on Monitoring and Testing of Cyber-Physical Systems,
MT@CPSWeek 2018, Porto, Portugal, 10 April 2018, pp. 5–6. IEEE (2018)

28. Kuřátko, J., Ratschan, S.: Combined global and local search for the falsification of hybrid
systems. In: Legay, A., Bozga, M. (eds.) FORMATS 2014. LNCS, vol. 8711, pp. 146–160.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10512-3 11

29. Liebrenz, T., Herber, P., Glesner, S.: Deductive verification of hybrid control systems mod-
eled in simulink with KeYmaera X. In: Sun, J., Sun, M. (eds.) ICFEM 2018. LNCS, vol.
11232, pp. 89–105. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-02450-5 6

30. Luersen, M.A., Le Riche, R.: Globalized Nelder-Mead method for engineering optimization.
Comput. Struct. 82(23), 2251–2260 (2004)

31. Nguyen, L.V., Kapinski, J., Jin, X., Deshmukh, J.V., Butts, K., Johnson, T.T.: Abnormal data
classification using time-frequency temporal logic. In: Proceedings of the 20th International
Conference on Hybrid Systems: Computation and Control, HSCC 2017, pp. 237–242. ACM,
New York (2017)

32. Platzer, A.: Logical Foundations of Cyber-Physical Systems. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-63588-0

33. Seshia, S.A., Rakhlin, A.: Quantitative analysis of systems using game-theoretic learning.
ACM Trans. Embed. Comput. Syst. 11(S2), 55:1–55:27 (2012)

34. Silvetti, S., Policriti, A., Bortolussi, L.: An active learning approach to the falsification of
black box cyber-physical systems. In: Polikarpova, N., Schneider, S. (eds.) IFM 2017. LNCS,
vol. 10510, pp. 3–17. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66845-1 1

35. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A.: Experimentation
in Software Engineering. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-
29044-2

36. Zhang, Z., Ernst, G., Sedwards, S., Arcaini, P., Hasuo, I.: Two-layered falsification of hybrid
systems guided by monte carlo tree search. IEEE Trans. Comput. Aided Des. Integr. Circuits
Syst. 37(11), 2894–2905 (2018)

37. Zhang, Z., Hasuo, I., Arcaini, P.: Multi-Armed Bandits for Boolean Connectives in Hybrid
System Falsification (Extended Version). CoRR, arXiv:1905.07549 (2019)

38. Zutshi, A., Deshmukh, J.V., Sankaranarayanan, S., Kapinski, J.: Multiple shooting, CEGAR-
based falsification for hybrid systems. In: 2014 International Conference on Embedded Soft-
ware, EMSOFT 2014, New Delhi, India, 12–17 October 2014, pp. 5:1–5:10. ACM (2014)

https://doi.org/10.1007/978-3-642-31365-3_23
https://doi.org/10.1007/978-3-642-31424-7_34
https://doi.org/10.1007/978-3-319-10512-3_11
https://doi.org/10.1007/978-3-030-02450-5_6
https://doi.org/10.1007/978-3-319-63588-0
https://doi.org/10.1007/978-3-319-63588-0
https://doi.org/10.1007/978-3-319-66845-1_1
https://doi.org/10.1007/978-3-642-29044-2
https://doi.org/10.1007/978-3-642-29044-2
http://arxiv.org/abs/1905.07549

420 Z. Zhang et al.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropri-
ate credit to the original author(s) and the source, provide a link to the Creative Commons license
and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

StreamLAB: Stream-based Monitoring
of Cyber-Physical Systems

Peter Faymonville, Bernd Finkbeiner,
Malte Schledjewski, Maximilian Schwenger(B),

Marvin Stenger, Leander Tentrup,
and Hazem Torfah

Reactive Systems Group, Saarland University,
Saarbrücken, Germany

{faymonville,finkbeiner,schledjewski,schwenger,
stenger,tentrup,torfah}@react.uni-saarland.de

Abstract. With ever increasing autonomy of cyber-physical systems,
monitoring becomes an integral part for ensuring the safety of the sys-
tem at runtime. StreamLAB is a monitoring framework with high degree
of expressibility and strong correctness guarantees. Specifications are
written in RTLola, a stream-based specification language with formal
semantics. StreamLAB provides an extensive analysis of the specifica-
tion, including the computation of memory consumption and run-time
guarantees. We demonstrate the applicability of StreamLAB on typical
monitoring tasks for cyber-physical systems, such as sensor validation
and system health checks.

1 Introduction

In stream-based monitoring, we translate input streams containing data col-
lected at runtime, such as sensor readings, into output streams containing aggre-
gate statistics, such as an average value, a counter, or the integral of a signal.
Trigger specifications define thresholds and other logical conditions on the val-
ues on these output streams, and raise an alarm or execute some other prede-
fined action if the condition becomes true. The advantage of this setup is great
expressiveness and easy-to-reuse, compositional specifications. Existing stream-
based languages like Lola [9,12] are based on the synchronous programming
paradigm, where all streams are synchronized via a global clock. In each step,
the new values of all output streams are computed in terms of the values of
the other streams at a previous time step or. This paradigm provides a sim-
ple and natural evaluation model that fits well with typical implementations on

This work was partially supported by the German Research Foundation (DFG) as part
of the Collaborative Research Center “Foundations of Perspicuous Software Systems”
(TRR 248, 389792660), and by the European Research Council (ERC) Grant OSARES
(No. 683300).

c© The Author(s) 2019
I. Dillig and S. Tasiran (Eds.): CAV 2019, LNCS 11561, pp. 421–431, 2019.
https://doi.org/10.1007/978-3-030-25540-4_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-25540-4_24&domain=pdf
https://doi.org/10.1007/978-3-030-25540-4_24

422 P. Faymonville et al.

synchronous hardware. In real-time applications, however, the assumption that
all data arrives synchronously is often simply not true. Consider, for example,
an autonomous drone with several sensors, such as a GPS module, an inertia
measurement unit, and a laser distance meter. While a synchronous arrival of
all measured value would be desirable, some sensors’ measurement frequency
is higher than others. Moreover, the sensors do not necessarily operate on a
common clock, so their readings drift apart over time.

In this paper we present the monitoring framework StreamLAB. We lift the
synchronicity assumption to allow for monitoring asynchronous systems. Basis
for the framework is RTLola, an extension of the steam-based runtime verifica-
tion language Lola. RTLola introduces two new key concepts into Lola:

1. Variable-rate input streams: we consider input streams that extend at a-priori
unknown rates. The only assumption is that each new event has a real-valued
timestamp and that the events arrive in-order.

2. Sliding windows: A sliding window aggregates data over a real-time window
given in units of time. For example, we might integrate the readings of an
airspeed indicator.

As with any semantic extension, the challenge in the design of RTLola is to
maintain the efficiency of the monitoring. Obviously, not all RTLola specifica-
tions can be monitored with constant memory since the rates of the input streams
are unknown, an arbitrary number of events may occur in the span of a fixed
real-time unit. Thus, for aggregations such as the mean requiring to store the
whole sequence of value, no amount of constant memory will always suffice. We
can, nevertheless, again identify an efficiently monitorable fragment that covers
many specifications of practical interest. For the space-efficient aggregation over
real-time sliding windows, we partition the real-time axis into equally-sized inter-
vals. The size of the intervals is dictated by the rate of the output streams. For
certain common types of aggregations, such as the sum or the number of entries,
the values within each interval can be pre-aggregated and then only stored in this
summarized form. In a static analysis of the specification, we identify parts of the
specification with unbounded memory consumption, and compute bounds for all
other parts of the specification. In this way, we can determine early, whether a
particular specification can be executed on a system with limited memory.

Related Work. There is a rich body of work on monitoring real-time proper-
ties. Many monitoring approaches are based on real-time variants of temporal
logics [3,11,16–18,24]. Maler and Nickovic present a monitoring algorithm for
properties written in signal temporal logic (STL) by reducing STL formulas via
a boolean abstraction to formulas in the real-time logic MITL [21]. Building
on these ideas, Donze et al. present an algorithm for the monitoring of STL
properties over continuous signals [10]. The algorithm computes the robustness
degree in which a piecewise-continuous signal satisfies or violates an STL for-
mula. Towards more practical approaches, Basin et al. extend metric logics with
parameterization [8]. A monitoring algorithm for the extension is implemented
in the tool MonPoly [5]. MonPoly was introduced as a tool for monitoring usage-
control policies. Another extension to metric dynamic logic was implemented in

StreamLAB: Monitoring Cyber-Physical Systems 423

Inputs Sliding
Windows

Outputs
+

Triggers
s1

s2

s3

Ctrl

Fig. 1. Illustration of the decoupled input and output using aggregations.

the tool Aerial [7]. However, most monitors generated from temporal logics are
limited to Boolean verdicts.

StreamLAB uses the stream-based language RTLola as its core specification
language. RTLola builds upon Lola [9,12], which is a stream-based language
originally developed for monitoring synchronous hardware circuits, by adding the
concepts discussed above. Stream-based monitoring languages are significantly
more expressive than temporal logics. Other prominent stream-based monitoring
approaches are the Copilot framework [23] and the tool BeepBeep 3 [15]. Copilot
is a dataflow language based on several declarative stream processing languages
[9,14]. From a specification in Copilot, constant space and constant time C
programs implementing embedded monitors are generated. The BeepBeep 3 tool
uses an SQL-like language that is defined over streams of events. In addition to
stream-processing, it contains operators such as slicing, where inputs can be
separated into several different traces, and windowing where aggregations over a
sliding window can be computed. Unlike RTLola, BeepBeep and Copilot assume
a synchronous computation model, where all events arrive at a fixed rate. Two
asynchronous real-time monitoring approaches are TeSSLa [19] and Striver [13].
TeSSLa allows for monitoring piece-wise constant signals where streams can emit
events at different speeds with arbitrary latencies. Neither language provides
the language feature of sliding windows and the definition of fixed-rate output
streams. The efficient evaluation of aggregations on sliding windows [20] has
previously been studied in the context of temporal logic [4]. Basin et al. present
an algorithm for combining the elements of subsequences of a sliding window
with an associative operator, which reuses the results of the subsequences in the
evaluation of the next window [6].

2 Real-Time Lola

RTLola extends the stream-based specification languages Lola [12] with real-time
features. In the stream-based processing paradigm, sensor readings are viewed
as input streams to a stream processing engine that computes outputs in form
of streams on top of the values of the input streams. For example, the RTLola
specification
input altitude : Float32

output tooLow := altitude < 200.0

424 P. Faymonville et al.

checks whether a drone flies with an altitude less than 200 feet. For each reading
of the velocity sensor, a new value for the output stream tooLow is computed.
Streams marked with the “trigger”-keyword alert the user when the value of
the trigger is true. In the following example, the user is warned when the drone
flies below the allowed altitude.
trigger tooLow "flying below minimum altitude"

Output streams in RTLola are computed from values of the input streams, other
output streams and their own past values. If we want to count the number of
times the drone dives below 200 feet we can specify the stream
output count := (if tooLow then 1 else 0)

+ count.offset(by:-1).defaults(to:0)

Here, the stream count computes its new values by increasing its latest value by
1 in case the drone currently flies below the permitted altitude. The expres-
sion count.offset(by:-1) represents the last value of the stream. We call
such expressions “lookup expressions”. The default operator e.defaults(to:0)
returns the value 0 in case the value of e is not defined. This can happen when
a stream is evaluated the first time and looks up its last value.

In RTLola, we do not impose any assumption on the arrival frequency of
input streams. Each stream can produce new values individually and at arbi-
trary points in time. This can lead to problems when a burst of new input values
occur in a short amount of time. Subsequently, the monitor needs to evaluate
all output streams, exerting a lot of pressure on the system. To prevent that,
RTLola distinguishes between two kinds of outputs. Event-based outputs are
computed whenever new input values arrive and should thus only contain inex-
pensive operations. All streams discussed above where event-based. In contrast
to that, there are periodic outputs such as the following:
output freqDev @5Hz := altitude.aggregate(over : 200ms ,

using: count) < 5

Here, freqDev will be evaluated every 200ms as indicated by the “@ 5 Hz”
label, independently of arriving input values. The stream freqDev does not access
the event-based input altitude directly, but uses a sliding window expression to
count the number of times a new value for altitude occurred within the last
200ms. The value of freqDev represents the number of measurements the monitor
received from the altimeter. Comparing this value against the expected number
of readings allows for detecting deviations and thus a potentially damaged sensor.

Sliding windows allow for decoupling event-based and periodic streams, as
illustrated in Fig. 1. Since the specifier has no control over the frequency of event-
based streams, these streams should be quickly evaluatable. More expensive
operations, such as sliding windows, may only be used in periodic streams to
increase the monitor’s robustness.

StreamLAB: Monitoring Cyber-Physical Systems 425

2.1 Examples

In the following, we will present several interesting properties showcasing
RTLola’s expressivity. The specifications are simplified for illustration and thus
not immediately applicable to the real-world.

Sensor Validation. When a sensor starts to deteriorate, it can misbehave and
drop single measurements. To verify that a GPS sensor produces values at its
specified frequency, in this example 10Hz, we count the number of sensor values
in a continuous window and compare it against the expected amount of events
in this time frame.
input lat: Float32 , lon : Float32

output gps_freq@10Hz :=

lat.aggregate(over: =1s, using: count).defaults(to:9)

trigger gps_freq < 9 "GPS sensor frequency < 9 Hz"

Assuming that we have another sensor measuring the true air speed, we
can check whether the measured data matches the GPS data using RTLola’s
computation primitives. For this, we first compute the difference in longitude
and latitude between the current and last measurement. The Euclidean distance
provides the length of the movement vector, which can be derived discretely by
dividing by the amount of time that has passed between two GPS measurements.
input velo : Float32

output δlon := lon - lon.offset(by:-1).defaults(to:lon)

output δlat := lat - lat.offset(by:-1).defaults(to:lat)

output gps_dist := sqrt(δlon * δlon + δlat * δlat)
output gps_velo := gps_dist

/ (time - time.offset(by:-1).defaults(to:0.0))

trigger abs(gps_velo - velo) > 0.1 "Deviating velocity"

When the pathfinding algorithm of the mission planner takes longer than
expected, the system remains in a state without target location and thus hovers
in place. Such a hover period can be detected by computing the covered distance
in the last seconds. For this, we integrate the assumed velocity. We also exclude
a strong headwind as a culprit for the low change in position.
input wnd_dir: Float32 , wnd_spd : Float32

output dir := arctan(lat/lon)

output headwind := abs(wnd_dir - dir) < 0.2

∧ wnd_spd > 10.0

output hovering @ 1Hz := velo.aggregate(over: 5s, using:
∫
)

.defaults(to:0.5) < 0.5 ∧ ¬headwind.hold().defaults(to:⊥)

trigger hovering "Long hover phase"

426 P. Faymonville et al.

3 Performance Guarantees via Static Analysis

3.1 Type System

RTLola is a strongly-typed specification language. Every expression has two
orthogonal types: a value type and a stream type. The value type is Bool, String,
Int, or Float. It indicates the usual semantics of a value or expression and
the amount of memory required to store the value. The stream type indicates
when a value is evaluated. For periodic streams, the stream type defines the
frequency in which it is computed. Event-based streams do not have a pre-
determined period. The stream type for an event-based stream identifies a set
of input streams, indicating that the event-based stream is extended whenever
there is, synchronously, an event on all input streams. Event-based streams may
also depend on input streams not listed in the type; in such cases, the type
system requires an explicit use of the 0-order sample&hold operator.

The type system provides runtime guarantees for the monitor: Independently
of the arrival of input data, it is guaranteed that all required data is available
whenever a stream is extended. Either the data was just received as input event,
was computed as output stream value, or the specifier provided a default value.
The type system can, thus, eliminate classes of specification problems like unin-
tentionally accessing a slower stream from a faster stream. Whenever possible,
the tool provides automatic type inference.

3.2 Sliding Windows

We use two techniques to ensure that we only need a bounded amount of memory
to compute sliding windows. Meertens [22] classifies an aggregations γ : A∗ → B
as list homomorphism if it can be split into a mapping function m : A → T , an
associative reduction function r : T × T → T , a finalization function f : T → B,
and a neutral element ε ∈ T with ∀t ∈ T : r(t, ε) = r(ε, t) = t. For these
functions, rather than aggregating the whole list at once, one can apply m to
each element, reduce the intermediate results with an arbitrary precedence, and
finalize the result to get the same value. The second technique by Li et al. [20]
divides a time interval into panes of equal size. For each pane, we aggregate all
inputs and store only the fix amount of intermediate values. The type system
ensures that sliding windows only occur in periodic streams so by choosing the
pane size as the inverse of the frequency, paning does not change the result. In
StreamLAB there are several pre-defined aggregation functions such as count,
integration, summation, product, mini-, and maximization available.

3.3 Memory Analysis

StreamLAB computes the worst-case memory consumption of the specification.
For this, an annotated dependency graph (ADG) is constructed where each
stream s constitutes a node vs and whenever s accesses s′, there is an edge
from vs to vs′ . Edges are annotated according to the type of access: if s accesses

StreamLAB: Monitoring Cyber-Physical Systems 427

s′ discretely with offset n or with a sliding window aggregation of duration d
and aggregation function γ, then the edge e = (vs, vs′) is labeled with λ(e) = n
or λ(e) = (d, γ), respectively. Nodes of periodic streams are now annotated with
their periodicity, if stream s has period 200ms then the node is labeled with
π(vs) = 5Hz. Memory bounds for discrete-time offsets can be computed as for
Lola [9]. We extend this algorithm with new computational rules to determine
the memory bounds for real-time expressions. For each edge e = (v, v′) in the
ADG we can determine how many events of v′ must be stored for the computa-
tion of v using the rules in Fig. 2. Here, only γ is a list homomorphism. The strict
upper bound on required memory is now the sum of the memory requirement
of each individual stream. This, however, is only the amount of memory needed
for storing values and does not take book-keeping data structures and the inter-
nal representation of the specification into account. Assuming reasonably small
expressions (depth ≤ 64), this additional memory can be bounded with 1 kB per
stream plus a flat 10 kB for working memory.

π(v) π(v′) λ(e) = (d, γ) λ(e) = (d, γ∗)
var var unbounded zd
xHz var unbounded min(zd, xd)
var yHz yd min(zd, yd)
xHz yHz min(xd, yd) min(xd, yd)

Fig. 2. Computation of memory bound
over the dependency graph.

EM TM

Ack

Time Update

input

Working
Queue Eval

Fig. 3. Illustration of the data flow. The
EM manages input events, TM schedules
periodic tasks, and Eval manages the eval-
uation of streams.

4 Processing Engine

The processing engine consists of three components: The EventManager (EM)
reads events from an input such Standard In or a CSV file and translates string
values into the internal representation. The values are mapped to the correspond-
ing input streams in the specification. Using a multiple-sender-single-receiver
channel, the EM pushes the event on a working queue. The TimeManager (TM)
schedules the evaluation of periodic streams. The TM computes the hyper-period
of all streams and groups them by equal deadlines. Whenever a deadline is
due, the corresponding streams are pushed into the working queue using the
same channel as the EM. This ensures that event-based and periodic evaluation
cycles occur in the correct order even under high pressure. Lastly, the Evaluator
(Eval) manages the evaluation of streams and storage of computed values. The
Eval repeatedly pops items off the working queue and evaluates the respective
streams.

428 P. Faymonville et al.

When monitoring a system online, the TM uses the internal system clock for
scheduling tasks. When monitoring offline, however, this is no longer possible
because the point in time when a stream is due to be evaluated depends on
the input event. Thus, before the EM pushes an event on the working queue, it
transmits the latest timestamp to the TM. The TM then decides whether some
periodic streams need to be evaluated. If so, it effectively goes back in time
by pushing the respective task on the working queue before acknowledging the
TM. Only upon receiving the acknowledgement, the TM sends the event to the
working queue. Figure 3 illustrates the information flow between the components.

5 Experiments

StreamLAB1 is implemented in Rust. A major benefit of a Rust implementation
is the connection to LLVM, which allows a compilation to a large variety of
platforms. Moreover, the requirements to the runtime environment are as low as
for C programs. This allows StreamLAB to be widely applicable.

The specifications presented in Sect. 2.1 have been tested on traces generated
with the state-of-the-art flight simulator Ardupilot2. Each trace is the result
of a drone flying one or more round-trips over Saarland University and provides
sensor information for longitude and latitude, true air velocity, wind direction
and speed, as well as the number of available GPS satellites. The longest trace
consists of slightly less than 433,000 events. StreamLAB successfully detected
a variety of errors such as delayed sensor readings, GPS module failures, and
phases without significant movement. For an online runtime verification, the
monitor reads an event of the simulator’s output, processes the input data and
pauses until the next event is available. Whenever necessary, periodic streams
are evaluated. Online monitoring of a simulation did not allow us to exhaust the
capabilities of StreamLAB because the generation of events took significantly
longer than processing them. The offline monitoring function of StreamLAB
allows the user to specify a delay in which consecutive events are read from a
file. By gradually decreasing the delay between events until the pressure was
too high, we could determine a maximum input frequency of 647.2 kHz. When
disabling the delay and running the monitor at maximum speed, StreamLAB
processes a trace of length 432,961 in 0.67 s, so each event takes 1545 ns to
process while three threads utilized 146% of CPU. In terms of memory, the
maximum resident set size amounted to 16MB. This includes bookkeeping data
structures, the specification, evaluator code, and parts of the C standard library.
While the evaluation does not require any heap allocation after the setup phase,
the average stack size amounts to less than 1kB. The experiment was conducted
on 3.3GHz Intel Core i7 processor with 16GB2133MHz LPDDR3 RAM.

1 www.stream-lab.org.
2 ardupilot.org.

www.stream-lab.org
http://ardupilot.org

StreamLAB: Monitoring Cyber-Physical Systems 429

6 Outlook

The stream-based monitoring framework StreamLAB demonstrates the appli-
cability of stream monitoring for cyber-physical systems. Previous versions of
Lola have successfully been applied to networks and unmanned aircraft systems
in cooperation the with German Aerospace Center DLR [1,2,12]. StreamLAB
provides a modular, easy-to-understand specification language and design-time
feedback for specifiers. This helps to improve the development process for cyber-
physical systems. Coupled with the promising experimental results, this lays the
foundation for further applications of the framework on real-world systems.

References

1. Adolf, F.-M., Faymonville, P., Finkbeiner, B., Schirmer, S., Torens, C.: Stream run-
time monitoring on UAS. In: Lahiri, S., Reger, G. (eds.) RV 2017. LNCS, vol. 10548,
pp. 33–49. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67531-2 3

2. Adolf, F., Faymonville, P., Finkbeiner, B., Schirmer, S., Torens, C.: Stream runtime
monitoring on UAS. CoRR arXiv:abs/1804.04487 (2018). http://arxiv.org/abs/
1804.04487

3. Alur, R., Henzinger, T.A.: Real-time logics: complexity and expressiveness. In:
[1990] Proceedingsof the Fifth Annual IEEE Symposium on Logic in Computer
Science, pp. 390–401, June 1990. https://doi.org/10.1109/LICS.1990.113764

4. Basin, D., Bhatt, B.N., Traytel, D.: Almost event-rate independent monitoring
of metric temporal logic. In: Legay, A., Margaria, T. (eds.) TACAS 2017. LNCS,
vol. 10206, pp. 94–112. Springer, Heidelberg (2017). https://doi.org/10.1007/978-
3-662-54580-5 6

5. Basin, D., Harvan, M., Klaedtke, F., Zălinescu, E.: MONPOLY: monitoring usage-
control policies. In: Khurshid, S., Sen, K. (eds.) RV 2011. LNCS, vol. 7186, pp.
360–364. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29860-
8 27

6. Basin, D., Klaedtke, F., Zălinescu, E.: Greedily computing associative aggregations
on sliding windows. Inf. Process. Lett. 115(2), 186–192 (2015). https://doi.org/10.
1016/j.ipl.2014.09.009

7. Basin, D., Traytel, D., Krstić, S.: Aerial: almost event-rate independent algo-
rithms for monitoring metric regular properties (2017). https://www21.in.tum.de/
∼traytel/papers/rvcubes17-aerial tool/index.html

8. Basin, D.A., Klaedtke, F., Müller, S., Zalinescu, E.: Monitoring metric first-order
temporal properties. J. ACM 62(2), 15:1–15:45 (2015). https://doi.org/10.1145/
2699444

9. D’Angelo, B., et al.: Lola: Runtime monitoring of synchronous systems. In: TIME
2005, pp. 166–174. IEEE Computer Society Press, June 2005

10. Donzé, A., Ferrère, T., Maler, O.: Efficient robust monitoring for STL. In: Shary-
gina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 264–279. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8 19

11. Donzé, A., Maler, O.: Robust satisfaction of temporal logic over real-valued sig-
nals. In: Chatterjee, K., Henzinger, T.A. (eds.) FORMATS 2010. LNCS, vol.
6246, pp. 92–106. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-
15297-9 9. http://dl.acm.org/citation.cfm?id=1885174.1885183

https://doi.org/10.1007/978-3-319-67531-2_3
http://arxiv.org/abs/1804.04487
http://arxiv.org/abs/1804.04487
http://arxiv.org/abs/1804.04487
https://doi.org/10.1109/LICS.1990.113764
https://doi.org/10.1007/978-3-662-54580-5_6
https://doi.org/10.1007/978-3-662-54580-5_6
https://doi.org/10.1007/978-3-642-29860-8_27
https://doi.org/10.1007/978-3-642-29860-8_27
https://doi.org/10.1016/j.ipl.2014.09.009
https://doi.org/10.1016/j.ipl.2014.09.009
https://www21.in.tum.de/~traytel/papers/rvcubes17-aerial_tool/index.html
https://www21.in.tum.de/~traytel/papers/rvcubes17-aerial_tool/index.html
https://doi.org/10.1145/2699444
https://doi.org/10.1145/2699444
https://doi.org/10.1007/978-3-642-39799-8_19
https://doi.org/10.1007/978-3-642-15297-9_9
https://doi.org/10.1007/978-3-642-15297-9_9
http://dl.acm.org/citation.cfm?id=1885174.1885183

430 P. Faymonville et al.

12. Faymonville, P., Finkbeiner, B., Schirmer, S., Torfah, H.: A stream-based speci-
fication language for network monitoring. In: Falcone, Y., Sánchez, C. (eds.) RV
2016. LNCS, vol. 10012, pp. 152–168. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-46982-9 10

13. Gorostiaga, F., Sánchez, C.: Striver: stream runtime verification for real-time event-
streams. In: Colombo, C., Leucker, M. (eds.) RV 2018. LNCS, vol. 11237, pp. 282–
298. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03769-7 16

14. Halbwachs, N., Caspi, P., Raymond, P., Pilaud, D.: The synchronous dataflow
programming language lustre. In: Proceedings of the IEEE, pp. 1305–1320 (1991)

15. Hallé, S.: When RV meets CEP. In: Falcone, Y., Sánchez, C. (eds.) RV 2016. LNCS,
vol. 10012, pp. 68–91. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
46982-9 6

16. Harel, E., Lichtenstein, O., Pnueli, A.: Explicit clock temporal logic. In: LICS 1990,
pp. 402–413. IEEE Computer Society (1990). https://doi.org/10.1109/LICS.1990.
113765

17. Jahanian, F., Mok, A.K.L.: Safety analysis of timing properties in real-time sys-
tems. IEEE Trans. Softw. Eng. SE-12(9), 890–904 (1986). https://doi.org/10.
1109/TSE.1986.6313045

18. Koymans, R.: Specifying real-time properties with metric temporal logic. Real-
Time Syst. 2(4), 255–299 (1990). https://doi.org/10.1007/BF01995674

19. Leucker, M., Sánchez, C., Scheffel, T., Schmitz, M., Schramm, A.: Tessla: runtime
verification of non-synchronized real-time streams. In: Haddad, H.M., Wainwright,
R.L., Chbeir, R. (eds.) PSAC 2018, pp. 1925–1933. ACM (2018). https://doi.org/
10.1145/3167132.3167338

20. Li, J., Maier, D., Tufte, K., Papadimos, V., Tucker, P.A.: No pane, no gain: efficient
evaluation of sliding-window aggregates over data streams. SIGMOD Rec. 34(1),
39–44 (2005). https://doi.org/10.1145/1058150.1058158

21. Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals. In:
Lakhnech, Y., Yovine, S. (eds.) FORMATS/FTRTFT -2004. LNCS, vol. 3253, pp.
152–166. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30206-
3 12

22. Meertens, L.: Algorithmics: towards programming as a mathematical activity
(1986)

23. Pike, L., Goodloe, A., Morisset, R., Niller, S.: Copilot: a hard real-time runtime
monitor. In: Barringer, H., et al. (eds.) RV 2010. LNCS, vol. 6418, pp. 345–359.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16612-9 26

24. Raskin, J.-F., Schobbens, P.-Y.: Real-time logics: fictitious clock as an abstraction
of dense time. In: Brinksma, E. (ed.) TACAS 1997. LNCS, vol. 1217, pp. 165–182.
Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0035387

https://doi.org/10.1007/978-3-319-46982-9_10
https://doi.org/10.1007/978-3-319-46982-9_10
https://doi.org/10.1007/978-3-030-03769-7_16
https://doi.org/10.1007/978-3-319-46982-9_6
https://doi.org/10.1007/978-3-319-46982-9_6
https://doi.org/10.1109/LICS.1990.113765
https://doi.org/10.1109/LICS.1990.113765
https://doi.org/10.1109/TSE.1986.6313045
https://doi.org/10.1109/TSE.1986.6313045
https://doi.org/10.1007/BF01995674
https://doi.org/10.1145/3167132.3167338
https://doi.org/10.1145/3167132.3167338
https://doi.org/10.1145/1058150.1058158
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1007/978-3-642-16612-9_26
https://doi.org/10.1007/BFb0035387

StreamLAB: Monitoring Cyber-Physical Systems 431

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

VERIFAI: A Toolkit for the Formal Design
and Analysis of Artificial
Intelligence-Based Systems

Tommaso Dreossi(B), Daniel J. Fremont(B),
Shromona Ghosh(B), Edward Kim, Hadi Ravanbakhsh,
Marcell Vazquez-Chanlatte, and Sanjit A. Seshia(B)

University of California, Berkeley, USA
{tommasodreossi,dfremont,shromona.ghosh}@berkeley.edu,

sseshia@eecs.berkeley.edu

Abstract. We present VERIFAI, a software toolkit for the formal design and
analysis of systems that include artificial intelligence (AI) and machine learning
(ML) components. VERIFAI particularly addresses challenges with applying for-
mal methods to ML components such as perception systems based on deep neural
networks, as well as systems containing them, and to model and analyze system
behavior in the presence of environment uncertainty. We describe the initial ver-
sion of VERIFAI, which centers on simulation-based verification and synthesis,
guided by formal models and specifications. We give examples of several use
cases, including temporal-logic falsification, model-based systematic fuzz test-
ing, parameter synthesis, counterexample analysis, and data set augmentation.

Keywords: Formal methods · Falsification · Simulation ·
Cyber-physical systems ·Machine learning · Artificial intelligence ·
Autonomous vehicles

1 Introduction

The increasing use of artificial intelligence (AI) and machine learning (ML) in systems,
including safety-critical systems, has brought with it a pressing need for formal meth-
ods and tools for their design and verification. However, AI/ML-based systems, such as
autonomous vehicles, have certain characteristics that make the application of formal
methods very challenging. We mention three key challenges here; see Seshia et al. [23]
for an in-depth discussion. First, several uses of AI/ML are for perception, the use of
computational systems to mimic human perceptual tasks such as object recognition and
classification, conversing in natural language, etc. For such perception components,

This work was supported in part by NSF grants 1545126 (VeHICaL), 1646208, 1739816, and
1837132, the DARPA BRASS program under agreement number FA8750-16-C0043, the DARPA
Assured Autonomy program, the iCyPhy center, and Berkeley Deep Drive. NVIDIA Corporation
donated the Titan Xp GPU used for this research.
T. Dreossi, D. J. Fremont, S. Ghosh—These authors contributed equally to the paper.

c© The Author(s) 2019
I. Dillig and S. Tasiran (Eds.): CAV 2019, LNCS 11561, pp. 432–442, 2019.
https://doi.org/10.1007/978-3-030-25540-4_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-25540-4_25&domain=pdf
https://doi.org/10.1007/978-3-030-25540-4_25

VERIFAI: A Toolkit for the Formal Design and Analysis of AI-Based Systems 433

writing a formal specification is extremely difficult, if not impossible. Additionally, the
signals processed by such components can be very high-dimensional, such as streams
of images or LiDAR data. Second, machine learning being a dominant paradigm in
AI, formal tools must be compatible with the data-driven design flow for ML and also
be able to handle the complex, high-dimensional structures in ML components such as
deep neural networks. Third, the environments in which AI/ML-based systems oper-
ate can be very complex, with considerable uncertainty even about how many (which)
agents are in the environment (both human and robotic), let alone about their intentions
and behaviors. As an example, consider the difficulty in modeling urban traffic envi-
ronments in which an autonomous car must operate. Indeed, AI/ML is often introduced
into these systems precisely to deal with such complexity and uncertainty! From a for-
mal methods perspective, this makes it very hard to create realistic environment models
with respect to which one can perform verification or synthesis.

In this paper, we introduce the VERIFAI toolkit, our initial attempt to address
the three core challenges—perception, learning, and environments—that are outlined
above. VERIFAI takes the following approach:

• Perception: A perception component maps a concrete feature space (e.g. pixels) to
an output such as a classification, prediction, or state estimate. To deal with the lack
of specification for perception components, VERIFAI analyzes them in the context
of a closed-loop system using a system-level specification. Moreover, to scale to
complex high-dimensional feature spaces, VERIFAI operates on an abstract feature
space (or semantic feature space) [10] that describes semantic aspects of the envi-
ronment being perceived, not the raw features such as pixels.

• Learning: VERIFAI aims to not only analyze the behavior of ML components but
also use formal methods for their (re-)design. To this end, it provides features to
(i) design the data set for training and testing [9], (ii) analyze counterexamples to
gain insight into mistakes by the ML model, as well as (iii) synthesize parameters,
including hyper-parameters for training algorithms and ML model parameters.

• Environment Modeling: Since it can be difficult, if not impossible, to exhaus-
tively model the environments of AI-based systems, VERIFAI aims to provide
ways to capture a designer’s assumptions about the environment, including distri-
bution assumptions made by ML components, and to describe the abstract feature
space in an intuitive, declarative manner. To this end, VERIFAI provides users with
SCENIC [12,13], a probabilistic programming language for modeling environments.
SCENIC, combined with a renderer or simulator for generating sensor data, can pro-
duce semantically-consistent input for perception components.

VERIFAI is currently focused on AI-based cyber-physical systems (CPS), although
its basic ideas can also be applied to other AI-based systems. As a pragmatic choice, we
focus on simulation-based verification, where the simulator is treated as a black-box,
so as to be broadly applicable to the range of simulators used in industry.1 The input to

1 Our work is complementary to the work on industrial-grade simulators for AI/ML-based CPS.
In particular, VERIFAI enhances such simulators by providing formal methods for modeling
(via the SCENIC language), analysis (via temporal logic falsification), and parameter synthesis
(via property-directed hyper/model-parameter synthesis).

434 T. Dreossi et al.

VERIFAI is a “closed-loop” CPSmodel, comprising a composition of the AI-based CPS
system under verification with an environment model, and a property on the closed-loop
model. The AI-based CPS typically comprises a perception component (not necessar-
ily based on ML), a planner/controller, and the plant (i.e., the system under control).
Given these, VERIFAI offers the following use cases: (1) temporal-logic falsification;
(2) model-based fuzz testing; (3) counterexample-guided data augmentation; (4) coun-
terexample (error table) analysis; (5) hyper-parameter synthesis, and (6) model param-
eter synthesis. The novelty of VERIFAI is that it is the first tool to offer this suite of use
cases in an integrated fashion, unified by a common representation of an abstract feature
space, with an accompanying modeling language and search algorithms over this fea-
ture space, all provided in a modular implementation. The algorithms and formalisms
in VERIFAI are presented in papers published by the authors in other venues (e.g., [7–
10,12,15,22]). The problem of temporal-logic falsification or simulation-based verifi-
cation of CPS models is well studied and several tools exist (e.g. [3,11]); our work was
the first to extend these techniques to CPS models with ML components [7,8]. Work
on verification of ML components, especially neural networks (e.g., [14,26]), is com-
plementary to the system-level analysis performed by VERIFAI. Fuzz testing based on
formal models is common in software engineering (e.g. [16]) but our work is unique in
the CPS context. Similarly, property-directed parameter synthesis has also been studied
in the formal methods/CPS community, but our work is the first to apply these ideas to
the synthesis of hyper-parameters for ML training and ML model parameters. Finally,
to our knowledge, our work on augmenting training/test data sets [9], implemented in
VERIFAI, is the first use of formal techniques for this purpose. In Sect. 2, we describe
how the tool is structured so as to provide the above features. Sect. 3 illustrates the use
cases via examples from the domain of autonomous driving.

2 VERIFAI Structure and Operation

VERIFAI is currently focused on simulation-based analysis and design of AI compo-
nents for perception or control, potentially those using ML, in the context of a closed-
loop cyber-physical system. Figure 1 depicts the structure and operation of the toolkit.

Inputs and Outputs: Using VERIFAI requires setting up a simulator for the domain
of interest. As we explain in Sect. 3, we have experimented with multiple robotics
simulators and provide an easy interface to connect a new simulator. The user then con-
structs the inputs to VERIFAI, including (i) a simulatable model of the system, including
code for one or more controllers and perception components, and a dynamical model
of the system being controlled; (ii) a probabilistic model of the environment, specifying
constraints on the workspace, the locations of agents and objects, and the dynamical
behavior of agents, and (iii) a property over the composition of the system and its envi-
ronment. VERIFAI is implemented in Python for interoperability with ML/AI libraries
and simulators across platforms. The code for the controller and perception component
can be arbitrary executable code, invoked by the simulator. The environment model
typically comprises a definition in the simulator of the different types of agents, plus a
description of their initial conditions and other parameters using the SCENIC probabilis-
tic programming language [12]. Finally, the property to be checked can be expressed

VERIFAI: A Toolkit for the Formal Design and Analysis of AI-Based Systems 435

Fig. 1. Structure and operation of VERIFAI.

using Metric Temporal Logic (MTL) [2,24], objective functions, or arbitrary code mon-
itoring the property. The output of VERIFAI depends on the feature being invoked. For
falsification, VERIFAI returns one or more counterexamples, simulation traces violat-
ing the property [7]. For fuzz testing, VERIFAI produces traces sampled from the dis-
tribution of behaviors induced by the probabilistic environment model [12]. Error table
analysis involves collecting counterexamples generated by the falsifier into a table, on
which we perform analysis to identify features that are correlated with property failures.
Data augmentation uses falsification and error table analysis to generate additional data
for training and testing an ML component [9]. Finally, the property-driven synthesis of
model parameters or hyper-parameters generates as output a parameter evaluation that
satisfies the specified property.

Tool Structure: VERIFAI is composed of four main modules, as described below:

• Abstract Feature Space and SCENIC Modeling Language: The abstract feature space
is a compact representation of the possible configurations of the simulation. Abstract
features can represent parameters of the environment, controllers, or of ML compo-
nents. For example, when analyzing a visual perception system for an autonomous
car, an abstract feature space could consist of the initial poses and types of all vehi-
cles on the road. Note that this abstract space, compared to the concrete feature space
of pixels used as input to the controller, is better suited to the analysis of the overall
closed-loop system (e.g. finding conditions under which the car might crash).

VERIFAI provides two ways to construct abstract feature spaces. They can be con-
structed hierarchically, combining basic domains such as hyperboxes and finite sets
into structures and arrays. For example, we could define a space for a car as a struc-
ture combining a 2D box for position with a 1D box for heading, and then create an
array of these to get a space for several cars. Alternatively, VERIFAI allows a feature
space to be defined using a program in the SCENIC language [12]. SCENIC provides
convenient syntax for describing geometric configurations and agent parameters,
and, as a probabilistic programming language, allows placing a distribution over the
feature space which can be conditioned by declarative constraints.

436 T. Dreossi et al.

• Searching the Feature Space: Once the abstract feature space is defined, the next
step is to search that space to find simulations that violate the property or pro-
duce other interesting behaviors. Currently, VERIFAI uses a suite of sampling meth-
ods (both active and passive) for this purpose, but in the future we expect to also
integrate directed or exhaustive search methods including those from the adver-
sarial machine learning literature (e.g., see [10]). Passive samplers, which do not
use any feedback from the simulation, include uniform random sampling, simu-
lated annealing, and Halton sequences [18] (quasi-random deterministic sequences
with low-discrepancy guarantees we found effective for falsification [7]). Distribu-
tions defined using SCENIC are also passive in this sense. Active samplers, whose
selection of samples is informed by feedback from previous simulations, include
cross-entropy sampling and Bayesian optimization. The former selects samples and
updates the prior distribution by minimizing cross-entropy; the latter updates the
prior from the posterior over a user-provided objective function, e.g. the satisfaction
level of a specification or the loss of an analyzed model.

• Property Monitor: Trajectories generated by the simulator are
evaluated by the monitor, which produces a score for a given property or
objective function. VERIFAI supports monitoring MTL properties using the
py-metric-temporal-logic [24] package, including both the Boolean and
quantitative semantics of MTL. As mentioned above, the user can also specify a cus-
tom monitor as a Python function. The result of the monitor can be used to output
falsifying traces and also as feedback to the search procedure to direct the sampling
(search) towards falsifying scenarios.

• Error Table Analysis: Counterexamples are stored in a data structure called the error
table, whose rows are counterexamples and columns are abstract features. The error
table can be used offline to debug (explain) the generated counterexamples or online
to drive the sampler towards particular areas of the abstract feature space. VERIFAI
provides different techniques for error table analysis depending on the end use (e.g.,
counter-example analysis or data set augmentation), including principal component
analysis (PCA) for ordered feature domains and subsets of the most recurrent values
for unordered domains (see [9] for further details).

The communication between VERIFAI and the simulator is implemented in a client-
server fashion using IPv4 sockets, where VERIFAI sends configurations to the simulator
which then returns trajectories (traces). This architecture allows easy interfacing to a
simulator and even with multiple simulators at the same time.

3 Features and Case Studies

This section illustrates the main features of VERIFAI through case studies demonstrat-
ing its various use cases and simulator interfaces. Specifically, we demonstrate model
falsification and fuzz testing of an autonomous vehicle (AV) controller, data augmenta-
tion and error table analysis for a convolutional neural network, and model and hyper-
parameter tuning for a reinforcement learning-based controller.

VERIFAI: A Toolkit for the Formal Design and Analysis of AI-Based Systems 437

3.1 Falsification and Fuzz Testing

VERIFAI offers a convenient way to debug systems through systematic testing. Given
a model and a specification, the tool can use active sampling to automatically search
for inputs driving the model towards a violation of the specification. VERIFAI can also
perform model-based fuzz testing, exploring random variations of a scenario guided
by formal constraints. To demonstrate falsification and fuzz testing, we consider two
scenarios involving AVs simulated with the robotics simulator Webots [25]. For the
experiments reported here, we used Webots 2018 which is commercial software.

In the first example, we falsify the controller of an AV which is responsible for
safely maneuvering around a disabled car and traffic cones which are blocking the
road. We implemented a hybrid controller which relies on perception modules for
state estimation. Initially, the car follows its lane using standard computer vision (non-
ML) techniques for line detection [20]. At the same time, a neural network (based on
squeezeDet [27]) estimates the distance to the cones. When the distance drops below
15m, the car performs a lane change, afterward switching back to lane-following.

The correctness of the AV is characterized by an MTL formula requiring the vehi-
cle to maintain a minimum distance from the traffic cones and avoid overshoot while
changing lanes. The task of the falsifier is to find small perturbations of the initial scene
(generated by SCENIC) which cause the vehicle to violate this specification. We allowed
perturbations of the initial positions and orientations of all objects, the color of the dis-
abled car, and the cruising speed and reaction time of the ego car.

Our experiments showed that active samplers driven by the robustness of the MTL
specification can efficiently discover scenes that confuse the controller and yield faulty
behavior. Figure 2 shows an example, where the neural network detected the orange car
instead of the traffic cones, causing the lane change to be initiated too early. As a result,
the controller performed only an incomplete lane change, leading to a crash.

Fig. 2.A falsifying scene automatically discovered by VERIFAI. The neural network misclassifies
the traffic cones because of the orange vehicle in the background, leading to a crash. Left: bird’s-
eye view. Right: dash-cam view, as processed by the neural network.

In our second experiment, we used VERIFAI to simulate variations on an actual
accident involving an AV [5]. The AV, proceeding straight through an intersection, was
hit by a human turning left. Neither car was able to see the other because of two lanes of
stopped traffic. Figure 3 shows a (simplified) SCENIC program we wrote to reproduce

438 T. Dreossi et al.

Fig. 3. Left: Partial SCENIC program for the crash scenario. Car is an object class defined in the
Webots world model (not shown), on is a SCENIC specifier positioning the object uniformly at
random in the given region (e.g. the median line of a lane), (-0.5, 0.5) indicates a uniform
distribution over that interval, and X @ Y creates a vector with the given coordinates (see [12]
for a complete description of SCENIC syntax). Right: (1) initial scene sampled from the program;
(2) the red car begins its turn, unable to see the green car; (3) the resulting collision. (Color figure
online)

the accident, allowing variation in the initial positions of the cars. We then ran simu-
lations from random initial conditions sampled from the program, with the turning car
using a controller trying to follow the ideal left-turn trajectory computed from Open-
StreetMap data using the Intelligent Intersections Toolbox [17]. The car going straight
used a controller which either maintained a constant velocity or began emergency break-
ing in response to a message from a simulated “smart intersection” warning about the
turning car. By sampling variations on the initial conditions, we could determine how
much advance notice is necessary for such a system to robustly avoid an accident.

3.2 Data Augmentation and Error Table Analysis

Fig. 4. This image generated by our renderer was
misclassified by the NN. The network reported
detecting only one car when there were two.

Data augmentation is the process of
supplementing training sets with the
goal of improving the performance
of ML models. Typically, datasets
are augmented with transformed ver-
sions of preexisting training examples.
In [9], we showed that augmentation
with counterexamples is also an effec-
tive method for model improvement.

VERIFAI implements a counterexample-guided augmentation scheme, where a fal-
sifier (see Sect. 3.1) generates misclassified data points that are then used to augment the
original training set. The user can choose among different sampling methods, with pas-
sive samplers suited to generating diverse sets of data points while active samplers can
efficiently generate similar counterexamples. In addition to the counterexamples them-
selves, VERIFAI also returns an error table aggregating information on the misclassifi-
cations that can be used to drive the retraining process. Figure 4 shows the rendering of
a misclassified sample generated by our falsifier.

VERIFAI: A Toolkit for the Formal Design and Analysis of AI-Based Systems 439

For our experiments, we implemented a renderer that generates images of road sce-
narios and tested the quality of our augmentation scheme on the squeezeDet convolu-
tional neural network [27], trained for classification. We adopted three techniques to
select augmentation images: (1) randomly sampling from the error table, (2) selecting
the top k-closest (similar) samples from the error table, and (3) using PCA analysis to
generate new samples. For details on the renderer and the results of counterexample-
driven augmentation, see [9]. We show that incorporating the generated counterexam-
ples during re-training improves the accuracy of the network.

3.3 Model Robustness and Hyperparameter Tuning

In this final section, we demonstrate how VERIFAI can be used to tune test parameters
and hyperparameters of AI systems. For the following case studies, we use OpenAI
Gym [4], a framework for experimenting with reinforcement learning algorithms.

First, we consider the problem of testing the robustness of a learned controller for
a cart-pole, i.e., a cart that balances an inverted pendulum. We trained a neural net-
work to control the cart-pole using Proximal Policy Optimization algorithms [21] with
100k training episodes. We then used VERIFAI to test the robustness of the learned
controller, varying the initial lateral position and rotation of the cart as well as the mass
and length of the pole. Even for apparently robust controllers, VERIFAI was able to
discover configurations for which the cart-pole failed to self-balance. Figure 5 shows
1000 iterations of the falsifier, where sampling was guided by the reward function used
by OpenAI to train the controller. This function provides a negative reward if the cart
moves more than 2.4m or if at any time the angle maintained by the pole is greater than
12◦. For testing, we slightly modified these thresholds.

Fig. 5. The green dots represent model parameters for which the cart-pole controller behaved
correctly, while the red dots indicate specification violations. Out of 1000 randomly-sampled
model parameters, the controller failed to satisfy the specification 38 times. (Color figure online)

Finally, we used VERIFAI to study the effects of hyperparameters when training a
neural network controller for a mountain car. In this case, the controller must learn to

440 T. Dreossi et al.

exploit momentum in order to climb a steep hill. Here, rather than searching for coun-
terexamples, we look for a set of hyperparameters under which the network correctly
learns to control the car. Specifically, we explored the effects of using different training
algorithms (from a discrete set of choices) and the size of the training set. We used the
VERIFAI falsifier to search the hyperparameter space, guided again by the reward func-
tion provided by OpenAI Gym (here the distance from the goal position), but negated
so that falsification implied finding a controller which successfully climbs the hill. In
this way VERIFAI built a table of safe hyperparameters. PCA analysis then revealed
which hyperparameters the training process is most sensitive or robust to.

4 Conclusion

We presented VERIFAI, a toolkit for the formal design and analysis of AI/ML-based
systems. Our implementation, plus the examples described in Sect. 3, are available in
the tool distribution [1], including detailed instructions and expected output.

In future work, we plan to explore additional applications of VERIFAI, and to
expand its functionality with new algorithms. Towards the former, we have already
interfaced VERIFAI to the CARLA driving simulator [6], for more sophisticated exper-
iments with autonomous cars, as well as to the X-Plane flight simulator [19], for testing
an ML-based aircraft navigation system. More broadly, although our focus has been
on CPS, we note that VERIFAI’s architecture is applicable to other types of systems.
Finally, for extending VERIFAI itself, we plan to move beyond directed simulation by
incorporating symbolic methods, such as those used in finding adversarial examples.

References

1. VerifAI: a toolkit for the design and analysis of artificial intelligence-based systems. https://
github.com/BerkeleyLearnVerify/VerifAI

2. Alur, R., Henzinger, T.A.: Logics and models of real time: a survey. In: de Bakker, J.W.,
Huizing, C., de Roever, W.P., Rozenberg, G. (eds.) REX 1991. LNCS, vol. 600, pp. 74–106.
Springer, Heidelberg (1992). https://doi.org/10.1007/BFb0031988

3. Annpureddy, Y., Liu, C., Fainekos, G.E., Sankaranarayanan, S.: S-taliro: a tool for temporal
logic falsification for hybrid systems. In: Tools and Algorithms for the Construction and
Analysis of Systems, TACAS (2011)

4. Brockman, G., et al.: OpenAI Gym. arXiv:1606.01540 (2016)
5. Butler, M.: Uber’s tempe accident raises questions of self-driving safety. East Valley Tri-

bune (2017). http://www.eastvalleytribune.com/local/tempe/uber-s-tempe-accident-raises-
questions-of-self-driving-safety/article 30b99e74-189d-11e7-bc1d-07f943301a72.html

6. Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., Koltun, V.: CARLA: an open urban driv-
ing simulator. In: Conference on Robot Learning, CoRL, pp. 1–16 (2017)

7. Dreossi, T., Donzé, A., Seshia, S.A.: Compositional falsification of cyber-physical systems
with machine learning components. In: Barrett, C., Davies, M., Kahsai, T. (eds.) NFM 2017.
LNCS, vol. 10227, pp. 357–372. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
57288-8 26

8. Dreossi, T., Donze, A., Seshia, S.A.: Compositional falsification of cyber-physical systems
with machine learning components. J. Autom. Reasoning (JAR) (2019)

https://github.com/BerkeleyLearnVerify/VerifAI
https://github.com/BerkeleyLearnVerify/VerifAI
https://doi.org/10.1007/BFb0031988
http://arxiv.org/abs/1606.01540
http://www.eastvalleytribune.com/local/tempe/uber-s-tempe-accident-raises-questions-of-self-driving-safety/article_30b99e74-189d-11e7-bc1d-07f943301a72.html
http://www.eastvalleytribune.com/local/tempe/uber-s-tempe-accident-raises-questions-of-self-driving-safety/article_30b99e74-189d-11e7-bc1d-07f943301a72.html
https://doi.org/10.1007/978-3-319-57288-8_26
https://doi.org/10.1007/978-3-319-57288-8_26

VERIFAI: A Toolkit for the Formal Design and Analysis of AI-Based Systems 441

9. Dreossi, T., Ghosh, S., Yue, X., Keutzer, K., Sangiovanni-Vincentelli, A., Seshia, S.A.:
Counterexample-guided data augmentation. In: 27th International Joint Conference on Arti-
ficial Intelligence (IJCAI) (2018)

10. Dreossi, T., Jha, S., Seshia, S.A.: Semantic adversarial deep learning. In: Chockler, H., Weis-
senbacher, G. (eds.) CAV 2018. LNCS, vol. 10981, pp. 3–26. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-96145-3 1

11. Duggirala, P.S., Mitra, S., Viswanathan, M., Potok, M.: C2E2: a verification tool for stateflow
models. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 68–82. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-46681-0 5

12. Fremont, D.J., Dreossi, T., Ghosh, S., Yue, X., Sangiovanni-Vincentelli, A.L., Seshia, S.A.:
Scenic: a language for scenario specification and scene generation. In: 40th ACM SIG-
PLAN Conference on Programming Language Design and Implementation (PLDI) (2019,
to appear)

13. Fremont, D.J., Yue, X., Dreossi, T., Ghosh, S., Sangiovanni-Vincentelli, A.L., Seshia, S.A.:
Scenic: language-based scene generation. CoRR (2018). arXiv:1809.09310

14. Gehr, T., Mirman, M., Drachsler-Cohen, D., Tsankov, P., Chaudhuri, S., Vechev, M.: AI2:
safety and robustness certification of neural networks with abstract interpretation. In: 2018
IEEE Symposium on Security and Privacy (SP) (2018)

15. Ghosh, S., Berkenkamp, F., Ranade, G., Qadeer, S., Kapoor, A.: Verifying controllers against
adversarial examples with Bayesian optimization. In: 2018 IEEE International Conference
on Robotics and Automation (ICRA) (2018)

16. Godefroid, P., Kiezun, A., Levin, M.Y.: Grammar-based whitebox fuzzing. In: ACM SIG-
PLAN Notices. ACM (2008)

17. Grembek, O., Kurzhanskiy, A.A., Medury, A., Varaiya, P., Yu, M.: Making intersections safer
with I2V communication (2019). arXiv:1803.00471, to appear in Transportation Research,
Part C

18. Halton, J.H.: On the efficiency of certain quasi-random sequences of points in evaluating
multi-dimensional integrals. Numer. Math. 2, 84–90 (1960)

19. Laminar Research: X-Plane 11 (2019). https://www.x-plane.com/
20. Palazzi, A.: Finding lane lines on the road (2018). https://github.com/ndrplz/self-driving-car/

tree/master/project 1 lane finding basic
21. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy optimiza-

tion algorithms. CoRR (2017). arXiv:1707.06347
22. Seshia, S.A., et al.: Formal specification for deep neural networks. In: Lahiri, S.K., Wang, C.

(eds.) ATVA 2018. LNCS, vol. 11138, pp. 20–34. Springer, Cham (2018). https://doi.org/10.
1007/978-3-030-01090-4 2

23. Seshia, S.A., Sadigh, D., Sastry, S.S.: Towards Verified Artificial Intelligence. CoRR (2016).
arXiv:1606.08514

24. Vazquez-Chanlatte, M.: mvcisback/py-metric-temporal-logic: v0.1.1 (2019). https://doi.org/
10.5281/zenodo.2548862

25. Webots: Commercial mobile robot simulation software. http://www.cyberbotics.com
26. Wicker, M., Huang, X., Kwiatkowska, M.: Feature-guided black-box safety testing of deep

neural networks. In: Beyer, D., Huisman, M. (eds.) TACAS 2018. LNCS, vol. 10805, pp.
408–426. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89960-2 22

27. Wu, B., Iandola, F., Jin, P.H., Keutzer, K.: SqueezeDet: Unified, small, low power fully con-
volutional neural networks for real-time object detection for autonomous driving. In: CVPR
2017 (2016). https://doi.org/10.1109/CVPRW.2017.60

https://doi.org/10.1007/978-3-319-96145-3_1
https://doi.org/10.1007/978-3-319-96145-3_1
https://doi.org/10.1007/978-3-662-46681-0_5
http://arxiv.org/abs/1809.09310
http://arxiv.org/abs/1803.00471
https://www.x-plane.com/
https://github.com/ndrplz/self-driving-car/tree/master/project_1_lane_finding_basic
https://github.com/ndrplz/self-driving-car/tree/master/project_1_lane_finding_basic
http://arxiv.org/abs/1707.06347
https://doi.org/10.1007/978-3-030-01090-4_2
https://doi.org/10.1007/978-3-030-01090-4_2
http://arxiv.org/abs/1606.08514
https://doi.org/10.5281/zenodo.2548862
https://doi.org/10.5281/zenodo.2548862
http://www.cyberbotics.com
https://doi.org/10.1007/978-3-319-89960-2_22
https://doi.org/10.1109/CVPRW.2017.60

442 T. Dreossi et al.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution
4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

The Marabou Framework for Verification
and Analysis of Deep Neural Networks

Guy Katz1(B), Derek A. Huang2, Duligur Ibeling2,
Kyle Julian2, Christopher Lazarus2, Rachel Lim2,

Parth Shah2, Shantanu Thakoor2, Haoze Wu2,
Aleksandar Zeljić2, David L. Dill2,

Mykel J. Kochenderfer2, and Clark Barrett2

1 The Hebrew University of Jerusalem,
Jerusalem, Israel

guykatz@cs.huji.ac.il
2 Stanford University, Stanford, USA

{huangda,duligur,kjulian3,clazarus,parth95,thakoor,
haozewu,zeljic,dill,mykel,clarkbarrett}@stanford.edu,

rachelim@cs.stanford.edu

Abstract. Deep neural networks are revolutionizing the way complex
systems are designed. Consequently, there is a pressing need for tools and
techniques for network analysis and certification. To help in addressing
that need, we present Marabou, a framework for verifying deep neural
networks. Marabou is an SMT-based tool that can answer queries about
a network’s properties by transforming these queries into constraint sat-
isfaction problems. It can accommodate networks with different activa-
tion functions and topologies, and it performs high-level reasoning on the
network that can curtail the search space and improve performance. It
also supports parallel execution to further enhance scalability. Marabou
accepts multiple input formats, including protocol buffer files generated
by the popular TensorFlow framework for neural networks. We describe
the system architecture and main components, evaluate the technique
and discuss ongoing work.

1 Introduction

Recent years have brought about a major change in the way complex systems are
being developed. Instead of spending long hours hand-crafting complex software,
many engineers now opt to use deep neural networks (DNNs) [6,19]. DNNs are
machine learning models, created by training algorithms that generalize from a
finite set of examples to previously unseen inputs. Their performance can often
surpass that of manually created software as demonstrated in fields such as image
classification [16], speech recognition [8], and game playing [21].

Despite their overall success, the opacity of DNNs is a cause for concern,
and there is an urgent need for certification procedures that can provide rig-
orous guarantees about network behavior. The formal methods community has
c© The Author(s) 2019
I. Dillig and S. Tasiran (Eds.): CAV 2019, LNCS 11561, pp. 443–452, 2019.
https://doi.org/10.1007/978-3-030-25540-4_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-25540-4_26&domain=pdf
https://doi.org/10.1007/978-3-030-25540-4_26

444 G. Katz et al.

taken initial steps in this direction, by developing algorithms and tools for neural
network verification [5,9,10,12,18,20,23,24]. A DNN verification query consists
of two parts: (i) a neural network, and (ii) a property to be checked; and its
result is either a formal guarantee that the network satisfies the property, or a
concrete input for which the property is violated (a counter-example). A verifica-
tion query can encode the fact, e.g., that a network is robust to small adversarial
perturbations in its input [22].

A neural network is comprised of neurons, organized in layers. The network
is evaluated by assigning values to the neurons in the input layer, and then using
these values to iteratively compute the assignments of neurons in each succeeding
layer. Finally, the values of neurons in the last layer are computed, and this is the
network’s output. A neuron’s assignment is determined by computing a weighted
sum of the assignments of neurons from the preceding layer, and then applying
to the result a non-linear activation function, such as the Rectified Linear Unit
(ReLU) function, ReLU(x) = max (0, x). Thus, a network can be regarded as a
set of linear constraints (the weighted sums), and a set of non-linear constraints
(the activation functions). In addition to a neural network, a verification query
includes a property to be checked, which is given in the form of linear or non-
linear constraints on the network’s inputs and outputs. The verification problem
thus reduces to finding an assignment of neuron values that satisfies all the
constraints simultaneously, or determining that no such assignment exists.

This paper presents a new tool for DNN verification and analysis, called
Marabou. The Marabou project builds upon our previous work on the Reluplex
project [2,7,12,13,15,17], which focused on applying SMT-based techniques to
the verification of DNNs. Marabou follows the Reluplex spirit in that it applies an
SMT-based, lazy search technique: it iteratively searches for an assignment that
satisfies all given constraints, but treats the non-linear constraints lazily in the
hope that many of them will prove irrelevant to the property under consideration,
and will not need to be addressed at all. In addition to search, Marabou performs
deduction aimed at learning new facts about the non-linear constraints in order
to simplify them.

The Marabou framework is a significant improvement over its predecessor,
Reluplex. Specifically, it includes the following enhancements and modifications:

– Native support for fully connected and convolutional DNNs with arbitrary
piecewise-linear activation functions. This extends the Reluplex algorithm,
which was originally designed to support only ReLU activation functions.

– Built-in support for a divide-and-conquer solving mode, in which the solver is
run with an initial (small) timeout. If the timeout is reached, the solver par-
titions its input query into simpler sub-queries, increases the timeout value,
and repeats the process on each sub-query. This mode naturally lends itself
to parallel execution by running sub-queries on separate nodes; however, it
can yield significant speed-ups even when used with a single node.

– A complete simplex-based linear programming core that replaces the exter-
nal solver (GLPK) that was previously used in Reluplex. The new simplex

The Marabou Framework for Verification and Analysis of DNNs 445

core was tailored for a smooth integration with the Marabou framework and
eliminates much of the overhead in Reluplex due to the use of GLPK.

– Multiple interfaces for feeding queries into the solver. A query’s neural net-
work can be provided in a textual format or as a protocol buffer (protobuf)
file containing a TensorFlow model; and the property can be either compiled
into the solver, provided in Python, or stored in a textual format. We expect
these interfaces will simplify usage of the tool for many users.

– Support for network-level reasoning and deduction. The earlier Reluplex tool
performed deductions at the level of single constraints, ignoring the input
network’s topology. In Marabou, we retain this functionality but also include
support for reasoning based on the network topology, such as symbolic bound
tightening [23]. This allows for efficient curtailment of the search space.

Marabou is available online [14] under the permissive modified BSD license.

EngineMarabou

SAT

UNSAT

Search:
Simplex Core

Piecewise-Linear Constraints

Deduction:
Constraint-Level Reasoning
Network-Level Reasoning

Input
Interfaces

Divide and
Conquer

Query

Fig. 1. The main components of Marabou.

2 Design of Marabou

Marabou regards each neuron in the network as a variable and searches for a
variable assignment that simultaneously satisfies the query’s linear constraints
and non-linear constraints. At any given point, Marabou maintains the current
variable assignment, lower and upper bounds for every variable, and the set of
current constraints. In each iteration, it then changes the variable assignment
in order to (1) correct a violated linear constraint, or (2) correct a violated
non-linear constraint.

The Marabou verification procedure is sound and complete, i.e. the afore-
mentioned loop eventually terminates. This can be shown via a straightforward
extension of the soundness and completeness proof for Reluplex [12]. However,
in order to guarantee termination, Marabou only supports activation functions
that are piecewise-linear. The tool already has built-in support for the ReLU
function and the Max function max (x1, . . . , xn), and it is modular in the sense
that additional piecewise-linear functions can be added easily.

446 G. Katz et al.

Another important aspect of Marabou’s verification strategy is deduction—
specifically, the derivation of tighter lower and upper variable bounds. The moti-
vation is that such bounds may transform piecewise-linear constraints into lin-
ear constraints, by restricting them to one of their linear segments. To achieve
this, Marabou repeatedly examines linear and non-linear constraints, and also
performs network-level reasoning, with the goal of discovering tighter variable
bounds.

Next, we describe Marabou’s main components (see also Fig. 1).

2.1 Simplex Core (Tableau and BasisFactorization Classes)

The simplex core is the part of the system responsible for making the variable
assignment satisfy the linear constraints. It does so by implementing a variant
of the simplex algorithm [3]. In each iteration, it changes the assignment of some
variable x, and consequently the assignment of any variable y that is connected
to x by a linear equation. Selecting x and determining its new assignment is
performed using standard algorithms—specifically, the revised simplex method
in which the various linear constraints are kept in implicit matrix form, and the
steepest-edge and Harris’ ratio test strategies for variable selection.

Creating an efficient simplex solver is complicated. In Reluplex, we delegated
the linear constraints to an external solver, GLPK. Our motivation for imple-
menting a new custom solver in Marabou was twofold: first, we observed in
Reluplex that the repeated translation of queries into GLPK and extraction of
results from GLPK was a limiting factor on performance; and second, a black
box simplex solver did not afford the flexibility we needed in the context of DNN
verification. For example, in a standard simplex solver, variable assignments are
typically pressed against their upper or lower bounds, whereas in the context of
a DNN, other assignments might be needed to satisfy the non-linear constraints.
Another example is the deduction capability, which is crucial for efficiently ver-
ifying a DNN and whose effectiveness might depend on the internal state of the
simplex solver.

2.2 Piecewise-Linear Constraints (PiecewiseLinearConstraint
Class)

Throughout its execution, Marabou maintains a set of piecewise-linear con-
straints that represent the DNN’s non-linear functions. In iterations devoted to
satisfying these constraints, Marabou looks for any constraints that are not sat-
isfied by the current assignment. If such a constraint is found, Marabou changes
the assignment in a way that makes that constraint satisfied. Alternatively, in
order to guarantee eventual termination, if Marabou detects that a certain con-
straint is repeatedly not satisfied, it may perform a case-split on that constraint:
a process in which the piecewise-linear constraint ϕ is replaced by an equivalent
disjunction of linear constraints c1 ∨ . . . ∨ cn. Marabou considers these disjuncts
one at a time and checks for satisfiability. If the problem is satisfiable when ϕ is

The Marabou Framework for Verification and Analysis of DNNs 447

replaced by some ci, then the original problem is also satisfiable; otherwise, the
original problem is unsatisfiable.

In our implementation, piecewise-linear constraints are represented by
objects of classes that inherit from the PiecewiseLinearConstraint abstract class.
Currently the two supported instances are ReLU and Max, but the design is mod-
ular in the sense that new constraint types can easily be added. PiecewiseLin-
earConstraint defines the interface methods that each supported piecewise-linear
constraint needs to implement. Some of the key interface methods are:

– satisfied(): the constraint object needs to answer whether or not it is satisfied
given the current assignment. For example, for a constraint y = ReLU(x) and
assignment x = y = 3, satisfied() would return true; whereas for assignment
x = −5, y = 3, it would return false.

– getPossibleFixes(): if the constraint is not satisfied by the current assignment,
this method returns possible changes to the assignment that would correct the
violation. For example, for x = −5, y = 3, the ReLU constraint from before
might propose two possible changes to the assignment, x ← 3 or y ← 0, as
either would satisfy y = ReLU(x).

– getCaseSplits(): this method asks the piecewise-linear constraint ϕ to return
a list of linear constraints c1, . . . , cn, such that ϕ is equivalent to c1 ∨ . . .∨ cn.
For example, when invoked for a constraint y = max (x1, x2), getCaseSplits()
would return the linear constraints c1 : (y = x1 ∧ x1 ≥ x2) and c2 : (y =
x2 ∧ x2 ≥ x1). These constraints satisfy the requirement that the original
constraint is equivalent to c1 ∨ c2.

– getEntailedTightenings(): as part of Marabou’s deduction of tighter variable
bounds, piecewise-linear constraints are repeatedly informed of changes to the
lower and upper bounds of variables they affect. Invoking getEntailedTight-
enings() queries the constraint for tighter variable bounds, based on current
information. For example, suppose a constraint y = ReLU(x) is informed of
the upper bounds x ≤ 5 and y ≤ 7; in this case, getEntailedTightenings()
would return the tighter bound y ≤ 5.

2.3 Constraint- and Network-Level Reasoning
(RowBoundTightener, ConstraintBoundTightener
and SymbolicBoundTightener Classes)

Effective deduction of tighter variable bounds is crucial for Marabou’s perfor-
mance. Deduction is performed at the constraint level, by repeatedly examin-
ing linear and piecewise-linear constraints to see if they imply tighter variable
bounds; and also at the DNN-level, by leveraging the network’s topology.

Constraint-level bound tightening is performed by querying the piecewise-
linear constraints for tighter bounds using the getEntailedTightenings() method.
Similarly, linear equations can also be used to deduce tighter bounds. For exam-
ple, the equation x = y + z and lower bounds x ≥ 0, y ≥ 1 and z ≥ 1
together imply the tighter bound x ≥ 2. As part of the simplex-based search,
Marabou repeatedly encounters many linear equations and uses them for bound
tightening.

448 G. Katz et al.

Several recent papers have proposed verification schemes that rely on DNN-
level reasoning [5,23]. Marabou supports this kind of reasoning as well, by stor-
ing the initial network topology and performing deduction steps that use this
information as part of its iterative search. DNN-level reasoning is seamlessly
integrated into the search procedure by (1) initializing the DNN-level reasoners
with the most up-to-date information discovered during the search, such as vari-
able bounds and the state of piecewise-linear constraints; and (2) feeding any
new information that is discovered back into the search procedure. Presently
Marabou implements a symbolic bound tightening procedure [23]: based on net-
work topology, upper and lower bounds for each hidden neuron are expressed
as a linear combination of the input neurons. Then, if the bounds on the input
neurons are sufficiently tight (e.g., as a result of past deductions), these expres-
sions for upper and lower bounds may imply that some of the hidden neurons’
piecewise-linear activation functions are now restricted to one of their linear
segments. Implementing additional DNN-level reasoning operations is work in
progress.

2.4 The Engine (Engine and SmtCore Classes)

The main class of Marabou, in which the main loop resides, is called the Engine.
The engine stores and coordinates the various solution components, including
the simplex core and the piecewise-linear constraints. The main loop consists,
roughly, of the following steps (the first rule that applies is used):

1. If a piecewise-linear constraint had to be fixed more than a certain number
of times, perform a case split on that constraint.

2. If the problem has become unsatisfiable, e.g. because for some variable a
lower bound has been deduced that is greater than its upper bound, undo a
previous case split (or return UNSAT if no such case split exists).

3. If there is a violated linear constraint, perform a simplex step.
4. If there is a violated piecewise-linear constraint, attempt to fix it.
5. Return SAT (all constraints are satisfied).

The engine also triggers deduction steps, both at the neuron level and at the
network level, according to various heuristics.

2.5 The Divide-and-Conquer Mode and Concurrency (DnC.py)

Marabou supports a divide-and-conquer (D&C) solving mode, in which the
input region specified in the original query is partitioned into sub-regions. The
desired property is checked on these sub-regions independently. The D&C mode
naturally lends itself to parallel execution, by having each sub-query checked
on a separate node. Moreover, the D&C mode can improve Marabou’s overall
performance even when running sequentially: the total time of solving the sub-
queries is often less than the time of solving the original query, as the smaller
input regions allow for more effective deduction steps.

The Marabou Framework for Verification and Analysis of DNNs 449

Given a query φ, the solver maintains a queue Q of 〈query, timeout〉 pairs. Q is
initialized with one element 〈φ, T 〉, where T , the initial timeout, is a configurable
parameter. To solve φ, the solver loops through the following steps:

1. Pop a pair 〈φ′, t′〉 from Q and attempt to solve φ′ with a timeout of t′.
2. If the problem is UNSAT and Q is empty, return UNSAT.
3. If the problem is UNSAT and Q is not empty, return to step 1.
4. If the problem is SAT, return SAT.
5. If a timeout occurred, split φ′ into k sub-queries φ′

1, . . . , φ
′
k by partitioning

its input region. For each sub-query φ′
i, push 〈φ′

i,m · t′〉 into Q.

The timeout factor m and the splitting factor k are configurable parameters.
Splitting the query’s input region is performed heuristically.

2.6 Input Interfaces (AcasParser class, maraboupy Folder)

Marabou supports verification queries provided through the following interfaces:

– Native Marabou format: a user prepares a query using the Marabou C++
interface, compiles the query into the tool, and runs it. This format is useful
for integrating Marabou into a larger framework.

– Marabou executable: a user runs a Marabou executable, and passes to it
command-line parameters indicating the network and property files to be
checked. Currently, network files are encoded using the NNet format [11],
and the properties are given in a simple textual format.

– Python/TensorFlow interface: the query is passed to Marabou through
Python constructs. The python interface can also handle DNNs stored as
TensorFlow protobuf files.

3 Evaluation

For our evaluation we used the ACAS Xu [12], CollisionDetection [4] and
TwinStream [1] families of benchmarks. Tool-wise, we considered the Reluplex
tool which is the most closely related to Marabou, and also ReluVal [23] and
Planet [4]. The version of Marabou used for the evaluation is available online [14].

The top left plot in Fig. 3 compares the execution times of Marabou and Relu-
plex on 180 ACAS Xu benchmarks with a 1 hour timeout. We used Marabou in
D&C mode with 4 cores and with T = 5, k = 4, and m = 1.5. The remaining
three plots depict an execution time comparison between Marabou D&C (con-
figuration as above), ReluVal and Planet, using 4 cores and a 1 hour timeout.
Marabou and Reluval are evaluated over 180 ACAS Xu benchmarks (top right
plot), and Marabou and Planet are evaluated on those 180 benchmarks (bottom
left plot) and also on 500 CollisionDetection and 81 TwinStream benchmarks
(bottom right plot). Due to technical difficulties, ReluVal was not run on the
CollisionDetection and TwinStream benchmarks. The results show that in a
4 cores setting Marabou generally outperforms Planet, but generally does not
outperform ReluVal (though it does better on some benchmarks). These results
highlight the need for additional DNN-level reasoning in Marabou, which is a
key ingredient in ReluVal’s verification procedure.

450 G. Katz et al.

Fig. 2. A scalability comparison of
Marabou and ReluVal on ACAS
Xu.

Figure 2 shows the average runtime of
Marabou and ReluVal on the ACAS Xu prop-
erties, as a function of the number of avail-
able cores. We see that as the number of cores
increases, Marabou (solid) is able to close
the gap, and sometimes outperform, ReluVal
(dotted). With 64 cores, Marabou outper-
forms ReluVal on average, and both solvers
were able to solve all ACAS Xu benchmarks
within 2 hours (except for a few segfaults by
ReluVal).

Fig. 3. A comparison of Marabou with Reluplex, ReluVal and Planet.

4 Conclusion

DNN analysis is an emerging field, and Marabou is a step towards a more mature,
stable verification platform. Moving forward, we plan to improve Marabou in sev-
eral dimensions. Part of our motivation in implementing a custom simplex solver
was to obtain the needed flexibility for fusing together the solving process for lin-
ear and non-linear constraints. Currently, this flexibility has not been leveraged
much, as these pieces are solved relatively separately. We expect that by tackling

The Marabou Framework for Verification and Analysis of DNNs 451

both kinds of constraints simultaneously, we will be able to improve performance
significantly. Other enhancements we wish to add include: additional network-
level reasoning techniques based on abstract interpretation; better heuristics for
both the linear and non-linear constraint solving engines; and additional engi-
neering improvements, specifically within the simplex engine.

Acknowledgements. We thank Elazar Cohen, Justin Gottschlich, and Lindsey
Kuper for their contributions to this project. The project was partially supported
by grants from the Binational Science Foundation (2017662), the Defense Advanced
Research Projects Agency (FA8750-18-C-0099), the Federal Aviation Administration,
Ford Motor Company, Intel Corporation, the Israel Science Foundation (683/18), the
National Science Foundation (1814369, DGE-1656518), Siemens Corporation, and the
Stanford CURIS program.

References

1. Bunel, R., Turkaslan, I., Torr, P., Kohli, P., Kumar, M.: Piecewise lin-
ear neural network verification: a comparative study. Technical report (2017).
arXiv:1711.00455v1

2. Carlini, N., Katz, G., Barrett, C., Dill, D.: Provably minimally-distorted adversarial
examples. Technical report (2017). arXiv:1709.10207

3. Chvátal, V.: Linear Programming. W. H. Freeman and Company, New York (1983)
4. Ehlers, R.: Formal verification of piece-wise linear feed-forward neural networks.

In: D’Souza, D., Narayan Kumar, K. (eds.) ATVA 2017. LNCS, vol. 10482, pp.
269–286. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68167-2 19

5. Gehr, T., Mirman, M., Drachsler-Cohen, D., Tsankov, E., Chaudhuri, S., Vechev,
M.: AI2: safety and robustness certification of neural networks with abstract inter-
pretation. In: Proceedings of 39th IEEE Symposium on Security and Privacy (S&P)
(2018)

6. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge
(2016)

7. Gopinath, D., Katz, G., Pǎsǎreanu, C., Barrett, C.: DeepSafe: a data-driven app-
roach for checking adversarial robustness in neural networks. In: Proceedings of
16th International Symposium on on Automated Technology for Verification and
Analysis (ATVA), pp. 3–19 (2018)

8. Hinton, G., et al.: Deep neural networks for acoustic modeling in speech recogni-
tion: the shared views of four research groups. IEEE Signal Process. Mag. 29(6),
82–97 (2012)

9. Huang, X., Kwiatkowska, M., Wang, S., Wu, M.: Safety verification of deep neural
networks. In: Proceedings of 29th International Conference on Computer Aided
Verification (CAV), pp. 3–29 (2017)

10. Hull, J., Ward, D., Zakrzewski, R.: Verification and validation of neural networks
for safety-critical applications. In: Proceedings of 21st American Control Confer-
ence (ACC) (2002)

11. Julian, K.: NNet Format (2018). https://github.com/sisl/NNet
12. Katz, G., Barrett, C., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: an

efficient SMT solver for verifying deep neural networks. In: Majumdar, R., Kunčak,
V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 97–117. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-63387-9 5

http://arxiv.org/abs/1711.00455v1
http://arxiv.org/abs/1709.10207
https://doi.org/10.1007/978-3-319-68167-2_19
https://github.com/sisl/NNet
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-319-63387-9_5

452 G. Katz et al.

13. Katz, G., Barrett, C., Dill, D., Julian, K., Kochenderfer, M.: Towards proving the
adversarial robustness of deep neural networks. In: Proceedings of 1st Workshop
on Formal Verification of Autonomous Vehicles (FVAV), pp. 19–26 (2017)

14. Katz, G., et al.: Marabou (2019). https://github.com/guykatzz/Marabou/tree/
cav artifact

15. Kazak, Y., Barrett, C., Katz, G., Schapira, M.: Verifying deep-RL-driven systems.
In: Proceedings of 1st ACM SIGCOMM Workshop on Network Meets AI & ML
(NetAI) (2019)

16. Krizhevsky, A., Sutskever, I., Hinton, G.: ImageNet classification with deep convo-
lutional neural networks. In: Advances in Neural Information Processing Systems,
pp. 1097–1105 (2012)

17. Kuper, L., Katz, G., Gottschlich, J., Julian, K., Barrett, C., Kochenderfer, M.:
Toward scalable verification for safety-critical deep networks. Technical report
(2018). arXiv:1801.05950

18. Pulina, L., Tacchella, A.: An abstraction-refinement approach to verification of
artificial neural networks. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010.
LNCS, vol. 6174, pp. 243–257. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-14295-6 24

19. Riesenhuber, M., Tomaso, P.: Hierarchical models of object recognition in cortex.
Nat. Neurosci. 2(11), 1019–1025 (1999)

20. Ruan, W., Huang, X., Kwiatkowska, M.: Reachability analysis of deep neural net-
works with provable guarantees. In: Proceedings of 27th International Joint Con-
ference on Artificial Intelligence (IJCAI) (2018)

21. Silver, D., et al.: Mastering the game of go with deep neural networks and tree
search. Nature 529(7587), 484–489 (2016)

22. Szegedy, C., et al.: Intriguing properties of neural networks. Technical report
(2013). arXiv:1312.6199

23. Wang, S., Pei, K., Whitehouse, J., Yang, J., Jana, S.: Formal security anal-
ysis of neural networks using symbolic intervals. Technical report (2018).
arXiv:1804.10829

24. Xiang, W., Tran, H., Johnson, T.: Output reachable set estimation and verification
for multi-layer neural networks. IEEE Trans. Neural Netw. Learn. Syst. (TNNLS)
99, 1–7 (2018)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://github.com/guykatzz/Marabou/tree/cav_artifact
https://github.com/guykatzz/Marabou/tree/cav_artifact
http://arxiv.org/abs/1801.05950
https://doi.org/10.1007/978-3-642-14295-6_24
https://doi.org/10.1007/978-3-642-14295-6_24
http://arxiv.org/abs/1312.6199
http://arxiv.org/abs/1804.10829
http://creativecommons.org/licenses/by/4.0/

Probabilistic Systems,
Runtime Techniques

Probabilistic Bisimulation for Parameterized
Systems

(with Applications to Verifying Anonymous Protocols)

Chih-Duo Hong1(B), Anthony W. Lin2(B), Rupak Majumdar3(B),

and Philipp Rümmer4(B)

1 Oxford University, Oxford, UK
chihduo.hong@gmail.com

2 TU Kaiserslautern, Kaiserslautern, Germany
lin@cs.uni-kl.de

3 Max Planck Institute for Software Systems, Kaiserslautern, Germany
rupak@mpi-sws.org

4 Uppsala University, Uppsala, Sweden
philipp.ruemmer@it.uu.se

Abstract. Probabilistic bisimulation is a fundamental notion of process equiva-
lence for probabilistic systems. It has important applications, including the for-
malisation of the anonymity property of several communication protocols. While
there is a large body of work on verifying probabilistic bisimulation for finite
systems, the problem is in general undecidable for parameterized systems, i.e.,
for infinite families of finite systems with an arbitrary number n of processes.
In this paper we provide a general framework for reasoning about probabilistic
bisimulation for parameterized systems. Our approach is in the spirit of software
verification, wherein we encode proof rules for probabilistic bisimulation and use
a decidable first-order theory to specify systems and candidate bisimulation rela-
tions, which can then be checked automatically against the proof rules.

We work in the framework of regular model checking, and specify an infinite-
state system as a regular relation described by a first-order formula over a uni-
versal automatic structure, i.e., a logical theory over the string domain. For prob-
abilistic systems, we show how probability values (as well as the required oper-
ations) can be encoded naturally in the logic. Our main result is that one can
specify the verification condition of whether a given regular binary relation is
a probabilistic bisimulation as a regular relation. Since the first-order theory of
the universal automatic structure is decidable, we obtain an effective method
for verifying probabilistic bisimulation for infinite-state systems, given a regu-
lar relation as a candidate proof. As a case study, we show that our framework
is sufficiently expressive for proving the anonymity property of the parameter-
ized dining cryptographers protocol and the parameterized grades protocol. Both
of these protocols hitherto could not be verified by existing automatic methods.

This research was sponsored in part by the ERC Starting Grant 759969 (AV-SMP), ERC Synergy
project 610150 (ImPACT), the DFG project 389792660-TRR 248 (Perspicuous Computing), the
Swedish Research Council (VR) under grant 2018-04727, and by the Swedish Foundation for
Strategic Research (SSF) under the project WebSec (Ref. RIT17-0011).

c© The Author(s) 2019
I. Dillig and S. Tasiran (Eds.): CAV 2019, LNCS 11561, pp. 455–474, 2019.
https://doi.org/10.1007/978-3-030-25540-4_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-25540-4_27&domain=pdf
https://doi.org/10.1007/978-3-030-25540-4_27

456 C.-D. Hong et al.

Moreover, with the help of standard automata learning algorithms, we show that
the candidate relations can be synthesized fully automatically, making the verifi-
cation fully automated.

1 Introduction

Equivalence checking using bisimulation relations plays a fundamental role in formal
verification. Bisimulation is the basis for substitutability of systems: if two systems are
bisimilar, their behaviors are the same and they satisfy the same formulas in expressive
temporal logics. The notion of bisimulation is defined both for deterministic [39] and
for probabilistic transition systems [34]. In both contexts, checking bisimulation has
many applications, such as proving correctness of anonymous communication proto-
cols [15], reasoning about knowledge [22], program optimization [32], and optimiza-
tions for computational problems (e.g. language equivalence and minimization) of finite
automata [12].

The problem of checking bisimilarity of two given systems has been widely stud-
ied. It is decidable in polynomial-time for both probabilistic and non-probabilistic finite-
state systems [6,17,20,52]. These algorithms form the basis of practical tools for check-
ing bisimulation. For infinite-state systems, such as parameterized versions of commu-
nication protocols (i.e. infinite families of finite-state systems with an arbitrary num-
ber n of processes), the problem is undecidable in general. Most research hitherto has
focused on identifying decidable subcases (e.g. strong bisimulations for pushdown sys-
tems for probabilistic and non-probabilistic cases [25,47,48]), rather than on providing
tool support for practical problems.

In this paper, we propose a first-order verification approach—inspired by software
verification techniques—for reasoning about bisimilarity for infinite-state systems. In
our approach, we provide first-order logic proof rules to determine if a given binary
relation is a bisimulation. To this end, we must find an encoding of systems and rela-
tions and a decidable first-order theory that can formalize the system, the property,
and the proof rules. We propose to use the decidable first-order theory of the univer-
sal automatic structure [8,10]. Informally, the domain of the theory is a set of words
over a finite alphabet Σ, and it captures the first-order theory of the infinite |Σ|-ary tree
with a relation that relates strings of the same level. The theory can express precisely
the class of all regular relations [8] (a.k.a. automatic relations [10]), which are rela-
tions ϕ(x1, . . . , xk) over strings Σ∗ that can be recognized by synchronous multi-tape
automata. It is also sufficiently powerful to capture many classes of non-probabilistic
infinite-state systems and regular model checking [3,13,49–51].

We demonstrate the effectiveness of the approach by encoding and automatically
verifying some challenging examples from the literature of parameterized systems in
our logic: the anonymity property of the parameterized dining cryptographers protocol
[16] and the grades protocol [29]. These examples were only automatically verified
for some fixed parameters using finite-state model checkers or equivalence checkers
(e.g. see [28,29]). Just as invariant verification for software separates out the proof
rules (verification conditions in a decidable logic) from the synthesis of invariants, we
separate out proof rules for bisimulation from the synthesis of bisimulation relations.

Probabilistic Bisimulation for Parameterized Systems 457

We demonstrate how recent developments in generating and refining candidate proofs
as automata (e.g. [18,26,27,37,38,40,41,53]) can be used to automate the search of
proofs, making our verification fully “push button.”

Contributions. Our contributions are as follows. First, we show how probabilistic
infinite-state systems can be faithfully encoded in the first-order theory of universal
automatic structure. In the past, the theory has been used to reason about qualitative
liveness of weakly-finite MDPs (e.g. see [36,37]), which allows the authors to disre-
gard the actual non-zero probability values. To the best of our knowledge, no encoding
of probabilistic transition systems in the theory was available. In order to be able to
effectively encode probabilistic systems, our theory should typically be two-sorted: one
sort for encoding the configurations, and the other for encoding the probability values.
We show how both sorts (and the operations required for the sorts) can be encoded
in the universal automatic structure, which requires only the domain of strings. In the
sequel, such transition systems will be called regular transition systems.

Second, using the minimal probability assumption on the transition systems [34]
(i.e. there exists an ε > 0 such that any non-zero transition probability is at least ε)—
which is often satisfied in practice—we show how the verification condition of whether
a given regular binary relation is a probabilistic bisimulation can be encoded in the
theory. The decidability of the first-order theory over the universal automatic structure
gives us an effective means of checking probabilistic bisimulation for regular transition
systems. In fact, the theory can be easily reduced to the weak monadic theory WS1S of
one successor (therefore, allowing highly optimized tools like Mona [31] and Gaston
[23]) by interpreting finite words as finite sets (e.g. see [19,46]).

Our framework requires the encoding of the systems and the proofs in the first-order
theory of the universal automatic structure. Which interesting examples can it capture?
Our third contribution is to provide two examples from the literature of parameterized
verification: the anonymity property of the parameterized dining cryptographers proto-
col [16] and of the parameterized grades protocol [29]. We study two versions of dining
cryptographers protocol in this paper: the classical version where the secrets are single
bits, and a generalized version where the secrets are bit-vectors of arbitrary length.

Thus far, our framework requires a candidate proof to be supplied by the user. Our
final contribution is to demonstrate how standard techniques from the synthesis litera-
ture (e.g. automata learning [18,26,27,37,38,40,41,53]) can be used to fully automate
the proof search. Using automata learning, we successfully pinpoint regular proofs for
the anonymity property of the three protocols: the two dining cryptographers protocols
are verified in 6 and 28 s, respectively, and the grades protocol in 35 s.

Other RelatedWork. The verification framework we use in this paper can be construed
as a regular model checking [3] framework using regular relations. The framework uses
first-order logic as the language, which makes it convenient to express many verification
conditions (as is well-known from first-order theorem proving [14]). The use of the
universal automatic structure allows us to express two different sorts (configurations
and probability values) in one sort (i.e. strings). Most work in regular model checking
focuses on safety and liveness properties (e.g. [2,3,11,13,27,36,37,40,42,49,51,53]).

Some automated techniques can prove the anonymity property of the dining cryp-
tographers protocol and the grades protocol in the finite case, e.g., the PRISM model

458 C.-D. Hong et al.

checker [28,45] and language equivalence by the tool APEX [29]. To the best of our
knowledge, our method is the first automated technique proving the anonymity property
of the protocols in the parameterized case.

Our work is in spirit of deductive software verification (e.g., [4,14,24,35,43,44]),
where one provides inductive invariants manually, and a tool automatically checks cor-
rectness of the candidate invariants. In theory, our result yields a fully-automatic proce-
dure by enumerating all candidate regular proofs, and at the same time enumerating all
candidate counterexamples (note that we avoid undecidability by restricting attention to
proofs encodable as regular relations). In our implementation, we use recent advances
in automata-learning based synthesis to efficiently encode the search [18,37].

2 Preliminaries

General Notation. We use N to denote non-negative integers. Given a, b ∈ R, we use
a standard notation [a, b] := {c ∈ R : a ≤ c ≤ b} to denote real intervals. Given
a set S, we use S∗ to denote the set of all finite sequences of elements from S. The
set S∗ always includes the empty sequence which we denote by ε. We call a function
f : S → [0, 1] a probability distribution over S if

∑
s∈S f(s) = 1. We shall use

Is to denote the probability distribution f with f(s) = 1, and DS to denote the set
of probability distributions over S. Given a function f : X1 × · · · × Xn → Y , the
graph of f is the relation {(x1, ..., xn, f(x1, ..., xn)) : ∀i ∈ {1, . . . , n}. xi ∈ Xi}.
Whenever a relation R is an equivalence relation over set S, we use S/R to denote the
set of equivalence classes created by R. Depending on the context, we may use pR q or
R(p, q) to denote (p, q) ∈ R.

Words and Automata. We assume basic familiarity with word automata. Fix a finite
alphabetΣ. For each finite wordw := w1 . . . wn ∈ Σ∗, we writew[i, j], where 1 ≤ i ≤
j ≤ n, to denote the segment wi . . . wj . Given an automaton A := (Σ,Q, δ, q0, F), a
run of A on w is a function ρ : {0, . . . , n} → Qwith ρ(0) = q0 that obeys the transition
relation δ. We may also denote the run ρ by the word ρ(0) · · · ρ(n) over the alphabet Q.
The run ρ is said to be accepting if ρ(n) ∈ F , in which case we say that the word w is
accepted by A. The language L(A) of A is the set of words in Σ∗ accepted by A.

Transition Systems.We fix a set ACT of action symbols. A transition system over ACT
is a tuple S := 〈S; {→a}a∈ACT〉, where S is a set of configurations and →a ⊆ S × S
is a binary relation over S. We use → to denote the relation

⋃
a∈ACT →a. We say that

a sequence s1 → · · · → sn+1 is a path in S if s1, ..., sn+1 ∈ S and si → si+1

for i ∈ {1, . . . , n}. A transition system is called bounded branching if the number of
configurations reachable from a configuration in one step is bounded. Formally, this
means that there exists an a priori integer N such that for all s ∈ S, |{s′ ∈ S : s →
s′}| ≤ N .

Probabilistic Transition Systems. A probabilistic transition system (PTS) [34] is a
structure S := 〈S; {δa}a∈ACT〉 where S is a set of configurations and δa : S → DS ∪
{0} maps each configuration to either a probability distribution or a zero function 0.
Here δa(s) = 0 simply means that s is a “dead end” for action a. We shall use δa(s, s′)
to denote δa(s)(s′). In this paper, we always assume that δa(s, s′) is a rational number

Probabilistic Bisimulation for Parameterized Systems 459

and |{s′ : δa(s, s′)
= 0}| < ∞. The underlying transition graph of a PTS is a transition
system 〈S; {→a}a∈ACT〉 such that s →a s′ iff δa(s, s′)
= 0.

It is standard (e.g. see [34]) to impose the minimal probability assumption on the
PTS that we shall be dealing with, i.e., there is ε > 0 such that any transition with a
non-zero probability p satisfies p > ε. This assumption is practically sensible since it
is satisfied by most PTSs that we deal with in practice (e.g. finite PTS, probabilistic
pushdown automata [21], and most examples from probabilistic parameterized systems
[36,37] including our examples from Sect. 5). The minimal probability assumption,
among others, implies that the PTS is bounded-branching (i.e. that its underlying tran-
sition graph is bounded-branching). In the sequel, we shall adopt this assumption.

Probabilistic Bisimulations. Let S := 〈S; {δa}a∈ACT〉 be a PTS. We write s
ρ−→a S′

if
∑

s′∈S′ δa(s, s′) = ρ. A probabilistic bisimulation for S is an equivalence relation
R over S, such that (p, q) ∈ R implies

∀a ∈ ACT. ∀S′ ∈ S/R. (p
ρ−→a S′ ⇔ q

ρ−→a S′). (1)

We say that p and q are probabilistic bisimilar (written as p ∼ q) if there is a proba-
bilistic bisimulation R such that (p, q) ∈ R. We can compute probabilistic bisimulation
between two PTSs S := 〈S; {δa}a∈ACT〉 and S′ := 〈S′; {δ′

a}a∈ACT〉 by computing
a probabilistic bisimulation R for the disjoint union of S and S′, which is defined as
S � S′ := 〈S � S′; {δ′′

a}a∈ACT〉 where δ′′
a(s) := δa(s) for s ∈ S, and δ′′

a(s) := δ′
a(s)

for s ∈ S′. In such case, we say R is a probabilistic bisimulation between S and S′.

3 Framework of Regular Relations

In this section we describe the framework of regular relations for specifying proba-
bilistic infinite-state systems, properties to verify, and proofs, all in a uniform symbolic
way. The framework is amenable to automata-theoretic algorithms in the spirit of regu-
lar model checking [3,13].

The framework of regular relations [8] (a.k.a. automatic relations [9]) uses the first-
order theory of universal1 automatic structure

U := 〈Σ∗;�, eqL, {la}a∈Σ〉, (2)

where Σ is some finite alphabet, � is the (non-strict) prefix-of relation, eqL is the
binary equal length predicate, and la is a unary predicate asserting that the last letter
of the word is a. The domain of the structure is the set of finite words over Σ, and for
words w,w′ ∈ Σ∗, we have w � w′ iff there is some w′′ ∈ Σ∗ such that w · w′′ = w′,
eqL(w,w′) iff |w| = |w′|, and la(w) iff there is some w′′ ∈ Σ∗ such that w = w′′ · a.

Next, we discuss the expressive power of first-order formulas over the universal
automatic structures, and decision procedures for satisfiability of such formulas. In
Sect. 4, we shall describe: (1) how to specify a PTS as a first-order formula in U , and (2)
how to specify the verification condition for probabilistic bisimulation property in this
theory. In Sect. 5, we shall show that the theory is sufficiently powerful for capturing
probabilistic bisimulations for interesting examples.
1 Here, “universal” simply means that all automatic structures are first-order interpretable in this
structure.

460 C.-D. Hong et al.

Expressiveness and Decidability. The name “regular” associated with this framework
is because the set of formulas ϕ(x1, . . . , xk) first-order definable in U coincides with
regular relations, i.e., relations definable by synchronous automata. More precisely, we
define [[ϕ]] as the relation which contains all tuples (w1, . . . , wk) ∈ (Σ∗

⊥)
k such that

U |= ϕ(w1, . . . , wk). In addition, we define the convolution w1 ⊗ · · · ⊗ wk of words
w1, . . . , wk ∈ Σ∗ as a word w over Σk

⊥ (where ⊥ /∈ Σ) such that w[i] = (a1, . . . , ak)
with

aj =
{

wj [i] if |wj | ≥ i, or
⊥ otherwise.

In other words, w is obtained by juxtaposing w1, . . . , wk and padding the shorter words
with ⊥. For example, 010 ⊗ 00 = (0, 0)(1, 0)(0,⊥). A k-ary relation R over Σ∗ is
regular if the set {w1 ⊗ · · · ⊗ wk : (w1, . . . , wk) ∈ R} is a regular language over the
alphabet Σk

⊥. The relationship between U and regular relations can be formally stated
as follows.

Proposition 1 ([8–10]).

1. Given a formula ϕ(x̄) over U , the relation [[ϕ]] is effectively regular. Conversely,
given a regular relation R, we can compute a formula ϕ(x̄) over U such that [[ϕ]] =
R.

2. The first-order theory of U is decidable.

The decidability of the first-order theory of U follows using a standard automata-
theoretic algorithm (e.g. see [9,49]).

In the sequel, we shall also use the term regular relations to denote relations defin-
able in U . In addition, to avoid notational clutter, we shall freely use other regular
relations (e.g. successor relation ≺succ of the prefix �, and membership in a regular
language) as syntactic sugar.

We note that the first-order theory of U can also be reduced to weak monadic theory
WS1S of one successor (therefore, allowing highly optimized tools like MONA [31]
and Gaston [23]) by translating finite words to finite sets. The relationship between
the universal automatic structure and WS1S can be made precise using the notion of
finite-set interpretations [19,46].

4 Probabilistic Bisimilarity Within Regular Relations

In this section, we show how the framework of regular relations can be used to encode
a PTS, and the corresponding proof rules for probabilistic bisimulation.

4.1 Specifying a Probabilistic Transition System

Since we assume that all probability values specified in our systems are rational num-
bers, the fact that our PTS is bounded-branching implies that we can specify the prob-
ability values by natural weights (by multiplying the probability values by the least
common multiple of the denominators). For example, if a configuration c has an action

Probabilistic Bisimulation for Parameterized Systems 461

toss that takes it to c1 and c2, each with probability 1/2, then the new system simply
changes both values of 1/2 to 1. This is a known trick in the literature of probabilistic
verification (e.g. see [1]). Therefore, we can now assume that the transition probability
functions have range N. The challenge now is that our encoding of a PTS in the univer-
sal automatic structure must encode two different sorts as words over a finite alphabet
Σ: configurations and natural weights.

Now we are ready to show how to specify a PTS S in our framework. Fix a finite
alphabet Σ containing at least two letters 0 and 1. We encode the domain ofS as words
over Σ. In addition, a natural weight n ∈ N can be encoded in the usual way as a binary
string. This motivates the following definition.

Definition 1. Let S be a PTS 〈S; {δa}a∈ACT〉. We say that S is regular if the domain
S is a regular subset of Σ∗ (i.e. definable by a first-order formula ϕ(x) with one free
variable over U), and if the graph of each function δa is a ternary regular relation (i.e.
definable by a first-order formula ϕ(x, y, z) over U , where x and y encode configura-
tions, and z encodes a natural weight).

Definition 1 is quite general since it allows for an infinite number of different
natural weights in the PTS. Note that we can make do without the second sort (of
numeric weights) if we have only finitely many numeric weights n1, . . . , nm. This can
be achieved by specifying a regular relation Ra,i for each action label a ∈ ACT and
numeric weight ni with i ∈ {1, . . . , m}.
Example 1. We show a regular encoding of a very simple PTS: a random walk on the
set of natural numbers. At each position x, the system can non-deterministically choose
to loop or to move. If the system chooses to loop, it will stay at the same position with
probability 1. If the system chooses to move, it will move to x+1 with probability 1/4,
or move to max(0, x − 1) with probability 3/4. Normalising the probability values by
multiplying by 4, we obtain the numeric weights of 4, 1, and 3 for the aforementioned
transitions, respectively.

To represent the system by regular relations, we encode the positions in unary and
the numeric weights in binary. The set of configurations is the regular language 1∗. The
graph of the transition probability function can be described by a first-order formula
ϕ(x, y, z) := ϕloop(x, y, z) ∨ ϕmove(x, y, z) over U , where

ϕloop(x, y, z) := x ∈ 1∗ ∧ y ∈ 1∗ ∧ ((x = y ∧ z = 100) ∨ (x
= y ∧ z = 0)) ;
ϕmove(x, y, z) := x ∈ 1∗ ∧ y ∈ 1∗ ∧ ((x ≺succ y ∧ z = 1) ∨

(y ≺succ x ∧ z = 11) ∨ (x = ε ∧ y = ε ∧ z = 11) ∨
(¬(x ≺succ y) ∧ ¬(y ≺succ x) ∧ ¬(x = ε ∧ y = ε) ∧ z = 0)).

��
Example 2. As a second example, consider a PTS (from [25], Example 1) described by
a probabilistic pushdown automaton with states Q = {p, q, r} and stack symbols Γ =
{X,X ′, Y, Z}. There is a unique action a, and the transition rules δa are as follows:

pX
0.5−−→ qXX pX

0.5−−→ p qX
1−→ pXX rY

1−→ rXX

rX
0.3−−→ rY X rX

0.2−−→ rY X ′ rX
0.5−−→ r

rX ′ 0.4−−→ rY X rX ′ 0.1−−→ rY X ′ rX ′ 0.5−−→ r

462 C.-D. Hong et al.

A configuration of the PTS is a word in QΓ ∗, consisting of a state in Q and a word over
the stack symbols. A transition can be applied if the prefix of the configuration matches
the left hand side of the transition rules above. We encode the PTS as follows: the set
of configurations is QΓ ∗, the weights are represented in binary after normalization, and
the transition relationϕ(x, y, z) encodes the transition rules in disjunction. For example,

the disjunct corresponding to the rule pX
0.5−−→ qXX is

x ∈ QΓ ∗ ∧ y ∈ QΓ ∗ ∧ (∃u. x = pXu ∧ y = qXXu) ∧ z = 101.

Note that the PTS is bounded branching with a bound 3. ��

4.2 Proof Rules for Probabilistic Bisimulation

Fix the set ACT of action symbols and the branching bound N ≥ 1, owing
to the minimal probability assumption. Consider a two-sorted vocabulary σ =
〈{Pa}a∈ACT, R,+〉, where Pa is a ternary relation (with the first two arguments over
the first sort, and the third argument over the second sort of natural numbers), R is a
binary relation over the first sort, and + is the addition function over the second sort of
natural numbers. The main result we shall show next is summarized in the following
theorem:

Theorem 1. There is a fixed first-order formula Φ over σ such that a binary relation
R is a probabilistic bisimulation over a bounded-branching PTS S = 〈S; {δa}a∈ACT〉
iff (S, R) |= Φ. Furthermore, when S is a regular PTS and R is a regular relation,
we can compute in polynomial time a first-order formula Φ′ over U such that R is a
probabilistic bisimulation over S iff U |= Φ′.

This theorem implies the following result:

Theorem 2. Given a regular relation E ⊆ Σ∗ ×Σ∗ and a bounded-branching regular
PTS S = 〈S; {δa}a∈ACT〉, there exists an algorithm that either finds (u, v) ∈ E which
are not probabilistically bisimilar or finds a regular probabilistic bisimulation relation
R overS such that E ⊆ R if one exists. The algorithm does not terminate iff E is con-
tained in some probabilistic bisimulation relation but every probabilistic bisimulation
R containing E is not regular.

Note that when verifying parameterized systems we are typically interested in
checking bisimilarity over a set of pairs (instead of just one pair) of configurations,
and hence E in the above statement.

Proof of Theorem 2. To prove this, we provide two semi-algorithms, one for checking
the existence of R and the other for showing that a pair (v, w) ∈ E is a witness for
non-bisimilarity.

By Theorem 1, we can enumerate all possible candidate regular relation R and
effectively check that R is a probabilistic bisimulation over S. The condition that E ⊆
R is a first-order property, and so can be checked effectively.

To show non-bisimilarity is recursively enumerable, observe that if we fix (v, w) ∈
E and a number d, then the restrictionsSv andSw to configurations that are of distance

Probabilistic Bisimulation for Parameterized Systems 463

at most d away from v and w (respectively) are finite PTS. Therefore, we can devise
a semi-algorithm which enumerates all (v, w) ∈ E, and all probabilistic modal logic
(PML) formulas [34] F over ACT containing only rational numbers (i.e. a formula of
the form 〈a〉μF ′, where μ ∈ [0, 1] is a rational number, which is sufficient because
we assume only rational numbers in the PTS). We need to check that Sv, v |= F , but
Sw, w � F . Model checking PML formulas over finite systems is decidable (in fact,
the logic is subsumed by Probabilistic CTL [7]), which makes our check effective. ��

4.3 Proof of Theorem 1

In the rest of the section, we shall give a proof of Theorem 1. Given a binary relation
R ⊆ S × S, we can write a first-order formula Feq(R) for checking that R is an
equivalence relation:

∀s, t, u ∈ S.R(s, s) ∧ (R(s, t) ⇒ R(t, s)) ∧ ((R(s, t) ∧ R(t, u) ⇒ R(s, u)).

We shall next define a formula ϕa(p, q) for each a ∈ ACT, such that R is a probabilistic
bisimulation for S = 〈S; {δa}a∈ACT〉 iff (S, R) |= Φ(R), where

Φ(R) := Feq(R) ∧ ∀p, q ∈ S. R(p, q) ⇒
∧

a∈ACT
(ψa(p) ∧ ψa(q)) ∨ ϕa(p, q). (3)

The formula ψa(s) := ∀s′ ∈ S. δa(s, s′) = 0 states that configuration s cannot move
to any configuration through action a.

Before we describe ϕa(p, q), we provide some intuition and define some interme-
diate macros. Fix configurations p and q. Informally, ϕa(p, q) will first guess a set of
configurations u1, . . . , uN containing the successors of p on action a, and a set of con-
figurations v1, . . . , vN containing the successors of q on action a. Second, it will guess
labellings α1, . . . , αN and β1, . . . , βN which correspond to partitionings of the config-
urations u1, . . . , uN and v1, . . . , vN , respectively. The intuition is that the α’s and β’s
“name” the partitions: if αi = αj (resp. βi = βj), then ui and uj (resp. vi and vj) are
guessed to be in the same partition. The formula then checks that the guessed partition-
ing is compatible with the equivalence relation R (i.e. if the labelling claims ui and uj

are in the same partition, then indeed R(ui, uj) holds), and that the probability masses
of the partitions assigned by configurations p and q satisfy the constraint given in (1).

For the first part, we define a formula

succa(w;u1, . . . , uN) :=
(∧

1≤i<j≤N
ui
= uj

)
∧

(
∀u ∈ S. δa(w, u)
= 0 ⇒

∨

1≤i≤N
u = ui

)
,

stating that the successors of configuration w on action a are among the N distinct con-
figurations u1, . . . , uN . Note that a configuration may have fewer than N successors.
In this case, we can set the rest of the variables to arbitrary distinct configurations.

For the second part, we shall check that R is compatible with the guessed partitions,
and that configurations p and q assign the same probability mass to the same partition.

464 C.-D. Hong et al.

Let k1, . . . , kn be a labelling for configurations s1, . . . , sn. To check that the partition-
ing induced by the labelling is compatible with R, we need to express the condition that
ki = kj if and only if R(si, sj) holds. To this end, we define a formula

compatR(s1, . . . , sn; k1, . . . , kn) :=
∧

1≤i<j≤n
(R(si, sj) ⇔ ki = kj) .

Now, we are ready to define ϕa(p, q):

ϕa(p, q) := ∃u1, . . . , uN , v1, . . . , vN ∈ S. ∃α1, . . . , αN , β1, . . . , βN ∈ N.

succa(p;u1, . . . , uN) ∧ succa(q; v1, . . . , vN) ∧ (4)

compatR(u1, . . . , uN , v1, . . . , vN ;α1, . . . , αN , β1, . . . , βN) ∧
∀k ∈ N.

(∑

i: αi=k
δa(p, ui) =

∑

i: βi=k
δa(q, vi)

)
.

With this definition, ϕa(p, q) holds if and only if p
ρ−→a S′ ⇔ q

ρ−→a S′ holds for any
ρ ≥ 0 and equivalence class S′ ∈ S/R.

Example 3. Consider the PTS from Example 2. The configurations pXZ and rX are
probabilistic bisimilar. This can be seen using a probabilistic bisimulation relation with
equivalence classes {pXkZ} ∪ {rw : w ∈ {X,X ′}k} for all k ≥ 0 and {qXk+1Z} ∪
{rY w : w ∈ {X,X ′}k} for all k ≥ 1. The probabilistic bisimulation relation is
definable as the symmetric closure of a regular relation R, where (w1, w2) ∈ R iff

(w1 = w2) ∨
(w1 ∈ pX∗Z ∧ w2 ∈ r(X + X ′)∗⊥ ∧ |w1| = |w2|) ∨
(w1 ∈ r(X + X ′)∗ ∧ w2 ∈ r(X + X ′)∗ ∧ |w1| = |w2|) ∨
(w1 ∈ qX∗Z ∧ w2 ∈ rY (X + X ′)∗⊥ ∧ |w1| = |w2|) ∨
(w1 ∈ rY (X + X ′)∗ ∧ w2 ∈ rY (X + X ′)∗ ∧ |w1| = |w2|).

For this example, the formula (3) simplifies to Feq(R) ∧ ∀s, t ∈ S. ϕa(p, q) for the
unique action a. This formula defines a condition that checks the bisimulation relation
for all states symbolically. To see the formula in action, fix configurations pXZ and
rX which are probabilistic bisimilar. In the PTS, pXZ has two successors, qXXZ
and pZ, each with probability 0.5, and rX has three successors, rY X with probability
0.3, rY X ′ with probability 0.2, and r with probability 0.5. In the formula for ϕa(p, q),
we can set the successors ui of pXZ and the successors vj of rX as above (the third
“successor” u3 is set to an arbitrary configuration not reachable from pXZ), and set
α1 = 1, α2 = 2, β1 = β2 = 1, and β3 = 2, corresponding to the equivalence classes
of the bisimulation relation. One can check that the probability masses to these classes
are the same.

We remark that the first-order theory of U is sufficient to encode any probabilistic
pushdown automaton, not just this example. ��

We proceed to show that if R and δa are first-order definable over U then so are ψa

and ϕa. Suppose that δa is encoded using the ternary relation δa(x, y, z), as stated in
the previous section. (We shall re-use the symbol δ here to avoid a clash of names).

Probabilistic Bisimulation for Parameterized Systems 465

We define ψa(s) := ∀s′ ∈ S. ∀z ∈ N. δa(s, s′, z) ⇔ z = 0. To define ϕa, the key
point is to express the sum of transition probabilities in the logic. We use the fact that
addition of integers in binary encoding is regular (see e.g. [9]), and write a formula that
performs iterated addition. Formally, for each a ∈ ACT we define a formula χa such
that

χa(u;u1, . . . , uN ;α1, . . . , αN ; k; z) :=

∃z1, . . . , zN+1 ∈ N. z1 = 0 ∧ zN+1 = z ∧
∧

1≤i≤N
χ′

a(u, ui, αi, k, zi, zi+1),

where

χ′
a(u, u′, κ, k, x, y) := (κ = k ∧ ∃z. δa(u, u′, z) ∧ y = x + z) ∨ (κ
= k ∧ y = x)

performs a single addition—we use the fact that addition “y = x + z” in binary is
encodable as a regular relation—and z1, . . . , zN+1 store the intermediate sums. Hence,
given k ∈ N, u1, . . . , uN , v1, . . . , vN ∈ S, and α1, . . . , αN , β1, . . . , βN ∈ N,

∑

i: αi=k
δa(p, ui) =

∑

i: βi=k
δa(q, vi)

if and only if

∃z ∈ N. χa(p;u1, . . . , uN ;α1, . . . , αN ; k; z) ∧ χa(q; v1, . . . , vN ;β1, . . . , βN ; k; z).

It follows that ϕa(p, q) defined in (4) can be encoded in the first-order theory of U .

Remark. Note that checking the validity of a given presentation of a regular PTS is
algorithmic. To see this, suppose we are given a set of formulae {δa(x, y, z)}a∈ACT that
is claimed to encode the probabilistic transition functions of a PTS with a branching
bound N . Fix a formula δa. First, we need to check that for all x ∈ S, there are at most
N distinct y’s such that δa(x, y, z) satisfies z
= 0. Second, we need to check that [[δa]] is
a function, i.e., ∀x, y. ∃!z. δa(x, y, z), where ∃!z. ϕ(x̄, z) is a shorthand for the formula
asserting there exists precisely one z such that ϕ(x̄, z) is true. Third, we need to check
that [[δa]] encodes a mapping S → {0} ∪ DS . The first two requirements are easily seen
to be expressible as a first-order formula and hence is algorithmic over U . The third
requirement amounts to checking the assertion that there exists wa ∈ N satisfying

∀x ∈ S. (∀y ∈ S. ∀z ∈ N. δa(x, y, z) ⇔ z = 0) ∨
(∃y1, . . . , yN ∈ S. ∃z1, . . . , zN ∈ N.

succa(x; y1, . . . , yN) ∧
∧

1≤i≤N
δa(x, yi, zi) ∧

∑

1≤i≤N
zi = wa),

which is a first-order formula and is algorithmic over U by the fact that summation of
a fixed number of weights is regular (as shown earlier in this section). Finally, since all
of the wa’s are expected to be the same common multiple of the denominators of the
transition probabilities, we need to check that there is w ∈ N such that wa = w for all
a ∈ ACT. This is again algorithmic as we can pinpoint the exact value of each wa by
enumeration.

466 C.-D. Hong et al.

5 Application to Anonymity Verification

In this section, we show how to verify the anonymity property of cryptographic pro-
tocols via computation of probabilistic bisimulations. We shall first formalize the con-
nection between the concepts of anonymity and probabilistic bisimulation. We then
introduce a verification framework and apply it to verify the anonymity property of the
dining cryptographers protocol [16] and the grades protocol [29].

A (discrete time) Markov chain (a.k.a. DTMC) is a structure M := 〈S; δ;L〉 where
S is a set of configurations, δ : S → DS is a family of probability distributions, and
L : S → ACT is a labelling of the states. We shall use δ(s, s′) to denote δ(s)(s′),
the transition probability from s to s′. A sequence s0 . . . sn ∈ S∗ is called a path of
M if δ(si, si+1) > 0 for i ∈ {0, . . . , n − 1}. The probability distribution induced by
the paths in a DTMC can be defined using a standard cylinder construction (see e.g.
[33]) as follows. Given a finite path π := s0 · · · sn ∈ S∗, we set Runπ to be a basic
cylinder, which is the set of all finite/infinite paths with π as a prefix. We associate this
cylinder with probability Prs0(Runπ) =

∏n−1
i=0 δ(si, si+1). This gives rise to a unique

probability measure for the σ-algebra over the set of all paths from s0.
Given a PTS S := 〈S; {δa}a∈ACT〉, an adversary f : S∗ → ACT resolves the

non-determinacy of S and induces a DTMC Sf := 〈S′; δ′;L′〉. Here S′ := S∗ ∪ {$}
contains all finite paths of S plus a “sink state” $ such that δ′(π) := I$

2 if and only
if either π = $, or δf(π) is the zero function. We define δ′(π) := δf(π) otherwise. The
labelling of Sf is defined as L′($) := ⊥ and L′(π) := f(π) for π ∈ S∗.

Given a DTMC 〈S; δ;L〉, the trace of a path π := s0 · · · sn ∈ S∗ is defined as
τ(π) := L(s0) · · · L(sn). A trace event T is a set of finite traces; the probability of T
with respect to a configuration s is specified with Prs(T) := Prs(

⋃
{Runπ : τ(π) ∈

T , π starts from s}).
Now we are ready to define the concept of anonymity. Fix S := 〈S; {δa}a∈ACT〉

and a set I ⊆ S of initial configurations. We say S is anonymous to an adversary f if
for all s ∈ I and trace event T , the value of Prs(T) in Sf is solely determined by T .
Intuitively, this means that the adversary cannot obtain any information about a specific
initial configuration by experimenting on the system and observing the traces.

We shall only consider external adversaries in this paper. An adversary f : S∗ →
ACT is external if f(s0 · · · sn) = f(s′

0 · · · s′
n) when L(si) = L(s′

i) for i ∈ {0, . . . , n}.
That is, an external adversary takes action solely based on the trace she has observed so
far. We call a PTS anonymous if it is anonymous to any external adversary. The follow-
ing result establishes a connection between the anonymity property and probabilistic
bisimulations.

Proposition 2. LetS := 〈S; {δa}a∈ACT〉 be a PTS and f be an external adversary for
S. Then for all u, v ∈ S such that u ∼ v, Pru(T) = Prv(T) holds for any trace event
T in Sf . That is, configurations u and v induce the same trace distribution in Sf .

Based on Proposition 2, we propose a framework to verify the anonymity property
of S as follows. We first specify a “reference system” S′ := 〈S; {δ′

a}a∈ACT〉 that has

2 Recall that Is denotes the point distribution at s, namely Is(s) = 1.

Probabilistic Bisimulation for Parameterized Systems 467

the same initial configurations and actions as those of S, except that the trace distribu-
tion ofS′

f is independent of specific initial configurations for any adversary f . We then
try to find a bisimulation relation R between S and the reference system S′ satisfying
R ⊇ {(s, s′) ∈ I × I ′ : s = s′}. When such a relation R is found, we can conclude
that the trace distribution ofSf is also independent of the initial configurations for any
adversary f , and hence prove the anonymity property of S.

The Dining Cryptographers Protocol. Dining cryptographers protocol [16] is a
multi-party computation algorithm aiming to securely compute the XOR of the secret
bits held by the participants. More precisely, consider a ring of n ≥ 3 partici-
pants p0, . . . , pn−1 such that each participant pi holds a secret bit xi. To compute
x0 ⊕ · · · ⊕ xn−1 without revealing information about the values of x0, . . . , xn−1, the
participants carry out a two-stage computation as follows: (i) Each two adjacent partici-
pants pi, pi+1 compute a random bit bi that is accessible only to them; (ii) Each partici-
pant pi announces the value ai := xi ⊕bi ⊕bi−1

3 to the other participants. Hence, every
participant pi can observe the values of xi, bi, bi−1 and a0, . . . , an−1. It turns out that
a0 ⊕ · · ·⊕ an−1 = x0 ⊕ · · ·⊕xn−1, so all participants are able to compute the XOR of
the secret bits after executing the protocol. Furthermore, the anonymity property of the
protocol assures that any individual participant pi cannot infer the values of the other
secret bits from the information she has observed during the execution of the protocol.

We model the protocol as a length-preserving regular PTS. The configurations of
a ring of n participants are encoded as words of size n. The initial configurations are
words w ∈ {0, 1}∗ such that w[i] represents xi for i ∈ {0, . . . , |w| − 1}. The transi-
tion relation consists of six transitions: observer non-deterministically tossing head (via
action head), observer non-deterministically tossing tail (via action tail), non-observer
tossing head with probability 0.5 (via action toss), non-observer tossing tail with proba-
bility 0.5 (via action toss), participant announcing zero (via action zero), and participant
announcing one (via action one). The outcomes of the tosses by the observer are visible
(i.e. as actions head and tail), while the outcomes of the tosses by the other partici-
pants are hidden (i.e. as action toss). Each maximal trace from an initial configuration
of size n consists of n successive tossing actions, followed by n successive announcing
actions. Starting from an initial configuration w and for i ∈ {0, . . . , n − 1}, the i-th
toss action updates the value of w[j] to w[j] ⊕ bi for j ∈ {i, i + 1}, where bi = 1 if a
head is tossed and bi = 0 otherwise. Any configuration v reached after n tosses would
satisfy v[i] = xi ⊕ bi ⊕ bi−1 for i ∈ {0, . . . , n − 1}. The PTS then “prints out” the
configuration by going through n announcement transitions via actions a0, . . . , an−1,
such that ai is one if v[i] = 1 and ai is zero if v[i] = 0.

We consider the case where the first participant of the protocol is the observer. The
maximal traces of the PTS in this case are in form of t · t′, where |t| = |t′|, t ∈
{head, tail} toss∗{head, tail}, and t′ ∈ {zero, one}∗. For example, head toss tail one
zero zero is a maximal trace starting from initial configuration 010. To prove anonymity,
we define a reference system such that the initial configurations and the actions are
the same as those of the original PTS, except that the announcements a0, . . . , an−1

3 All arithmetical operations on the subscripts are performed modulo n to take the ring structure
into account.

468 C.-D. Hong et al.

encoded in the maximal traces from an initial configuration w are uniformly distributed
over {(a0, . . . , an−1) : a0 ⊕ · · · ⊕ an−1 = w[0] ⊕ · · · ⊕ w[n − 1], a0 = w[0] ⊕
b0 ⊕ bn−1}.4 In this way, the distribution of the announcements is independent of the
initial configuration once the values of x0 ⊕ · · · ⊕ xn−1, x0, b0, and bn−1 (i.e. the
information revealed to the first participant) are fixed. We then compute a probabilistic
bisimulation between the original system and the reference system, establishing the
anonymity property that the first participant cannot infer the secret bits of the other
participants from the information she observes.

A generalized Dining Cryptographers Protocol. We have also considered a generalized
dining cryptographers protocol where the secret messages x0, . . . , xn−1 of the n par-
ticipants are bit-vectors of the same size. Note that the set of the initial configurations
is not regular when the size of the secret messages is parameterized. To construct a reg-
ular model, we allow a configuration to encode secret messages of different sizes, and
devise the transition system such that an initial configuration w can finish the protocol
(i.e. can have a trace containing all of the announcements a0, . . . , an−1) if and only
if the messages encoded in w have same size. The resulting PTS is a regular system;
it over-approximates the PTS of the generalized dining cryptographers protocol in the
sense that the anonymity property of the former implies that of the latter.

The Grades Protocol. The grades protocol [29] is a multi-party computation algorithm
aiming to securely compute the sum of the secrets held by the participants. The setting
of the protocol is pretty similar to that of the dining cryptographers: given n ≥ 3 and
g ≥ 2, we have a ring of n participants p0, . . . , pn−1 where each participant pi holds a
secret xi ∈ {0, . . . , g − 1}. Note that both g and n are parameterized in this protocol.
The goal of the participants is to compute the sum x0 + · · · + xn−1 without revealing
information about the individual secrets. Define M := (g − 1) · n + 1. The protocol
consists of two steps: (i) Each two adjacent participants pi, pi+1 compute a random
number yi ∈ {0, . . . , M − 1}; (ii) Each participant pi announces ai := (xi + yi −
yi−1) mod M to the other participants. After executing the protocol, the participants
compute a := a0 + · · · + an−1 mod M . Because of the ring structure, the yi’s will be
cancelled out in the sum. Thus the value of a will equal to the sum of all secrets. The
anonymity property of the protocol asserts that no participant can infer the secrets held
by the other participants from the information she has observed.

We consider a variant of the grades protocol where M can be any power of two
greater than (g − 1) · n. Observe that the same anonymity and correctness property of
the original protocol also holds for this variant. To verify the anonymity property, we
model an over-approximation of the protocol where the secrets are allowed to range
over {0, . . . , M − 1}. This model is similar to the one we have constructed for the gen-
eralized dining cryptographers protocol except that, e.g., the XOR operations are now
replaced with bitwise additions and negations. A reference system is specified such that
the announcements a1, . . . , an−1 observed by the first participant p0 are uniformly dis-
tributed over the values satisfying a0+ · · ·+an−1 mod M = x0+ · · ·+xn−1 mod M .

4 Such a distribution can be obtained by (i) choose a1, . . . , an−2 ∈ {0, 1} uniformly at random;
(ii) set a0 = w[0] ⊕ b0 ⊕ bn−1; (iii) set an−1 = a0 ⊕ · · · ⊕ an−2 ⊕ w[0] ⊕ · · · ⊕ w[n − 1].

Probabilistic Bisimulation for Parameterized Systems 469

Algorithm 1. Equivalence check for L∗

Input: Candidate automaton H over Σ × Σ, PTS S, and relation E ⊆ (Σ × Σ)∗.
Result: NoSolution(v, w) if there is no bisimulation R with E ⊆ R.

PositiveCEX (v, w) if H should accept (v, w), but does not;
NegativeCEX (v, w) if H accepts (v, w), but should not;
Correct if H is a correct bisimulation for PTS S and E ⊆ L(H);

1 Check whether E ⊆ L(H), and whether S |= Φ(L(H)) using the Φ from (3);
2 if there is a counterexample of minimal length n then
3 Compute the greatest bisimulation R̄n restricted to configurations of length n;
4 if there is (v ⊗ w) ∈ E \ R̄n with |v| = |w| = n then
5 Output NoSolution(v, w) and abort;
6 else if there is (v ⊗ w) ∈ L(H) \ R̄n with |v| = |w| = n then
7 return NegativeCEX (v, w);
8 else if there is (v ⊗ w) ∈ R̄n \ L(H) then
9 return PositiveCEX (v, w);

10 else
11 return Correct ;

By computing a probabilistic bisimulation between the original system and the refer-
ence system, we establish the anonymity property that the grades protocol is anonymous
whenever M is chosen as a power of two with M ≥ (g − 1) · n + 1.

6 Learning Probabilistic Bisimulations

We propose an automata learning method to automatically compute regular probabilis-
tic bisimulations R, focusing on the case of length-preserving PTSs, which covers all
examples given in the previous section. The approach uses active automata learning,
for instance Angluin’s L∗ method [5] or refinements of it, to compute R. This app-
roach is inspired by previous work on using active automata learning for invariant
inference [18,54]. Our procedure assumes (i) as input a bounded-branching PTS S =
〈S; {δa}a∈ACT〉, as well as a length-preserving regular relation E ⊆ (Σ × Σ)∗ sup-
posed to be covered by R; (ii) an effective way to check the correctness of R, i.e., a
decision procedure in the sense of Theorem 1; and (iii) a procedure to compute the
greatest probabilistic bisimulation R̄n ⊆ (Σ × Σ)n for S restricted to configurations
of any length n ∈ N. The last assumption can easily be satisfied for length-preserving
PTSs. Indeed, such systems, restricted to configurations of length n, are finite-state, so
that efficient existing methods [6,17,20,52] apply. A solution R is presented as a deter-
ministic letter-to-letter transducer, i.e., as a deterministic finite-state automaton over the
alphabet Σ × Σ.

Since L∗-style learning requires the taught language to be uniquely defined, our
approach attempts to learn a representation of the greatest length-preserving proba-
bilistic bisimulation relation R̄ ⊆ (Σ × Σ)∗, which is the unique bisimulation rela-
tion formed by the union of all length-preserving probabilistic bisimulations of S, i.e.,
R̄ =

⋃
n≥1 R̄n. Because R̄ is not in general computable, the learning process might

470 C.-D. Hong et al.

diverge and fail to produce any probabilistic bisimulation. It can also happen that learn-
ing terminates, but yields a probabilistic bisimulation relation strictly smaller than R̄.

The L∗ method requires a teacher that is able to answer two kinds of queries:

– membership queries, i.e., whether a pair (v, w) of words should be accepted by
the automaton to be learned. Since our learner tries to learn the greatest bisimula-
tion, the teacher can answer this query by checking whether the configurations v, w
are bisimilar; this is done by computing the greatest bisimulation R̄|v| restricted to
configurations of any length |v| = |w|, and checking whether or not (v, w) ∈ R̄|v|.

– equivalence queries, i.e., whether a candidate automaton H is the correct language
to be learned. Such queries can essentially be answered by checking whether the
language L(H) satisfies the formula Φ(R) from (3). The complete algorithm for
answering equivalence queries is given in Algorithm 1. The algorithm first attempts
to find a shortest counterexample to the proof rule. If a counterexample of length n is
found, then the difference set L(H)ΔR̄n must contain at least one pair of length n.
Any of such pairs is a valid counterexample for automata learning since the learner
tries to learn the greatest bisimulation. The teacher thus reports one such pair to be
a positive or negative counterexample according to its membership in R̄n.

Properties of the Learning Algorithm. The learning procedure terminates when the
teacher outputs NoSolution or returns Correct for an equivalence query. In the for-
mer case, the teacher explicitly provides a pair of non-bisimilar configurations in E.
In the latter case, the procedure computes an automaton H such that E ⊆ L(H) and
L(H) is a correct probabilistic bisimulation (as it satisfies the proof rule based on The-
orem 1), though not necessarily the greatest one. Since all counterexamples reported by
the teacher are contained in L(H)ΔR̄, the learning procedure is guaranteed to termi-
nate for PTSs where the greatest probabilistic bisimulation R̄ is regular.

Optimization with Inductive Invariants. There is a natural way to optimize the learning
procedure by only considering a regular inductive invariant Inv such that Inv contains
the set of reachable configurations and E ⊆ Inv × Inv . The optimization is done by
simply replacing the greatest finite-length bisimulations R̄i in Algorithm 1, and when
answering membership queries, with the greatest bisimulation R̄I

i = R̄i ∩ Inv on the
inductive invariant. Since R̄I

i can be a lot smaller than R̄i, this can lead to significant
speed-ups. Note that a bisimulation R′ on Inv can be extended to a bisimulation R on
all configurations by setting R = R′ ∪ {(v, v) : v
∈ Inv}. The inductive invariant Inv
may be manually specified, or automatically generated using techniques like in [18,54].

Experimental Results and Conclusion. We have implemented a prototype in Scala to
test our learning method. Given a PTS specified over U , our tool first translates it to
WS1S formulas and obtains finite automata for these formulas using the Mona tool
[30]. Our prototype then applies the L∗ learning procedure as described in this section,
including the optimization to consider only the configurations of valid format. When
answering an equivalence query, our tool invokes Mona to verify candidate automata
and obtain counterexamples (line 1–2 of Algorithm 1). We use the prototype tool to
prove the anonymity property of the three protocols described in Sect. 5. The proofs

Probabilistic Bisimulation for Parameterized Systems 471

Table 1. Experimental results. For each case study, we list the size of the final proof produced by
our tool, the time taken by Mona to verify the candidate automata, the time taken by our tool to
compute the fixed-length bisimulations, and the total computation time of the learning procedure.
Experiments are run on a Windows laptop with 2.4GHz Intel i5 processor and 2GB memory
limit.

Case study #states #trans Mona Bisim Total

Dining cryptographers, single-bit 13 832 2 s 2 s 6 s

Dining cryptographers, multi-bit 16 1024 3 s 24 s 28 s

The grades protocol 25 1600 5 s 28 s 35 s

generated by our tool are finite-state automata encoding the desired probabilistic bisim-
ulation relations. The experimental results are summarized in Table 1.

References

1. Abdulla, P.A., Henda, N.B., Mayr, R.: Decisive Markov chains. Log. Methods Comput. Sci.
3(4), 1–32 (2007)

2. Abdulla, P.A., Jonsson, B., Nilsson, M., d’Orso, J., Saksena, M.: Regular model checking
for LTL(MSO). STTT 14(2), 223–241 (2012)

3. Abdulla, P.A., Jonsson, B., Nilsson, M., Saksena, M.: A survey of regular model checking.
In: Gardner, P., Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp. 35–48. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-28644-8 3

4. Ahrendt, W., Beckert, B., Bubel, R., Hähnle, R., Schmitt, P.H., Ulbrich, M. (eds.): Deduc-
tive Software Verification - The KeY Book - From Theory to Practice. LNCS, vol. 10001.
Springer, Cham (2016)

5. Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput. 75(2),
87–106 (1987)

6. Baier, C.: Polynomial time algorithms for testing probabilistic bisimulation and simulation.
In: Alur, R., Henzinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp. 50–61. Springer, Hei-
delberg (1996). https://doi.org/10.1007/3-540-61474-5 57

7. Baier, C., Katoen, J.-P.: Principles of Model Checking. MIT Press, Cambridge (2008)
8. Benedikt, M., Libkin, L., Schwentick, T., Segoufin, L.: Definable relations and first-order

query languages over strings. J. ACM 50(5), 694–751 (2003)
9. Blumensath, A.: Automatic structures. Diploma thesis, RWTH-Aachen (1999)
10. Blumensath, A., Grädel, E.: Finite presentations of infinite structures: automata and interpre-

tations. Theory Comput. Syst. 37(6), 641–674 (2004)
11. Boigelot, B., Legay, A., Wolper, P.: Iterating transducers in the large (extended abstract).

In: Hunt, W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 223–235. Springer,
Heidelberg (2003). https://doi.org/10.1007/978-3-540-45069-6 24

12. Bonchi, F., Pous, D.: Checking NFA equivalence with bisimulations up to congruence. In:
The 40th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL 2013, Rome, Italy 23–25 January 2013, pp. 457–468 (2013)

13. Bouajjani, A., Jonsson, B., Nilsson, M., Touili, T.: Regular model checking. In: Emerson,
E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 403–418. Springer, Heidelberg
(2000). https://doi.org/10.1007/10722167 31

https://doi.org/10.1007/978-3-540-28644-8_3
https://doi.org/10.1007/3-540-61474-5_57
https://doi.org/10.1007/978-3-540-45069-6_24
https://doi.org/10.1007/10722167_31

472 C.-D. Hong et al.

14. Bradley, A.R., Manna, Z.: The Calculus of Computation: Decision Procedures with Appli-
cations to Verification. Springer, Heidelberg (1998)

15. Chatzikokolakis, K., Norman, G., Parker, D.: Bisimulation for demonic schedulers. In: de
Alfaro, L. (ed.) FoSSaCS 2009. LNCS, vol. 5504, pp. 318–332. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-00596-1 23

16. Chaum, D.: The dining cryptographers problem: unconditional sender and recipient untrace-
ability. J. Cryptol. 1(1), 65–75 (1988)

17. Chen, D., van Breugel, F., Worrell, J.: On the complexity of computing probabilistic bisim-
ilarity. In: Birkedal, L. (ed.) FoSSaCS 2012. LNCS, vol. 7213, pp. 437–451. Springer, Hei-
delberg (2012). https://doi.org/10.1007/978-3-642-28729-9 29

18. Chen, Y., Hong, C., Lin, A.W., Rümmer, P.: Learning to prove safety over parameterised
concurrent systems. In: 2017 Formal Methods in Computer Aided Design, FMCAD 2017,
Vienna, Austria, 2–6 October 2017, pp. 76–83 (2017)

19. Colcombet, T., Löding, C.: Transforming structures by set interpretations. Log. Methods
Comput. Sci. 3(2), 1–36 (2007)

20. Derisavi, S., Hermanns, H., Sanders, W.H.: Optimal state-space lumping in Markov chains.
Inf. Process. Lett. 87(6), 309–315 (2003)

21. Esparza, J., Etessami, K.: Verifying probabilistic procedural programs. In: Lodaya, K.,
Mahajan, M. (eds.) FSTTCS 2004. LNCS, vol. 3328, pp. 16–31. Springer, Heidelberg
(2004). https://doi.org/10.1007/978-3-540-30538-5 2

22. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning About Knowledge. MIT Press,
Cambridge (2003)

23. Fiedor, T., Holı́k, L., Janků, P., Lengál, O., Vojnar, T.: Lazy automata techniques for WS1S.
In: Legay, A., Margaria, T. (eds.) TACAS 2017. LNCS, vol. 10205, pp. 407–425. Springer,
Heidelberg (2017). https://doi.org/10.1007/978-3-662-54577-5 24

24. Flanagan, C., Leino, K., Lillibridge, M., Nelson, G., Saxe, J.B., Stata, R.: Extended static
checking for Java. In: PLDI 02: Programming Language Design and Implementation, pp.
234–245. ACM (2002)

25. Forejt, V., Jancar, P., Kiefer, S., Worrell, J.: Bisimilarity of probabilistic pushdown automata.
In: IARCS Annual Conference on Foundations of Software Technology and Theoretical
Computer Science, FSTTCS 2012, Hyderabad, India, 15–17 December 2012, pp. 448–460
(2012)

26. Garg, P., Neider, D., Madhusudan, P., Roth, D.: Learning invariants using decision trees and
implication counterexamples. In: Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2016, St. Petersburg, FL, USA,
20–22 January 2016, pp. 499–512 (2016)

27. Habermehl, P., Vojnar, T.: Regular model checking using inference of regular languages.
Electr. Notes Theor. Comput. Sci. 138(3), 21–36 (2005)

28. Hinton, A., Kwiatkowska, M., Norman, G., Parker, D.: PRISM: a tool for automatic verifi-
cation of probabilistic systems. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS,
vol. 3920, pp. 441–444. Springer, Heidelberg (2006). https://doi.org/10.1007/11691372 29

29. Kiefer, S., Murawski, A.S., Ouaknine, J., Wachter, B., Worrell, J.: APEX: an analyzer for
open probabilistic programs. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol.
7358, pp. 693–698. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31424-
7 51

30. Klarlund, N., Møller, A.: Mona version 1.4: User manual. BRICS, Department of Computer
Science, University of Aarhus Denmark (2001)

31. Klarlund, N., Møller, A., Schwartzbach, M.I.: MONA implementation secrets. Int. J. Found.
Comput. Sci. 13(4), 571–586 (2002). World Scientific Publishing Company. Earlier ver-
sion in Proc. 5thInternational Conference on Implementation and Application of Automata
(CIAA) 2000, Springer-Verlag LNCS vol. 2088

https://doi.org/10.1007/978-3-642-00596-1_23
https://doi.org/10.1007/978-3-642-28729-9_29
https://doi.org/10.1007/978-3-540-30538-5_2
https://doi.org/10.1007/978-3-662-54577-5_24
https://doi.org/10.1007/11691372_29
https://doi.org/10.1007/978-3-642-31424-7_51
https://doi.org/10.1007/978-3-642-31424-7_51

Probabilistic Bisimulation for Parameterized Systems 473

32. Kundu, S., Tatlock, Z., Lerner, S.: Proving optimizations correct using parameterized pro-
gram equivalence. In: Proceedings of the 30th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2009, pp. 327–337. ACM, New York (2009)

33. Kwiatkowska, M.Z., Model checking for probability and time: from theory to practice. In:
18th IEEE Symposium on Logic in Computer Science (LICS 2003), Ottawa, Canada, 22–25
June 2003, Proceedings, p. 351 (2003)

34. Larsen, K.G., Skou, A.: Bisimulation through probabilistic testing. Inf. Comput. 94(1), 1–28
(1991)

35. Leino, K.R.M.: Dafny: an automatic program verifier for functional correctness. In: Clarke,
E.M., Voronkov, A. (eds.) LPAR 2010. LNCS (LNAI), vol. 6355, pp. 348–370. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-17511-4 20

36. Lengál, O., Lin, A.W., Majumdar, R., Rümmer, P.: Fair termination for parameterized
probabilistic concurrent systems. In: Legay, A., Margaria, T. (eds.) TACAS 2017. LNCS,
vol. 10205, pp. 499–517. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-
54577-5 29

37. Lin, A.W., Rümmer, P.: Liveness of randomised parameterised systems under arbitrary
schedulers. In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS, vol. 9780, pp. 112–133.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41540-6 7

38. Löding, C., Madhusudan, P., Neider, D.: Abstract learning frameworks for synthesis. In:
Chechik, M., Raskin, J.-F. (eds.) TACAS 2016. LNCS, vol. 9636, pp. 167–185. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-49674-9 10

39. Milner, R.: Communication and Concurrency. Prentice Hall, Upper Saddle River (1989)
40. Neider, D., Jansen, N.: Regular model checking using solver technologies and automata

learning. In: Brat, G., Rungta, N., Venet, A. (eds.) NFM 2013. LNCS, vol. 7871, pp. 16–
31. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38088-4 2

41. Neider, D., Topcu, U.: An automaton learning approach to solving safety games over infinite
graphs. In: Chechik, M., Raskin, J.-F. (eds.) TACAS 2016. LNCS, vol. 9636, pp. 204–221.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49674-9 12

42. Nilsson, M.: Regular model checking. Ph.D. thesis, Uppsala Universitet (2005)
43. Padon, O., Losa, G., Sagiv, M., Shoham, S.: Paxos made EPR: decidable reasoning about

distributed protocols. In: PACMPL, 1(OOPSLA), pp. 108:1–108:31 (2017)
44. Padon, O., McMillan, K.L., Panda, A., Sagiv, M., Shoham, S.: Ivy: safety verification by

interactive generalization. In: Proceedings of the 37th ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, PLDI 2016, Santa Barbara, CA, USA,
13–17 June 2016, pp. 614–630 (2016)

45. PRISM case study: Dining Cryptographers. http://www.prismmodelchecker.org/casestudies/
diningcrypt.php

46. Rubin, S.: Automatic structures. Ph.D. thesis, University of Auckland, New Zealand (2004)
47. Sénizergues, G.: The bisimulation problem for equational graphs of finite out-degree. SIAM

J. Comput. 34(5), 1025–1106 (2005)
48. Srba, J.: Roadmap of Infinite Results. Formal Models and Semantics, vol. 2. World Scientific

Publishing Co., Singapore (2004)
49. To, A.W.: Model checking infinite-state systems: generic and specific approaches. Ph.D.

thesis, LFCS, School of Informatics, University of Edinburgh (2010)
50. To, A.W., Libkin, L.: Recurrent reachability analysis in regular model checking. In:

Cervesato, I., Veith, H., Voronkov, A. (eds.) LPAR 2008. LNCS (LNAI), vol. 5330, pp. 198–
213. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89439-1 15

51. To, A.W., Libkin, L.: Algorithmic metatheorems for decidable LTL model checking over
infinite systems. In: Ong, L. (ed.) FoSSaCS 2010. LNCS, vol. 6014, pp. 221–236. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-12032-9 16

https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-662-54577-5_29
https://doi.org/10.1007/978-3-662-54577-5_29
https://doi.org/10.1007/978-3-319-41540-6_7
https://doi.org/10.1007/978-3-662-49674-9_10
https://doi.org/10.1007/978-3-642-38088-4_2
https://doi.org/10.1007/978-3-662-49674-9_12
http://www.prismmodelchecker.org/casestudies/diningcrypt.php
http://www.prismmodelchecker.org/casestudies/diningcrypt.php
https://doi.org/10.1007/978-3-540-89439-1_15
https://doi.org/10.1007/978-3-642-12032-9_16

474 C.-D. Hong et al.

52. Valmari, A., Franceschinis, G.: Simple O(m logn) time Markov chain lumping. In: Esparza,
J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 38–52. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-12002-2 4

53. Vardhan, A.: Learning to verify systems. Ph.D. thesis, Department of Computer Science,
University of Illinois at Urbana-Champaign (2006)

54. Vardhan, A., Sen, K., Viswanathan, M., Agha, G.: Learning to verify safety properties. In:
Davies, J., Schulte, W., Barnett, M. (eds.) ICFEM 2004. LNCS, vol. 3308, pp. 274–289.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30482-1 26

Open Access This chapter is licensed under the terms of the Creative Commons Attribution
4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder.

https://doi.org/10.1007/978-3-642-12002-2_4
https://doi.org/10.1007/978-3-540-30482-1_26
http://creativecommons.org/licenses/by/4.0/

Semi-quantitative Abstraction and
Analysis of Chemical Reaction Networks

Milan Češka1(B) and Jan Křet́ınský2

1 Brno University of Technology, FIT,
IT4I Centre of Excellence, Brno, Czech Republic

ceskam@fit.vutbr.cz
2 Technical University of Munich, Munich, Germany

Abstract. Analysis of large continuous-time stochastic systems is a
computationally intensive task. In this work we focus on population mod-
els arising from chemical reaction networks (CRNs), which play a funda-
mental role in analysis and design of biochemical systems. Many relevant
CRNs are particularly challenging for existing techniques due to complex
dynamics including stochasticity, stiffness or multimodal population dis-
tributions. We propose a novel approach allowing not only to predict,
but also to explain both the transient and steady-state behaviour. It
focuses on qualitative description of the behaviour and aims at quanti-
tative precision only in orders of magnitude. First we build a compact
understandable model, which we then crudely analyse. As demonstrated
on complex CRNs from literature, our approach reproduces the known
results, but in contrast to the state-of-the-art methods, it runs with vir-
tually no computational cost and thus offers unprecedented scalability.

1 Introduction

Chemical Reaction Networks (CRNs) are a versatile language widely used for
modelling and analysis of biochemical systems [12] as well as for high-level pro-
gramming of molecular devices [8,40]. They provide a compact formalism equiv-
alent to Petri nets [37], Vector Addition Systems (VAS) [29] and distributed
population protocols [3]. Motivated by numerous potential applications ranging
from system biology to synthetic biology, various techniques allowing simulation
and formal analysis of CRNs have been proposed [2,9,21,24,39], and embodied
in the design process of biochemical systems [20,25,32]. The time-evolution of
CRNs is governed by the Chemical Master Equation (CME), which describes the
probability of the molecular counts of each chemical species. Many important
biochemical systems lead to complex dynamics that includes state space explo-
sion, stochasticity, stiffness, and multimodality of the population distributions

This work has been supported by the Czech Science Foundation grant No. GA19-
24397S, the IT4Innovations excellence in science project No. LQ1602, and the
German Research Foundation (DFG) project KR 4890/2-1 “Statistical Unbounded
Verification”.

c© The Author(s) 2019
I. Dillig and S. Tasiran (Eds.): CAV 2019, LNCS 11561, pp. 475–496, 2019.
https://doi.org/10.1007/978-3-030-25540-4_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-25540-4_28&domain=pdf
https://doi.org/10.1007/978-3-030-25540-4_28

476 M. Češka and J. Křet́ınský

[23,44], and that fundamentally limits the class of systems the existing techniques
can effectively handle. More importantly, biologist and engineers often seek for
plausible explanations why the system under study has or has not the required
behaviour. In many cases, a set of system simulations/trajectories or population
distributions is not sufficient and the ability to provide an accurate explanation
for the temporal or steady-state behaviour is another major challenge for the
existing techniques.

In order to cope with the computational complexity of the analysis and in
order to obtain explanations of the behaviour, we shift the focus from quanti-
tatively precise results to a more qualitative analysis, closer to how a human
would behold the system. Yet we insist on providing at least rough timing infor-
mation on the behaviour as well as rough classification of probability of differ-
ent behaviours at the extent of “very likely”, “few percent”, “barely possible”,
so that we can conclude on issues such as time to extinction or bimodality of
behaviour. This gives rise to our semi-quantitative approach. We stipulate that
analyses in this framework reflect quantities in orders of magnitude, both for
time duration and probabilities, but not more than that. This paradigm shift is
reflected on two levels: (1) We abstract systems into semi-quantitative models.
(2) We analyse systems in a semi-quantitative way. While each of the two can
be combined with a traditional abstraction/analysis, when combined together
they provide powerful means to understand systems’ behaviour with virtually
no computational cost.

Semi-quantitative Models. The states of the models contain information on
the current amount of objects of each species as an interval spanning often sev-
eral orders of magnitude, unless instructed otherwise. For instance, if an amount
of a certain species is to be closely monitored (as a part of the input speci-
fication/property of the system) then this abstraction can be finer. Similarly,
whenever the analysis of a previous version of the abstraction points to the lack
of precision in certain states, preventing us to conclude which of the possible
behaviours is prevalent, the corresponding refinement can take place. Further,
the rates of the transitions are also captured only with such imprecision. The
crucial point allowing for existence of such models that are small, yet faithful,
is our concept of acceleration. It captures certain sequences of transitions. It
eliminates most of the non-determinism that paralyses other types of abstrac-
tions, which are too over-approximative, unable to conclude anything, but safety
properties.

Semi-quantitative Analysis. Instead of performing exact transient or steady-
state analysis, we can consider most probable transitions and then carefully lift
this to most probable temporal behaviours. Technically, this is done by alter-
nating between transient and steady-state analysis where only some rates and
transitions are taken into account at different stages. In order to further facili-
tate the resulting insight of the human on the result of the analysis, we provide an
algorithm to perform this analysis with virtually no computation effort and thus
possibly manually. The trivial computations immediately pinpoint why certain

Semi-quantitative Abstraction and Analysis of Chemical Reaction Networks 477

behaviours occur. Moreover, less likely behaviours can also be identified easily,
to any desired degree of improbability (dozens of percent, promilles etc.).

To summarise, the first step yields tiny models, allowing for a synoptic obser-
vation of the model; due to their size these models can be either analysed easily
using standard means, or can be subject to the second step. The second step
provides an efficient approximative analysis, which is also very illustrative due
to the limited use of quantities. It can be applied to any system; however, it is
particularly interesting in connection with the models coming from the first step
since (i) no extra effort (size, computation) is wasted on overly precise treatment
that is ignored by the other step, and (ii) together they yield an understandable
explanation of the behaviour. An entertaining feature of this paradigm is that
the stiffer (with rates at hugely different time scales) the system is the easier it
is to analyse.

To demonstrate the capabilities of our approach, we consider three chal-
lenging and biologically relevant case studies that have been used in literature
to evaluate state-of-the-art methods for the CRN analysis. It has been shown
that many approaches fail, either due to time-outs or incapability to capture
differences in behaviours, and some tailored ones require considerable compu-
tational effort, e.g. an hour of computation. Our experiments clearly show that
the proposed approach can deliver results that yield qualitatively same informa-
tion, more understanding and can be computed in minutes by hand (or within
a fraction of a second by computer).

Our contribution can be summarized as follows:

– We propose a novel semi-quantitative framework for analysis of CRN and
similar population models, focusing on explainability of the results and low
complexity, with quantitative precision limited to orders of magnitude.

– An algorithm for abstracting CRNs into semi-quantitative models based on
interval abstraction of the species population and on transition acceleration.

– An algorithm for semi-quantitative analysis that replaces exact numerical
computation by exploring the most probable transitions and alternating tran-
sient and steady-state analysis.

– We consider three challenging CRNs thoroughly studied in literature and
demonstrate that the semi-quantitative abstraction and analysis gives us a
unique tool that is able to accurately predict and explain both transient and
steady-state behaviour of complex CRNs in a fraction of a second.

Related Work

To the best of our knowledge, there does not exist any abstraction of CRNs
similar to the proposed approach. Indeed, there exist various abstraction and
approximation schemes for CRNs that improve the performance and scalability
of both the simulation-based and the numerical-based techniques. In the fol-
lowing paragraphs, we discuss the most relevant directions and the links to our
approach.

478 M. Češka and J. Křet́ınský

Approximate Semantics for CRNs. For CRNs including large populations
of species, fluid (mean-field) approximation techniques can be applied [5] and
extended to approximate higher-order moments [15]: these deterministic approx-
imations lead to a set of ordinary differential equations (ODEs). An alternative
is to approximate the CME as a continuous-state stochastic process. The Linear
Noise Approximation (LNA) is a Gaussian process which has been derived as an
approximation of the CME [16,44] and describes the time evolution of expec-
tation and variance of the species in terms of ODEs. Recently, an aggregation
scheme over ODEs that aims at understanding the dynamics of large CRNs has
been proposed in [10]. In contrast to our approach, the deterministic approx-
imations cannot adequately capture the stochasticity of CRNs caused by low
population species.

To mitigate this drawback, various hybrid models have been proposed. The
common idea of these models is as follows: the dynamics of low population species
is described by the discrete stochastic process and the dynamics of large pop-
ulation species is approximated by a continuous process. The particular hybrid
models differ in the approximation of the large population species. In [27], a pure
deterministic semantics for large population species is used. The moment-based
description for medium/high-copy number species was used in [24]. The LNA
approximation and an adaptive partitioning of the species according to leap con-
ditions (that is more general than partitioning based on population thresholds)
was proposed in [9]. All hybrid models have to deal with interactions between
low and large population species. In particular, the dynamics of the stochastic
process describing the low-population species is conditioned by the continuous-
state describing the concentration of the large-population species. The numeri-
cal analysis of such conditioned stochastic process is typically a computationally
demanding task that limits the scalability.

In contrast, our approach does not explicitly partition the species, but rather
abstracts the concrete species population using an interval abstraction and tries
to effectively capture both the stochastic and the deterministic behaviour with
the help of the accelerated transitions. As we already emphasised, the proposed
abstraction and analysis avoids any numerical computation of precise quantities.

Reduction Techniques for Stochastic Models. A widely studied reduc-
tion method for Markov models is state aggregation based on lumping [6] or
(bi-)simulation equivalence [4], with the latter notion in its exact [33] or approx-
imate [13] form. Approximate notions of equivalence have led to new abstrac-
tion/refinement techniques for the numerical verification of Markov models over
finite [14] as well as uncountably-infinite state spaces [1,41,42]. Several approx-
imate aggregation schemes leveraging the structural properties of CRNs were
proposed [17,34,45]. Abate et al. proposed an adaptive aggregation that gives
formal guarantees on the approximation error, but typically provide lower state
space reductions [2]. Our approach shares the idea of abstracting the state space
by aggregating some states together. Similarly to [17,34,45], we partition the
state space based on the species population, i.e. we also introduce the popula-
tion levels. In contrast to the aforementioned aggregation schemes, we propose a

Semi-quantitative Abstraction and Analysis of Chemical Reaction Networks 479

novel abstraction of the transition relation based on the acceleration. It allows us
to avoid the numerical solution of the approximate CME and thus achieve a bet-
ter reduction while providing an accurate predication of the system behaviour.

Alternative methods to deal with large/infinite state spaces are based on a
state truncation trying to eliminate insignificant states, i.e., states reached only
with a negligible probability. These methods, including finite state projections
[36], sliding window abstractions [26], or fast adaptive uniformisation [35], are
able to quantify the total probability mass that is lost due to the truncation,
but typically cannot effectively handle systems involving a stiff behaviour and
multimodality [9].

Simulation-Based Analysis. Transient analysis of CRNs can be performed
using the Stochastic Simulation Algorithm (SSA) [21]. Note that the SSA
produces a single realisation of the stochastic process, whereas the stochastic
solution of CME gives the probability distribution of each species over time.
Although simulation-based analysis is generally faster than direct solution of the
stochastic process underlying the given CRN, obtaining good accuracy necessi-
tates potentially large numbers of simulations and can be very time consuming.

Various partitioning schemes for species and reactions have been proposed
for the purpose of speeding up the SSA in multi-scale systems [23,38,39]. For
instance, Yao et al. introduced the slow-scale SSA [7], where they distinguish
between fast and slow species. Fast species are then treated assuming they reach
equilibrium much faster than the slow ones. Adaptive partitioning of the species
has been considered in [19,28]. In contrast to the simulation-based analysis, our
approach (i) provides a compact explanation of the system behaviour in the form
of tiny models allowing for a synoptic observation and (ii) can easily reveal less
probable behaviours.

2 Chemical Reaction Networks

In this paper, we assume familiarity with standard verification of (continuous-
time) probabilistic systems, e.g. [4]. For more detail, see [11, Appendix].

CRN Syntax. A chemical reaction network (CRN) N = (Λ,R) is a pair of finite
sets, where Λ is a set of species, |Λ| denotes its size, and R is a set of reactions.
Species in Λ interact according to the reactions in R. A reaction τ ∈ R is a
triple τ = (rτ , pτ , kτ), where rτ ∈ N

|Λ| is the reactant complex, pτ ∈ N
|Λ| is the

product complex and kτ ∈ R>0 is the coefficient associated with the rate of the
reaction. rτ and pτ represent the stoichiometry of reactants and products. Given
a reaction τ1 = ([1, 1, 0], [0, 0, 2], k1), we often refer to it as τ1 : λ1 + λ2

k1−→ 2λ3.

CRN Semantics. Under the usual assumption of mass action kinetics, the
stochastic semantics of a CRN N is generally given in terms of a discrete-state,
continuous-time stochastic process X(t) = (X1(t),X2(t), . . . , X|Λ|(t), t ≥ 0) [16].
The state change associated to the reaction τ is defined by υτ = pτ − rτ , i.e. the
state X is changed to X′ = X + υτ , which we denote as X τ−→ X′. For example,

480 M. Češka and J. Křet́ınský

for τ1 as above, we have υτ1 = [−1,−1, 2]. For a reaction to happen in a state X,
all reactants have to be in sufficient numbers. The reachable state space of X(t),
denoted as S, is the set of all states reachable by a sequence of reactions from
a given initial state X0. The set of reactions changing the state Xi to the state
Xj is denoted as reac(Xi,Xj) = {τ | Xi

τ−→ Xj}.
The behaviour of the stochastic system X(t) can be described by the (possi-

bly infinite) continuous-time Markov chain (CTMC) γ(N) = (S,X0,R) where
the transition matrix R(i, j) gives the probability of a transition from Xi to Xj .
Formally,

R(i, j) =
∑

τ∈reac(Xi,Xj)

kτ · Cτ,i where Cτ,i =
N∏

�=1

(
Xi,�

r�

)
(R)

corresponds to the population dependent term of the propensity function where
Xi,� is �th component of the state Xi and r� is the stoichiometric coefficient of the
�-th reactant in the reaction τ . The CTMC γ(N) is the accurate representation
of CRN N , but—even when finite—not scalable in practice because of the state
space explosion problem [25,31].

3 Semi-quantitative Abstraction

In this section, we describe our abstraction. We derive the desired CTMC con-
ceptually in several steps, which we describe explicitly, although we implement
the construction of the final system directly from the initial CRN.

3.1 Over-Approximation by Interval Abstraction and Acceleration

Given a CRN N = (Λ,R), we first consider an interval continuous-time Markov
decision process (interval CTMDP1), which is a finite abstraction of the infi-
nite γ(N). Intuitively, abstract states are given by intervals on sizes of popu-
lations with an additional specific that the abstraction captures enabledness of
reactions. The transition structure follows the ideas of the standard may abstrac-
tion and of the three-valued abstraction of continuous-time systems [30]. A tech-
nical difference in the latter point is that we abstract rates into intervals instead
of uniformising the chain and then only abstracting transition probabilities into
intervals; this is necessary in later stages of the process. The main difference is
that we also treat certain sequences of actions, which we call acceleration.

Abstract Domains. The first step is to define the abstract domain for the
population sizes. For every species λ ∈ Λ, we define a finite partitioning Aλ of
N into intervals, reflecting the rough size of the population. Moreover, we want
the abstraction to reflect whether a reaction is enabled. Hence we require that
1 Interval CTMDP is a CTMDP with lower/upper bounds on rates. Since it serves only

as an intermediate formalism to ease the presentation, we refrain from formalising
it here.

Semi-quantitative Abstraction and Analysis of Chemical Reaction Networks 481

{0} ∈ Aλ for the case when the coefficients of this species as a reactant is always
0 or 1; in general, for every i < maxτ∈R rτ (λ) we require {i} ∈ Aλ.

The abstraction αλ(n) of a number n of a species λ is then the I ∈ Aλ for
which n ∈ I. The state space of α(N) is the product

∏
λ∈Λ Aλ of the abstract

domains with the point-wise defined abstraction α(n)λ = αλ(nλ).
The abstract domain for the rates according to (R) is the set of all real

intervals.
Transitions from an abstract state are defined as the may abstraction as

follows. Since our abstraction reflect enabledness, the same set of action is
enabled in all concrete states of a given abstract state. The targets of the action
in the abstract setting are abstractions of all possible concrete successors, i.e.
succ(s, a) := {α(n) | m ∈ s,m

a−→ n}, in other words, the transitions enabled in
at least one of the respective concrete states. The abstract rate is the smallest
interval including all the concrete rates of the respective concrete transitions.
This can be easily computed by the corner-points abstraction (evaluating only
the extremum values for each species) since the stoichiometry of the rates is
monotone in the population sizes.

High-Level of Non-determinism. The (more or less) standard style of the
abstraction above has several drawbacks—mostly related to the high degree of
non-determinism for rates—which we will subsequently discuss.

Firstly, in connection with the abstract population sizes, transitions to dif-
ferent sizes only happen non-deterministically, leaving us unable to determine
which behaviour is probable. For example, consider the simple system given by
λ

d−→ ∅ with kd = 10−4 so the degradation happens on average each 104 seconds.
Assume population discretisation into [0], [1..5], [6..20], [21..∞) with abstraction
depicted in Fig. 1. While the original system obviously moves from [6..20] to
[1..5] very probably in less than 15 ·104 seconds, the abstraction cannot even say
that it happens, not to speak of estimating the time.

[0] [1..5] [6..20] [21,∞)
d, 104 d, 6 · 104 d, 21 · 104

d, [2 · 104, 5 · 104] d, [7 · 104, 20 · 104] d, [22 · 104,∞)

[0] [1..5] [6..20] [21,∞)
d, .44 · 104 d, [.76 · 104, 6 · 104] d, (0, 21 · 104

Fig. 1. Above: Interval CTMDP abstraction with intervals on rates and non-
determinism. Below: Interval CTMC abstraction arising from acceleration.

Acceleration. To address this issue, we drop the non-deterministic self-loops
and transitions to higher/lower populations in the abstract system.2 Instead,
2 One can also preserve the non-determinism for the special case when one of the

transitions leads to a state where some action ceases to be enabled. While this adds
more precision, the non-determinism in the abstraction makes it less convenient to
handle.

482 M. Češka and J. Křet́ınský

we “accelerate” their effect: We consider sequences of these actions that in the
concrete system have the effect of changing the population level. In our example
above, we need to take the transition 1 to 13 times from [6..20] with various
rates depending on the current concrete population, in order to get to [1..5].
This makes the precise timing more complicated to compute. Nevertheless, the
expected time can be approximated easily: here it ranges from 1

6 ·104 = 0.17 ·104

(for population 6) to roughly (1
20 + 1

19 +· · ·+ 1
6)·104 = 1.3·104 (for population 20).

This results in an interval CTMC.3

Concurrency in Acceleration. The accelerated transitions can due to higher
number of occurrences be considered continuous or deterministic, as opposed to
discrete stochastic changes as distinguished in the hybrid approach. The usual
differential equation approach would also take into account other reactions that
are modelled deterministically and would combine their effect into one equation.
In order to simplify the exposition and computation and—as we see later—
without much loss of precision, we can consider only the fastest change (or
non-deterministically more of them if their rates are similar).4

3.2 Operational Semantics: Concretisation to a Representative

The next disadvantage of classical abstraction philosophy, manifested in the
interval CTMC above is that the precise-valued intervals on rates imply high
computational effort during the analysis. Although the system is smaller, stan-
dard transient analysis is still quite expensive.

Concretisation. In order to deal with this issue, the interval can be approxi-
mated roughly by the expected time it would take for an average population in
the considered range, in our example the “average” representative is 13. Then
the first transition occurs with rate 13 · 10−4 = 10−3 and needs to happen 7
times, yielding expected time 7/13 · 104 = 0.5 · 104 (ignoring even the precise
slow downs in the rates as the population decreases). Already this very rough
computation yields relative precision with factor 3 for all the populations in this
interval, thus yielding the correct order of magnitude with virtually no effort.
We lift the concretisation naturally to states and denote the concretisation of
abstract state s by γ(s). The complete procedure is depicted in Algorithm 1.

The concretisation is one of the main points where we deliberately drop a
lot of quantitative information, while still preserving some to conclude on big
quantitative differences. Of course, the precision improves with more precise
abstract domains and also with higher differences on the original rates.

3 The waiting times are not distributed according to the rates in the intervals. It is only
the expected waiting time (reciprocal of the rate) that is preserved. Nevertheless, for
ease of exposition, instead of labelling the transitions with expected waiting times
we stick to the CTMC style with the reciprocals and formally treat it as if the label
was a real rate.

4 Typically the classical concurrency diamond appears and the effect of the other
accelerated reactions happen just after the first one.

Semi-quantitative Abstraction and Analysis of Chemical Reaction Networks 483

Algorithm 1. Semi-quantitative abstraction CTMC α(N)
1: A ← ∏

λ∈Λ Aλ � States

2: for a ∈ A do � Transitions
3: c ← γ(a) � Concrete representative

4: for each τ enabled in c do
5: r ←rate of τ in c � According to (R)

6: a′ ← α(c + υτ) � Successor

7: set a
τ−→ a′ with rate r

8: for self-loop a
τ−→ a do � Accelerate self-loops

9: nτ ← min{n | α(c + n · υτ) �= a} � the number of τ to change the abstract state

10: a′ ← α(c + nτ · υτ) � Acceleration successor

11: instead of the self-loop with rate r, set a
τ−→ a′ with rate nτ · r

It remains to determine the representative for the unbounded interval. In
order to avoid infinity, we require an additional input for the analysis, which are
deemed upper bounds on possible population of each species. In cases when any
upper bound is hard to assume, we can analyse the system with a random one
and see if the last interval is reachable with significant probability. If yes, then
we need to use this upper bound as a new point in the interval partitioning and
try a higher upper bound next time. In general, such conditions can be checked
in the abstraction and their violation implies a recommendation to refine the
abstract domains accordingly.

Orders-of-Magnitude Abstraction. Such an approximation is thus sufficient
to determine most of the time whether the acceleration (sequence of actions)
happens sooner or later than e.g. another reaction with rate 10−6 or 10−2. Note
that this decision gets more precise not only as we refine the population levels,
but also as the system gets stiffer (the concrete values of the rates differ more),
which are normally harder to analyse. For the ease of presentation in our case
studies, we shall depict only the magnitude of the rates, i.e. the decadic logarithm
rounded to an integer.

Non-determinism and Refinement. If two rates are close to each other, say
of the same magnitude (or difference 1), such a rough computation (and rough
population discretisation) is not precise enough to determine which of the reac-
tions happens with high probability sooner. Both may be happening roughly at
the same pace, or with more information we could conclude one of them is con-
siderably faster. This introduces an uncertainty, showing different behaviours are
possible depending on the exact quantities. This indicates points where refine-
ment might be needed if more precise results are required. For instance, with
rates of magnitudes 2 and 3, the latter should be happing most of the time, the
former only with a few percent chance. If we want to know whether it is rather
tens of percent or tenths of percent, we should refine the abstraction.

484 M. Češka and J. Křet́ınský

4 Semi-quantitative Analysis

In this section, we present an approximative analysis technique that describes
the most probable transient and steady-state behaviour of the system (also with
rough timing) and on demand also the (one or more orders of magnitude) less
probable behaviours. As such it is robust in the sense that it is well suited to work
with imprecise rates and populations. It is computationally easy (can be done
in hand in time required for a computer by other methods), while still yielding
significant quantitative results (“in orders of magnitude”). It does not provide
exact error guarantees since computing them would be almost as expensive as
the classical analysis. It only features trivial limit-style bounds: if the population
abstraction gets more and more refined, the probabilities converge to those of the
original system; further, the higher the separation between the rate magnitudes,
the more precise the approximation is since the other factors (and thus the
incurred imprecisions) play less significant role.

Intuitively, the main idea—similar to some multi-rate simulation techniques
for stiff systems—is to “simulate” “fast” reactions until the steady state and
then examine which slower reactions take place. However, “fast” does not mean
faster than some constant, but faster than other transitions in a given state.
In other words, we are not distinguishing fast and slow reactions, but tailor
this to each state separately. Further, “simulation” is not really a stochastic
simulation, but a deterministic choice of the fastest available transition. If a
transition is significantly faster than others then this yields what a simulation
would yield. When there are transitions with similar rates, e.g. with at most one
order of magnitude difference, then both are taken into account as described in
the following definition.

Pruned System. Consider the underlying graph of the given CTMC. If we keep
only the outgoing transitions with the maximum rate in each state, we call the
result pruned. If there is always (at most) one transition then the graph consists
of several paths leading to cycles. In general when more transitions are kept, it
has bottom strongly connected components (bottom SCCs, BSCCs) and some
transient parts.

We generalise this concept to n-pruning that preserves all transitions with
a rate that is not more than n orders of magnitude smaller than the maximum
rate in the state. Then the pruning above is 0-pruning, 1-pruning preserves also
transitions happening up to 10 times slower, which can thus still happen with
dozens of percent, 2-pruning is relevant for analysis where behaviour occurring
with units of percent is also tracked etc.

Algorithm Idea. Here we explain the idea of Algorithm 2. The transient parts
of the pruned system describe the most probable behaviour from each state until
the point where visited states start to repeat a lot (steady state of the pruned
system). In the original system, the usual behaviour is then to stay in this SCC
C until one of the pruned (slower) reactions occurs, say from state s to state t.
This may bring us to a different component of the pruned graph and the analysis
process repeats. However, t may also bring us back into C, in which case we stay

Semi-quantitative Abstraction and Analysis of Chemical Reaction Networks 485

in the steady-state, which is basically the same as without the transition from
s to t. Further, t might be in the transient part leading to C, in which case
these states are added to C and the steady state changes a bit, spreading the
distribution slightly also to the previously transient states. Finally, t might be
leading us into a component D where this run was previous to visiting C. In
that case, the steady-state distribution spreads over all the components visited
between D and C, putting a probability mass to each with a different order of
magnitude depending on all the (magnitudes of) sojourn times in the transient
and steady-state phases on the way.

Using the macros defined in the algorithm, the correctness of the compu-
tations can be shown as follows. For the time spent in the transient phase
(line 16), we consider the slowest sojourn time on the way times the number
of such transitions; this is accurate since the other times are by order(s) of mag-
nitude shorter, hence negligible. The steady-state distribution on a BSCC of the

Algorithm 2. Semi-quantitative analysis
1: W ← ∅ � worklist of SCCs to process

2: add {initial state} to W and assign iteration 0 to it � artificial SCC to start the process

3: while W �= ∅ do

4: C ←pop W

� Compute and output steady state or its approximation

5: steady-state of C is approximately minStayingRate/(m · stayingRate(·))
6: if C has no exits then continue � definitely bottom SCC, final steady state

� Compute and output exiting transitions and the time spent in C

7: exitStates ← arg minC(stayingRate(·)/exitingRate(·)) � Probable exit points

8: minStayingRate ←minimum rate in C, m ←#occurrences there

9: timeToExit ← stayingRate(s) · m/(|exitStates| · minStayingRate · exitingRate(s))

for (arbitrary) s ∈ exitStates

10: for all s ∈ exitsStates do � Transient analysis

11: t ←target of the exiting transition

12: T ←SCCs reachable in the pruned graph from t

13: thereby newly reached transitions get assigned iteration of C + 1

14: for D ∈ T do

� Compute and output time to get from t to D

15: minRate ←minimum rate on the way from t to D, m ←#occurrences there

16: transTime ← m/minRate

� Determine the new SCC

17: if D = C then � back to the current SCC

18: add to W the union of C and the new transient path τ from t to C

19: in later steady-state computation, the states of τ will have probability

smaller by a factor of stayingRate(s)/exitingRate(s)
20: else if D was previously visited then � alternating between different SCCs

21: add to W the merge of all SCCs visited between D and C (inclusively)

22: in later steady-state computation, reflect all timeToExit and transTime

between D and C

23: else � new SCC

24: add D to W

MACROS:

stayingRate(s) is the rate of transitions from s in the pruned graph

exitingRate(s) is the maximum rate of transitions from s not in the pruned graph

486 M. Češka and J. Křet́ınský

pruned graph can be approximated by the minStayingRate/(m · stayingRate(·))
on line 5. Indeed, it corresponds to the steady-state distribution if the BSCC is a
cycle and the minStayingRate significantly larger than other rates in the BSCC
since then the return time for the states is approximately m/minStayingRate
and the sojourn time 1/stayingRate(·). The component is exited from s with
the proportion given by its steady-state distribution times the probability to
take the exit during that time. The former is approximated above; the latter
can be approximated by the density in 0, i.e. by exitingRate(s), since the stay-
ing rate is significantly faster. Hence the candidates for exiting are maximising
exitingRate(·)/stayingRate(·) as on line 7. There are |exitStates| candidates for
exit and the time to exit the component by a particular candidate s is the
expected number of visits before exit, i.e. stayingRate(s) · exitingRate(s) times
the return time m · minStayingRate, hence the expression on line 9.

s0 s1 s2 s3t u
11 10 10

1001 1

100

1 10

Fig. 2. Alternating transient and steady-state analysis.

For example, consider the system in Fig. 2. Iteration 1 reveals the part
with solid lines with two (temporary) BSCCs {t} and {s1, s2, s3}. The for-
mer turns out definitely bottom. The latter has a steady state proportional to
(10−1, 10−1, 100−1). Its most probable exits are the dashed ones, identified in the
subsequent iteration 2, probable proportionally to (1/10,10/100); the expected
time to take them is 10 · 2/(2 · 10 · 1) = 1 = 100 · 2/(2 · 10 · 10). The latter leads
back to the current SCC and does not change the set of BSCCs (hence in our
examples below we often either skip or merge such iterations for the sake of read-
ability). In contrast, the former leads to a previous SCC; thereafter {s1, s2, s3} is
no more a bottom SCC and consequently the third exit to u is not even analysed.
Nevertheless, it could still happen with minor probability, which can be seen if
we consider 1-pruning instead.

5 Experimental Evaluation and Discussion

In order to demonstrate the applicability and accuracy of our approach, we
selected the following three biologically relevant case studies. (1) stochastic
model of gene expression [22,24], (2) Goutsias’s model [23] describing transcrip-
tion regulation of a repressor protein in bacteriophage λ and (3) viral infection
model [43].

Although the underlying CRNs are quite small (up to 5 species and 10 reac-
tion), their analysis is very challenging: (i) the stochasticity has a strong impact

Semi-quantitative Abstraction and Analysis of Chemical Reaction Networks 487

on the dynamics of these systems and thus purely deterministic approximations
via ODEs are not accurate, (ii) the systems include species with low, medium,
and high populations and thus the resulting state space of the stochastic process
is prohibitively large to perform precise numerical analysis and existing reduc-
tion/approximation techniques are not sufficient (they are either too imprecise
or do not provide sufficient reduction factors), and (iii) the system dynamics
leads to bi-modal distributions and/or is affected by stiff reactions.

These models thus represent perfect candidates for evaluating advanced
approximation methods including various hybrid approaches [9,24,27]. Although
these approaches can handle the models, they typically require tens of minutes
or hours of computation time. Similarly simulation-based methods are very time
consuming especially in case of very stiff CRN, represented by the viral infection
model. We demonstrate that our approach provides accurate predications of the
system behaviour and is feasible even when performed manually by a human.

Recall that the algorithm that builds the abstract model of the given CRN
takes as input two vectors representing the population discretisation and pop-
ulation bounds. We generally assume that these inputs are provided by users
who have a priori knowledge about the system (e.g. in which orders the species
population occurs) and that the inputs also reflect the level of details the users
are interested in. In the following case studies, we, however, set the inputs only
based on the rate orders of the reactions affecting the particular species (unless
mentioned otherwise).

5.1 Gene Expression Model

The CRN underlying the gene expression model is described in Table 1. As dis-
cussed in [24] and experimentally observed in [18], the system oscillates between
two phases characterised by the Don state and the Doff state, respectively. Biol-
ogists are interested in how the distribution of the Don and Doff states is aligned
with the distribution of RNA and proteins P, and how the correlation among
the distributions depends on the DNA switching rates.

The state vector of the underlying CTMC is given as [P, RNA, Doff, Don]. We
use very relaxed bounds on the maximal populations, namely the bound 1000
for P and 100 for RNA. Note the DNA invariant Don + Doff = 1. As in [24], the
initial state is given as [10,4,1,0].

We first consider the slow switching rates that lead to a more compli-
cated dynamics including bimodal distributions. In order to demonstrate the
refinement step and its effect on the accuracy of the model, we start with a
very coarse abstraction. It distinguishes only the zero population and the non-
zero populations and thus it is not able to adequately capture the relationship
between the DNA state and RNA/P population. The pruned abstract model
obtained using Algorithm 1 and 2 is depicted in Fig. 3 (left). The full one before
pruning is shown in Fig. 6 [11, Appendix].

The proposed analysis of the model identifies the key trends in the system
dynamic. The red transitions, representing iterations 1–3, capture the most prob-
able paths in the system. The green component includes states with DNA on

488 M. Češka and J. Křet́ınský

Table 1. Gene expression. For slow DNA switching, r1 = r2 = 0.05. For fast DNA
switching, r1 = r2 = 1. The rates are in h−1.

Fig. 3. Pruned abstraction for the gene expression model using the coarse population
discretisation (left) and after the refinement (right). The state vector is [P, RNA, Doff,
Don].

(i.e. Don = 1) where the system oscillates. The component is reached via the
blue state with Doff and no RNAs/P. The blue state is promptly reached from
the initial state and then the system waits (roughly 100 h according our rate
abstraction) for the next DNA activation. The oscillation is left via a deactiva-
tion in the iteration 4 (the blue dotted transition)5. The estimation of the exit
time computed using Algorithm 2 is also 100 h. The deactivation is then followed
by fast red transitions leading to the blue state, where the system waits for the
next activation. Therefore, we obtain an oscillation between the blue state and
the green component, representing the expected oscillation between the Don and
Doff states.

As expected, this abstraction does not clearly predict the bimodal distri-
bution on the RNA/P populations as the trivial population levels do not bear
any information beside reaction enabledness. In order to obtain a more accurate
analysis of the system, we refine the population discretisation using a single level
threshold for P and DNA, that is equal to 100 and 10, respectively (the rates in
the CRN indicate that the population of P reaches higher values).

Figure 3 (right) depicts the pruned abstract model with the new discretisa-
tion (the full model is depicted in Fig. 7 [11, Appendix]. We again obtain the
oscillation between the green component representing DNAon states and the
blue DNAoff state. The states in the green component more accurately predicts

5 In Fig. 3, the dotted transitions denote exit transitions representing the deactiva-
tions.

Semi-quantitative Abstraction and Analysis of Chemical Reaction Networks 489

that in the DNAon states the populations of RNA and P are high and drop
to zero only for short time periods. The figure also shows orange transitions
within the iteration 2 that extend the green component by two states. Note that
the system promptly returns from these states back to the green component.
After the deactivation in the iteration 4, the system takes (within the same
iteration) the fast transitions (solid blue) leading to the blue component where
system waits for another activation and where the mRNA/protein populations
decrease. The expected time spent in states on blue solid transitions is small and
thus we can reliably predict the bimodal distribution of the mRNA/P popula-
tions and its correlation with the DNA state. The refined abstraction also reveals
that the switching time from the DNAon mode to the DNAoff mode is lower.
These predications are in accordance with the results obtained in [24]. See Fig. 8
[11, Appendix] that is adopted from [24] and illustrates these results.

To further test the accuracy of our approach, we consider the fast switching
between the DNA states. We follow the study in [24] and increase the rates by
two orders of magnitude. We use the refined population discretisation and obtain
a very similar abstraction as in Fig. 3 (right). We again obtain the oscillation
between the green component (DNAon states and nonzero RNA/protein popu-
lations) and the blue state (DNAoff and zero RNA/protein populations). The
only difference is in fact the transition rates corresponding to the activation and
deactivation causing that the switching rate between the components is much
faster. As a consequence, the system spends a longer period in the blue transient
states with Doff and nonzero RNA/protein populations. The time spent in these
states decreases the correlation between the DNA state and the RNA/protein
populations as well as the bimodality in the population distribution. This is
again in the accordance with [24].

To conclude this case study, we observe a very aligned agreement between the
results obtained using our approach and results in [24] obtained via advanced
and time consuming numerical methods. We would like to emphasise that our
abstraction and its solution is obtained within a fraction of a second while the
numerical methods have to approximate solutions of equations describing high-
order conditional moments of the population distributions. As [24] does not
report the runtime of the analysis and the implementation of their methods is
not publicly available, we cannot directly compare the time complexity.

5.2 Goutsias’s Model

Goutsias’s model illustrated in Table 2 is widely used for evaluation of various
numerical and simulation based techniques. As showed e.g. in [23], the system
has with a high probability the following transient behaviour. In the first phase,
the system switches with a high rate between the non-active DNA (denoted
DNA) and the active DNA (DNA.D). During this phase the population of RNA,
monomers (M) and dimers (D) gradually increase (with only negligible oscilla-
tions). After around 15 min, the DNA is blocked (DNA.2D) and the population
of RNA decreases while the population of M and D is relatively stable. After
all RNA degrades (around another 15 min) the system switches to the third

490 M. Češka and J. Křet́ınský

Table 2. Goutsias’ Model. The rates are in s−1

Fig. 4. Pruned abstraction for the Goutsias’ model. The state vector is [M + D, RNA,
DNA, DNA.D, DNA.2D]

phase where the population of M and D slowly decreases. Further, there is a
non-negligible probability that the DNA is blocked at the beginning while the
population of RNA is still small and the system promptly dies out.

Although the system is quite suitable for the hybrid approaches (there is
no strong bimodality and only a limited stiffness), the analysis still takes 10
to 50 min depending on the required precision [27]. We demonstrate that our
approach is able to accurately predict the main transient behaviour as well as
the non-negligible probability that the system promptly dies out.

The state vector is given as [M, D, RNA, DNA, DNA.D, DNA.2D] and the
initial state is set to [2, 6, 0, 1, 0, 0] as in [27]. We start our analysis with a
coarse population discretisation with a single threshold 100 for M and D and a
single threshold 10 for RNA. We relax the bounds, in particular, 1000 for M and
D, and 100 for RNA. Note that these numbers were selected solely based on the
rate orders of the relevant reactions. Note the DNA invariant DNA + DNA.D
+ DNA.2D = 1.

Figure 4 illustrates the pruned abstract model we obtained (the full model
is depicted in Fig. 9 [11, Appendix]. For a better visualisation, we merged the
state components corresponding to M and D into one component with M + D.
As there is the fast reversible dimerisation, the actual distributions between the
population of M and D does not affect the transient behaviour we are inter-
ested in.

The analysis of the model shows the following transient behaviour. The pur-
ple dotted loop in the iteration i1 represents (de-)activation of the DNA. The
expected exit time of this loop is 100 s. According to our abstraction, there are
two options (with the same probability) to exit the loop: (1) the path a rep-

Semi-quantitative Abstraction and Analysis of Chemical Reaction Networks 491

resents the DNA blocking followed by the quick extinction and (2) the path b
corresponds to the production of RNA and its followed by the red loop in the
i2 that again represents (de-)activation of the DNA. Note that according our
abstraction, this loop contains states with the populations of M/D as well as
RNA up to 100 and 10, respectively.

The expected exit time of this loop is again 100 s and there are two options
how to leave the loop: (1) the path within the iteration i3 (taken with roughly
90%) represents again the DNA blocking and it is followed by the extension of
RNA and consequently by the extension of M/D in about 1000 s and (2) the
path within the iteration 5 (shown in the full graph in Fig. 9 [11, Appendix])
taken with roughly 10% represents the series of protein productions and leads
to the states with a high number of proteins (above 100 in our population dis-
cretisation). Afterwards, there is again a series of DNA (de-)activations followed
by the DNA blocking and the extinction of RNA. As before, this leads to the
extinction of M/D in about 1000 s.

Although this abstraction already shows the transient behaviour leading
to the extinction in about 30 min, it introduces the following inaccuracy with
respect to the known behaviour: (1) the probability of the fast extinction is
higher and (2) we do not observe the clear bell-shape pattern on the RNA (i.e.
the level 2 for the RNA is not reached in the abstraction). As in the previous
case study, the problem is that the population discretisation is too coarse. It
causes that the total rate of the DNA blocking (affected by the M/D population
via the mass action kinetics) is too high in the states with the M/D population
level 1. This can be directly seen in the interval CTMC representation where
the rate spans many orders of magnitude, incurring too much imprecision. The
refinement of the M/D population discretisation eliminates the first inaccuracy.
To obtain the clear bell-shape patter on RNA, one has to refine also the RNA
population discretisation.

5.3 Viral Infection

The viral infection model described in Table 3 represents the most challenging
system we consider. It is highly stochastic, extremely stiff, with all species pre-
senting high variance and some also very high molecular populations. Moreover,
there is a bimodal distribution on the RNA population. As a consequence, the
solution of the full CME, even using advanced reduction and aggregation tech-
niques, is prohibitive due to state-space explosion and stochastic simulation are
very time consuming. State-of-the-art hybrid approaches integrating the LNA
and an adaptive population partitioning [9] can handle this system but also
need a very long execution time. For example, a transient analysis up to time
t = 50 requires around 20 min and up to t = 200 more than an hour.

To evaluate the accuracy of our approach on this challenging model, we also
focus on the same transient analysis, namely, we are interested in the distribution
of RNA at time t = 200. The analysis in [9] predicts a bimodal distribution where,
the probability that RNA is zero in around 20% and the remaining probability
has Gaussian distribution with mean around 17 and the probability that there

492 M. Češka and J. Křet́ınský

Table 3. Viral Infection. The rates are day−1

Fig. 5. Pruned abstraction for the viral infection model. The state vector is [P, RNA,
DNA].

is more than 30 RNAs is close to zero. This is confirmed by simulation-based
analysis in [23] showing also the gradual growth of the RNA population. The
simulation-based analysis in [43], however, estimates a lower probability (around
3%) that RNA is 0 and higher mean of the remaining Gaussian distribution
(around 23). Recall that obtaining accurate results using simulations is extremely
time consuming due to very stiff reactions (a single simulation for t = 200 takes
around 20 s).

In the final experiments, we analyse the distribution of RNA at time t = 200
using our approach. The state vector is given as [P, RNA, DNA] and we start
with the concrete state [0, 1, 0]. To sufficiently reason about the RNA population
and to handle the very high population of the proteins, we use the following
population discretisation: thresholds {10, 1000} for P, {10, 30} for RNA, and
{10, 100} for DNA. As before, we use very relaxed bounds 10000, 100, and 1000
for P, RNA, and D, respectively. Note that we ignore the population of the virus
V as it does not affect the dynamics of the other species. This simplification
makes the visualisation of our approach more readable and has no effect on the
complexity of the analysis.

Figure 5 illustrates the obtained abstract model enabling the following tran-
sient analysis (the full model is depicted in Fig. 10 [11, Appendix]. In a few days
the system reaches from the initial state the loop (depicted by the purple dashed
ellipse) within the iteration i1. The loop includes states where RNA has level 1,
DNA has level 2 and P oscillates between the levels 2 and 3. Before entering
the loop, there is a non-negligible probability (orders of percent) that the RNA
drops to 0 via the full black branch that returns to transient part of the loop
in i1. In this branch the system can also die out (not shown in this figure, see
the full model) with probability in the order of tenths of percent.

Semi-quantitative Abstraction and Analysis of Chemical Reaction Networks 493

The average exit time of the loop in i1 is in the order of 10 days and the
system goes to the yellow loop within the iteration i2, where the DNA level is
increased to 3 (RNA level is unchanged and P again oscillates between the levels
2 and 3). The average exit time of the loop in i2 is again in the order of 10
days and systems goes to the dotted red loop within iteration i3. The transition
represents the sequence of RNA synthesis that leads to RNA level 2. P oscillates
as before. Finally, the system leaves the loop in i3 (this takes another dozen
days) and reaches RNA level 3 in iterations i4 and i5 where the DNA level
remains at the level 3 and P oscillates. The iteration i4 and i5 thus roughly
correspond to the examined transient time t = 200.

The analysis clearly demonstrates that our approach leads to the behaviour
that is well aligned with the previous experiments. We observed growth of the
RNA population with a non-negligible probability of its extinction. The concrete
quantities (i.e. the probability of the extinction and the mean RNA population)
are closer to the analysis in [43]. The quantities are indeed affected by the popu-
lation discretisation and can be further refined. We would like to emphasise that
in contrast to the methods presented in [9,23,43] requiring hours of intensive
numerical computation, our approach can be done even manually on the paper.

References

1. Abate, A., Katoen, J.P., Lygeros, J., Prandini, M.: Approximate model checking
of stochastic hybrid systems. Eur. J. Control 16, 624–641 (2010)

2. Abate, A., Brim, L., Češka, M., Kwiatkowska, M.: Adaptive aggregation of Markov
chains: quantitative analysis of chemical reaction networks. In: Kroening, D.,
Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 195–213. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-21690-4 12

3. Angluin, D., Aspnes, J., Eisenstat, D., Ruppert, E.: The computational power of
population protocols. Distrib. Comput. 20(4), 279–304 (2007)

4. Baier, C., Katoen, J.P.: Principles of Model Checking. The MIT Press, Cambridge
(2008)

5. Bortolussi, L., Hillston, J.: Fluid model checking. In: Koutny, M., Ulidowski, I.
(eds.) CONCUR 2012. LNCS, vol. 7454, pp. 333–347. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32940-1 24

6. Buchholz, P.: Exact performance equivalence: an equivalence relation for stochastic
automata. Theor. Comput. Sci. 215(1–2), 263–287 (1999)

7. Cao, Y., Gillespie, D.T., Petzold, L.R.: The slow-scale stochastic simulation algo-
rithm. J. Chem. Phys. 122(1), 014116 (2005)

8. Cardelli, L.: Two-domain DNA strand displacement. Math. Struct. Comput. Sci.
23(02), 247–271 (2013)

9. Cardelli, L., Kwiatkowska, M., Laurenti, L.: A stochastic hybrid approximation for
chemical kinetics based on the linear noise approximation. In: Bartocci, E., Lio,
P., Paoletti, N. (eds.) CMSB 2016. LNCS, vol. 9859, pp. 147–167. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-45177-0 10

10. Cardelli, L., Tribastone, M., Tschaikowski, M., Vandin, A.: Maximal aggregation
of polynomial dynamical systems. Proc. Natl. Acad. Sci. 114(38), 10029–10034
(2017)

https://doi.org/10.1007/978-3-319-21690-4_12
https://doi.org/10.1007/978-3-642-32940-1_24
https://doi.org/10.1007/978-3-319-45177-0_10

494 M. Češka and J. Křet́ınský

11. Češka, M., Křet́ınský, J.: Semi-quantitative abstraction and analysis of chemical
reaction networks. Technical report abs/1905.09914, arXiv.org (2019)

12. Chellaboina, V., Bhat, S.P., Haddad, W.M., Bernstein, D.S.: Modeling and analysis
of mass-action kinetics. IEEE Control Syst. Mag. 29(4), 60–78 (2009)

13. Desharnais, J., Laviolette, F., Tracol, M.: Approximate analysis of probabilistic
processes: logic, simulation and games. In: Quantitative Evaluation of SysTems
(QEST), pp. 264–273. IEEE (2008)

14. D’Innocenzo, A., Abate, A., Katoen, J.P.: Robust PCTL model checking. In:
Hybrid Systems: Computation and Control (HSCC), pp. 275–285. ACM (2012)

15. Engblom, S.: Computing the moments of high dimensional solutions of the master
equation. Appl. Math. Comput. 180(2), 498–515 (2006)

16. Ethier, S.N., Kurtz, T.G.: Markov Processes: Characterization and Convergence,
vol. 282. Wiley, New York (2009)

17. Ferm, L., Lötstedt, P.: Adaptive solution of the master equation in low dimensions.
Appl. Numer. Math. 59(1), 187–204 (2009)

18. Gandhi, S.J., Zenklusen, D., Lionnet, T., Singer, R.H.: Transcription of functionally
related constitutive genes is not coordinated. Nat. Struct. Mol. Biol. 18(1), 27
(2011)

19. Ganguly, A., Altintan, D., Koeppl, H.: Jump-diffusion approximation of stochastic
reaction dynamics: error bounds and algorithms. Multiscale Model. Simul. 13(4),
1390–1419 (2015)

20. Giacobbe, M., Guet, C.C., Gupta, A., Henzinger, T.A., Paixão, T., Petrov, T.:
Model checking gene regulatory networks. In: Baier, C., Tinelli, C. (eds.) TACAS
2015. LNCS, vol. 9035, pp. 469–483. Springer, Heidelberg (2015). https://doi.org/
10.1007/978-3-662-46681-0 47

21. Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. J. Phys.
Chem. 81(25), 2340–2361 (1977)

22. Golding, I., Paulsson, J., Zawilski, S.M., Cox, E.C.: Real-time kinetics of gene
activity in individual bacteria. Cell 123(6), 1025–1036 (2005)

23. Goutsias, J.: Quasiequilibrium approximation of fast reaction kinetics in stochastic
biochemical systems. J. Chem. Phys. 122(18), 184102 (2005)

24. Hasenauer, J., Wolf, V., Kazeroonian, A., Theis, F.: Method of conditional
moments (MCM) for the chemical master equation. J. Math. Biol. 1–49 (2013).
https://doi.org/10.1007/s00285-013-0711-5

25. Heath, J., Kwiatkowska, M., Norman, G., Parker, D., Tymchyshyn, O.: Probabilis-
tic model checking of complex biological pathways. Theor. Comput. Sci. 391(3),
239–257 (2008)

26. Henzinger, T.A., Mateescu, M., Wolf, V.: Sliding window abstraction for infinite
Markov chains. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp.
337–352. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02658-
4 27

27. Henzinger, T.A., Mikeev, L., Mateescu, M., Wolf, V.: Hybrid numerical solution
of the chemical master equation. In: Computational Methods in Systems Biology
(CMSB), pp. 55–65. ACM (2010)

28. Hepp, B., Gupta, A., Khammash, M.: Adaptive hybrid simulations for multiscale
stochastic reaction networks. J. Chem. Phys. 142(3), 034118 (2015)

29. Karp, R.M., Miller, R.E.: Parallel program schemata. J. Comput. Syst. Sci. 3(2),
147–195 (1969)

30. Katoen, J.-P., Klink, D., Leucker, M., Wolf, V.: Three-valued abstraction for
continuous-time Markov chains. In: Damm, W., Hermanns, H. (eds.) CAV 2007.
LNCS, vol. 4590, pp. 311–324. Springer, Heidelberg (2007). https://doi.org/10.
1007/978-3-540-73368-3 37

http://arxiv.org/abs/org
https://doi.org/10.1007/978-3-662-46681-0_47
https://doi.org/10.1007/978-3-662-46681-0_47
https://doi.org/10.1007/s00285-013-0711-5
https://doi.org/10.1007/978-3-642-02658-4_27
https://doi.org/10.1007/978-3-642-02658-4_27
https://doi.org/10.1007/978-3-540-73368-3_37
https://doi.org/10.1007/978-3-540-73368-3_37

Semi-quantitative Abstraction and Analysis of Chemical Reaction Networks 495

31. Kwiatkowska, M., Thachuk, C.: Probabilistic model checking for biology. Softw.
Syst. Saf. 36, 165 (2014)

32. Lakin, M.R., Parker, D., Cardelli, L., Kwiatkowska, M., Phillips, A.: Design and
analysis of DNA strand displacement devices using probabilistic model checking.
J. R. Soc. Interface 9(72), 1470–1485 (2012)

33. Larsen, K.G., Skou, A.: Bisimulation through probabilistic testing. Inf. Comput.
94(1), 1–28 (1991)

34. Madsen, C., Myers, C., Roehner, N., Winstead, C., Zhang, Z.: Utilizing stochas-
tic model checking to analyze genetic circuits. In: Computational Intelligence in
Bioinformatics and Computational Biology (CIBCB), pp. 379–386. IEEE (2012)

35. Mateescu, M., Wolf, V., Didier, F., Henzinger, T.A.: Fast adaptive uniformization
of the chemical master equation. IET Syst. Biol. 4(6), 441–452 (2010)

36. Munsky, B., Khammash, M.: The finite state projection algorithm for the solution
of the chemical master equation. J. Chem. Phys. 124, 044104 (2006)

37. Murata, T.: Petri nets: properties, analysis and applications. Proc. IEEE 77(4),
541–580 (1989)

38. Rao, C.V., Arkin, A.P.: Stochastic chemical kinetics and the quasi-steady-
state assumption: application to the Gillespie algorithm. J. Chem. Phys. 118(11),
4999–5010 (2003)

39. Salis, H., Kaznessis, Y.: Accurate hybrid stochastic simulation of a system of cou-
pled chemical or biochemical reactions. J. Chem. Phys. 122(5), 054103 (2005)

40. Soloveichik, D., Seelig, G., Winfree, E.: DNA as a universal substrate for chemical
kinetics. Proc. Natl. Acad. Sci. U. S. A. 107(12), 5393–5398 (2010)

41. Soudjani, S.E.Z., Abate, A.: Adaptive and sequential gridding procedures for the
abstraction and verification of stochastic processes. SIAM J. Appl. Dyn. Syst.
12(2), 921–956 (2013)

42. Esmaeil Zadeh Soudjani, S., Abate, A.: Precise approximations of the probability
distribution of a Markov process in time: an application to probabilistic invariance.
In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413, pp. 547–561.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54862-8 45

43. Srivastava, R., You, L., Summers, J., Yin, J.: Stochastic vs. deterministic modeling
of intracellular viral kinetics. J. Theor. Biol. 218(3), 309–321 (2002)

44. Van Kampen, N.G.: Stochastic Processes in Physics and Chemistry, vol. 1. Elsevier,
New York (1992)

45. Zhang, J., Watson, L.T., Cao, Y.: Adaptive aggregation method for the chemical
master equation. Int. J. Comput. Biol. Drug Des. 2(2), 134–148 (2009)

https://doi.org/10.1007/978-3-642-54862-8_45

496 M. Češka and J. Křet́ınský

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

PAC Statistical Model Checking
for Markov Decision Processes

and Stochastic Games

Pranav Ashok, Jan Křet́ınský,
and Maximilian Weininger(B)

Technical University of Munich, Munich, Germany
maxi.weininger@tum.de

Abstract. Statistical model checking (SMC) is a technique for analysis
of probabilistic systems that may be (partially) unknown. We present an
SMC algorithm for (unbounded) reachability yielding probably approx-
imately correct (PAC) guarantees on the results. We consider both the
setting (i) with no knowledge of the transition function (with the only
quantity required a bound on the minimum transition probability) and
(ii) with knowledge of the topology of the underlying graph. On the
one hand, it is the first algorithm for stochastic games. On the other
hand, it is the first practical algorithm even for Markov decision pro-
cesses. Compared to previous approaches where PAC guarantees require
running times longer than the age of universe even for systems with a
handful of states, our algorithm often yields reasonably precise results
within minutes, not requiring the knowledge of mixing time.

1 Introduction

Statistical model checking (SMC) [YS02a] is an analysis technique for prob-
abilistic systems based on

1. simulating finitely many finitely long runs of the system,
2. statistical analysis of the obtained results,
3. yielding a confidence interval/probably approximately correct (PAC) result

on the probability of satisfying a given property, i.e., there is a non-zero prob-
ability that the bounds are incorrect, but they are correct with probability
that can be set arbitrarily close to 1.

One of the advantages is that it can avoid the state-space explosion problem,
albeit at the cost of weaker guarantees. Even more importantly, this technique
is applicable even when the model is not known (black-box setting) or only

This research was funded in part by TUM IGSSE Grant 10.06 (PARSEC), the Czech
Science Foundation grant No. 18-11193S, and the German Research Foundation (DFG)
project KR 4890/2-1 “Statistical Unbounded Verification”.

c© The Author(s) 2019
I. Dillig and S. Tasiran (Eds.): CAV 2019, LNCS 11561, pp. 497–519, 2019.
https://doi.org/10.1007/978-3-030-25540-4_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-25540-4_29&domain=pdf
https://doi.org/10.1007/978-3-030-25540-4_29

498 P. Ashok et al.

qualitatively known (grey-box setting), where the exact transition probabilities
are unknown such as in many cyber-physical systems.

In the basic setting of Markov chains [Nor98] with (time- or step-)bounded
properties, the technique is very efficient and has been applied to numerous
domains, e.g. biological [JCL+09,PGL+13], hybrid [ZPC10,DDL+12,EGF12,
Lar12] or cyber-physical [BBB+10,CZ11,DDL+13] systems and a substantial
tool support is available [JLS12,BDL+12,BCLS13,BHH12]. In contrast, when-
ever either (i) infinite time-horizon properties, e.g. reachability, are considered or
(ii) non-determinism is present in the system, providing any guarantees becomes
significantly harder.

Firstly, for infinite time-horizon properties we need a stopping criterion such
that the infinite-horizon property can be reliably evaluated based on a finite
prefix of the run yielded by simulation. This can rely on the the complete knowl-
edge of the system (white-box setting) [YCZ10,LP08], the topology of the system
(grey box) [YCZ10,HJB+10], or a lower bound pmin on the minimum transition
probability in the system (black box) [DHKP16,BCC+14].

Secondly, for Markov decision processes (MDP) [Put14] with (non-trivial)
non-determinism, [HMZ+12] and [LP12] employ reinforcement learning [SB98]
in the setting of bounded properties or discounted (and for the purposes of
approximation thus also bounded) properties, respectively. The latter also yields
PAC guarantees.

Finally, for MDP with unbounded properties, [BFHH11] deals with MDP
with spurious non-determinism, where the way it is resolved does not affect
the desired property. The general non-deterministic case is treated in [FT14,
BCC+14], yielding PAC guarantees. However, the former requires the knowledge
of mixing time, which is at least as hard to compute; the algorithm in the latter
is purely theoretical since before a single value is updated in the learning process,
one has to simulate longer than the age of universe even for a system as simple
as a Markov chain with 12 states having at least 4 successors for some state.

Our contribution is an SMC algorithm with PAC guarantees for (i) MDP and
unbounded properties, which runs for realistic benchmarks [HKP+19] and con-
fidence intervals in orders of minutes, and (ii) is the first algorithm for stochastic
games (SG). It relies on different techniques from literature.

1. The increased practical performance rests on two pillars:
– extending early detection of bottom strongly connected components in

Markov chains by [DHKP16] to end components for MDP and simple
end components for SG;

– improving the underlying PAC Q-learning technique of [SLW+06]:
(a) learning is now model-based with better information reuse instead of

model-free, but in realistic settings with the same memory require-
ments,

(b) better guidance of learning due to interleaving with precise computa-
tion, which yields more precise value estimates.

(c) splitting confidence over all relevant transitions, allowing for variable
width of confidence intervals on the learnt transition probabilities.

PAC Statistical Model Checking 499

2. The transition from algorithms for MDP to SG is possible via extend-
ing the over-approximating value iteration from MDP [BCC+14] to SG by
[KKKW18].

To summarize, we give an anytime PAC SMC algorithm for (unbounded) reach-
ability. It is the first such algorithm for SG and the first practical one for MDP.

Related Work

Most of the previous efforts in SMC have focused on the analysis of properties
with bounded horizon [YS02a,SVA04,YKNP06,JCL+09,JLS12,BDL+12].

SMC of unbounded properties was first considered in [HLMP04] and the
first approach was proposed in [SVA05], but observed incorrect in [HJB+10].
Notably, in [YCZ10] two approaches are described. The first approach proposes
to terminate sampled paths at every step with some probability pterm and re-
weight the result accordingly. In order to guarantee the asymptotic convergence
of this method, the second eigenvalue λ of the chain and its mixing time must
be computed, which is as hard as the verification problem itself and requires the
complete knowledge of the system (white box setting). The correctness of [LP08]
relies on the knowledge of the second eigenvalue λ, too. The second approach
of [YCZ10] requires the knowledge of the chain’s topology (grey box), which is
used to transform the chain so that all potentially infinite paths are eliminated.
In [HJB+10], a similar transformation is performed, again requiring knowledge
of the topology. In [DHKP16], only (a lower bound on) the minimum transition
probability pmin is assumed and PAC guarantees are derived. While unbounded
properties cannot be analyzed without any information on the system, knowledge
of pmin is a relatively light assumption in many realistic scenarios [DHKP16]. For
instance, bounds on the rates for reaction kinetics in chemical reaction systems
are typically known; for models in the PRISM language [KNP11], the bounds
can be easily inferred without constructing the respective state space. In this
paper, we thus adopt this assumption.

In the case with general non-determinism, one approach is to give the non-
determinism a probabilistic semantics, e.g., using a uniform distribution instead,
as for timed automata in [DLL+11a,DLL+11b,Lar13]. Others [LP12,HMZ+12,
BCC+14] aim to quantify over all strategies and produce an ε-optimal strategy.
In [HMZ+12], candidates for optimal strategies are generated and gradually
improved, but “at any given point we cannot quantify how close to optimal
the candidate scheduler is” (cited from [HMZ+12]) and the algorithm “does
not in general converge to the true optimum” (cited from [LST14]). Further,
[LST14,DLST15,DHS18] randomly sample compact representation of strategies,
resulting in useful lower bounds if ε-schedulers are frequent. [HPS+19] gives
a convergent model-free algorithm (with no bounds on the current error) and
identifies that the previous [SKC+14] “has two faults, the second of which also
affects approaches [...] [HAK18,HAK19]”.

Several approaches provide SMC for MDPs and unbounded properties with
PAC guarantees. Firstly, similarly to [LP08,YCZ10], [FT14] requires (1) the

500 P. Ashok et al.

mixing time T of the MDP. The algorithm then yields PAC bounds in time
polynomial in T (which in turn can of course be exponential in the size of the
MDP). Moreover, the algorithm requires (2) the ability to restart simulations
also in non-initial states, (3) it only returns the strategy once all states have
been visited (sufficiently many times), and thus (4) requires the size of the state
space |S|. Secondly, [BCC+14], based on delayed Q-learning (DQL) [SLW+06],
lifts the assumptions (2) and (3) and instead of (1) mixing time requires only (a
bound on) the minimum transition probability pmin. Our approach additionally
lifts the assumption (4) and allows for running times faster than those given by
T , even without the knowledge of T .

Reinforcement learning (without PAC bounds) for stochastic games has been
considered already in [LN81,Lit94,BT99]. [WT16] combines the special case of
almost-sure satisfaction of a specification with optimizing quantitative objec-
tives. We use techniques of [KKKW18], which however assumes access to the
transition probabilities.

2 Preliminaries

2.1 Stochastic Games

A probability distribution on a finite set X is a mapping δ : X → [0, 1], such
that

∑
x∈X δ(x) = 1. The set of all probability distributions on X is denoted

by D(X). Now we define turn-based two-player stochastic games. As opposed to
the notation of e.g. [Con92], we do not have special stochastic nodes, but rather
a probabilistic transition function.

Definition 1 (SG). A stochastic game (SG) is a tuple
G = (S,S�,S©, s0,A,Av, T), where S is a finite set of states partitioned1 into the
sets S� and S© of states of the player Maximizer and Minimizer2, respectively
s0 ∈ S is the initial state, A is a finite set of actions, Av : S → 2A assigns to every
state a set of available actions, and T : S × A → D(S) is a transition function
that given a state s and an action a ∈ Av(s) yields a probability distribution
over successor states. Note that for ease of notation we write T(s, a, t) instead
of T(s, a)(t).

A Markov decision process (MDP) is a special case of SG where S© = ∅. A
Markov chain (MC) can be seen as a special case of an MDP, where for all
s ∈ S : |Av(s)| = 1. We assume that SG are non-blocking, so for all states s we
have Av(s) �= ∅.

For a state s and an available action a ∈ Av(s), we denote the set of successors
by Post(s, a) := {t | T(s, a, t) > 0}. We say a state-action pair (s, a) is an exit
of a set of states T , written (s, a) exits T , if ∃t ∈ Post(s, a) : t /∈ T , i.e., if with
some probability a successor outside of T could be chosen.

We consider algorithms that have a limited information about the SG.
1 I.e., S� ⊆ S, S© ⊆ S, S� ∪ S© = S, and S� ∩ S© = ∅.
2 The names are chosen, because Maximizer maximizes the probability of reaching a

given target state, and Minimizer minimizes it.

PAC Statistical Model Checking 501

Definition 2 (Black box and grey box). An algorithm inputs an SG as
black box if it cannot access the whole tuple, but

– it knows the initial state,
– for a given state, an oracle returns its player and available action,
– given a state s and action a, it can sample a successor t according to T(s, a),3

– it knows pmin ≤ mins∈S,a∈Av(s)
t∈Post(s,a)

T(s, a, t), an under-approximation of the min-

imum transition probability.

When input as grey box it additionally knows the number |Post(s, a)| of succes-
sors for each state s and action a.4

The semantics of SG is given in the usual way by means of strategies and the
induced Markov chain [BK08] and its respective probability space, as follows.
An infinite path ρ is an infinite sequence ρ = s0a0s1a1 · · · ∈ (S × A)ω, such that
for every i ∈ N, ai ∈ Av(si) and si+1 ∈ Post(si, ai).

A strategy of Maximizer or Minimizer is a function σ : S� → D(A) or S© →
D(A), respectively, such that σ(s) ∈ D(Av(s)) for all s. Note that we restrict to
memoryless/positional strategies, as they suffice for reachability in SGs [CH12].

A pair (σ, τ) of strategies of Maximizer and Minimizer induces a Markov
chain Gσ,τ with states S, s0 being initial, and the transition function T(s)(t) =∑

a∈Av(s) σ(s)(a) · T(s, a, t) for states of Maximizer and analogously for states of
Minimizer, with σ replaced by τ . The Markov chain induces a unique probability
distribution P

σ,τ over measurable sets of infinite paths [BK08, Ch. 10].

2.2 Reachability Objective

For a goal set Goal ⊆ S, we write ♦Goal := {s0a0s1a1 · · · | ∃i ∈ N : si ∈ Goal}
to denote the (measurable) set of all infinite paths which eventually reach Goal.
For each s ∈ S, we define the value in s as

V(s) := sup
σ

inf
τ

P
σ,τ
s (♦Goal) = inf

τ
sup

σ
P

σ,τ
s (♦Goal),

where the equality follows from [Mar75]. We are interested in V(s0), its
ε-approximation and the corresponding (ε-)optimal strategies for both players.

3 Up to this point, this definition conforms to black box systems in the sense of [SVA04]
with sampling from the initial state, being slightly stricter than [YS02a] or [RP09],
where simulations can be run from any desired state. Further, we assume that we
can choose actions for the adversarial player or that she plays fairly. Otherwise the
adversary could avoid playing her best strategy during the SMC, not giving SMC
enough information about her possible behaviours.

4 This requirement is slightly weaker than the knowledge of the whole topology, i.e.
Post(s, a) for each s and a.

502 P. Ashok et al.

Let Zero be the set of states, from which there is no finite path to any state
in Goal. The value function V satisfies the following system of equations, which
is referred to as the Bellman equations:

V(s) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

maxa∈Av(s) V(s, a) if s ∈ S�
mina∈Av(s) V(s, a) if s ∈ S©
1 if s ∈ Goal

0 if s ∈ Zero

with the abbreviation V(s, a) :=
∑

s′∈S T(s, a, s′) ·V(s′). Moreover, V is the least
solution to the Bellman equations, see e.g. [CH08].

2.3 Bounded and Asynchronous Value Iteration

The well known technique of value iteration, e.g. [Put14,RF91], works by starting
from an under-approximation of value function and then applying the Bellman
equations. This converges towards the least fixpoint of the Bellman equations,
i.e. the value function. Since it is difficult to give a convergence criterion, the
approach of bounded value iteration (BVI, also called interval iteration) was
developed for MDP [BCC+14,HM17] and SG [KKKW18]. Beside the under-
approximation, it also updates an over-approximation according to the Bellman
equations. The most conservative over-approximation is to use an upper bound
of 1 for every state. For the under-approximation, we can set the lower bound
of target states to 1; all other states have a lower bound of 0. We use the func-
tion INITIALIZE BOUNDS in our algorithms to denote that the lower and upper
bounds are set as just described; see [AKW19, Algorithm 8] for the pseudocode.
Additionally, BVI ensures that the over-approximation converges to the least
fixpoint by taking special care of end components, which are the reason for not
converging to the true value from above.

Definition 3 (End component (EC)). A non-empty set T ⊆ S of states is
an end component (EC) if there is a non-empty set B ⊆ ⋃

s∈T Av(s) of actions
such that (i) for each s ∈ T, a ∈ B ∩Av(s) we do not have (s, a) exits T and (ii)
for each s, s′ ∈ T there is a finite path w = sa0 . . . ans

′ ∈ (T × B)∗ × T , i.e. the
path stays inside T and only uses actions in B.

Intuitively, ECs correspond to bottom strongly connected components of the
Markov chains induced by possible strategies, so for some pair of strategies all
possible paths starting in the EC remain there. An end component T is a maximal
end component (MEC) if there is no other end component T ′ such that T ⊆ T ′.
Given an SG G, the set of its MECs is denoted by MEC(G).

Note that, to stay in an EC in an SG, the two players would have to cooperate,
since it depends on the pair of strategies. To take into account the adversarial
behaviour of the players, it is also relevant to look at a subclass of ECs, the so
called simple end components, introduced in [KKKW18].

PAC Statistical Model Checking 503

Definition 4 (Simple end component (SEC) [KKKW18]). An EC T is
called simple, if for all s ∈ T it holds that V(s) = bestExit(T,V), where

bestExit(T, f) :=

⎧
⎨

⎩

1 if T ∩ Goal �= ∅
max s∈T∩S�

(s,a) exitsT

f(s, a) else

is called the best exit (of Maximizer) from T according to the function f : S → R.
To handle the case that there is no exit of Maximizer in T we set max∅ = 0.

Intuitively, SECs are ECs where Minimizer does not want to use any of
her exits, as all of them have a greater value than the best exit of Maximizer.
Assigning any value between those of the best exits of Maximizer and Minimizer
to all states in the EC is a solution to the Bellman equations, because both
players prefer remaining and getting that value to using their exits [KKKW18,
Lemma 1]. However, this is suboptimal for Maximizer, as the goal is not reached
if the game remains in the EC forever. Hence we “deflate” the upper bounds
of SECs, i.e. reduce them to depend on the best exit of Maximizer. T is called
maximal simple end component (MSEC), if there is no SEC T ′ such that T � T ′.
Note that in MDPs, treating all MSECs amounts to treating all MECs.

Algorithm 1. Bounded value iteration algorithm for SG (and MDP)
1: procedure BVI(SG G, target set Goal, precision ε > 0)
2: INITIALIZE BOUNDS
3: repeat
4: X ← SIMULATE until LOOPING or state in Goal is hit
5: UPDATE(X) � Bellman updates or their modification
6: for T ∈ FIND MSECs(X) do
7: DEFLATE(T) � Decrease the upper bound of MSECs

8: until U(s0) − L(s0) < ε

Algorithm 1 rephrases that of [KKKW18] and describes the general structure
of all bounded value iteration algorithms that are relevant for this paper. We
discuss it here since all our improvements refer to functions (in capitalized font)
in it. In the next section, we design new functions, pinpointing the difference
to the other papers. The pseudocode of the functions adapted from the other
papers can be found, for the reader’s convenience, in [AKW19, Appendix A].
Note that to improve readability, we omit the parameters G,Goal, L and U of
the functions in the algorithm.

Bounded Value Iteration: For the standard bounded value iteration algo-
rithm, Line 4 does not run a simulation, but just assigns the whole state
space S to X5. Then it updates all values according to the Bellman equations.
5 Since we mainly talk about simulation based algorithms, we included this line to

make their structure clearer.

504 P. Ashok et al.

After that it finds all the problematic components, the MSECs, and “deflates”
them as described in [KKKW18], i.e. it reduces their values to ensure the con-
vergence to the least fixpoint. This suffices for the bounds to converge and the
algorithm to terminate [KKKW18, Theorem 2].

Asynchronous Bounded Value Iteration: To tackle the state space explo-
sion problem, asynchronous simulation/learning-based algorithms have been
developed [MLG05,BCC+14,KKKW18]. The idea is not to update and deflate
all states at once, since there might be too many, or since we only have limited
information. Instead of considering the whole state space, a path through the
SG is sampled by picking in every state one of the actions that look optimal
according to the current over-/under-approximation and then sampling a suc-
cessor of that action. This is repeated until either a target is found, or until the
simulation is looping in an EC; the latter case occurs if the heuristic that picks
the actions generates a pair of strategies under which both players only pick
staying actions in an EC. After the simulation, only the bounds of the states on
the path are updated and deflated. Since we pick actions which look optimal in
the simulation, we almost surely find an ε-optimal strategy and the algorithm
terminates [BCC+14, Theorem 3].

3 Algorithm

3.1 Model-Based

Given only limited information, updating cannot be done using T, since the true
probabilities are not known. The approach of [BCC+14] is to sample for a high
number of steps and accumulate the observed lower and upper bounds on the
true value function for each state-action pair. When the number of samples is
large enough, the average of the accumulator is used as the new estimate for
the state-action pair, and thus the approximations can be improved and the
results back-propagated, while giving statistical guarantees that each update
was correct. However, this approach has several drawbacks, the biggest of which
is that the number of steps before an update can occur is infeasibly large, often
larger than the age of the universe, see Table 1 in Sect. 4.

Our improvements to make the algorithm practically usable are linked to
constructing a partial model of the given system. That way, we have more infor-
mation available on which we can base our estimates, and we can be less conser-
vative when giving bounds on the possible errors. The shift from model-free to
model-based learning asymptotically increases the memory requirements from
O(|S| · |A|) (as in [SLW+06,BCC+14]) to O(|S|2 · |A|). However, for systems
where each action has a small constant bound on the number of successors,
which is typical for many practical systems, e.g. classical PRISM benchmarks,
it is still O(|S| · |A|) with a negligible constant difference.

We thus track the number of times some successor t has been observed when
playing action a from state s in a variable #(s, a, t). This implicitly induces
the number of times each state-action pair (s, a) has been played #(s, a) =

PAC Statistical Model Checking 505

∑
t∈S #(s, a, t). Given these numbers we can then calculate probability estimates

for every transition as described in the next subsection. They also induce the
set of all states visited so far, allowing us to construct a partial model of the
game. See [AKW19, Appendix A.2] for the pseudo-code of how to count the
occurrences during the simulations.

3.2 Safe Updates with Confidence Intervals Using Distributed
Error Probability

We use the counters to compute a lower estimate of the transition probability
for some error tolerance δT as follows: We view sampling t from state-action pair
(s, a) as a Bernoulli sequence, with success probability T(s, a, t), the number of
trials #(s, a) and the number of successes #(s, a, t). The tightest lower estimate
we can give using the Hoeffding bound (see [AKW19, Appendix D.1]) is

T̂(s, a, t) := max(0,
#(s, a, t)
#(s, a)

− c), (1)

where the confidence width c :=
√

ln(δT)
−2#(s,a) . Since c could be greater than 1,

we limit the lower estimate to be at least 0. Now we can give modified update
equations:

L̂(s, a) :=
∑

t:#(s,a,t)>0

T̂(s, a, t) · L(t)

Û(s, a) :=

⎛

⎝
∑

t:#(s,a,t)>0

T̂(s, a, t) · U(t)

⎞

⎠ +

⎛

⎝1 −
∑

t:#(s,a,t)>0

T̂(s, a, t)

⎞

⎠

The idea is the same for both upper and lower bound: In contrast to the usual
Bellman equation (see Sect. 2.2) we use T̂ instead of T. But since the sum of all
the lower estimates does not add up to one, there is some remaining probability
for which we need to under-/over-approximate the value it can achieve. We use

s0 s1

s2

a1

b1

b2
p1

p2

p3

a2 c

Fig. 1. A running example of an SG. The dashed part is only relevant for the later
examples. For actions with only one successor, we do not depict the transition proba-
bility 1 (e.g. T(s0, a1, s1)). For state-action pair (s1, b2), the transition probabilities are
parameterized and instantiated in the examples where they are used.

506 P. Ashok et al.

the safe approximations 0 and 1 for the lower and upper bound respectively; this
is why in L̂ there is no second term and in Û the whole remaining probability
is added. Algorithm 2 shows the modified update that uses the lower estimates;
the proof of its correctness is in [AKW19, Appendix D.2].

Lemma 1 (UPDATE is correct). Given correct under- and over-approxi-
mations L,U of the value function V, and correct lower probability estimates
T̂, the under- and over-approximations after an application of UPDATE are also
correct.

Algorithm 2. New update procedure using the probability estimates
1: procedure UPDATE(State set X)
2: for f ∈ {L,U} do � For both functions
3: for s ∈ X \ Goal do � For all non-target states in the given set

4: f(s) =

⎧
⎨

⎩

maxa∈Av(s) f̂ (s, a) if s ∈ S�

mina∈Av(s) f̂ (s, a) if s ∈ S©

Example 1. We illustrate how the calculation works and its huge advantage over
the approach from [BCC+14] on the SG from Fig. 1. For this example, ignore
the dashed part and let p1 = p2 = 0.5, i.e. we have no self loop, and an even
chance to go to the target 1 or a sink 0. Observe that hence V(s0) = V(s1) = 0.5.

Given an error tolerance of δ = 0.1, the algorithm of [BCC+14] would have
to sample for more than 109 steps before it could attempt a single update. In
contrast, assume we have seen 5 samples of action b2, where 1 of them went to 1
and 4 of them to 0. Note that, in a sense, we were unlucky here, as the observed
averages are very different from the actual distribution. The confidence width for
δT = 0.1 and 5 samples is

√
ln(0.1)/ − 2 · 5 ≈ 0.48. So given that data, we get

T̂(s1, b2, 1) = max(0, 0.2−0.48) = 0 and T̂(s1, b2, 0) = max(0, 0.8−0.48) = 0.32.
Note that both probabilities are in fact lower estimates for their true counterpart.

Assume we already found out that 0 is a sink with value 0; how we gain this
knowledge is explained in the following subsections. Then, after getting only
these 5 samples, UPDATE already decreases the upper bound of (s1, b2) to 0.68,
as we know that at least 0.32 of T(s1, b2) goes to the sink.

Given 500 samples of action b2, the confidence width of the probability esti-
mates already has decreased below 0.05. Then, since we have this confidence
width for both the upper and the lower bound, we can decrease the total preci-
sion for (s1, b2) to 0.1, i.e. return an interval in the order of [0.45; 0.55]. 	

Summing up: with the model-based approach we can already start updating after
very few steps and get a reasonable level of confidence with a realistic number
of samples. In contrast, the state-of-the-art approach of [BCC+14] needs a very
large number of samples even for this toy example.

Since for UPDATE we need an error tolerance for every transition, we need
to distribute the given total error tolerance δ over all transitions in the current

PAC Statistical Model Checking 507

partial model. For all states in the explored partial model Ŝ we know the number
of available actions and can over-approximate the number of successors as 1

pmin
.

Thus the error tolerance for each transition can be set to δT := δ·pmin

|{a|s∈̂S∧a∈Av(s)}| .
This is illustrated in Example 4 in [AKW19, Appendix B].

Note that the fact that the error tolerance δT for every transition is the same
does not imply that the confidence width for every transition is the same, as the
latter becomes smaller with increasing number of samples #(s, a).

3.3 Improved EC Detection

As mentioned in the description of Algorithm1, we must detect when the simu-
lation is stuck in a bottom EC and looping forever. However, we may also stop
simulations that are looping in some EC but still have a possibility to leave it;
for a discussion of different heuristics from [BCC+14,KKKW18], see [AKW19,
Appendix A.3].

We choose to define LOOPING as follows: Given a candidate for a bottom EC,
we continue sampling until we are δT-sure (i.e. the error probability is smaller
than δT) that we cannot leave it. Then we can safely deflate the EC, i.e. decrease
all upper bounds to zero.

To detect that something is a δT-sure EC, we do not sample for the astronom-
ical number of steps as in [BCC+14], but rather extend the approach to detect
bottom strongly connected components from [DHKP16]. If in the EC-candidate
T there was some state-action pair (s, a) that actually has a probability to exit
the T , that probability is at least pmin. So after sampling (s, a) for n times, the
probability to overlook such a leaving transition is (1 − pmin)n and it should be
smaller than δT . Solving the inequation for the required number of samples n

yields n ≥ ln(δT)
ln(1−pmin)

.
Algorithm 3 checks that we have seen all staying state-action pairs n times,

and hence that we are δT-sure that T is an EC. Note that we restrict to staying
state-action pairs, since the requirement for an EC is only that there exist staying
actions, not that all actions stay. We further speed up the EC-detection, because
we do not wait for n samples in every simulation, but we use the aggregated
counters that are kept over all simulations.

Algorithm 3. Check whether we are δT-sure that T is an EC

1: procedure δT -sure EC (State set T)

2: requiredSamples = ln(δT)
ln(1−pmin)

3: B ← {(s, a) | s ∈ T ∧ ¬(s, a) exits T} � Set of staying state-action pairs
4: return

∧
(s,a)∈B #(s, a) > requiredSamples

We stop a simulation, if LOOPING returns true, i.e. under the following three
conditions: (i) We have seen the current state before in this simulation (s ∈ X),

508 P. Ashok et al.

i.e. there is a cycle. (ii) This cycle is explainable by an EC T in our current
partial model. (iii) We are δT-sure that T is an EC.

Algorithm 4. Check if we are probably looping and should stop the simulation
1: procedure LOOPING(State set X, state s)
2: if s /∈ X then
3: return false � Easy improvement to avoid overhead

4: return ∃T ⊆ X.T is EC in partial model ∧ s ∈ T ∧ δT -sure EC(T)

Example 2. For this example, we again use the SG from Fig. 1 without the
dashed part, but this time with p1 = p2 = p3 = 1

3 . Assume the path we simulated
is (s0, a1, s1, b2, s1), i.e. we sampled the self-loop of action b2. Then {s1} is a can-
didate for an EC, because given our current observation it seems possible that
we will continue looping there forever. However, we do not stop the simulation
here, because we are not yet δT-sure about this. Given δT = 0.1, the required
samples for that are 6, since ln(0.1)

ln(1− 1
3)

= 5.6. With high probability (greater than
(1 − δT) = 0.9), within these 6 steps we will sample one of the other successors
of (s1, b2) and thus realise that we should not stop the simulation in s1. If, on
the other hand, we are in state 0 or if in state s1 the guiding heuristic only picks
b1, then we are in fact looping for more than 6 steps, and hence we stop the
simulation. 	

3.4 Adapting to Games: Deflating MSECs

To extend the algorithm of [BCC+14] to SGs, instead of collapsing problematic
ECs we deflate them as in [KKKW18], i.e. given an MSEC, we reduce the upper
bound of all states in it to the upper bound of the bestExit of Maximizer. In
contrast to [KKKW18], we cannot use the upper bound of the bestExit based on
the true probability, but only based on our estimates. Algorithm5 shows how to
deflate an MSEC and highlights the difference, namely that we use Û instead
of U.

Algorithm 5. Black box algorithm to deflate a set of states
1: procedure DEFLATE(State set X)
2: for s ∈ X do

3: U(s) = min(U(s), bestExit(X, Û)

The remaining question is how to find MSECs. The approach of [KKKW18]
is to find MSECs by removing the suboptimal actions of Minimizer according
to the current lower bound. Since it converges to the true value function, all

PAC Statistical Model Checking 509

MSECs are eventually found [KKKW18, Lemma 2]. Since Algorithm 6 can only
access the SG as a black box, there are two differences: We can only compare our
estimates of the lower bound L̂(s, a) to find out which actions are suboptimal.
Additionally there is the problem that we might overlook an exit from an EC,
and hence deflate to some value that is too small; thus we need to check that any
state set FIND MSECs returns is a δT-sure EC. This is illustrated in Example 3.
For a bigger example of how all our functions work together, see Example 5 in
[AKW19, Appendix B].

Algorithm 6. Finding MSECs in the game restricted to X for black box setting
1: procedure FIND MSECs(State set X)

2: suboptAct© ← {(s, {a ∈ Av(s) | L̂ (s, a) > L(s)} | s ∈ S© ∩ X}
3: Av′ ← Av without suboptAct©
4: G′ ← G restricted to states X and available actions Av′

5: return {T ∈ MEC(G′) | δT -sure EC(T) }

Example 3. For this example, we use the full SG from Fig. 1, including the
dashed part, with p1, p2 > 0. Let (s0, a1, s1, b2, s2, b1, s1, a2, s2, c, 1) be the path
generated by our simulation. Then in our partial view of the model, it seems
as if T = {s0, s1} is an MSEC, since using a2 is suboptimal for the minimizing
state s0

6 and according to our current knowledge a1, b1 and b2 all stay inside T .
If we deflated T now, all states would get an upper bound of 0, which would be
incorrect.

Thus in Algorithm6 we need to require that T is an EC δT-surely. This was
not satisfied in the example, as the state-action pairs have not been observed the
required number of times. Thus we do not deflate T , and our upper bounds stay
correct. Having seen (s1, b2) the required number of times, we probably know
that it is exiting T and hence will not make the mistake. 	

3.5 Guidance and Statistical Guarantee

It is difficult to give statistical guarantees for the algorithm we have developed
so far (i.e. Algorithm 1 calling the new functions from Sects. 3.2, 3.3 and 3.4).
Although we can bound the error of each function, applying them repeatedly can
add up the error. Algorithm7 shows our approach to get statistical guarantees:
It interleaves a guided simulation phase (Lines 7–10) with a guaranteed standard
bounded value iteration (called BVI phase) that uses our new functions (Lines
11–16).

The simulation phase builds the partial model by exploring states and remem-
bering the counters. In the first iteration of the main loop, it chooses actions
randomly. In all further iterations, it is guided by the bounds that the last BVI
6 For δT = 0.2, sampling the path to target once suffices to realize that L(s0, a2) > 0.

510 P. Ashok et al.

phase computed. After Nk simulations (see below for a discussion of how to
choose Nk), all the gathered information is used to compute one version of the
partial model with probability estimates T̂ for a certain error tolerance δk. We
can continue with the assumption, that these probability estimates are correct,
since it is only violated with a probability smaller than our error tolerance (see
below for an explanation of the choice of δk). So in our correct partial model,
we re-initialize the lower and upper bound (Line 12), and execute a guaran-
teed standard BVI. If the simulation phase already gathered enough data, i.e.
explored the relevant states and sampled the relevant transitions often enough,
this BVI achieves a precision smaller than ε in the initial state, and the algo-
rithm terminates. Otherwise we start another simulation phase that is guided
by the improved bounds.

Algorithm 7. Full algorithm for black box setting
1: procedure BlackVI(SG G, target set Goal, precision ε > 0, error tolerance δ > 0)
2: INITIALIZE BOUNDS
3: k = 1 � guaranteed BVI counter
4: Ŝ ← ∅ � current partial model

5: repeat
6: k ← 2 · k
7: δk ← δ

k

// Guided simulation phase
8: for Nk times do
9: X ← SIMULATE

10: Ŝ ← Ŝ ∪ X

// Guaranteed BVI phase
11: δT ← δk·pmin

|{a|s∈̂S∧a∈Av(s)}| � Set δT as described in Section 3.2

12: INITIALIZE BOUNDS
13: for k ·

∣
∣
∣Ŝ

∣
∣
∣ times do

14: UPDATE(Ŝ)

15: for T ∈ FIND MSECs(Ŝ) do
16: DEFLATE(T)

17: until U(s0) − L(s0) < ε

Choice of δk: For each of the full BVI phases, we construct a partial model
that is correct with probability (1 − δk). To ensure that the sum of these errors
is not larger than the specified error tolerance δ, we use the variable k, which is
initialised to 1 and doubled in every iteration of the main loop. Hence for the

i-th BVI, k = 2i. By setting δk = δ
k , we get that

∞∑

i=1

δk =
∞∑

i=1

δ

2i
= δ, and hence

the error of all BVI phases does not exceed the specified error tolerance.

PAC Statistical Model Checking 511

When to Stop Each BVI-Phase: The BVI phase might not converge if the
probability estimates are not good enough. We increase the number of iterations
for each BVI depending on k, because that way we ensure that it eventually
is allowed to run long enough to converge. On the other hand, since we always
run for finitely many iterations, we also ensure that, if we do not have enough
information yet, BVI is eventually stopped. Other stopping criteria could return
arbitrarily imprecise results [HM17]. We also multiply with

∣
∣
∣Ŝ

∣
∣
∣ to improve the

chances of the early BVIs to converge, as that number of iterations ensures that
every value has been propagated through the whole model at least once.

Discussion of the Choice of Nk: The number of simulations between the
guaranteed BVI phases can be chosen freely; it can be a constant number every
time, or any sequence of natural numbers, possibly parameterised by e.g. k,

∣
∣
∣Ŝ

∣
∣
∣,

ε or any of the parameters of G. The design of particularly efficient choices or
learning mechanisms that adjust them on the fly is an interesting task left for
future work. We conjecture the answer depends on the given SG and “task” that
the user has for the algorithm: E.g. if one just needs a quick general estimate of
the behaviour of the model, a smaller choice of Nk is sensible; if on the other
hand a definite precision ε certainly needs to be achieved, a larger choice of Nk

is required.

Theorem 1. For any choice of sequence for Nk, Algorithm7 is an anytime
algorithm with the following property: When it is stopped, it returns an interval
for V(s0) that is PAC7 for the given error tolerance δ and some ε′, with 0 ≤
ε′ ≤ 1.

Theorem 1 is the foundation of the practical usability of our algorithm. Given
some time frame and some Nk, it calculates an approximation for V(s0) that is
probably correct. Note that the precision ε′ is independent of the input parameter
ε, and could in the worst case be always 1. However, practically it often is
good (i.e. close to 0) as seen in the results in Sect. 4. Moreover, in our modified
algorithm, we can also give a convergence guarantee as in [BCC+14]. Although
mostly out of theoretical interest, in [AKW19, Appendix D.4] we design such a
sequence Nk, too. Since this a-priori sequence has to work in the worst case, it
depends on an infeasibly large number of simulations.

Theorem 2. There exists a choice of Nk, such that Algorithm7 is PAC for any
input parameters ε, δ, i.e. it terminates almost surely and returns an interval for
V(s0) of width smaller than ε that is correct with probability at least 1 − δ.

7 Probably Approximately Correct, i.e. with probability greater than 1 − δ, the value
lies in the returned interval of width ε′.

512 P. Ashok et al.

3.6 Utilizing the Additional Information of Grey Box Input

In this section, we consider the grey box setting, i.e. for every state-action pair
(s, a) we additionally know the exact number of successors |Post(s, a)|. Then
we can sample every state-action pair until we have seen all successors, and
hence this information amounts to having qualitative information about the
transitions, i.e. knowing where the transitions go, but not with which probability.

In that setting, we can improve the EC-detection and the estimated bounds in
UPDATE. For EC-detection, note that the whole point of δT-sure EC is to check
whether there are further transitions available; in grey box, we know this and
need not depend on statistics. For the bounds, note that the equations for L̂ and
Û both have two parts: The usual Bellman part and the remaining probability
multiplied with the most conservative guess of the bound, i.e. 0 and 1. If we
know all successors of a state-action pair, we do not have to be as conservative;
then we can use mint∈Post(s,a) L(t) respectively maxt∈Post(s,a) U(t). Both these
improvements have huge impact, as demonstrated in Sect. 4. However, of course,
they also assume more knowledge about the model.

4 Experimental Evaluation

We implemented the approach as an extension of PRISM-Games [CFK+13a]. 11
MDPs with reachability properties were selected from the Quantitative Verifi-
cation Benchmark Set [HKP+19]. Further, 4 stochastic games benchmarks from
[CKJ12,SS12,CFK+13b,CKPS11] were also selected. We ran the experiments
on a 40 core Intel Xeon server running at 2.20 GHz per core and having 252 GB
of RAM. The tool however utilised only a single core and 1 GB of memory for
the model checking. Each benchmark was ran 10 times with a timeout of 30 min.
We ran two versions of Algorithm 7, one with the SG as a black box, the other
as a grey box (see Definition 2). We chose Nk = 10, 000 for all iterations. The
tool stopped either when a precision of 10−8 was obtained or after 30 min. In
total, 16 different model-property combinations were tried out. The results of
the experiment are reported in Table 1.

In the black box setting, we obtained ε < 0.1 on 6 of the benchmarks. 5
benchmarks were ‘hard’ and the algorithm did not improve the precision below
1. For 4 of them, it did not even finish the first simulation phase. If we decrease
Nk, the BVI phase is entered, but still no progress is made.

In the grey box setting, on 14 of 16 benchmarks, it took only 6 min to achieve
ε < 0.1. For 8 these, the exact value was found within that time. Less than
50% of the state space was explored in the case of pacman, pneuli-zuck-3,
rabin-3, zeroconf and cloud 5. A precision of ε < 0.01 was achieved on 15/16
benchmarks over a period of 30 min.

PAC Statistical Model Checking 513

Table 1. Achieved precision ε′ given by our algorithm in both grey and black box
settings after running for a period of 30 min (See the paragraph below Theorem 1 for
why we use ε′ and not ε). The first set of the models are MDPs and the second set are
SGs. ‘-’ indicates that the algorithm did not finish the first simulation phase and hence
partial BVI was not called. m is the number of steps required by the DQL algorithm
of [BCC+14] before the first update. As this number is very large, we report only
log10(m). For comparison, note that the age of the universe is approximately 1026 ns;
logarithm of number of steps doable in this time is thus in the order of 26.

Model States Explored % Precision log10(m)

Grey/Black Grey Black

consensus 272 100/100 0.00945 0.171 338

csma-2-2 1,038 93/93 0.00127 0.2851 1,888

firewire 83,153 55/- 0.0057 1 129,430

ij-3 7 100/100 0 0.0017 2,675

ij-10 1,023 100/100 0 0.5407 17

pacman 498 18/47 0.00058 0.0086 1,801

philosophers-3 956 56/21 0 1 2,068

pnueli-zuck-3 2,701 25/71 0 0.0285 5,844

rabin-3 27,766 7/4 0 0.026 110,097

wlan-0 2,954 100/100 0 0.8667 9,947

zeroconf 670 29/27 0.00007 0.0586 5,998

cdmsn 1,240 100/98 0 0.8588 3,807

cloud-5 8,842 49/20 0.00031 0.0487 71,484

mdsm-1 62,245 69/- 0.09625 1 182,517

mdsm-2 62,245 72/- 0.00055 1 182,517

team-form-3 12,476 64/- 0 1 54,095

Figure 2 shows the evolution of the lower and upper bounds in both the grey-
and the black box settings for 4 different models. Graphs for the other models
as well as more details on the results are in [AKW19, Appendix C].

514 P. Ashok et al.

Fig. 2. Performance of our algorithm on various MDP and SG benchmarks in grey and
black box settings. Solid lines denote the bounds in the grey box setting while dashed
lines denote the bounds in the black box setting. The plotted bounds are obtained after
each partial BVI phase, because of which they do not start at [0, 1] and not at time 0.
Graphs of the remaining benchmarks may be found in [AKW19, Appendix C].

5 Conclusion

We presented a PAC SMC algorithm for SG (and MDP) with the reachability
objective. It is the first one for SG and the first practically applicable one.
Nevertheless, there are several possible directions for further improvements.
For instance, one can consider different sequences for lengths of the simula-
tion phases, possibly also dependent on the behaviour observed so far. Further,
the error tolerance could be distributed in a non-uniform way, allowing for fewer
visits in rarely visited parts of end components. Since many systems are strongly
connected, but at the same time feature some infrequent behaviour, this is the
next bottleneck to be attacked. [KM19]

References

[AKW19] Ashok, P., Křet́ınský, J.: Maximilian Weininger. PAC statistical model
checking for markov decision processes and stochastic games. Technical
Report arXiv.org/abs/1905.04403 (2019)

http://arxiv.org/abs/org/abs/1905.04403

PAC Statistical Model Checking 515

[BBB+10] Basu, A., Bensalem, S., Bozga, M., Caillaud, B., Delahaye, B., Legay, A.:
Statistical abstraction and model-checking of large heterogeneous sys-
tems. In: Hatcliff, J., Zucca, E. (eds.) FMOODS/FORTE 2010. LNCS,
vol. 6117, pp. 32–46. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-13464-7 4

[BCC+14] Brázdil, T., et al.: Verification of markov decision processes using learning
algorithms. In: Cassez, F., Raskin, J.-F. (eds.) ATVA 2014. LNCS, vol.
8837, pp. 98–114. Springer, Cham (2014). https://doi.org/10.1007/978-
3-319-11936-6 8

[BCLS13] Boyer, B., Corre, K., Legay, A., Sedwards, S.: PLASMA-lab: a flexi-
ble, distributable statistical model checking library. In: Joshi, K., Siegle,
M., Stoelinga, M., DArgenio, P.R. (eds.) QEST 2013. LNCS, vol. 8054,
pp. 160–164. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-40196-1 12

[BDL+12] Bulychev, P.E., et al.: UPPAAL-SMC: statistical model checking for
priced timed automata. In: QAPL (2012)

[BFHH11] Bogdoll, J., Ferrer Fioriti, L.M., Hartmanns, A., Hermanns, H.: Partial
order methods for statistical model checking and simulation. In: Bruni,
R., Dingel, J. (eds.) FMOODS/FORTE 2011. LNCS, vol. 6722, pp. 59–74.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21461-
5 4

[BHH12] Bogdoll, J., Hartmanns, A., Hermanns, H.: Simulation and statistical
model checking for modestly nondeterministic models. In: Schmitt, J.B.
(ed.) MMB&DFT 2012. LNCS, vol. 7201, pp. 249–252. Springer, Heidel-
berg (2012). https://doi.org/10.1007/978-3-642-28540-0 20

[BK08] Baier, C., Katoen, J.-P.: Principles of Model Checking. MIT Press (2008).
ISBN 978-0-262-02649-9

[BT99] Brafman, R.I., Tennenholtz, M.: A near-optimal poly-time algorithm for
learning a class of stochastic games. In: IJCAI, pp. 734–739 (1999)

[CFK+13a] Chen, T., Forejt, V., Kwiatkowska, M., Parker, D., Simaitis, A.: PRISM-
games: a model checker for stochastic multi-player games. In: Piterman,
N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp. 185–191.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36742-
7 13

[CFK+13b] Chen, T., Forejt, V., Kwiatkowska, M., Parker, D., Simaitis, A.: Auto-
matic verification of competitive stochastic systems. Formal Meth. Syst.
Des. 43(1), 61–92 (2013)

[CH08] Chatterjee, K., Henzinger, T.A.: Value iteration. In: Grumberg, O., Veith,
H. (eds.) 25 Years of Model Checking. LNCS, vol. 5000, pp. 107–138.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-69850-
0 7

[CH12] Chatterjee, K., Henzinger, T.A.: A survey of stochastic ω-regular games.
J. Comput. Syst. Sci. 78(2), 394–413 (2012)

[CKJ12] Calinescu, R., Kikuchi, S., Johnson, K.: Compositional reverification of
probabilistic safety properties for large-scale complex IT systems. In:
Calinescu, R., Garlan, D. (eds.) Monterey Workshop 2012. LNCS, vol.
7539, pp. 303–329. Springer, Heidelberg (2012). https://doi.org/10.1007/
978-3-642-34059-8 16

[CKPS11] Chen, T., Kwiatkowska, M., Parker, D., Simaitis, A.: Verifying team for-
mation protocols with probabilistic model checking. In: Leite, J., Torroni,

https://doi.org/10.1007/978-3-642-13464-7_4
https://doi.org/10.1007/978-3-642-13464-7_4
https://doi.org/10.1007/978-3-319-11936-6_8
https://doi.org/10.1007/978-3-319-11936-6_8
https://doi.org/10.1007/978-3-642-40196-1_12
https://doi.org/10.1007/978-3-642-40196-1_12
https://doi.org/10.1007/978-3-642-21461-5_4
https://doi.org/10.1007/978-3-642-21461-5_4
https://doi.org/10.1007/978-3-642-28540-0_20
https://doi.org/10.1007/978-3-642-36742-7_13
https://doi.org/10.1007/978-3-642-36742-7_13
https://doi.org/10.1007/978-3-540-69850-0_7
https://doi.org/10.1007/978-3-540-69850-0_7
https://doi.org/10.1007/978-3-642-34059-8_16
https://doi.org/10.1007/978-3-642-34059-8_16

516 P. Ashok et al.

P., Ågotnes, T., Boella, G., van der Torre, L. (eds.) CLIMA 2011. LNCS
(LNAI), vol. 6814, pp. 190–207. Springer, Heidelberg (2011). https://doi.
org/10.1007/978-3-642-22359-4 14

[Con92] Condon, A.: The complexity of stochastic games. Inf. Comput. 96(2),
203–224 (1992)

[CZ11] Clarke, E.M., Zuliani, P.: Statistical model checking for cyber-physical
systems. In: ATVA, pp. 1–12 (2011)

[DDL+12] David, A., et al.: Statistical model checking for stochastic hybrid systems.
In: HSB, pp. 122–136 (2012)

[DDL+13] David, A., Du, D., Guldstrand Larsen, K., Legay, A., Mikučionis, M.:
Optimizing control strategy using statistical model checking. In: Brat, G.,
Rungta, N., Venet, A. (eds.) NFM 2013. LNCS, vol. 7871, pp. 352–367.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38088-
4 24

[DHKP16] Daca, P., Henzinger, T.A., Křet́ınský, J., Petrov, T.: Faster statisti-
cal model checking for unbounded temporal properties. In: Chechik,
M., Raskin, J.-F. (eds.) TACAS 2016. LNCS, vol. 9636, pp. 112–129.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49674-
9 7

[DHS18] D’Argenio, P.R., Hartmanns, A., Sedwards, S.: Lightweight statistical
model checking in nondeterministic continuous time. In: Margaria, T.,
Steffen, B. (eds.) ISoLA 2018. LNCS, vol. 11245, pp. 336–353. Springer,
Cham (2018). https://doi.org/10.1007/978-3-030-03421-4 22

[DLL+11a] David, A., et al.: Statistical model checking for networks of priced timed
automata. In: Fahrenberg, U., Tripakis, S. (eds.) FORMATS 2011. LNCS,
vol. 6919, pp. 80–96. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-24310-3 7

[DLL+11b] David, A., Larsen, K.G., Legay, A., Mikučionis, M., Wang, Z.: Time for
statistical model checking of real-time systems. In: Gopalakrishnan, G.,
Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 349–355. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1 27

[DLST15] D’Argenio, P., Legay, A., Sedwards, S., Traonouez, L.-M.: Smart sampling
for lightweight verification of markov decision processes. STTT 17(4),
469–484 (2015)

[EGF12] Ellen, C., Gerwinn, S., Fränzle, M.: Confidence bounds for statisti-
cal model checking of probabilistic hybrid systems. In: Jurdziński, M.,
Ničković, D. (eds.) FORMATS 2012. LNCS, vol. 7595, pp. 123–138.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33365-
1 10

[FT14] Fu, J., Topcu, U.: Probably approximately correct MDP learning and
control with temporal logic constraints. In: Robotics: Science and Sys-
tems (2014)

[HAK18] Hasanbeig, M., Abate, A., Kroening, D.: Logically-correct reinforcement
learning. CoRR, 1801.08099 (2018)

[HAK19] Hasanbeig, M., Abate, A., Kroening, D.: Certified reinforcement learning
with logic guidance. CoRR, abs/1902.00778 (2019)

[HJB+10] He, R., Jennings, P., Basu, S., Ghosh, A.P., Wu, H.: A bounded statistical
approach for model checking of unbounded until properties. In: ASE, pp.
225–234 (2010)

https://doi.org/10.1007/978-3-642-22359-4_14
https://doi.org/10.1007/978-3-642-22359-4_14
https://doi.org/10.1007/978-3-642-38088-4_24
https://doi.org/10.1007/978-3-642-38088-4_24
https://doi.org/10.1007/978-3-662-49674-9_7
https://doi.org/10.1007/978-3-662-49674-9_7
https://doi.org/10.1007/978-3-030-03421-4_22
https://doi.org/10.1007/978-3-642-24310-3_7
https://doi.org/10.1007/978-3-642-24310-3_7
https://doi.org/10.1007/978-3-642-22110-1_27
https://doi.org/10.1007/978-3-642-33365-1_10
https://doi.org/10.1007/978-3-642-33365-1_10

PAC Statistical Model Checking 517

[HKP+19] Hartmanns, A., Klauck, M., Parker, D., Quatmann, T., Ruijters, E.:
The quantitative verification benchmark set. In: TACAS 2019 (2019, to
appear)

[HLMP04] Hérault, T., Lassaigne, R., Magniette, F., Peyronnet, S.: Approximate
probabilistic model checking. In: Steffen, B., Levi, G. (eds.) VMCAI 2004.
LNCS, vol. 2937, pp. 73–84. Springer, Heidelberg (2004). https://doi.org/
10.1007/978-3-540-24622-0 8

[HM17] Haddad, S., Monmege, B.: Interval iteration algorithm for MDPs and
IMDPs. Theor. Comput. Sci. (2017)

[HMZ+12] Henriques, D., Martins, J., Zuliani, P., Platzer, A., Clarke, E.M.: Statis-
tical model checking for Markov decision processes. In: QEST, pp. 84–93
(2012)

[HPS+19] Hahn, E.M., Perez, M., Schewe, S., Somenzi, F., Trivedi, A., Wojtczak,
D.: Omega-regular objectives in model-free reinforcement learning. In:
Vojnar, T., Zhang, L. (eds.) TACAS 2019. LNCS, vol. 11427, pp. 395–
412. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17462-
0 27

[JCL+09] Jha, S.K., Clarke, E.M., Langmead, C.J., Legay, A., Platzer, A., Zuliani,
P.: A bayesian approach to model checking biological systems. In: Degano,
P., Gorrieri, R. (eds.) CMSB 2009. LNCS, vol. 5688, pp. 218–234.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03845-
7 15

[JLS12] Jegourel, C., Legay, A., Sedwards, S.: A platform for high performance
statistical model checking – PLASMA. In: Flanagan, C., König, B. (eds.)
TACAS 2012. LNCS, vol. 7214, pp. 498–503. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-28756-5 37

[KKKW18] Kelmendi, E., Krämer, J., Křet́ınský, J., Weininger, M.: Value iteration
for simple stochastic games: stopping criterion and learning algorithm.
In: Chockler, H., Weissenbacher, G. (eds.) CAV 2018. LNCS, vol. 10981,
pp. 623–642. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
96145-3 36

[KM19] Křet́ınský, J., Meggendorfer, T.: Of cores: a partial-exploration frame-
work for Markov decision processes. Submitted 2019

[KNP11] Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of
probabilistic real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.)
CAV 2011. LNCS, vol. 6806, pp. 585–591. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-22110-1 47

[Lar12] Larsen, K.G.: Statistical model checking, refinement checking, optimiza-
tion,. for stochastic hybrid systems. In: Jurdziński, M., Ničković, D. (eds.)
FORMATS 2012. LNCS, vol. 7595, pp. 7–10. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-33365-1 2

[Lar13] Guldstrand Larsen, K.: Priced timed automata and statistical model
checking. In: Johnsen, E.B., Petre, L. (eds.) IFM 2013. LNCS, vol. 7940,
pp. 154–161. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-38613-8 11

[Lit94] Littman, M.L.: Markov games as a framework for multi-agent reinforce-
ment learning. In: ICML, pp. 157–163 (1994)

[LN81] Lakshmivarahan, S., Narendra, K.S.: Learning algorithms for two-person
zero-sum stochastic games with incomplete information. Math. Oper.
Res. 6(3), 379–386 (1981)

https://doi.org/10.1007/978-3-540-24622-0_8
https://doi.org/10.1007/978-3-540-24622-0_8
https://doi.org/10.1007/978-3-030-17462-0_27
https://doi.org/10.1007/978-3-030-17462-0_27
https://doi.org/10.1007/978-3-642-03845-7_15
https://doi.org/10.1007/978-3-642-03845-7_15
https://doi.org/10.1007/978-3-642-28756-5_37
https://doi.org/10.1007/978-3-319-96145-3_36
https://doi.org/10.1007/978-3-319-96145-3_36
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-33365-1_2
https://doi.org/10.1007/978-3-642-38613-8_11
https://doi.org/10.1007/978-3-642-38613-8_11

518 P. Ashok et al.

[LP08] Lassaigne, R., Peyronnet, S.: Probabilistic verification and approxima-
tion. Ann. Pure Appl. Logic 152(1–3), 122–131 (2008)

[LP12] Lassaigne, R., Peyronnet, S.: Approximate planning and verification for
large Markov decision processes. In: SAC, pp. 1314–1319, (2012)

[LST14] Legay, A., Sedwards, S., Traonouez, L.-M.: Scalable verification of markov
decision processes. In: Canal, C., Idani, A. (eds.) SEFM 2014. LNCS, vol.
8938, pp. 350–362. Springer, Cham (2015). https://doi.org/10.1007/978-
3-319-15201-1 23

[Mar75] Martin, D.A.: Borel determinacy. Ann. Math. 102(2), 363–371 (1975)
[MLG05] Mcmahan, H.B., Likhachev, M., Gordon, G.J.: Bounded real-time

dynamic programming: RTDP with monotone upper bounds and per-
formance guarantees. In: In ICML 2005, pp. 569–576 (2005)

[Nor98] Norris, J.R.: Markov Chains. Cambridge University Press, Cambridge
(1998)

[PGL+13] Palaniappan, S.K., Gyori, B.M., Liu, B., Hsu, D., Thiagarajan, P.S.: Sta-
tistical model checking based calibration and analysis of bio-pathway
models. In: Gupta, A., Henzinger, T.A. (eds.) CMSB 2013. LNCS, vol.
8130, pp. 120–134. Springer, Heidelberg (2013). https://doi.org/10.1007/
978-3-642-40708-6 10

[Put14] Puterman, M.L.: Markov Decision Processes: Discrete Stochastic
Dynamic Programming. Wiley, Hoboken (2014)

[RF91] Raghavan, T.E.S., Filar, J.A.: Algorithms for stochastic games – a survey.
Z. Oper. Res. 35(6), 437–472 (1991)

[RP09] El Rabih, D., Pekergin, N.: Statistical model checking using perfect sim-
ulation. In: Liu, Z., Ravn, A.P. (eds.) ATVA 2009. LNCS, vol. 5799,
pp. 120–134. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-04761-9 11

[SB98] Sutton, R., Barto, A.: Reinforcement Learning: An Introduction. MIT
Press, Cambridge (1998)

[SKC+14] Sadigh, D., Kim, E.S., Coogan, S., Sastry, S.S.S., Sanjit, A.: A learn-
ing based approach to control synthesis of markov decision processes for
linear temporal logic specifications. In: CDC, pp. 1091–1096 (2014)

[SLW+06] Strehl, A.L., Li, L., Wiewiora, E., Langford, J., Littman, M.L.: PAC
model-free reinforcement learning. In: ICML, pp. 881–888 (2006)

[SS12] Saffre, F., Simaitis, A.: Host selection through collective decision. ACM
Trans. Auton. Adapt. Syst. 7(1), 4:1–4:16 (2012)

[SVA04] Sen, K., Viswanathan, M., Agha, G.: Statistical model checking of black-
box probabilistic systems. In: Alur, R., Peled, D.A. (eds.) CAV 2004.
LNCS, vol. 3114, pp. 202–215. Springer, Heidelberg (2004). https://doi.
org/10.1007/978-3-540-27813-9 16

[SVA05] Sen, K., Viswanathan, M., Agha, G.: On statistical model checking of
stochastic systems. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005.
LNCS, vol. 3576, pp. 266–280. Springer, Heidelberg (2005). https://doi.
org/10.1007/11513988 26

[WT16] Wen, M., Topcu, U.: Probably approximately correct learning in stochas-
tic games with temporal logic specifications. In: IJCAI, pp. 3630–3636
(2016)

[YCZ10] Younes, H.L.S., Clarke, E.M., Zuliani, P.: Statistical verification of prob-
abilistic properties with unbounded until. In: Davies, J., Silva, L., Simao,
A. (eds.) SBMF 2010. LNCS, vol. 6527, pp. 144–160. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-19829-8 10

https://doi.org/10.1007/978-3-319-15201-1_23
https://doi.org/10.1007/978-3-319-15201-1_23
https://doi.org/10.1007/978-3-642-40708-6_10
https://doi.org/10.1007/978-3-642-40708-6_10
https://doi.org/10.1007/978-3-642-04761-9_11
https://doi.org/10.1007/978-3-642-04761-9_11
https://doi.org/10.1007/978-3-540-27813-9_16
https://doi.org/10.1007/978-3-540-27813-9_16
https://doi.org/10.1007/11513988_26
https://doi.org/10.1007/11513988_26
https://doi.org/10.1007/978-3-642-19829-8_10

PAC Statistical Model Checking 519

[YKNP06] Younes, H.L.S., Kwiatkowska, M.Z., Norman, G., Parker, D.: Numerical
vs. statistical probabilistic model checking. STTT 8(3), 216–228 (2006)

[YS02a] Younes, H.L.S., Simmons, R.G.: Probabilistic verification of discrete
event systems using acceptance sampling. In: Brinksma, E., Larsen, K.G.
(eds.) CAV 2002. LNCS, vol. 2404, pp. 223–235. Springer, Heidelberg
(2002). https://doi.org/10.1007/3-540-45657-0 17

[ZPC10] Zuliani, P., Platzer, A., Clarke, E.M.: Bayesian statistical model checking
with application to simulink/stateflow verification. In: HSCC, pp. 243–
252 (2010)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/3-540-45657-0_17
http://creativecommons.org/licenses/by/4.0/

Symbolic Monitoring Against
Specifications Parametric

in Time and Data

Masaki Waga1,2,3(B) , Étienne André1,4,5 ,
and Ichiro Hasuo1,2

1 National Institute of Informatics, Tokyo, Japan
mwaga@nii.ac.jp

2 SOKENDAI (The Graduate University for Advanced Studies), Tokyo, Japan
3 JSPS Research Fellow, Tokyo, Japan

4 Université Paris 13, LIPN, CNRS, UMR 7030, 93430 Villetaneuse, France
5 JFLI, CNRS, Tokyo, Japan

Abstract. Monitoring consists in deciding whether a log meets a given
specification. In this work, we propose an automata-based formalism to
monitor logs in the form of actions associated with time stamps and
arbitrarily data values over infinite domains. Our formalism uses both
timing parameters and data parameters, and is able to output answers
symbolic in these parameters and in the log segments where the prop-
erty is satisfied or violated. We implemented our approach in an ad-hoc
prototype SyMon, and experiments show that its high expressive power
still allows for efficient online monitoring.

1 Introduction

Monitoring consists in checking whether a sequence of data (a log or a signal)
satisfies or violates a specification expressed using some formalism. Offline mon-
itoring consists in performing this analysis after the system execution, as the
technique has access to the entire log in order to decide whether the specifi-
cation is violated. In contrast, online monitoring can make a decision earlier,
ideally as soon as a witness of the violation of the specification is encountered.

Using existing formalisms (e.g., the metric first order temporal logic [14]),
one can check whether a given bank customer withdraws more than 1,000 e
every week. With formalisms extended with data, one may even identify such
customers. Or, using an extension of the signal temporal logic (STL) [18], one can
ask: “is that true that the value of variable x is always copied to y exactly 4 time
units later?” However, questions relating time and data using parameters become

This work is partially supported by JST ERATO HASUO Metamathematics for Sys-
tems Design Project (No. JPMJER1603), by JSPS Grants-in-Aid No. 15KT0012 &
18J22498 and by the ANR national research program PACS (ANR-14-CE28-0002).

c© The Author(s) 2019
I. Dillig and S. Tasiran (Eds.): CAV 2019, LNCS 11561, pp. 520–539, 2019.
https://doi.org/10.1007/978-3-030-25540-4_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-25540-4_30&domain=pdf
http://orcid.org/0000-0001-9360-7490
http://orcid.org/0000-0001-8473-9555
http://orcid.org/0000-0002-8300-4650
https://doi.org/10.1007/978-3-030-25540-4_30

Symbolic Monitoring Against Specifications Parametric in Time and Data 521

much harder (or even impossible) to express using existing formalisms: “what
are the users and time frames during which a user withdraws more than half of
the total bank withdrawals within seven days?” And even, can we synthesize the
durations (not necessarily 7 days) for which this specification holds? Or “what
is the set of variables for which there exists a duration within which their value
is always copied to another variable?” In addition, detecting periodic behaviors
without knowing the period can be hard to achieve using existing formalisms.

In this work, we address the challenging problem to monitor logs enriched
with both timing information and (infinite domain) data. In addition, we sig-
nificantly push the existing limits of expressiveness so as to allow for a further
level of abstraction using parameters: our specification can be both parametric
in the time and in the data. The answer to this symbolic monitoring is richer
than a pure Boolean answer, as it synthesizes the values of both time and data
parameters for which the specification holds. This allows us notably to detect
periodic behaviors without knowing the period while being symbolic in terms of
data. For example, we can synthesize variable names (data) and delays for which
variables will have their value copied to another data within the aforementioned
delay. In addition, we show that we can detect the log segments (start and end
date) for which a specification holds.

Example 1. Consider a system updating three variables a, b and c (i. e., strings)
to values (rationals). An example of log is given in Fig. 1a. Although our work
is event-based, we can give a graphical representation similar to that of signals
in Fig. 1b. Consider the following property: “for any variable px, whenever an
update of that variable occurs, then within strictly less than tp time units, the
value of variable b must be equal to that update”. The variable parameter px is
compared with string values and the timing parameter tp is used in the timing
constraints. We are interested in checking for which values of px and tp this
property is violated. This can be seen as a synthesis problem in both the variable
and timing parameters. For example, px = c and tp = 1.5 is a violation of
the specification, as the update of c to 2 at time 4 is not propagated to b
within 1.5 time unit. Our algorithm outputs such violation by a constraint e.g.,
px = c ∧ tp ≤ 2. In contrast, the value of any signal at any time is always such
that either b is equal to that signal, or the value of b will be equal to that value
within at most 2 time units. Thus, the specification holds for any valuation of
the variable parameter px, provided tp > 2.

We propose an automata-based approach to perform monitoring parametric
in both time and data. We implement our work in a prototype SyMon and
perform experiments showing that, while our formalism allows for high expres-
siveness, it is also tractable even for online monitoring.

We believe our framework balances expressiveness and monitoring perfor-
mance well: (i) Regarding expressiveness, comparison with the existing work is
summarized in Table 1 (see Sect. 2 for further details). (ii) Our monitoring is
complete, in the sense that it returns a symbolic constraint characterizing all
the parameter valuations that match a given specification. (iii) We also achieve

522 M. Waga et al.

Table 1. Comparison of monitoring expressiveness

Work [7] [18] [14] [13] [30] [26] [4] [9] This work
Timing parameters

√ × ? ? ? × √ × √
Data

√ √ √ √ √ √ × √ √
Parametric data

√ × √ √ √ √ × √ √
Memory × √ √ √ √ √ × × √
Aggregation × × × √ √ × × × √
Complete parameter identification

√
N/A

√
/

√
/ N/A N/A

√ √ √

1 @0 update (a , 0) @4 update (c , 2)
2 @1 update (c , 1) @5 update (a , 2)
3 @2 update (a , 0) @6 update (b , 2)
4 @3 update (b , 1) @7 update (c , 3)
5 @4 update (b , 0) @9 update (b , 3)

(a) Log

t0 1 2 3 4 5 6 7 8 9

a

c

b

(b) Graphical representation

0 =

=

update(x, v)
x = b

update(b, v)
valb := v

update(x, v)
x = px

valb = v

update(x, v)
x = px

valb = v
c := 0, valx := v

update(b, v)
v = valx
c < tp ε

c ≥ tp

update(b, v)
c < tp

v = valx

update(x, v)
c < tp
x = b

(c) Monitoring PTDA

Fig. 1. Monitoring copy to b within tp time units

reasonable monitoring speed, especially given the degree of parametrization in
our formalism. Note that it is not easy to formally claim superiority in expres-
siveness: proofs would require arguments such as the pumping lemma; and such
formal comparison does not seem to be a concern of the existing work. More-
over, such formal comparison bears little importance for industrial practitioners:
expressivity via an elaborate encoding is hardly of practical use. We also note
that, in the existing work, we often observe gaps between the formalism in a
theory and the formalism that the resulting tool actually accepts. This is not
the case with the current framework.

Outline. After discussing related works in Sect. 2, we introduce the necessary
preliminaries in Sect. 3, and our parametric timed data automata in Sect. 4. We
present our symbolic monitoring approach in Sect. 5 and conduct experiments
in Sect. 6. We conclude in Sect. 7.

Symbolic Monitoring Against Specifications Parametric in Time and Data 523

2 Related Works

Robustness and Monitoring. Robust (or quantitative) monitoring extends the
binary question whether a log satisfies a specification by asking “by how much”
the specification is satisfied. The quantification of the distance between a sig-
nal and a signal temporal logic (STL) specification has been addressed in, e.g.,
[20–23,25,27] (or in a slightly different setting in [5]). The distance can be under-
stood in terms of space (“signals”) or time. In [6], the distance also copes for
reordering of events. In [10], the robust pattern matching problem is considered
over signal regular expressions, by quantifying the distance between the signal
regular expression specification and the segments of the signal. For piecewise-
constant and piecewise-linear signals, the problem can be effectively solved using
a finite union of convex polyhedra. While our framework does not fit in robust
monitoring, we can simulate both the robustness w.r.t. time (using timing param-
eters) and w.r.t. data, e.g., signal values (using data parameters).

Monitoring with Data. The tool MarQ [30] performs monitoring using Quanti-
fied Event Automata (QEA) [12]. This approach and ours share the automata-
based framework, the ability to express some first-order properties using “events
containing data” (which we encode using local variables associated with actions),
and data may be quantified. However, [30] does not seem to natively support
specification parametric in time; in addition, [30] does not perform complete
(“symbolic”) parameters synthesis, but outputs the violating entries of the log.

The metric first order temporal logic (MFOTL) allows for a high expressive-
ness by allowing universal and existential quantification over data—which can
be seen as a way to express parameters. A monitoring algorithm is presented for
a safety fragment of MFOTL in [14]. Aggregation operators are added in [13],
allowing to compute sums or maximums over data. A fragment of this logics is
implemented in MonPoly [15]. While these works are highly expressive, they
do not natively consider timing parameters; in addition, MonPoly does not
output symbolic answers, i. e., symbolic conditions on the parameters to ensure
validity of the formula.

In [26], binary decision diagrams (BDDs) are used to symbolically repre-
sent the observed data in QTL. This can be seen as monitoring data against
a parametric specification, with a symbolic internal encoding. However, their
implementation DejaVu only outputs concrete answers. In contrast, we are
able to provide symbolic answers (both in timing and data parameters), e.g., in
the form of union of polyhedra for rationals, and unions of string constraints
using equalities (=) and inequalities (�=).

Freeze Operator. In [18], STL is extended with a freeze operator that can
“remember” the value of a signal, to compare it to a later value of the same
signal. This logic STL∗ can express properties such as “In the initial 10 s, x
copies the values of y within a delay of 4 s”: G[0,10] ∗ (G[0,4]y

∗ = x). While the
setting is somehow different (STL∗ operates over signals while we operate over
timed data words), the requirements such as the one above can easily be encoded

524 M. Waga et al.

in our framework. In addition, we are able to synthesize the delay within which
the values are always copied, as in Example 1. In contrast, it is not possible to
determine using STL∗ which variables and which delays violate the specification.

Monitoring with Parameters. In [7], a log in the form of a dense-time real-valued
signal is tested against a parameterized extension of STL, where parameters can
be used to model uncertainty both in signal values and in timing values. The
output comes in the form of a subset of the parameters space for which the
formula holds on the log. In [9], the focus is only on signal parameters, with an
improved efficiency by reusing techniques from the robust monitoring. Whereas
[7,9] fit in the framework of signals and temporal logics while we fit in words and
automata, our work shares similarities with [7,9] in the sense that we can express
data parameters; in addition, [9] is able as in our work to exhibit the segment
of the log associated with the parameters valuations for which the specification
holds. A main difference however is that we can use memory and aggregation,
thanks to arithmetic on variables.

In [24], the problem of inferring temporal logic formulae with constraints
that hold in a given numerical data time series is addressed.

Timed Pattern Matching. A recent line of work is that of timed pattern match-
ing, that takes as input a log and a specification, and decides where in the log
the specification is satisfied or violated. On the one hand, a line of works con-
siders signals, with specifications either in the form of timed regular expressions
[11,31–33], or a temporal logic [34]. On the other hand, a line of works considers
timed words, with specifications in the form of timed automata [4,36]. We will
see that our work can also encode parametric timed pattern matching. There-
fore, our work can be seen as a two-dimensional extension of both lines of works:
first, we add timing parameters ([4] also considers similar timing parameters)
and, second, we add data—themselves extended with parameters. That is, com-
ing back to Example 1, [31–33,36] could only infer the segments of the log for
which the property is violated for a given (fixed) variable and a given (fixed)
timing parameter; while [4] could infer both the segments of the log and the
timing parameter valuations, but not which variable violates the specification.

Summary. We compare related works in Table 1. “Timing parameters” denote
the ability to synthesize unknown constants used in timing constraints (e.g.,
modalities intervals, or clock constraints). “?” denotes works not natively sup-
porting this, although it might be encoded. The term “Data” refers to the ability
to manage logs over infinite domains (apart from timestamps). For example, the
log in Fig. 1a features, beyond timestamps, both string (variable name) and
rationals (value). Also, works based on real-valued signals are naturally able to
manage (at least one type of) data. “Parametric data” refer to the ability to
express formulas where data (including signal values) are compared to (quan-
tified or unquantified) variables or unknown parameters; for example, in the
log in Fig. 1a, an example of property parametric in data is to synthesize the
parameters for which the difference of values between two consecutive updates of

Symbolic Monitoring Against Specifications Parametric in Time and Data 525

variable px is always below pv, where px is a string parameter and pv a rational-
valued parameter. “Memory” is the ability to remember past data; this can be
achieved using e.g., the freeze operator of STL∗, or variables (e.g., in [14,26,30]).
“Aggregation” is the ability to aggregate data using operators such as sum or
maximum; this allows to express properties such as “A user must not withdraw
more than $10,000 within a 31 day period” [13]. This can be supported using
dedicated aggregation operators [13] or using variables ([30], and our work).
“Complete parameter identification” denotes the synthesis of the set of param-
eters that satisfy or violate the property. Here, “N/A” denotes the absence of
parameter [18], or when parameters are used in a way (existentially or univer-
sally quantified) such as the identification is not explicit (instead, the position
of the log where the property is violated is returned [26]). In contrast, we return
in a symbolic manner (as in [4,7]) the exact set of (data and timing) parameters
for which a property is satisfied. “

√
/×” denotes “yes” in the theory paper, but

not in the tool.

3 Preliminaries

Clocks, Timing Parameters and Timed Guards. We assume a set C =
{c1, . . . , cH} of clocks, i. e., real-valued variables that evolve at the same rate. A
clock valuation is ν : C → R≥0. We write 0 for the clock valuation assigning 0
to all clocks. Given d ∈ R≥0, ν + d is s.t. (ν + d)(c) = ν(c) + d, for all c ∈ C.
Given R ⊆ C, we define the reset of a valuation ν, denoted by [ν]R, as follows:
[ν]R(c) = 0 if c ∈ R, and [ν]R(c) = ν(c) otherwise.

We assume a set TP = {tp1, . . . , tpJ} of timing parameters. A timing parame-
ter valuation is γ : TP → Q+. We assume �� ∈ {<,≤,=,≥, >}. A timed guard tg
is a constraint over C ∪ TP defined by a conjunction of inequalities of the form
c �� d, or c �� tp with d ∈ N and tp ∈ TP. Given tg, we write ν |= γ(tg) if the
expression obtained by replacing each c with ν(c) and each tp with γ(tp) in tg
evaluates to true.

Variables, Data Parameters and Data Guards. For sake of simplicity, we
assume a single infinite domain D for data. The formalism defined in Sect. 4
can be extended in a straightforward manner to different domains for different
variables (and our implementation does allow for different types). The case of
finite data domain is immediate too. We define this formalism in an abstract
manner, so as to allow a sort of parameterized domain.

We assume a set V = {v1, . . . , vM} of variables valued over D. These variables
are internal variables, that allow an high expressive power in our framework,
as they can be compared or updated to other variables or parameters. We also
assume a set LV = {lv1, . . . , lvO} of local variables valued over D. These variables
will only be used locally along a transition in the “argument” of the action (e.g.,
x and v in upate(x, v)), and in the associated guard and (right-hand part of)
updates. We assume a set VP = {vp1, . . . , vpN} of data parameters, i. e., unknown
variable constants.

526 M. Waga et al.

A data type (D,DE ,DU) is made of (i) an infinite domain D, (ii) a set of
admissible Boolean expressions DE (that may rely on V, LV and VP), which will
define the type of guards over variables in our subsequent automata, and (iii) a
domain for updates DU (that may rely on V, LV and VP), which will define the
type of updates of variables in our subsequent automata.

Example 2. As a first example, let us define the data type for rationals. We have
D = Q. Let us define Boolean expressions. A rational comparison is a constraint
over V ∪ LV ∪ VP defined by a conjunction of inequalities of the form v �� d,
v �� v′, or v �� vp with v, v′ ∈ V ∪ LV, d ∈ Q and vp ∈ VP. DE is the set of all
rational comparisons over V∪LV∪VP. Let us then define updates. First, a linear
arithmetic expression over V ∪ LV ∪ VP is

∑
i αivi + β, where vi ∈ V ∪ LV ∪ VP

and αi, β ∈ Q. Let LA(V ∪ LV ∪ VP) denote the set of arithmetic expressions
over V, LV and VP. We then have DU = LA(V ∪ LV ∪ VP).

As a second example, let us define the data type for strings. We have D = S,
where S denotes the set of all strings. A string comparison is a constraint over
V ∪ LV ∪ VP defined by a conjunction of comparisons of the form v ≈ s, v ≈ v′,
or v ≈ vp with v, v′ ∈ V ∪ LV, s ∈ S, vp ∈ VP and ≈ ∈ {=, �=}. DE is the set of
all string comparisons over V∪LV∪VP. DU = V∪LV∪S, i. e., a string variable
can be assigned another string variable, or a concrete string.

A variable valuation is μ : V → D. A local variable valuation is a partial
function η : LV � D. A data parameter valuation is ζ : VP → D. Given a data
guard dg ∈ DE , a variable valuation μ, a local variable valuation η defined for
the local variables in dg, and a data parameter valuation ζ, we write (μ, η) |=
ζ(dg) if the expression obtained by replacing within dg all occurrences of each
data parameter vpi by ζ(vpi) and all occurrences of each variable vj (resp. local
variable lvk) with its concrete valuation μ(vj) (resp. η(lvk))) evaluates to true.

A parametric data update is a partial function PDU : V � DU . That is, we
can assign to a variable an expression over data parameters and other variables,
according to the data type. Given a parametric data update PDU, a variable
valuation μ, a local variable valuation η (defined for all local variables appearing
in PDU), and a data parameter valuation ζ, we define [μ]η(ζ(PDU)) : V → D as:

[μ]η(ζ(PDU))(v) =

{
μ(v) if PDU(v) is undefined
η(μ(ζ(PDU(v)))) otherwise

where η(μ(ζ(PDU(v)))) denotes the replacement within the update expression
PDU(v) of all occurrences of each data parameter vpi by ζ(vpi), and all occur-

Table 2. Variables, parameters and valuations used in guards

Timed guards Data guards

Clock Timing parameter (Data) variable Local variable Data parameter

Variable c tp v lv vp

Valuation ν γ μ η ζ

Symbolic Monitoring Against Specifications Parametric in Time and Data 527

rences of each variable vj (resp. local variable lvk) with its concrete valuation
μ(vj) (resp. η(lvk)). Observe that this replacement gives a value in D, therefore
the result of [μ]η(ζ(PDU)) is indeed a data parameter valuation V → D. That
is, [μ]η(ζ(PDU)) computes the new (non-parametric) variable valuation obtained
after applying to μ the partial function PDU valuated with ζ.

Example 3. Consider the data type for rationals, the variables set {v1, v2}, the
local variables set {lv1, lv2} and the parameters set {vp1}. Let μ be the variable
valuation such that μ(v1) = 1 and μ(v2) = 2, and η be the local variable valuation
such that η(lv1) = 2 and η(lv2) is not defined. Let ζ be the data parameter valu-
ation such that ζ(vp1) = 1. Consider the parametric data update function PDU
such that PDU(v1) = 2×v1+v2− lv1+vp1, and PDU(v2) is undefined. Then the
result of [μ]η(ζ(PDU)) is μ′ such that μ′(v1) = 2×μ(v1)+μ(v2)−η(lv1)+ζ(vp1) = 3
and μ′(v2) = 2.

4 Parametric Timed Data Automata

We introduce here Parametric timed data automata (PTDAs). They can be
seen as an extension of parametric timed automata [2] (that extend timed
automata [1] with parameters in place of integer constants) with unbounded
data variables and parametric variables. PTDAs can also be seen as an exten-
sion of some extensions of timed automata with data (see e.g., [16,19,29]), that
we again extend with both data parameters and timing parameters. Or as an
extension of quantified event automata [12] with explicit time representation
using clocks, and further augmented with timing parameters. PTDAs feature
both timed guards and data guards; we summarize the various variables and
parameters types together with their notations in Table 2.

We will associate local variables with actions (which can be see as predicates).
Let Dom : Σ → 2LV denote the set of local variables associated with each
action. Let Var(dg) (resp. Var(PDU)) denote the set of variables occurring in dg
(resp. PDU).

Definition 1 (PTDA). Given a data type (D,DE ,DU), a parametric timed
data automaton (PTDA) A over this data type is a tuple A = (Σ,L, �0, F, C,
TP, V, LV, μ0, VP, E), where:

1. Σ is a finite set of actions,
2. L is a finite set of locations, �0 ∈ L is the initial location,
3. F ⊆ L is the set of accepting locations,
4. C is a finite set of clocks,
5. TP is a finite set of timing parameters,
6. V (resp. LV) is a finite set of variables (resp. local variables) over D,
7. μ0 is the initial variable valuation,
8. VP is a finite set of data parameters,

528 M. Waga et al.

9. E is a finite set of edges e = (�, tg, dg, a,R,PDU, �′) where (i) �, �′ ∈ L are
the source and target locations, (ii) tg is a timed guard, (iii) dg ∈ DE is a
data guard such as Var(dg) ∩ LV ⊆ Dom(a), (iv) a ∈ Σ, (v) R ⊆ C is a set
of clocks to be reset, and (vi) PDU : V � DU is the parametric data update
function such that Var(PDU) ∩ LV ⊆ Dom(a).

The domain conditions on dg and PDU ensure that the local variables used
in the guard (resp. update) are only those in the action signature Dom(a).

1 @2046 open(Hakuchi . txt , rw)
2 @2136 open(Unagi .mp4 , rw)
3 @2166 close (Hakuchi . txt)

(a) Example of log

0 1 2

open(f,m)
f = vp

close(f)
f = vp

open(f,m)
f = vp
c := 0 open(f,m)

f = vp

close(f)
f = vp

close(f)
f = vp
c > tp

open(f,m)
f = vp

close(f)
f = vp
c ≤ tp

close(f)
f = vp

(b) PTDA monitor

Fig. 2. Monitoring proper file opening and closing

Example 4. Consider the PTDA in Fig. 2b over the data type for strings. We
have C = {c}, TP = {tp}, V = ∅ and LV = {f,m}. Dom(open) = {f,m} while
Dom(close) = {f}. �2 is the only accepting location, modeling the violation of
the specification.

This PTDA (freely inspired by a formula from [26] further extended with
timing parameters) monitors the improper file opening and closing, i. e., a file
already open should not be open again, and a file that is open should not be
closed too late. The data parameter vp is used to symbolically monitor a given
file name, i. e., we are interested in opening and closings of this file only, while
other files are disregarded (specified using the self-loops in �0 and �1 with data
guard f �= vp). Whenever f is opened (transition from �0 to �1), a clock c is
reset. Then, in �1, if f is closed within tp time units (timed guard “c ≤ tp”),
then the system goes back to �0. However, if instead f is opened again, this is an
incorrect behavior and the system enters �2 via the upper transition. The same
occurs if f is closed more than tp time units after opening.

Given a data parameter valuation ζ and a timing parameter valuation γ,
we denote by γ|ζ(A) the resulting timed data automaton (TDA), i. e., the non-
parametric structure where all occurrences of a parameter vpi (resp. tpj) have
been replaced by ζ(vpi) (resp. γ(tpj)). Note that, if V = LV = ∅, then A is a
parametric timed automaton [2] and γ|ζ(A) is a timed automaton [1].

We now equip our TDAs with a concrete semantics.

Symbolic Monitoring Against Specifications Parametric in Time and Data 529

Definition 2 (Semantics of a TDA). Given a PTDA A = (Σ,L, �0, F,
C, TP, V, LV, μ0, VP, E) over a data type (D,DE ,DU), a data parameter valu-
ation ζ and a timing parameter valuation γ, the semantics of γ|ζ(A) is given by
the timed transition system (TTS) (S, s0,→), with

– S = L × D
M × R

H
≥0, s0 = (�0, μ0,0),

– → consists of the discrete and (continuous) delay transition relations:

1. discrete transitions: (�, μ, ν)
e,η�→ (�′, μ′, ν′), there exist e = (�, tg, dg, a,

R,PDU, �′) ∈ E and a local variable valuation η defined exactly for Dom(a),
such that ν |= γ(tg), (μ, η) |= ζ(dg), ν′ = [ν]R, and μ′ = [μ]η(ζ(PDU)).

2. delay transitions: (�, μ, ν) d�→ (�, μ, ν + d), with d ∈ R≥0.

Moreover we write ((�, μ, ν), (e, η, d), (�′, μ′, ν′)) ∈ → for a combination of a
delay and discrete transition if ∃ν′′ : (�, μ, ν) d�→ (�, μ, ν′′)

e,η�→ (�′, μ′, ν′).
Given a TDA γ|ζ(A) with concrete semantics (S, s0,→), we refer to

the states of S as the concrete states of γ|ζ(A). A run of γ|ζ(A) is
an alternating sequence of concrete states of γ|ζ(A) and triples of edges,
local variable valuations and delays, starting from the initial state s0 of
the form (�0, μ0, ν0), (e0, η, d0), (�1, μ1, ν1), · · · with i = 0, 1, . . . , ei ∈ E,
di ∈ R≥0 and ((�i, μi, νi), (ei, ηi, di), (�i+1, μi+1, νi+1)) ∈ →. Given such
a run, the associated timed data word is (a1, τ1, η1), (a2, τ2, η2), · · · , where
ai is the action of edge ei−1, ηi is the local variable valuation associ-
ated with that transition, and τi =

∑
0≤j≤i−1 dj , for i = 1, 2 · · · . For

a timed data word w and a concrete state (�, μ, ν) of γ|ζ(A), we write
(�0, μ0,0) w−→ (�, μ, ν) in γ|ζ(A) if w is associated with a run of γ|ζ(A) of
the form (�0, μ0,0), . . . , (�n, μn, νn) with (�n, μn, νn) = (�, μ, ν). For a timed
data word w = (a1, τ1, η1), (a2, τ2, η2), . . . , (an, τn, ηn), we denote |w| = n
and for any i ∈ {1, 2, . . . , n}, we denote w(1, i) = (a1, τ1, η1), (a2, τ2, η2), . . . ,
(ai, τi, ηi).

A finite run is accepting if its last state (�, μ, ν) is such that � ∈ F . The
language L(γ|ζ(A)) is defined to be the set of timed data words associated with
all accepting runs of γ|ζ(A).

Example 5. Consider the PTDA in Fig. 2b over the data type for strings. Let
γ(tp) = 100 and ζ(vp) = Hakuchi.txt. An accepting run of the TDA γ|ζ(A)
is: (�0, ∅, ν0), (e0, η0, 2046), (�1, ∅, ν1), (e1, η1, 90), (�1, ∅, ν2)(e2, η2, 30), (�2, ∅, ν3),
where ∅ denotes a variable valuation over an empty domain (recall that V = ∅
in Fig. 2b), ν0(c) = 0, ν1(c) = 0, ν2(c) = 90, ν3(c) = 120, e0 is the upper edge
from �0 to �1, e1 is the self-loop above �1, e2 is the lower edge from �1 to �2,
η0(f) = η2(f) = Hakuchi.txt, η1(f) = Unagi.mp4, η0(m) = η1(m) = rw, and
η2(m) is undefined (because Dom(close) = {f}).

The associated timed data word is (open, 2046, η0), (open, 2136, η1),
(close, 2166, η2).

Since each action is associated with a set of local variables, given an ordering
on this set, it is possible to see a given action and a variable valuation as a pred-
icate: for example, assuming an ordering of LV such as f precedes m, then open

530 M. Waga et al.

with η0 can be represented as open(Hakuchi.txt, rw). Using this convention, the
log in Fig. 2a corresponds exactly to this timed data word.

5 Symbolic Monitoring Against PTDA Specifications

In symbolic monitoring, in addition to the (observable) actions in Σ, we employ
unobservable actions denoted by ε and satisfying Dom(ε) = ∅. We write Σε

for Σ � {ε}. We let ηε be the local variable valuation such that ηε(lv) is unde-
fined for any lv ∈ LV. For a timed data word w = (a1, τ1, η1), (a2, τ2, η2), . . . ,
(an, τn, ηn) over Σε, the projection w↓Σ is the timed data word over Σ
obtained from w by removing any triple (ai, τi, ηi) where ai = ε. An edge
e = (�, tg, dg, a,R,PDU, �′) ∈ E is unobservable if a = ε, and observable oth-
erwise. The use of unobservable actions allows us to encode parametric timed
pattern matching (see Sect. 5.3).

We make the following assumption on the PTDAs in symbolic monitoring.

Assumption 1. The PTDA A does not contain any loop of unobservable edges.

5.1 Problem Definition

Roughly speaking, given a PTDA A and a timed data word w, the symbolic
monitoring problem asks for the set of pairs (γ, ζ) ∈ (Q+)TP × D

VP satisfying
w(1, i) ∈ γ|ζ(A), where w(1, i) is a prefix of w. Since A also contains unobserv-
able edges, we consider w′ which is w augmented by unobservable actions.

Symbolic monitoring problem:
Input: a PTDA A over a data type (D,DE ,DU) and actions Σε, and a
timed data word w over Σ
Problem: compute all the pairs (γ, ζ) of timing and data parameter valua-
tions such that there is a timed data word w′ over Σε and i ∈ {1, 2, . . . , |w′|}
satisfying w′↓Σ = w and w′(1, i) ∈ L(γ|ζ(A)). That is, it requires the
validity domain D(w,A) = {(γ, ζ) | ∃w′ : i ∈ {1, 2, . . . , |w′|}, w′↓Σ =
w and w′(1, i) ∈ L(γ|ζ(A))}.

Example 6. Consider the PTDA A and the timed data word w shown in Fig. 1.
The validity domain D(w,A) is D(w,A) = D1 ∪ D2, where

D1 =
{
(γ, ζ) | 0 ≤ γ(tp) ≤ 2, ζ(xp) = c

}
and D2 =

{
(γ, ζ) | 0 ≤ γ(tp) ≤ 1, ζ(xp) = a

}
.

For w′ = w(1, 3) · (ε, ηε, 2.9), we have w′ ∈ L(γ|ζ(A)) and w′↓Σ = w(1, 3),
where γ and ζ are such that γ(tp) = 1.8 and ζ(xp) = c, and w(1, 3) · (ε, ηε, 2.9)
denotes the juxtaposition.

For the data types in Example 2, the validity domain D(w,A) can be rep-
resented by a constraint of finite size because the length |w| of the timed data
word is finite.

Symbolic Monitoring Against Specifications Parametric in Time and Data 531

5.2 Online Algorithm

Our algorithm is online in the sense that it outputs (γ, ζ) ∈ D(w,A) as soon as
its membership is witnessed, even before reading the whole timed data word w.

Let w = (a1, τ1, η1), (a2, τ2, η2), . . . (an, τn, ηn) and A be the timed data word
and PTDA given in symbolic monitoring, respectively. Intuitively, after reading
(ai, τi, ηi), our algorithm symbolically computes for all parameter valuations

(γ, ζ) ∈ (Q+)TP × D
VP the concrete states (�, ν, μ) satisfying (�0, μ0,0)

w(1,i)−−−−→
(�, μ, ν) in γ|ζ(A). Since A has unobservable edges as well as observable edges,
we have to add unobservable actions before or after observable actions in w. By
Conf o

i , we denote the configurations after reading (ai, τi, ηi) and no unobservable
actions are appended after (ai, τi, ηi). By Conf u

i , we denote the configurations
after reading (ai, τi, ηi) and at least one unobservable action is appended after
(ai, τi, ηi).

Definition 3 (Conf o
i ,Conf

u
i). For a PTDA A over actions Σε, a timed data

word w over Σ, and i ∈ {0, 1, . . . , |w|} (resp. i ∈ {−1, 0, . . . , |w|}), Conf o
i

(resp. Conf u
i) is the set of 5-tuples (�, ν, γ, μ, ζ) such that there is a timed data

word w′ over Σε satisfying the following: (i) (�0, μ0,0) w′
−→ (�, μ, ν) in γ|ζ(A),

(ii) w′↓Σ = w(1, i), (iii) The last action a′
|w′| of w′ is observable (resp. unob-

servable and its timestamp is less than τi+1).

Algorithm 1. Outline of our algorithm for symbolic monitoring
Input: A PTDA A = (Σε, L, �0, F, C, TP, V, LV, μ0, VP, E) over a data

type (D, DE , DU) and actions Σε, and a timed data
word w = (a1, τ1, η1), (a2, τ2, η2), . . . , (an, τn, ηn) over Σ

Output:
⋃

i∈{1,2,...,n+1} Result i is the validity domain D(w, A)

1 Conf u
−1 ← ∅; Conf o

0 ← {(�0,0, γ, μ0, ζ) | γ ∈ (Q+)TP, ζ ∈ D
VP}

2 for i ← 1 to n do
3 compute (Conf u

i−1,Conf
o
i) from (Conf u

i−2,Conf
o
i−1)

4 Result i ← {(γ, ζ) | ∃(�, ν, γ, μ, ζ) ∈ Conf u
i−1 ∪ Conf o

i . � ∈ F}
5 compute Conf u

n from (Conf u
n−1,Conf

o
n)

6 Resultn+1 ← {(γ, ζ) | ∃(�, ν, γ, μ, ζ) ∈ Conf u
n. � ∈ F}

Algorithm 1 shows an outline of our algorithm for symbolic monitoring
(see [35] for the full version). Our algorithm incrementally computes Conf u

i−1 and
Conf o

i (line 3). After reading (ai, τi, ηi), our algorithm stores the partial results
(γ, ζ) ∈ D(w,A) witnessed from the accepting configurations in Conf u

i−1 and
Conf o

i (line 4). (We also need to try to take potential unobservable transitions
and store the results from the accepting configurations after the last element of
the timed data word (lines 5 and 6).)

Since (Q+)TP×D
VP is an infinite set, we cannot try each (γ, ζ) ∈ (Q+)TP×D

VP

and we use a symbolic representation for parameter valuations. Similarly to the

532 M. Waga et al.

reachability synthesis of parametric timed automata [28], a set of clock and tim-
ing parameter valuations can be represented by a convex polyhedron. For variable
valuations and data parameter valuations, we need an appropriate representa-
tion depending on the data type (D,DE ,DU). Moreover, for the termination of
Algorithm 1, some operations on the symbolic representation are required.

Theorem 1 (termination). For any PTDA A over a data type (D,DE ,DU)
and actions Σε, and for any timed data word w over Σ, Algorithm 1 terminates
if the following operations on the symbolic representation Vd of a set of variable
and data parameter valuations terminate.

1. restriction and update {([μ]η(ζ(PDU)), ζ) | ∃(μ, ζ) ∈ Vd. (μ, η) |= ζ(dg)}, where
η is a local variable valuation, PDU is a parametric data update function, and
dg is a data guard;

2. emptiness checking of Vd;
3. projection Vd↓VP of Vd to the data parameters VP. ��
Example 7. For the data type for rationals in Example 2, variable and data
parameter valuations Vd can be represented by convex polyhedra and the above
operations terminate. For the data type for strings S in Example 2, variable and
data parameter valuations Vd can be represented by S

|V| × (S ∪ Pfin(S))|VP| and
the above operations terminate, where Pfin(S) is the set of finite sets of S.

Fig. 3. PTDAs in Dominant (left) and Periodic (right)

5.3 Encoding Parametric Timed Pattern Matching

The symbolic monitoring problem is a generalization of the parametric timed
pattern matching problem of [4]. Recall that parametric timed pattern matching
aims at synthesizing timing parameter valuations and start and end times in the
log for which a log segment satisfies or violates a specification. In our approach,
by adding a clock measuring the absolute time, and two timing parameters
encoding respectively the start and end date of the segment, one can easily infer
the log segments for which the property is satisfied.

Consider the Dominant PTDA (left of Fig. 3). It is inspired by a mon-
itoring of withdrawals from bank accounts of various users [15]. This PTDA
monitors situations when a user withdraws more than half of the total with-
drawals within a time window of (50, 100). The actions are Σ = {withdraw}

Symbolic Monitoring Against Specifications Parametric in Time and Data 533

and Dom(withdraw) = {n, a}, where n has a string value and a has an inte-
ger value. The string n represents a user name and the integer a represents the
amount of the withdrawal by the user n. Observe that clock c is never reset,
and therefore measures absolute time. The automaton can non-deterministically
remain in �0, or start to measure a log by taking the ε-transition to �1 checking
c = tp1, and therefore “remembering” the start time using timing parameter tp1.
Then, whenever a user vp has withdrawn more than half of the accumulated
withdrawals (data guard 2v1 > v2) in a (50, 100) time window (timed guard
c − tp1 ∈ (50, 100)), the automaton takes a ε-transition to the accepting loca-
tion, checking c = tp2, and therefore remembering the end time using timing
parameter tp2.

6 Experiments

We implemented our symbolic monitoring algorithm in a tool SyMon in C++,
where the domain for data is the strings and the integers. Our tool SyMon
is distributed at https://github.com/MasWag/symon. We use PPL [8] for the
symbolic representation of the valuations. We note that we employ an optimiza-
tion to merge adjacent polyhedra in the configurations if possible. We evaluated
our monitor algorithm against three original benchmarks: Copy in Fig. 1c; and
Dominant and Periodic in Fig. 3. We conducted experiments on an Amazon
EC2 c4.large instance (2.9 GHz Intel Xeon E5-2666 v3, 2 vCPUs, and 3.75 GiB
RAM) that runs Ubuntu 18.04 LTS (64 bit).

6.1 Benchmark 1: Copy

Our first benchmark Copy is a monitoring of variable updates much like the
scenario in [18]. The actions are Σ = {update} and Dom(update) = {n, v},
where n has a string value representing the name of the updated variables and
v has an integer value representing the updated value. Our set consists of 10
timed data words of length 4,000 to 40,000.

The PTDA in Copy is shown in Fig. 1c, where we give an additional con-
straint 3 < tp < 10 on tp. The property encoded in Fig. 1c is “for any variable px,
whenever an update of that variable occurs, then within tp time units, the value
of b must be equal to that update”.

The experiment result is in Fig. 4. We observe that the execution time is linear
to the number of the events and the memory usage is more or less constant with
respect to the number of events.

6.2 Benchmark 2: Dominant

Our second benchmark is Dominant (Fig. 3 left). Our set consists of 10 timed
data words of length 2,000 to 20,000. The experiment result is in Fig. 5. We
observe that the execution time is linear to the number of the events and the
memory usage is more or less constant with respect to the number of events.

https://github.com/MasWag/symon

534 M. Waga et al.

Fig. 4. Execution time (left) and memory usage (right) of Copy

Fig. 5. Execution time (left) and memory usage (right) of Dominant and Periodic

6.3 Benchmark 3: Periodic

Our third benchmark Periodic is inspired by a parameter identification of peri-
odic withdrawals from one bank account. The actions are Σ = {withdraw} and
Dom(withdraw) = {a}, where a has an integer value representing the amount of
the withdrawal. We randomly generated a set consisting of 10 timed data words
of length 2,000 to 20,000. Each timed data word consists of the following three
kinds of periodic withdrawals:

shortperiod One withdrawal occurs every 5 ± 1 time units. The amount of
the withdrawal is 50 ± 3.
middleperiod One withdrawal occurs every 50 ± 3 time units. The amount
of the withdrawal is 1000 ± 40.
longperiod One withdrawal occurs every 100± 5 time units. The amount of
the withdrawal is 5000 ± 20.

0

20

40

60

80

100

0 1000 2000 3000 4000 5000

V
al
ue
s
of

tp
1
an
d
tp

2

The threshold (vp) of the withdrawal amount

tp1
tp2

The PTDA in Periodic is shown in the
right of Fig. 3. The PTDA matches situations
where, for any two successive withdrawals of
amount more than vp, the duration between
them is within [tp1, tp2]. By the symbolic
monitoring, one can identify the period of the

Symbolic Monitoring Against Specifications Parametric in Time and Data 535

periodic withdrawals of amount greater than
vp is in [tp1, tp2]. An example of the validity
domain is shown in the right figure.

The experiment result is in Fig. 5. We observe that the execution time is linear
to the number of the events and the memory usage is more or less constant with
respect to the number of events.

6.4 Discussion

First, a positive result is that our algorithm effectively performs symbolic mon-
itoring on more than 10,000 actions in one or two minutes even though the
PTDAs feature both timing and data parameters. The execution time in Copy
is 50–100 times smaller than that in Dominant and Periodic. This is because
the constraint 3 < tp < 10 in Copy is strict and the size of the configurations
(i. e., Conf o

i and Conf u
i in Algorithm 1) is small. Another positive result is that

in all of the benchmarks, the execution time is linear and the memory usage is
more or less constant in the size of the input word. This is because the size of
configurations (i. e., Conf o

i and Conf u
i in Algorithm 1) is bounded due to the

following reason. In Dominant, the loop in �1 of the PTDA is deterministic, and
because of the guard c− tp1 ∈ (50, 100) in the edge from �1 to �2, the number of
the loop edges at �1 in an accepting run is bounded (if the duration between two
continuing actions are bounded as in the current setting). Therefore, |Conf o

i |
and |Conf u

i | in Algorithm 1 are bounded. The reason is similar in Copy, too.
In Periodic, since the PTDA is deterministic and the valuations of the amount
of the withdrawals are in finite number, |Conf o

i | and |Conf u
i | in Algorithm 1 are

bounded.
It is clear that we can design ad-hoc automata for which the execution time

of symbolic monitoring can grow much faster (e.g., exponential in the size of
input word). However, experiments showed that our algorithm monitors various
interesting properties in a reasonable time.

Copy and Dominant use data and timing parameters as well as memory
and aggregation; from Table 1, no other monitoring tool can compute the valua-
tions satisfying the specification. We however used the parametric timed model
checker IMITATOR [3] to try to perform such a synthesis, by encoding the input
log as a separate automaton; but IMITATOR ran out of memory (on a 3.75 GiB
RAM computer) for Dominant with |w| = 2000, while SyMon terminates in
14 s with only 6.9 MiB for the same benchmark. Concerning Periodic, the only
existing work that can possibly accommodate this specification is [7]. While the
precise performance comparison is interesting future work (their implementation
is not publicly available), we do not expect our implementation be vastly out-
performed: in [7], their tool times out (after 10 min) for a simple specification
(“E[0,s2]G[0,s1](x < p)”) and a signal discretized by only 128 points.

For those problem instances which MonPoly and DejaVu can accommo-
date (which are simpler and less parametrized than our benchmarks), they tend
to run much faster than ours. For example, in [26], it is reported that they can
process a trace of length 1,100,004 in 30.3 s. The trade-off here is expressivity: for

536 M. Waga et al.

example, DejaVu does not seem to accommodate Dominant, because DejaVu
does not allow for aggregation. We also note that, while SyMon can be slower
than MonPoly and DejaVu, it is fast enough for many scenarios of real-world
online monitoring.

7 Conclusion and Perspectives

We proposed a symbolic framework for monitoring using parameters both in data
and time. Logs can use timestamps and infinite domain data, while our monitor
automata can use timing and variable parameters (in addition to clocks and
local variables). In addition, our online algorithm can answer symbolically, by
outputting all valuations (and possibly log segments) for which the specification
is satisfied or violated. We implemented our approach into a prototype SyMon
and experiments showed that our tool can effectively monitor logs of dozens of
thousands of events in a short time.

Perspectives. Combining the BDDs used in [26] with some of our data types
(typically strings) could improve our approach by making it even more symbolic.
Also, taking advantage of the polarity of some parameters (typically the timing
parameters, in the line of [17]) could improve further the efficiency.

We considered infinite domains, but the case of finite domains raises inter-
esting questions concerning result representation: if the answer to a property is
“neither a nor b”, knowing the domain is {a, b, c}, then the answer should be c.

References

1. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2),
183–235 (1994). https://doi.org/10.1016/0304-3975(94)90010-8

2. Alur, R., Henzinger, T.A., Vardi, M.Y.: Parametric real-time reasoning. In:
Kosaraju, S.R., Johnson, D.S., Aggarwal, A. (eds.) STOC, pp. 592–601. ACM,
New York (1993). https://doi.org/10.1145/167088.167242

3. André, É., Fribourg, L., Kühne, U., Soulat, R.: IMITATOR 2.5: a tool for analyzing
robustness in scheduling problems. In: Giannakopoulou, D., Méry, D. (eds.) FM
2012. LNCS, vol. 7436, pp. 33–36. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-32759-9 6

4. André, É., Hasuo, I., Waga, M.: Offline timed pattern matching under uncertainty.
In: Lin, A.W., Sun, J. (eds.) ICECCS, pp. 10–20. IEEE CPS (2018). https://doi.
org/10.1109/ICECCS2018.2018.00010

5. Annpureddy, Y., Liu, C., Fainekos, G., Sankaranarayanan, S.: S-TaLiRo: a tool
for temporal logic falsification for hybrid systems. In: Abdulla, P.A., Leino, K.R.M.
(eds.) TACAS 2011. LNCS, vol. 6605, pp. 254–257. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-19835-9 21

6. Asarin, E., Basset, N., Degorre, A.: Distance on timed words and applications.
In: Jansen, D.N., Prabhakar, P. (eds.) FORMATS 2018. LNCS, vol. 11022, pp.
199–214. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00151-3 12

https://doi.org/10.1016/0304-3975(94)90010-8
https://doi.org/10.1145/167088.167242
https://doi.org/10.1007/978-3-642-32759-9_6
https://doi.org/10.1007/978-3-642-32759-9_6
https://doi.org/10.1109/ICECCS2018.2018.00010
https://doi.org/10.1109/ICECCS2018.2018.00010
https://doi.org/10.1007/978-3-642-19835-9_21
https://doi.org/10.1007/978-3-030-00151-3_12

Symbolic Monitoring Against Specifications Parametric in Time and Data 537

7. Asarin, E., Donzé, A., Maler, O., Nickovic, D.: Parametric identification of tem-
poral properties. In: Khurshid, S., Sen, K. (eds.) RV 2011. LNCS, vol. 7186, pp.
147–160. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29860-
8 12

8. Bagnara, R., Hill, P.M., Zaffanella, E.: The parma polyhedra library: toward a
complete set of numerical abstractions for the analysis and verification of hardware
and software systems. Sci. Comput. Program. 72(1–2), 3–21 (2008). https://doi.
org/10.1016/j.scico.2007.08.001

9. Bakhirkin, A., Ferrère, T., Maler, O.: Efficient parametric identification for STL.
In: HSCC, pp. 177–186. ACM (2018). https://doi.org/10.1145/3178126.3178132

10. Bakhirkin, A., Ferrère, T., Maler, O., Ulus, D.: On the quantitative semantics of
regular expressions over real-valued signals. In: Abate, A., Geeraerts, G. (eds.)
FORMATS 2017. LNCS, vol. 10419, pp. 189–206. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-65765-3 11

11. Bakhirkin, A., Ferrère, T., Nickovic, D., Maler, O., Asarin, E.: Online timed pattern
matching using automata. In: Jansen, D.N., Prabhakar, P. (eds.) FORMATS 2018.
LNCS, vol. 11022, pp. 215–232. Springer, Cham (2018). https://doi.org/10.1007/
978-3-030-00151-3 13

12. Barringer, H., Falcone, Y., Havelund, K., Reger, G., Rydeheard, D.: Quantified
event automata: towards expressive and efficient runtime monitors. In: Gian-
nakopoulou, D., Méry, D. (eds.) FM 2012. LNCS, vol. 7436, pp. 68–84. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-32759-9 9

13. Basin, D.A., Klaedtke, F., Marinovic, S., Zalinescu, E.: Monitoring of temporal
first-order properties with aggregations. Form. Methods Syst. Des. 46(3), 262–285
(2015). https://doi.org/10.1007/s10703-015-0222-7

14. Basin, D.A., Klaedtke, F., Müller, S., Zalinescu, E.: Monitoring metric first-order
temporal properties. J. ACM 62(2), 15:1–15:45 (2015). https://doi.org/10.1145/
2699444

15. Basin, D.A., Klaedtke, F., Zalinescu, E.: The MonPoly monitoring tool. In: Reger,
G., Havelund, K. (eds.) RV-CuBES. Kalpa Publications in Computing, vol. 3, pp.
19–28. EasyChair (2017)

16. Bouajjani, A., Echahed, R., Robbana, R.: On the automatic verification of systems
with continuous variables and unbounded discrete data structures. In: Antsaklis,
P., Kohn, W., Nerode, A., Sastry, S. (eds.) HS 1994. LNCS, vol. 999, pp. 64–85.
Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-60472-3 4

17. Bozzelli, L., La Torre, S.: Decision problems for lower/upper bound parametric
timed automata. Form. Methods Syst. Des. 35(2), 121–151 (2009). https://doi.
org/10.1007/s10703-009-0074-0

18. Brim, L., Dluhos, P., Safránek, D., Vejpustek, T.: STL∗: extending signal temporal
logic with signal-value freezing operator. Inf. Comput. 236, 52–67 (2014). https://
doi.org/10.1016/j.ic.2014.01.012

19. Dang, Z.: Pushdown timed automata: a binary reachability characterization and
safety verification. Theor. Comput. Sci. 302(1–3), 93–121 (2003). https://doi.org/
10.1016/S0304-3975(02)00743-0

20. Deshmukh, J.V., Majumdar, R., Prabhu, V.S.: Quantifying conformance using the
Skorokhod metric. Form. Methods Syst. Des. 50(2–3), 168–206 (2017). https://
doi.org/10.1007/s10703-016-0261-8

21. Donzé, A.: Breach, a toolbox for verification and parameter synthesis of hybrid
systems. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp.
167–170. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14295-
6 17

https://doi.org/10.1007/978-3-642-29860-8_12
https://doi.org/10.1007/978-3-642-29860-8_12
https://doi.org/10.1016/j.scico.2007.08.001
https://doi.org/10.1016/j.scico.2007.08.001
https://doi.org/10.1145/3178126.3178132
https://doi.org/10.1007/978-3-319-65765-3_11
https://doi.org/10.1007/978-3-319-65765-3_11
https://doi.org/10.1007/978-3-030-00151-3_13
https://doi.org/10.1007/978-3-030-00151-3_13
https://doi.org/10.1007/978-3-642-32759-9_9
https://doi.org/10.1007/s10703-015-0222-7
https://doi.org/10.1145/2699444
https://doi.org/10.1145/2699444
https://doi.org/10.1007/3-540-60472-3_4
https://doi.org/10.1007/s10703-009-0074-0
https://doi.org/10.1007/s10703-009-0074-0
https://doi.org/10.1016/j.ic.2014.01.012
https://doi.org/10.1016/j.ic.2014.01.012
https://doi.org/10.1016/S0304-3975(02)00743-0
https://doi.org/10.1016/S0304-3975(02)00743-0
https://doi.org/10.1007/s10703-016-0261-8
https://doi.org/10.1007/s10703-016-0261-8
https://doi.org/10.1007/978-3-642-14295-6_17
https://doi.org/10.1007/978-3-642-14295-6_17

538 M. Waga et al.

22. Donzé, A., Ferrère, T., Maler, O.: Efficient robust monitoring for STL. In: Shary-
gina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 264–279. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8 19

23. Donzé, A., Maler, O.: Robust satisfaction of temporal logic over real-valued signals.
In: Chatterjee, K., Henzinger, T.A. (eds.) FORMATS 2010. LNCS, vol. 6246, pp.
92–106. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15297-9 9

24. Fages, F., Rizk, A.: On temporal logic constraint solving for analyzing numerical
data time series. Theor. Comput. Sci. 408(1), 55–65 (2008). https://doi.org/10.
1016/j.tcs.2008.07.004

25. Fainekos, G.E., Pappas, G.J.: Robustness of temporal logic specifications for
continuous-time signals. Theor. Comput. Sci. 410(42), 4262–4291 (2009). https://
doi.org/10.1016/j.tcs.2009.06.021

26. Havelund, K., Peled, D., Ulus, D.: First order temporal logic monitoring with
BDDs. In: Stewart, D., Weissenbacher, G. (eds.) FMCAD, pp. 116–123. IEEE
(2017). https://doi.org/10.23919/FMCAD.2017.8102249

27. Jakšić, S., Bartocci, E., Grosu, R., Nguyen, T., Ničković, D.: Quantitative moni-
toring of STL with edit distance. Form. Methods Syst. Des. 53(1), 83–112 (2018).
https://doi.org/10.1007/s10703-018-0319-x

28. Jovanović, A., Lime, D., Roux, O.H.: Integer parameter synthesis for real-time
systems. IEEE Trans. Softw. Eng. 41(5), 445–461 (2015). https://doi.org/10.1109/
TSE.2014.2357445

29. Quaas, K.: Verification for timed automata extended with discrete data structure.
Log. Methods Comput. Sci. 11(3) (2015). https://doi.org/10.2168/LMCS-11(3:
20)2015

30. Reger, G., Cruz, H.C., Rydeheard, D.: MarQ: monitoring at runtime with QEA.
In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 596–610.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46681-0 55

31. Ulus, D.: Montre: a tool for monitoring timed regular expressions. In: Majumdar,
R., Kunčak, V. (eds.) CAV 2017, Part I. LNCS, vol. 10426, pp. 329–335. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-63387-9 16

32. Ulus, D., Ferrère, T., Asarin, E., Maler, O.: Timed pattern matching. In: Legay,
A., Bozga, M. (eds.) FORMATS 2014. LNCS, vol. 8711, pp. 222–236. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-10512-3 16

33. Ulus, D., Ferrère, T., Asarin, E., Maler, O.: Online timed pattern matching using
derivatives. In: Chechik, M., Raskin, J.-F. (eds.) TACAS 2016. LNCS, vol. 9636, pp.
736–751. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49674-
9 47

34. Ulus, D., Maler, O.: Specifying timed patterns using temporal logic. In: HSCC, pp.
167–176. ACM (2018). https://doi.org/10.1145/3178126.3178129

35. Waga, M., André, É., Hasuo, I.: Symbolic monitoring against specifications para-
metric in time and data. CoRR abs/1905.04486 (2019). arxiv:1905.04486

36. Waga, M., Hasuo, I., Suenaga, K.: Efficient online timed pattern matching by
automata-based skipping. In: Abate, A., Geeraerts, G. (eds.) FORMATS 2017.
LNCS, vol. 10419, pp. 224–243. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-65765-3 13

https://doi.org/10.1007/978-3-642-39799-8_19
https://doi.org/10.1007/978-3-642-15297-9_9
https://doi.org/10.1016/j.tcs.2008.07.004
https://doi.org/10.1016/j.tcs.2008.07.004
https://doi.org/10.1016/j.tcs.2009.06.021
https://doi.org/10.1016/j.tcs.2009.06.021
https://doi.org/10.23919/FMCAD.2017.8102249
https://doi.org/10.1007/s10703-018-0319-x
https://doi.org/10.1109/TSE.2014.2357445
https://doi.org/10.1109/TSE.2014.2357445
https://doi.org/10.2168/LMCS-11(3:20)2015
https://doi.org/10.2168/LMCS-11(3:20)2015
https://doi.org/10.1007/978-3-662-46681-0_55
https://doi.org/10.1007/978-3-319-63387-9_16
https://doi.org/10.1007/978-3-319-10512-3_16
https://doi.org/10.1007/978-3-662-49674-9_47
https://doi.org/10.1007/978-3-662-49674-9_47
https://doi.org/10.1145/3178126.3178129
http://arxiv.org/abs/1905.04486
https://doi.org/10.1007/978-3-319-65765-3_13
https://doi.org/10.1007/978-3-319-65765-3_13

Symbolic Monitoring Against Specifications Parametric in Time and Data 539

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

STAMINA: STochastic Approximate
Model-Checker for INfinite-State Analysis

Thakur Neupane1(B) , Chris J. Myers2 , Curtis Madsen3 , Hao Zheng4 ,
and Zhen Zhang1

1 Utah State University, Logan, UT, USA
thakur.neupane@aggiemail.usu.edu

zhen.zhang@usu.edu
2 University of Utah, Salt Lake City, UT, USA

myers@ece.utah.edu
3 Boston University, Boston, MA, USA

ckmadsen@bu.edu
4 University of South Florida, Tampa, FL, USA

haozheng@usf.edu

Abstract. Stochastic model checking is a technique for analyzing systems that
possess probabilistic characteristics. However, its scalability is limited as proba-
bilistic models of real-world applications typically have very large or infinite state
space. This paper presents a new infinite state CTMCmodel checker, STAMINA,
with improved scalability. It uses a novel state space approximation method to
reduce large and possibly infinite state CTMC models to finite state representa-
tions that are amenable to existing stochastic model checkers. It is integrated with
a new property-guided state expansion approach that improves the analysis accu-
racy. Demonstration of the tool on several benchmark examples shows promising
results in terms of analysis efficiency and accuracy compared with a state-of-the-
art CTMC model checker that deploys a similar approximation method.

Keywords: Stochastic model checking · Infinite-state · Markov chains

1 Introduction

Stochastic model checking is a formal method that designers and engineers can use to
determine the likelihood of safety and liveness properties. Checking properties using
numerical model checking techniques requires enumerating the state space of the sys-
tem to determine the probability that the system is in any given state at a desired
time [17]. Real-world applications often have very large or even infinite state spaces.

Numerous state representation, reduction, and approximation methods have been
proposed. Symbolic model checking based on multi-terminal binary decision diagrams
(MTBDDs) [23] has achieved success in representing large Markov Decision Process
(MDP) models with a few distinct probabilistic choices at each state, e.g., the shared
coin protocol [3]. MTBDDs, however, are often inefficient for models with many differ-
ent and distinct probability/rate values due to the inefficient representation of solution
c© The Author(s) 2019
I. Dillig and S. Tasiran (Eds.): CAV 2019, LNCS 11561, pp. 540–549, 2019.
https://doi.org/10.1007/978-3-030-25540-4_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-25540-4_31&domain=pdf
http://orcid.org/0000-0002-1870-4079
http://orcid.org/0000-0002-8762-8444
http://orcid.org/0000-0002-0254-0364
http://orcid.org/0000-0002-8627-0591
http://orcid.org/0000-0002-8269-9489
https://doi.org/10.1007/978-3-030-25540-4_31

STAMINA: A New Infinite-State CTMC Model-Checker 541

vectors. Continuous-time Markov chain (CTMC) models, whose state transition rate is a
function of state variables, generally contain many distinct rate values. As a result, sym-
bolic model checkers can run out of memory while verifying a typical CTMC model
with as few as 73,000 states [23]. State reduction techniques, such as bisimulation min-
imization [7,8,14], abstraction [6,12,14,20], symmetry reduction [5,16], and partial
order reduction [9] have been mainly extended to discrete-time, finite-state probabilis-
tic systems. The three-valued abstraction [14] can reduce large, finite-state CTMCs. It
may, however, provide inconclusive verification results due to abstraction.

To the best of our knowledge, only a few tools can analyze infinite-state probabilistic
models, namely, STAR [19] and INFAMY [10]. The STAR tool primarily analyzes bio-
chemical reaction networks. It approximates solutions to the chemical master equation
(CME) using the method of conditional moments (MCM) [11] that combines moment-
based and state-based representations of probability distributions. This hybrid approach
represents species with low concentrations using a discrete stochastic description and
numerically integrates a small master equation using the fourth order Runge-Kutta
method over a small time interval [2]; and solves a system of conditional moment equa-
tions for higher concentration species, conditioned on the low concentration species.
This method has been optimized to drop unlikely states and add likely states on-the-fly.
STAR relies on a well-structured underlying Markov process with small sensitivity on
the transient distribution. Also, it mainly reports state reachability probabilities, instead
of checking a given probabilistic property. INFAMY is a truncation-based approach that
explores the model’s state space up to a certain finite depth k. The truncated state space
still grows exponentially with respect to exploration depth. Starting from the initial
state, breadth-first state search is performed up to a certain finite depth. The error prob-
ability computed during the model checking depends on the depth of state exploration.
Therefore, higher exploration depth generally incurs lower error probability.

This paper presents a new infinite-state stochastic model checker, STochastic
Approximate Model-checker for INfinite-state Analysis (STAMINA). Our tool also takes
a truncation-based approach. In particular, it maintains a probability estimate of each
path being explored in the state space, and when the currently explored path probabil-
ity drops below a specified threshold, it halts exploration of this path. All transitions
exiting this state are redirected to an absorbing state. After all paths have been explored
or truncated, transient Markov chain analysis is applied to determine the probability of
a transient property of interest specified using Continuous Stochastic Logic (CSL) [4].
The calculated probability forms a lower bound on the probability, while the upper
bound also includes the probability of the absorbing state. The actual probability of the
CSL property is guaranteed to be within this range. An initial version of our tool and
preliminary results are reported in [22]. Since that paper, our tool has been tightly inte-
grated within the PRISMmodel checker [18] to improve performance, and we have also
developed a new property-guided state expansion technique to expand the state space
to tighten the reported probability range incrementally. This paper reports our results,
which show significant improvement on both efficiency and verification accuracy over
several non-trivial case studies from various application domains.

542 T . Neupane et al.

2 STAMINA

Figure 1 presents the architecture of STAMINA. Based on a user-specified probability
threshold κ (kappa), it first constructs a finite-state CTMC model C�κ from the original
infinite-state CTMC model C using the state space approximation method presented in
Sect. 2.1. C�κ is then checked using the PRISM explicit-state model checker against a
given CSL property P∼p(φ), where ∼∈ {<, >, �, �} and p ∈ [0, 1] (for cases where
it is desired that a predicate be true within a certain probability bound) or P=?(φ) (for
cases where it is desired that the exact probability of the predicate being true be calcu-
lated). Lower- and upper-bound probabilities that φ holds, namely, Pmin and Pmax, are
then obtained, and their difference, i.e., (Pmax −Pmin), is the probability accumulated
in the absorbing state xabs which abstracts all the states not included in the current state
space. If p ∈ [Pmin, Pmax], it is not known whether P∼p(φ) holds. If exact probability
is of interest and the probability range is larger than the user-defined precision ε, i.e.,
(Pmax − Pmin) > ε, then the method does not give a meaningful result.

Fig. 1. Architecture of STAMINA.

For an inconclusive verification result from the previous step, STAMINA applies
a property-guided approach, described in Sect. 2.2, to further expand C�κ , provided
P∼p(φ) is a non-nested “until” formula; otherwise, it uses the previous method to
expand the state space. Note that κ also drops by the reduction factor κr to enable
states that were previously ignored due to a low probability estimate to be included in
the current state expansion. The expanded CTMCmodel C�κ is then checked to obtain a
new probability bound [Pmin, Pmax]. This iterative process repeats until one of the fol-
lowing conditions holds: (1) the target probability p falls outside the probability bound
[Pmin, Pmax], (2) the probability bound is sufficiently small, i.e, (Pmax − Pmin) < ε,
or (3) a maximal number of iterations N has been reached (r � N).

2.1 State Space Approximation

The state space approximation method [22] truncates the state space based on a user-
specified reachability thresholdκ. During state exploration, the reachability-value func-

STAMINA: A New Infinite-State CTMC Model-Checker 543

tion, κ̂ : X → R
+, estimates the probability of reaching a state on-the-fly, and is com-

pared against κ to determine whether the state search should terminate. Only states with
a higher reachability-value than the reachability threshold are explored further.

Figure 2 illustrates the standard breadth first search (BFS) state exploration for
reachability threshold κ = 0.25. It starts from the initial state whose reachability-value
i.e., κ̂(x0), is initialized to 1.0 as shown in Fig. 2a. In the first step, two new states
x1 and x4 are generated and their reachability-values are 0.8 and 0.2, respectively,
as shown in Fig. 2b. The reachability-value in x0 is distributed to its successor states,
based on the probability of outgoing transitions from x0 to its successor state. For the
next step, only state x1 is scheduled for exploration because κ̂(x1) ≥ κ. Note that the
transition from x4 to x0 is executed because x0 is already in the explored set. Expand-
ing x1 leads to two new states, namely x2 and x5 as shown in Fig. 2c, from which only
x5 is scheduled for further exploration. This leads to the generation of x6 and x9 shown
in Fig. 2d. State exploration terminates after Fig. 2e since both newly generated states
have reachability-values less than 0.25. States x2, x4, x6 and x9 are marked as termi-
nal states. During state exploration, the reachability-value update is performed every
time a new incoming path is added to a state because a new incoming path can add
its contribution to the state, potentially bringing the reachability-value above κ, which
in turn changes a terminal state to be non-terminal. When the truncated CTMC model
C�κ is analyzed, it introduces some error in the probability value of the property under
verification, because of leakage the probability (i.e., cumulative path probabilities of
reaching states not included in the explored state space) during the CTMC analysis. To

Fig. 2. State space approximation.

544 T . Neupane et al.

account for probability loss, an abstract absorbing state xabs is created as the sole suc-
cessor state for all terminal states on each truncated path. Figure 2e shows the addition
of the absorbing state.

2.2 Property Based State Space Exploration

This paper introduces a property-guided state expansion method, in order to efficiently
obtain a tightened probability bound. Since all non-nested CSL path formulas φ (except
those containing the “next” operator) derive from the “until” formula, Φ UI Ψ , con-
struction of the set of terminal states for further expansion boils down to eliminating
states that are known to satisfy or dissatisfy Φ U Ψ . Given a state graph, a path starting
from the initial state can never satisfy Φ U Ψ , if it includes a state satisfying ¬Φ ∧ ¬Ψ .
Also, if a path includes a state satisfying Ψ , satisfiability of Φ U Ψ can be determined
without further expanding this path beyond the first Ψ -state. Our property-guided state
space expansion method identifies the path prefixes, from which satisfiability of Φ U Ψ
can be determined, and shortens them by making the last state of each prefix absorbing
based on the satisfiability of (¬Φ∨Ψ). Only the non-absorbing states whose path prob-
ability is greater than the state probability estimate threshold κ are expanded further.
For detailed algorithms of STAMINA, readers are encouraged to read [21].

3 Results

This section presents results on the following case studies to illustrate the accuracy and
efficiency of STAMINA: a genetic toggle switch [20,22]; the following examples from
the PRISM benchmark suite [15]: grid world robot, cyclic server polling system, and
tandem queuing network; and the Jackson queuing network from INFAMY case stud-
ies [1]. All case studies are evaluated on STAMINA and INFAMY, except the genetic
toggle switch 1. Experiments are performed on a 3.2 GHz AMD Debian Linux PC with
six cores and 64 GB of RAM. For all experiments, the maximal number of iterations N
is set to 10, and the reduction factor κr is set to 1000. All experiments terminate due
to (Pmax − Pmin) < ε, where ε = 10−3, before they reach N . STAMINA is freely
available at: https://github.com/formal-verification-research/stamina.

We compare the runtime, state size, and verification results between STAMINA
and INFAMY using the same precision ε = 10−3. For all tables in this section, col-
umn κ reports the probability estimate threshold used to terminate state generation in
STAMINA. The state space size is listed in column |G |(K), where K indicates one
thousand states. Column T (C/A) reports the state space construction (C) and analy-
sis (A) time in seconds. For STAMINA, the total construction and analysis time is the
cumulation of runtime for all κ values for a model configuration. Columns Pmin and
Pmax list the lower and upper probability bounds for the property under verification,
and column P lists the single probability value (within the precision ε) reported by
INFAMY. We select the best runtime reported by three configurations of INFAMY. The
improvement in state size (column |G |(X)) and runtime (column T (%)) are represented

1 INFAMY generates arithmetic errors on the genetic toggle switch model.

https://github.com/formal-verification-research/stamina

STAMINA: A New Infinite-State CTMC Model-Checker 545

by the ratio of state count generated by INFAMY to that of STAMINA (higher is better)
and percentage improvement in runtime (higher is better), respectively.

Genetic Toggle Switch. The genetic toggle switch circuit model has two inputs, aTc
and IPTG. It can be set to the OFF state by supplying it with aTc and can be set to
the ON state by supplying it with IPTG [20]. Two important properties for a toggle
switch circuit are the response time and the failure rate. The first experiments set IPTG
to 100 to measure the toggle switch’s response time. It should be noted that the input
value of 100 molecules of IPTG is chosen to ensure that the circuit switches to the
ON state. The later experiments initialize IPTG to 0 to compute the failure rate, i.e.,
the probability that the circuit changes state erroneously within a cell cycle of 2, 100 s
(an approximation of the cell cycle in E. coli [24]). Initially, LacI is set to 60 and
TetR is set to 0 for both experiments. The CSL property used for both experiments,
P=? [true U�2100 (TetR > 40 ∧ LacI < 20)], describes the probability of the
circuit switching to the ON state within a cell cycle of 2, 100 s. The ON state is defined
as LacI below 20 and TetR above 40 molecules.

Table 1. Verification results for genetic toggle switch.

IPTG STAMINA

κ |G | T (C/A) Pmin Pmax Remark

100 10−3 1, 127 0.15/0.67 0.000000 0.999671 Property guided

10−6 4, 461 0.43/2.84 0.966947 0.992908

10−9 7, 163 0.43/5.25 0.991738 0.991797

100 10−6 5, 171 0.17/1.90 0.977942 0.992850 Property agnostic

10−9 8, 908 0.18/3.74 0.991739 0.991797

0 10−3 182 0.05/0.07 0.000000 0.697500 Property guided

10−6 2, 438 0.16/1.08 0.008814 0.060424

10−9 4, 284 0.09/2.12 0.013097 0.013609

0 10−6 2, 446 0.16/1.05 0.009169 0.060420 Property agnostic

10−9 4, 820 0.13/2.13 0.013097 0.013609

The property-agnostic state space is generated with the probability estimate thresh-
old κ = 10−3. Table 1 shows large probability bounds: [0, 0.999671] for IPTG = 100
and [0, 0.6975] for IPTG = 0. It is obvious that they are significantly inaccurate w.r.t.
the precision ε of 10−3. The κ is then reduced to 10−6 and state generation switches
to the property-guided state expansion mode, where the CSL property is used to guide
state exploration, based on the previous state graph. Each state expansion step reduces
the κ value by a factor of κr = 1000. To measure the effectiveness of the property-
guided state expansion approach, we compare state graphs generated with and without
the property-guided state expansion, as indicated by the “property agnostic” and “prop-
erty guided” rows in the table. Property-guided state expansion reduces the size of the
state space without losing the analysis precision for the same value of κ. Specifically,

546 T . Neupane et al.

the state expansion approach reduces the state space by almost 20% for the response
rate experiment.

Robot World. This case study considers a robot moving in an n-by-n grid and a janitor
moving in a larger grid Kn-by-Kn, where the constant K is used to significantly scale
up the state space. The robot starts from the bottom left corner to reach the top right
corner. The janitor moves around randomly. Either the robot or janitor can occupy one
grid location at any given time. The robot also randomly communicates with the base
station. The property of interest is the probability that the robot reaches the top right
corner within 100 time units while periodically communicating with the base station,
encoded as P=? [(P�0.5 [true U�7 communicate]) U�100 goal].

Table 2 provides a comparison of results for K = 1024, 64 and n = 64, 32. For
smaller grid size i.e, 32-by-32, the robot can reach the goal with a high probability of
97.56%. Where as for a larger value of n = 64 and K = 64, the robot is not able to
reach the goal with considerable probability. STAMINA generates precise results that
are similar to INFAMY, while exploring less than half of states with shorter runtime.

Table 2. Comparison between STAMINA and INFAMY.

Model Params STAMINA INFAMY Improvement

|G | (K)T (C/A)Pmin Pmax |G | (K)T (C/A) P |G | (X)T (%)

Robot (n/K) 32/64 696 41/279 0.975 0.975 1, 591 492/18 0.975 2.3 37.3

32/1024 696 41/258 0.975 0.975 1, 591 501/18 0.975 2.3 42.4

64/64 2, 273 135/669 1.46e−4 1.68e−4 5, 088 1, 625/53 1.5e−4 2.2 52.1

64/1024 2, 273 132/621 1.46e−4 1.68e−4 5, 088 1, 625/53 1.5e−4 2.2 55.2

Jackson (N/λ) 4/5 201 22/51 0.865 0.865 635 109/5 0.865 3.2 36.1

5/5 2, 539 990/996 0.819 0.819 7, 029 1668/108 0.819 2.8 −11.8

Polling (N) 12 19 3/21 1.0 1.0 74 1/2 1.0 3.9 −732.2

16 57 18/70 1.0 1.0 1, 573 5/54 1.0 27.6 −48.2

20 113 30/77 1.0 1.0 31, 457 151/1347 1.0 278.4 92.9

Tandem (c) 2047 33 1/41 0.498 0.498 2, 392 3/38 0.498 72.5 −1.4

4095 66 1/141 0.499 0.499 9, 216 11/265 0.499 139.6 48.7

Jackson Queuing Network. A Jackson queuing network consists of N interconnected
nodes (queues) with infinite queue capacity. Initially, all queues are considered empty.
Each station is connected to a single server which distributes the arrived jobs to differ-
ent stations. Customers arrive as a Poisson stream with intensity λ for N queues. The
model is taken from [10,13]. We compute the probability that, within 10 time units, the
first queue has more that 3 jobs and the second queue has more than 5 jobs, given by
P=? [true U�10 (jobs 1 � 4 ∧ jobs 2 � 6)].

Table 2 summarizes the results for this model. STAMINA uses roughly equal time
to construct and analyze the model for N = 5, whereas INFAMY takes significantly
longer to construct the state space, making it slower in overall runtime. For N = 4,
STAMINA is faster in generating verification results In both configurations, STAMINA
only explores approximately one third of the states explored by INFAMY.

STAMINA: A New Infinite-State CTMC Model-Checker 547

Cyclic Server Polling System. This case study is based on a cyclic server attending
N stations. We consider the probability that station one is polled within 10 time units,
P=? [true U�10 station1 polled]. Table 2 summarizes the verification results for
N = 12, 16, 20. The probability of station one being polled within 10 s is 1.0 for
all configurations. Similar to previous case studies, STAMINA explores significantly
smaller state space. The advantage of STAMINA in terms of runtime starts to manifest
as the size of model (and hence the state space size) grows.

Tandem Queuing Network. A tandem queuing network is the simplest interconnected
queuing network of two finite capacity (c) queues with one server each [18]. Customers
join the first queue and enter the second queue immediately after completing the service.
This paper considers the probability that the first queue becomes full in 0.25 time units,
depicted by the CSL property P=? [true U�0.25 queue1 full].

As seen in Table 2, there is almost fifty percent probability that the first queue is full
in 0.25 s irrespective of the queue capacity. As in the polling server, STAMINA explores
significantly smaller state space. The runtime is similar for model with smaller queue
capacity (c = 2047). But the runtime improves as the queue capacity is increased.

4 Conclusions

This paper presents an infinite-state stochastic model checker, STAMINA, that uses
path probability estimates to generate states with high probability and truncate unlikely
states based on a specified threshold. Initial state construction is property agnostic, and
the state space is used for stochastic model checking of a given CSL property. The
calculated probability forms a lower and upper bound on the probability for the CSL
property, which is guaranteed to include the actual probability. Next, if finer precision of
the probability bound is required, it uses a property-guided state expansion technique to
explore states to tighten the reported probability range incrementally. Implementation
of STAMINA is built on top of the PRISM model checker with tight integration to
its API. Performance and accuracy evaluation is performed on case studies taken from
various application domains, and shows significant improvement over the state-of-art
infinite-state stochastic model checker INFAMY. For future work, we plan to investigate
methods to determine the reduction factor on-the-fly based on the probability bound.
Another direction is to investigate heuristics to further improve the property-guided
state expansion, as well as, techniques to dynamically remove unlikely states.

Acknowledgment. Chris Myers is supported by the National Science Foundation under CCF-
1748200. Any opinions, findings, and conclusions or recommendations expressed in this material
are those of the authors and do not necessarily reflect the views of the NSF.

References

1. https://depend.cs.uni-saarland.de/tools/infamy/casestudies/
2. Andreychenko, A., Mikeev, L., Spieler, D., Wolf, V.: Parameter identification for Markov

models of biochemical reactions. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011.
LNCS, vol. 6806, pp. 83–98. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-22110-1 8

https://depend.cs.uni-saarland.de/tools/infamy/casestudies/
https://doi.org/10.1007/978-3-642-22110-1_8
https://doi.org/10.1007/978-3-642-22110-1_8

548 T . Neupane et al.

3. Aspnes, J., Herlihy, M.: Fast randomized consensus using shared memory. J. Algorithms
11(3), 441–461 (1990)

4. Aziz, A., Sanwal, K., Singhal, V., Brayton, R.: Model-checking continuous-time Markov
chains. ACM Trans. Comput. Logic 1(1), 162–170 (2000)

5. Donaldson, A.F., Miller, A.: Symmetry reduction for probabilistic model checking using
generic representatives. In: Graf, S., Zhang, W. (eds.) ATVA 2006. LNCS, vol. 4218, pp.
9–23. Springer, Heidelberg (2006). https://doi.org/10.1007/11901914 4

6. Fecher, H., Leucker, M., Wolf, V.: Don’t know in probabilistic systems. In: Valmari, A. (ed.)
SPIN 2006. LNCS, vol. 3925, pp. 71–88. Springer, Heidelberg (2006). https://doi.org/10.
1007/11691617 5

7. Fisler, K., Vardi, M.Y.: Bisimulation and model checking. In: Pierre, L., Kropf, T. (eds.)
CHARME 1999. LNCS, vol. 1703, pp. 338–342. Springer, Heidelberg (1999). https://doi.
org/10.1007/3-540-48153-2 29

8. Fisler, K., Vardi, M.Y.: Bisimulation minimization and symbolic model checking. Form.
Methods Syst. Des. 21(1), 39–78 (2002)

9. Groesser, M., Baier, C.: Partial order reduction for Markov decision processes: a survey. In:
de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol.
4111, pp. 408–427. Springer, Heidelberg (2006). https://doi.org/10.1007/11804192 19

10. Hahn, E.M., Hermanns, H., Wachter, B., Zhang, L.: INFAMY: an infinite-state Markov
model checker. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 641–
647. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02658-4 49

11. Hasenauer, J., Wolf, V., Kazeroonian, A., Theis, F.J.: Method of conditional moments
(MCM) for the chemical master equation. J. Math. Biol. 69(3), 687–735 (2014). https://
doi.org/10.1007/s00285-013-0711-5

12. Hermanns, H., Wachter, B., Zhang, L.: Probabilistic CEGAR. In: Gupta, A., Malik, S. (eds.)
CAV 2008. LNCS, vol. 5123, pp. 162–175. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-70545-1 16

13. Jackson, J.: Networks of waiting lines. Oper. Res. 5, 518–521 (1957)
14. Katoen, J.-P., Klink, D., Leucker, M., Wolf, V.: Three-valued abstraction for continuous-

time Markov chains. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp.
311–324. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73368-3 37

15. Kwiatkowsa, M., Norman, G., Parker, D.: The prism benchmark suite. In:
International Conference on (QEST) Quantitative Evaluation of Systems,
vol. 00, pp. 203–204, September 2012. https://doi.org/10.1109/QEST.2012.14,
doi.ieeecomputersociety.org/10.1109/QEST.2012.14

16. Kwiatkowska, M., Norman, G., Parker, D.: Symmetry reduction for probabilistic model
checking. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 234–248. Springer,
Heidelberg (2006). https://doi.org/10.1007/11817963 23

17. Kwiatkowska, M., Norman, G., Parker, D.: Stochastic model checking. In: Bernardo, M.,
Hillston, J. (eds.) SFM 2007. LNCS, vol. 4486, pp. 220–270. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-72522-0 6

18. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic real-
time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp.
585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1 47

19. Lapin, M., Mikeev, L., Wolf, V.: Shave: Stochastic hybrid analysis of Markov population
models. In: Proceedings of the 14th International Conference on Hybrid Systems: Computa-
tion and Control, HSCC 2011, pp. 311–312. ACM, New York (2011)

20. Madsen, C., Zhang, Z., Roehner, N., Winstead, C., Myers, C.: Stochastic model checking of
genetic circuits. J. Emerg. Technol. Comput. Syst. 11(3), 23:1–23:21 (2014). https://doi.org/
10.1145/2644817. http://doi.acm.org/10.1145/2644817

https://doi.org/10.1007/11901914_4
https://doi.org/10.1007/11691617_5
https://doi.org/10.1007/11691617_5
https://doi.org/10.1007/3-540-48153-2_29
https://doi.org/10.1007/3-540-48153-2_29
https://doi.org/10.1007/11804192_19
https://doi.org/10.1007/978-3-642-02658-4_49
https://doi.org/10.1007/s00285-013-0711-5
https://doi.org/10.1007/s00285-013-0711-5
https://doi.org/10.1007/978-3-540-70545-1_16
https://doi.org/10.1007/978-3-540-70545-1_16
https://doi.org/10.1007/978-3-540-73368-3_37
https://doi.org/10.1109/QEST.2012.14
http://doi.ieeecomputersociety.org/10.1109/QEST.2012.14
https://doi.org/10.1007/11817963_23
https://doi.org/10.1007/978-3-540-72522-0_6
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1145/2644817
https://doi.org/10.1145/2644817
http://doi.acm.org/10.1145/2644817

STAMINA: A New Infinite-State CTMC Model-Checker 549

21. Neupane, T.: STAMINA: STochastic approximate model-checker for INfinite-state analysis.
Master’s thesis, Utah State University, May 2019

22. Neupane, T., Zhang, Z., Madsen, C., Zheng, H., Myers, C.J.: Approximation techniques for
stochastic analysis of biological systems. In: Liò, P., Zuliani, P. (eds.) Automated Reasoning
for Systems Biology andMedicine. CB, vol. 30, pp. 327–348. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-17297-8 12

23. Parker, D.: Implementation of symbolic model checking for probabilistic systems. Ph.D.
thesis, University of Birmingham (2002)

24. Zheng, H., et al.: Interrogating the escherichia coli cell cycle by cell dimension perturbations.
Proc. Natl. Acad. Sci. 113(52), 15000–15005 (2016)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution
4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder.

https://doi.org/10.1007/978-3-030-17297-8_12
https://doi.org/10.1007/978-3-030-17297-8_12
http://creativecommons.org/licenses/by/4.0/

Dynamical, Hybrid,
and Reactive Systems

Local and Compositional Reasoning
for Optimized Reactive Systems

Mitesh Jain1(B) and Panagiotis Manolios2

1 Synopsys Inc., Mountain View, USA
mitesh.jain@synopsys.com

2 Northeastern University, Boston, USA
pete@ccs.neu.edu

Abstract. We develop a compositional, algebraic theory of skipping
refinement, as well as local proof methods to effectively analyze the cor-
rectness of optimized reactive systems. A verification methodology based
on refinement involves showing that any infinite behavior of an optimized
low-level implementation is a behavior of the high-level abstract speci-
fication. Skipping refinement is a recently introduced notion to reason
about the correctness of optimized implementations that run faster than
their specifications, i.e., a step in the implementation can skip multiple
steps of the specification. For the class of systems that exhibit bounded
skipping, existing proof methods have been shown to be amenable to
mechanized verification using theorem provers and model-checkers. How-
ever, reasoning about the correctness of reactive systems that exhibit
unbounded skipping using these proof methods requires reachability
analysis, significantly increasing the verification effort. In this paper, we
develop two new sound and complete proof methods for skipping refine-
ment. Even in presence of unbounded skipping, these proof methods
require only local reasoning and, therefore, are amenable to mechanized
verification. We also show that skipping refinement is compositional, so it
can be used in a stepwise refinement methodology. Finally, we illustrate
the utility of the theory of skipping refinement by proving the correctness
of an optimized event processing system.

1 Introduction

Reasoning about the correctness of a reactive system using refinement involves
showing that any (infinite) observable behavior of a low-level, optimized imple-
mentation is a behavior allowed by the simple, high-level abstract specification.
Several notions of refinement like trace containment, (bi)simulation refinement,
stuttering (bi)simulation refinement, and skipping refinement [4,10,14,20,22]
have been proposed in the literature to directly account for the difference in the
abstraction levels between a specification and an implementation. Two attributes
of crucial importance that enable us to effectively verify complex reactive sys-
tems using refinement are: (1) Compositionality: this allows us to decompose a
monolithic proof establishing that a low-level concrete implementation refines
c© The Author(s) 2019
I. Dillig and S. Tasiran (Eds.): CAV 2019, LNCS 11561, pp. 553–571, 2019.
https://doi.org/10.1007/978-3-030-25540-4_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-25540-4_32&domain=pdf
https://doi.org/10.1007/978-3-030-25540-4_32

554 M. Jain and P. Manolios

a high-level abstract specification into a sequence of simpler refinement proofs,
where each of the intermediate refinement proof can be performed independently
using verification tools best suited for it; (2) Effective proof methods: analyzing
the correctness of a reactive system requires global reasoning about its infinite
behaviors, a task that is often difficult for verification tools. Hence it is crucial
that the refinement-based methodology also admits effective proof methods that
are amenable for mechanized reasoning.

It is known that the (bi)simulation refinement and stuttering (bi)simulation
refinement are compositional and support the stepwise refinement methodol-
ogy [20,24]. Moreover, the proof methods associated with them are local, i.e.,
they only require reasoning about states and their successors. Hence, they are
amenable to mechanized reasoning. However, to the best of our knowledge, it
is not known if skipping refinement is compositional. Skipping refinement is a
recently introduced notion of refinement for verifying the correctness of opti-
mized implementations that can “execute faster” than their simple high-level
specifications, i.e., a step in the implementation can skip multiple steps in the
specification. Examples of such systems include superscalar processors, concur-
rent and parallel systems and optimizing compilers. Two proof methods, reduced
well-founded skipping simulation and well-founded skipping simulation have been
introduced to reason about skipping refinement for the class of systems that
exhibit bounded skipping [10]. These proof methods were used to verify the cor-
rectness of several systems that otherwise were difficult to automatically verify
using current model-checkers and automated theorem provers. However, when
skipping is unbounded, the proof methods in [10] require reachability analy-
sis, and therefore are not amenable to automated reasoning. To motivate the
need for alternative proof methods for effective reasoning, we consider the event
processing system (EPS), discussed in [10].

1.1 Motivating Example

An abstract high-level specification, AEPS, of an event processing system is
defined as follows. Let E be a set of events and V be a set of state variables.
A state of AEPS is a triple 〈t,Sch, St〉, where t is a natural number denoting
the current time; Sch is a set of pairs 〈e, te〉, where e ∈ E is an event scheduled
to be executed at time te ≥ t; St is an assignment to state variables in V . The
transition relation for the AEPS system is defined as follows. If at time t there is
no 〈e, t〉 ∈ Sch, i.e., there is no event scheduled to be executed at time t, then t
is incremented by 1. Otherwise, we (nondeterministically) choose and execute an
event of the form 〈e, t〉 ∈ Sch. The execution of an event may result in modifying
St and also removing and adding a finite number of new pairs 〈e′, t′〉 to Sch.
We require that t′ > t. Finally, execution involves removing the executed event
〈e, t〉 from Sch. Now consider, tEPS, an optimized implementation of AEPS. As
before, a state is a triple 〈t,Sch, St〉. However, unlike the abstract system which
just increments time by 1 when there are no events scheduled at the current
time, the optimized system finds the earliest time in future an event is scheduled
to execute. The transition relation of tEPS is defined as follows. An event (e, te)

Local and Compositional Reasoning for Optimized Reactive Systems 555

with the minimum time is selected, t is updated to te and the event e is executed,
as in the AEPS. Consider an execution of AEPS and tEPS in Fig. 1. (We only
show the prefix of executions). Suppose at t = 0, Sch be {(e1, 0)}. The execution
of event e1 add a new pair (e2, k) to Sch, where k is a positive integer. AEPS
at t = 0, executes the event e1, adds a new pair (e2, k) to Sch, and updates t
to 1. Since no events are scheduled to execute before t = k, the AEPS system
repeatedly increments t by 1 until t = k. At t = k, it executes the event e2. At
time t = 0, tEPS executes e1. The next event is scheduled to execute at time
t = k; hence it updates in one step t to k. Next, in one step it executes the event
e2. Note that tEPS runs faster than AEPS by skipping over abstract states when
no event is scheduled for execution at the current time. If k > 1, the step from s2
to s3 in tEPS neither corresponds to stuttering nor to a single step of the AEPS.
Therefore notions of refinement based on stuttering simulation and bisimulation
cannot be used to show that tEPS refines AEPS.

Fig. 1. Event simulation system

It was argued in [10] that skipping refinement is an appropriate notion of
correctness that directly accounts for the skipping behavior exhibited by tEPS.
Though, tEPS was used to motivate the need for a new notion of refinement,
the proof methods proposed in [10] are not effective to prove the correctness
of tEPS. This is because, execution of an event in tEPS may add new events
that are scheduled to execute at an arbitrary time in future, i.e., in general k
in the above example execution is unbounded. Hence, the proof methods in [10]
would require unbounded reachability analysis which often is problematic for
automated verification tools. Even in the particular case when one can a priori
determine an upper bound on k and unroll the transition relation, the proof
methods in [10] are viable for mechanical reasoning only if the upper bound k is
relatively small.

In this paper, we develop local proof methods to effectively analyze the cor-
rectness of optimized reactive systems using skipping refinement. These proof
methods reduce global reasoning about infinite computations to local reasoning
about states and their successor and are applicable even if the optimized imple-
mentation exhibits unbounded skipping. Moreover, we show that the proposed

556 M. Jain and P. Manolios

proof methods are complete, i.e., if a system M1 is a skipping refinement of
M2 under a suitable refinement map, then we can always locally reason about
them. We also develop an algebraic theory of skipping refinement. In particular,
we show that skipping simulation is closed under relational composition. Thus,
skipping refinement aligns with the stepwise refinement methodology. Finally,
we illustrate the benefits of the theory of skipping refinement and the associ-
ated proof methods by verifying the correctness of optimized event processing
systems in ACL2s [3].

2 Preliminaries

A transition system model of a reactive system captures the concept of a state,
atomic transitions that modify state during the course of a computation, and
what is observable in a state. Any system with a well defined operational seman-
tics can be mapped to a labeled transition system.

Definition 1 Labeled Transition System. A labeled transition system (TS)
is a structure 〈S,→, L〉, where S is a non-empty (possibly infinite) set of states,
→⊆ S × S, is a left-total transition relation (every state has a successor), and
L is a labeling function whose domain is S.

Notation: We first describe the notational conventions used in the paper. Func-
tion application is sometimes denoted by an infix dot “.” and is left-associative.
The composition of relation R with itself i times (for 0 < i ≤ ω) is denoted Ri

(ω = N and is the first infinite ordinal). Given a relation R and 1 < k ≤ ω, R<k

denotes
⋃

1≤i<k Ri and R≥k denotes
⋃

ω>i≥k Ri. Instead of R<ω we often write
the more common R+. 	 denotes the disjoint union operator. Quantified expres-
sions are written as 〈Qx : r : t〉, where Q is the quantifier (e.g., ∃,∀,min,

⋃
), x is

a bound variable, r is an expression that denotes the range of variable x (true,
if omitted), and t is a term.

Let M = 〈S,−→, L〉 be a transition system. An M-path is a sequence of states
such that for adjacent states, s and u, s → u. The jth state in an M-path σ is
denoted by σ.j. An M-path σ starting at state s is a fullpath, denoted by fp.σ.s,
if it is infinite. An M-segment, 〈v1, . . . , vk〉, where k ≥ 1 is a finite M-path and
is also denoted by #»v . The length of an M-segment #»v is denoted by | #»v |. Let
INC be the set of strictly increasing sequences of natural numbers starting at
0. The ith partition of a fullpath σ with respect to π ∈ INC, denoted by πσi, is
given by an M-segment 〈σ(π.i), . . . , σ(π(i + 1) − 1)〉.

3 Theory of Skipping Refinement

In this section we first briefly recall the notion of skipping simulation as described
in [10]. We then study the algebraic properties of skipping simulation and show
that a theory of refinement based on it is compositional and therefore can be
used in a stepwise refinement based verification methodology.

Local and Compositional Reasoning for Optimized Reactive Systems 557

The definition of skipping simulation is based on the notion of matching.
Informally, a fullpath σ matches a fullpath δ under the relation B iff the fullpaths
can be partitioned in to non-empty, finite segments such that all elements in a
segment of σ are related to the first element in the corresponding segment of δ.

Definition 2 smatch [10]. Let M = 〈S,−→, L〉 be a transition system, σ, δ be
fullpaths in M. For π, ξ ∈ INC and binary relation B ⊆ S × S, we define

scorr(B , σ, π, δ, ξ) ≡ 〈∀i ∈ ω :: 〈∀s ∈ πσi :: sBδ(ξ.i)〉〉 and
smatch(B , σ, δ) ≡ 〈∃π, ξ ∈ INC :: scorr(B , σ, π, δ, ξ)〉.

Figure 1 illustrates the notion of matching using our running example: σ is
the fullpath of the concrete system and δ is a fullpath of the absract system.
(The figure only shows the prefix of the fullpaths). The other parameter for
matching is the relation B, which is just the identity function. In order to show
that smatch(B , σ, δ) holds, we have to find π, ξ ∈ INC satisfying the definition.
In Fig. 1, we separate the partitions induced by our choice for π, ξ using −− and
connect elements related by B with . Since all elements of a σ partition are
related to the first element of the corresponding δ partition, scorr(B , σ, π, δ, ξ)
holds, therefore, smatch(B , σ, δ) holds.

Using the notion of matching, skipping simulation is defined as follows. Notice
that skipping simulation is defined using a single transition system; it is easy
to lift the notion defined on a single transition system to one that relates two
transition systems by taking the disjoint union of the transition systems.

Definition 3 Skipping Simulation (SKS). B ⊆ S × S is a skipping simula-
tion on a TS M = 〈S,−→, L〉 iff for all s, w such that sBw, both of the following
hold.

(SKS1) L.s = L.w
(SKS2) 〈∀σ : fp.σ.s : 〈∃δ : fp.δ.w : smatch(B , σ, δ)〉〉
Theorem 1. Let M be a TS. If B is a stuttering simulation (STS) on M then
B is an SKS on M.

Proof: Follows directly from the definitions of SKS and STS [18].
�

3.1 Algebraic Properties

We now study the algebraic properties of SKS. We show that it is closed under
arbitrary union. We also show that SKS is closed under relational composition.
The later property is particularly useful since it enables us to use stepwise refine-
ment and to modularly analyze the correctness of complex systems.

Lemma 1. Let M be a TS and C be a set of SKS’s on M. Then G = 〈∪B :
B ∈ C : B〉 is an SKS on M.

Corollary 1. For any TS M, there is a greatest SKS on M.

558 M. Jain and P. Manolios

Lemma 2. SKS are not closed under negation and intersection.

The following lemma shows that skipping simulation is closed under relational
composition.

Lemma 3. Let M be a TS. If P and Q are SKS’s on M, then R = P ;Q is an
SKS on M.

Proof: To show that R is an SKS on M = 〈S,−→, L〉, we show that for any
s, w ∈ S such that sRw, SKS1 and SKS2 hold. Let s, w ∈ S and sRw. From the
definition of R, there exists x ∈ S such that sPx and xQw. Since P and Q are
SKS’s on M, L.s = L.x = L.w, hence, SKS1 holds for R.

To prove that SKS2 holds for R, consider a fullpath σ starting at s. Since
P and Q are SKSs on M, there is a fullpath τ in M starting at x, a fullpath
δ in M starting at w and α, β, θ, γ ∈ INC such that scorr(P , σ, α, τ, β) and
scorr(Q , τ, θ, δ, γ) hold. We use the fullpath δ as a witness and define π, ξ ∈ INC
such that scorr(R, σ, π, δ, ξ) holds.

We define a function, r, that given i, corresponding to the index of a partition
of τ under β, returns the index of the partition of τ under θ in which the first
element of τ ’s ith partition under β resides. r.i = j iff θ.j ≤ β.i < θ(j + 1). Note
that r is indeed a function, as every element of τ resides in exactly one partition
of θ. Also, since there is a correspondence between the partitions of α and β,
(by scorr(P , σ, α, τ, β)), we can apply r to indices of partitions of σ under α to
find where the first element of the corresponding β partition resides. Note that
r is non-decreasing: a < b ⇒ r.a ≤ r.b.

We define πα ∈ INC, a strictly increasing sequence that will allow us to merge
adjacent partitions in α as needed to define the strictly increasing sequence π on
σ used to prove SKS2. Partitions in π will consist of one or more α partitions.
Given i, corresponding to the index of a partition of σ under π, the function πα
returns the index of the corresponding partition of σ under α.

πα(0) = 0

πα(i) = min j ∈ ω s.t. |{k : 0 < k ≤ j ∧ r.k �= r(k − 1)}| = i

Note that πα is an increasing function, i.e., a < b ⇒ πα(a) < πα(b). We now
define π as follows.

π.i = α(πα.i)

There is an important relationship between r and πα

r(πα.i) = · · · = r(πα(i + 1) − 1)

That is, for all α partitions that are in the same π partition, the initial states of
the corresponding β partitions are in the same θ partition.

We define ξ as follows: ξ.i = γ(r(πα.i)).

Local and Compositional Reasoning for Optimized Reactive Systems 559

We are now ready to prove SKS2. Let s ∈ πσi. We show that sRδ(ξ.i). By
the definition of π, we have

s ∈ ασπα.i ∨ · · · ∨ s ∈ ασπα(i+1)−1

Hence,

sPτ(β(πα.i)) ∨ · · · ∨ sPτ(β(πα(i + 1) − 1))

Note that by the definition of r (apply r to πα.i):

θ(r(πα.i)) ≤ β(πα.i) < θ(r(πα.i) + 1)

Hence,

τ(β(πα.i))Qδ(γ(r(πα.i))) ∨ · · · ∨ τ(β(πα(i + 1) − 1))Qδ(γ(r(πα(i + 1) − 1)))

By the definition of ξ and the relationship between r and πα described above,
we simplify the above formula as follows.

τ(β(πα.i))Qδ(ξ.i) ∨ · · · ∨ τ(β(πα(i + 1) − 1))Qδ(ξ.i)

Therefore, by the definition of R, we have that sRδ(ξ.i) holds.
�
Theorem 2. The reflexive transitive closure of an SKS is an SKS.

Theorem 3. Given a TS M, the greatest SKS on M is a preorder.

Proof. Let G be the greatest SKS on M. From Theorem 2, G∗ is an SKS. Hence
G∗ ⊆ G. Furthermore, since G ⊆ G∗, we have that G = G∗, i.e., G is reflexive
and transitive.
�

3.2 Skipping Refinement

We now recall the notion of skipping refinement [10]. We use skipping simula-
tion, a notion defined in terms of a single transition system, to define skipping
refinement, a notion that relates two transition systems: an abstract transition
system and a concrete transition system. Informally, if a concrete system is a
skipping refinement of an abstract system, then its observable behaviors are also
behaviors of the abstract system, modulo skipping (which includes stuttering).
The notion is parameterized by a refinement map, a function that maps con-
crete states to their corresponding abstract states. A refinement map along with
a labeling function determines what is observable at a concrete state.

Definition 4 Skipping Refinement. Let MA = 〈SA,
A−→, LA〉 and MC =

〈SC ,
C−→, LC〉 be transition systems and let r : SC → SA be a refinement map.

We say MC is a skipping refinement of MA with respect to r, written
MC �r MA, if there exists a binary relation B such that all of the follow-
ing hold.

560 M. Jain and P. Manolios

1. 〈∀s ∈ SC :: sBr.s〉 and
2. B is an SKS on 〈SC 	 SA,

C−→ 	 A−→,L〉 where L.s = LA(s) for s ∈ SA, and
L.s = LA(r.s) for s ∈ SC .

Next, we use the property that skipping simulation is closed under rela-
tional composition to show that skipping refinement supports modular reasoning
using a stepwise refinement approach. In order to verify that a low-level complex
implementation MC refines a simple high-level abstract specification MA one
proceeds as follows: starting with MA define a sequence of intermediate systems
leading to the final complex implementation MC . Any two successive systems in
the sequence differ only in relatively few aspects of their behavior. We then show
that, at each step in the sequence, the system at the current step is a refinement
of the previous one. Since at each step, the verification effort is focused only on
the few differences in behavior between two systems under consideration, proof
obligations are simpler than the monolithic proof. Note that this methodology
is orthogonal to (horizontal) modular reasoning that infers the correctness of a
system from the correctness of its sub-components.

Theorem 4. Let M1 = 〈S1,
1−→, L1〉, M2 = 〈S2,

2−→, L2〉, and M3 = 〈S3,
3−→, L3〉

be TSs, p : S1 → S2 and r : S2 → S3. If M1 �p M2 and M2 �r M3, then
M1 �p;r M3.

Proof: Since M1 �p M2, we have an SKS, say A, such that 〈∀s ∈ S1 :: sA(p.s)〉.
Furthermore, without loss of generality we can assume that A ⊆ S1 × S2. Simi-
larly, since M2 �r M3, we have an SKS, say B, such that 〈∀s ∈ S2 :: sB(r.s)〉
and B ⊆ S2 × S3. Define C = A;B. Then we have that C ⊆ S1 × S3 and
〈∀s ∈ S1 :: sCr(p.s)〉. Also, from Theorem 2, C is an SKS on 〈S1	S3,

1−→ 	 3−→,L〉,
where L.s = L3(s) if s ∈ S3 else L.s = L3(r(p.s)).

Formally, to establish that a complex low-level implementation MC refines
a simple high-level abstract specification MA, one defines intermediate systems
M1, . . . Mn, where n ≥ 1 and establishes the following: MC = M0 �r0 M1 �r1

. . . �rn−1 Mn = MA. Then from Theorem 4, we have that MC �r MA,
where r = r0; r1; . . . ; rn−1. We illustrate the utility of this approach in Sect. 5 by
proving the correctness of an optimized event processing systems.

Theorem 5. Let M = 〈S,−→, L〉 be a TS. Let M′ = 〈S′,−→′
, L′〉 where S′ ⊆ S,

−→′ ⊆ S′ × S′, −→′
is a left-total subset of −→+, and L′ = L|S′ . Then M′ �I M,

where I is the identity function on S′.

Corollary 2. Let MC = 〈SC ,
C−→, LC〉 and MA = 〈SA,

A−→, LA〉 be TSs, r :
SC → SA be a refinement map. Let M′

C = 〈S′
C ,

C−→′
, L′

C〉 where S′
C ⊆ SC , C−→′

is
a left-total subset of C−→+, and L′

C = LC |S′
C
. If MC �r MA then M′

C �r′ MA,
where r′ is r|S′

C
.

We now illustrate the usefulness of the theory of skipping refinement using
our running example of event processing systems. Consider MPEPS, that uses

Local and Compositional Reasoning for Optimized Reactive Systems 561

a priority queue to find a non-empty set of events (say Et) scheduled to execute
at the current time and executes them. We allow the priority queue in MPEPS
to be deterministic or nondeterministic. For example, the priority queue may
deterministically select a single event in Et to execute, or based on considerations
such as resource utilization it may execute some subset of events in Et in a single
step. When reasoning about the correctness of MPEPS, one thing to notice is
that there is a difference in the data structures used in the two systems: MPEPS
uses a priority queue to effectively find the next set of events to execute in the
scheduler, while AEPS uses a simple abstract set representation for the scheduler.
Another thing to notice is that MPEPS can “execute faster” than AEPS in
two ways: it can increment time by more than 1 and it can execute more than
one event in a single step. The theory of skipping refinement developed in this
paper enables us to separate out these concerns and apply a stepwise refinement
approach to effectively analyse MPEPS.

First, we account for the difference in the data structures between MPEPS
and AEPS. Towards this we define an intermediate system MEPS that is identi-
cal to MPEPS except that the scheduler in MEPS is now represented as a set of
event-time pairs. Under a refinement map, say p, that extracts the set of event-
time pairs in the priority queue of MPEPS, a step in MPEPS can be matched by
a step in MEPS. Hence, MPEPS �p MEPS. Next we account for the difference
between MEPS and AEPS in the number of events the two systems may execute
in a single step. Towards this, observe that the state space of MEPS and tEPS
are equal and the transition relation of MEPS is a left-total subset of the transi-
tive closure of the transition relation of tEPS. Hence, from Theorem 5, we infer
that MPEPS is a skipping refinement of tEPS using the identity function, say I1,
as the refinement map, i.e., MEPS �I1 tEPS. Next observe that the state spaces
of tEPS and AEPS are equal and the transition relation of tEPS is a left-total
subset of the transitive closure of the transition relation of AEPS. Hence, from
Theorem 5, tEPS is a skipping refinement of AEPS using the identity function,
say I2, as the refinement map, i.e., tEPS �I2 AEPS. Finally, from the transitiv-
ity of skipping refinement (Theorem 4), we conclude that MPEPS �p′ AEPS,
where p′ = p; I1; I2.

4 Mechanised Reasoning

To prove that a transition system MC is a skipping refinement of a transition
system MA using Definition 3, requires us to show that for any fullpath from MC

we can find a matching fullpath from MA. However, reasoning about existence
of infinite sequences can be problematic using automated tools. In this section,
we develop sound and complete local proof methods that are applicable even if a
system exhibits unbounded skipping. We first briefly present the proof methods,
reduced well-founded skipping and well-founded skipping simulation, developed
in [10].

Definition 5 Reduced Well-founded Skipping [10]. B ⊆ S ×S is a reduced
well-founded skipping relation on TS M = 〈S,−→, L〉 iff:

562 M. Jain and P. Manolios

(RWFSK1) 〈∀s, w ∈ S : sBw : L.s = L.w〉
(RWFSK2) There exists a function, rankt : S × S → W , such that 〈W,≺〉 is

well-founded and

〈∀s,u, w ∈ S : s −→ u ∧ sBw :
(a) (uBw ∧ rankt(u,w) ≺ rankt(s, w)) ∨
(b) 〈∃v : w →+ v : uBv〉〉

Definition 6 Well-founded Skipping [10]. B ⊆ S ×S is a well-founded skip-
ping relation on TS M = 〈S,−→, L〉 iff:

(WFSK1) 〈∀s, w ∈ S : sBw : L.s = L.w〉
(WFSK2) There exist functions, rankt : S × S → W , rankl : S × S × S → ω,

such that 〈W,≺〉 is well-founded and

〈∀s,u, w ∈ S : s −→ u ∧ sBw :
(a) 〈∃v : w −→ v : uBv〉 ∨
(b) (uBw ∧ rankt(u,w) ≺ rankt(s, w)) ∨
(c) 〈∃v : w −→ v : sBv ∧ rankl(v, s, u) < rankl(w, s, u)〉 ∨
(d) 〈∃v : w →≥2 v : uBv〉〉

Theorem 6 [10]. Let M = 〈S,−→, L〉 be a TS and B ⊆ S × S. The following
statements are equivalent

(i) B is a SKS on M;
(ii) B is a WFSK on M;
(iii) B is a RWFSK on M.

Recall the event processing systems AEPS and tEPS described in Sect. 1.1.
When no events are scheduled to execute at a given time, say t, tEPS increments
time t to the earliest time in future, say k > t, at which an event is scheduled
for execution. Execution of an event can add an event that is scheduled to be
executed at an arbitrary time in future. Therefore, we cannot apriori determine
an upper-bound on k. Using any of the above two proof-methods to reason about
skipping refinement would require unbounded reachability analysis (conditions
RWFSK2b and WFSK2d), often difficult for automated verification tools. To
redress the situation, we develop two new proof methods of SKS; both require
only local reasoning about steps and their successors.

Definition 7 Reduced Local Well-founded Skipping. B ⊆ S ×S is a local
well-founded skipping relation on TS M = 〈S,−→, L〉 iff:

(RLWFSK1) 〈∀s, w ∈ S : sBw : L.s = L.w〉
(RLWFSK2) There exist functions, rankt : S × S −→ W , rankls : S × S −→ ω

such that 〈W,≺〉 is well founded, and, a binary relation O ⊆ S ×S

Local and Compositional Reasoning for Optimized Reactive Systems 563

such that

〈∀s, u, w ∈ S : sBw ∧ s → u :
(a) (uBw ∧ rankt(u,w) ≺ rankt(s, w)) ∨
(b) 〈∃v : w → v : uOv〉〉

and
〈∀x, y ∈ S : xOy :

(c) xBy ∨
(d) 〈∃z : y → z : xOz ∧ rankls(z, x) < rankls(y, x)〉〉

Observe that to prove that a relation is an RLWFSK on a transition system, it
is sufficient to reason about single steps of the transition system. Also, note that
RLWFSK does not differentiate between skipping and stuttering on the right.
This is based on an earlier observation that skipping subsumes stuttering. We
used this observation to simplify the definition. However, it can often be useful to
differentiate between skipping and stuttering. Next we define local well-founded
skipping simulation (LWFSK), a characterization of skipping simulation that
separates reasoning about skipping and stuttering on the right (Fig. 2).

Fig. 2. Local well-founded skipping simulation (orange line indicates the states are
related by B and blue line indicate the states are related by O) (Color figure online)

Definition 8 Local Well-founded Skipping. B ⊆ S × S is a local well-
founded skipping relation on TS M = 〈S,−→, L〉 iff:

(LWFSK1) 〈∀s, w ∈ S : sBw : L.s = L.w〉
(LWFSK2) There exist functions, rankt : S ×S −→ W , rankl : S ×S ×S −→ ω,

and rankls : S × S −→ ω such that 〈W,≺〉 is well founded, and, a

564 M. Jain and P. Manolios

binary relation O ⊆ S × S such that

〈∀s, u, w ∈ S : sBw ∧ s → u :
(a) 〈∃v : w → v : uBv〉 ∨
(b) (uBw ∧ rankt(u,w) ≺ rankt(s, w)) ∨
(c) 〈∃v : w → v : sBv ∧ rankl(v, s, u) < rankl(w, s, u)〉∨
(d) 〈∃v : w → v : uOv〉〉

and
〈∀x, y ∈ S : xOy :

(e) xBy ∨
(f) 〈∃z : y → z : xOz ∧ rankls(z, x) < rankls(y, x)〉〉

Like RLWFSK, to prove that a relation is a LWFSK, reasoning about single
steps of the transition system suffices. However, LWFSK2b accounts for stutter-
ing on the right, and LWFSK2d along with LWFSK2e and LWFSK2f accounts
for skipping on the right. Also observe that states related by O are not required
to be labeled identically and may have no observable relationship to the states
related by B.

Soundness and Completeness. We next show that RLWFSK and LWFSK
in fact completely characterize skipping simulation, i.e., RLWFSK and LWFSK
are sound and complete proof rules. Thus if a concrete system MC is a skipping
refinement of MA, one can always effectively reason about it using RLWFSK
and LWFSK.

Theorem 7. Let M = 〈S,−→, L〉 be a transition system and B ⊆ S × S. The
following statements are equivalent:

(i) B is an SKS on M;
(ii) B is a WFSK on M;
(iii) B is an RWFSK on M;
(iv) B is an RLWFSK on M;
(v) B is a LWFSK on M;

Proof: The equivalence of (i), (ii) and (iii) follows from Theorem 6. That (iv)
implies (v) follows from the simple observation that RLWFSK2 implies LWFSK2.
To complete the proof, we prove the following two implications. We prove below
that (v) implies (ii) in Lemma 4 and that (iii) implies (iv) in Lemma 5.
�
Lemma 4. If B is a LWFSK on M, then B is a WFSK on M.

Proof. Let B be a LWFSK on M. WFSK1 follows directly from LWFSK1. Let
rankt , rankl , and rankls be functions, and O be a binary relation such that
LWFSK2 holds. To show that WFSK2 holds, we use the same rankt and rankl
functions and let s, u, w ∈ S and s → u and sBw. LWFSK2a, LWFSK2b and

Local and Compositional Reasoning for Optimized Reactive Systems 565

LWFSK2c are equivalent to WFSK2a, WFSK2b and WFSK2c, respectively, so
we show that if only LWFSK2d holds, then WFSK2d holds. Since LWFSK2d
holds, there is a successor v of w such that uOv. Since uOv holds, either
LWFSK2e or LWFSK2f must hold between u and v. However, since LWFSK2a
does not hold, LWFSK2e cannot hold and LWFSK2f must hold, i.e., there exists
a successor v′ of v such that uOv′ ∧ rankls(v′, u) < rankls(v, u). So, we need
a path of at least 2 steps from w to satisfy the universally quantified con-
straint on O. Let us consider an arbitrary path, δ, such that δ.0 = w, δ.1 = v,
δ.2 = v′, uOδ.i, LWFSK2e does not hold between u and δ.i for i ≥ 1, and
rankls(δ.(i + 1), u) < rankls(δ.i, u). Notice that any such path must be finite
because rankls is well founded. Hence, δ is a finite path and there exists a k ≥ 2
such that LWFSK2e holds between u and δ.k. Therefore, WFSK2d holds, i.e.,
there is a state in δ reachable from w in two or more steps which is related to u
by B.
�
Lemma 5. If B is RWFSK on M, then B is an RLWFSK on M.

Proof. Let B be an RWFSK on M. RLWFSK1 follows directly from RWFSK1.
To show that RLWFSK2 holds, we use any rankt function that can be used to
show that RWFSK2 holds. We define O as follows.

O = {(u, v) : 〈∃z : v →+ z : uBz〉}

We define rankls(u, v) to be the minimal length of a M-segment that starts at
v and ends at a state, say z, such that uBz, if such a segment exists and 0
otherwise. Let s, u, w ∈ S, sBw and s → u. If RWFSK2a holds between s, u,
and w, then RLWFSK2a also holds. Next, suppose that RWFSK2a does not hold
but RWFSK2b holds, i.e., there is an M-segment 〈w, a, . . . , v〉 such that uBv;
therefore, uOa and RLWFSK2b holds.

To finish the proof, we show that O and rankls satisfy the constraints imposed
by the second conjunct in RLWFSK2. Let x, y ∈ S, xOy and x �B y. From the
definition of O, we have that there is an M-segment from y to a state related to x
by B; let #»y be such a segment of minimal length. From definition of rankls, we have
rankls(y, x) = | #»y |. Observe that y cannot be the last state of #»y and | #»y | ≥ 2. This
is because the last state in #»y must be related to x by B, but from the assumption
we know that x �B y. Let y′ be a successor of y in #»y . Clearly, xOy′; therefore,
rankls(y′, x) < | #»y |−1, since the length of a minimal M-segment from y′ to a state
related to x by B, must be less or equal to | #»y | − 1.
�

5 Case Study (Event Processing System)

In this section, we analyze the correctness of an optimized event processing
system (PEPS) that uses a priority queue to find an event scheduled to execute
at any given time. We show that PEPS refines AEPS, a simple event processing
system described in Sect. 1. Our goal is to illustrate the benefits of the theory
of skipping refinement and the associated local proof methods developed in the

566 M. Jain and P. Manolios

paper. We use ACL2s [3], an interactive theorem prover, to define the operational
semantics of the systems and mechanize a proof of its correctness.

Operational Semantics of PEPS: A state of PEPS system is a triple
〈tm, otevs, mem〉, where tm is a natural number denoting current time, otevs is a
set of timed-event pairs denoting the scheduler that is ordered with respect to a
total order te-< on timed-event pairs, and mem is a collection of variable-integer
pairs denoting the shared memory. The transition function of PEPS is defined
as follows: if there are no events in otevs, then PEPS just increments the cur-
rent time by 1. Otherwise, it picks the first timed-event pair, say 〈e, t〉 in otevs,
executes it and updates the time to t. The execution of an event may result in
adding new timed-events to the scheduler, removing existing timed-events from
the scheduler and updating the memory. Finally, the executed timed-event is
removed from the scheduler. This is a simple, generic model of an event pro-
cessing system. Notice that the ability to remove events can be used to specify
systems with preemption [23]: an event scheduled to execute at some future time
may be canceled (and possibly rescheduled to be executed at a different time in
future) as a result of the execution of an event that preempts it. Notice that, for
a given total order, PEPS is a deterministic system.

The execution of an event is modeled using three constrained functions that
take as input an event, ev, a time, t, and a memory, mem: step-events-add
returns the set of new timed-event pairs to add to the scheduler; step-events-rm
returns the set of timed-event pairs to remove from the scheduler; and
step-memory returns a memory updated as specified by the event. We place
minimal constraints on these functions. For example, we only require that
step-events-add returns a set of event-time pairs of the form 〈e, te〉 where
te is greater than the current time t. The constrained functions are defined using
the encapsulate construct in ACL2 and can be instantiated with any executable
definitions that satisfy these constraints without affecting the proof of correct-
ness of PEPS. Moreover, note that the particular choice of the total order on
timed-event pairs is irrelevant to the proof of correctness of PEPS.

Stepwise Refinement: We show that PEPS refines AEPS using a stepwise
refinement approach: first we define an intermediate system HPEPS obtained by
augmenting PEPS with history information and show that PEPS is a simulation
refinement of HPEPS. Second, we show that HPEPS is a skipping refinement of
AEPS. Finally, we appeal to Theorems 1 and 4 to infer that PEPS refines AEPS.
Note that the compositionality of skipping refinement enables us to decompose
the proof into a sequence of refinement proofs, each of which is simpler. Moreover,
the history information in HPEPS is helpful in defining the witnessing binary
relation and the rank function required to prove skipping refinement.

An HPEPS state is a four-tuple 〈tm, otevs,mem, h〉, where tm, otevs, mem are
respectively the current time, an ordered set of timed events and a collection of
variable-integer pairs, and h is the history information. The history information h
consists of a Boolean variable valid, time tm, and an ordered set of timed-event
pairs otevs and the memory mem. Intuitively, h records the state preceding the

Local and Compositional Reasoning for Optimized Reactive Systems 567

current state. The transition function HPEPS is same as the transition function
of PEPS except that HPEPS also records the history in h.

PEPS Refines HPEPS: Observe that, modulo the history information, a step
of PEPS directly corresponds to a step of HPEPS, i.e., PEPS is a bisimula-
tion refinement of HPEPS under a refinement map that projects a PEPS state
〈tm, otevs,mem〉 to the HPEPS state 〈tm, otevs,mem, h〉 where the valid com-
ponent of h is set to false. But we only prove that it is a simulation refinement,
because, from Theorem 1, it suffices to establish that PEPS is a skipping refine-
ment of HPEPS. The proofs primarily require showing that two sets of ordered
timed-events that are set equivalent are in fact equal and that adding and remov-
ing equivalent sets of timed-event from equal schedulers results in equal sched-
ulers.

HPEPS Refines AEPS: Next we show that HPEPS is a skipping refine-
ment of AEPS under the refinement map R, a function that simply projects an
HPEPS state to an AEPS state. To show that HPEPS is a skipping refinement
of AEPS under the refinement map R, from Definition 4, we must show as wit-
ness a binary relation B that satisfies the two conditions. Let B = {(s,R.s) :
s is an HPEPS state}. To establish that B is an SKS on the disjoint union of
HPEPS and AEPS, we have a choice of four proof-methods (Sect. 4). Recall that
execution of an event can add a new event scheduled to be executed at an arbi-
trary time in the future. As a result, if we were to use WFSK or RWFSK, the proof
obligations from conditions WFSK2d (Definition 5) and RWFSK2b (Definition 6)
would require unbounded reachability analysis, something that typically places a
big burden on verification tools and their users. In contrast, the proof obligations
to establish RLWFSK are local and only require reasoning about states and their
successors, which significantly reduces the proof complexity.

RLWFSK1 holds trivially. To prove that RLWFSK2 holds we define a binary
relation O and a rank function rankls and show that they satisfy the two univer-
sally quantified formulas in RLWFSK2. Moreover, since HPEPS does not stutter
we ignore RLWFSK2a, and that is why we do not define rankt . Finally, our proof
obligation is: for all HPEPS s, u and AEPS state w such that s → u and sBw
holds, there exists a AEPS state v such that w → v and uOv holds.

Verification Effort: We used the defdata framework in ACL2s, to specify
the data definitions for the three systems and the definec construct to intro-
duce function definitions along with their input-contracts (pre-conditions) and
output-contracts (post-conditions). In addition to admitting a data definition,
defdata proves several theorems about the functions that are extremely help-
ful in automatically discharging type-like proof obligations. We also developed a
library to concisely describe functions using higher-order constructs like map and
reduce, which made some of the definitions clearer. ACL2s supports first-order
quantifiers via the defun-sk construct, which essentially amounts to the use
of Hilbert’s choice operator. We use defun-sk to model the transition relation
for AEPS (a non-deterministic system) and to specify the proof obligations for
proving that HPEPS refines AEPS. However, support for automated reasoning

568 M. Jain and P. Manolios

about quantifiers is limited in ACL2. Therefore, we use the domain knowledge,
when possible (e.g., a system is deterministic), to eliminate quantifiers in the
proof obligations and provide explicit witnesses for existential quantifiers.

The proof makes essential use of several libraries available in ACL2 for reason-
ing about lists and sets. In addition, we prove a collection of additional lemmas
that can be roughly categorized into four categories. First, we have a collection
of lemmas to prove the input-output contracts of the functions. Second, we have
a collection of lemmas to show that operations on the schedulers in the three
systems preserve various invariants, e.g., that any timed-event in the scheduler
is scheduled to execute at a time greater or equal to the current time. Third, we
have a collection of lemmas to show that inserting and removing two equivalent
sets of timed-events from a scheduler results in an equivalent scheduler. And
fourth, we have a collection of lemmas to show that two schedulers are equiva-
lent iff they are set equal. The above lemmas are used to establish a relationship
between priority queues, a data structure used by the implementation system,
and sets, the corresponding data structure used in the specification system. The
behavioral difference between the two systems is accounted for by the notion
of skipping refinement. This separation significantly eases understanding as well
as mechanical reasoning about the correctness of reactive systems. We have 8
top-level proof obligations and a few dozen supporting lemmas. The entire proof
takes about 120 s on a machine with 2.2 GHz Intel Core i7 with 16 GB main
memory.

6 Related Work

Several notions of correctness have been proposed in the literature and their
properties been widely studied [2,5,11,16,17]. In this paper, we develop a the-
ory of skipping refinement to effectively prove the correctness of optimized reac-
tive systems using automated verification tools. These results establish skipping
refinement on par with notions of refinement based on (bi)simulation [22] and
stuttering (bi)simulation [20,24], in the sense that skipping refinement is (1)
compositional and (2) admits local proofs methods. Together the two proper-
ties have been instrumental in significantly reducing the proof complexity in
verification of large and complex systems. We developed the theory of skipping
refinement using a generic model of transition systems and place no restrictions
on the state space size or the branching factor of the transition system. Any
system with a well-defined operational semantics can be mapped to a labeled
transition system. Moreover, the local proof methods are sound and complete,
i.e., if an implementation is a skipping refinement of the specification, we can
always use the local proof methods to effectively reason about it.

Refinement-based methodologies have been successfully used to verify the
correctness of several realistic hardware and software systems. In [13], several
complex concurrent programs were verified using a stepwise refinement method-
ology. In addition, Kragl and Qadeer [13] also develop a compact representation
to facilitate the description of programs at different levels of abstraction and asso-
ciated refinement proofs. Several back-end compiler transformations are proved

Local and Compositional Reasoning for Optimized Reactive Systems 569

correct in Compcert [15] using simulation refinement. In [25], several compiler
transformations were verified using stuttering refinement and associated local
proof methods. Recently, refinement-based methodology has also been applied
to verify the correctness of practical distributed systems [8] and a general-
purpose operating system microkernel [12]. The full verification of CertiKOS
[6,7], an OS kernel, is based on the notion of simulation refinement. Refine-
ment based approaches have also been extensively used to verify microprocessor
designs [1,9,19,21,26]. Skipping refinement was used to verify the correctness of
optimized memory controllers and a JVM-inspired stack machine [10].

7 Conclusion and Future Work

In this paper, we developed the theory of skipping refinement. Skipping refine-
ment is designed to reason about the correctness of optimized reactive systems, a
class of systems where a single transition in a concrete low-level implementation
may correspond to a sequence of observable steps in the corresponding abstract
high-level specification. Examples of such systems include optimizing compilers,
concurrent and parallel systems and superscalar processors. We developed sound
and complete proof methods that reduce global reasoning about infinite compu-
tations of such systems to local reasoning about states and their successors. We
also showed that the skipping simulation is closed under composition and there-
fore is amenable to modular reasoning using a stepwise refinement approach. We
experimentally validated our results by analyzing the correctness of an optimized
event-processing system in ACL2s. For future work, we plan to precisely classify
temporal logic properties that are preserved by skipping refinement. This would
enable us to transfer temporal properties from specifications to implementations,
after establishing refinement.

References

1. Aagaard, M.D., Cook, B., Day, N.A., Jones, R.B.: A framework for microproces-
sor correctness statements. In: Margaria, T., Melham, T. (eds.) CHARME 2001.
LNCS, vol. 2144, pp. 433–448. Springer, Heidelberg (2001). https://doi.org/10.
1007/3-540-44798-9 33

2. Basten, T.: Branching bisimilarity is an equivalence indeed!. Inf. Process. Lett. 58,
141–147 (1996)

3. Chamarthi, H.R., Dillinger, P., Manolios, P., Vroon, D.: The ACL2 sedan theorem
proving system. In: Abdulla, P.A., Leino, K.R.M. (eds.) TACAS 2011. LNCS, vol.
6605, pp. 291–295. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-19835-9 27

4. Clarke, E.M., Grumberg, O., Browne, M.C.: Reasoning about networks with many
identical finite-state processes. In: PODC (1986)

5. van Glabbeek, R.J.: The linear time-branching time spectrum (extended abstract).
In: Baeten, J.C.M., Klop, J.W. (eds.) CONCUR 1990. LNCS, vol. 458, pp. 278–297.
Springer, Heidelberg (1990). https://doi.org/10.1007/BFb0039066

https://doi.org/10.1007/3-540-44798-9_33
https://doi.org/10.1007/3-540-44798-9_33
https://doi.org/10.1007/978-3-642-19835-9_27
https://doi.org/10.1007/978-3-642-19835-9_27
https://doi.org/10.1007/BFb0039066

570 M. Jain and P. Manolios

6. Gu, L., Vaynberg, A., Ford, B., Shao, Z., Costanzo, D.: CertiKOS: a certified kernel
for secure cloud computing. In: APSys (2011)

7. Gu, R., et al.: Deep specifications and certified abstraction layers. In: POPL (2015)
8. Hawblitzel, C., et al.: IronFleet: Proving practical distributed systems correct. In:

SOSP (2015)
9. Hosabettu, R., Gopalakrishnan, G., Srivas, M.: Formal verification of a complex

pipelined processor. Form. Methods Syst. Des. 23, 171–213 (2003)
10. Jain, M., Manolios, P.: Skipping refinement. In: Kroening, D., Păsăreanu, C.S.

(eds.) CAV 2015. LNCS, vol. 9206, pp. 103–119. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-21690-4 7

11. Klarlund, N.: Progress measures and finite arguments for infinite computations.
Ph.D. thesis (1990)

12. Klein, G., Sewell, T., Winwood, S.: Refinement in the formal verification of the
seL4 microkernel. In: Hardin, D. (ed.) Design and Verification of Microprocessor
Systems for High-Assurance Applications, pp. 323–339. Springer, Boston (2010).
https://doi.org/10.1007/978-1-4419-1539-9 11

13. Kragl, B., Qadeer, S.: Layered concurrent programs. In: Chockler, H., Weis-
senbacher, G. (eds.) CAV 2018. LNCS, vol. 10981, pp. 79–102. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-96145-3 5

14. Lamport, L.: What good is temporal logic. Information processing (1993)
15. Leroy, X., Blazy, S.: Formal verification of a c-like memory model and its uses for

verifying program transformations. J. Autom. Reason. 41, 1–31 (2008)
16. Liu, X., Yu, T., Zhang, W.: Analyzing divergence in bisimulation semantics. In:

POPL (2017)
17. Lynch, N.A., Vaandrager, F.W.: Forward and backward simulations: I. Untimed

systems. Inf. Comput. (1995)
18. Manolios, P.: Mechanical verification of reactive systems. Ph.D. thesis, University

of Texas (2001)
19. Manolios, P.: Correctness of pipelined machines. In: Hunt, W.A., Johnson, S.D.

(eds.) FMCAD 2000. LNCS, vol. 1954, pp. 181–198. Springer, Heidelberg (2000).
https://doi.org/10.1007/3-540-40922-X 11

20. Manolios, P.: A compositional theory of refinement for branching time. In: Geist,
D., Tronci, E. (eds.) CHARME 2003. LNCS, vol. 2860, pp. 304–318. Springer,
Heidelberg (2003). https://doi.org/10.1007/978-3-540-39724-3 28

21. Manolios, P., Srinivasan, S.K.: A complete compositional reasoning framework for
the efficient verification of pipelined machines. In: ICCAD (2005)

22. Milner, R.: An algebraic definition of simulation between programs. In: Proceedings
of the 2nd International Joint Conference on Artificial Intelligence (1971)

23. Misra, J.: Distributed discrete-event simulation. ACM Comput. Surv. 18, 39–65
(1986)

24. Namjoshi, K.S.: A simple characterization of stuttering bisimulation. In: Ramesh,
S., Sivakumar, G. (eds.) FSTTCS 1997. LNCS, vol. 1346, pp. 284–296. Springer,
Heidelberg (1997). https://doi.org/10.1007/BFb0058037

25. Namjoshi, K.S., Zuck, L.D.: Witnessing program transformations. In: Logozzo, F.,
Fähndrich, M. (eds.) SAS 2013. LNCS, vol. 7935, pp. 304–323. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-38856-9 17

26. Ray, S., Jr Hunt, W.A.: Deductive verification of pipelined machines using first-
order quantification. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114,
pp. 31–43. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27813-
9 3

https://doi.org/10.1007/978-3-319-21690-4_7
https://doi.org/10.1007/978-3-319-21690-4_7
https://doi.org/10.1007/978-1-4419-1539-9_11
https://doi.org/10.1007/978-3-319-96145-3_5
https://doi.org/10.1007/3-540-40922-X_11
https://doi.org/10.1007/978-3-540-39724-3_28
https://doi.org/10.1007/BFb0058037
https://doi.org/10.1007/978-3-642-38856-9_17
https://doi.org/10.1007/978-3-540-27813-9_3
https://doi.org/10.1007/978-3-540-27813-9_3

Local and Compositional Reasoning for Optimized Reactive Systems 571

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Robust Controller Synthesis in Timed
Büchi Automata: A Symbolic Approach

Damien Busatto-Gaston1(B),
Benjamin Monmege1, Pierre-Alain Reynier1,

and Ocan Sankur2

1 Aix Marseille Univ, Université de Toulon,
CNRS, LIS, Marseille, France

{damien.busatto,pierre-alain.reynier}@lis-lab.fr,
benjamin.monmege@univ-amu.fr

2 Univ Rennes, Inria, CNRS, IRISA, Rennes, France
ocan.sankur@irisa.fr

Abstract. We solve in a purely symbolic way the robust controller syn-
thesis problem in timed automata with Büchi acceptance conditions. The
goal of the controller is to play according to an accepting lasso of the
automaton, while resisting to timing perturbations chosen by a com-
peting environment. The problem was previously shown to be PSPACE-
complete using regions-based techniques, but we provide a first tool solv-
ing the problem using zones only, thus more resilient to state-space explo-
sion problem. The key ingredient is the introduction of branching con-
straint graphs allowing to decide in polynomial time whether a given
lasso is robust, and even compute the largest admissible perturbation if
it is. We also make an original use of constraint graphs in this context
in order to test the inclusion of timed reachability relations, crucial for
the termination criterion of our algorithm. Our techniques are illustrated
using a case study on the regulation of a train network.

1 Introduction

Timed automata [1] extend finite-state automata with timing constraints, pro-
viding an automata-theoretic framework to design, model, verify and synthesise
real-time systems. However, the semantics of timed automata is a mathemati-
cal idealisation: it assumes that clocks have infinite precision and instantaneous
actions. Proving that a timed automaton satisfies a property does not ensure
that a real implementation of it also does. This robustness issue is a challeng-
ing problem for embedded systems [12], and alternative semantics have been
proposed, so as to ensure that the verified (or synthesised) behaviour remains
correct in presence of small timing perturbations.

We are interested in a fundamental controller synthesis problem in
timed automata equipped with a Büchi acceptance condition: it con-
sists in determining whether there exists an accepting infinite execution.

This work was funded by ANR project Ticktac (ANR-18-CE40-0015).

c© The Author(s) 2019
I. Dillig and S. Tasiran (Eds.): CAV 2019, LNCS 11561, pp. 572–590, 2019.
https://doi.org/10.1007/978-3-030-25540-4_33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-25540-4_33&domain=pdf
https://doi.org/10.1007/978-3-030-25540-4_33

Robust Controller Synthesis in Timed Büchi Automata 573

Thus, the role of the controller is to choose transitions and delays. This prob-
lem has been studied numerously in the exact setting [13–15,17,19,27,28].
In the context of robustness, this strategy should be tolerant to small pertur-
bations of the delays. This discards strategies suffering from weaknesses such
as Zeno behaviours, or even non-Zeno behaviours requiring infinite precision, as
exhibited in [6].

More formally, the semantics we consider is defined as a game that depends
on some parameter δ representing an upper bound on the amplitude of the
perturbation [7]. In this game, the controller plays against an antagonistic envi-
ronment that can perturb each delay using a value chosen in the interval [−δ, δ].
The case of a fixed value of δ has been shown to be decidable in [7], and also for
a related model in [18]. However, these algorithms are based on regions, and as
the value of δ may be very different from the constants appearing in the guards
of the automaton, do not yield practical algorithms. Moreover, the maximal per-
turbation is not necessarily known in advance, and could be considered as part
of the design process.

The problem we are interested in is qualitative: we want to determine whether
there exists a positive value of δ such that the controller wins the game. It has
been proven in [25] that this problem is in PSPACE (and even PSPACE-complete),
thus no harder than in the exact setting with no perturbation allowed [1]. How-
ever, the algorithm heavily relies on regions, and more precisely on an abstraction
that refines the one of regions, namely folded orbit graphs. Hence, it is not at
all amenable to implementation.

Our objective is to provide an efficient symbolic algorithm for solving this
problem. To this end, we target the use of zones instead of regions, as they
allow an on-demand partitioning of the state space. Moreover, the algorithm we
develop explores the reachable state-space in a forward manner. This is known
to lead to better performances, as witnessed by the successful tool UPPAAL
TIGA based on forward algorithms for solving controller synthesis problems [5].

Our algorithm can be understood as an adaptation to the robustness set-
ting of the standard algorithm for Büchi acceptance in timed automata [17].
This algorithm looks for an accepting lasso using a double depth-first search. A
major difficulty consists in checking whether a lasso can be robustly iterated,
i.e. whether there exists δ > 0 such that the controller can follow the cycle for
an infinite amount of steps while being tolerant to perturbations of amplitude at
most δ. The key argument of [25] was the notion of aperiodic folded orbit graph
of a path in the region automaton, thus tightly connected to regions. Lifting this
notion to zones seems impossible as it makes an important use of the fact that
valuations in regions are time-abstract bisimilar, which is not the case for zones.

Our contributions are threefold. First, we provide a polynomial time proce-
dure to decide, given a lasso, whether it can be robustly iterated. This sym-
bolic algorithm relies on a computation of the greatest fixpoint of the operator
describing the set of controllable predecessors of a path. In order to provide
an argument of termination for this computation, we resort to a new notion of
branching constraint graphs, extending the approach used in [16,26] and based

574 D. Busatto-Gaston et al.

Fig. 1. A timed automaton

on constraint graphs (introduced in [8]) to check iterability of a cycle, with-
out robustness requirements. Second, we show that when considering a lasso,
not only can we decide robust iterability, but we can even compute the largest
perturbation under which it is controllable. This problem was not known to
be decidable before. Finally, we provide a termination criterion for the analy-
sis of lassos. Focusing on zones is not complete: it can be the case that two
cycles lead to the same zones, but one is robustly iterable while the other one is
not. Robust iterability crucially depends on the real-time dynamics of the cycle
and we prove that it actually only depends on the reachability relation of the
path. We provide a polynomial-time algorithm for checking inclusion between
reachability relations of paths in timed automata based on constraint graphs. It
is worth noticing that all our procedures can be implemented using difference
bound matrices, a very efficient data structure used for timed systems. These
developments have been integrated in a tool, and we present a case study of a
train regulation network illustrating its performances.

Integrating the robustness question in the verification of real-time systems
has attracted attention in the community, and the recent works include, for
instance, robust model checking for timed automata under clock drifts [23], Lip-
schitz robustness notions for timed systems [11], quantitative robust synthesis
for timed automata [2]. Stability analysis and synthesis of stabilizing controllers
in hybrid systems are a closely related topic, see e.g. [20,21].

2 Timed Automata: Reachability and Robustness

Let X = {x1, . . . , xn} be a finite set of clock variables. It is extended with a
virtual clock x0, constantly equal to 0, and we denote by X0 the set X ∪ {x0}.
An atomic clock constraint on X is a formula x − y � k, or x − y < k with
x �= y ∈ X0 and k ∈ Q. A constraint is non-diagonal if one of the two clocks
is x0. We denote by Guards(X) (respectively, Guardsnd(X)) the set of (clock)
constraints (respectively, non-diagonal clock constraints) built as conjunctions
of atomic clock constraints (respectively, non-diagonal atomic clock constraints).

A clock valuation ν is an element of R
X
�0. It is extended to R

X0
�0 by letting

ν(x0) = 0. For all d ∈ R>0, we let ν + d be the valuation defined by (ν +
d)(x) = ν(x) + d for all clocks x ∈ X . If Y ⊆ X , we also let ν[Y ← 0] be the
valuation resetting clocks in Y to 0, without modifying values of other clocks. A
valuation ν satisfies an atomic clock constraint x − y �� k (with �� ∈ {�, <}) if
ν(x) − ν(y) �� k. The satisfaction relation is then extended to clock constraints

Robust Controller Synthesis in Timed Büchi Automata 575

naturally: the satisfaction of constraint g by a valuation ν is denoted by ν |= g.
The set of valuations satisfying a constraint g is denoted by �g�.

A timed automaton is a tuple A = (L, �0, E, Lt) with L a finite set of loca-
tions, �0 ∈ L an initial location, E ⊆ L ×Guardsnd(X) × 2X × L is a finite set of
edges, and Lt is a set of accepting locations.

An example of timed automaton is depicted in Fig. 1, where the reset of a
clock x is denoted by x := 0. The semantics of the timed automaton A is defined
as an infinite transition system �A� = (S, s0,→). The set S of states of �A� is

L × R
X
�0, s0 = (�0,0). A transition of �A� is of the form (�, ν)

e,d−−→ (�′, ν′) with
e = (�, g,Y, �′) ∈ E and d ∈ R>0 such that ν + d |= g and ν′ = (ν + d)[Y ← 0].
We call path a possible finite sequence of edges in the timed automaton. The
reachability relation of a path ρ, denoted by Reach(ρ) is the set of pairs (ν, ν′)
such that there is a sequence of transitions of �A� starting from (�, ν), ending
in (�′, ν′) and that follows ρ in order as the edges of the timed automaton. A
run of A is an infinite sequence of transitions of �A� starting from s0. We are
interested in Büchi objectives. Therefore, a run is accepting if there exists a final
location �t ∈ Lt that the run visits infinitely often.

As done classically, we assume that every clock is bounded in A by a con-
stant M , that is we only consider the previous infinite transition system over
the subset L × [0,M]X of states.

We study the robustness problem introduced in [25], that is stated in terms
of games where a controller fights against an environment. After a prefix of a
run, the controller will have the capability to choose delays and transitions to
fire, whereas the environment perturbs the delays chosen by the controller with
a small parameter δ > 0. The aim of the controller will be to find a strategy so
that, no matter how the environment plays, he is ensured to generate an infinite
run satisfying the Büchi condition. Formally, given a timed automaton A =
(L, �0, E, Lt) and δ > 0, the perturbation game is a two-player turn-based game
Gδ(A) between a controller and an environment. Its state space is partitioned
into SC �SE where SC = L×R

X
�0 belongs to the controller, and SE = L×R

X
�0×

R>0 × E to the environment. The initial state is (�0,0) ∈ SC . From each state
(�, ν) ∈ SC , there is a transition to (�, ν, d, e) ∈ SE with e = (�, g,Y, �′) ∈ E
whenever d > δ, and ν + d + ε |= g for all ε ∈ [−δ, δ]. Then, from each state
(�, ν, d, (�, g,Y, �′)) ∈ SE , there is a transition to (�′, (ν + d + ε)[r ← 0]) ∈ SC

for all ε ∈ [−δ, δ]. A play of Gδ(A) is a finite or infinite path q0
t1−→ q1

t2−→ q2 · · ·
where q0 = (�0, 0) and ti is a transition from state qi−1 to qi, for all i > 0. It is
said to be maximal if it is infinite or can not be extended with any transition.

A strategy for the controller is a function σCon mapping each non-maximal
play ending in some (�, ν) ∈ SC to a pair (d, e) where d > 0 and e ∈ E such that
there is a transition from (�, ν) to (�, ν, d, e). A strategy for the environment is
a function σEnv mapping each finite play ending in (�, ν, d, e) to a state (�′, ν′)
related by a transition. A play gives rise to a unique run of �A� by only keep-
ing states in VC . For a pair of strategies (σCon, σEnv), we let playδ

A(σCon, σEnv)
denote the run associated with the unique maximal play of Gδ(A) that follows
the strategies. Controller’s strategy σCon is winning (with respect to the Büchi

576 D. Busatto-Gaston et al.

objective Lt) if for all strategies σEnv of the environment, playδ
A(σCon, σEnv) is

infinite and visits infinitely often some location of Lt. The parametrised robust
controller synthesis problem asks, given a timed automaton A, whether there
exists δ > 0 such that the controller has a winning strategy in Gδ(A).

Example 1. The controller has a winning strategy in Gδ(A), with A the automa-
ton of Fig. 1, for all possible values of δ < 1/2. Indeed, he can follow the cycle
�0 → �3 → �0 by always picking time delay 1/2 so that, when arriving in �3
(resp. �0) after the perturbation of the environment, clock x2 (resp. x1) has a
valuation in [1/2−δ, 1/2+δ]. Therefore, he can play forever following this mem-
oryless strategy. For δ ≥ 1/2, the environment can enforce reaching �3 with a
value for x2 at least equal to 1. The guard x2 < 2 of the next transition to �0
cannot be guaranteed, and therefore the controller cannot win Gδ(A). In [25],
it is shown that the cycle around �2 does not provide a winning strategy for
the controller for any value of δ > 0 since perturbations accumulate so that the
controller can only play it a finite number of times in the worst case.

By [25], the parametrised robust controller synthesis problem is known to be
PSPACE-complete. Their solution is based on the region automaton of A. We are
seeking for a more practical solution using zones. A zone Z over X is a convex
subset of R

X
�0 defined as the set of valuations satisfying a clock constraint g,

i.e. Z = �g�. Zones can be encoded into difference-bound matrices (DBM), that
are |X0| × |X0|-matrices over (R × {<,�}) ∪ {(∞, <)}. We adopt the following
notation: for a DBM M , we write M = (M,≺M), where M is the matrix made of
the first components, with elements in R ∪ {∞}, while ≺M is the matrix of the
second components, with elements in {<,�}. A DBM M naturally represents
a zone (which we abusively write M as well), defined as the set of valuations ν
such that, for all x, y ∈ X0, ν(x)−ν(y) ≺M

x,y Mx,y (where ν(x0) = 0). Coefficients
of a DBM are thus pairs (≺, c). As usual, these can be compared: (≺, c) is less
than (≺′, c′) (denoted by (≺, c) < (≺′, c′)) whenever c < c′ or (c = c′, ≺ = <
and ≺′ = �). Moreover, these coefficients can be added: (≺, c) + (≺′, c′) is the
pair (≺′′, c + c′) with ≺′′ = � if ≺ = ≺′ = � and ≺′′ = < otherwise.

DBMs were introduced in [4,10] for analyzing timed automata; we refer
to [3] for details. Standard operations used to explore the state space of
timed automata have been defined on DBMs: intersection is written M ∩ N ,
Pretime>t(M) is the set of valuations such that a time delay of more than t
time units leads to the zone M , UnresetR(M) is the set of valuations that end
in M when the clocks in R are reset. From a robustness perspective, we also
consider the operator shrink[−δ,δ](M) defined as the set of valuations ν such that
ν + [−δ, δ] ⊆ M introduced in [24]. Given a DBM M and a rational number δ,
all these operations can be effectively computed in time cubic in |X |.

3 Reachability Relation of a Path

Before treating the robustness issues, we start by designing a symbolic (i.e. zone-
based) approach to describe and compare the reachability relations of paths

Robust Controller Synthesis in Timed Büchi Automata 577

in timed automata. This will be crucial subsequently to design a termination
criterion in the state space exploration of our robustness-checking algorithm.
Solving the inclusion of reachability relations in a symbolic manner has inde-
pendent interest and can have other applications.

The reachability relation Reach(ρ) of a path ρ, is a subset of R
X∪X ′
�0 where X ′

are primed versions of the clocks, such that each (ν, ν′) ∈ Reach(ρ) iff there is
a run from valuation ν to valuation ν′ following ρ. Unfortunately, reachability
relations Reach(ρ) are not zones in general, that is, they cannot be represented
using only difference constraints. In fact, we shall see shortly that constraints of
the form x − y + z − u � c also appear, as already observed in [22]. We thus
cannot rely directly on the traditional difference bound matrices (DBMs) used to
represent zones. We instead rely on the constraint graphs that were introduced
in [8], and explored in [16] for the parametric case (the latter work considers
enlarged constraints, and not shrunk ones as we study here). Our contribution
is to use these graphs to obtain a syntactic check of inclusion of the according
reachability relations.

Constraint Graphs. Rather than considering the values of the clocks in X ,
this data structure considers the date Xi of the latest reset of the clock xi,
and uses a new variable τ denoting the global timestamp. Note that the clock
values can be recovered easily since Xi = τ − xi. For the extra clock x0, we
introduce variable X0 equal to the global timestamp τ (since x0 must remain
equal to 0). A constraint graph defining a zone is a weighted graph whose nodes
are X = {X0,X1, . . . , Xn}. Constraints on clocks are represented by weights on
edges in the graph: a constraint X − Y ≺ c is represented by an edge from X
to Y weighted by (≺, c), with ≺ ∈ {�, <} and c ∈ Q. Weights in the graph
are thus pairs of the form (≺, c). Therefore, we can compute shortest weights
between two vertices of a weighted graph. A cycle is said to be negative if it has
weight at most (<, 0), i.e. (<, 0) or (≺, c) with c < 0.

Encoding Paths. Constraint graphs can also encode tuples of valuations seen
along a path. To encode a k-step computation, we make k + 1 copies of the
nodes, that is, Xi = {Xi

0,X
i
1, . . . , X

i
n} for i ∈ {1, . . . , k + 1}. These copies are

also called layers. Let us first consider an example on the path ρ consisting of the
edge from �1 to �2, and the edge from �2 to �1, in the timed automaton of Fig. 1.
The constraint graph Gρ is depicted in Fig. 3: in our diagrams of constraint
graphs, the absence of labels on an edge means (�, 0), and we depict with an
edge with arrows on both ends the presence of an edge in both directions. The
graph has five columns, each containing copies of the variables for that step:
they represent the valuations before the first edge, after the first time elapse,
after the first reset, after the second time elapse and after the second reset. In
general now, each elementary operation can be described by a constraint graph
with two layers (Xi) (before) and (X ′

i) (after).

– The operation Pretime>t is described by the constraint graph G>t
time with edges

Xi → X0, Xi ↔ X ′
i for i > 0, and X0

(<,−t)−−−−→ X ′
0. Figure 3 contains two

occurrences of G>0
time: we always represent with dashed arrows edges that are

578 D. Busatto-Gaston et al.

labelled by (<, c), and plain arrows edges that are labelled with (�, c); the
absence of an edge means that it is labelled with (<,∞).

– The operation g ∩ UnresetY(·), to test a guard g and reset the clocks in Y,
is described by the constraint graph Gg,Y

edge with edges X0 ↔ X ′
0 (meaning

that the time does not elapse), Xi ↔ X ′
i for i such that clock xi /∈ Y, and

X ′
i ↔ X ′

0 for i such that clock xi ∈ Y, and for all clock constraint xi −xj ≺ c
appearing in g, an edge from Xj to Xi labelled by (≺, c) (since it encodes
the fact that (τ − Xi) − (τ − Xj) = Xj − Xi ≺ c). In Fig. 3, we have first
G

x1�2,{x1}
edge , and then G

x2�2,{x2}
edge .

Constraint graphs can be stacked one after the other to obtain the constraint
graph of an edge e, and then of a path ρ, that we denote by Gρ. In the resulting
graph, there is one leftmost layer of vertices (X�

i)i and one rightmost one (Xr
i)i

representing the situation before and after the firing of the path ρ. Once this
graph is constructed, the intermediary levels can be eliminated after replacing
each edge between the nodes of X� ∪Xr by the shortest path in the graph. This
phase is hereafter called normalisation of the constraint graph. The normalised
version of the constraint graph of Fig. 3 is depicted on its right.

From Constraint Graphs to Reachability Relations. From a logical point
of view, the elimination of intermediary layers reflects an elimination of quanti-
fiers in a formula of the first-order theory of real numbers. At the end, we obtain
a set of constraints of the form Xk

i − Xk′
j ≺ c with k, k′ ∈ {�, r}. These con-

straints do not reflect uniquely the reachability relation Reach(ρ), in the sense
that it is possible that Reach(ρ1) = Reach(ρ2) but the normalised versions of
Gρ1 and Gρ2 are different. For example, if we consider the path ρ2 obtained by
repeating the cycle ρ between �1 and �2, the reachability relation does not change
(Reach(ρ2) = Reach(ρ)), but the normalised constraint graph does (Gρ2 �= Gρ1):
all labels (�, 2) of the red dotted edges from the rightmost layer to the leftmost
layer become (�, 4), and the labels (�,−2) of the dashed blue edges become
(�,−4).

We solve this issue by jumping back from variables Xk
i to the clock valuations.

Indeed, in terms of clock valuations ν� and νr before and after the path, the
constraint Xk

i − Xk′
j ≺ c (for k, k′ ∈ {l, r}) rewrites as (τk − νk(xi)) − (τk′ −

νk′
(xj)) ≺ c, where τ � is the global timestamp before firing ρ and τ r the one after.

When k = k′, variables τ � and τ r disappear, leaving a constraint of the form
νk(xj) − νk(xi) ≺ c. When k �= k′, we can rewrite the constraint as τk − τk′ ≺
νk(xi) − νk′

(xj) + c. We therefore obtain upper and lower bounds on the value
of τ r − τ �, allowing us to eliminate τ r − τ � considered as a single variable. We
therefore obtain in fine a formula mixing constraints of the form

• νk(xa) − νk(xb) ≺ p, with k ∈ {�, r}, a �= b, and we define γk
a,b = (≺, p);

• ν�(xa) − ν�(xb) + νr(xc) − νr(xd) ≺ p, with a �= b and c �= d, and we define
γa,b,c,d = (≺, p). This constraint can appear in two ways: either from νr(xc)−
ν�(xb) + p1 ≺1 τ r − τ l ≺2 νl(xa) − νr(xd) + p2 by eliminating τ r − τ l,
or by adding the two constraints of the form νl(xa) − νl(xb) ≺1 p1 and

Robust Controller Synthesis in Timed Büchi Automata 579

νr(xc) − νr(xd) ≺2 p2. Thus, γa,b,c,d is obtained as the minimum of the two
constraints obtained in this manner. In other terms, in the constraint graph,
this constraint is the minimal weight between the sum of the weights of the
edges (Xr

d ,X l
a) and (X l

b,X
r
c), and the sum of the weights of the edges (X l

b,X
l
a)

and (Xr
d ,Xr

c). For example, in the path in Fig. 3, we have γ0,1,0,2 = (�, 0)
since the two constraints are (�, 0) and (<,∞), whereas γ1,2,2,1 = (�, 0)
because the two constraints are (<, 2) and (�, 0).

Let ϕ(G) be the conjunction of such constraints obtained from a constraint
graph G once normalised: this is a quantifier-free formula of the additive theory
of reals. We obtain the following property whose proof mimics the one for proving
the normalisation of DBMs (and can be derived from the developments of [8]).

Lemma 1. Let ρ be a path in a timed automaton. If Gρ contains a negative
cycle, then Reach(ρ) = ∅. Otherwise, Reach(ρ) is the set of pairs of valuations
(ν�, νr) that satisfy the formula ϕ(Gρ).

Checking Inclusion. For a path ρ, we regroup the pairs (γl
a,b), (γr

a,b) and
(γa,b,c,d) above in a single vector Γρ. We extend the comparison relation < to
these vectors by applying it componentwise. These vectors can be used to check
equality or inclusion of reachability relations in time O(|X|4):
Theorem 1. Let ρ and ρ′ be paths in a timed automaton such that Reach(ρ) and
Reach(ρ′) are non empty. Then Reach(ρ) ⊆ Reach(ρ′) if and only if Γρ � Γρ′

.

Notice that we do not need to check equivalence or implication of formulas
ϕ(Gρ) and ϕ(Gρ′), but simply check syntactically constants appearing in these
formulas. Moreover, these constants can be stored in usual DBMs on 2 × |X0|
clocks, allowing for reusability of classical DBM libraries. For the constraint
graph in Fig. 3, we have seen that Gρ2 �= Gρ1 , even if Reach(ρ2) = Reach(ρ).
However, we can check that ϕ(Gρ2) = ϕ(Gρ) as expected.

Computation of Pre and Post. By Lemma 1 and the construction of con-
straint graphs, one can easily compute Preρ(Z) = {ν | ∃ν′ ∈ Z ((�, ν), (�′, ν′)) ∈
Reach(ρ)} for a given path ρ and zone Z (see [8,16]). In fact, consider the
normalised constraint graph Gρ on nodes X� ∪ Xr. To compute Preρ(Z), one
just needs to add the constraints of Z on Xr. This is done by replacing each

edge Xr
i

w−→ Xr
j by Xr

i

min(Zj,i,w)−−−−−−−→ Xr
j where Zj,i = (≺, p) defines the constraint

of Z on xj − xi. Then, the normalisation of the graph describes the reachability
relation along path ρ ending in zone Z. Furthermore, projecting the constraints
to X� yields Preρ(Z): this can be obtained by gathering all constraints on pairs
of nodes of X�. A reachability relation can thus be seen as a function assigning
to each zone Z its image by ρ. One can symmetrically compute the succes-
sor Postρ(Z) = {ν′ | ∃ν ∈ Z ((�, ν), (�′, ν′)) ∈ Reach(ρ)} by constraining the
nodes X� and projecting to Xr.

580 D. Busatto-Gaston et al.

4 Robust Iterability of a Lasso

In this section, we study the perturbation game Gδ(A) between the two players
(controller and environment), as defined in Sect. 2, when the timed automaton A
is restricted to a fixed lasso ρ1ρ2, i.e. ρ1 is a path from �0 to some accepting
location �t, and ρ2 a cyclic path around �t. This implies that the controller does
not have the choice of the transitions, but only of the delays. We will consider
different settings, in which δ is fixed or not.

Controllable Predecessors and their Greatest Fixpoints. Consider an
edge e = (�, g, R, �′). For any set Z ⊆ R

X
�0, we define the controllable predecessors

of Z as follows: CPreδ
e(Z) = Pretime>δ(shrink[−δ,δ](g ∩ UnresetR(Z))). Intuitively,

CPreδ
e(Z) is the set of valuations from which the controller can ensure reaching Z

in one step, following the edge e, no matter of the perturbations of amplitude at
most δ of the environment. In fact, it can delay in shrink[−δ,δ](g ∩ UnresetR(Z))
with a delay of at least δ, where under any perturbation in [−δ, δ], the valuation
satisfies the guard, and it ends, after reset, in Z. Results of [24] show that this
operator can be computed in cubic time with respect to the number of clocks.
We extend this operator to a path ρ by composition, denoted it by CPreδ

ρ. Note
that CPre0ρ = Preρ is the usual predecessor operator without perturbation.

This operator is monotone, hence its greatest fixpoint νX CPreδ
ρ(X) is well-

defined, equal to
⋂

i�0 CPre
δ
ρi(�): it corresponds to the valuations from which

the controller can guarantee to loop forever along the path ρ. By definition of
the game Gδ(A) where A is restricted to the lasso ρ1ρ2, the controller wins the
game if and only if 0 ∈ CPreδ

ρ1
(νX CPreδ

ρ2
(X)). As a consequence, our problem

reduces to the computation of this greatest fixpoint.

Branching Constraint Graphs. We consider first a fixed (rational) value of
the parameter δ, and are interested in the computation of the greatest fixpoint
νX CPreδ

ρ2
(X). In [16], constraints graphs were used to provide a termination

criterion allowing to compute the greatest fixpoint of the classical predecessor
operator CPre0ρ. We generalize this approach to deal with the operator CPreδ

ρ

and to this end, we need to generalize constraint graphs so as to encode it.
Unfortunately, the operator shrink[−δ,δ] cannot be encoded in a constraint graph.
Intuitively, this comes from the fact that a constraint graph represents a relation
between valuations, while there is no such relation associated with the CPreδ

ρ

operator. Instead, we introduce branching constraint graphs, that will faithfully
represent the CPreδ

ρ operator: unlike constraint graphs introduced so far that
have a left layer and a right layer of variables, a branching constraint graph has
still a single left layer but several right layers.

We first define a branching constraint graph Gδ
shrink associated with the oper-

ator shrink[−δ,δ] as follows. Its set of vertices is composed of three copies of the
{X0,X1, . . . , Xn}, denoted by primed, unprimed and doubly primed versions.
Edges are defined so as to encode the following constraints : X ′

i = Xi and
X ′′

i = Xi for every i �= 0, and X ′
0 = X0 + δ and X ′′

0 = X0 − δ. An instance of
this graph can be found in several occurrences in Fig. 2.

Robust Controller Synthesis in Timed Büchi Automata 581

Proposition 1. Let Z be a zone and Gδ
shrink(Z) be the graph obtained from

Gδ
shrink by adding on primed and doubly primed vertices the constraints defining Z

(as for Preρ(Z) in the end of Sect. 3). Then the constraint on unprimed vertices
obtained from the shortest paths in Gδ

shrink(Z) is equivalent to shrink[−δ,δ](Z).

Proof. Given a zone Z and a real number d, we define Z + d = {ν + d | ν ∈ Z}.
One easily observes that shrink[−δ,δ](Z) = (Z + δ) ∩ (Z − δ). The result follows
from the observation that taking two distinct copies of vertices, and considering
shortest paths allows one to encode the intersection. ��

Then, for all edges e = (�, g, R, �′), we define the branching constraint graph
Gδ

e as the graph obtained by stacking (in this order) the branching constraint
graph G>δ

time, Gδ
shrink and Gg,Y

edge. Note that two copies of the graph Gg,Y
edge are needed,

to be connected to the two sets of vertices that are on the right of the graph
Gδ

shrink. This definition is extended in the expected way to a finite path ρ, yielding
the graph Gδ

ρ. In this graph, there is a single set of vertices on the left, and 2|ρ|

sets of vertices on the right. As a direct consequence of the previous results on
the constraint graphs for time elapse, shrinking and guard/reset, one obtains:

Proposition 2. Let Z be a zone and ρ be a path. We let Gδ
ρ(Z) be the graph

obtained from Gδ
ρ by adding on every set of right vertices the constraints defin-

ing Z. Then the constraint on the left layer of vertices obtained from the shortest
paths in Gδ

ρ(Z) is equivalent to CPreδ
ρ(Z).

An example of the graph Gδ
ρ(Z) for ρ = e1e2, edges considered in Fig. 3, is

depicted in Fig. 2 (on the left).

Fig. 2. On the left, the branching constraint graph Gδ
e1e2 encoding the operator

CPreδ
e1e2 , where e1 and e2 refer to edges considered in Fig. 3. Dashed edges have weight

(<, .), plain edges have weight (�, .). Black edges (resp. orange edges, pink edges, red
edges, blue edges) are labelled by (., 0) (resp. (., −δ), (., δ), (., 2),(., −2)). On the right,
a decomposition of a path in a branching constraint graph Gδ

ρ. (Color figure online)

We are now ready to prove the following result, generalisation of [16,
Lemma 2], that will allow us to compute the greatest fixpoint of the operator
CPreδ

ρ:

582 D. Busatto-Gaston et al.

Fig. 3. On the left, the constraint graph of the path �1
x1�2,x1:=0−−−−−−−→ �2

x2�2,x2:=0−−−−−−−→ �1.
On the right, its normalised version: dashed edges have weight (<, .), plain edges have
weight (�, .), black edges have weight (., 0), red edges have weight (., 2) and blue edges
have weight (., −2).

Proposition 3. Let ρ be a path and δ be a non-negative rational number. We
let N = |X0|2. If CPreδ

ρ2N+1(�) � CPreδ
ρ2N (�), then νX CPreδ

ρ(X) = ∅.

Proof. Assume CPreδ
ρ2N+1(�) � CPreδ

ρ2N (�) and consider the zones CPreδ
ρN+1(�)

(represented by the DBM M1) and CPreδ
ρN (�) (represented by the DBM M2).

We have M1 � M2, as otherwise the fixpoint would have already been reached
after N steps. By Proposition 2, the zone corresponding to M1 is associated with
shortest paths between vertices on the left in the graph Gδ

ρN+1 . In the sequel,
given a path r in this graph, w(r) denotes its weight. We distinguish two cases:

Case 1: M1 � M2 because of the rational coefficients. Then, there exists an
entry (x, y) ∈ X 2

0 such that M1[x, y] < M2[x, y]. The value M1[x, y] is thus
associated with a shortest path between vertices X and Y in Gδ

ρN+1 . We fix a
shortest path of minimal length, and denote it by r. As the entry is strictly
smaller than in M2, this shortest path should reach the last copy of the graph
Gδ

ρ. This path can be interpreted as a traversal of the binary tree of depth
|X0|2 + 1, reaching at least one leaf. We can prove that this entails that there
exists a pair of clocks (u, v) ∈ X 2

0 appearing at two levels i < j of this tree, and
a decomposition r = r1r2r3r4r5 of the path, such that w(r2) + w(r4) = (≺, d)
with d < 0 (Property (†)). In addition, in this decomposition, r3 is included
in subgraphs of levels k ≥ j, and the pair of paths (r2, r4) is called a return
path, following the terminology of [16]. This decomposition is depicted in Fig. 2
(on the right). Intuitively, the property (†) follows from the fact that as r3 is

Robust Controller Synthesis in Timed Büchi Automata 583

included in subgraphs of levels k ≥ j, and because the final zone (on the right)
is the zone � which adds no edges, the concatenation r′ = r1r3r5 is also a valid
path from X to Y in Gδ

ρN+1 , and is shorter than r. We conclude using the fact
that r has been chosen as a shortest path of minimal weight.

Property (†) allows us to prove that the greatest fixpoint is empty. Indeed,
by considering iterations of ρ, one can repeat the return path associated with
(r2, r4) and obtain paths from X to Y whose weights diverge towards −∞.

Case 2: M1 � M2 because of the ordering coefficients. We claim that this case
cannot occur. Indeed, one can show that the constants will not evolve anymore
after the Nth iteration of the fixpoint: the coefficients can only decrease by
changing from a non-strict inequality (≤, c) to a strict one (<, c). This propaga-
tion of strict inequalities is performed in at most |X0|2 additional steps, thus we
have CPreδ

ρ2N+1(�) = CPreδ
ρ2N (�), yielding a contradiction. ��

Compared to the result of [16], the number of iterations needed before con-
vergence grows from |X0|2 to 2|X0|2: this is due to the presence of strict and
non-strict inequalities, not considered in [16]. With the help of branching con-
straint graphs, we have thus shown that the greatest fixpoint can be computed
in finite time: this can then be done directly with computations on zones (and
not on branching constraint graphs).

Proposition 4. Given a path ρ and a rational number δ, the greatest fixpoint
νX CPreδ

ρ(X) can be computed in time polynomial in |X | and |ρ|. As a conse-
quence, one can decide whether the controller has a strategy along a lasso ρ1ρ2
in Gδ(A) in time polynomial in |X | and |ρ1ρ2|.

Solving the Robust Controller Synthesis Problem for a Lasso. We have
shown how to decide whether the controller has a winning strategy for a fixed
rational value of δ. We now aim at deciding whether there exists a positive value
of δ for which the controller wins the game Gδ(A) (where A is restricted to a
lasso ρ1ρ2). To this end, we will use a parametrised extension of DBMs, namely
shrunk DBMs, that were introduced in [24] in order to study the parametrised
state space of timed automata. Intuitively, our goal is to express shrinkings of
guards, e.g. sets of states satisfying constraints of the form g = 1 + δ < x <
2 − δ ∧ 2δ < y, where δ is a parameter to be chosen. Formally, a shrunk DBM
is a pair (M,P), where M is a DBM, and P is a nonnegative integer matrix
called a shrinking matrix. This pair represents the set of valuations defined by
the DBM M − δP , for any given δ > 0. Considering the example g, M is the
guard g obtained by setting δ = 0, and P is made of the integer multipliers
of δ. We adopt the following notation: when we write a statement involving a
shrunk DBM (M,P), we mean that for some δ0 > 0, the statement holds for
M − δP for all δ ∈ (0, δ0]. For instance, (M,P) = Pretime>δ((N,Q)) means
that M − δP = Pretime>δ(N − δQ) for all small enough δ > 0. Shrunk DBMs
are closed under standard operations on zones, and as a consequence, the CPre
operator can be computed on shrunk DBMs:

584 D. Busatto-Gaston et al.

Lemma 2. ([25]) Let e = (�, g, R, �′) be an edge and (M,P) be a shrunk DBM.
Then, there exists a shrunk DBM (N,Q), that we can compute in polynomial
time, such that (N,Q) = CPreδ

e((M,P)).

Proposition 5. Given a path ρ, one can compute a shrunk DBM (M,P) equal
to the greatest fixpoint of the operator CPreδ

ρ. As a consequence, one can solve
the parametrised robust controller synthesis problem for a given lasso in time
complexity polynomial in the number of clocks and in the length of the lasso.

Proof. The bound 2|X0|2 identified previously does not depend on the value of δ.
Hence the algorithm for computing a shrunk DBM representing the greatest fix-
point proceeds as follows. It computes symbolically, using shrunk DBMs, the
2|X0|2-th and 2|X0|2 + 1-th iterations of the operator CPreδ

ρ, from the zone �.
By monotonicity, the 2|X0|2 + 1-th iteration is included in the 2|X0|2-th. If the
two shrunk DBMs are equal, then they are also equal to the greatest fixpoint.
Otherwise, the greatest fixpoint is empty. To decide the robust controller syn-
thesis problem for a given lasso, one first computes a shrunk DBM representing
the greatest fixpoint associated with ρ2 and, if not empty, one computes a new
shrunk DBM by applying to it the operator CPreδ

ρ1
. Then, one checks whether

the valuation 0 belongs to the resulting shrunk DBM. ��

Computing the Largest Admissible Perturbation. We say that a pertur-
bation δ is admissible if the controller wins the game Gδ(A). The parametrised
robust controller synthesis problem, solved before just for a lasso, aims at decid-
ing whether there exists a positive admissible perturbation. A more ambitious
problem consists in determining the largest admissible perturbation.

The previous algorithm performs a bounded (2|X0|2) number of computations
of the CPreδ

ρ operator. Instead of focusing on arbitrarily small values using shrunk
DBMs as we did previously, we must perform a computation for all values of δ. To
do so, we consider an extension of the (shrunk) DBMs in which each entry of the
matrix (which thus represents a clock constraint) is a piecewise affine function
of δ. One can observe that all the operations involved in the computation of
the CPreδ

ρ operator can be performed symbolically w.r.t. δ using piecewise affine
functions. As a consequence, we obtain the following new result:

Proposition 6. We can compute the largest admissible perturbation of a lasso.

Proof. Let ρ1ρ2 be a lasso. One first computes a symbolic representation, valid
for all values of δ, of the greatest fixpoint of CPreδ

ρ2
. To do so, one computes the

2|X0|2-th and 2|X0|2+1-th iterations of this operator, from the zone �. We denote
them by M1 and M2 respectively. By monotonicity, the inclusion M1(δ) ⊆ M2(δ)
holds for every δ ≥ 0. In addition, both M1 and M2 are decreasing w.r.t. δ,
thus one can identify the value δ0 = inf{δ ≥ 0 | M1(δ) � M2(δ)}. Then, the
greatest fixpoint is equal to M1 for δ < δ0, and to the emptyset for δ at least
δ0. As a second step, one applies the operator CPreρ1 to the greatest fixpoint.
We denote the result by M . To conclude, one can then compute and return the
value sup{δ ∈ [0, δ0[| 0 ∈ M(δ)} of maximal perturbation. ��

Robust Controller Synthesis in Timed Büchi Automata 585

5 Synthesis of Robust Controllers

We are now ready to solve the parametrised robust controller synthesis problem,
that is to find, if it exists, a lasso ρ1ρ2 and a perturbation δ such that the
controller wins the game Gδ(A) when following the lasso ρ1ρ2 as a strategy. As
for the symbolic checking of emptiness of a Büchi timed language [17], we will
use a double forward analysis to exhaust all possible lassos, each being tested for
robustness by the techniques studied in previous section: a first forward analysis
will search for ρ1, a path from the initial location to an accepting location, and
a second forward analysis from each accepting location � to find the cycle ρ2
around �. Forward analysis means that we compute the successor zone Postρ(Z)
when following path ρ from zone Z.

Abstractions of Lassos. Before studying in more details the two independent
forward analyses, we first study what information we must keep about ρ1 and ρ2
in order to still being able to test the robustness of the lasso ρ1ρ2. A classical
problem for robustness is the firing of a punctual transition, i.e. a transition where
controller has a single choice of time delay: clearly such a firing will be robust
for no possible choice of parameter δ. Therefore, we must at least forbid such
punctual transitions in our forward analyses. We thus introduce a non-punctual
successor operator Postnpρ . It consists of the standard successor operator Postρ
in the timed automaton Anp obtained from A by making strict every constraint
appearing in the guards (1 ≤ x ≤ 2 becomes 1 < x < 2). The crucial point is that
if a positive delay d can be taken by the controller while satisfying a set of strict
constraints, then other delays are also possible, close enough to d. By analogy,
a region is said to be non-punctual if it contains two valuations separated by
a positive time delay. In particular, if such a region satisfies a constraint in A
it also satisfies the corresponding strict constraint in Anp. Therefore, controller
wins Gδ(A) for some δ > 0 if and only if he wins Gδ(Anp) for some δ > 0.

The link between non-punctuality and robustness is as follows:

Theorem 2. Let ρ1ρ2 be a lasso of the timed automaton. We have

∃δ > 0 0 ∈ CPreδ
ρ1

(νX CPreδ
ρ2

(X)) ⇐⇒ Postnpρ1
(0) ∩ (

⋃
δ>0νX CPreδ

ρ2
(X)) �= ∅

Proof. The proof of this theorem relies on three main ingredients:

1. the timed automaton Anp allows one to compute
⋃

δ>0 CPre
δ
e(Z

′) by classical
predecessor operator: Prenpe (Z ′) =

⋃
δ>0 CPre

δ
e(Z

′);

2. for all edges e, and zones Z and Z ′, Z∩Prenpe (Z ′) �= ∅ if and only if Postnpe (Z)∩
Z ′ �= ∅: this duality property on predecessor and successor relations always
holds, in particular in Anp. These two ingredients already imply that the
theorem holds for a path reduced to a single edge e;

3. we then prove the theorem by induction on length of the path using that
⋃

δ>0 CPre
δ
ρ1ρ2

(Z) =
⋃

δ>0 CPre
δ
ρ1

(⋃
δ′>0 CPre

δ′
ρ2

(Z)
)
, due to the monotonic-

ity of the CPreδ
ρ1

operator. ��

586 D. Busatto-Gaston et al.

Therefore, in order to test the robustness of the lasso ρ1ρ2, it is enough to
only keep in memory the sets Postnpρ1

(0) and
⋃

δ>0 νX CPreδ
ρ2

(X).

Non-punctual Forward Analysis. As a consequence of the previous theorem,
we can use a classical forward analysis of the timed automaton Anp to look for
the prefix ρ1 of the lasso ρ1ρ2. A classical inclusion check on zones allows to stop
the exploration, this criterion being complete thanks to Theorem 2. It is worth
reminding that we consider only bounded clocks, hence the number of reachable
zones is finite, ensuring termination.

Robust Cycle Search. We now perform a second forward analysis, from each
possible final location, to find a robust cycle around it. To this end, for each
cycle ρ2, we must compute the zone

⋃
δ>0 νX CPreδ

ρ2
(X). This computation is

obtained by arguments developed in Sect. 4 (Proposition 4). To enumerate cycles
ρ2, we can again use a classical forward exploration, starting from the universal
zone �. Using zone inclusion to stop the exploration is not complete: considering
a path ρ′

2 reaching a zone Z ′
2 included in the zone Z2 reachable using some ρ2, ρ′

2

could be robustly iterable while ρ2 is not. In order to ensure termination of our
analysis, we instead use reachability relations inclusion checks. These tests are
performed using the technique developed in Sect. 3, based on constraint graphs
(Theorem 1). The correction of this inclusion check is stated in the following
lemma, where Reachnpρ denotes the reachability relation associated with ρ in the
automaton Anp. This result is derived from the analysis based on regions in [25].
Indeed, we can prove that the non-punctual reachability relation we consider
captures the existence of non-punctual aperiodic paths in the region automaton,
as considered in [25].

Lemma 3. Let ρ1 a path from �0 to some target location �t. Let ρ2, ρ
′
2 be two

paths from �t to some location �, such that Reachnpρ2
⊆ Reachnpρ′

2
. For all paths

ρ3 from � to �t, Postnpρ1
(0) ∩ (

⋃
δ>0 νX CPreδ

ρ2ρ3
(X)) �= ∅ implies Postnpρ1

(0) ∩
(
⋃

δ>0 νX CPreδ
ρ′
2ρ3

(X)) �= ∅.

6 Case Study

We implemented our algorithm in C++. To illustrate our approach, we present
a case study on the regulation of train networks. Urban train networks in big
cities are often particularly busy during rush hours: trains run in high frequency
so even small delays due to incidents or passenger misbehavior can perturb the
traffic and end up causing large delays. Train companies thus apply regulation
techniques: they slow down or accelerate trains, and modify waiting times in
order to make sure that the traffic is fluid along the network. Computing robust
schedules with provable guarantees is a difficult problem (see e.g. [9]).

We study here a simplified model of a train network and aim at automati-
cally synthesizing a controller that regulates the network despite perturbations,
in order to ensure performance measures on total travel time for each train.
Consider a circular train network with m stations s0, . . . , sm−1 and n trains. We

Robust Controller Synthesis in Timed Büchi Automata 587

require that all trains are at distinct stations at all times. There is an interval
of delays [�i, ui] attached to each station which bounds the travel time from si

to si+1 mod m. Here the lower bound comes from physical limits (maximal allowed
speed, and travel distance) while the upper bound comes from operator speci-
fication (e.g. it is not desirable for a train to remain at station for more than
3 min). The objective of each train i is to cycle on the network while completing
each tour within a given time interval [ti1, t

i
2].

All timing requirements are naturally encoded with clocks. Given a model, we
solve the robust controller synthesis problem in order to find a controller choosing
travel times for all trains ensuring a Büchi condition (visiting s1 infinitely often).
Given the fact that trains cannot be at the same station at any given time, it
suffices to state the Büchi condition only for one train, since its satisfaction of
the condition necessarily implies that of all other trains.

Fig. 4. Summary of experiments with
different sizes. In each scenario, we
assign a different objective to a subset
of trains. The answer is yes if a robust
controller was found, no if none exists.
TO stands for a time-out of 30 min.

Let us present two representative
instances and then comment the per-
formance of the algorithm on a set of
instances. Consider a network with two
trains and m stations, with [�i, ui] =
[200, 400] for each station i, and the objec-
tive of both trains is the interval [250 ·
m, 350 ·m], that is, an average travel time
between stations that lies in [250, 350].
The algorithm finds an accepting lasso:
intuitively, by choosing δ small enough so
that mδ < 50, perturbations do not accu-
mulate too much and the controller can
always choose delays for both trains and
satisfy the constraints. This case corre-
sponds to scenario A in Fig. 4. Consider
now the same network but with two differ-
ent objectives: [0, 300·m] and [300·m,∞).
Thus, one train needs to complete each
cycle in at most 300 · m time units, while the other one in at least 300 · m time
units. A classical Büchi emptiness check reveals the existence of an accepting
lasso: it suffices to move each train in exactly 300 time units between each sta-
tion. This controller can even recover from perturbations for a bounded number
of cycles: for instance, if a train arrives late at a station, the next travel time can
be chosen smaller than 300. However, such corrections will cause the distance
between the two trains to decrease and if such perturbations happen regularly,
the system will eventually enter a deadlock. Our algorithm detects that there is
no robust controller for the Büchi objective. This corresponds to the scenario B
in Fig. 4.

Figure 4 summarizes the outcome of our prototype implementation on other
scenarios. The tool was run on a 3.2 Ghz Intel i7 processor running Linux, with

588 D. Busatto-Gaston et al.

a 30 min time out and 2 GB of memory. The performance is sensitive to the
number of clocks: on scenarios with 8 clocks the algorithm ran out of time.

7 Conclusion

Our case study illustrates the application of robust controller synthesis in small
or moderate size problems. Our prototype relies on the DBM libraries that we use
with twice as many clocks to store the constraints of the normalised constraint
graphs. In order to scale to larger models, we plan to study extrapolation oper-
ators and their integration in the computation of reachability relations, which
seems to be a challenging task. Different strategies can also be adopted for the
double forward analysis, switching between the two modes using heuristics, a
parallel implementation, etc.

References

1. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2),
183–235 (1994)

2. Bacci, G., Bouyer, P., Fahrenberg, U., Larsen, K.G., Markey, N., Reynier, P.-A.:
Optimal and robust controller synthesis. In: Havelund, K., Peleska, J., Roscoe,
B., de Vink, E. (eds.) FM 2018. LNCS, vol. 10951, pp. 203–221. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-95582-7 12

3. Bengtsson, J., Yi, W.: Timed automata: semantics, algorithms and tools. In: Desel,
J., Reisig, W., Rozenberg, G. (eds.) ACPN 2003. LNCS, vol. 3098, pp. 87–124.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27755-2 3

4. Berthomieu, B., Menasche, M.: An enumerative approach for analyzing time Petri
nets. In: Mason, R.E.A. (ed.) Information Processing 83 - Proceedings of the
9th IFIP World Computer Congress (WCC’83), pp. 41–46. North-Holland/IFIP,
September 1983

5. Cassez, F., David, A., Fleury, E., Larsen, K.G., Lime, D.: Efficient on-the-fly algo-
rithms for the analysis of timed games. In: Abadi, M., de Alfaro, L. (eds.) CONCUR
2005. LNCS, vol. 3653, pp. 66–80. Springer, Heidelberg (2005). https://doi.org/10.
1007/11539452 9

6. Cassez, F., Henzinger, T.A., Raskin, J.-F.: A comparison of control problems for
timed and hybrid systems. In: Tomlin, C.J., Greenstreet, M.R. (eds.) HSCC 2002.
LNCS, vol. 2289, pp. 134–148. Springer, Heidelberg (2002). https://doi.org/10.
1007/3-540-45873-5 13

7. Chatterjee, K., Henzinger, T.A., Prabhu, V.S.: Timed parity games: complex-
ity and robustness. In: Cassez, F., Jard, C. (eds.) FORMATS 2008. LNCS, vol.
5215, pp. 124–140. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-
540-85778-5 10

8. Comon, H., Jurski, Y.: Timed automata and the theory of real numbers. In: Baeten,
J.C.M., Mauw, S. (eds.) CONCUR 1999. LNCS, vol. 1664, pp. 242–257. Springer,
Heidelberg (1999). https://doi.org/10.1007/3-540-48320-9 18

9. D’Ariano, A., Pranzo, M., Hansen, I.A.: Conflict resolution and train speed coor-
dination for solving real-time timetable perturbations. IEEE Trans. Intell. Trans.
Syst. 8(2), 208–222 (2007)

https://doi.org/10.1007/978-3-319-95582-7_12
https://doi.org/10.1007/978-3-540-27755-2_3
https://doi.org/10.1007/11539452_9
https://doi.org/10.1007/11539452_9
https://doi.org/10.1007/3-540-45873-5_13
https://doi.org/10.1007/3-540-45873-5_13
https://doi.org/10.1007/978-3-540-85778-5_10
https://doi.org/10.1007/978-3-540-85778-5_10
https://doi.org/10.1007/3-540-48320-9_18

Robust Controller Synthesis in Timed Büchi Automata 589

10. Dill, D.L.: Timing assumptions and verification of finite-state concurrent systems.
In: Sifakis, J. (ed.) CAV 1989. LNCS, vol. 407, pp. 197–212. Springer, Heidelberg
(1990). https://doi.org/10.1007/3-540-52148-8 17

11. Henzinger, T.A., Otop, J., Samanta, R.: Lipschitz robustness of timed I/O systems.
In: Jobstmann, B., Leino, K.R.M. (eds.) VMCAI 2016. LNCS, vol. 9583, pp. 250–
267. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49122-5 12

12. Henzinger, T.A., Sifakis, J.: The embedded systems design challenge. In: Misra, J.,
Nipkow, T., Sekerinski, E. (eds.) FM 2006. LNCS, vol. 4085, pp. 1–15. Springer,
Heidelberg (2006). https://doi.org/10.1007/11813040 1

13. Herbreteau, F., Srivathsan, B.: Efficient on-the-fly emptiness check for timed büchi
automata. In: Bouajjani, A., Chin, W.-N. (eds.) ATVA 2010. LNCS, vol. 6252, pp.
218–232. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15643-
4 17

14. Herbreteau, F., Srivathsan, B., Tran, T.-T., Walukiewicz, I.: Why liveness for timed
automata is hard, and what we can do about it. In: FSTTCS 2016, LIPIcs, vol.
65, pp. 48:1–48:14. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2016)

15. Herbreteau, F., Srivathsan, B., Walukiewicz, I.: Efficient emptiness check for timed
büchi automata. Formal Methods Syst. Des. 40(2), 122–146 (2012)

16. Jaubert, R., Reynier, P.-A.: Quantitative robustness analysis of flat timed
automata. In: Hofmann, M. (ed.) FoSSaCS 2011. LNCS, vol. 6604, pp. 229–244.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19805-2 16

17. Laarman, A., Olesen, M.C., Dalsgaard, A.E., Larsen, K.G., van de Pol, J.: Multi-
core emptiness checking of timed büchi automata using inclusion abstraction. In:
Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 968–983. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8 69

18. Larsen, K.G., Legay, A., Traonouez, L.-M., Wasowski, A.: Robust synthesis for
real-time systems. Theor. Comput. Sci. 515, 96–122 (2014)

19. Li, G.: Checking timed büchi automata emptiness using LU-abstractions. In: Ouak-
nine, J., Vaandrager, F.W. (eds.) FORMATS 2009. LNCS, vol. 5813, pp. 228–242.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04368-0 18

20. Prabhakar, P., Soto, M.G.: Formal synthesis of stabilizing controllers for switched
systems. In: Proceedings of the 20th International Conference on Hybrid Systems:
Computation and Control, HSCC 2017, New York, NY, USA, pp. 111–120. ACM
(2017)

21. Prabhakar, P., Soto, M.G.: Counterexample guided abstraction refinement for sta-
bility analysis. In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS, vol. 9779, pp.
495–512. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41528-4 27

22. Quaas, K., Shirmohammadi, M., Worrell, J.: Revisiting reachability in timed
automata. In: LICS 2017. IEEE (2017)

23. Roohi, N., Prabhakar, P., Viswanathan, M.: Robust model checking of timed
automata under clock drifts. In: Proceedings of the 20th International Confer-
ence on Hybrid Systems: Computation and Control, HSCC 2017, New York, NY,
USA, pp. 153–162. ACM (2017)

24. Sankur, O., Bouyer, P., Markey, N.: Shrinking timed automata. In: IARCS Annual
Conference on Foundations of Software Technology and Theoretical Computer
Science (FSTTCS 2011), LIPIcs, vol. 13, pp. 90–102. Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik (2011)

25. Sankur, O., Bouyer, P., Markey, N., Reynier, P.-A.: Robust controller synthesis in
timed automata. In: D’Argenio, P.R., Melgratti, H. (eds.) CONCUR 2013. LNCS,
vol. 8052, pp. 546–560. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-40184-8 38

https://doi.org/10.1007/3-540-52148-8_17
https://doi.org/10.1007/978-3-662-49122-5_12
https://doi.org/10.1007/11813040_1
https://doi.org/10.1007/978-3-642-15643-4_17
https://doi.org/10.1007/978-3-642-15643-4_17
https://doi.org/10.1007/978-3-642-19805-2_16
https://doi.org/10.1007/978-3-642-39799-8_69
https://doi.org/10.1007/978-3-642-04368-0_18
https://doi.org/10.1007/978-3-319-41528-4_27
https://doi.org/10.1007/978-3-642-40184-8_38
https://doi.org/10.1007/978-3-642-40184-8_38

590 D. Busatto-Gaston et al.

26. Tran, T.-T.: Verification of timed automata : reachability, liveness and modelling.
(Vérification d’automates temporisés : sûreté, vivacité et modélisation). Ph.D. the-
sis, University of Bordeaux, France (2016)

27. Tripakis, S.: Checking timed büchi automata emptiness on simulation graphs. ACM
Trans. Comput. Log. 10(3), 15:1–15:19 (2009)

28. Tripakis, S., Yovine, S., Bouajjani, A.: Checking timed büchi automata emptiness
efficiently. Formal Methods Syst. Des. 26(3), 267–292 (2005)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Flexible Computational Pipelines
for Robust Abstraction-Based

Control Synthesis

Eric S. Kim(B) , Murat Arcak , and Sanjit A. Seshia

UC Berkeley, Berkeley, CA, USA
{eskim,arcak,sseshia}@eecs.berkeley.edu

Abstract. Successfully synthesizing controllers for complex dynamical
systems and specifications often requires leveraging domain knowledge
as well as making difficult computational or mathematical tradeoffs.
This paper presents a flexible and extensible framework for construct-
ing robust control synthesis algorithms and applies this to the tradi-
tional abstraction-based control synthesis pipeline. It is grounded in the
theory of relational interfaces and provides a principled methodology to
seamlessly combine different techniques (such as dynamic precision grids,
refining abstractions while synthesizing, or decomposed control prede-
cessors) or create custom procedures to exploit an application’s intrinsic
structural properties. A Dubins vehicle is used as a motivating example
to showcase memory and runtime improvements.

Keywords: Control synthesis · Finite abstraction ·
Relational interface

1 Introduction

A control synthesizer’s high level goal is to automatically construct control soft-
ware that enables a closed loop system to satisfy a desired specification. A vast
and rich literature contains results that mathematically characterize solutions
to different classes of problems and specifications, such as the Hamilton-Jacobi-
Isaacs PDE for differential games [3], Lyapunov theory for stabilization [8], and
fixed-points for temporal logic specifications [11,17]. While many control synthe-
sis problems have elegant mathematical solutions, there is often a gap between
a solution’s theoretical characterization and the algorithms used to compute it.
What data structures are used to represent the dynamics and constraints? What
operations should those data structures support? How should the control synthe-
sis algorithm be structured? Implementing solutions to the questions above can
require substantial time. This problem is especially critical for computationally
challenging problems, where it is often necessary to let the user rapidly identify
and exploit structure through analysis or experimentation.

The authors were funded in part by AFOSR FA9550-18-1-0253, DARPA Assured
Autonomy project, iCyPhy, Berkeley Deep Drive, and NSF grant CNS-1739816.

c© The Author(s) 2019
I. Dillig and S. Tasiran (Eds.): CAV 2019, LNCS 11561, pp. 591–608, 2019.
https://doi.org/10.1007/978-3-030-25540-4_34

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-25540-4_34&domain=pdf
http://orcid.org/0000-0002-2926-7994
http://orcid.org/0000-0001-9060-4032
http://orcid.org/0000-0001-6190-8707
https://doi.org/10.1007/978-3-030-25540-4_34

592 E. S. Kim et al.

Fig. 1. By expressing many different techniques within a common framework, users
are able to rapidly develop methods to exploit system structure in controller synthesis.

1.1 Bottlenecks in Abstraction-Based Control Synthesis

This paper’s goal is to enable a framework to develop extensible tools for robust
controller synthesis. It was inspired in part by computational bottlenecks encoun-
tered in control synthesizers that construct finite abstractions of continuous sys-
tems, which we use as a target use case. A traditional abstraction-based control
synthesis pipeline consists of three distinct stages:

1. Abstracting the continuous state system into a finite automaton whose under-
lying transitions faithfully mimic the original dynamics [21,23].

2. Synthesizing a discrete controller by leveraging data structures and symbolic
reasoning algorithms to mitigate combinatorial state explosion.

3. Refining the discrete controller into a continuous one. Feasibility of this step
is ensured through the abstraction step.

This pipeline appears in tools PESSOA [12] and SCOTS [19], which can exhibit
acute computational bottlenecks for high dimensional and nonlinear system
dynamics. A common method to mitigate these bottlenecks is to exploit a spe-
cific dynamical system’s topological and algebraic properties. In MASCOT [7]
and CoSyMA [14], multi-scale grids and hierarchical models capture notions of
state-space locality. One could incrementally construct an abstraction of the
system dynamics while performing the control synthesis step [10,15] as imple-
mented in tools ROCS [9] and ARCS [4]. The abstraction overhead can also
be reduced by representing systems as a collection of components composed in
parallel [6,13]. These have been developed in isolation and were not previously
interoperable.

1.2 Methodology

Figure 1 depicts this paper’s methodology and organization. The existing control
synthesis formalism does not readily lend itself to algorithmic modifications that
reflect and exploit structural properties in the system and specification. We use
the theory of relational interfaces [22] as a foundation and augment it to express
control synthesis pipelines. Interfaces are used to represent both system models
and constraints. A small collection of atomic operators manipulates interfaces
and is powerful enough to reconstruct many existing control synthesis pipelines.

One may also add new composite operators to encode desirable heuristics
that exploit structural properties in the system and specifications. The last

Flexible Pipelines for Abstraction-Based Control Synthesis 593

three sections encode the techniques for abstraction-based control synthesis from
Sect. 1.1 within the relational interfaces framework. By deliberately deconstruct-
ing those techniques, then reconstructing them within a compositional frame-
work it was possible to identify implicit or unnecessary assumptions then gener-
alize or remove them. It also makes the aforementioned techniques interoperable
amongst themselves as well as future techniques.

Interfaces come equipped with a refinement partial order that formalizes
when one interface abstracts another. This paper focuses on preserving the
refinement relation and sufficient conditions to refine discrete controllers back to
concrete ones. Additional guarantees regarding completeness, termination, pre-
cision, or decomposability can be encoded, but impose additional requirements
on the control synthesis algorithm and are beyond the scope of this paper.

1.3 Contributions

To our knowledge, the application of relational interfaces to robust abstraction-
based control synthesis is new. The framework’s building blocks consist of a col-
lection of small, well understood operators that are nonetheless powerful enough
to express many prior techniques. Encoding these techniques as relational inter-
face operations forced us to simplify, formalize, or remove implicit assumptions
in existing tools. The framework also exhibits numerous desirable features.

1. It enables compositional tools for control synthesis by leveraging a theoretical
foundation with compositionality built into it. This paper showcases a prin-
cipled methodology to seamlessly combine the methods in Sect. 1.1, as well
as construct new techniques.

2. It enables a declarative approach to control synthesis by enforcing a strict
separation between the high level algorithm from its low level implementation.
We rely on the availability of an underlying data structure to encode and
manipulate predicates. Low level predicate operations, while powerful, make
it easy to inadvertently violate the refinement property. Conforming to the
relational interface operations minimizes this danger.

This paper’s first half is domain agnostic and applicable to general robust control
synthesis problems. The second half applies those insights to the finite abstrac-
tion approach to control synthesis. A smaller Dubins vehicle example is used
to showcase and evaluate different techniques and their computational gains,
compared to the unoptimized problem. In an extended version of this paper
available at [1], a 6D lunar lander example leverages all techniques in this paper
and introduces a few new ones.

1.4 Notation

Let = be an assertion that two objects are mathematically equivalent; as a
special case ‘≡’ is used when those two objects are sets. In contrast, the operator
‘==’ checks whether two objects are equivalent, returning true if they are and
false otherwise. A special instance of ‘==’ is logical equivalence ‘⇔’.

594 E. S. Kim et al.

Variables are denoted by lower case letters. Each variable v is associated with
a domain of values D(v) that is analogous to the variable’s type. A composite
variable is a set of variables and is analogous to a bundle of wrapped wires. From
a collection of variables v1, . . . , vM a composite variable v can be constructed
by taking the union v ≡ v1 ∪ . . . ∪ vM and the domain D(v) ≡ ∏M

i=1 D(vi).
Note that the variables v1, . . . , vM above may themselves be composite. As an
example if v is associated with a M -dimensional Euclidean space R

M , then it is a
composite variable that can be broken apart into a collection of atomic variables
v1, . . . , vM where D(vi) ≡ R for all i ∈ {1, . . . , M}. The technical results herein
do not distinguish between composite and atomic variables.

Predicates are functions that map variable assignments to a Boolean value.
Predicates that stand in for expressions/formulas are denoted with capital let-
ters. Predicates P and Q are logically equivalent (denoted by P ⇔ Q) if and
only if P ⇒ Q and Q ⇒ P are true for all variable assignments. The universal
and existential quantifiers ∀ and ∃ eliminate variables and yield new predicates.
Predicates ∃wP and ∀wP do not depend on w. If w is a composite variable
w ≡ w1 ∪ . . . ∪ wN then ∃wP is simply a shorthand for ∃w1 . . . ∃wNP .

2 Control Synthesis for a Motivating Example

As a simple, instructive example consider a planar Dubins vehicle that is tasked
with reaching a desired location. Let x = {px, py, θ} be the collection of state
variables, u = {v, ω} be a collection input variables to be controlled, x+ =
{p+x , p+y , θ+} represent state variables at a subsequent time step, and L = 1.4 be
a constant representing the vehicle length. The constraints

p+x == px + v cos(θ) (Fx)

p+y == py + v sin(θ) (Fy)

θ+ == θ +
v

L
sin(ω) (Fθ)

characterize the discrete time dynamics. The continuous state domain is D(x) ≡
[−2, 2] × [−2, 2] × [−π, π), where the last component is periodic so −π and π
are identical values. The input domains are D(v) ≡ {0.25, 0.5} and D(ω) ≡
{−1.5, 0, 1.5}

Let predicate F = Fx ∧ Fy ∧ Fθ represent the monolithic system dynam-
ics. Predicate T depends only on x and represents the target set [−0.4, 0.4] ×
[−0.4, 0.4] × [−π, π), encoding that the vehicle’s position must reach a square
with any orientation. Let Z be a predicate that depends on variable x+ that
encodes a collection of states at a future time step. Equation (1) characterizes
the robust controlled predecessor, which takes Z and computes the set of states
from which there exists a non-blocking assignment to u that guarantees x+ will
satisfy Z, despite any non-determinism contained in F . The term ∃x+F prevents
state-control pairs from blocking, while ∀x+(F ⇒ Z) encodes the state-control
pairs that guarantee satisfaction of Z.

cpre(F,Z) = ∃u(∃x+F ∧ ∀x+(F ⇒ Z)). (1)

Flexible Pipelines for Abstraction-Based Control Synthesis 595

The controlled predecessor is used to solve safety and reach games. We can
solve for a region for which the target T (respectively, safe set S) can be reached
(made invariant) via an iteration of an appropriate reach (safe) operator. Both
iterations are given by:

Reach Iter: Z0 = ⊥ Zi+1 = reach(F,Zi, T) = cpre(F,Zi) ∨ T. (2)
Safety Iter: Z0 = S Zi+1 = safe(F,Zi, S) = cpre(F,Zi) ∧ S. (3)

Fig. 2. Approximate solution to the
Dubins vehicle reach game visualized as
a subset of the state space.

The above iterations are not guaran-
teed to reach a fixed point in a finite
number of iterations, except under certain
technical conditions [21]. Figure 2 depicts
an approximate region where the con-
troller can force the Dubins vehicle to
enter T . We showcase different improve-
ments relative to a base line script used to
generate Fig. 2. A toolbox that adopts this
paper’s framework is being actively devel-
oped and is open sourced at [2]. It is writ-
ten in python 3.6 and uses the dd pack-
age as an interface to CUDD [20], a library
in C/C++ for constructing and manipulat-
ing binary decision diagrams (BDD). All experiments were run on a single core
of a 2013 Macbook Pro with 2.4 GHz Intel Core i7 and 8 GB of RAM.

The following section uses relational interfaces to represent the controlled
predecessor cpre(·) and iterations (2) and (3) as a computational pipeline. Sub-
sequent sections show how modifying this pipeline leads to favorable theoretical
properties and computational gains.

3 Relational Interfaces

Relational interfaces are predicates augmented with annotations about each vari-
able’s role as an input or output1. They abstract away a component’s internal
implementation and only encode an input-output relation.

Definition 1 (Relational Interface [22]). An interface M(i, o) consists of a
predicate M over a set of input variables i and output variables o.

For an interface M(i, o), we call (i, o) its input-output signature. An interface is a
sink if it contains no outputs and has signature like (i, ∅), and a source if it con-
tains no inputs like (∅, o). Sinks and source interfaces can be interpreted as sets
whereas input-output interfaces are relations. Interfaces encode relations through
their predicates and can capture features such as non-deterministic outputs or

1 Relational interfaces closely resemble assume-guarantee contracts [16]; we opt to use
relational interfaces because inputs and outputs play a more prominent role.

596 E. S. Kim et al.

blocking (i.e., disallowed, error) inputs. A system blocks for an input assign-
ment if there does not exist a corresponding output assignment that satisfies the
interface relation. Blocking is a critical property used to declare requirements;
sink interfaces impose constraints by modeling constrain violations as blocking
inputs. Outputs on the other hand exhibit non-determinism, which is treated as
an adversary. When one interface’s outputs are connected to another’s inputs,
the outputs seek to cause blocking whenever possible.

3.1 Atomic and Composite Operators

Operators are used to manipulate interfaces by taking interfaces and variables
as inputs and yielding another interface. We will show how the controlled pre-
decessor cpre(·) in (1) can be constructed by composing operators appearing in
[22] and one additional one. The first, output hiding, removes interface outputs.

Definition 2 (Output Hiding [22]). Output hiding operator ohide(w,F)
over interface F (i, o) and outputs w yields an interface with signature (i, o \ w).

ohide(w,F) = ∃wF (4)

Existentially quantifying out w ensures that the input-output behavior over the
unhidden variables is still consistent with potential assignments to w. The oper-
ator nb(·) is a special variant of ohide(·) that hides all outputs, yielding a sink
encoding all non-blocking inputs to the original interface.

Definition 3 (Nonblocking Inputs Sink). Given an interface F (i, o), the
nonblocking operation nb(F) yields a sink interface with signature (i, ∅) and
predicate nb(F) = ∃oF . If F (i, ∅) is a sink interface, then nb(F) = F yields
itself. If F (∅, o) is a source interface, then nb(F) = ⊥ if and only if F ⇔ ⊥;
otherwise nb(F) = �.

The interface composition operator takes multiple interfaces and “collapses”
them into a single input-output interface. It can be viewed as a generalization
of function composition in the special case where each interface encodes a total
function (i.e., deterministic output and inputs never block).

Definition 4 (Interface Composition [22]). Let F1(i1, o1) and F2(i2, o2) be
interfaces with disjoint output variables o1 ∩ o2 ≡ ∅ and i1 ∩ o2 ≡ ∅ which
signifies that F2’s outputs may not be fed back into F1’s inputs. Define new
composite variables

io12 ≡ o1 ∩ i2 (5)
i12 ≡ (i1 ∪ i2) \ io12 (6)
o12 ≡ o1 ∪ o2. (7)

Composition comp(F1, F2) is an interface with signature (i12, o12) and predicate

F1 ∧ F2 ∧ ∀o12(F1 ⇒ nb(F2)). (8)

Interface subscripts may be swapped if instead F2’s outputs are fed into F1.

Flexible Pipelines for Abstraction-Based Control Synthesis 597

Interfaces F1 and F2 are composed in parallel if io21 ≡ ∅ holds in addition to
io12 ≡ ∅. Equation (8) under parallel composition reduces to F1 ∧ F2 (Lemma
6.4 in [22]) and comp(·) is commutative and associative. If io12 �≡ ∅, then they
are composed in series and the composition operator is only associative. Any
acyclic interconnection can be composed into a single interface by systematically
applying Definition 4’s binary composition operator. Non-deterministic outputs
are interpreted to be adversarial. Series composition of interfaces has a built-in
notion of robustness to account for F1’s non-deterministic outputs and blocking
inputs to F2 over the shared variables io12. The term ∀o12(F1 ⇒ nb(F2)) in
Eq. (8) is a predicate over the composition’s input set i12. It ensures that if a
potential output of F1 may cause F2 to block, then comp(F1, F2) must preemp-
tively block.

The final atomic operator is input hiding, which may only be applied to sinks.
If the sink is viewed as a constraint, an input variable is “hidden” by an angelic
environment that chooses an input assignment to satisfy the constraint. This
operator is analogous to projecting a set into a lower dimensional space.

Definition 5 (Hiding Sink Inputs). Input hiding operator ihide(w,F) over
sink interface F (i, ∅) and inputs w yields an interface with signature (i \ w, ∅).

ihide(w,F) = ∃wF (9)

Unlike the composition and output hiding operators, this operator is not included
in the standard theory of relational interfaces [22] and was added to encode a
controller predecessor introduced subsequently in Eq. (10).

3.2 Constructing Control Synthesis Pipelines

The robust controlled predecessor (1) can be expressed through operator com-
position.

Proposition 1. The controlled predecessor operator (10) yields a sink interface
with signature (x, ∅) and predicate equivalent to the predicate in (1).

cpre(F,Z) = ihide(u, ohide(x+, comp(F,Z))). (10)

The simple proof is provided in the extended version at [1]. Proposition 1 sig-
nifies that controlled predecessors can be interpreted as an instance of robust
composition of interfaces, followed by variable hiding. It can be shown that
safe(F,Z, S) = comp(cpre(F,Z), S) because S(x, ∅) and cpre(F,Z) would be
composed in parallel.2 Figure. 3 shows a visualization of the safety game’s fixed
point iteration from the point of view of relational interfaces. Starting from
the right-most sink interface S (equivalent to Z0) the iteration (3) constructs a
sequence of sink interfaces Z1, Z2, ... encoding relevant subsets of the state space.
The numerous S(x, ∅) interfaces impose constraints and can be interpreted as
monitors that raise errors if the safety constraint is violated.
2 Disjunctions over sinks are required to encode reach(·). This will be enabled by the

shared refinement operator defined in Definition 10.

598 E. S. Kim et al.

Fig. 3. Safety control synthesis iteration (3) depicted as a sequence of sink interfaces.

3.3 Modifying the Control Synthesis Pipeline

Equation (10)’s definition of cpre(·) is oblivious to the domains of variables
x, u, and x+. This generality is useful for describing a problem and serving as a
blank template. Whenever problem structure exists, pipeline modifications refine
the general algorithm into a form that reflects the specific problem instance.
They also allow a user to inject implicit preferences into a problem and reduce
computational bottlenecks or to refine a solution. The subsequent sections apply
this philosophy to the abstraction-based control techniques from Sect. 1.1:

– Sect. 4: Coarsening interfaces reduces the computational complexity of a prob-
lem by throwing away fine grain information. The synthesis result is conser-
vative but the degree of conservatism can be modified.

– Sect. 5: Refining interfaces decreases result conservatism. Refinement in com-
bination with coarsening allows one to dynamically modulate the complexity
of the problem as a function of multiple criteria such as the result granularity
or minimizing computational resources.

– Sect. 6: If the dynamics or specifications are decomposable then the control
predecessor operator can be broken apart to refect that decomposition.

These sections do more than simply reconstruct existing techniques in the lan-
guage of relational interfaces. They uncover some implicit assumptions in existing
tools and either remove them or make them explicit. Minimizing the number of
assumptions ensures applicability to a diverse collection of systems and specifi-
cations and compatibility with future algorithmic modifications.

4 Interface Abstraction via Quantization

A key motivator behind abstraction-based control synthesis is that computing
the game iterations from Eqs. (2) and (3) exactly is often intractable for high-
dimensional nonlinear dynamics. Termination is also not guaranteed. Quantizing
(or “abstracting”) continuous interfaces into a finite counterpart ensures that
each predicate operation of the game terminates in finite time but at the cost of
the solution’s precision. Finer quantization incurs a smaller loss of precision but

Flexible Pipelines for Abstraction-Based Control Synthesis 599

can cause the memory and computational requirements to store and manipulate
the symbolic representation to exceed machine resources.

This section first introduces the notion of interface abstraction as a refine-
ment relation. We define the notion of a quantizer and show how it is a simple
generalization of many existing quantizers in the abstraction-based control lit-
erature. Finally, we show how one can inject these quantizers anywhere in the
control synthesis pipeline to reduce computational bottlenecks.

4.1 Theory of Abstract Interfaces

While a controller synthesis algorithm can analyze a simpler model of the dynam-
ics, the results have no meaning unless they can be extrapolated back to the orig-
inal system dynamics. The following interface refinement condition formalizes a
condition when this extrapolation can occur.

Definition 6 (Interface Refinement [22]). Let F (i, o) and F̂ (̂i, ô) be inter-
faces. F̂ is an abstraction of F if and only if i ≡ î, o ≡ ô, and

nb(F̂) ⇒ nb(F) (11)
(
nb(F̂) ∧ F

)
⇒ F̂ (12)

are valid formulas. This relationship is denoted by F̂ � F .

Definition 6 imposes two main requirements between a concrete and abstract
interface. Equation (11) encodes the condition where if F̂ accepts an input,
then F must also accept it; that is, the abstract component is more aggres-
sive with rejecting invalid inputs. Second, if both systems accept the input
then the abstract output set is a superset of the concrete function’s output set.
The abstract interface is a conservative representation of the concrete interface
because the abstraction accepts fewer inputs and exhibits more non-deterministic
outputs. If both the interfaces are sink interfaces, then F̂ � F reduces down to
F̂ ⊆ F when F, F̂ are interpreted as sets. If both are source interfaces then the
set containment direction is flipped and F̂ � F reduces down to F ⊆ F̂ .

The refinement relation satisfies the required reflexivity, transitivity, and
antisymmetry properties to be a partial order [22] and is depicted in Fig. 4.
This order has a bottom element ⊥ which is a universal abstraction. Conve-
niently, the bottom element ⊥ signifies both boolean false and the bottom of
the partial order. This interface blocks for every potential input. In contrast,
Boolean � plays no special role in the partial order. While � exhibits totally
non-deterministic outputs, it also accepts inputs. A blocking input is considered
“worse” than non-deterministic outputs in the refinement order. The refinement
relation � encodes a direction of conservatism such that any reasoning done over
the abstract models is sound and can be generalized to the concrete model.

Theorem 1 (Informal Substitutability Result [22]). For any input that
is allowed for the abstract model, the output behaviors exhibited by an abstract
model contains the output behaviors exhibited by the concrete model.

600 E. S. Kim et al.

Fig. 4. Example depiction of the refinement partial order. Each small plot on the
depicts input-output pairs that satisfy an interface’s predicate. Inputs (outputs) vary
along the horizontal (vertical) axis. Because B blocks on some inputs but A accepts all
inputs B � A. Interface C exhibits more output non-determinism than A so C � A.
Similarly D � B, D � C, � � C, etc. Note that B and C are incomparable because
C exhibits more output non-determinism and B blocks for more inputs. The false
interface ⊥ is a universal abstraction, while � is incomparable with B and D.

If a property on outputs has been established for an abstract interface, then
it still holds if the abstract interface is replaced with the concrete one. Infor-
mally, the abstract interface is more conservative so if a property holds with the
abstraction then it must also hold for the true system. All aforementioned inter-
face operators preserve the properties of the refinement relation of Definition 6,
in the sense that they are monotone with respect to the refinement partial order.

Theorem 2 (Composition Preserves Refinement [22]). Let Â � A and
B̂ � B. If the composition is well defined, then comp(Â, B̂) � comp(A,B).

Theorem 3 (Output Hiding Preserves Refinement [22]). If A � B, then
ohide(w,A) � ohide(w,B) for any variable w.

Theorem 4 (Input Hiding Preserves Refinement). If A,B are both sink
interfaces and A � B, then ihide(w,A) � ihide(w,B) for any variable w.

Proofs for Theorems 2 and 3 are provided in [22]. Theorem 4’s proof is simple
and is omitted. One can think of using interface composition and variable hiding
to horizontally (with respect to the refinement order) navigate the space of all
interfaces. The synthesis pipeline encodes one navigated path and monotonic-
ity of these operators yields guarantees about the path’s end point. Composite
operators such as cpre(·) chain together multiple incremental steps. Furthermore
since the composition of monotone operators is itself a monotone operator, any
composite constructed from these parts is also monotone. In contrast, the coars-
ening and refinement operators introduced later in Definitions 8 and 10 respec-
tively are used to move vertically and construct abstractions. The “direction”
of new composite operators can easily be established through simple reasoning
about the cumulative directions of their constituent operators.

Flexible Pipelines for Abstraction-Based Control Synthesis 601

Fig. 5. Coarsening of the Fx interface to 23, 24 and 25 bins along each dimension for
a fixed v assignment. Interfaces are coarsened within milliseconds for BDDs but the
runtime depends on the finite abstraction’s data structure representation.

4.2 Dynamically Coarsening Interfaces

In practice, the sequence of interfaces Zi generated during synthesis grows in
complexity. This occurs even if the dynamics F and the target/safe sets have
compact representations (i.e., fewer nodes if using BDDs). Coarsening F and
Zi combats this growth in complexity by effectively reducing the amount of
information sent between iterations of the fixed point procedure.

Spatial discretization or coarsening is achieved by use of a quantizer interface
that implicitly aggregates points in a space into a partition or cover.

Definition 7. A quantizer Q(i, o) is any interface that abstracts the identity
interface (i == o) associated with the signature (i, o).

Quantizers decrease the complexity of the system representation and make
synthesis more computationally tractable. A coarsening operator abstracts an
interface by connecting it in series with a quantizer. Coarsening reduces the
number of non-blocking inputs and increases the output non-determinism.

Definition 8 (Input/Output Coarsening). Given an interface F (i, o) and
input quantizer Q(̂i, i), input coarsening yields an interface with signature (̂i, o).

icoarsen(F,Q(̂i, i)) = ohide(i, comp(Q(̂i, i), F)) (13)

Similarly, given an output quantizer Q(o, ô), output coarsening yields an inter-
face with signature (i, ô).

ocoarsen(F,Q(o, ô)) = ohide(o, comp(F,Q(o, ô))) (14)

Figure 5 depicts how coarsening reduces the information required to encode a
finite interface. It leverages a variable precision quantizer, whose implementation
is described in the extended version at [1].

The corollary below shows that quantizers can be seamlessly integrated into
the synthesis pipeline while preserving the refinement order. It readily follows
from Theorems 2, 3, and the quantizer definition.

Corollary 1. Input and output coarsening operations (13) and (14) are mono-
tone operations with respect to the interface refinement order �.

602 E. S. Kim et al.

Fig. 6. Number of BDD nodes (red) and number of states in reach basin (blue) with
respect to the reach game iteration with a greedy quantization. The solid lines result
from the unmodified game with no coarsening heuristic. The dashed lines result from
greedy coarsening whenever the winning region exceeds 3000 BDD nodes. (Color figure
online)

It is difficult to know a priori where a specific problem instance lies along
the spectrum between mathematical precision and computational efficiency. It is
then desirable to coarsen dynamically in response to runtime conditions rather
than statically beforehand. Coarsening heuristics for reach games include:

– Downsampling with progress [7]: Initially use coarser system dynamics to
rapidly identify a coarse reach basin. Finer dynamics are used to construct
a more granular set whenever the coarse iteration “stalls”. In [7] only the Zi

are coarsened during synthesis. We enable the dynamics F to be as well.
– Greedy quantization: Selectively coarsening along certain dimensions by

checking at runtime which dimension, when coarsened, would cause Zi to
shrink the least. This reward function can be leveraged in practice because
coarsening is computationally cheaper than composition. For BDDs, the win-
ning region can be coarsened until the number of nodes reduces below a
desired threshold. Figure 6 shows this heuristic being applied to reduce mem-
ory usage at the expense of answer fidelity. A fixed point is not guaranteed
as long as quantizers can be dynamically inserted into the synthesis pipeline,
but is once quantizers are always inserted at a fixed precision.

The most common quantizer in the literature never blocks and only increases
non-determinism (such quantizers are called “strict” in [18,19]). If a quantizer is
interpreted as a partition or cover, this requirement means that the union must
be equal to an entire space. Definition 7 relaxes that requirement so the union
can be a subset instead. It also hints at other variants such as interfaces that
don’t increase output non-determinism but instead block for more inputs.

Flexible Pipelines for Abstraction-Based Control Synthesis 603

5 Refining System Dynamics

Shared refinement [22] is an operation that takes two interfaces and merges them
into a single interface. In contrast to coarsening, it makes interfaces more pre-
cise. Many tools construct system abstractions by starting from the universal
abstraction ⊥, then iteratively refining it with a collection of smaller interfaces
that represent input-output samples. This approach is especially useful if the
canonical concrete system is a black box function, Simulink model, or source
code file. These representations do not readily lend themselves to the predicate
operations or be coarsened directly. We will describe later how other tools imple-
ment a restrictive form of refinement that introduces unnecessary dependencies.

Interfaces can be successfully merged whenever they do not contain contra-
dictory information. The shared refinability condition below formalizes when
such a contradiction does not exist.

Definition 9 (Shared Refinability [22]). Interfaces F1(i, o) and F2(i, o) with
identical signatures are shared refinable if

(nb(F1) ∧ nb(F2)) ⇒ ∃o(F1 ∧ F2) (15)

For any inputs that do not block for all interfaces, the corresponding output sets
must have a non-empty intersection. If multiple shared refinable interfaces, then
they can be combined into a single one that encapsulates all of their information.

Definition 10 (Shared Refinement Operation [22]). The shared refine-
ment operation combines two shared refinable interfaces F1 and F2, yielding a
new identical signature interface corresponding to the predicate

refine(F1, F2) = (nb(F1) ∨ nb(F2)) ∧ (nb(F1) ⇒ F1) ∧ (nb(F2) ⇒ F2). (16)

The left term expands the set of accepted inputs. The right term signifies that
if an input was accepted by multiple interfaces, the output must be consistent
with each of them. The shared refinement operation reduces to disjunction for
sink interfaces and to conjunction for source interfaces.

Shared refinement’s effect is to move up the refinement order by combining
interfaces. Given a collection of shared refinable interfaces, the shared refinement
operation yields the least upper bound with respect to the refinement partial
order in Definition 6. Violation of (15) can be detected if the interfaces fed into
refine(·) are not abstractions of the resulting interface.

5.1 Constructing Finite Interfaces Through Shared Refinement

A common method to construct finite abstractions is through simulation and
overapproximation of forward reachable sets. This technique appears in tools
such as PESSOA [12], SCOTS [19], MASCOT [7], ROCS [9] and ARCS [4].
By covering a sufficiently large portion of the interface input space, one can
construct larger composite interfaces from smaller ones via shared refinement.

604 E. S. Kim et al.

Fig. 7. (Left) Result of sample and coarsen operations for control system interface
F (x∪u, x+). The I and Î interfaces encode the same predicate, but play different roles
as sink and source. (Right) Visualization of finite abstraction as traversing the refine-
ment partial order. Nodes represent interfaces and edges signify data dependencies for
interface manipulation operators. Multiple refine edges point to a single node because
refinement combines multiple interfaces. Input-output (IO) sample and coarsening are
unary operations so the resulting nodes only have one incoming edge. The concrete
interface F refines all others, and the final result is an abstraction F̂ .

Smaller interfaces are constructed by sampling regions of the input space and
constructing an input-output pair. In Fig. 7’s left half, a sink interface I(x∪u, ∅)
acts as a filter. The source interface Î(∅, x ∪ u) composed with F (x ∪ u, x+)
prunes any information that is outside the relevant input region. The original
interface refines any sampled interface. To make samples finite, interface inputs
and outputs are coarsened. An individual sampled abstraction is not useful for
synthesis because it is restricted to a local portion of the interface input space.
After sampling many finite interfaces are merged through shared refinement. The
assumption Îi ⇒ nb(F) encodes that the dynamics won’t raise an error when
simulated and is often made implicitly. Figure 7’s right half depicts the sample,
coarsen, and refine operations as methods to vertically traverse the interface
refinement order.

Critically, refine(·) can be called within the synthesis pipeline and does not
assume that the sampled interfaces are disjoint. Figure 8 shows the results from
refining the dynamics with a collection of state-control hyper-rectangles that
are randomly generated via uniformly sampling their widths and offsets along
each dimension. These hyper-rectangles may overlap. If the same collection of
hyper-rectangles were used in MASCOT, SCOTS, ARCS, or ROCS then this
would yield a much more conservative abstraction of the dynamics because their
implementations are not robust to overlapping or misaligned samples. PESSOA
and SCOTS circumvent this issue altogether by enforcing disjointness with an
exhaustive traversal of the state-control space, at the cost of unnecessarily cou-
pling the refinement and sampling procedures. The lunar lander in the extended
version [1] embraces overlapping and uses two mis-aligned grids to construct a
grid partition with pN elements with only pN (12)N−1 samples (where p is the
number of bins along each dimension and N is the interface input dimension).
This technique introduces a small degree of conservatism but its computational
savings typically outweigh this cost.

Flexible Pipelines for Abstraction-Based Control Synthesis 605

Fig. 8. The number of states in the computed reach basin grows with the number of
random samples. The vertical axis is lower bounded by the number of states in the
target 131k and upper bounded by 631k, the number of states using an exhaustive
traversal. Naive implementations of the exhaustive traversal would require 12 million
samples. The right shows basins for 3000 (top) and 6000 samples (bottom).

6 Decomposed Control Predecessor

A decomposed control predecessor is available whenever the system state space
consists of a Cartesian product and the dynamics are decomposed component-
wise such as Fx, Fy, and Fθ for the Dubins vehicle. This property is common for
continuous control systems over Euclidean spaces. While one may construct F
directly via the abstraction sampling approach, it is often intractable for larger
dimensional systems. A more sophisticated approach abstracts the lower dimen-
sional components Fx, Fy, and Fθ individually, computes F = comp(Fx, Fy, Fθ),
then feeds it to the monolithic cpre(·) from Proposition 1. This section’s app-
roach is to avoid computing F at all and decompose the monolithic cpre(·).
It operates by breaking apart the term ohide(x+, comp(F,Z)) in such a way
that it respects the decomposition structure. For the Dubins vehicle example
ohide(x+, comp(F,Z)) is replaced with

ohide(p+x , comp(Fx, ohide(p+y , comp(Fy, ohide(θ+, comp(Fθ, Z))))))

yielding a sink interface with inputs px, py, v, θ, and ω. This representation and
the original ohide(x+, comp(F,Z)) are equivalent because comp(·) is associative
and interfaces do not share outputs x+ ≡ {p+x , p+y , θ+}. Figure 9 shows multiple
variants of cpre(·) and improved runtimes when one avoids preemptively con-
structing the monolithic interface. The decomposed cpre(·) resembles techniques
to exploit partitioned transition relations in symbolic model checking [5].

No tools from Sect. 1.1 natively support decomposed control predecessors.
We’ve shown a decomposed abstraction for components composed in parallel

606 E. S. Kim et al.

Decomposition Parallel Compose Reach Game
Runtime (s) Runtime (s)

F (Monolithic) 0.56 103.09
Fyθ, Fx (Partially Decomp.) 0.02 28.31
Fxθ, Fy (Partially Decomp.) 0.01 28.71
Fxy, Fθ (Partially Decomp.) 0.06 10.61
Fx, Fy, Fθ (Fully Decomp.) n/a 4.42

Fig. 9. A monolithic cpre(·) incurs unnecessary pre-processing and synthesis runtime
costs for the Dubins vehicle reach game. Each variant of cpre(·) above composes
the interfaces Fx, Fy and Fθ in different permutations. For example, Fxy represents
comp(Fx, Fy) and F represents comp(Fx, Fy, Fθ).

but this can also be generalized to series composition to capture, for example, a
system where multiple components have different temporal sampling periods.

7 Conclusion

Tackling difficult control synthesis problems will require exploiting all available
structure in a system with tools that can flexibly adapt to an individual prob-
lem’s idiosyncrasies. This paper lays a foundation for developing an extensible
suite of interoperable techniques and demonstrates the potential computational
gains in an application to controller synthesis with finite abstractions. Adhering
to a simple yet powerful set of well-understood primitives also constitutes a dis-
ciplined methodology for algorithm development, which is especially necessary
if one wants to develop concurrent or distributed algorithms for synthesis.

References

1. http://arxiv.org/abs/1905.09503
2. https://github.com/ericskim/redax/tree/CAV19
3. Basar, T., Olsder, G.J.: Dynamic Noncooperative Game Theory, vol. 23. Siam,

Philadelphia (1999)

http://arxiv.org/abs/1905.09503
https://github.com/ericskim/redax/tree/CAV19

Flexible Pipelines for Abstraction-Based Control Synthesis 607

4. Bulancea, O.L., Nilsson, P., Ozay, N.: Nonuniform abstractions, refinement and
controller synthesis with novel BDD encodings. CoRR, arXiv: abs/1804.04280
(2018)

5. Burch, J., Clarke, E., Long, D.: Symbolic model checking with partitioned transi-
tion relations (1991)

6. Gruber, F., Kim, E., Arcak, M.: Sparsity-aware finite abstraction. In: 2017 IEEE
56th Conference on Decision and Control (CDC), December 2017

7. Hsu, K., Majumdar, R., Mallik, K., Schmuck, A.-K.: Multi-layered abstraction-
based controller synthesis for continuous-time systems. In: Proceedings of the 21st
International Conference on Hybrid Systems: Computation and Control (Part of
CPS Week), HSCC 2018, pp. 120–129. ACM, New York (2018)

8. Khalil, H.K., Grizzle, J.W.: Nonlinear Systems, vol. 3. Prentice Hall, Upper Saddle
River, New Jersey (2002)

9. Li, Y., Liu, J.: ROCS: a robustly complete control synthesis tool for nonlinear
dynamical systems. In: Proceedings of the 21st International Conference on Hybrid
Systems: Computation and Control (Part of CPS Week), HSCC 2018, pp. 130–135.
ACM, New York (2018)

10. Liu, J.: Robust abstractions for control synthesis: completeness via robustness for
linear-time properties. In: Proceedings of the 20th International Conference on
Hybrid Systems: Computation and Control, HSCC 2017, pp. 101–110. ACM, New
York (2017)

11. Majumdar, R.: Symbolic algorithms for verification and control. Ph.D. thesis, Uni-
versity of California, Berkeley (2003)

12. Mazo Jr., M., Davitian, A., Tabuada, P.: PESSOA: a tool for embedded con-
troller synthesis. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS,
vol. 6174, pp. 566–569. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-14295-6 49

13. Meyer, P.J., Girard, A., Witrant, E.: Compositional abstraction and safety synthe-
sis using overlapping symbolic models. IEEE Trans. Autom. Control. 63, 1835–1841
(2017)

14. Mouelhi, S., Girard, A., Gössler, G.: CoSyMA: a tool for controller synthesis using
multi-scale abstractions. In: 16th International Conference on Hybrid Systems:
Computation and Control, pp. 83–88. ACM (2013)

15. Nilsson, P., Ozay, N., Liu, J.: Augmented finite transition systems as abstractions
for control synthesis. Discret. Event Dyn. Syst. 27(2), 301–340 (2017)

16. Nuzzo, P.: Compositional design of cyber-physical systems using contracts. Ph.D.
thesis, EECS Department, University of California, Berkeley, August 2015

17. Piterman, N., Pnueli, A., Sa’ar, Y.: Synthesis of reactive(1) designs. In: Emerson,
E.A., Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855, pp. 364–380. Springer,
Heidelberg (2005). https://doi.org/10.1007/11609773 24

18. Reißig, G., Weber, A., Rungger, M.: Feedback refinement relations for the synthesis
of symbolic controllers. IEEE Trans. Autom. Control. 62(4), 1781–1796 (2017)

19. Rungger, M., Zamani, M.: SCOTS: a tool for the synthesis of symbolic controllers.
In: 19th International Conference on Hybrid Systems: Computation and Control,
pp. 99–104. ACM (2016)

20. Somenzi, F.: CUDD: CU Decision Diagram Package. http://vlsi.colorado.edu/
∼fabio/CUDD/, Version 3.0.0 (2015)

21. Tabuada, P.: Verification and Control of Hybrid Systems. Springer, New York
(2009). https://doi.org/10.1007/978-1-4419-0224-5

http://arxiv.org/abs/abs/1804.04280
https://doi.org/10.1007/978-3-642-14295-6_49
https://doi.org/10.1007/978-3-642-14295-6_49
https://doi.org/10.1007/11609773_24
http://vlsi.colorado.edu/~fabio/CUDD/
http://vlsi.colorado.edu/~fabio/CUDD/
https://doi.org/10.1007/978-1-4419-0224-5

608 E. S. Kim et al.

22. Tripakis, S., Lickly, B., Henzinger, T.A., Lee, E.A.: A theory of synchronous rela-
tional interfaces. ACM Trans. Program. Lang. Syst. (TOPLAS) 33(4), 14 (2011)

23. Zamani, M., Pola, G., Mazo, M., Tabuada, P.: Symbolic models for nonlinear con-
trol systems without stability assumptions. IEEE Trans. Autom. Control 57(7),
1804–1809 (2012)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Temporal Stream Logic:
Synthesis Beyond the Bools

Bernd Finkbeiner1, Felix Klein1(B),
Ruzica Piskac2,

and Mark Santolucito2

1 Saarland University, Saarbrücken, Germany
klein@react.uni-saarland.de

2 Yale University, New Haven, USA

Abstract. Reactive systems that operate in environments with complex
data, such as mobile apps or embedded controllers with many sensors,
are difficult to synthesize. Synthesis tools usually fail for such systems
because the state space resulting from the discretization of the data is
too large. We introduce TSL, a new temporal logic that separates con-
trol and data. We provide a CEGAR-based synthesis approach for the
construction of implementations that are guaranteed to satisfy a TSL
specification for all possible instantiations of the data processing func-
tions. TSL provides an attractive trade-off for synthesis. On the one
hand, synthesis from TSL, unlike synthesis from standard temporal log-
ics, is undecidable in general. On the other hand, however, synthesis
from TSL is scalable, because it is independent of the complexity of the
handled data. Among other benchmarks, we have successfully synthe-
sized a music player Android app and a controller for an autonomous
vehicle in the Open Race Car Simulator (TORCS).

1 Introduction

In reactive synthesis, we automatically translate a formal specification, typically
given in a temporal logic, into a controller that is guaranteed to satisfy the
specification. Over the past two decades there has been much progress on reac-
tive synthesis, both in terms of algorithms, notably with techniques like GR(1)-
synthesis [7] and bounded synthesis [20], and in terms of tools, as showcased, for
example, in the annual syntcomp competition [25].

In practice however, reactive synthesis has seen limited success. One of the
largest published success stories [6] is the synthesis of the AMBA bus proto-
col. To push synthesis even further, automatically synthesizing a controller for

Supported by the European Research Council (ERC) Grant OSARES (No. 683300),
the German Research Foundation (DFG) as part of the Collaborative Research Center
Foundations of Perspicuous Software Systems (TRR 248, 389792660), and the National
Science Foundation (NSF) Grant CCF-1302327.

c© The Author(s) 2019
I. Dillig and S. Tasiran (Eds.): CAV 2019, LNCS 11561, pp. 609–629, 2019.
https://doi.org/10.1007/978-3-030-25540-4_35

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-25540-4_35&domain=pdf
https://doi.org/10.1007/978-3-030-25540-4_35

610 B. Finkbeiner et al.

an autonomous system has been recognized to be of critical importance [52].
Despite many years of experience with synthesis tools, our own attempts to syn-
thesize such controllers with existing tools have been unsuccessful. The reason is
that the tools are unable to handle the data complexity of the controllers. The
controller only needs to switch between a small number of behaviors, like steer-
ing during a bend, or shifting gears on high rpm. The number of control states
in a typical controller (cf. [18]) is thus not much different from the arbiter in the
AMBA case study. However, in order to correctly initiate transitions between
control states, the driving controller must continuously process data from more
than 20 sensors.

If this data is included (even as a rough discretization) in the state space of
the controller, then the synthesis problem is much too large to be handled by
any available tools. It seems clear then, that a scalable synthesis approach must
separate control and data. If we assume that the data processing is handled by
some other approach (such as deductive synthesis [38] or manual programming),
is it then possible to solve the remaining reactive synthesis problem?

In this paper, we show scalable reactive synthesis is indeed possible. Sepa-
rating data and control has allowed us to synthesize reactive systems, including
an autonomous driving controller and a music player app, that had been impos-
sible to synthesize with previously available tools. However, the separation of
data and control implies some fundamental changes to reactive synthesis, which
we describe in the rest of the paper. The changes also imply that the reactive
synthesis problem is no longer, in general, decidable. We thus trade theoretical
decidability for practical scalability, which is, at least with regard to the goal of
synthesizing realistic systems, an attractive trade-off.

We introduce Temporal Stream Logic (TSL), a new temporal logic that
includes updates, such as �y � f x�, and predicates over arbitrary function
terms. The update �y � f x� indicates that the result of applying function f
to variable x is assigned to y. The implementation of predicates and functions is
not part of the synthesis problem. Instead, we look for a system that satisfies the
TSL specification for all possible interpretations of the functions and predicates.

This implicit quantification over all possible interpretations provides a useful
abstraction: it allows us to independently implement the data processing part.
On the other hand, this quantification is also the reason for the undecidability of
the synthesis problem. If a predicate is applied to the same term twice, it must
(independently of the interpretation) return the same truth value. The synthesis
must then implicitly maintain a (potentially infinite) set of terms to which the
predicate has previously been applied. As we show later, this set of terms can
be used to encode PCP [45] for a proof of undecidability.

We present a practical synthesis approach for TSL specifications, which is
based on bounded synthesis [20] and counterexample-guided abstraction refine-
ment (CEGAR) [9]. We use bounded synthesis to search for an implementation
up to a (iteratively growing) bound on the number of states. This approach
underapproximates the actual TSL synthesis problem by leaving the interpre-
tation of the predicates to the environment. The underapproximation allows

Temporal Stream Logic: Synthesis Beyond The Bools 611

Fig. 1. The TSL synthesis procedure uses a modular design. Each step takes input
from the previous step as well as interchangeable modules (dashed boxes).

for inconsistent behaviors: the environment might assign different truth values
to the same predicate when evaluated at different points in time, even if the
predicate is applied to the same term. However, if we find an implementation
in this underapproximation, then the CEGAR loop terminates and we have a
correct implementation for the original TSL specification. If we do not find an
implementation in the underapproximation, we compute a counter strategy for
the environment. Because bounded synthesis reduces the synthesis problem to
a safety game, the counter strategy is a reachability strategy that can be rep-
resented as a finite tree. We check whether the counter strategy is spurious by
searching for a pair of positions in the strategy where some predicate results in
different truth values when applied to the same term. If the counter strategy
is not spurious, then no implementation exists for the considered bound, and
we increase the bound. If the counter strategy is spurious, then we introduce a
constraint into the specification that eliminates the incorrect interpretation of
the predicate, and continue with the refined specification.

A general overview of this procedure is shown in Fig. 1. The top half of the
figure depicts the bounded search for an implementation that realizes a TSL
specification using the CEGAR loop to refine the specification. If the specifica-
tion is realizable, we proceed in the bottom half of the process, where a synthe-
sized implementation is converted to a control flow model (CFM) determining
the control of the system. We then specialize the CFM to Functional Reactive
Programming (FRP), which is a popular and expressive programming paradigm
for building reactive programs using functional programming languages [14].

612 B. Finkbeiner et al.

Fig. 2. Sample code and specification for the music player app.

Our framework supports any FRP library using the Arrow or Applicative design
patterns, which covers most of the existing FRP libraries (e.g. [2,3,10,41]).
Finally, the synthesized control flow is embedded into a project context, where
it is equipped with function and predicate implementations and then compiled
to an executable program.

Our experience with synthesizing systems based on TSL specifications has
been extremely positive. The synthesis works for a broad range of benchmarks,
ranging from classic reactive synthesis problems (like escalator control), through
programming exercises from functional reactive programming, to novel case stud-
ies like our music player app and the autonomous driving controller for a vehicle
in the Open Race Car Simulator (TORCS).

2 Motivating Example

To demonstrate the utility of our method, we synthesized a music player Android
app1 from a TSL specification. A major challenge in developing Android apps is
the temporal behavior of an app through the Android lifecycle [46]. The Android
lifecycle describes how an app should handle being paused, when moved to the
background, coming back into focus, or being terminated. In particular, resume
and restart errors are commonplace and difficult to detect and correct [46]. Our
music player app demonstrates a situation in which a resume and restart error
could be unwittingly introduced when programming by hand, but is avoided by
providing a specification. We only highlight the key parts of the example here
to give an intuition of TSL. The complete specification is presented in [19].

Our music player app utilizes the Android music player library (MP), as well
as its control interface (Ctrl). It pauses any playing music when moved to the
background (for instance if a call is received), and continues playing the currently
selected track (Tr) at the last track position when the app is resumed. In the
Android system (Sys), the leaveApp method is called whenever the app moves to
the background, while the resumeApp method is called when the app is brought
back to the foreground. To avoid confusion between pausing music and pausing
the app, we use leaveApp and resumeApp in place of the Android methods

1 https://play.google.com/store/apps/details?id=com.mark.myapplication.

https://play.google.com/store/apps/details?id=com.mark.myapplication

Temporal Stream Logic: Synthesis Beyond The Bools 613

Fig. 3. The effect of a minor change in functionality on code versus a specification.

onPause and onResume. A programmer might manually write code for this as
shown on the left in Fig. 2.

The behavior of this can be directly described in TSL as shown on the right
in Fig. 2. Even eliding a formal introduction of the notation for now, the specifi-
cation closely matches the textual specification. First, when the user leaves the
app and the music is playing, the music pauses. Likewise for the second part,
when the user resumes the app, the music starts playing again.

However, assume we want to change the behavior so that the music only
plays on resume when the music had been playing before leaving the app
in the first place. In the manually written program, this new functionality
requires an additional variable wasPlaying to keep track of the music state.
Managing the state requires multiple changes in the code as shown on the left
in Fig. 3. The required code changes include: a conditional in the resumeApp
method, setting wasPlaying appropriately in two places in leaveApp, and pro-
viding an initial value. Although a small example, it demonstrates how a minor
change in functionality may require wide-reaching code changes. In addition,
this change introduces a globally scoped variable, which then might accidentally
be set or read elsewhere. In contrast, it is a simple matter to change the TSL
specification to reflect this new functionality. Here, we only update one part of
the specification to say that if the user leaves the app and the music is playing,
the music has to play again as soon as the app resumes.

Synthesis allows us to specify a temporal behavior without worrying about
the implementation details. In this example, writing the specification in TSL has
eliminated the need of an additional state variable, similarly to a higher order
map eliminating the need for an iteration variable. However, in more complex
examples the benefits compound, as TSL provides a modular interface to spec-
ify behaviors, offloading the management of multiple interconnected temporal
behaviors from the user to the synthesis engine.

614 B. Finkbeiner et al.

3 Preliminaries

We assume time to be discrete and denote it by the set N of positive integers.
A value is an arbitrary object of arbitrary type. V denotes the set of all values.
The Boolean values are denoted by B ⊆ V. A stream s : N → V is a function
fixing values at each point in time. An n-ary function f : Vn → V determines
new values from n given values, where the set of all functions (of arbitrary arity)
is given by F . Constants are functions of arity 0. Every constant is a value, i.e.,
is an element of F ∩ V. An n-ary predicate p : Vn → B checks a property over n
values. The set of all predicates (of arbitrary arity) is given by P, where P ⊆ F .
We use B[A] to denote the set of all total functions with domain A and image B.

In the classical synthesis setting, inputs and outputs are vectors of Booleans,
where the standard abstraction treats inputs and outputs as atomic propositions
I ∪ O, while their Boolean combinations form an alphabet Σ = 2I∪O. Behavior
then is described through infinite sequences α = α(0)α(1)α(2) . . . ∈ Σω. A
specification describes a relation between input sequences α ∈ (2I)ω and output
sequences β ∈ (2O)ω. Usually, this relation is not given by explicit sequences, but
by a fomula in a temporal logic. The most popular such logic is Linear Temporal
Logic (LTL) [43], which uses Boolean connectives to specify behavior at specific
points in time, and temporal connectives, to relate sub-specifications over time.
The realizability and synthesis problems for LTL are 2ExpTime-complete [44].

An implementation describes a realizing strategy, formalized via infinite trees.
A Φ-labeled and Υ -branching tree is a function σ : Υ ∗ → Φ, where Υ denotes the
set of branching directions along a tree. Every node of the tree is given by a finite
prefix v ∈ Υ ∗, which fixes the path to reach a node from the root. Every node is
labeled by an element of Φ. For infinite paths ν ∈ Υω, the branch σ�ν denotes the
sequence of labels that appear on ν, i.e., ∀t ∈ N. (σ� ν)(t) = σ(ν(0) . . . ν(t − 1)).

4 Temporal Stream Logic

We present a new logic: Temporal Stream Logic (TSL), which is especially
designed for synthesis and allows for the manipulation of infinite streams of
arbitrary (even non-enumerative, or higher order) type. It provides a straight-
forward notation to specify how outputs are computed from inputs, while using
an intuitive interface to access time. The main focus of TSL is to describe tem-
poral control flow, while abstracting away concrete implementation details. This
not only keeps the logic intuitive and simple, but also allows a user to identify
problems in the control flow even without a concrete implementation at hand.
In this way, the use of TSL scales up to any required abstraction, such as API
calls or complex algorithmic transformations.

Architecture. A TSL formula ϕ specifies a reactive system that in every time step
processes a finite number of inputs I and produces a finite number of outputs O.
Furthermore, it uses cells C to store a value computed at time t, which can then
be reused in the next time step t + 1. An overview of the architecture of such a
system is given in Fig. 4a. In terms of behavior, the environment produces infinite

Temporal Stream Logic: Synthesis Beyond The Bools 615

Fig. 4. General architecture of reactive systems that are specified in TSL on the left,
and the structure of function, predicate and updates on the right.

streams of input data, while the system uses pure (side-effect free) functions
to transform the values of these input streams in every time step. After their
transformation, the data values are either passed to an output stream or are
passed to a cell, which pipes the output value from one time step back to the
corresponding input value of the next. The behaviour of the system is captured
by its infinite execution over time.

Function Terms, Predicate Terms, and Updates. In TSL we differentiate
between two elements: we use purely functional transformations, reflected by
functions f ∈ F and their compositions, and predicates p ∈ P, used to control
how data flows inside the system. To argue about both elements we use a term
based notation, where we distinguish between function terms τF and predicate
terms τP , respectively. Function terms are either constructed from inputs or cells
(si ∈ I ∪ C), or from functions, recursively applied to a set of function terms.
Predicate terms are constructed similarly, by applying a predicate to a set of
function terms. Finally, an update takes the result of a function computation
and passes it either to an output or a cell (so ∈ O ∪ C). An overview of the syn-
tax of the different term notations is given in Fig. 4b. Note that we use curried
argument notation similar to functional programming languages.

We denote sets of function and predicate terms, and updates by TF , TP and
TU, respectively, where TP ⊆ TF . We use F to denote the set of function literals
and P ⊆ F to denote the set of predicate literals, where the literals si, so, f
and p are symbolic representations of inputs and cells, outputs and cells, func-
tions, and predicates, respectively. Literals are used to construct terms as shown
in Fig. 4b. Since we use a symbolic representation, functions and predicates are
not tied to a specific implementation. However, we still classify them according
to their arity, i.e., the number of function terms they are applied to, as well as by
their type: input, output, cell, function or predicate. Furthermore, terms can be
compared syntactically using the equivalence relation ≡. To assign a semantic
interpretation to functions, we use an assignment function 〈·〉 : F → F .

616 B. Finkbeiner et al.

Inputs, Outputs, and Computations. We consider momentary inputs i ∈ V [I],
which are assignments of inputs i ∈ I to values v ∈ V. For the sake of readability
let I = V [I]. Input streams are infinite sequences ι ∈ Iω consisting of infinitely
many momentary inputs.

Similarly, a momentary output o ∈ V [O] is an assignment of outputs o ∈ O

to values v ∈ V, where we also use O = V [O]. Output streams are infinite
sequences � ∈ Oω. To capture the behavior of a cell, we introduce the notion
of a computation ς. A computation fixes the function terms that are used to
compute outputs and cell updates, without fixing semantics of function literals.
Intuitively, a computation only determines which function terms are used to
compute an output, but abstracts from actually computing it.

The basic element of a computation is a computation step c ∈ T [O∪C]
F , which

is an assignment of outputs and cells so ∈ O ∪ C to function terms τF ∈ TF . For
the sake of readability let C = T [O∪C]

F . A computation step fixes the control flow
behaviour at a single point in time. A computation ς ∈ Cω is an infinite sequence
of computation steps.

As soon as input streams, and function and predicate implementations are
known, computations can be turned into output streams. To this end, let
〈·〉 : F → F be some function assignment. Furthermore, assume that there are
predefined constants initc ∈ F ∩ V for every cell c ∈ C, which provide an initial
value for each stream at the initial point in time. To receive an output stream
from a computation ς ∈ Cω under the input stream ι, we use an evaluation
function η〈·〉: Cω × Iω × N × TF → V:

η〈·〉(ς, ι, t, si) =

⎧
⎪⎨

⎪⎩

ι(t)(si) if si ∈ I

initsi if si ∈ C ∧ t = 0
η〈·〉(ς, ι, t − 1, ς(t − 1)(si)) if si ∈ C ∧ t > 0

η〈·〉(ς, ι, t, f τ0 · · · τm−1) = 〈f〉 η〈·〉(ς, ι, t, τ0) · · · η〈·〉(ς, ι, t, τm−1)

Then �〈·〉,ς,ι ∈ Oω is defined via �〈·〉,ς,ι(t)(o) = η〈·〉(ς, ι, t, o) for all t ∈ N, o ∈ O.

Syntax. Every TSL formula ϕ is built according to the following grammar:

ϕ := τ ∈ TP ∪ TU | ¬ϕ | ϕ ∧ ϕ | ϕ | ϕ U ϕ

An atomic proposition τ consists either of a predicate term, serving as a Boolean
interface to the inputs, or of an update, enforcing a respective flow at the current
point in time. Next, we have the Boolean operations via negation and conjunc-
tion, that allow us to express arbitrary Boolean combinations of predicate evalu-
ations and updates. Finally, we have the temporal operator next: ψ, to specify
the behavior at the next point in time and the temporal operator until: ϑ U ψ,
which enforces a property ϑ to hold until the property ψ holds, where ψ must
hold at some point in the future eventually.

Temporal Stream Logic: Synthesis Beyond The Bools 617

Semantics. Formally, this leads to the following semantics. Let 〈·〉 : F → F ,
ι ∈ Iω, and ς ∈ Cω be given, then the validity of a TSL formula ϕ with respect
to ς and ι is defined inductively over t ∈ N via:

ς, ι, t �〈·〉 p τ0 · · · τm−1 :⇔ η〈·〉(ς, ι, t, p τ0 · · · τm−1)
ς, ι, t �〈·〉 �s � τ � :⇔ ς(t)(s) ≡ τ
ς, ι, t �〈·〉 ¬ψ :⇔ ς, ι, t �〈·〉 ψ
ς, ι, t �〈·〉 ϑ ∧ ψ :⇔ ς, ι, t �〈·〉 ϑ ∧ ς, ι, t �〈·〉 ψ
ς, ι, t �〈·〉 ψ :⇔ ς, ι, t + 1 �〈·〉 ψ
ς, ι, t �〈·〉 ϑ U ψ :⇔ ∃t′′ ≥ t. ∀t ≤ t′ < t′′. ς, ι, t′ �〈·〉 ϑ ∧ ς, ι, t′′ �〈·〉 ψ

Consider that the satisfaction of a predicate depends on the current computation
step and the steps of the past, while for updates it only depends on the current
computation step. Furthermore, updates are only checked syntactically, while
the satisfaction of predicates depends on the given assignment 〈·〉 and the input
stream ι. We say that ς and ι satisfy ϕ, denoted by ς, ι �〈·〉 ϕ, if ς, ι, 0 �〈·〉 ϕ.

Beside the basic operators, we have the standard derived Boolean opera-
tors, as well as the derived temporal operators: release ϕ R ψ ≡ ¬((¬ψ)U(¬ϕ)),
finally ϕ ≡ trueU ϕ, always ϕ ≡ falseR ϕ, the weak version of until
ϕ W ψ ≡ (ϕ U ψ) ∨ (ϕ), and as soon as ϕ A ψ ≡ ¬ψ W(ψ ∧ ϕ).

Realizability. We are interested in the following realizability problem: given a
TSL formula ϕ, is there a strategy σ ∈ C[I+] such that for every input ι ∈ Iω

and function implementation 〈·〉 : F → F , the branch σ � ι satisfies ϕ, i.e.,

∃σ ∈ C[I+]. ∀ι ∈ Iω. ∀〈·〉 : F → F . σ � ι, ι �〈·〉 ϕ

If such a strategy σ exists, we say σ realizes ϕ. If we additionally ask for a
concrete instantiation of σ, we consider the synthesis problem of TSL.

5 TSL Properties

In order to synthesize programs from TSL specifications, we give an overview of
the first part of our synthesis process, as shown in Fig. 1. First we show how to
approximate the semantics of TSL through a reduction to LTL. However, due
to the approximation, finding a realizable strategy immediately may fail. Our
solution is a CEGAR loop that improves the approximation. This CEGAR loop
is necessary, because the realizability problem of TSL is undecidable in general.

Approximating TSL with LTL. We approximate TSL formulas with weaker LTL
formulas. The approximation reinterprets the syntactic elements, TP and TU, as
atomic propositions for LTL. This strips away the semantic meaning of the func-
tion application and assignment in TSL, which we reconstruct by later adding
assumptions lazily to the LTL formula.

Formally, let TP and TU be the finite sets of predicate terms and updates,
which appear in ϕTSL, respectively. For every assigned signal, we partition TU

into
⊎

so∈O∪C
T so

U . For every c ∈ C let T c
U/id = T c

U ∪ {�c � c�}, for o ∈ O let

618 B. Finkbeiner et al.

Fig. 5. A TSL specification (a) with input x and cell y that is realizable. A winning
strategy is to save x to y as soon as p(x) is satisfied. However, the initial approxima-
tion (b), that is passed to an LTL synthesis solver, is unrealizable, as proven through
the counter-strategy (c) returned by the LTL solver.

T o
U/id = T o

U , and let TU/id =
⋃

so∈O∪C
T so

U/id. We construct the LTL formula ϕLTL

over the input propositions TP and output propositions TU/id as follows:

ϕLTL =
(∧

so∈O∪C

∨

τ∈T so
U/id

(
τ ∧

∧

τ ′∈T so
U/id

\{τ}

¬ τ ′)) ∧ SyntacticConversion
(
ϕTSL

)

Intuitively, the first part of the equation partially reconstructs the semantic
meaning of updates by ensuring that a signal is not updated with multiple values
at a time. The second part extracts the reactive constraints of the TSL formula
without the semantic meaning of functions and updates.

Theorem 1 ([19]). If ϕLTL is realizable, then ϕTSL is realizable.

Note that unrealizability of ϕLTL does not imply that ϕTSL is unrealizable. It
may be that we have not added sufficiently many environment assumptions to
the approximation in order for the system to produce a realizing strategy.

Example. As an example, we present a simple TSL specification in Fig. 5a. The
specification asserts that the environment provides an input x for which the
predicate p x will be satisfied eventually. The system must guarantee that even-
tually p y holds. According to the semantics of TSL the formula is realizable.
The system can take the value of x when p x is true and save it to y, thus guar-
anteeing that p y is satisfied eventually. This is in contrast to LTL, which has no
semantics for pure functions - taking the evaluation of p y as an environmentally
controlled value that does not need to obey the consistency of a pure function.

Refining the LTL Approximation. It is possible that the LTL solver returns a
counter-strategy for the environment although the original TSL specification is
realizable. We call such a counter-strategy spurious as it exploits the additional
freedom of LTL to violate the purity of predicates as made possible by the
underapproximation. Formally, a counter-strategy is an infinite tree π : C∗ → 2TP ,
which provides predicate evaluations in response to possible update assignments
of function terms τF ∈ TF to outputs o ∈ O. W.l.o.g. we can assume that O, TF

and TP are finite, as they can always be restricted to the outputs and terms that
appear in the formula. A counter-strategy is spurious, iff there is a branch π � ς
for some computation ς ∈ Cω, for which the strategy chooses an inconsistent
evaluation of two equal predicate terms at different points in time, i.e.,

Temporal Stream Logic: Synthesis Beyond The Bools 619

Algorithm 1. Check-Spuriousness
Input: bound b, counter-strategy π : C∗→2TP (finitely represented using m states)

1: for all v ∈ Cm·b, τP ∈ TP , t, t′ ∈ {0, 1, . . . , m · b − 1} do
2: if η〈·〉id(v, ιid, t, τP) ≡ η〈·〉id(v, ιid, t

′, τP) ∧
τP ∈ π(v0 . . . vt−1) ∧ τP /∈ π(v0 . . . vt′−1) then

3: w ← reduce (v, τP , t, t′)

4: return
(∧t−1

i=0
iwi ∧

∧t′−1
i=0

iwi → (tτP ↔ t′
τP)

)

5: return ‘‘non-spurious’’

∃ς ∈ Cω. ∃t, t′ ∈ N. ∃τP ∈ TP .
τP ∈ π(ς(0)ς(1) . . . ς(t − 1)) ∧ τP /∈ π(ς(0)ς(1) . . . ς(t′ − 1))∧
∀〈·〉 : F → F . η〈·〉(ς, π � ς, t, τP) = η〈·〉(ς, π � ς, t′, τP).

Note that a non-spurious strategy can be inconsistent along multiple branches.
Due to the definition of realizability the environment can choose function and
predicate assignments differently against every system strategy accordingly.

By purity of predicates in TSL the environment is forced to always return
the same value for predicate evaluations on equal values. However, this semantic
property cannot be enforced implicitly in LTL. To resolve this issue we use the
returned counter-strategy to identify spurious behavior in order to strengthen
the LTL underapproximation with additional environment assumptions. After
adding the derived assumptions, we re-execute the LTL synthesizer to check
whether the added assumptions are sufficient in order to obtain a winning strat-
egy for the system. If the solver still returns a spurious strategy, we continue
the loop in a CEGAR fashion until the set of added assumptions is sufficiently
complete. However, if a non-spurious strategy is returned, we have found a proof
that the given TSL specification is indeed unrealizable and terminate.

Algorithm 1 shows how a returned counter-strategy π is checked for being
spurious. To this end, it is sufficient to check π against system strategies
bounded by the given bound b, as we use bounded synthesis [20]. Further-
more, we can assume w.l.o.g. that π is given by a finite state representation,
which is always possible due to the finite model guarantees of LTL. Also note
that π, as it is returned by the LTL synthesizer, responds to sequences of sets
of updates (2TU/id)∗. However, in our case (2TU/id)∗ is an alternative representa-
tion of C∗, due to the additional “single update” constraints added during the
construction of ϕLTL.

The algorithm iterates over all possible responses v ∈ Cm·b of the system
up to depth m · b. This is sufficient, since any deeper exploration would result
in a state repetition of the cross-product of the finite state representation of π
and any system strategy bounded by b. Hence, the same behaviour could also
be generated by a sequence smaller than m · b. At the same time, the algorithm
iterates over predicates τP ∈ TP appearing in ϕTSL and times t and t′ smaller
than m · b. For each of these elements, spuriousness is checked by comparing the
output of π for the evaluation of τP at times t and t′, which should only differ
if the inputs to the predicates are different as well. This can only happen, if the

620 B. Finkbeiner et al.

passed input terms have been constructed differently over the past. We check
it by using the evaluation function η equipped with the identity assignment
〈·〉id : F → F, with 〈f〉id = f for all f ∈ F, and the input sequence ιid, with
ιid(t)(i) = (t, i) for all t ∈ N and i ∈ I, that always generates a fresh input.
Syntactic inequality of η〈·〉id(v, ιid, t, τP) and η〈·〉id(v, ιid, t

′, τP) then is a sufficient
condition for the existence of an assignment 〈·〉 : F → F , for which τP evaluates
differently at times t and t′.

If spurious behaviour of π could be found, then the revealing response v ∈ C∗

is first simplified using reduce, which reduces v again to a sequence of sets
of updates w ∈ (2TU/id)∗ and removes updates that do not affect the behavior
of τP at the times t and t′ to accelerate the termination of the CEGAR loop.
Afterwards, the sequence w is turned into a new assumption that prohibits the
spurious behavior, generalized to prevent it even at arbitrary points in time.

As an example of this process, reconsider the spurious counter-strategy of
Fig. 5c. Already after the first system response �y � x�, the environment pro-
duces an inconsistency by evaluating p x and p y differently. This is inconsistent,
as the cell y holds the same value at time t = 1 as the input x at time t = 0. Using
Algorithm 1 we generate the new assumption (�y � x� → (p x ↔ p y)).
After adding this strengthening the LTL synthesizer returns a realizability result.

Undecidability. Although we can approximate the semantics of TSL with LTL,
there are TSL formulas that cannot be expressed as LTL formulas of finite size.

Theorem 2 ([19]). The realizability problem of TSL is undecidable.

6 TSL Synthesis

Our synthesis framework provides a modular refinement process to synthesize
executables from TSL specifications, as depicted in Fig. 1. The user initially
provides a TSL specification over predicate and function terms. At the end of
the procedure, the user receives an executable to control a reactive system.

The first step of our method answers the synthesis question of TSL: if the
specification is realizable, then a control flow model is returned. To this end, an
intermediate translation to LTL is used, utilizing an LTL synthesis solver that
produces circuits in the AIGER format. If the specification is realizable, the
resulting control flow model is turned into Haskell code, which is implemented
as an independent Haskell module. The user has the choice between two differ-
ent targets: a module built on Arrows, which is compatible with any Arrowized
FRP library, or a module built on Applicative, which supports Applicative FRP
libraries. Our procedure generates a single Haskell module per TSL specification.
This makes naturally decomposing a project according to individual tasks possi-
ble. Each module provides a single component, which is parameterized by their
initial state and the pure function and predicate transformations. As soon as
these are provided as part of the surrounding project context, a final executable
can be generated by compiling the Haskell code.

An important feature of our synthesis approach is that implementations for
the terms used in the specification are only required after synthesis. This allows

Temporal Stream Logic: Synthesis Beyond The Bools 621

Fig. 6. Example CFM of the music player generated from a TSL specification.

the user to explore several possible specifications before deciding on any term
implementations.

Control Flow Model. The first step of our approach is the synthesis of a Control
Flow Model M (CFM) from the given TSL specification ϕ, which provides us
with a uniform representation of the control flow structure of our final program.

Formally, a CFM M is a tuple M = (I, O, C, V, �, δ), where I is a finite set
of inputs, O is a finite set of outputs, C is a finite set of cells, V is a finite set of
vertices, � : V → F assigns a vertex a function f ∈ F or a predicate p ∈ P, and

δ : (O ∪ C ∪ V) × N → (I ∪ C ∪ V ∪ {⊥})

is a dependency relation that relates every output, cell, and vertex of the CFM
with n ∈ N arguments, which are either inputs, cells, or vertices. Outputs and
cells s ∈ O∪C always have only a single argument, i.e., δ(s, 0) �≡ ⊥ and ∀m > 0.
δ(s,m) ≡ ⊥, while for vertices x ∈ V the number of arguments n ∈ N align with
the arity of the assigned function or predicate �(x), i.e., ∀m ∈ N. δ(x,m) ≡ ⊥
↔ m > n. A CFM is valid if it does not contain circular dependencies, i.e., on
every cycle induced by δ there must lie at least a single cell. We only consider
valid CFMs.

An example CFM for our music player of Sect. 2 is depicted in Fig. 6. Inputs I

come from the left and outputs O leave on the right. The example contains a
single cell c ∈ C, which holds the stateful memory Cell, introduced during syn-
thesis for the module. The green, arrow shaped boxes depict vertices V , which
are labeled with functions and predicates names, according to �. For the Boolean
decisions that define δ, we use circuit symbols for conjunction, disjunction, and
negation. Boolean decisions are piped to a multiplexer gate that selects the
respective update streams. This allows each update stream to be passed to an

622 B. Finkbeiner et al.

output stream if and only if the respective Boolean trigger evaluates positively,
while our construction ensures mutual exclusion on the Boolean triggers. For
code generation, the logic gates are implemented using the corresponding dedi-
cated Boolean functions. After building a control structure, we assign semantics
to functions and predicates by providing implementations. To this end, we use
Functional Reactive Programming (FRP). Prior work has established Causal
Commutative Arrows (CCA) as an FRP language pattern equivalent to a CFM
[33,34,53]. CCAs are an abstraction subsumed by other functional reactive pro-
gramming abstractions, such as Monads, Applicative and Arrows [32,33]. There
are many FRP libraries using Monads [11,14,42], Applicative [2,3,23,48], or
Arrows [10,39,41,51], and since every Monad is also an Applicative and Applica-
tive/Arrows both are universal design patterns, we can give uniform translations
to all of these libraries using translations to just Applicative and Arrows. Both
translations are possible due to the flexible notion of a CFM.

In the last step, the synthesized FRP program is compiled into an executable,
using the provided function and predicate implementations. This step is not fixed
to a single compiler implementation, but in fact can use any FRP compiler (or
library) that supports a language abstraction at least as expressive as CCA. For
example, instead of creating an Android music player app, we could target an
FRP web interface [48] to create an online music player, or an embedded FRP
library [23] to instantiate the player on a computationally more restricted device.
By using the strong core of CCA, we even can directly implement the player in
hardware, which is for example possible with the CλaSH compiler [3]. Note that
we still need separate implementations for functions and predicates for each
target. However, the specification and synthesized CFM always stay the same.

7 Experimental Results

To evaluate our synthesis procedure we implemented a tool that follows the
structure of Fig. 1. It first encodes the given TSL specification in LTL and then
refines it until an LTL solver either produces a realizability result or returns a
non-spurious counter-strategy. For LTL synthesis we use the bounded synthesis
tool BoSy [15]. As soon as we get a realizing strategy it is translated to a cor-
responding CFM. Then, we generate the FRP program structure. Finally, after
providing function implementations the result is compiled into an executable.

To demonstrate the effectiveness of synthesizing TSL, we applied our tool to
a collection of benchmarks from different application domains, listed in Table 1.
Every benchmark class consists of multiple specifications, addressing different
features of TSL. We created all specifications from scratch, where we took care
that they either relate to existing textual specifications, or real world scenarios.
A short description of each benchmark class is given in [19].

For every benchmark, we report the synthesis time and the size of the syn-
thesized CFM, split into the number of cells (|CM|) and vertices (|VM|) used.
The synthesized CFM may use more cells than the original TSL specification
if synthesis requires more memory in order to realize a correct control flow.

Temporal Stream Logic: Synthesis Beyond The Bools 623

Table 1. Number of cells |CM| and vertices |VM| of the resulting CFM M and syn-
thesis times for a collection of TSL specifications ϕ. A * indicates that the benchmark
additionally has an initial condition as part of the specification.

Benchmark (ϕ) |ϕ| |I| |O| |P| |F| |CM| |VM| Synthesis
Time (s)

Button
default 7 1 2 1 3 3 8 0.364

Music App
simple 91 3 1 4 7 2 25 0.77
system feedback 103 3 1 5 8 2 31 0.572
motivating example 87 3 1 5 8 2 70 1.783

FRPZoo
scenario0 54 1 3 2 8 4 36 1.876
scenario5 50 1 3 2 7 4 32 1.196
scenario10 48 1 3 2 7 4 32 1.161

Escalator
non-reactive 8 0 1 0 1 2 4 0.370
non-counting 15 2 1 2 4 2 19 0.304
counting 34 2 2 3 7 3 23 0.527
counting* 43 2 2 3 8 4 43 0.621
bidirectional 111 2 2 5 10 3 214 4.555
bidirectional* 124 2 2 5 11 4 287 16.213
smart 45 2 1 2 4 4 159 24.016

Slider
default 50 1 1 2 4 2 15 0.664
scored 67 1 3 4 8 4 62 3.965
delayed 71 1 3 4 8 5 159 7.194

Haskell-TORCS
simple 40 5 3 2 16 4 37 0.680
advanced

gearing 23 4 1 1 3 2 7 0.403
accelerating 15 2 2 2 6 3 11 0.391
steering

simple 45 2 1 4 6 2 31 0.459
improved 100 2 2 4 10 3 26 1.347
smart 76 3 2 4 8 5 227 3.375

Table 2. Set of programs that use purity to keep one or two counters in range. Synthesis
needs multiple refinements of the specification to proof realizability.

Benchmark (ϕ) |ϕ| |I| |O| |P| |F| |CM| |VM| Refinements Synthesis
Time (s)

inrange-single 23 2 1 2 4 2 21 3 0.690
inrange-two 51 3 3 4 7 4 440 6 173.132
graphical-single 55 2 3 2 6 4 343 9 1767.948
graphical-two 113 3 5 4 9 - - - ¿ 10000

624 B. Finkbeiner et al.

The synthesis was executed on a quad-core Intel Xeon processor (E3-1271 v3,
3.6GHz, 32 GB RAM, PC1600, ECC), running Ubuntu 64bit LTS 16.04.

The experiments of Table 1 show that TSL successfully lifts the applicability
of synthesis from the Boolean domain to arbitrary data domains, allowing for new
applications that utilize every level of required abstraction. For all benchmarks
we always found a realizable system within a reasonable amount of time, where
the results often required synthesized cells to realize the control flow behavior.

We also considered a preliminary set of benchmarks that require multiple
refinement steps to be synthesizable. An overview of the results is given in
Table 2. The benchmarks are inspired by examples of the Reactive Banana FRP
library [2]. Here, purity of function and predicate applications must be utilized
by the system to ensure that the value of one or two counters never goes out of
range. Thereby, the system not only needs purity to verify this condition, but also
to take the correct decisions in the resulting implementation to be synthesized.

8 Related Work

Our approach builds on the rich body of work on reactive synthesis, see [17] for a
survey. The classic reactive synthesis problem is the construction of a finite-state
machine that satisfies a specification in a temporal logic like LTL. Our approach
differs from the classic problem in its connection to an actual programming
paradigm, namely FRP, and its separation of control and data.

The synthesis of reactive programs, rather than finite-state machines, has
previously been studied for standard temporal logic [21,35]. Because there is no
separation of control and data, these approaches do not directly scale to realistic
applications. With regard to FRP, a Curry-Howard correspondence between LTL
and FRP in a dependently typed language was discovered [28,29] and used to
prove properties of FRP programs [8,30]. However, our paper is the first, to the
best of our knowledge, to study the synthesis of FRP programs from temporal
specifications.

The idea to separate control and data has appeared, on a smaller scale, in the
synthesis with identifiers, where identifiers, such as the number of a client in a
mutual exclusion protocol, are treated symbolically [13]. Uninterpreted functions
have been used to abstract data-related computational details in the synthesis
of synchronization primitives for complex programs [5]. Another connection to
other synthesis approaches is our CEGAR loop. Similar refinement loops also
appear in other synthesis appraches, however with a different purpose, such as
the refinement of environment assumptions [1].

So far, there is no immediate connection between our approach and the sub-
stantial work on deductive and inductive synthesis, which is specifically con-
cerned with the data-transformation aspects of programs [16,31,40,47,49,50].
Typically, these approaches are focussed on non-reactive sequential programs.
An integration of deductive and inductive techniques into our approach for reac-
tive systems is a very promising direction for future work. Abstraction-based
synthesis [4,12,24,37] may potentially provide a link between the approaches.

Temporal Stream Logic: Synthesis Beyond The Bools 625

9 Conclusions

We have introduced Temporal Stream Logic, which allows the user to specify
the control flow of a reactive program. The logic cleanly separates control from
complex data, forming the foundation for our procedure to synthesize FRP pro-
grams. By utilizing the purity of function transformations our logic scales inde-
pendently of the complexity of the data to be handled. While we have shown
that scalability comes at the cost of undecidability, we addressed this issue by
using a CEGAR loop, which lazily refines the underapproximation until either
a realizing system implementation or an unrealizability proof is found.

Our experiments indicate that TSL synthesis works well in practice and on
a wide range of programming applications. TSL also provides the foundations
for further extensions. For example, a user may want to fix the semantics for a
subset of the functions and predicates. Such refinements can be implemented as
part of a much richer TSL Modulo Theory framework.

References

1. Alur, R., Moarref, S., Topcu, U.: Counter-strategy guided refinement of GR(1) tem-
poral logic specifications. In: Formal Methods in Computer-Aided Design, FMCAD
2013, Portland, OR, USA, 20–23 October 2013, pp. 26–33. IEEE (2013). http://
ieeexplore.ieee.org/document/6679387/

2. Apfelmus, H.: Reactive-banana. Haskell library (2012). http://www.haskell.org/
haskellwiki/Reactive-banana

3. Baaij, C.: Digital circuit in CλaSH: functional specifications and type-directed
synthesis. Ph.D. thesis, University of Twente, January 2015. https://doi.org/10.
3990/1.9789036538039, eemcs-eprint-23939

4. Beyene, T.A., Chaudhuri, S., Popeea, C., Rybalchenko, A.: A constraint-based
approach to solving games on infinite graphs. In: Jagannathan and Sewell [26], pp.
221–234. https://doi.org/10.1145/2535838.2535860, http://doi.acm.org/10.1145/
2535838.2535860

5. Bloem, R., Hofferek, G., Könighofer, B., Könighofer, R., Ausserlechner, S., Spork,
R.: Synthesis of synchronization using uninterpreted functions. In: Formal Methods
in Computer-Aided Design, FMCAD 2014, Lausanne, Switzerland, 21–24 October
2014, pp. 35–42. IEEE (2014). https://doi.org/10.1109/FMCAD.2014.6987593

6. Bloem, R., Jacobs, S., Khalimov, A.: Parameterized synthesis case study: AMBA
AHB. In: Chatterjee, K., Ehlers, R., Jha, S. (eds.) Proceedings 3rd Workshop on
Synthesis, SYNT 2014. EPTCS, Vienna, Austria, 23–24 July 2014, vol. 157, pp.
68–83 (2014). https://doi.org/10.4204/EPTCS.157.9

7. Bloem, R., Jobstmann, B., Piterman, N., Pnueli, A., Sa’ar, Y.: Synthesis of reac-
tive(1) designs. J. Comput. Syst. Sci. 78(3), 911–938 (2012). https://doi.org/10.
1016/j.jcss.2011.08.007

8. Cave, A., Ferreira, F., Panangaden, P., Pientka, B.: Fair reactive programming.
In: Jagannathan and Sewell [26], pp. 361–372. https://doi.org/10.1145/2535838.
2535881, http://doi.acm.org/10.1145/2535838.2535881

9. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement for symbolic model checking. J. ACM 50(5), 752–794
(2003). https://doi.org/10.1145/876638.876643

http://ieeexplore.ieee.org/document/6679387/
http://ieeexplore.ieee.org/document/6679387/
http://www.haskell.org/haskellwiki/Reactive-banana
http://www.haskell.org/haskellwiki/Reactive-banana
https://doi.org/10.3990/1.9789036538039
https://doi.org/10.3990/1.9789036538039
https://doi.org/10.1145/2535838.2535860
http://doi.acm.org/10.1145/2535838.2535860
http://doi.acm.org/10.1145/2535838.2535860
https://doi.org/10.1109/FMCAD.2014.6987593
https://doi.org/10.4204/EPTCS.157.9
https://doi.org/10.1016/j.jcss.2011.08.007
https://doi.org/10.1016/j.jcss.2011.08.007
https://doi.org/10.1145/2535838.2535881
https://doi.org/10.1145/2535838.2535881
http://doi.acm.org/10.1145/2535838.2535881
https://doi.org/10.1145/876638.876643

626 B. Finkbeiner et al.

10. Courtney, A., Nilsson, H., Peterson, J.: The yampa arcade. In: Proceedings of the
ACM SIGPLAN Workshop on Haskell, Haskell 2003, Uppsala, Sweden, 28 August
2003, pp. 7–18. ACM, (2003). https://doi.org/10.1145/871895.871897, http://doi.
acm.org/10.1145/871895.871897

11. Czaplicki, E., Chong, S.: Asynchronous functional reactive programming for Guis.
In: Boehm, H., Flanagan, C. (eds.) ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2013, Seattle, WA, USA, 16–19 June
2013, pp. 411–422. ACM (2013). https://dl.acm.org/citation.cfm?doid=2462156.
2462161, http://doi.acm.org/10.1145/2462156.2462161

12. Dimitrova, R., Finkbeiner, B.: Counterexample-guided synthesis of observation
predicates. In: Jurdziński, M., Ničković, D. (eds.) FORMATS 2012. LNCS, vol.
7595, pp. 107–122. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-33365-1 9

13. Ehlers, R., Seshia, S.A., Kress-Gazit, H.: Synthesis with identifiers. In: McMil-
lan, K.L., Rival, X. (eds.) VMCAI 2014. LNCS, vol. 8318, pp. 415–433. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-54013-4 23

14. Elliott, C., Hudak, P.: Functional reactive animation. In: Jones, S.L.P., Tofte,
M., Berman, A.M. (eds.) Proceedings of the 1997 ACM SIGPLAN International
Conference on Functional Programming (ICFP 1997), Amsterdam, The Nether-
lands, 9–11 June 1997, pp. 263–273. ACM (1997). https://doi.org/10.1145/258948.
258973, http://doi.acm.org/10.1145/258948.258973

15. Faymonville, P., Finkbeiner, B., Tentrup, L.: BoSy: an experimentation framework
for bounded synthesis. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS,
vol. 10427, pp. 325–332. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-63390-9 17

16. Feser, J.K., Chaudhuri, S., Dillig, I.: Synthesizing data structure transformations
from input-output examples. In: Grove and Blackburn [22], pp. 229–239. https://
doi.org/10.1145/2737924.2737977, http://doi.acm.org/10.1145/2737924.2737977

17. Finkbeiner, B.: Synthesis of reactive systems. In: Esparza, J., Grumberg, O., Sick-
ert, S. (eds.) Dependable Software Systems Engineering. NATO Science for Peace
and Security Series, D: Information and Communication Security, vol. 45, pp. 72–
98. IOS Press (2016)

18. Finkbeiner, B., Klein, F., Piskac, R., Santolucito, M.: Vehicle platooning sim-
ulations with functional reactive programming. In: Proceedings of the 1st
International Workshop on Safe Control of Connected and Autonomous Vehi-
cles, SCAV@CPSWeek 2017, Pittsburgh, PA, USA, 21 April 2017, pp. 43–47.
ACM, (2017). https://doi.org/10.1145/3055378.3055385, http://doi.acm.org/10.
1145/3055378.3055385

19. Finkbeiner, B., Klein, F., Piskac, R., Santolucito, M.: Temporal stream logic: Syn-
thesis beyond the bools. CoRR abs/1712.00246 (2019). http://arxiv.org/abs/1712.
00246

20. Finkbeiner, B., Schewe, S.: Bounded synthesis. STTT 15(5–6), 519–539 (2013).
https://doi.org/10.1007/s10009-012-0228-z

21. Gerstacker, C., Klein, F., Finkbeiner, B.: Bounded synthesis of reactive programs.
In: Automated Technology for Verification and Analysis - 16th International Sym-
posium, ATVA 2018, Los Angeles, CA, USA, 7–10 October 2018, Proceedings, pp.
441–457 (2018). https://doi.org/10.1007/978-3-030-01090-4 26

22. Grove, D., Blackburn, S. (eds.): Proceedings of the 36th ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation, Portland, OR, USA,
15–17 June 2015. ACM (2015). http://dl.acm.org/citation.cfm?id=2737924

https://doi.org/10.1145/871895.871897
http://doi.acm.org/10.1145/871895.871897
http://doi.acm.org/10.1145/871895.871897
https://dl.acm.org/citation.cfm?doid=2462156.2462161
https://dl.acm.org/citation.cfm?doid=2462156.2462161
http://doi.acm.org/10.1145/2462156.2462161
https://doi.org/10.1007/978-3-642-33365-1_9
https://doi.org/10.1007/978-3-642-33365-1_9
https://doi.org/10.1007/978-3-642-54013-4_23
https://doi.org/10.1145/258948.258973
https://doi.org/10.1145/258948.258973
http://doi.acm.org/10.1145/258948.258973
https://doi.org/10.1007/978-3-319-63390-9_17
https://doi.org/10.1007/978-3-319-63390-9_17
https://doi.org/10.1145/2737924.2737977
https://doi.org/10.1145/2737924.2737977
http://doi.acm.org/10.1145/2737924.2737977
https://doi.org/10.1145/3055378.3055385
http://doi.acm.org/10.1145/3055378.3055385
http://doi.acm.org/10.1145/3055378.3055385
http://arxiv.org/abs/1712.00246
http://arxiv.org/abs/1712.00246
https://doi.org/10.1007/s10009-012-0228-z
https://doi.org/10.1007/978-3-030-01090-4_26
http://dl.acm.org/citation.cfm?id=2737924

Temporal Stream Logic: Synthesis Beyond The Bools 627

23. Helbling, C., Guyer, S.Z.: Juniper: a functional reactive programming language
for the arduino. In: Janin and Sperber [27], pp. 8–16. https://doi.org/10.1145/
2975980.2975982, http://doi.acm.org/10.1145/2975980.2975982

24. Hsu, K., Majumdar, R., Mallik, K., Schmuck, A.K.: Multi-layered abstraction-
based controller synthesis for continuous-time systems. In: Proceedings of the 21st
International Conference on Hybrid Systems: Computation and Control (part of
CPS Week), pp. 120–129. ACM (2018)

25. Jacobs, S., et al.: The 4th reactive synthesis competition (SYNTCOMP 2017):
Benchmarks, participants and results. In: SYNT 2017. EPTCS, vol. 260, pp. 116–
143 (2017). https://doi.org/10.4204/EPTCS.260.10

26. Jagannathan, S., Sewell, P. (eds.): The 41st Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2014, San Diego,
CA, USA, 20–21 January 2014. ACM (2014). http://dl.acm.org/citation.cfm?
id=2535838

27. Janin, D., Sperber, M. (eds.): Proceedings of the 4th International Workshop on
Functional Art, Music, Modelling, and Design, FARM@ICFP 2016, Nara, Japan, 24
September 2016. ACM (2016). https://doi.org/10.1145/2975980, http://doi.acm.
org/10.1145/2975980

28. Jeffrey, A.: LTL types FRP: linear-time temporal logic propositions as types, proofs
as functional reactive programs. In: Claessen, K., Swamy, N. (eds.) Proceedings of
the sixth workshop on Programming Languages meets Program Verification, PLPV
2012, Philadelphia, PA, USA, 24 January 2012, pp. 49–60. ACM (2012). https://
doi.org/10.1145/2103776.2103783, http://doi.acm.org/10.1145/2103776.2103783

29. Jeltsch, W.: Towards a common categorical semantics for linear-time temporal logic
and functional reactive programming. Electr. Notes Theor. Comput. Sci. 286, 229–
242 (2012). https://doi.org/10.1016/j.entcs.2012.08.015

30. Krishnaswami, N.R.: Higher-order functional reactive programming without space-
time leaks. In: Morrisett, G., Uustalu, T. (eds.) ACM SIGPLAN International Con-
ference on Functional Programming, ICFP 2013, Boston, MA, USA, 25–27 Septem-
ber 2013, pp. 221–232. ACM (2013). https://doi.org/10.1145/2500365.2500588,
http://doi.acm.org/10.1145/2500365.2500588

31. Kuncak, V., Mayer, M., Piskac, R., Suter, P.: Comfusy: a tool for complete func-
tional synthesis. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS,
vol. 6174, pp. 430–433. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-14295-6 38

32. Lindley, S., Wadler, P., Yallop, J.: Idioms are oblivious, arrows are meticulous,
monads are promiscuous. Electr. Notes Theor. Comput. Sci. 229(5), 97–117 (2011).
https://doi.org/10.1016/j.entcs.2011.02.018

33. Liu, H., Cheng, E., Hudak, P.: Causal commutative arrows. J. Funct. Program.
21(4–5), 467–496 (2011). https://doi.org/10.1017/S0956796811000153

34. Liu, H., Hudak, P.: Plugging a space leak with an arrow. Electr. Notes Theor.
Comput. Sci. 193, 29–45 (2007). https://doi.org/10.1016/j.entcs.2007.10.006

35. Madhusudan, P.: Synthesizing reactive programs. In: Bezem, M. (ed.) Com-
puter Science Logic, 25th International Workshop/20th Annual Conference of the
EACSL, CSL 2011, Bergen, Norway, 12–15 September 2011, Proceedings. LIPIcs,
vol. 12, pp. 428–442. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2011).
https://doi.org/10.4230/LIPIcs.CSL.2011.428

36. Mainland, G. (ed.): Proceedings of the 9th International Symposium on Haskell,
Haskell 2016, Nara, Japan, 22–23 September 2016. ACM (2016). https://doi.org/
10.1145/2976002, http://doi.acm.org/10.1145/2976002

https://doi.org/10.1145/2975980.2975982
https://doi.org/10.1145/2975980.2975982
http://doi.acm.org/10.1145/2975980.2975982
https://doi.org/10.4204/EPTCS.260.10
http://dl.acm.org/citation.cfm?id=2535838
http://dl.acm.org/citation.cfm?id=2535838
https://doi.org/10.1145/2975980
http://doi.acm.org/10.1145/2975980
http://doi.acm.org/10.1145/2975980
https://doi.org/10.1145/2103776.2103783
https://doi.org/10.1145/2103776.2103783
http://doi.acm.org/10.1145/2103776.2103783
https://doi.org/10.1016/j.entcs.2012.08.015
https://doi.org/10.1145/2500365.2500588
http://doi.acm.org/10.1145/2500365.2500588
https://doi.org/10.1007/978-3-642-14295-6_38
https://doi.org/10.1007/978-3-642-14295-6_38
https://doi.org/10.1016/j.entcs.2011.02.018
https://doi.org/10.1017/S0956796811000153
https://doi.org/10.1016/j.entcs.2007.10.006
https://doi.org/10.4230/LIPIcs.CSL.2011.428
https://doi.org/10.1145/2976002
https://doi.org/10.1145/2976002
http://doi.acm.org/10.1145/2976002

628 B. Finkbeiner et al.

37. Mallik, K., Schmuck, A.K., Soudjani, S., Majumdar, R.: Compositional
abstraction-based controller synthesis for continuous-time systems. arXiv preprint
arXiv:1612.08515 (2016)

38. Manna, Z., Waldinger, R.: A deductive approach to program synthesis. ACM Trans.
Program. Lang. Syst. 2(1), 90–121 (1980). https://doi.org/10.1145/357084.357090

39. Murphy, T.E.: A livecoding semantics for functional reactive programming.
In: Janin and Sperber [27], pp. 48–53. https://doi.org/10.1145/2975980.
2975986http://doi.acm.org/10.1145/2975980.2975986

40. Osera, P., Zdancewic, S.: Type-and-example-directed program synthesis. In:
Grove and Blackburn [22], pp. 619–630. https://doi.org/10.1145/2737924.2738007,
http://doi.acm.org/10.1145/2737924.2738007

41. Perez, I., Bärenz, M., Nilsson, H.: Functional reactive programming, refactored.
In: Mainland [36], pp. 33–44. https://doi.org/10.1145/2976002.2976010, http://
doi.acm.org/10.1145/2976002.2976010

42. van der Ploeg, A., Claessen, K.: Practical principled FRP: forget the past,
change the future, FRPNow! In: Fisher, K., Reppy, J.H. (eds.) Proceedings
of the 20th ACM SIGPLAN International Conference on Functional Program-
ming, ICFP 2015, Vancouver, BC, Canada, 1–3 September 2015, pp. 302–314.
ACM (2015). https://doi.org/10.1145/2784731.2784752, http://doi.acm.org/10.
1145/2784731.2784752

43. Pnueli, A.: The temporal logic of programs. In: 18th Annual Symposium on
Foundations of Computer Science, Providence, Rhode Island, USA, 31 October–1
November 1977, pp. 46–57. IEEE Computer Society (1977). https://doi.org/10.
1109/SFCS.1977.32

44. Pnueli, A., Rosner, R.: On the synthesis of an asynchronous reactive module.
In: Ausiello, G., Dezani-Ciancaglini, M., Della Rocca, S.R. (eds.) ICALP 1989.
LNCS, vol. 372, pp. 652–671. Springer, Heidelberg (1989). https://doi.org/10.1007/
BFb0035790

45. Post, E.L.: A variant of a recursively unsolvable problem. Bull. Am. Math. Soc.
52(4), 264–268 (1946). http://projecteuclid.org/euclid.bams/1183507843

46. Shan, Z., Azim, T., Neamtiu, I.: Finding resume and restart errors in android appli-
cations. In: Visser, E., Smaragdakis, Y. (eds.) Proceedings of the 2016 ACM SIG-
PLAN International Conference on Object-Oriented Programming, Systems, Lan-
guages, and Applications, OOPSLA 2016, part of SPLASH 2016, Amsterdam, The
Netherlands, 30 October–4 November 2016, pp. 864–880. ACM (2016). https://
doi.org/10.1145/2983990.2984011, http://doi.acm.org/10.1145/2983990.2984011

47. Solar-Lezama, A.: Program sketching. STTT 15(5–6), 475–495 (2013). https://
doi.org/10.1007/s10009-012-0249-7

48. Trinkle, R.: Reflex-frp (2017). https://github.com/reflex-frp/reflex
49. Vechev, M.T., Yahav, E., Yorsh, G.: Abstraction-guided synthesis of synchroniza-

tion. STTT 15(5–6), 413–431 (2013). https://doi.org/10.1007/s10009-012-0232-
3

50. Wang, X., Dillig, I., Singh, R.: Synthesis of data completion scripts using finite tree
automata. PACMPL 1(OOPSLA), 62:1–62:26 (2017). https://doi.org/10.1145/
3133886, http://doi.acm.org/10.1145/3133886

51. Winograd-Cort, D.: Effects, Asynchrony, and Choice in Arrowized Functional
Reactive Programming. Ph.D. thesis, Yale University, December 2015. http://
www.danwc.com/s/dwc-yale-formatted-dissertation.pdf

52. Wongpiromsarn, T., Topcu, U., Murray, R.M.: Synthesis of control protocols for
autonomous systems. Unmanned Syst. 1(01), 21–39 (2013)

http://arxiv.org/abs/1612.08515
https://doi.org/10.1145/357084.357090
https://doi.org/10.1145/2975980.2975986
https://doi.org/10.1145/2975980.2975986
http://doi.acm.org/10.1145/2975980.2975986
https://doi.org/10.1145/2737924.2738007
http://doi.acm.org/10.1145/2737924.2738007
https://doi.org/10.1145/2976002.2976010
http://doi.acm.org/10.1145/2976002.2976010
http://doi.acm.org/10.1145/2976002.2976010
https://doi.org/10.1145/2784731.2784752
http://doi.acm.org/10.1145/2784731.2784752
http://doi.acm.org/10.1145/2784731.2784752
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1007/BFb0035790
https://doi.org/10.1007/BFb0035790
http://projecteuclid.org/euclid.bams/1183507843
https://doi.org/10.1145/2983990.2984011
https://doi.org/10.1145/2983990.2984011
http://doi.acm.org/10.1145/2983990.2984011
https://doi.org/10.1007/s10009-012-0249-7
https://doi.org/10.1007/s10009-012-0249-7
https://github.com/reflex-frp/reflex
https://doi.org/10.1007/s10009-012-0232-3
https://doi.org/10.1007/s10009-012-0232-3
https://doi.org/10.1145/3133886
https://doi.org/10.1145/3133886
http://doi.acm.org/10.1145/3133886
http://www.danwc.com/s/dwc-yale-formatted-dissertation.pdf
http://www.danwc.com/s/dwc-yale-formatted-dissertation.pdf

Temporal Stream Logic: Synthesis Beyond The Bools 629

53. Yallop, J., Liu, H.: Causal commutative arrows revisited. In: Mainland [36],
pp. 21–32. https://doi.org/10.1145/2976002.2976019, http://doi.acm.org/10.1145/
2976002.2976019

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1145/2976002.2976019
http://doi.acm.org/10.1145/2976002.2976019
http://doi.acm.org/10.1145/2976002.2976019
http://creativecommons.org/licenses/by/4.0/

Run-Time Optimization for Learned Controllers
Through Quantitative Games

Guy Avni1(B), Roderick Bloem2, Krishnendu Chatterjee1, Thomas A. Henzinger1,
Bettina Könighofer2, and Stefan Pranger2

1 IST Austria, Klosterneuburg, Austria
guy.avni@ist.ac.at
2 TU Graz, Graz, Austria

Abstract. A controller is a device that interacts with a plant. At each time point,
it reads the plant’s state and issues commands with the goal that the plant oper-
ates optimally. Constructing optimal controllers is a fundamental and challenging
problem. Machine learning techniques have recently been successfully applied to
train controllers, yet they have limitations. Learned controllers are monolithic and
hard to reason about. In particular, it is difficult to add features without retraining,
to guarantee any level of performance, and to achieve acceptable performance
when encountering untrained scenarios. These limitations can be addressed by
deploying quantitative run-time shields that serve as a proxy for the controller.
At each time point, the shield reads the command issued by the controller and
may choose to alter it before passing it on to the plant. We show how optimal
shields that interfere as little as possible while guaranteeing a desired level of
controller performance, can be generated systematically and automatically using
reactive synthesis. First, we abstract the plant by building a stochastic model.
Second, we consider the learned controller to be a black box. Third, we mea-
sure controller performance and shield interference by two quantitative run-time
measures that are formally defined using weighted automata. Then, the problem
of constructing a shield that guarantees maximal performance with minimal inter-
ference is the problem of finding an optimal strategy in a stochastic 2-player game
“controller versus shield” played on the abstract state space of the plant with a
quantitative objective obtained from combining the performance and interference
measures. We illustrate the effectiveness of our approach by automatically con-
structing lightweight shields for learned traffic-light controllers in various road
networks. The shields we generate avoid liveness bugs, improve controller per-
formance in untrained and changing traffic situations, and add features to learned
controllers, such as giving priority to emergency vehicles.

1 Introduction

The controller synthesis problem is a fundamental problem that is widely studied by
different communities [42,44]. A controller is a device that interacts with a plant. In
each point in time it reads the plant’s state, e.g., given by sensor reading, and issues

This research was supported in part by the Austrian Science Fund (FWF) under grants S114
(RiSE/SHiNE), Z211-N23 (Wittgenstein Award), and M 2369-N33 (Meitner fellowship).

c© The Author(s) 2019
I. Dillig and S. Tasiran (Eds.): CAV 2019, LNCS 11561, pp. 630–649, 2019.
https://doi.org/10.1007/978-3-030-25540-4_36

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-25540-4_36&domain=pdf
https://doi.org/10.1007/978-3-030-25540-4_36

Run-Time Optimization for Learned Controllers Through Quantitative Games 631

a command based on the state. The controller should guarantee that the plant operates
correctly or optimally with respect to some given specification. As a running example,
we consider a traffic light controller for a road intersection (see Fig. 1). The state of the
plant refers to the state of the roads leading to the junction; namely, the positions of the
cars, their speeds, their sizes, etc. A controller command consists of a light configuration
for the junction in the next time frame. Specifications can either be qualitative, e.g.,
“it should never be the case that a road with an empty queue gets a green light”, or
quantitative, e.g., “the cost of a controller is the average waiting times of the cars in the
junction”.

Fig. 1. On the left, a concrete state depicted in the traffic simulator SUMO. On the right, we depict
the corresponding abstract state with queues cut off at k = 5, and some outgoing transitions.
Upon issuing action North-South, a car is evicted from each of the North-South queues. Then,
we choose uniformly at random, out of the 16 possible options, the incoming cars to the queues,
update the state, and cutoff the queues at k (e.g., when a car enters from East, the queue stays 5).

A challenge in controller synthesis is that, since the number of possible plant read-
ings is huge, it is computationally demanding to find an optimal command, given a
plant state. Machine learning is a prominent approach to make decisions based on large
amounts of collected data [28,37]. It is widely successful in practice and takes an inte-
gral part in the design process of various systems. Machine learning has been suc-
cessfully applied to train controllers [15,33,34] and specifically controllers for traffic
control [20,35,39].

A shortcoming of machine-learning techniques is that the controllers that are pro-
duced are black-box devices that are hard to reason about and modify without a com-
plete re-training. It is thus challenging, for example, to obtain worst-case guarantees
about the controller, which is particularly important in safety-critical settings. Attempts
to address this problem come from both the formal methods community [46], where
verification of learned systems is extensively studied [24,29], and the machine-learning
community, where guarantees are added during the training process using reward engi-
neering [13,18] or by modifying the exploration process [11,19,38]. Both approaches
require expertise in the respective field and suffer from limitations such as scalability for
the first, and intricacy and robustness issues, for the second. Moreover, both techniques
were mostly studied for safety properties.

Another shortcoming of machine-learning techniques is that they require expertise
and a fine-tuning of parameters. It is difficult, for example, to train controllers that are

632 G. Avni et al.

robust to plant behaviors, e.g., a controller that has been trained on uniform traffic con-
gestion meeting rush-hour traffic, which can be significantly different and can cause
poor performance. Also, it is challenging to add features to a controller without retrain-
ing, which is both costly and time consuming. These can include permanent features,
e.g., priority to public transport, or temporary changes, e.g., changes due to an accident
or construction. Again, since the training process is intricate, adding features during
training can have unexpected effects.

In this work, we use quantitative shields to deal with the limitations of learned or
any other black-box controllers. A shield serves as a proxy between the controller and
the plant. In each point in time, as before, the controller reads the state of the plant
and issues a command. Rather than directly feeding the command to the plant, the
shield first reads it along with an abstract plant state. The shield can then choose to
keep the controller’s command or alter it, before issuing the command to the plant. The
concept of shields was first introduced in [30], where shields for safety properties were
considered and with a qualitative notion of interference: a shield is only allowed to
interfere when a controller error occurs, which is only well-defined when considering
safety properties. We elaborate on other shield-like approaches in the Sect. 1.1.

Our goal is to automatically synthesize shields that optimize quantitative measures
for black-box controllers. We are interested in synthesizing lightweight shields. We
assume that the controller performs well on average, but has no worst-case guarantees.
When combining the shield and the controller, intuitively, the controller should be active
for the majority of the time and the shield intervenes only when it is required. We
formalize the plant behavior as well as the interference cost using quantitative measures.
Unlike safety objectives, where it is clear when a shield must interfere, with quantitative
objectives, a non-interference typically does not have a devastating effect. It is thus
challenging to decide, at each time point, whether the shield should interfere or not; the
shield needs to balance the cost of interfering with the decrease in performance of not
interfering. Automatic synthesis of shields is thus natural in this setting.

We elaborate on the two quantitative measures we define. The interaction between
the plant, controller, and shield gives rise to an infinite sequence over C ×Γ ×Γ , where
C is a set of plant states and Γ is a set of allowed actions. A triple 〈c, γ1, γ2〉 means
that the plant is in state c, the controller issues command γ1, and the shield (possibly)
alters it to γ2. We use weighted automata to assign costs to infinite traces, which have
proven to be a convenient, flexible, and robust quantitative specification language [14].
Our behavioral score measures the performance of the plant and it is formally given by
a weighted automaton that assigns scores to traces over C ×Γ . Boolean properties are a
special case, which include safety properties, e.g., “an emergency vehicle should always
get a green light”, and liveness, e.g., “a car waiting in a queue eventually gets the green
light”. An example of a quantitative score is the long-run average of the waiting times
of the vehicles in the city. A second score measures the interference of a shield with
a controller. It is given by a weighted automaton over the alphabet Γ × Γ . A simple
example of an interference score charges the shield 1 for every change of action and
charges 0 when no change is made. Then, the score of an infinite trace can be phrased as
the ratio of the time that the shield interferes. Using weighted automata we can specify
more involved scores such as different charges for different types of alterations or even

Run-Time Optimization for Learned Controllers Through Quantitative Games 633

charges that depend on the past, e.g., altering the controller’s command twice in a row
is not allowed.

Given a probabilistic plant model and a formal specification of behavioral and inter-
ference scores, the problem of synthesizing an optimal shield is well-defined and can be
solved by game theory. While the game-based techniques we use are those of discrete-
event controller synthesis [3] in a stochastic setting with quantitative objectives, our
set-up is quite different. In traditional controller synthesis, there are two entities; the
controller and the adversarial plant. The goal is to synthesize a controller offline. In
our setting, there are three entities: the plant, whose behavior we model probabilisti-
cally, the controller, which we treat as a black-box and model as an adversary, and the
shield, which we synthesize. Note that the shield’s synthesis procedure is done offline
but it makes online decisions when it operates together with the controller and plant.
Our plant model is formally given by a Markov decision process which is a standard
model with which one models lack of knowledge about the plant using probability (see
Fig. 1 and details in Example 1). The game is played on the MDP by two players; a
shield and a controller, where the quantitative objective is given by the two scores. An
optimal shield is then extracted from an optimal strategy for the shield player. The game
we construct admits memoryless optimal strategies, thus the size of the shield is pro-
portional to the size of the abstraction of the plant. In addition, it is implemented as a
look-up table for actions in every state. Thus, the runtime overhead is a table look-up
and hence negligible.

We experiment with our framework by constructing shields for traffic lights in a
network of roads. Our experimental results illustrate the usefulness of the framework.
We construct shields that consistently improve the performance of controllers, espe-
cially when exhibiting behavior that they are not trained on, but, more surprising, also
while exhibiting trained behavior. We show that the use of a shield reduces variability
in performance among various controllers, thus when using a shield, the choice of the
parameters used in the training phase becomes less acute. We show how a shield can be
used to add the functionality of prioritizing public transport as well as local fairness to a
controller, both without re-training the controller. In addition, we illustrate how shields
can add worst-case guarantees on liveness without a costly verification of the controller.

1.1 Related Work

A shield-like approach to adding safety to systems is called runtime assurance [47], and
has applications, for example, in control of robotics [41] and drones [12]. In this frame-
work, a switching mechanism alternates between running a high-performance system
and a provably safe one. These works differ from ours since they consider safety specifi-
cations. As mentioned earlier, a challenge with quantitative specifications is that, unlike
safety specifications, a non-interference typically does not have a devastating effect,
thus it is not trivial to decide when and to what extent to interfere.

Another line of work is runtime enforcement, where an enforcer monitors a program
that outputs events and can either terminate the program once it detects an error [45], or
alter the event in order to guarantee, for example, safety [21], richer qualitative objec-
tives [16], or privacy [26,49]. The similarities between an enforcer and a shield is in

634 G. Avni et al.

their ability to alter events. The settings are quite different, however, since the enforced
program is not reactive whereas we consider a plant that receives commands.

Recently, formal approaches were proposed in order to restrict the exploration of the
learning agent such that a set of logically constraints are always satisfied. This method
can support other properties beyond safety, e.g., probabilistic computation tree logic
(PCTL) [25,36], linear temporal logic (LTL) [1], or differential dynamic logic [17].
To the best of our knowledge, quantitative specifications have not yet been considered.
Unlike these approaches, we consider the learned controller as a black box, thus our
approach is particularly suitable for machine learning non-experts.

While MDPs and partially-observable MDPs have been widely studied in the liter-
ature w.r.t. to quantitative objectives [27,43], our framework requires the interaction of
two players (the shield and the black-box controller) and we use game-theoretic frame-
work with quantitative objectives for our solution.

2 Definitions and Problem Statement

2.1 Plants, Controllers, and Shields

The interaction with a plant over a concrete set of states C is carried out
using two functionalities: PLANT.GETSTATE returns the plant’s current state and
PLANT.ISSUECOMMAND issues an action from a set Γ . Once an action is issued, the
plant updates its state according to some unknown transition function. At each point
in time, the controller reads the state of the plant and issues a command. Thus, it is a
function from a history in (C × Γ)∗ · C to Γ .

Informally, a shield serves as a proxy between the controller and the plant. In each
time point, it reads the controller’s issued action and can choose an alternative action to
issue to the plant. We are interested in light-weight shields that add little or no overhead
to the controller, thus the shield must be defined w.r.t. an abstraction of the plant, which
we define formally below.

Abstraction. An abstraction is a Markov decision process (MDP, for short) is A =
〈Γ,A, a0, δ〉, where Γ is a set of actions, A is a set of abstract plant states, a0 ∈ A is an
initial state, and δ : A×Γ → [0, 1]A is a probabilistic transition function, i.e., for every
a ∈ A and γ ∈ Γ , we have

∑
a′∈A δ(a, γ)(a′) = 1. The probabilities in the abstraction

model our lack of knowledge of the plant, and we assume that they reflect the behavior
exhibited by the plant. A policy f is a function from a finite history of states in A∗ to
the next action in Γ , thus it gives rise to a probabilistic distribution D(f) over infinite
sequences over A.

Example 1. Consider a plant that represents a junction with four incoming directions
(see Fig. 1). We describe an abstraction A for the junction that specifies how many cars
are waiting in each queue, where we cut off the count at a parameter k ∈ N. Formally,
an abstract state is a vector in {0, . . . , k}4, where the indices respectively represent the
North, East, South, and West queues. The larger k is, the closer the abstraction is to
the concrete plant. The set of possible actions represent the possible light directions
in the junction {NS, EW}. The abstract transitions estimate the plant behavior, and

Run-Time Optimization for Learned Controllers Through Quantitative Games 635

we describe them in two steps. Consider an abstract state a = (a1, a2, a3, a4) and
suppose the issued action is NS, where the case of EW is similar. We allow a car to cross
the junction from each of the North and South queues and decrease the two queues.
Let a′ = (max{0, a1 − 1}, a2,max{0, a3 − 1}, a4). Next, we probabilistically model
incoming cars to the queues as follows. Consider a vector 〈i1, i2, i3, i4〉 ∈ {0, 1}4 that
represents incoming cars to the queues. Let a′′ be such that, for 1 ≤ j ≤ 4, we add ij to
the j-th queue and trim at k, thus a′′

j = min{a′
j + ij , k}. Then, in A, when performing

action NS in a, we move to a′′ with the uniform probability 1/16. ��
We define shields formally. Let Γ be a set of commands, M a set of memory states,

C and A be a set of concrete and abstract states, respectively, and let α : C → A be
a mapping between the two. A shield is a function SHIELD : A × M × Γ → Γ × M
together with an initial memory state m0 ∈ M . We use PLANT to refer to the plant,
which, recall, has two functionalities: reading the current state and issuing a command
from Γ . Let CONT be a controller, which has a single functionality: given a history of
plant states, the controller issues the command to issue to the plant. The interaction of
the components is captured in the following pseudo code:

m ← m0 ∈ M and π ← empty sequence.
while true do

c ← PLANT.GETSTATE() ∈ C
γ ← CONT.GETCOMMAND(π · c)
a = α(c) ∈ A // generate abstract state for shield
γ′,m′ ← SHIELD(a, γ,m)
PLANT.ISSUECOMMAND(γ′)
m ← m′ // update shield memory state
π ← π · 〈c, γ′〉 // update plant history

end while

2.2 Quantitative Objectives for Shields

We are interested in two types of performance measures for shields. The behavioral
measure quantifies the quality of the plant’s behavior when operated with a controller
and shield. The interference measure quantifies the degree to which a shield interferes
with the controller. Formally, we need to specify values for infinite sequences, and we
use weighted automata, which are a convenient model to express such values.

Weighted Automata. A weighted automaton is a function from infinite strings to val-
ues. Technically, a weighted automaton is similar to a standard automaton only that the
transitions are labeled, in addition to letters, with numbers (weights). Unlike standard
automata in which a run is either accepting or rejecting, a run in a weighted automaton
has a value. We focus on limit-average automata in which the value is the limit aver-
age of the running sum of weights that it traverses. Formally, a weighted automaton
is W = 〈Σ,Q, q0,Δ, cost〉, where Σ is a finite alphabet, Q is a finite set of states,
Δ ⊆ (Q × Σ × Q) is a deterministic transition relation, i.e., for every q ∈ Q and
σ ∈ Σ, there is at most one q′ ∈ Q with Δ(q, σ, q′), and cost : Δ → Q specifies costs
for transitions. A run of W on an infinite word σ = σ1, σ2, . . . is r = r0, r1, . . . ∈ Qω

636 G. Avni et al.

such that r0 = q0 and, for i ≥ 1, we have Δ(ri−1, σi, ri). Note that W is deter-
ministic so there is at most one run on every word. The value that W assigns to σ is
lim infn→∞ 1

n

∑n
i=1 cost(ri−1, σi, ri).

Behavioral Score. A behavioral score measures the quality of the behavior that the
plant exhibits. It is given by a weighed automaton over the alphabet A × Γ , thus it
assigns real values to infinite sequences over A × Γ . In our experiments, we use a
concrete behavioral score, which assigns values to infinite sequences over C × Γ . We
compare the performance of the plant with various controllers and shields w.r.t. the
concrete score rather than the abstract score. With a weighted automaton we can express
costs that change over time: for example, we can penalize traffic lights that change
frequently.

Interference Score. The second score we consider measures the interference of the
shield with the controller. An interference score is given by a weighted automaton over
the alphabet Γ × Γ . With a weighted automaton we can express costs that change over
time: for example, interfering once costs 1 and any successive interference costs 2, thus
we reward the shield for short interferences.

From Shields and Controllers to Policies. Consider an abstraction MDP A. To ensure
worst-case guarantees, we treat the controller as an adversary for the shield. Let SHIELD

be a shield with memory set M and initial memory state m0. Intuitively, we find a policy
in A that represents the interaction of SHIELD with a controller that maximizes the cost
incurred. Formally, an abstract controller is a function χ : A∗ → Γ . The interaction
between SHIELD and χ gives rise to a policy pol(SHIELD, χ) in A, which, recall, is a
function from A∗ to Γ . We define pol(SHIELD, χ) inductively as follows. Consider a
history π ∈ A∗ that ends in a ∈ A, and suppose the current memory state of SHIELD is
m ∈ M . Let γ = χ(π) and let 〈γ′,m′〉 = SHIELD(γ, a,m). Then, the action that the
policy pol(SHIELD, χ) assigns is γ′, and we update the memory state to be m′.

Problem Definition; Quantitative Shield Synthesis Consider an abstraction MDP A,
a behavioral score BEH, an interference score INT, both given as weighted automata,
and a factor λ ∈ [0, 1] with which we weigh the two scores. Our goal is to find
an optimal shield w.r.t. these inputs as we define below. Consider a shield SHIELD

with memory set M . Let X be the set of abstract controllers. For SHIELD and
χ ∈ X , let D(SHIELD, χ) be the probability distribution over A × Γ × Γ that the
policy pol(SHIELD, χ) gives rise to. The value of SHIELD, denoted val(SHIELD), is
supχ∈X Er∼D(SHIELD,χ)[λ · INT(r) + (1 − λ) · BEH(r)]. An optimal shield is a shield
whose value is infSHIELD val(SHIELD).

Remark 1 (Robustness and flexibility). The problem definition we consider allows
quantitative optimization of shields w.r.t. two dimensions of quantitative measures. Ear-
lier works have considered shields but mainly with respect to Boolean measures in both
dimensions. For example, in [30], shields for safety behavioral measures were con-
structed with a Boolean notion of interference, as well as a Boolean notion of shield cor-
rectness. In contrast we allow quantitative objectives in both dimensions which presents
a much more general and robust framework. For example, the first measure of correct-
ness can be quantitative and minimize the error rate, and the second measure can allow

Run-Time Optimization for Learned Controllers Through Quantitative Games 637

shields to correct but minimize the long-run average interference. Both of the above
allows the shield to be flexible. Moreover, tuning the parameter λ allows flexible trade-
off between the two.

We allow a robust class of quantitative specifications using weighted automata,
which have been already established as a robust specification framework. Any automata
model can be used in the framework, not necessarily the ones we use here. For example,
weighted automata that discount the future or process only finite-words are suitable for
planning purposes [32]. Thus our framework is a very robust and flexible framework
for quantitative shield synthesis. ��

2.3 Examples

In Remark 1 we already discussed the flexibility of the framework. We now present
concrete examples of instantiations of the optimization problem above on our running
example, which illustrate how quantitative shields can be used to cope with limitations
of learned controllers.

Dealing with Unexpected Plant Behavior; Rush-Hour Traffic. Consider the abstrac-
tion described in Example 1, where each abstract state is a 4-dimensional vector that
represents the number of waiting cars in each direction. The behavioral score we
use is called the max queue. It charges an abstract state a ∈ {0, . . . , k}4 with the
size of the maximal queue, no matter what the issued action is, thus costBEH(a) =
maxi∈{1,2,3,4} ai. A shield that minimizes the max-queue cost will prioritize the direc-
tion with the largest queue. For the interference score, we use a score that we call the
basic interference score; we charge the shield 1 whenever it changes the controller’s
action and otherwise we charge it 0, and take the long-run average of the costs. Recall
that in the construction in Example 1, we chose uniformly at random the vector of
incoming cars. Here, in order to model rush-hour traffic, we use a different distribution,
where we let pj be the probability that a car enters the j-th queue. Then, the probability
of a vector 〈i1, i2, i3, i4〉 ∈ {0, 1}4 is

∏
1≤j≤4(pj · ij + (1 − pj) · (1 − ij)). To model

a higher load traveling on the North-South route, we increase p1 and p3 beyond 0.5.

Weighing Different Goals; Local Fairness. Suppose the controller is trained to max-
imize the number of cars passing a city. Thus, it aims to maximize the speed of the
cars in the city and prioritizes highways over farm roads. A secondary objective for a
controller is to minimize local queues. Rather than adding this objective in the training
phase, which can have an un-expected outcome, we can add a local shield for each junc-
tion. To synthesize the shield, we use the same abstraction and basic interference score
as in the above. The behavioral score we use charges an abstract state a ∈ {0, . . . , k}4
with difference |(a1 + a3)− (a2 + a4)|, thus the greater the inequality between the two
waiting directions, the higher the cost.

Adding Features to the Controller; Prioritizing Public Transport. Suppose a con-
troller is trained to increase throughput in a junction. After the controller is trained, a
designer wants to add a functionality to the controller that prioritizes buses over per-
sonal vehicles. That is, if a bus is waiting in the North direction, and no bus is waiting
in either the East or West directions, then the light should be North-South, and the other

638 G. Avni et al.

cases are similar. The abstraction we use is simpler than the ones above since we only
differentiate between a case in which a bus is present or not, thus the abstract states are
{0, 1}4, where the indices represent the directions clockwise starting from North. Let
γ = NS. The behavioral cost of a state a is 1 when a2 = a4 = 0 and a1 = 1 or a3 = 1.
The interference score we use is the basic one. A shield guarantees that in the long run,
the specification is essentially never violated.

3 A Game-Theoretic Approach to Quantitative Shield Synthesis

In order to synthesize optimal shields we construct a two-player stochastic game [10],
where we associate Player 2 with the shield and Player 1 with the controller. The game
is defined on top of an abstraction and the players’ objectives are given by the two
performance measures. We first formally define stochastic games, then we construct
the shield synthesis game, and finally show how to extract a shield from a strategy for
Player 2.

Stochastic Graph Games. The game is played on a graph by placing a token on a
vertex and letting the players move it throughout the graph. For ease of presentation,
we fix the order in which the players move: first, Player 1, then Player 2, and then
“Nature”, i.e., the next vertex is chosen randomly. Edges have costs, which, again for
convenience, appear only on edges following Player 2 moves. Formally, a two-player
stochastic graph-game is 〈V1, V2, VN , E,Pr, cost〉, where V = V1 ∪ V2 ∪ VN is a finite
set of vertices that is partitioned into three sets, for i ∈ {1, 2}, Player i controls the
vertices in Vi and “Nature” controls the vertices in VN , E ⊆ (V1 × V2) ∪ (V2 × VN)
is a set of deterministic edges, Pr : VN × V1 → [0, 1] is a probabilistic transition
function, and cost : (V2 × VN) → Q. Suppose the token reaches v ∈ V . If v ∈ Vi,
for i ∈ {1, 2}, then Player i chooses the next position of the token u ∈ V , such that
E(v, u). If v ∈ VN , then the next position is chosen randomly; namely, the token moves
to u ∈ V with probability Pr[v, u].

The game is a zero-sum game; Player 1 tries to maximize the expected long-run
average of the accumulated costs, and Player 2 tries to minimize it. A strategy for
Player i, for i ∈ {1, 2}, is a function that takes a history in V ∗ · Vi and returns the
next vertex to move the token to. The games we consider admit memoryless optimal
strategies, thus it suffices to define a Player i strategy as a function from Vi to V .
We associate a payoff with two strategies f1 and f2, which we define next. Given
f1 and f2, it is not hard to construct a Markov chain M with states VN and with
weights on the edges: for v, u ∈ VN , the probability of moving from v to u in M
is PrM[v, u] =

∑
w∈V1:f2(f1(w))=u Pr[v, w] and the cost of the edge is costM(v, u) =

∑
w∈V1:f2(f1(w))=u Pr[v, w] · cost(f1(w), u). The stationary distribution sv of a vertex

v ∈ VN in M is a well known concept [43] and it intuitively measures the long-run
average time that is spend in v. The payoff w.r.t. f1 and f2, denoted payoff(f1, f2) is∑

v,u∈VN
sv · PrM[v, u] · costM(v, u). The payoff of a strategy is the payoff it guar-

antees against any strategy of the other player, thus payoff(f1) = inff2 payoff(f1, f2).
A strategy is optimal for Player 1 if it achieves the optimal payoff, thus f is optimal if
payoff(f) = supf1

payoff(f1). The definitions for Player 2 are dual.

Run-Time Optimization for Learned Controllers Through Quantitative Games 639

Constructing the Synthesis Game. Consider an abstraction MDP A = 〈Γ,A, a0, δ〉,
weighted automata for the behavioral score BEH = 〈A×Γ,QBEH, qBEH

0 ,ΔBEH, costBEH〉
and interference score INT = 〈Γ ×Γ,QINT, q

INT
0 ,ΔINT, costINT〉, and a factor λ ∈ [0, 1].

We associate Player 1 with the controller and Player 2 with the shield. In each step, the
controller first chooses an action, then the shield chooses whether to alter it, and the
next state is selected at random. Let S = A × QINT × QBEH. We define GA,BEH,INT,λ =
〈V1, V2, VN , E,Pr, cost〉, where

– V1 = S,
– V2 = S × Γ ,
– VN = S×Γ ×{N}, where the purpose of N is to differentiate between the vertices,
– E(s, 〈s, γ〉)

for s ∈ S and γ ∈ Γ , and E(〈s, γ〉, 〈s′, γ′, N〉) for s = 〈a, q1, q2〉 ∈ S, γ, γ′ ∈
Γ, and s′ = 〈a, q′

1, q
′
2〉 ∈ S s.t. ΔINT(q1, 〈γ, γ′〉, q′

1) and ΔBEH(q2, 〈a, γ′〉, q′
2),

– Pr[〈〈a, q1, q2〉, γ,N〉, 〈a′, q1, q2〉] = δ(a, γ)(a′), and
– for s = 〈a, q1, q2〉 and s′ = 〈a, q′

1, q
′
2〉 as in the above, we have cost(〈s, γ〉,

〈s′, γ′, N〉) = λ · costINT(q1, 〈γ, γ′〉, q′
1) + (1 − λ) · costBEH(q2, 〈γ′, a〉, q′

2).

From Strategies to Shields. Recall that the game GA,BEH,INT,λ admits memoryless
optimal strategies. Consider an optimal memoryless strategy f for Player 2. Thus,
given a Player 2 vertex in V2, the function f returns a vertex in VN to move to. The
shield SHIELDf that is associated with f has the memory set M = QINT × QBEH

and the initial memory state is 〈qINT
0 , qBEH

0 〉. Given an abstract state a ∈ A, a mem-
ory state 〈qINT, qBEH〉 ∈ M , and a controller action γ ∈ Γ , let 〈a, q′

INT, q
′
BEH, γ′〉 =

f(a, qINT, qBEH, γ). The shield SHIELDf returns the action γ′ and the updated memory
state 〈q′

INT, q
′
BEH〉.

Theorem 1. Given an abstraction A, weighted automata BEH and INT, and a factor
λ, the game GA,BEH,INT,λ admits optimal memoryless strategies. Let f be an optimal
memoryless strategy for Player 2. The shield SHIELDf is an optimal shield w.r.t. A,
BEH, INT, and λ.

Remark 2 (Shield size). Recall that a shield is a function SHIELD : A × Γ × M →
Γ × M , which we store as a table. The size of the shield is the size of the domain,
namely the number of entries in the table. Given an abstraction with n1 states, a set of
possible commands Γ , and weighted automata with n2 and n3 states, the size of the
shield we construct is n1 · n2 · n3 · |Γ |. ��
Remark 3. Our construction of the game can be seen as a two-step procedure: we con-
struct a stochastic game with two mean-payoff objectives, a.k.a. a two-dimensional
game, where the shield player’s goal is to minimize both the behavioral and inter-
ference scores separately. We then reduce the game to a “one-dimension” game by
weighing the scores with the parameter λ. We perform this reduction for several rea-
sons. First, while multi-dimensional quantitative objectives have been studied in several
cases, such as MDPs [4,6,7] and special problems of stochastic games (e.g., almost-
sure winning) [2,5,8], there is no general algorithmic solution known for stochastic
games with two-dimensional objectives. Second, even for non-stochastic games with

640 G. Avni et al.

two-dimensional quantitative objectives, infinite-memory is required in general [48].
Finally, in our setting, the parameter λ provides a meaningful tradeoff: it can be asso-
ciated with how well we value the quality of the controller. If the controller is of poor
quality, then we charge the shield less for interference and set λ to be low. On the other
hand, for a high-quality controller, we charge the shield more for interferences and set
a high value for λ. ��

4 Case Study

We experiment with our framework in designing quantitative shields for traffic-light
controllers that are trained using reinforcement-learning (RL). We illustrate the use-
fulness of shields in dealing with limitations of RL as well as providing an intuitive
framework to complement RL techniques.

Traffic Simulation. All experiments were conducted using traffic simulator “Simula-
tion of Urban MObility” (SUMO, for short) [31] v0.22 using the SUMO Python API.
Incoming traffic in the cities is chosen randomly. The simulations were executed on a
desktop computer with a 4 x 2.70 GHz Intel Core i7-7500U CPU, 7.7 GB of RAM
running Ubuntu 16.04.

The Traffic Light Controller. We use RL to train a city-wide traffic-signal controller.
Intuitively, the controller is aware of the waiting cars in each junction and its actions
constitute a light assignment to all the junctions. We train a controller using a deep
convolutional Q-network [37]. In most of the networks we test with, there are two
controlled junctions. The input vector to the neural network is a 16-dimensional vec-
tor, where 8 dimensions represent a junction. For each junction, the first four compo-
nents state the number of cars approaching the junction and the last four components
state the accumulated waiting time of the cars in each one of the lanes. For exam-
ple, in Fig. 1, the first four components are (3, 6, 3, 1), thus the controller’s state is
not trimmed at 5. The controller is trained to minimize both the number of cars wait-
ing in the queues and the total waiting time. For each junction i, the controller can
choose to set the light to be either NSi or EWi, thus the set of possible actions is
Γ = {NS1NS2, EW1NS2, NS1EW2, EW1EW2}.

We use a network consisting of 4 layers: The input layer is a convolutional layer
with 16 nodes, the first hidden and the second hidden layers consisting out of 604 nodes
and 1166 nodes, respectively. The output layer consists of 4 neurons with linear activa-
tion functions, each representing one of the above mentioned actions listed in Γ . The
Q-learning uses the learning rate α = 0.001 and the discount factor 0.95 for the Q-
update and an ε-greedy exploration policy. The artificial neural network is built on an
open source implementation1 using Keras [9] and additional optimized functionality
was provided by the NumPy [40] library. We train for 100 training epochs, where each
epoch is 1500 seconds of simulated traffic, plus 2000 additional seconds in which no
new cars are introduced. The total training time of the agent is roughly 1.5 hours. While
the RL procedure that we use is simple procedure, it is inspired by standard approaches

1 https://github.com/Wert1996/Traffic-Optimisation.

https://github.com/Wert1996/Traffic-Optimisation

Run-Time Optimization for Learned Controllers Through Quantitative Games 641

to learning traffic controllers and produces controllers that perform relatively well also
with no shield.

The Shield. We synthesize a “local” shield for a junction and copy the shield for each
junction in the city. Recall that the first step in constructing the synthesis game is to con-
struct an abstraction of the plant, which intuitively represents the information according
to which the shield makes its decisions. The abstraction we use is described in Exam-
ple 1; each state is a 4-dimensional integer in {0, . . . , k}, which represents an abstrac-
tion of the number of waiting cars in each direction, cut-off by k ∈ N. As elaborated in
the example, when a shield assigns a green light to a direction, we evict a car from the
two respectable queues, and select the incoming cars uniformly at random. Regarding
objectives, in most of our experiments, the behavioral score we use charges an abstract
state a ∈ {0, . . . , k}4 with |(a1 + a3) − (a2 + a4)|, thus the shield aims to balance the
total number of waiting cars per direction. The interference score we use charges the
shield 1 for altering the controller’s action.

Since we use simple automata for objectives, the size of the shields we use is |A×Γ |,
where |Γ | = 2. In our experiments, we cut-off the queues at k = 6, which results in a
shield of size 2592. The synthesis procedure’s running time is in the order of minutes.
We have already pointed out that we are interested in small light-weight shields, and
this is indeed what we construct. In terms of absolute size, the shield takes ∼60KB
versus the controller who takes ∼3MB; a difference of 2 orders of magnitude.

Our synthesis procedure includes a solution to a stochastic mean-payoff game.
The complexity of solving such games is an interesting combinatorial problem in NP
and coNP (thus unlikely to be NP-hard) for which the existence of a polynomial-time
algorithm is major long-standing open problem. The current best-known algorithms
are exponential, and even for special cases like turn-based deterministic mean-payoff
games or turn-based stochastic games with reachability objectives, no polynomial-time
algorithms are known. The algorithm we implemented is called the strategy iteration
algorithm [22,23] in which one starts with a strategy and iteratively improves it, where
each iteration requires polynomial time. While the algorithm’s worst-case complexity
is exponential, in practice, the algorithm has been widely observed to terminate in a few
number of iterations.

Evaluating Performance. Throughout all our experiments, we use a unified and con-
crete measure of performance: the total waiting time of the cars in the city. Our assump-
tion is that minimizing this measure is the main objective of the designer of the traffic
light system for the city. While performance is part of the objective function when train-
ing the controller, the other components of the objective are used in order to improve
training. Similarly, the behavioral measure we use when synthesizing shields is chosen
heuristically in order to construct shields that improve concrete performance.

The Effect of Changing λ. Recall that we use λ ∈ [0, 1] in order to weigh between
the behavioral and interference measures of a shield, where the larger λ is, the more the
shield is charged for interference. In our first set of experiments, we fix all parameters
apart from λ and synthesize shields for a city that has two controllable junctions. In the
first experiment, we use a random traffic flow that is similar to the one used in training.

642 G. Avni et al.

Fig. 2. Results for shields constructed with various λ values, together with a fixed plant and
controller, where the simulation traffic distribution matches the one the controller is trained for.

We depict the results of the simulation in Fig. 2. We make several observations on the
results below.
Interference. We observe that the ratio of the time that the shield intervenes is low: for
most values of λ the ratio is well below 10%. For large values of λ, interference is too
costly, and the shields become trivial, namely it never alters the actions of the controller.
The performance we observe is thus the performance of the controller with no shield. In
this set of experiments, we observe that the threshold after which shields become trivial
is λ = 0.5, and for different setups, the threshold changes.

Performance. We observe that performance as function of λ, is a curve-like function.
When λ is small, altering commands is cheap, the shield intervenes more frequently,
and performance drops. This performance drop is expected: the shield is a simple device
and the quality of its routing decisions cannot compete with the trained controller. This
drop is also encouraging since it illustrates that our experimental setting is interesting.
Surprisingly, we observe that the curve is in fact a paraboloid: for some values, e.g.,
λ = 0.4, the shield improves the performance of the controller. We find it unexpected
that the shield improves performance even when observing trained behavior, and this
performance increase is observed more significantly in the next experiments.

Rush-Hour Traffic. In Fig. 3, we use a shield to add robustness to a controller for
behavior it was not trained for. We see a more significant performance gain in this exper-

Fig. 3. Similar to Fig. 2 only that the sim-
ulation traffic distribution models rush-hour
traffic.

Fig. 4. Comparing the variability in performance
of the different controllers, with shield (blue) and
without a shield (red). (Color figure online)

Run-Time Optimization for Learned Controllers Through Quantitative Games 643

iment. We use the controller from the previous experiment, which is trained for uniform
car arrival. We simulate it in a network with “rush-hour” traffic, which we model by sig-
nificantly increasing the traffic load in the North-South direction. We synthesize shields
that prefer to evict traffic from the North-South queue over the East-West queue. We
achieve this by altering the objective in the stochastic game; we charge the shield a
greater penalty for cars waiting in these queues over the other queues. For most values
of λ below 0.7, we see a performance gain. Note that the performance of the controller
with no shield is depicted on the far right, where the shield is trivial. An alternative
approach to synthesize a shield would be to alter the probabilities in the abstraction, but
we found that altering the weights results in a better performance gain.

Reducing Variability. Machine learning techniques are intricate, require expertise, and
a fine tuning of parameters. This set of experiments show how the use of shields reduces
variability of the controllers, and as a result, it reduces the importance of choosing
the optimal parameters in the training phase. We fix one of the shields from the first
experiment with λ = 0.4. We observe performance in a city with various controllers,
which are trained with varying training parameters, when the controllers are run with
and without the shield and on various traffic conditions that sometimes differ from the
ones they are trained on.

The city we experiment with consists of a main two-lane road that crosses the city
from East to West. The main road has two junctions in which smaller “farm roads”
meet the main road. We refer to the bulk traffic as the traffic that only “crosses the
city”; namely, it flows only on the main road either from East to West or in the opposite
direction. For r ∈ [0, 1], Controller-r is trained where the ratio of the bulk traffic out of
the total traffic is r. That is, the higher r is, the less traffic travels on the farm roads. We
run simulations in which Controller-r observes bulk traffic k ∈ [0, 1], which it was not
necessarily trained for.

Fig. 5. Results for Controllers-0.65 and 0.9 exhibiting traffic that they are not trained for, with
and without a shield. Performance is the total waiting time of the cars in the city.

In Fig. 5, we depict the performance of two controllers for various traffic settings.
We observe, in these two controllers as well as the others, that operating with a shield
consistently improves performance. The plots illustrate the unexpected behavior of
machine-learning techniques: e.g., when run without a shield, Controller-0.9 outper-
forms Controller-0.65 in all settings, even in the setting 0.65 on which Controller-0.65
was trained on. Thus, a designer who expects a traffic flow of 0.65, would be better

644 G. Avni et al.

off training with a traffic of 0.9. A shield improves performance and thus reduces the
importance of which training data to use.

Measuring Variability. In Fig. 4, we depict the variability in performance between
the controllers. The higher the variability is, the more significant it is to
choose the right parameters when training the controller. Formally, let R =
{0.65, 0.7, 0.75, 0.8, 0.85, 0.9}. For r, k ∈ R, we let Perf(r, k) denote the performance
(total waiting times) when Controller-r observes bulk traffic k. For each k ∈ R, we
depict maxr∈R Perf(r, k) − minr′∈R Perf(r′, k), when operating with and without a
shield.

Clearly, the variability with a shield is significantly lower than without one. This
data shows that when operating with a shield, it does not make much difference if a
designer trains a controller with setting r or r′. When operating without a shield, the
difference is significant.

Overcoming Liveness Bugs. Finding bugs in learned controllers is a challenging task.
Shields bypass the need to find bugs since they treat the controller as a black-box and
correct its behavior. We illustrate their usefulness in dealing with liveness bugs. In the
same network as in the previous setting, we experiment with a controller whose train-
ing process lacked variability. In Fig. 6, we depict the light configuration throughout
the experiment on the main road; the horizontal axis represents time, red means a red
light for the main road and dually green. Initially, the controller performs well, but
roughly half-way through the simulation it hits a bad state after which the light stays
red. The shield, with only a few interferences, which are represented with dots, manages
to recover the controller from its stuck state. In Fig. 7, we depict the number of waiting
cars in the city, which clearly skyrockets once the controller gets stuck. It is evident that
initially, the controller performs well. This point highlights that it is difficult to recog-

Fig. 6. The light in the East-West direction (the main road) of a junction. On bottom, with no
shield the controller is stuck. On top, the shield’s interferences are marked with dots.

Fig. 7. The total number of waiting cars (log-scale) with and without a shield. Initially, the con-
troller performs well on its own, until it gets stuck and traffic in the city freezes.

Run-Time Optimization for Learned Controllers Through Quantitative Games 645

nize when a controller has a bug – in order to catch such a bug, a designer would need
to find the right simulation and run it half way through before the bug appears.

One way to regain liveness would be to synthesize a shield for the qualitative prop-
erty “each direction eventually gets a green light”. Instead, we use a shield that is syn-
thesized for the quantitative specification as in the previous experiment. The shield,
with a total of only 20 alterations is able to recover the controller from the bad state it
is stuck in, and traffic flows correctly.

Adding Functionality; Prioritizing Public Transport. Learned controllers are mono-
lithic. Adding functionality to a controller requires a complete re-training, which is
time consuming, computationally costly, and requires care; changes in the objective
can cause unexpected side effects to the performance. We illustrate how, using a shield,
we can add to an existing controller, the functionality of prioritizing public transport.

The abstraction over which the shield is constructed slightly differs from the one
used in the other experiments. The abstract state space is the same, namely four-
dimensional vectors, though we interpret the entries as the positions of a bus in the
respective queue. For example, the state (0, 3, 0, 1) represents no bus in the North queue
and a bus which is waiting, third in line, in the East queue. Outgoing edges from an
abstract state also differ as they take into account, using probability, that vehicles might
enter the queues between buses. For the behavioral score, we charge an abstract state
with the sum of its entries, thus the shield is charged whenever buses are waiting and it
aims to evict them from the queues as soon as possible.

In Fig. 8, we depict the performance of all vehicles and only buses as a function of
the weighing factor λ. The result of this experiment is positive; the predicted behavior
is observed. Indeed, when λ is small, interferences are cheap, which increase bus per-
formance at the expense of the general performance. The experiment illustrates that the
parameter λ is a convenient method to control the degree of prioritization of buses.

Local Fairness. In this experiment, we add local fairness to a controller that was trained
for a global objective. We experiment with a network with four junctions and a city-wide
controller, which aims to minimize total waiting times. Figure 9 shows that when the
controller is deployed on its own, queues form in the city whereas a shield, which was
synthesized as in the first experiments, prevents such local queues from forming.

Fig. 8. The waiting time of buses/all vehicles
with shields parameterized by λ.

Fig. 9. Comparing the amount of waiting
cars with and without a shield.

646 G. Avni et al.

5 Discussion and Future Work

We suggest a framework for automatically synthesizing quantitative runtime shields
to cope with limitations of machine-learning techniques. We show how shields can
increase robustness to untrained behavior, deal with liveness bugs without verification,
add features without retraining, and decrease variability of performance due to changes
in the training parameters, which is especially helpful for machine learning non-experts.
We use weighted automata to evaluate controller and shield behavior and construct a
game whose solution is an optimal shield w.r.t. a weighted specification and a plant
abstraction. The framework is robust and can be applied in any setting where learned or
other black-box controllers are used.

We list several directions for further research. In this work, we make no assump-
tions on the controller and treat it adversarially. Since the controller might have bugs,
modelling it as adversarial is reasonable. Though, it is also a crude abstraction since typ-
ically, the objectives of the controller and shield are similar. For future work, we plan
to study ways to model the spectrum between cooperative and adversarial controllers
together with solution concepts for the games that they give rise to.

In this work we make no assumptions on the relationship between the plant and the
abstraction. While the constructed shields are optimal w.r.t. the given abstraction, the
scores they guarantee w.r.t. the abstraction do not imply performance guarantees on the
plant. To be able to produce performance guarantees on the concrete plant, we need
guarantees on the relationship between the plant its abstraction. For future work, we
plan to study the addition of such guarantees and how they affect the quality measures.

References

1. Alshiekh, M., Bloem, R., Ehlers, R., Könighofer, B., Niekum, S., Topcu, U.: Safe reinforce-
ment learning via shielding. In: AAAI. AAAI Press (2018)

2. Basset, N., Kwiatkowska, M.Z., Wiltsche, C.: Compositional strategy synthesis for stochastic
games with multiple objectives. Inf. Comput. 261(Part), 536–587 (2018)

3. Bloem, R., Chatterjee, K., Jobstmann, B.: Graph games and reactive synthesis. In: Clarke,
E., Henzinger, T., Veith, H., Bloem, R. (eds.) Handbook of Model Checking, pp. 921–962.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-10575-8 27

4. Brázdil, T., Brozek, V., Chatterjee, K., Forejt, V., Kucera, A.: Two views on multiple mean-
payoff objectives in Markov decision processes. Log. Methods Comput. Sci. 10(1) (2014).
https://lmcs.episciences.org/1156

5. Chatterjee, K., Doyen, L.: Perfect-information stochastic games with generalized mean-
payoff objectives. In: Proceedings of the 31st LICS, pp. 247–256 (2016)

6. Chatterjee, K., Kretı́nská, Z., Kretı́nský, J.: Unifying two views on multiple mean-payoff
objectives in Markov decision processes. Log. Methods Comput. Sci. 13(2) (2017). https://
lmcs.episciences.org/3757

7. Chatterjee, K., Majumdar, R., Henzinger, T. A.: Markov decision processes with multiple
objectives. In: Proceedings of the 23rd STACS, pp. 325–336 (2006)

8. Chen, T., Forejt, V., Kwiatkowska, M. Z., Simaitis, A., Trivedi, A., Ummels, M.: Playing
stochastic games precisely. In: Proceedings of the 23rd CONCUR, pp. 348–363 (2012)

9. Chollet, F.: keras (2015). https://github.com/fchollet/keras

https://doi.org/10.1007/978-3-319-10575-8_27
https://lmcs.episciences.org/1156
https://lmcs.episciences.org/3757
https://lmcs.episciences.org/3757
https://github.com/fchollet/keras

Run-Time Optimization for Learned Controllers Through Quantitative Games 647

10. Condon, A.: On algorithms for simple stochastic games. In: Proceedings of the DIMACS,
pp. 51–72 (1990)

11. Dalal, G., Dvijotham, K., Vecerik, M., Hester, T., Paduraru, C., Tassa, Y.: Safe exploration
in continuous action spaces. coRR, abs/1801.08757 (2017). arXiv:1801.08757

12. Desai, A., Ghosh, S., Seshia, S. A., Shankar, N., Tiwari, A.: SOTER: programming safe
robotics system using runtime assurance. coRR, abs/1808.07921 (2018). arXiv:1808.07921

13. Dewey, D.: Reinforcement learning and the reward engineering principle. In: 2014 AAAI
Spring Symposium Series (2014)

14. Droste, M., Kuich, W., Vogler, H.: Handbook of Weighted Automata. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-01492-5

15. Duan, Y., Chen, X., Houthooft, R., Schulman, J., Abbeel, P.: Benchmarking deep reinforce-
ment learning for continuous control. In: Proceedings of the 33nd International Conference
on Machine Learning, ICML 2016, New York City, NY, USA, 19–24 June 2016, pp. 1329–
1338 (2016)

16. Falcone, Y., Mounier, L., Fernandez, J.-C., Richier, J.-L.: Runtime enforcement monitors:
composition, synthesis, and enforcement abilities. Formal Methods Syst. Des. 38(3), 223–
262 (2011)

17. Fulton, N., Platzer, A.: Safe reinforcement learning via formal methods: toward safe control
through proof and learning. In: AAAI. AAAI Press (2018)

18. Garcı́a, J., Fernández, F.: A comprehensive survey on safe reinforcement learning. J. Mach.
Learn. Res. 16, 1437–1480 (2015)

19. Geibel, P.: Reinforcement learning for MDPs with constraints. In: Fürnkranz, J., Scheffer,
T., Spiliopoulou, M. (eds.) ECML 2006. LNCS (LNAI), vol. 4212, pp. 646–653. Springer,
Heidelberg (2006). https://doi.org/10.1007/11871842 63

20. Genders, W., Razavi, S.: Asynchronous n-step q-learning adaptive traffic signal control. J.
Intell. Trans. Syst. 23(4), 319–331 (2019)

21. Hamlen, K.W., Morrisett, J.G., Schneider, F.B.: Computability classes for enforcement
mechanisms. ACM Trans. Program. Lang. Syst. 28(1), 175–205 (2006)

22. Hoffman, A.J., Karp, R.M.: On nonterminating stochastic games. Manag. Sci. 12(5), 359–
370 (1966)

23. Howard, A.R.: Dynamic Programming and Markov Processes. MIT Press, Cambridge (1960)
24. Huang, X., Kwiatkowska, M., Wang, S., Wu, M.: Safety verification of deep neural networks.

In: Proceedings of the 29th CAV, pp. 3–29 (2017)
25. Jansen, N., Könighofer, B., Junges, S., Bloem, R.: Shielded decision-making in MDPs.

CoRR, arXiv:1807.06096 (2018)
26. Ji, Y., Lafortune, S.: Enforcing opacity by publicly known edit functions. In: 56th IEEE

Annual Conference on Decision and Control, CDC 2017, Melbourne, Australia, 12–15
December 2017, pp. 4866–4871 (2017)

27. Kaelbling, L.P., Littman, M.L., Cassandra, A.R.: Planning and acting in partially observable
stochastic domains. Artif. Intell. 101(1), 99–134 (1998)

28. Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: a survey. JAIR 4,
237–285 (1996)

29. Katz, G., Barrett, C.W., Dill, C. W., Julian, K., Kochenderfer, M.J.: Reluplex: an efficient
SMT solver for verifying deep neural networks. In: Proceedings of the 29th CAV, pp. 97–
117 (2017)

30. Könighofer, B., Alshiekh, M., Bloem, R., Humphrey, L., Könighofer, R., Topcu, U., Wang,
C.: Shield synthesis. Formal Methods Syst. Des. 51(2), 332–361 (2017)

31. Krajzewicz, D., Erdmann, J., Behrisch, M., Bieker, L.: Recent development and applications
of SUMO - Simulation of Urban MObility. Int. J. Adv. Syst. Meas. 5(3&4), 128–138 (2012)

http://arxiv.org/abs/1801.08757
http://arxiv.org/abs/1808.07921
https://doi.org/10.1007/978-3-642-01492-5
https://doi.org/10.1007/11871842_63
http://arxiv.org/abs/1807.06096

648 G. Avni et al.

32. Lahijanian, M., Almagor, S., Fried, D., Kavraki, L.E., Vardi, M.Y.: This time the robot settles
for a cost: a quantitative approach to temporal logic planning with partial satisfaction. In:
Proceedings of the 29th AAAI, pp. 3664–3671 (2015)

33. Levine, S., Pastor, P., Krizhevsky, A., Ibarz, J., Quillen, D.: Learning hand-eye coordination
for robotic grasping with deep learning and large-scale data collection. I. J. Robot. Res.
37(4–5), 421–436 (2018)

34. Lillicrap, T.P.: Continuous control with deep reinforcement learning. arXiv preprint
arXiv:1509.02971 (2015)

35. Mannion, P., Duggan, J., Howley, E.: An experimental review of reinforcement learning
algorithms for adaptive traffic signal control. In: McCluskey, T.L., Kotsialos, A., Müller,
J.P., Klügl, F., Rana, O., Schumann, R. (eds.) Autonomic Road Transport Support Systems.
AS, pp. 47–66. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-25808-9 4

36. Mason, G., Calinescu, R., Kudenko, D., Banks, A.: Assured reinforcement learning with
formally verified abstract policies. In: Proceedings of the 9th International Conference on
Agents and Artificial Intelligence, ICAART 2017, Porto, Portugal, 24–26 February 2017,
vol. 2, pp. 105–117 (2017)

37. Mnih, V.: Human-level control through deep reinforcement learning. Nature 518(7540), 529–
533 (2015)

38. Moldovan, T.M., Abbeel, P.: Safe exploration in Markov decision processes. In: Proceed-
ings of the 29th International Conference on Machine Learning, ICML 2012, Edinburgh,
Scotland, UK, June 26 – July 1, 2012 (2012)

39. Mousavi, S.S., Schukat, M., Howley, E.: Traffic light control using deep policy-gradient and
value-function-based reinforcement learning. IET Intell. Trans. Syst. 11(7), 417–423 (2017)

40. Oliphant, T.E.: Guide to NumPy, 2nd edn. CreateSpace Independent Publishing Platform,
USA (2015)

41. Phan, D., Yang, J., Grosu, R., Smolka, S.A., Stoller, S.D.: Collision avoidance for mobile
robots with limited sensing and limited information about moving obstacles. Formal Methods
Syst. Des. 51(1), 62–86 (2017)

42. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: Conference Record of
the Sixteenth Annual ACM Symposium on Principles of Programming Languages, Austin,
Texas, USA, 11–13 January 1989, pp. 179–190 (1989)

43. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Programming.
John Wiley & Sons Inc., New York (2005)

44. Ramadge, P.J., Wonham, W.M.: Supervisory control of a class of discrete-event processes.
SIAM J. Control Optim. 25(1), 206–230 (1987)

45. Schneider, F.B.: Enforceable security policies. ACM Trans. Inf. Syst. Secur. 3(1), 30–50
(2000)

46. Seshia, S. A., Sadigh, D.: Towards verified artificial intelligence. CoRR, arXiv:1606.08514
(2016)

47. Sha, L.: Using simplicity to control complexity. IEEE Soft. 18(4), 20–28 (2001)
48. Velner, Y., Chatterjee, K., Doyen, L., Henzinger, T.A., Rabinovich, A.M., Raskin, J.-F.:

The complexity of multi-mean-payoff and multi-energy games. Inf. Comput. 241, 177–196
(2015)

49. Wu, Y., Raman, V., Rawlings, B.C., Lafortune, S., Seshia, S.A.: Synthesis of obfuscation
policies to ensure privacy and utility. J. Autom. Reasoning 60(1), 107–131 (2018)

http://arxiv.org/abs/1509.02971
https://doi.org/10.1007/978-3-319-25808-9_4
http://arxiv.org/abs/1606.08514

Run-Time Optimization for Learned Controllers Through Quantitative Games 649

Open Access This chapter is licensed under the terms of the Creative Commons Attribution
4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Taming Delays in Dynamical Systems
Unbounded Verification of Delay Differential Equations

Shenghua Feng1,2 , Mingshuai Chen1,2(B) , Naijun Zhan1,2(B) , Martin Fränzle3 ,
and Bai Xue1,2

1 SKLCS, Institute of Software, CAS, Beijing, China
{fengsh,chenms,znj,xuebai}@ios.ac.cn

2 University of Chinese Academy of Sciences,
Beijing, China

3 Carl von Ossietzky Universität Oldenburg,
Oldenburg, Germany

fraenzle@informatik.uni-oldenburg.de

Abstract. Delayed coupling between state variables occurs regularly in tech-
nical dynamical systems, especially embedded control. As it consequently is
omnipresent in safety-critical domains, there is an increasing interest in the safety
verification of systems modelled by Delay Differential Equations (DDEs). In
this paper, we leverage qualitative guarantees for the existence of an exponen-
tially decreasing estimation on the solutions to DDEs as established in classical
stability theory, and present a quantitative method for constructing such delay-
dependent estimations, thereby facilitating a reduction of the verification prob-
lem over an unbounded temporal horizon to a bounded one. Our technique builds
on the linearization technique of nonlinear dynamics and spectral analysis of the
linearized counterparts. We show experimentally on a set of representative bench-
marks from the literature that our technique indeed extends the scope of bounded
verification techniques to unbounded verification tasks. Moreover, our technique
is easy to implement and can be combined with any automatic tool dedicated to
bounded verification of DDEs.

Keywords: Unbounded verification ·
Delay Differential Equations (DDEs) · Safety and stability · Linearization ·
Spectral analysis

1 Introduction

The theory of dynamical systems featuring delayed coupling between state variables
dates back to the 1920s, when Volterra [41,42], in his research on predator-prey mod-
els and viscoelasticity, formulated some rather general differential equations incor-
porating the past states of the system. This formulation, now known as delay differ-
ential equations (DDEs), was developed further by, e.g., Mishkis [30] and Bellman

This work has been supported through grants by NSFC under grant No. 61625206, 61732001 and
61872341, by Deutsche Forschungsgemeinschaft through grants No. GRK 1765 and FR 2715/4,
and by the CAS Pioneer Hundred Talents Program under grant No. Y8YC235015.

c© The Author(s) 2019
I. Dillig and S. Tasiran (Eds.): CAV 2019, LNCS 11561, pp. 650–669, 2019.
https://doi.org/10.1007/978-3-030-25540-4_37

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-25540-4_37&domain=pdf
http://orcid.org/0000-0002-5352-4954
http://orcid.org/0000-0001-9663-7441
http://orcid.org/0000-0003-3298-3817
http://orcid.org/0000-0002-9138-8340
http://orcid.org/0000-0001-9717-846X
https://doi.org/10.1007/978-3-030-25540-4_37

Taming Delays in Dynamical Systems: Unbounded Verification of DDEs 651

and Cooke [2], and has witnessed numerous applications in many domains. Prominent
examples include population dynamics [25], where birth rate follows changes in popu-
lation size with a delay related to reproductive age; spreading of infectious diseases [5],
where delay is induced by the incubation period; or networked control systems [21] with
their associated transport delays when forwarding data through the communication net-
work. These applications range further to models in optics [23], economics [38], and
ecology [13], to name just a few. Albeit resulting in more accurate models, the presence
of time delays in feedback dynamics often induces considerable extra complexity when
one attempts to design or even verify such dynamical systems. This stems from the fact
that the presence of feedback delays reduces controllability due to the impossibility of
immediate reaction and enhances the likelihood of transient overshoot or even oscilla-
tion in the feedback system, thus violating safety or stability certificates obtained on
idealized, delay-free models of systems prone to delayed coupling.

Though established automated methods addressing ordinary differential equations
(ODEs) and their derived models, like hybrid automata, have been extensively studied in
the verification literature, techniques pertaining to ODEs do not generalize straightfor-
wardly to delayed dynamical systems described by DDEs. The reason is that the future
evolution of a DDE is no longer governed by the current state instant only, but depends
on a chunk of its historical trajectory, such that introducing even a single constant delay
immediately renders a system with finite-dimensional states into an infinite-dimensional
dynamical system. There are approximation methods, say the Padé approximation [39],
that approximate DDEs with finite-dimensional models, which however may hide fun-
damental behaviors, e.g. (in-)stability, of the original delayed dynamics, as remarked
in Sect. 5.2.2.8.1 of [26]. Consequently, despite well-developed numerical methods for
solving DDEs as well as methods for stability analysis in the realm of control theory,
hitherto in automatic verification, only a few approaches address the effects of delays
due to the immediate impact of delays on the structure of the state spaces to be traversed
by state-exploratory methods.

In this paper, we present a constructive approach dedicated to verifying safety prop-
erties of delayed dynamical systems encoded by DDEs, where the safety properties
pertain to an infinite time domain. This problem is of particular interests when one
pursues correctness guarantees concerning dynamics of safety-critical systems over a
long run. Our approach builds on the linearization technique of potentially nonlinear
dynamics and spectral analysis of the linearized counterparts. We leverage qualitative
guarantees for the existence of an exponentially decreasing estimation on the solutions
to DDEs as established in classical stability theory (see, e.g., [2,19,24]), and present
a quantitative method to construct such estimations, thereby reducing the temporally
unbounded verification problems to their bounded counterparts.

The class of systems we consider features delayed differential dynamics governed
by DDEs of the form ẋ (t) = f (x (t) ,x (t − r1) , . . . ,x (t − rk)) with initial states
specified by a continuous function φ (t) on [−rmax, 0] where rmax = max{r1, . . . , rk}.
It thus involves a combination of ODE and DDE with multiple constant delays ri > 0,
and has been successfully used to model various real-world systems in the aforemen-
tioned fields. In general, formal verification of unbounded safety or, dually, reachability
properties of such systems inherits undecidability from similar properties for ODEs

652 S. Feng et al.

(cf. e.g., [14]). We therefore tackle this unbounded verification problem by leveraging
a stability criterion of the system under investigation.

Contributions. In this paper, we present a quantitative method for constructing a delay-
dependent, exponentially decreasing upper bound, if existent, that encloses trajecto-
ries of a DDE originating from a certain set of initial functions. This method conse-
quently yields a temporal bound T ∗ such that for any T > T ∗, the system is safe over
[−rmax, T] iff it is safe over [−rmax,∞). For linear dynamics, such an equivalence of
safety applies to any initial set of functions drawn from a compact subspace in R

n;
while for nonlinear dynamics, our approach produces (a subset of) the basin of attrac-
tion around a steady state, and therefore a certificate (by bounded verification in finitely
many steps) that guarantees the reachable set being contained in this basin suffices to
claim safety/unsafety of the system over an infinite time horizon. Our technique is easy
to implement and can be combined with any automatic tool for bounded verification of
DDEs. We show experimentally on a set of representative benchmarks from the litera-
ture that our technique effectively extends the scope of bounded verification techniques
to unbounded verification tasks.

Related Work. As surveyed in [14], the research community has over the past three
decades vividly addressed automatic verification of hybrid discrete-continuous systems
in a safety-critical context. The almost universal undecidability of the unbounded reach-
ability problem, however, confines the sound key-press routines to either semi-decision
procedures or even approximation schemes, most of which address bounded verification
by computing the finite-time image of a set of initial states. It should be obvious that
the functional rather than state-based nature of the initial condition of DDEs prevents a
straightforward generalization of this approach.

Prompted by actual engineering problems, the interest in safety verification of con-
tinuous or hybrid systems featuring delayed coupling is increasing recently. We classify
these contributions into two tracks. The first track pursues propagation-based bounded
verification: Huang et al. presented in [21] a technique for simulation-based time-
bounded invariant verification of nonlinear networked dynamical systems with delayed
interconnections, by computing bounds on the sensitivity of trajectories to changes in
initial states and inputs of the system. A method adopting the paradigm of verification-
by-simulation (see, e.g., [9,16,31]) was proposed in [4], which integrates rigorous error
analysis of the numeric solving and the sensitivity-related state bloating algorithms
(cf. [7]) to obtain safe enclosures of time-bounded reachable sets for systems mod-
elled by DDEs. In [46], the authors identified a class of DDEs featuring a local homeo-
morphism property which facilitates construction of over- and under-approximations of
reachable sets by performing reachability analysis on the boundaries of the initial sets.
Goubault et al. presented in [17] a scheme to compute inner- and outer-approximating
flowpipes for DDEs with uncertain initial states and parameters using Taylor models
combined with space abstraction in the shape of zonotopes. The other track of the lit-
erature tackles unbounded reachability problem of DDEs by taking into account the
asymptotic behavior of the dynamics under investigation, captured by, e.g., Lyapunov
functions in [32,47] and barrier certificates in [35]. These approaches however share a
common limitation that a polynomial template has to be specified either for the interval

Taming Delays in Dynamical Systems: Unbounded Verification of DDEs 653

Taylor models exploited in [47] (and its extension [29] to cater for properties specified
as bounded metric interval temporal logic (MITL) formulae), for Lyapunov functionals
in [32], or for barrier certificates in [35]. Our approach drops this limitation by resorting
to the linearization technique followed by spectral analysis of the linearized counter-
parts, and furthermore extends over [47] by allowing immediate feedback (i.e. x(t)) as
well as multiple delays in the dynamics), to which their technique does not generalize
immediately. In contrast to the absolute stability exploited in [32], namely a criterion
that ensures stability for arbitrarily large delays, we give the construction of a delay-
dependent stability certificate thereby substantially increasing the scope of dynamics
amenable to stability criteria, for instance, the famous Wright’s equation (cf. [44]).
Finally, we refer the readers to [34] and [33] for related contributions in showing the
existence of abstract symbolic models for nonlinear control systems with time-varying
and unknown time-delay signals via approximate bisimulations.

2 Problem Formulation

Notations. Let N, R and C be the set of natural, real and complex numbers, respec-
tively. Vectors will be denoted by boldface letters. For z = a + ib ∈ C with a, b ∈ R,
the real and imaginary parts of z are denoted respectively by R(z) = a and I(z) = b;
|z| = √

a2 + b2 is the modulus of z. For a vector x ∈ R
n, xi refers to its i-th com-

ponent, and its maximum norm is denoted by ‖x‖ = max1≤i≤n |xi|. We define for
δ > 0, B(x, δ) = {x′ ∈ R

n | ‖x′ − x‖ ≤ δ} as the δ-closed ball around x. The
notation ‖·‖ extends to a set X ⊆ R

n as ‖X‖ = supx∈X ‖x‖, and to an m × n
complex-valued matrix A as ‖A‖ = max1≤i≤m

∑n
j=1 |aij |. X is the closure of X

and ∂X denotes the boundary of X . For a ≤ b, let C0([a, b],Rn) denote the space
of continuous functions from [a, b] to R

n, which is associated with the maximum
norm ‖f‖ = maxt∈[a,b] ‖f(t)‖. We abbreviate C0([−r, 0],Rn) as Cr for a fixed pos-
itive constant r, and let C1 consist of all continuously differentiable functions. Given
f : [0,∞) �→ R a measurable function such that ‖f(t)‖ ≤ aebt for some constants a
and b, then the Laplace transform L{f} defined by L{f}(z) = ∫ ∞

0
e−ztf(t) dt exists

and is an analytic function of z for R(z) > b.

Delayed Differential Dynamics. We consider a class of dynamical systems featuring
delayed differential dynamics governed by DDEs of autonomous type:

{
ẋ (t) = f (x (t) ,x (t − r1) , . . . ,x (t − rk)) , t ∈ [0,∞)
x (t) = φ (t) , t ∈ [−rk, 0] (1)

where x is the time-dependent state vector in R
n, ẋ denotes its temporal derivative

dx/dt, and t is a real variable modelling time. The discrete delays are assumed to be
ordered as rk > . . . > r1 > 0, and the initial states are specified by a vector-valued
function φ ∈ Crk

.
Suppose f is a Lipschitz-continuous vector-valued function in C1

(
R

(k+1)n,Rn
)
,

which implies that the system has a unique maximal solution (or trajectory) from a
given initial condition φ ∈ Crk

, denoted as ξφ : [−rk,∞) �→ R
n. We denote in the

654 S. Feng et al.

sequel by fx =̂
[

∂f
∂x1

· · · ∂f
∂xn

]
the Jacobian matrix (i.e., matrix consisting of all first-

order partial derivatives) of f w.r.t. the component x (t). Similar notations apply to
components x (t − ri), for i = 1, . . . , k.

Example 1 (Gene regulation [12,36]). The control of gene expression in cells is often
modelled with time delays in equations of the form

{
ẋ1(t) = g (xn(t − rn)) − β1x1(t)
ẋj(t) = xj−1(t − rj−1) − βjxj(t), 1 < j ≤ n

(2)

where the gene is transcribed producing mRNA (x1), which is translated into enzyme
x2 that in turn produces another enzyme x3 and so on. The end product xn acts to
repress the transcription of the gene by ġ < 0. Time delays are introduced to account
for time involved in transcription, translation, and transport. The positive βj’s represent
decay rates of the species. The dynamic described in Eq. (2) falls exactly into the scope
of systems considered in this paper, and in fact, it instantiates a more general family
of systems known as monotone cyclic feedback systems (MCFS) [28], which includes
neural networks, testosterone control, and many other effects in systems biology.

Lyapunov Stability. Given a system of DDEs in Eq. (1), suppose f has a steady state
(a.k.a., equilibrium) at xe such that f(xe, . . . ,xe) = 0 then

– xe is said to be Lyapunov stable, if for every ε > 0, there exists δ > 0 such that, if
‖φ − xe‖ < δ, then for every t ≥ 0 we have ‖ξφ(t) − xe‖ < ε.

– xe is said to be asymptotically stable, if it is Lyapunov stable and there exists δ > 0
such that, if ‖φ − xe‖ < δ, then limt→∞ ‖ξφ(t) − xe‖ = 0.

– xe is said to be exponentially stable, if it is asymptotically stable and there exist
α, β, δ > 0 such that, if ‖φ − xe‖ < δ, then ‖ξφ(t) − xe‖ ≤ α ‖φ − xe‖ e−βt, for
all t ≥ 0. The constant β is called the rate of convergence.

Here xe can be generalized to a constant function in Crk
when employing the supre-

mum norm ‖φ − xe‖ over functions. This norm further yields the locality of the above
definitions, i.e., they describe the behavior of a system near an equilibrium, rather than
of all initial conditions φ ∈ Crk

, in which case it is termed the global stability. W.l.o.g.,
we assume f(0, . . . ,0) = 0 in the sequel and investigate the stability of the zero equi-
librium thereof. Any nonzero equilibrium can be straightforwardly shifted to a zero one
by coordinate transformation while preserving the stability properties, see e.g., [19].

Safety Verification Problem. Given X ⊆ R
n a compact set of initial states and

U ⊆ R
n a set of unsafe or otherwise bad states, a delayed dynamical system of the

form (1) is said to be T -safe iff all trajectories originating from any φ(t) satisfying
φ(t) ∈ X ,∀t ∈ [−rk, 0] do not intersect with U at any t ∈ [−rk, T], and T -unsafe oth-
erwise. In particular, we distinguish unbounded verification with T = ∞ from bounded
verification with T < ∞.

In subsequent sections, we first present our approach to tackling the safety verifica-
tion problem of delayed differential dynamics coupled with one single constant delay
(i.e., k = 1 in Eq. (1)) in an unbounded time domain, by leveraging a quantitative

Taming Delays in Dynamical Systems: Unbounded Verification of DDEs 655

stability criterion, if existent, for the linearized counterpart of the potentially nonlinear
dynamics in question. A natural extension of this approach to cater for dynamics with
multiple delay terms will be remarked thereafter. In what follows, we start the elabo-
ration of the method from DDEs of linear dynamics that admit spectral analysis, and
move to nonlinear cases afterwards and show how the linearization technique can be
exploited therein.

3 Linear Dynamics

Consider the linear sub-class of dynamics given in Eq. (1):
{
ẋ (t) = Ax (t) + Bx (t − r) , t ∈ [0,∞)
x (t) = φ (t) , t ∈ [−r, 0] (3)

where A,B ∈ R
n×n, φ ∈ Cr, and the system is associated with the characteristic

equation
det

(
zI − A − Be−rz

)
= 0, (4)

where I is the n×n identity matrix. Denote by h(z) =̂ zI−A−Be−rz the characteristic
matrix in the sequel. Notice that the characteristic equation can be obtained by seeking
nontrivial solutions to Eq. (3) of the form ξφ(t) = cezt, where c is an n-dimensional
nonzero constant vector.

The roots λ ∈ C of Eq. (4) are called characteristic roots or eigenvalues and the set
of all eigenvalues is referred to as the spectrum, denoted by σ = {λ | det (h(λ)) = 0}.
Due to the exponentiation in the characteristic equation, the DDE has, in line with
its infinite-dimensional nature, infinitely many eigenvalues possibly, making a spectral
analysis more involved. The spectrum does however enjoy some elementary properties
that can be exploited in the analysis. For instance, the spectrum has no finite accumu-
lation point in C and therefore for each positive γ ∈ R, the number of roots satisfying
|λ| ≤ γ is finite. It follows that the spectrum is a countable (albeit possibly infinite) set:

Lemma 1 (Accumulation freedom [6,19]). Given γ ∈ R, there are at most finitely
many characteristic roots satisfying R(λ) > γ. If there is a sequence {λn} of roots of
Eq. (4) such that |λn| → ∞ as n → ∞, then R(λn) → −∞ as n → ∞.

Lemma 1 suggests that there are only a finite number of solutions in any vertical
strip in the complex plane, and there thus exists an upper bound α ∈ R such that every
characteristic root λ in the spectrum satisfies R(λ) < α. This upper bound captures
essentially the asymptotic behavior of the linear dynamics:

Theorem 1 (Globally exponential stability [6,36]). Suppose R(λ) < α for every
characteristic root λ. Then there exists K > 0 such that

‖ξφ(t)‖ ≤ K ‖φ‖ eαt, ∀t ≥ 0, ∀φ ∈ Cr, (5)

where ξφ(t) is the solution to Eq. (3). In particular, x = 0 is a globally exponentially
stable equilibrium of Eq. (3) if R(λ) < 0 for every characteristic root; it is unstable if
there is a root satisfying R(λ) > 0.

656 S. Feng et al.

Theorem 1 establishes an existential guarantee that the solution to the linear delayed
dynamics approaches the zero equilibrium exponentially for any initial conditions in
Cr. To achieve automatic safety verification, however, we ought to find a constructive
means of estimating the (signed) rate of convergence α and the coefficient K in Eq. (5).
This motivates the introduction of the so-called fundamental solution ξφ′(t) to Eq. (3),
whose Laplace transform will later be shown to be h−1(z), the inverse characteristic
matrix, which always exists for z satisfying R(z) > maxλ∈σ R(λ).

Lemma 2 (Variation-of-constants [19,36]). Let ξφ(t) be the solution to Eq. (3).
Denote by ξφ′(t) the solution that satisfies Eq. (3) for t ≥ 0 and satisfies a varia-
tion of the initial condition as φ′(0) = I and φ′(t) = O for all t ∈ [−r, 0), where O is
the n × n zero matrix, then for t ≥ 0,

ξφ(t) = ξφ′(t)φ(0) +
∫ t

0

ξφ′(t − τ)Bφ(τ − r) dτ . (6)

Note that in Eq. (6), φ(t) is extended to [−r,∞) by making it zero for t > 0. In
spite of the discontinuity of φ′ at zero, the existence of the solution ξφ′(t) can be proven
by the well-known method of steps [8].

Lemma 3 (Fundamental solution [19]). The solution ξφ′(t) to Eq. (3) with initial
data φ′ is the fundamental solution; that is for z s.t. R(z) > maxλ∈σ R(λ),

L{ξφ′}(z) = h−1(z).

The fundamental solution ξφ′(t) can be proven to share the same exponential bound
as that in Theorem 1, while the following theorem, as a consequence of Lemma 2, gives
an exponential estimation of ξφ(t) in connection with ξφ′(t):

Theorem 2 (Exponential estimation [36]). Denote by μ =̂ maxλ∈σ R(λ) the maxi-
mum real part of eigenvalues in the spectrum. Then for any α > μ, there exists K > 0
such that

‖ξφ′(t)‖ ≤ Keαt, ∀t ≥ 0, (7)

and hence by Eq. (6), ‖ξφ(t)‖ ≤ K
(
1 + ‖B‖ ∫ r

0
e−ατ dτ

) ‖φ‖ eαt for any t ≥ 0 and
φ ∈ Cr. In particular, x = 0 is globally exponentially stable for Eq. (3) if μ < 0.

Following Theorem 2, an exponentially decreasing bound on the solution ξφ(t) to
linear DDEs of the form (3) can be assembled by computing α satisfying μ < α < 0
and the coefficient K > 0.

3.1 Identifying the Rightmost Roots

Due to the significance of characteristic roots in the context of stability and bifurca-
tion analysis, numerical methods on identifying—particularly the rightmost—roots of
linear (or linearized) DDEs have been extensively studied in the past few decades, see
e.g., [3,11,43,45]. There are indeed complete methods on isolating real roots of poly-
nomial exponential functions, for instances [37] and [15] based on cylindrical algebraic
decomposition (CAD). Nevertheless, as soon as non-trivial exponential functions arise

Taming Delays in Dynamical Systems: Unbounded Verification of DDEs 657

in the characteristic equation, there appear to be few, if any, symbolic approaches to
detecting complex roots of the equation.

In this paper, we find α that bounds the spectrum from the right of the complex
plane, by resorting to the numerical approach developed in [11]. The computation
therein employs discretization of the solution operator using linear multistep (LMS)
methods to approximate eigenvalues of linear DDEs with multiple constant delays,
under an absolute error of O (τp) for sufficiently small stepsize τ , where O (·) is the big
Omicron notation and p depends on the order of the LMS-methods. A well-developed
MATLAB package called DDE-BIFTOOL [10] is furthermore available to mechanize
the computation, which will be demonstrated in our forthcoming examples.

3.2 Constructing K

By the inverse Laplace transform (cf. Theorem 5.2 in [19] for a detailed proof), we have
ξφ′(t) = limV →∞ 1

2πi

∫ α+iV

α−iV
ezth−1(z) dz for z satisfying R(z) > μ, where α is the

exponent associated with the bound on ξφ′(t) in Eq. (7), and hence by substituting
z = α + iν, we have

e−αtξφ′(t) = lim
V →∞

1
2π

∫ V

−V

eiνth−1(α + iν) dν.

Since h−1(z) = I
z +

(
h−1(z) − I

z

)
= I

z + O (
1/z2

)
, together with the fact that an

integral over a quadratic integrand is convergent, it follows that

e−αtξφ′(t) = lim
V →∞

1
2π

∫ V

−V

eiνt I

α + iν
dν +

1
2π

∫ ∞

−∞
eiνtO

(
1

(α + iν)2

)

dν.

By taking the norm while observing that
∣
∣eiνt

∣
∣ = 1, we get

e−αt ‖ξφ′(t)‖ ≤
∥
∥
∥
∥ lim

V →∞
1
2π

∫ V

−V

eiνt I

α + iν
dν

︸ ︷︷ ︸
(8-a)

∥
∥
∥
∥+

1
2π

∫ ∞

−∞

∥
∥
∥
∥O

(
1

(α + iν)2

)∥
∥
∥
∥dν

︸ ︷︷ ︸
(8-b)

.

(8)
For the integral (8-a), the fact1 that

∫ ∞

−∞

eiax

b + ix
dx =

∫ ∞

−∞

eix

ab + ix
dx =

{
2πe−ab if a, b > 0
0 if a > 0, b < 0,

(9)

implies
∥
∥
∥
∥ lim

V →∞
1
2π

∫ V

−V

eiνt I

α + iν
dν

∥
∥
∥
∥ ≤

{
1, ∀t > 0, ∀α > 0
0, ∀t > 0, ∀α < 0.

(10)

Notice that the second integral (8-b) is computable, since it is convergent and indepen-
dent of t. The underlying computation of the improper integral, however, can be rather
time-consuming. We therefore detour by computing an upper bound of (8-b) in the
form of a definite integral, due to Lemma 4, which suffices to constitute an exponential
estimation of ξφ′(t) while reducing computational efforts pertinent to the integration.

1 The integral in (9) is divergent for a = 0 or b = 0 in the sense of a Riemann integral.

658 S. Feng et al.

Lemma 4. There exists M > 0 such that inequation (11) below holds for any α > μ.

∫ ∞

−∞

∥
∥
∥
∥O

(
1

(α + iν)2

)∥
∥
∥
∥ dν ≤

∫ M

−M

∥
∥
∥
∥O

(
1

(α + iν)2

)∥
∥
∥
∥ dν+

8n
M

(‖A‖ + ‖B‖ e−rα
)

(11)
where μ =̂ maxλ∈σ R(λ), z = α + iν, and n is the order of A and B.

Proof. The proof depends essentially on constructing a threshold M > 0 such that
the integral over |ν| > M can be bounded, thus transforming the improper integral in
question to a definite one. To find such an M , observe that

∥
∥
∥
∥
O

(
1

z2

)∥
∥
∥
∥
=

∥
∥
∥
∥
h−1(z) − I

z

∥
∥
∥
∥
=

∥
∥h−1(z)

∥
∥

∥
∥
∥
∥
I − h(z)

z

∥
∥
∥
∥

≤
∥
∥h−1(z)

∥
∥

|z| (‖A‖ + ‖B‖ e−rα).

Without loss of generality, suppose the entry of h−1(z) at (i, j) takes the form

(

h−1)

ij
= (

n−1∑

k=0

pij
k (e−rz)zk)/ det(h(z)) = (

n−1∑

k=0

pij
k (e−rz)zk)/(zn +

n−1∑

k=0

qk(e
−rz)zk)

=
1

z
(

n−1∑

k=0

pij
k (e−rz)zk−n+1)/(1 +

n−1∑

k=0

qk(e
−rz)zk−n),

where pij
k (·) and qk(·) are polynomials in e−rz as coefficients of zk. Since e−rz is

bounded by e−rα along the vertical line z = α + iν, we can conclude that there exist

P ij
k and Qk such that

∣
∣
∣p

ij
k (e−rz)

∣
∣
∣ ≤ P ij

k and |qk(e−rz)| ≤ Qk, with P ij
n−1 = 1 if i = j,

and 0 otherwise. Furthermore, in the vertical line z = α + iν, if |ν| ≥ 1, then

∣
∣
∣
∣
∣

n−1∑

k=0

pij
k (e−rz)zk−n+1

∣
∣
∣
∣
∣
≤

∣
∣
∣p

ij
n−1(e

−rz)
∣
∣
∣ +

n−2∑

k=0

∣
∣
∣p

ij
k (e−rz)z−1

∣
∣
∣ ≤ P ij

n−1 +

n−2∑

k=0

P ij
k

∣
∣z−1

∣
∣ ,

∣
∣
∣
∣
∣
1 +

n−1∑

k=0

qk(e
−rz)zk−n

∣
∣
∣
∣
∣
≥ 1 −

n−1∑

k=0

∣
∣qk(e

−rz)
∣
∣

∣
∣
∣zk−n

∣
∣
∣ ≥ 1 −

n−1∑

k=0

Qk

∣
∣z−1

∣
∣ .

We can thus choose |ν| > M =̂ max
1≤i,j≤n

{

1, 2
n−1∑

k=0

Qk,
n−2∑

k=0

P ij
k

}

, which implies

∣
∣
∣
∣
∣
(

n−1∑

k=0

pij
k (e−rz)zk)/det(h(z))

∣
∣
∣
∣
∣
≤

∣
∣
∣
∣
∣

1

z
(

n−1∑

k=0

pij
k (e−rz)zk−n+1)/(1 +

n−1∑

k=0

qk(e
−rz)zk−n)

∣
∣
∣
∣
∣

≤
∣
∣
∣
∣

1

z

∣
∣
∣
∣
(P ij

n−1 +

n−2∑

k=0

P ij
k

∣
∣z−1

∣
∣)/(1 −

n−1∑

k=0

Qk

∣
∣z−1

∣
∣) ≤ 2

|z| (1 + P ij
n−1) ≤ 4

|z| ,

where the third inequality holds since |ν| > M . It then follows, if |ν| > M , that

∥
∥
∥
∥O

(
1

(α + iν)2

)∥
∥
∥
∥ ≤

∥
∥h−1(z)

∥
∥

|z| (‖A‖ + ‖B‖ e−rα) ≤ 4n
ν2

(‖A‖ + ‖B‖ e−rα),

Taming Delays in Dynamical Systems: Unbounded Verification of DDEs 659

and thereby

∫ ∞

−∞

∥
∥
∥
∥
O

(
1

(α + iν)2

)∥
∥
∥
∥

≤
∫ M

−M

∥
∥
∥
∥
O

(
1

(α + iν)2

)∥
∥
∥
∥
dν + 2

∫ ∞

M

4n

ν2
(‖A‖ + ‖B‖ e−rα) dν

≤
∫ M

−M

∥
∥
∥
∥
O

(
1

(α + iν)2

)∥
∥
∥
∥
dν +

8n

M

(‖A‖ + ‖B‖ e−rα)
.

This completes the proof. �

Equations (8), (10) and (11) yield that e−αt ‖ξφ′(t)‖ is upper-bounded by

K =
1
2π

(∫ M

−M

∥
∥
∥
∥O

(
1

(α + iν)2

)∥
∥
∥
∥ dν +

8n
M

(‖A‖ + ‖B‖ e−rα
)
)

+ 10(α), (12)

for all t > 0. Here M is the constant given in Lemma 4, while 10 : (μ,∞) \ {0} �→
{0, 1} is an indicator function2 of {α | α > 0}, i.e., 10(α) = 1 for α > 0 and 10(α) = 0
for μ < α < 0.

In contrast to the existential estimation guarantee established in Theorem 2, exploit-
ing the construction of α and K gives a constructive quantitative criterion permitting to
reduce an unbounded safety verification problem to its bounded counterpart:

Theorem 3 (Equivalence of bounded and unbounded safety). Given X ⊆ R
n a set

of initial states and U ⊆ R
n a set of bad states satisfying 0 /∈ U , suppose we have α

satisfying μ < α < 0 and K from Eq. (12). Let K̂ =̂ K
(
1 + ‖B‖ ∫ r

0
e−ατ dτ

) ‖X‖,
then there exists T ∗ < ∞, defined as

T ∗ =̂ max{0, inf{T | ∀t > T : [−K̂eαt, K̂eαt]n ∩ U = ∅}}, (13)

such that for any T > T ∗, the system (3) is ∞-safe iff it is T -safe.

Proof. The “only if” part is for free, as ∞-safety subsumes by definition T -safety.
For the “if” direction, the constructed K in Eq. (12) suffices as an upper bound of
e−αt ‖ξφ′(t)‖, and hence by Theorem 2, ‖ξφ(t)‖ ≤ K̂eαt for any t ≥ 0 and φ
constrained by X . As a consequence, it suffices to show that T ∗ given by Eq. (13)
is finite, which then by definition implies that system (3) is safe over t > T ∗.
Note that the assumption 0 /∈ U implies that there exists a ball B(0, δ) such that
B(0, δ)∩ U = ∅. Moreover, K̂eαt is strictly monotonically decreasing w.r.t. t, and thus
T = max{0, ln(δ/K̂)/α} is an upper bound3 of T ∗, which further implies T ∗ < ∞. �

Example 2 (PD-controller [17]). Consider a PD-controller with linear dynamics
defined, for t ≥ 0, as

ẏ(t) = v(t); v̇(t) = −κp (y(t − r) − y∗) − κdv(t − r), (14)

which controls the position y and velocity v of an autonomous vehicle by adjusting its
acceleration according to the current distance to a reference position y∗. A constant time

2 We rule out the case of α = 0, which renders the integral in Eq. (12) divergent.
3 Note that the larger δ is, the tighter bound T will be.

660 S. Feng et al.

delay r is introduced to model the time lag due to sensing, computation, transmission,
and/or actuation. We instantiate the parameters following [17] as κp = 2, κd = 3,
y∗ = 1, and r = 0.35. The system described by Eq. (14) then has one equilibrium
at (1; 0), which shares equivalent stability with the zero equilibrium of the following
system, with ŷ = y − 1 and v̂ = v:

˙̂y(t) = v̂(t); ˙̂v(t) = −2ŷ(t − r) − 3v̂(t − r). (15)

Suppose we are interested in exploiting the safety property of the system (15) in an
unbounded time domain, relative to the set of initial states X = [−0.1, 0.1] × [0, 0.1]
and the set of unsafe states U = {(ŷ; v̂) | |ŷ| > 0.2}. Following our construction
process, we obtain automatically some key arguments (depicted in Fig. 1) as α = −0.5,
M = 11.9125, K = 7.59162 and K̂ = 2.21103, which consequently yield T ∗ =
4.80579 s. By Theorem 3, the unbounded safety verification problem thus is reduced to
a T -bounded one for any T > T ∗, inasmuch as ∞-safety is equivalent to T -safety for
the underlying dynamics.

[−K̂eαt, K̂eαt]n in Eq. (13) can be viewed as an overapproximation of all trajec-
tories originating from X . As shown in the right part of Fig. 1, this overapproxima-
tion, however, is obviously too conservative to be utilized in proving or disproving
almost any safety specifications of practical interest. The contribution of our approach
lies in the reduction of unbounded verification problems to their bounded counterparts,
thereby yielding a quantitative time bound T ∗ that substantially “trims off” the verifica-
tion efforts pertaining to t > T ∗. The derived T -safety verification task can be tackled
effectively by methods dedicated to bounded verification of DDEs of the form (3), or
more generally, (1), e.g., approaches in [17] and [4].

Fig. 1. Left: the identified rightmost roots of h(z) in DDE-BIFTOOL and an upper bound
α = −0.5 such that maxλ∈σ R(λ) < α < 0; Center: M = 11.9125 that suffices to split and
hence upper-bound the improper integral

∫ ∞
−∞

∥
∥O (

1/z2
)∥
∥ dν in Eq. (11); Right: the obtained

time instant T ∗ = 4.80579 s guaranteeing the equivalence of ∞-safety and T -safety of the
PD-controller, for any T > T ∗.

Taming Delays in Dynamical Systems: Unbounded Verification of DDEs 661

4 Nonlinear Dynamics

In this section, we address a more general form of dynamics featuring substantial non-
linearity, by resorting to linearization techniques and thereby establishing a quantitative
stability criterion, analogous to the linear case, for nonlinear delayed dynamics.

Consider a singly delayed version of Eq. (1):
{
ẋ (t) = f (x (t) ,x (t − r)) , t ∈ [0,∞)
x (t) = φ (t) , t ∈ [−r, 0] (16)

with f being a nonlinear vector field involving possibly non-polynomial functions. Let

f (x,y) = Ax+ By + g(x,y), with A = fx (0,0) , B = fy (0,0) ,

where fx and fy are the Jacobian matrices of f in terms of x and y, respectively; g is
a vector-valued, high-order term whose Jacobian matrix at (0,0) is O.

By dropping the high-order term g in f , we get the linearized counterpart of
Eq. (16): {

ẋ (t) = Ax (t) + Bx (t − r) , t ∈ [0,∞)
x (t) = φ (t) , t ∈ [−r, 0] (17)

which falls in the scope of linear dynamics specified in Eq. (3), and therefore is asso-
ciated with a characteristic equation of the same form as that in Eq. (4). Equation (17)
will be in the sequel referred to as the linearization of Eq. (16) at the steady state 0,
and σ is used to denote the spectrum of the characteristic equation corresponding to
Eq. (17).

In light of the well-known Hartman-Grobman theorem [18,20] in the realm of
dynamical systems, the local behavior of a nonlinear dynamical system near a (hyper-
bolic) equilibrium is qualitatively the same as that of its linearization near this equilib-
rium. The following statement uncovers the connection between the locally asymptotic
behavior of a nonlinear system and the spectrum of its linearization:

Theorem 4 (Locally exponential stability [6,36]). Suppose maxλ∈σ R(λ) < α < 0.
Then x = 0 is a locally exponentially stable equilibrium of the nonlinear systems (16).
In fact, there exists δ > 0 and K > 0 such that

‖φ‖ ≤ δ =⇒ ‖ξφ(t)‖ ≤ K ‖φ‖ eαt/2, ∀t ≥ 0,

where ξφ(t) is the solution to Eq. (16). If R(λ) > 0 for some λ in σ, then x = 0 is
unstable.

Akin to the linear case, Theorem 4 establishes an existential guarantee that the
solution to the nonlinear delayed dynamics approaches the zero equilibrium exponen-
tially for initial conditions within a δ-neighborhood of this equilibrium. The need of

662 S. Feng et al.

constructing α, K and δ quantitatively in Theorem 4, as essential to our automatic
verification approach, invokes again the fundamental solution ξφ′(t) to the linearized
dynamics in Eq. (17):

Lemma 5 (Variation-of-constants [19,36]). Consider nonhomogeneous systems of
the form {

ẋ (t) = Ax (t) + Bx (t − r) + η (t) , t ∈ [0,∞)
x (t) = φ (t) , t ∈ [−r, 0] (18)

Let ξφ(t) be the solution to Eq. (18). Denote by ξφ′(t) the solution that satisfies Eq. (17)
for t ≥ 0 and satisfies a variation of the initial condition as φ′(0) = I and φ′(t) = O
for all t ∈ [−r, 0). Then for t ≥ 0,

ξφ(t) = ξφ′(t)φ(0) +
∫ t

0

ξφ′(t − τ)Bφ(τ − r) dτ +
∫ t

0

ξφ′(t − τ)η(τ) dτ , (19)

where φ is extended to [−r,∞) with φ(t) = 0 for t > 0.

In what follows, we give a constructive quantitative estimation of the solutions to
nonlinear dynamics, which admits a reduction of the problem of constructing an expo-
nential upper bound of a nonlinear system to that of its linearization, as being immedi-
ately evident from the constructive proof.

Theorem 5 (Exponential estimation). Suppose that maxλ∈σ R(λ) < α < 0. Then
there exist K > 0 and δ > 0 such that ‖ξφ′(t)‖ ≤ Keαt for any t ≥ 0, and

‖φ‖ ≤ δ =⇒ ‖ξφ(t)‖ ≤ Ke−rα

(

1 + ‖B‖
∫ r

0

e−ατ dτ

)

‖φ‖ eαt/2, ∀t ≥ 0,

where ξφ(t) is the solution to nonlinear systems (16) and ξφ′(t) is the fundamental
solution to the linearized counterpart (17).

Proof. The existence of K follows directly from Eq. (7) in Theorem 2. By the variation-
of-constants formula (19), we have, for t ≥ 0,

ξφ(t) = ξφ′(t)φ(0)+
∫ t

0

ξφ′(t−τ)Bφ(τ−r) dτ+
∫ t

0

ξφ′(t−τ)g(x(τ),x(τ−r)) dτ ,

(20)
where φ is extended to [−r,∞) with φ(t) = 0 for t > 0. Define xφ

t (·) ∈ Cr as
xφ

t (θ) = ξφ(t + θ) for θ ∈ [−r, 0]. Then g(·, ·) being a higher-order term yields that
for any ε > 0, there exists δε > 0 such that

∥
∥xφ

t

∥
∥ ≤ δε implies g (x(t),x(t − r)) ≤

ε
∥
∥xφ

t

∥
∥. Due to the fact that ‖ξφ′(t)‖ ≤ Keαt and the monotonicity of ‖ξφ′(t)‖ with

α < 0, we have
∥
∥xφ′

t

∥
∥ ≤ Keα(t−r). This, together with Eq. (20), leads to

∥
∥xφ

t

∥
∥ ≤ K ‖φ‖ eα(t−r) +

∫ r

0
K ‖B‖ ‖φ‖ eα(t−r)e−ατ dτ +

∫ t

0
Keα(t−r)e−ατ ε

∥
∥xφ

τ

∥
∥ dτ

= K

(

1 + ‖B‖
∫ r

0
e−ατ dτ

)

‖φ‖ eα(t−r) + εKeα(t−r)

∫ t

0
e−ατ

∥
∥xφ

τ

∥
∥dτ .

Taming Delays in Dynamical Systems: Unbounded Verification of DDEs 663

Hence,

e−αt
∥
∥xφ

t

∥
∥ ≤ Ke−rα

(

1 + ‖B‖
∫ r

0

e−ατ dτ

)

‖φ‖ + εKe−rα

∫ t

0

e−ατ
∥
∥xφ

τ

∥
∥dτ .

By the Grönwall-Bellman inequality [1] we obtain

e−αt
∥
∥xφ

t

∥
∥ ≤ Ke−rα

(

1 + ‖B‖
∫ r

0

e−ατ dτ

)

‖φ‖ eεKe−rαt

and thus

∥
∥xφ

t

∥
∥ ≤ Ke−rα

(

1 + ‖B‖
∫ r

0

e−ατ dτ

)

‖φ‖ eεKe−rαt+αt.

Set ε ≤ −α/(2Ke−rα) and δ = min
{
δε, δε/

(
Ke−rα

(
1 + ‖B‖ ∫ r

0
e−ατ dτ

))}
. This

yields, for any t ≥ 0,

‖φ‖ ≤ δ =⇒ ‖ξφ(t)‖ ≤ Ke−rα

(

1 + ‖B‖
∫ r

0

e−ατ dτ

)

‖φ‖ eαt/2,

completing the proof. �

The above constructive quantitative estimation of the solutions to nonlinear dynam-

ics gives rise to the reduction, analogous to the linear case, of unbounded verification
problems to bounded ones, in the presence of a local stability criterion.

Theorem 6 (Equivalence of safety properties). Given initial state set X ⊆ R
n and

bad states U ⊆ R
n satisfying 0 /∈ U . Let σ denote the spectrum of the characteristic

equation corresponding to Eq. (17). Suppose that maxλ∈σ R(λ) < α < 0, and the
fundamental solution to Eq. (17) satisfies ‖ξφ′(t)‖ ≤ Keαt for any t ≥ 0. Let K̃ =
Ke−rα

(
1 + ‖B‖ ∫ r

0
e−ατ dτ

) ‖X‖. Then there exists δ > 0 and T ∗ < ∞, defined as

T ∗ =̂ max{0, inf{T | ∀t > T : [−K̃eαt/2, K̃eαt/2]n ∩ U = ∅}},
such that if ‖X‖ ≤ δ, then for any T > T ∗, the system (16) is ∞-safe iff it is T -safe.

Proof. The proof is analogous to that of Theorem 3, particularly following from the
local stability property stated in Theorem 5. �

Note that for nonlinear dynamics, the equivalence of safety claimed by Theorem 6
holds on the condition that ‖X‖ ≤ δ, due to the locality stemming from linearization.
In fact, such a set B ⊆ R

n satisfying ‖B‖ ≤ δ describes (a subset of) the basin of
attraction around the local attractor 0, in a sense that any initial condition in B will
lead the trajectory eventually into the attractor. Consequently, for verification problems
where X ⊇ B, if the reachable set originating from X is guaranteed to be subsumed
within B in the time interval [T ′ − r, T ′], then T ′ + T ∗ suffices as a bound to avoid
unbounded verification, namely for any T > T ′ + T ∗, the system is ∞-safe iff it is
T -safe. This is furthermore demonstrated by the following example.

664 S. Feng et al.

Example 3 (Population dynamics [4,25]). Consider a slightly modified version of the
delayed logistic equation introduced by G. Hutchinson in 1948 (cf. [22])

Ṅ(t) = N(t)[1 − N(t − r)], t ≥ 0, (21)

which is used to model a single population whose percapita rate of growth Ṅ(t)/N(t)
depends on the population size r time units in the past. This would be a reasonable
model for a population that features a significant minimum reproductive age or depends
on a resource, like food, needing time to grow and thus to recover its availability.

If we change variables, putting u = N − 1, then Eq. (21) becomes the famous
Wright’s equation (see [44]):

u̇(t) = −u(t − r)[1 + u(t)], t ≥ 0. (22)

The steady state N = 1 is now u = 0. We instantiate the verification problem of
Eq. (22) over [−r,∞) as X = [−0.2, 0.2], U = {u | |u| > 0.6}, under a constant
delay r = 1. Note that delay-independent Lyapunov techniques, e.g. [32], cannot solve
this problem, since Wright’s conjecture [44], which has been recently proven in [40],
together with corollaries thereof implies that there does not exist a Lyapunov functional
guaranteeing absolute stability of Eq. (22) with arbitrary constant delays. To achieve
an exponential estimation, we first linearize the dynamics by dropping the nonlinearity
u(t)u(t − r) thereof:

v̇(t) = −v(t − 1), t ≥ 0. (23)

Following our constructive approach, we obtain automatically for Eq. (23) α =
−0.3 (see the left of Fig. 2), M = 2.69972, K = 3.28727, and thereby for Eq. (22) δ =
0.00351678, K̃ = 0.0338039 and T ∗ = 0 s. It is worth highlighting that by the bounded
verification method in [17], with Taylor models of the order 5, an overapproximation
Ω of the reachable set w.r.t. system (22) over the time interval [14.5, 15.5] was verified
to be enclosed in the δ-neighborhood of 0, i.e., ‖Ω‖ ≤ δ, yet escaped from this region
around t = 55.3 s, and tended to diverge soon, as depicted in the right part of Fig. 2, and
thus cannot prove unbounded safety properties. However, with our result of T ∗ = 0s
and the fact that Ω over [−1, 15.5] is disjoint with U , we are able to claim safety of the
underlying system over an infinite time domain.

DDEs with Multiple Different Delays. Delay differential equations with multiple
fixed discrete delays are extensively used in the literature to model practical systems
where components coupled with different time lags coexist and interact with each
other. We remark that previous theorems on exponential estimation and equivalence
of safety w.r.t. cases of single delay extend immediately to systems of the form (1) with
almost no change, except for replacing ‖B‖ e−rα with

∑k
i=1 ‖Ai‖ e−riα and ‖B‖ with

∑k
i=1 ‖Ai‖, where Ai denotes the matrix attached to x(t − ri) in the linearization. For

a slightly modified form of the variation-of-constants formula under multiple delays,
we refer the readers to Theorem 1.2 in [19].

Taming Delays in Dynamical Systems: Unbounded Verification of DDEs 665

Fig. 2. Left: the identified rightmost eigenvalues of h(z) and an upper bound α = −0.5 such
that maxλ∈σ R(λ) < α < 0; Right: overapproximation of the reachable set of the system (22)
produced by the method in [17] using Taylor models for bounded verification. Together with this
overapproximation we prove the equivalence of ∞-safety and T -safety of the system, for any
T > (T ′ + T ∗) = 15.5 s.

5 Implementation and Experimental Results

To further investigate the scalability and efficiency of our constructive approach, we
have carried out a prototypical implementation4 in Wolfram MATHEMATICA, which
was selected due to its built-in primitives for integration and matrix operations. By
interfacing with DDE-BIFTOOL5 (in MATLAB or GNU OCTAVE) for identifying the
rightmost characteristic roots of linear (or linearized) DDEs, our implementation com-
putes an appropriate T ∗ that admits a reduction of unbounded verification problems
to bounded ones. A set of benchmark examples from the literature has been evaluated
on a 3.6 GHz Intel Core-i7 processor with 8 GB RAM running 64-bit Ubuntu 16.04.
All computations of T ∗ were safely rounded and finished within 6 s for any of the
examples, including Examples 2 and 3. In what follows, we demonstrate in particular
the applicability of our technique to DDEs featuring non-polynomial dynamics, high
dimensionality and multiple delays.

Example 4 (Disease pathology [25,27,32]). Consider the following non-polynomial
DDE for t ≥ 0:

ṗ(t) =
βθnp(t − r)

θn + pn(t − r)
− γp(t), (24)

where p(t) is positive and indicates the number of mature blood cells in circulation,
while r models the delay between cell production and cell maturation. We consider the
case θ = 1 as in [32]. Constants are instantiated as n = 1, β = 0.5, γ = 0.6 and
r = 0.5. The unbounded verification problem of Eq. (24) over [−r,∞) is configured as
X = [0, 0.2] and U = {p | |p| > 0.3}. Then the linearization of Eq. (24) reads

ṗ(t) = −0.6p(t) + 0.5p(t − 0.5). (25)

4 http://lcs.ios.ac.cn/∼chenms/tools/UDDER.tar.bz2.
5 http://ddebiftool.sourceforge.net/.

http://lcs.ios.ac.cn/~chenms/tools/UDDER.tar.bz2
http://ddebiftool.sourceforge.net/

666 S. Feng et al.

With α = −0.07 obtained from DDE-BIFTOOL, our implementation produces
for Eq. (25) the values M = 2.23562, K = 1.75081, and thereby for Eq. (24)
δ = 0.0163426, K̃ = 0.0371712 and T ∗ = 0 s. Thereafter by the bounded verifi-
cation method in [17], with Taylor models of the order 5, an overapproximation of the
reachable set w.r.t. system (24) over the time interval [25.45, 25.95] was verified to be
enclosed in the δ-neighborhood of 0. This fact, together with T ∗ = 0 s and the over-
approximation on [−0.5, 25.95] being disjoint with U , yields safety of the system (24)
over [−0.5,∞).

Example 5 (Gene regulation [12,36]). To examine the scalability of our technique to
higher dimensions, we recall an instantiation of Eq. (2) by setting n = 5, namely with
5 state components x = (x1; . . . ;x5) and 5 delay terms r = (0.1; 0.2; 0.4; 0.8; 1.6)
involved, g(x) = −x, βj = 1 for j = 1, . . . , 5, X = B ((1; 1; 1; 1; 1) , 0.2) and U =
{x | |x1| > 1.5}. With α = −0.04 derived from DDE-BIFTOOL, our implementation
returns M = 64.264, K = 4.42207, K̂ = 49.1463 and T ∗ = 87.2334 s, thereby
yielding the equivalence of ∞-safety to T -safety for any T > T ∗. Furthermore, the
safety guarantee issued by the bounded verification method in [4] based on rigorous
simulations under T = 88 s suffices to prove safety of the system over an infinite time
horizon.

6 Conclusion

We have presented a constructive method, based on linearization and spectral analysis,
for computing a delay-dependent, exponentially decreasing upper bound, if existent,
that encloses trajectories of a DDE originating from a certain set of initial functions. We
showed that such an enclosure facilitates a reduction of the verification problem over
an unbounded temporal horizon to a bounded one. Preliminary experimental results on
a set of representative benchmarks from the literature demonstrate that our technique
effectively extends the scope of existing bounded verification techniques to unbounded
verification tasks.

Peeking into future directions, we plan to exploit a tight integration of our tech-
nique into several automatic tools dedicated to bounded verification of DDEs, as well
as more permissive forms of stabilities, e.g. asymptotical stability, that may admit a sim-
ilar reduction-based idea. An extension of our method to deal with more general forms
of DDEs, e.g., with time-varying, or distributed (i.e., a weighted average of) delays, will
also be of interest. Additionally, we expect to refine our enclosure of system trajectories
by resorting to a topologically finite partition of the initial set of functions.

References

1. Bellman, R.: The stability of solutions of linear differential equations. Duke Math. J. 10(4),
643–647 (1943)

2. Bellman, R.E., Cooke, K.L.: Differential-difference equations. Technical Report R-374-PR,
RAND Corporation, Santa Monica, California, January 1963

3. Breda, D., Maset, S., Vermiglio, R.: Computing the characteristic roots for delay differential
equations. IMA J. Numer. Anal. 24(1), 1–19 (2004)

Taming Delays in Dynamical Systems: Unbounded Verification of DDEs 667

4. Chen, M., Fränzle, M., Li, Y., Mosaad, P.N., Zhan, N.: Validated simulation-based verifica-
tion of delayed differential dynamics. In: Fitzgerald, J., Heitmeyer, C., Gnesi, S., Philippou,
A. (eds.) FM 2016. LNCS, vol. 9995, pp. 137–154. Springer, Cham (2016). https://doi.org/
10.1007/978-3-319-48989-6 9

5. Cooke, K.L.: Stability analysis for a vector disease model. Rocky Mt. J. Math. 9(1), 31–42
(1979)

6. Diekmann, O., van Gils, S., Lunel, S., Walther, H.: Delay Equations: Functional-, Complex-,
and Nonlinear Analysis. Applied Mathematical Sciences. Springer, New York (2012). https://
doi.org/10.1007/978-1-4612-4206-2

7. Donzé, A., Maler, O.: Systematic simulation using sensitivity analysis. In: Bemporad, A.,
Bicchi, A., Buttazzo, G. (eds.) HSCC 2007. LNCS, vol. 4416, pp. 174–189. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-71493-4 16

8. Driver, R.: Ordinary and Delay Differential Equations. Applied Mathematical Sciences.
Springer, New York (1977). https://doi.org/10.1007/978-1-4684-9467-9

9. Duggirala, P.S., Mitra, S., Viswanathan, M.: Verification of annotated models from execu-
tions. In: EMSOFT 2013, pp. 26:1–26:10 (2013)

10. Engelborghs, K., Luzyanina, T., Roose, D.: Numerical bifurcation analysis of delay differ-
ential equations using DDE-BIFTOOL. ACM Trans. Math. Softw. 28(1), 1–21 (2002)

11. Engelborghs, K., Roose, D.: On stability of LMS methods and characteristic roots of delay
differential equations. SIAM J. Numer. Anal. 40(2), 629–650 (2002)

12. Fall, C.P., Marland, E.S., Wagner, J.M., Tyson, J.J. (eds.): Computational Cell Biology, vol.
20. Springer, New York (2002)

13. Fort, J., Méndez, V.: Time-delayed theory of the neolithic transition in Europe. Phys. Rev.
Lett. 82(4), 867 (1999)

14. Fränzle, M., Chen, M., Kröger, P.: In memory of Oded Maler: automatic reachability analysis
of hybrid-state automata. ACM SIGLOG News 6(1), 19–39 (2019)

15. Gan, T., Chen, M., Li, Y., Xia, B., Zhan, N.: Reachability analysis for solvable dynamical
systems. IEEE Trans. Automat. Contr. 63(7), 2003–2018 (2018)

16. Girard, A., Pappas, G.J.: Approximate bisimulation: a bridge between computer science and
control theory. Eur. J. Control 17(5–6), 568–578 (2011)

17. Goubault, E., Putot, S., Sahlmann, L.: Inner and outer approximating flowpipes for delay
differential equations. In: Chockler, H., Weissenbacher, G. (eds.) CAV 2018. LNCS, vol.
10982, pp. 523–541. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96142-2 31

18. Grobman, D.M.: Homeomorphism of systems of differential equations. Doklady Akademii
Nauk SSSR 128(5), 880–881 (1959)

19. Hale, J., Lunel, S.: Introduction to Functional Differential Equations. Applied Mathematical
Sciences. Springer, New York (1993). https://doi.org/10.1007/978-1-4612-4342-7

20. Hartman, P.: A lemma in the theory of structural stability of differential equations. Proc. Am.
Math. Soc. 11(4), 610–620 (1960)

21. Huang, Z., Fan, C., Mitra, S.: Bounded invariant verification for time-delayed nonlinear net-
worked dynamical systems. Nonlinear Anal. Hybrid Syst. 23, 211–229 (2017)

22. Hutchinson, G.E.: Circular causal systems in ecology. Ann. N. Y. Acad. Sci. 50(4), 221–246
(1948)

23. Ikeda, K., Matsumoto, K.: High-dimensional chaotic behavior in systems with time-delayed
feedback. Phys. D Nonlinear Phenom. 29(1–2), 223–235 (1987)

24. Krasovskiı̆, N.: Stability of Motion: Applications of Lyapunov’s Second Method to Differ-
ential Systems and Equations with Delay. Studies in Mathematical Analysis and Related
Topics. Stanford University Press, Stanford (1963)

25. Kuang, Y.: Delay Differential Equations: With Applications in Population Dynamics. Math-
ematics in Science and Engineering. Elsevier Science, Amsterdam (1993)

https://doi.org/10.1007/978-3-319-48989-6_9
https://doi.org/10.1007/978-3-319-48989-6_9
https://doi.org/10.1007/978-1-4612-4206-2
https://doi.org/10.1007/978-1-4612-4206-2
https://doi.org/10.1007/978-3-540-71493-4_16
https://doi.org/10.1007/978-1-4684-9467-9
https://doi.org/10.1007/978-3-319-96142-2_31
https://doi.org/10.1007/978-1-4612-4342-7

668 S. Feng et al.

26. Levine, W.S.: The Control Handbook: Control System Fundamentals. Electrical Engineering
Handbook, 2nd edn. CRC Press, Boca Raton (2010)

27. Mackey, M.C., Glass, L.: Oscillation and chaos in physiological control systems. Science
197(4300), 287–289 (1977)

28. Mallet-Paret, J., Sell, G.R.: The Poincaré-Bendixson theorem for monotone cyclic feedback
systems with delay. J. Differ. Equ. 125, 441–489 (1996)

29. Nazier Mosaad, P., Fränzle, M., Xue, B.: Temporal logic verification for delay differential
equations. In: Sampaio, A., Wang, F. (eds.) ICTAC 2016. LNCS, vol. 9965, pp. 405–421.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46750-4 23

30. Myshkis, A.D.: Lineare Differentialgleichungen mit nacheilendem Argument, vol. 17. VEB
Deutscher Verlag der Wissenschaften (1955)

31. Nahhal, T., Dang, T.: Test coverage for continuous and hybrid systems. In: Damm, W., Her-
manns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 449–462. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-73368-3 47

32. Peet, M., Lall, S.: Constructing Lyapunov functions for nonlinear delay-differential equa-
tions using semidefinite programming. In: Proceedings of NOLCOS, pp. 381–385 (2004)

33. Pola, G., Pepe, P., Benedetto, M.D.D.: Symbolic models for time-varying time-delay systems
via alternating approximate bisimulation. Int. J. Robust Nonlinear Control 25, 2328–2347
(2015)

34. Pola, G., Pepe, P., Benedetto, M.D.D., Tabuada, P.: Symbolic models for nonlinear time-
delay systems using approximate bisimulations. Syst. Control Lett. 59(6), 365–373 (2010)

35. Prajna, S., Jadbabaie, A.: Methods for safety verification of time-delay systems. In: CDC
2005, pp. 4348–4353 (2005)

36. Smith, H.: An Introduction to Delay Differential Equations with Applications to the Life
Sciences, vol. 57. Springer, New York (2011). https://doi.org/10.1007/978-1-4419-7646-8

37. Strzeboński, A.: Cylindrical decomposition for systems transcendental in the first variable.
J. Symb. Comput. 46(11), 1284–1290 (2011)

38. Szydłowski, M., Krawiec, A., Toboła, J.: Nonlinear oscillations in business cycle model with
time lags. Chaos Solitons Fractals 12(3), 505–517 (2001)

39. Vajta, M.: Some remarks on padé-approximations. In: Proceedings of the 3rd TEMPUS-
INTCOM Symposium, vol. 242 (2000)

40. van den Berg, J.B., Jaquette, J.: A proof of Wright’s conjecture. J. Differ. Equ. 264(12),
7412–7462 (2018)

41. Volterra, V.: Une théorie mathématique de la lutte pour la vie (1927)
42. Volterra, V.: Sur la théorie mathématique des phénomenes héréditaires. Journal de

mathématiques pures et appliquées 7, 249–298 (1928)
43. Vyhlı́dal, T.: Analysis and synthesis of time delay system spectrum. Ph.D. dissertation,

Czech Technical University in Prague (2003)
44. Wright, E.M.: A non-linear difference-differential equation. J. Reine Angew. Math. 66–87,

1955 (1955)
45. Wulf, V., Ford, N.J.: Numerical hopf bifurcation for a class of delay differential equations. J.

Comput. Appl. Math. 115(1–2), 601–616 (2000)
46. Xue, B., Mosaad, P.N., Fränzle, M., Chen, M., Li, Y., Zhan, N.: Safe over- and under-

approximation of reachable sets for delay differential equations. In: Abate, A., Geeraerts,
G. (eds.) FORMATS 2017. LNCS, vol. 10419, pp. 281–299. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-65765-3 16

47. Zou, L., Fränzle, M., Zhan, N., Mosaad, P.N.: Automatic verification of stability and safety
for delay differential equations. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS,
vol. 9207, pp. 338–355. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21668-
3 20

https://doi.org/10.1007/978-3-319-46750-4_23
https://doi.org/10.1007/978-3-540-73368-3_47
https://doi.org/10.1007/978-1-4419-7646-8
https://doi.org/10.1007/978-3-319-65765-3_16
https://doi.org/10.1007/978-3-319-65765-3_16
https://doi.org/10.1007/978-3-319-21668-3_20
https://doi.org/10.1007/978-3-319-21668-3_20

Taming Delays in Dynamical Systems: Unbounded Verification of DDEs 669

Open Access This chapter is licensed under the terms of the Creative Commons Attribution
4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Author Index

Albarghouthi, Aws I-278
André, Étienne I-520
Arcaini, Paolo I-401
Arcak, Murat I-591
Arechiga, Nikos II-137
Ashok, Pranav I-497
Avni, Guy I-630

Backes, John II-231
Bansal, Suguman I-60
Barbosa, Haniel II-74
Barrett, Clark I-443, II-23, II-74, II-116
Bayless, Sam II-231
Becker, Heiko II-155
Beckett, Ryan II-305
Beillahi, Sidi Mohamed II-286
Berkovits, Idan II-245
Biswas, Ranadeep II-324
Bloem, Roderick I-630
Bouajjani, Ahmed II-267, II-286
Brain, Martin II-116
Breck, Jason I-335
Busatto-Gaston, Damien I-572

Černý, Pavol I-140
Češka, Milan I-475
Chatterjee, Krishnendu I-630
Chen, Mingshuai I-650
Cimatti, Alessandro I-376
Coenen, Norine I-121
Cook, Byron II-231
Cyphert, John I-335

D’Antoni, Loris I-3, I-278, I-335
Damian, Andrei II-344
Darulova, Eva II-155, II-174
Davis, Jennifer A. I-366
Deshmukh, Jyotirmoy II-137
Dill, David L. I-443
Dimitrova, Rayna I-241
Dodge, Catherine II-231
Drăgoi, Cezara II-344

Dreossi, Tommaso I-432
Drews, Samuel I-278

Elfar, Mahmoud I-180
Emmi, Michael II-324, II-534
Enea, Constantin II-267, II-286, II-324,

II-534
Ernst, Gidon II-208
Erradi, Mohammed II-267

Farzan, Azadeh I-200
Faymonville, Peter I-421
Fedyukovich, Grigory I-259
Feldman, Yotam M. Y. II-405
Feng, Shenghua I-650
Ferreira, Tiago I-3
Finkbeiner, Bernd I-121, I-241, I-421, I-609
Fränzle, Martin I-650
Fremont, Daniel J. I-432
Frohn, Florian II-426
Furbach, Florian I-355

Gacek, Andrew II-231
Ganesh, Vijay II-367
Gao, Sicun II-137
García Soto, Miriam I-297
Gastin, Paul I-41
Gavrilenko, Natalia I-355
Ghosh, Shromona I-432
Giannarakis, Nick II-305
Giesl, Jürgen II-426
Gomes, Victor B. F. I-387
Griggio, Alberto I-376
Guo, Xiaojie II-496
Gupta, Aarti I-259
Gurfinkel, Arie I-161, II-367

Hasuo, Ichiro I-401, I-520
Heljanko, Keijo I-355
Henzinger, Thomas A. I-297, I-630
Hong, Chih-Duo I-455
Hu, Alan J. II-231
Hu, Qinheping I-335

Huang, Derek A. I-443
Humphrey, Laura R. I-366
Hur, Chung-Kil II-445

Ibeling, Duligur I-443
Iosif, Radu II-43

Jagannathan, Suresh II-459
Jain, Mitesh I-553
Jonáš, Martin II-64
Julian, Kyle I-443

Kahsai, Temesghen II-231
Kang, Eunsuk I-219
Kapinski, James II-137
Katz, Guy I-443
Kim, Edward I-432
Kim, Eric S. I-591
Kincaid, Zachary II-97
Kingston, Derek B. I-366
Klein, Felix I-609
Kochenderfer, Mykel J. I-443
Kocik, Bill II-231
Kölbl, Martin I-79
Kong, Soonho II-137
Könighofer, Bettina I-630
Kotelnikov, Evgenii II-231
Křetínský, Jan I-475, I-497
Kukovec, Jure II-231

Lafortune, Stéphane I-219
Lal, Akash II-386
Lange, Julien I-97
Lau, Stella I-387
Lazarus, Christopher I-443
Lazić, Marijana II-245
Lee, Juneyoung II-445
Lesourd, Maxime II-496
Leue, Stefan I-79
Li, Jianwen II-3
Li, Yangjia II-187
Lim, Rachel I-443
Lin, Anthony W. I-455
Liu, Junyi II-187
Liu, Mengqi II-496
Liu, Peizun II-386
Liu, Tao II-187
Lopes, Nuno P. II-445
Losa, Giuliano II-245

Madhukar, Kumar I-259
Madsen, Curtis I-540
Magnago, Enrico I-376
Mahajan, Ratul II-305
Majumdar, Rupak I-455
Manolios, Panagiotis I-553
Markey, Nicolas I-22
McLaughlin, Sean II-231
Memarian, Kayvan I-387
Meyer, Roland I-355
Militaru, Alexandru II-344
Millstein, Todd I-315
Monmege, Benjamin I-572
Mukherjee, Sayan I-41
Murray, Toby II-208
Myers, Chris J. I-540
Myreen, Magnus O. II-155

Nagar, Kartik II-459
Neupane, Thakur I-540
Niemetz, Aina II-116
Nori, Aditya I-315
Nötzli, Andres II-23, II-74

Padhi, Saswat I-315
Padon, Oded II-245
Pajic, Miroslav I-180
Pichon-Pharabod, Jean I-387
Piskac, Ruzica I-609
Ponce-de-León, Hernán I-355
Prabhu, Sumanth I-259
Pranger, Stefan I-630
Preiner, Mathias II-116

Rabe, Markus N. II-84
Ravanbakhsh, Hadi I-432
Reed, Jason II-231
Reps, Thomas I-335
Reynier, Pierre-Alain I-572
Reynolds, Andrew II-23, II-74, II-116
Rieg, Lionel II-496
Roohi, Nima II-137
Roussanaly, Victor I-22
Roveri, Marco I-376
Rozier, Kristin Y. II-3
Rümmer, Philipp I-455
Rungta, Neha II-231

672 Author Index

Sagiv, Mooly II-405
Sammartino, Matteo I-3
Sanán, David II-515
Sánchez, César I-121
Sankur, Ocan I-22, I-572
Santolucito, Mark I-609
Schilling, Christian I-297
Schledjewski, Malte I-421
Schwenger, Maximilian I-421
Seshia, Sanjit A. I-432, I-591
Sewell, Peter I-387
Shah, Parth I-443
Shao, Zhong II-496
Sharma, Rahul I-315
Shemer, Ron I-161
Shoham, Sharon I-161, II-245, II-405
Siegel, Stephen F. II-478
Silva, Alexandra I-3
Silverman, Jake II-97
Sizemore, John II-231
Solar-Lezama, Armando II-137
Srinivasan, Preethi II-231
Srivathsan, B. I-41
Stalzer, Mark II-231
Stenger, Marvin I-421
Strejček, Jan II-64
Subotić, Pavle II-231

Tatlock, Zachary II-155
Tentrup, Leander I-121, I-421
Thakoor, Shantanu I-443
Tinelli, Cesare II-23, II-74, II-116
Tizpaz-Niari, Saeid I-140
Tonetta, Stefano I-376
Torfah, Hazem I-241, I-421
Tripakis, Stavros I-219
Trivedi, Ashutosh I-140

Vandikas, Anthony I-200
Vardi, Moshe Y. I-60, II-3
Varming, Carsten II-231
Vazquez-Chanlatte, Marcell I-432
Vediramana Krishnan, Hari Govind II-367
Vizel, Yakir I-161, II-367
Volkova, Anastasia II-174

Waga, Masaki I-520
Wahl, Thomas II-386
Walker, David II-305
Wang, Shuling II-187
Wang, Yu I-180
Weininger, Maximilian I-497
Whaley, Blake II-231
Widder, Josef II-344
Wies, Thomas I-79
Wilcox, James R. II-405
Wu, Haoze I-443

Xu, Xiao II-43
Xue, Bai I-650

Ying, Mingsheng II-187
Ying, Shenggang II-187
Yoshida, Nobuko I-97

Zeleznik, Luka I-297
Zeljić, Aleksandar I-443
Zennou, Rachid II-267
Zhan, Bohua II-187
Zhan, Naijun I-650, II-187
Zhang, Zhen I-540
Zhang, Zhenya I-401
Zhao, Yongwang II-515
Zheng, Hao I-540

Author Index 673

	Preface
	Organization
	Contents – Part I
	Contents – Part II
	Automata and Timed Systems
	Symbolic Register Automata
	1 Introduction
	2 Motivating Example
	3 Symbolic Register Automata
	4 Decidability Properties
	5 Evaluation
	5.1 Succinctness of SRAs vs SFAs
	5.2 Performance of Membership Checking
	5.3 Performance of Decision Procedures

	6 Conclusions
	References

	Abstraction Refinement Algorithms for Timed Automata
	1 Introduction
	2 Timed Automata and Zones
	2.1 Timed Automata
	2.2 Zones and DBMs
	2.3 Clock-Predicate Abstraction and Interpolation

	3 Enumerative Algorithm
	3.1 Abstract Forward Reachability: AbsReach
	3.2 Refinement: Refine

	4 Symbolic Algorithm
	4.1 Boolean Encoding of Zones
	4.2 Reduction and Successor Computation
	4.3 Model-Checking Algorithm
	4.4 Abstraction Refinement

	5 Experiments
	6 Conclusion and Future Work
	References

	Fast Algorithms for Handling Diagonal Constraints in Timed Automata
	1 Introduction
	2 Preliminaries
	3 A New Simulation Relation
	4 Algorithm for Z GZ'
	5 Simulations for Updatable Timed Automata
	6 Experiments
	7 Conclusion
	References

	Safety and Co-safety Comparator Automata for Discounted-Sum Inclusion
	1 Introduction
	2 Preliminaries and Related Work
	3 DS-inclusion with Integer Discount-Factor
	3.1 DS-comparison Languages and Their Safety/Co-safety Properties
	3.2 Deterministic DS-comparator for Integer Discount-Factor
	3.3 Quantitative Inclusion with Safety/Co-safety Comparators

	4 Implementation and Experimental Evaluation
	5 Concluding Remarks
	References

	Clock Bound Repair for Timed Systems
	1 Introduction
	2 Preliminaries
	3 Logical Encoding of Timed Diagnostic Traces
	4 Repair
	5 Admissibility of Repair
	6 Case Studies and Experimental Evaluation
	7 Conclusion
	References

	Verifying Asynchronous Interactions via Communicating Session Automata
	1 Introduction
	2 Communicating Automata and Bound Independence
	3 Bounded Compatibility for csa
	3.1 Multiparty Compatibility
	3.2 Local Bound-Agnosticity

	4 Existentially Bounded and Synchronisable Automata
	4.1 Kuske and Muscholl's Existential Boundedness
	4.2 Existentially Stable Bounded Communicating Automata
	4.3 Synchronisable Communicating Session Automata

	5 Experimental Evaluation
	6 Related Work
	7 Conclusions
	References

	Security and Hyperproperties
	Verifying Hyperliveness
	1 Introduction
	2 Preliminaries
	3 Model Checking with Quantifier Alternations
	3.1 Model Checking with Given Strategies
	3.2 Model Checking with Synthesized Strategies

	4 Synthesis with Quantifier Alternations
	5 Implementations and Experimental Evaluation
	6 Conclusions
	References

	Quantitative Mitigation of Timing Side Channels
	1 Introduction
	2 Overview
	3 Preliminaries
	4 Shannon Mitigation Problem
	5 Algorithms for Shannon Mitigation Problem
	5.1 Deterministic Shannon Mitigation
	5.2 Stochastic Shannon Mitigation Algorithm

	6 Implementation Details
	7 Case Study
	8 Related Work
	References

	Property Directed Self Composition
	1 Introduction
	2 Preliminaries
	3 Inferring Self Compositions for Restricted Languages of Inductive Invariants
	3.1 Semantic Self Composition
	3.2 The Problem of Inferring Self Composition with Inductive Invariant

	4 Algorithm for Inferring Composition-Invariant Pairs
	5 Evaluation and Conclusion
	References

	Security-Aware Synthesis Using Delayed-Action Games
	1 Introduction
	2 Stochastic Games
	3 Delayed-Action Games
	4 Properties of DAG and DAG-based Synthesis
	5 Case Study
	6 Discussion and Conclusion
	References

	Automated Hypersafety Verification
	1 Introduction
	2 Illustrative Example
	3 Programs and Proofs
	3.1 Program Traces
	3.2 Safety

	4 Reductions
	5 Proof Checking
	6 Sleep Set Reductions
	7 Algorithms
	7.1 Progress
	7.2 Faster Proof Checking Through Antichains
	7.3 Partition Optimization

	8 Experimental Results
	9 Related Work
	References

	Automated Synthesis of Secure Platform Mappings
	1 Introduction
	2 Mapping Composition
	3 Synthesis Problems
	4 Synthesis Technique
	5 Implementation and Case Studies
	5.1 Implementation
	5.2 Case Studies: OAuth Protocols
	5.3 Formal Modeling
	5.4 Results

	6 Related Work
	7 Conclusions
	References

	Synthesis
	Synthesizing Approximate Implementations for Unrealizable Specifications
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Synthesis of Lasso-Precise Implementations
	4.1 Lasso-Precise Implementations
	4.2 Automata-Theoretic Synthesis of Lasso-Precise Implementations

	5 Bounded Synthesis of Lasso-Precise Implementations
	6 Synthesis of Approximate Implementations
	6.1 Symbolic Approach

	7 Experimental Results
	8 Conclusion
	References

	Quantified Invariants via Syntax-Guided Synthesis
	1 Introduction
	2 Background
	2.1 Programs as Constrained Horn Clauses
	2.2 Illustrating Example

	3 Invariants via Enumerative Search
	3.1 Quantifier-Free Invariants
	3.2 Quantified Candidates from Quantifier-Free Grammars

	4 Design Choices
	4.1 Discovery of Progress Lemmas
	4.2 SMT-Based Inductiveness Checking
	4.3 Strategy of Lemma Propagation
	4.4 Weakening Strategy
	4.5 Learning from Sub-ranges

	5 Evaluation
	6 Related Work
	7 Conclusion
	References

	Efficient Synthesis with Probabilistic Constraints
	1 Introduction
	2 An Overview of DIGITS
	2.1 Probabilistic Synthesis Problem
	2.2 A Naive DIGITS Algorithm
	2.3 Convergence Guarantees
	2.4 Understanding Convergence

	3 The Efficiency of Trie-Based Search
	3.1 The Trie-Based Search Strategy of DIGITS
	3.2 Polynomial Bound on the Number of Synthesis Queries

	4 Property-Directed -DIGITS
	4.1 Algorithm Description
	4.2 Analyzing Failure Probability with Thresholding
	4.3 Adaptive Threshold

	5 Evaluation
	5.1 Synthetic Benchmarks
	5.2 Original DIGITS Benchmarks
	5.3 Thermostat Controller

	6 Related Work
	References

	Membership-Based Synthesis of Linear Hybrid Automata
	1 Introduction
	2 Preliminaries
	3 Synthesis of Linear Hybrid Automata
	3.1 Synchronous Switching Specification
	3.2 Asynchronous Switching Specification

	4 Membership-based Synthesis Approach
	4.1 Membership-based Synthesis Algorithm
	4.2 Discussion
	4.3 Theoretical Properties of the Membership-based Synthesis

	5 Experimental Results
	6 Conclusion
	References

	Overfitting in Synthesis: Theory and Practice*-12pt
	1 Introduction
	2 Motivation
	2.1 Grammar Sensitivity of SyGuS Tools
	2.2 Evidence for Overfitting

	3 SyGuS Overfitting in Theory
	3.1 Preliminaries
	3.2 Learnability and No Free Lunch
	3.3 Overfitting

	4 Mitigating Overfitting
	4.1 Parallel SyGuS on Multiple Grammars
	4.2 Hybrid Enumeration

	5 Experimental Evaluation
	5.1 Robustness of PLearn
	5.2 Performance of Hybrid Enumeration
	5.3 Competition Performance

	6 Related Work
	7 Conclusion
	References

	Proving Unrealizability for Syntax-Guided Synthesis
	1 Introduction
	2 Illustrative Example
	3 SyGuS, Realizability, and CEGIS
	3.1 Background
	3.2 CEGIS and Unrealizability

	4 From Unrealizability to Unreachability
	4.1 Reachability Problems
	4.2 Reduction to Reachability

	5 Implementation and Evaluation
	6 Related Work
	References

	Model Checking
	BMC for Weak Memory Models: Relation Analysis for Compact SMT Encodings
	1 Introduction
	2 Input, Functionality, and Implementation
	3 Relation Analysis
	4 Experiments
	References

	When Human Intuition Fails: Using Formal Methods to Find an Error in the ``Proof'' of a Multi-agent Protocol
	1 Introduction
	2 Decentralized Perimeter Surveillance System (DPSS)
	3 Formal Models
	4 Formal Analysis Results
	5 Discussion and Conclusions
	References

	Extending nuXmv with Timed Transition Systems and Timed Temporal Properties
	1 Introduction
	2 Software Architecture
	3 Language Extensions
	4 Extending Traces
	5 Related Work
	6 Experimental Evaluation
	7 Conclusions
	References

	Cerberus-BMC: A Principled Reference Semantics and Exploration Tool for Concurrent and Sequential C
	1 Introduction
	2 Examples
	3 Implementation
	4 Validation
	References

	Cyber-Physical Systems and Machine Learning
	Multi-armed Bandits for Boolean Connectives in Hybrid System Falsification
	1 Introduction
	2 Preliminaries: Hill Climbing-Guided Falsification
	2.1 Robust Semantics for STL
	2.2 Hill Climbing-Guided Falsification

	3 Our Multi-armed Bandit-Based Falsification Algorithm
	3.1 Conjunctive and Disjunctive Safety Properties
	3.2 The Multi-Armed Bandit (MAB) Problem
	3.3 Our MAB-Guided Algorithm I: Conjunctive Safety Properties
	3.4 Our MAB-Guided Algorithm II: Disjunctive Safety Properties

	4 Experimental Evaluation
	4.1 Evaluation

	5 Conclusion and Future Work
	References

	StreamLAB: Stream-based Monitoring of Cyber-Physical Systems
	1 Introduction
	2 Real-Time Lola
	2.1 Examples

	3 Performance Guarantees via Static Analysis
	3.1 Type System
	3.2 Sliding Windows
	3.3 Memory Analysis

	4 Processing Engine
	5 Experiments
	6 Outlook
	References

	VerifAI: A Toolkit for the Formal Design and Analysis of Artificial Intelligence-Based Systems
	1 Introduction
	2 VerifAI Structure and Operation
	3 Features and Case Studies
	3.1 Falsification and Fuzz Testing
	3.2 Data Augmentation and Error Table Analysis
	3.3 Model Robustness and Hyperparameter Tuning

	4 Conclusion
	References

	The Marabou Framework for Verification and Analysis of Deep Neural Networks
	1 Introduction
	2 Design of Marabou
	2.1 Simplex Core (Tableau and BasisFactorization Classes)
	2.2 Piecewise-Linear Constraints (PiecewiseLinearConstraint Class)
	2.3 Constraint- and Network-Level Reasoning (RowBoundTightener, ConstraintBoundTightener and SymbolicBoundTightener Classes)
	2.4 The Engine (Engine and SmtCore Classes)
	2.5 The Divide-and-Conquer Mode and Concurrency (DnC.py)
	2.6 Input Interfaces (AcasParser class, maraboupy Folder)

	3 Evaluation
	4 Conclusion
	References

	Probabilistic Systems, Runtime Techniques
	Probabilistic Bisimulation for Parameterized Systems
	1 Introduction
	2 Preliminaries
	3 Framework of Regular Relations
	4 Probabilistic Bisimilarity Within Regular Relations
	4.1 Specifying a Probabilistic Transition System
	4.2 Proof Rules for Probabilistic Bisimulation
	4.3 Proof of Theorem 1

	5 Application to Anonymity Verification
	6 Learning Probabilistic Bisimulations
	References

	Semi-quantitative Abstraction and Analysis of Chemical Reaction Networks
	1 Introduction
	2 Chemical Reaction Networks
	3 Semi-quantitative Abstraction
	3.1 Over-Approximation by Interval Abstraction and Acceleration
	3.2 Operational Semantics: Concretisation to a Representative

	4 Semi-quantitative Analysis
	5 Experimental Evaluation and Discussion
	5.1 Gene Expression Model
	5.2 Goutsias's Model
	5.3 Viral Infection

	References

	PAC Statistical Model Checking for Markov Decision Processes and Stochastic Games
	1 Introduction
	2 Preliminaries
	2.1 Stochastic Games
	2.2 Reachability Objective
	2.3 Bounded and Asynchronous Value Iteration

	3 Algorithm
	3.1 Model-Based
	3.2 Safe Updates with Confidence Intervals Using Distributed Error Probability
	3.3 Improved EC Detection
	3.4 Adapting to Games: Deflating MSECs
	3.5 Guidance and Statistical Guarantee
	3.6 Utilizing the Additional Information of Grey Box Input

	4 Experimental Evaluation
	5 Conclusion
	References

	Symbolic Monitoring Against Specifications Parametric in Time and Data
	1 Introduction
	2 Related Works
	3 Preliminaries
	4 Parametric Timed Data Automata
	5 Symbolic Monitoring Against PTDA Specifications
	5.1 Problem Definition
	5.2 Online Algorithm
	5.3 Encoding Parametric Timed Pattern Matching

	6 Experiments
	6.1 Benchmark 1: Copy
	6.2 Benchmark 2: Dominant
	6.3 Benchmark 3: Periodic
	6.4 Discussion

	7 Conclusion and Perspectives
	References

	STAMINA: STochastic Approximate Model-Checker for INfinite-State Analysis
	1 Introduction
	2 STAMINA
	2.1 State Space Approximation
	2.2 Property Based State Space Exploration

	3 Results
	4 Conclusions
	References

	Dynamical, Hybrid, and Reactive Systems
	Local and Compositional Reasoning for Optimized Reactive Systems
	1 Introduction
	1.1 Motivating Example

	2 Preliminaries
	3 Theory of Skipping Refinement
	3.1 Algebraic Properties
	3.2 Skipping Refinement

	4 Mechanised Reasoning
	5 Case Study (Event Processing System)
	6 Related Work
	7 Conclusion and Future Work
	References

	Robust Controller Synthesis in Timed Büchi Automata: A Symbolic Approach
	1 Introduction
	2 Timed Automata: Reachability and Robustness
	3 Reachability Relation of a Path
	4 Robust Iterability of a Lasso
	5 Synthesis of Robust Controllers
	6 Case Study
	7 Conclusion
	References

	Flexible Computational Pipelines for Robust Abstraction-Based Control Synthesis
	1 Introduction
	1.1 Bottlenecks in Abstraction-Based Control Synthesis
	1.2 Methodology
	1.3 Contributions
	1.4 Notation

	2 Control Synthesis for a Motivating Example
	3 Relational Interfaces
	3.1 Atomic and Composite Operators
	3.2 Constructing Control Synthesis Pipelines
	3.3 Modifying the Control Synthesis Pipeline

	4 Interface Abstraction via Quantization
	4.1 Theory of Abstract Interfaces
	4.2 Dynamically Coarsening Interfaces

	5 Refining System Dynamics
	5.1 Constructing Finite Interfaces Through Shared Refinement

	6 Decomposed Control Predecessor
	7 Conclusion
	References

	Temporal Stream Logic: Synthesis Beyond the Bools
	1 Introduction
	2 Motivating Example
	3 Preliminaries
	4 Temporal Stream Logic
	5 TSL Properties
	6 TSL Synthesis
	7 Experimental Results
	8 Related Work
	9 Conclusions
	References

	Run-Time Optimization for Learned Controllers Through Quantitative Games
	1 Introduction
	1.1 Related Work

	2 Definitions and Problem Statement
	2.1 Plants, Controllers, and Shields
	2.2 Quantitative Objectives for Shields
	2.3 Examples

	3 A Game-Theoretic Approach to Quantitative Shield Synthesis
	4 Case Study
	5 Discussion and Future Work
	References

	Taming Delays in Dynamical Systems
	1 Introduction
	2 Problem Formulation
	3 Linear Dynamics
	3.1 Identifying the Rightmost Roots
	3.2 Constructing K

	4 Nonlinear Dynamics
	5 Implementation and Experimental Results
	6 Conclusion
	References

	Author Index

