185 research outputs found

    RADAR Image Fusion Using Wavelet Transform

    Full text link
    RADAR Images are strongly preferred for analysis of geospatial information about earth surface to assesse envirmental conditions radar images are captured by different remote sensors and that images are combined together to get complementary information. To collect radar images SAR(Synthetic Aperture Radar) sensors are used which are active sensors and can gather information during day and night without affecting weather conditions. We have discussed DCT and DWT image fusion methods,which gives us more informative fused image simultaneously we have checked performance parameters among these two methods to get superior method from these two techniques

    Computational Diagnosis of Skin Lesions from Dermoscopic Images using Combined Features

    Get PDF
    There has been an alarming increase in the number of skin cancer cases worldwide in recent years, which has raised interest in computational systems for automatic diagnosis to assist early diagnosis and prevention. Feature extraction to describe skin lesions is a challenging research area due to the difficulty in selecting meaningful features. The main objective of this work is to find the best combination of features, based on shape properties, colour variation and texture analysis, to be extracted using various feature extraction methods. Several colour spaces are used for the extraction of both colour- and texture-related features. Different categories of classifiers were adopted to evaluate the proposed feature extraction step, and several feature selection algorithms were compared for the classification of skin lesions. The developed skin lesion computational diagnosis system was applied to a set of 1104 dermoscopic images using a cross-validation procedure. The best results were obtained by an optimum-path forest classifier with very promising results. The proposed system achieved an accuracy of 92.3%, sensitivity of 87.5% and specificity of 97.1% when the full set of features was used. Furthermore, it achieved an accuracy of 91.6%, sensitivity of 87% and specificity of 96.2%, when 50 features were selected using a correlation-based feature selection algorithm

    On-Line Learning and Wavelet-Based Feature Extraction Methodology for Process Monitoring using High-Dimensional Functional Data

    Get PDF
    The recent advances in information technology, such as the various automatic data acquisition systems and sensor systems, have created tremendous opportunities for collecting valuable process data. The timely processing of such data for meaningful information remains a challenge. In this research, several data mining methodology that will aid information streaming of high-dimensional functional data are developed. For on-line implementations, two weighting functions for updating support vector regression parameters were developed. The functions use parameters that can be easily set a priori with the slightest knowledge of the data involved and have provision for lower and upper bounds for the parameters. The functions are applicable to time series predictions, on-line predictions, and batch predictions. In order to apply these functions for on-line predictions, a new on-line support vector regression algorithm that uses adaptive weighting parameters was presented. The new algorithm uses varying rather than fixed regularization constant and accuracy parameter. The developed algorithm is more robust to the volume of data available for on-line training as well as to the relative position of the available data in the training sequence. The algorithm improves prediction accuracy by reducing uncertainty in using fixed values for the regression parameters. It also improves prediction accuracy by reducing uncertainty in using regression values based on some experts’ knowledge rather than on the characteristics of the incoming training data. The developed functions and algorithm were applied to feedwater flow rate data and two benchmark time series data. The results show that using adaptive regression parameters performs better than using fixed regression parameters. In order to reduce the dimension of data with several hundreds or thousands of predictors and enhance prediction accuracy, a wavelet-based feature extraction procedure called step-down thresholding procedure for identifying and extracting significant features for a single curve was developed. The procedure involves transforming the original spectral into wavelet coefficients. It is based on multiple hypothesis testing approach and it controls family-wise error rate in order to guide against selecting insignificant features without any concern about the amount of noise that may be present in the data. Therefore, the procedure is applicable for data-reduction and/or data-denoising. The procedure was compared to six other data-reduction and data-denoising methods in the literature. The developed procedure is found to consistently perform better than most of the popular methods and performs at the same level with the other methods. Many real-world data with high-dimensional explanatory variables also sometimes have multiple response variables; therefore, the selection of the fewest explanatory variables that show high sensitivity to predicting the response variable(s) and low sensitivity to the noise in the data is important for better performance and reduced computational burden. In order to select the fewest explanatory variables that can predict each of the response variables better, a two-stage wavelet-based feature extraction procedure is proposed. The first stage uses step-down procedure to extract significant features for each of the curves. Then, representative features are selected out of the extracted features for all curves using voting selection strategy. Other selection strategies such as union and intersection were also described and implemented. The essence of the first stage is to reduce the dimension of the data without any consideration for whether or not they can predict the response variables accurately. The second stage uses Bayesian decision theory approach to select some of the extracted wavelet coefficients that can predict each of the response variables accurately. The two stage procedure was implemented using near-infrared spectroscopy data and shaft misalignment data. The results show that the second stage further reduces the dimension and the prediction results are encouraging

    ONLINE HIERARCHICAL MODELS FOR SURFACE RECONSTRUCTION

    Get PDF
    Applications based on three-dimensional object models are today very common, and can be found in many fields as design, archeology, medicine, and entertainment. A digital 3D model can be obtained by means of physical object measurements performed by using a 3D scanner. In this approach, an important step of the 3D model building process consists of creating the object's surface representation from a cloud of noisy points sampled on the object itself. This process can be viewed as the estimation of a function from a finite subset of its points. Both in statistics and machine learning this is known as a regression problem. Machine learning views the function estimation as a learning problem to be addressed by using computational intelligence techniques: the points represent a set of examples and the surface to be reconstructed represents the law that has generated them. On the other hand, in many applications the cloud of sampled points may become available only progressively during system operation. The conventional approaches to regression are therefore not suited to deal efficiently with this operating condition. The aim of the thesis is to introduce innovative approaches to the regression problem suited for achieving high reconstruction accuracy, while limiting the computational complexity, and appropriate for online operation. Two classical computational intelligence paradigms have been considered as basic tools to address the regression problem: namely the Radial Basis Functions and the Support Vector Machines. The original and innovative aspect introduced by this thesis is the extension of these tools toward a multi-scale incremental structure, based on hierarchical schemes and suited for online operation. This allows for obtaining modular, scalable, accurate and efficient modeling procedures with training algorithms appropriate for dealing with online learning. Radial Basis Function Networks have a fast configuration procedure that, operating locally, does not require iterative algorithms. On the other side, the computational complexity of the configuration procedure of Support Vector Machines is independent from the number of input variables. These two approaches have been considered in order to analyze advantages and limits of each of them due to the differences in their intrinsic nature

    An exploration into the sparse representation of spectra

    Get PDF
    Includes bibliographical references (leaves 73-76)This thesis describes an exploration in achieving sparse representations of object, with special focus on spectral data. Given a database of objects one would like to know the actual aspects of each class that distinguish it from any other class in the database. We explore the hypothesis that simple abstractions (descriptions) that humans normally make, especially based on the visual phenomenology or physics on the problem, can be helpful in extracting and formulating useful sparse representations of the observed objects. In this thesis we focus on the discovery of such underlying features, employing a number of recent methods from machine learning. Firstly we find that an approach to automatic feature discovery recently proposed in the literature (Non Negative Matrix Factorization) is not as it seems. We show the limitations of this approach and demonstrate a more efficient method on a synthetic problem. Secondly we explore a more empirical approach to extracting visually attractive features of spectra from which we formulate simple re-representation of spectral data and show that the identification and discovery of certain intuitive features at various scales can be sufficient to describe a spectrum profile. Finally we explore a more traditional and principled automatic method of analyzing a spectrum at different resolutions (Wavelets). We find that certain classes of spectra can easily be discriminated between by a simple approximation of the spectrum profile while in other cases only the finer profile details are important. Throughout this thesis we employ a measure called the separability index as our measure of how easy it is to discriminate objects in a database with the proposed representations

    River flow forecasting using an integrated approach of wavelet multi-resolution analysis and computational intelligence techniques

    Get PDF
    In this research an attempt is made to develop highly accurate river flow forecasting models. Wavelet multi-resolution analysis is applied in conjunction with artificial neural networks and adaptive neuro-fuzzy inference system. Various types and structure of computational intelligence models are developed and applied on four different rivers in Australia. Research outcomes indicate that forecasting reliability is significantly improved by applying proposed hybrid models, especially for longer lead time and peak values

    Image Restoration

    Get PDF
    This book represents a sample of recent contributions of researchers all around the world in the field of image restoration. The book consists of 15 chapters organized in three main sections (Theory, Applications, Interdisciplinarity). Topics cover some different aspects of the theory of image restoration, but this book is also an occasion to highlight some new topics of research related to the emergence of some original imaging devices. From this arise some real challenging problems related to image reconstruction/restoration that open the way to some new fundamental scientific questions closely related with the world we interact with
    • …
    corecore