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Abstract 

The recent advances in information technology, such as the various automatic data 

acquisition systems and sensor systems, have created tremendous opportunities for 

collecting valuable process data.  The timely processing of such data for meaningful 

information remains a challenge.  In this research, several data mining methodology that 

will aid information streaming of high-dimensional functional data are developed. 

For on-line implementations, two weighting functions for updating support vector 

regression parameters were developed.  The functions use parameters that can be easily 

set a priori with the slightest knowledge of the data involved and have provision for 

lower and upper bounds for the parameters.  The functions are applicable to time series 

predictions, on-line predictions, and batch predictions.  In order to apply these functions 

for on-line predictions, a new on-line support vector regression algorithm that uses 

adaptive weighting parameters was presented.  The new algorithm uses varying rather 

than fixed regularization constant and accuracy parameter.  The developed algorithm is 

more robust to the volume of data available for on-line training as well as to the relative 

position of the available data in the training sequence.  The algorithm improves 

prediction accuracy by reducing uncertainty in using fixed values for the regression 

parameters.  It also improves prediction accuracy by reducing uncertainty in using 

regression values based on some experts’ knowledge rather than on the characteristics of 
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the incoming training data.  The developed functions and algorithm were applied to 

feedwater flow rate data and two benchmark time series data.  The results show that using 

adaptive regression parameters performs better than using fixed regression parameters. 

In order to reduce the dimension of data with several hundreds or thousands of predictors 

and enhance prediction accuracy, a wavelet-based feature extraction procedure called 

step-down thresholding procedure for identifying and extracting significant features for a 

single curve was developed.  The procedure involves transforming the original spectral 

into wavelet coefficients.  It is based on multiple hypothesis testing approach and it 

controls family-wise error rate in order to guide against selecting insignificant features 

without any concern about the amount of noise that may be present in the data.  

Therefore, the procedure is applicable for data-reduction and/or data-denoising.  The 

procedure was compared to six other data-reduction and data-denoising methods in the 

literature.  The developed procedure is found to consistently perform better than most of 

the popular methods and performs at the same level with the other methods. 

Many real-world data with high-dimensional explanatory variables also sometimes have 

multiple response variables; therefore, the selection of the fewest explanatory variables 

that show high sensitivity to predicting the response variable(s) and low sensitivity to the 

noise in the data is important for better performance and reduced computational burden.  

In order to select the fewest explanatory variables that can predict each of the response 

variables better, a two-stage wavelet-based feature extraction procedure is proposed.  The 

first stage uses step-down procedure to extract significant features for each of the curves.  

Then, representative features are selected out of the extracted features for all curves using 
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voting selection strategy.  Other selection strategies such as union and intersection were 

also described and implemented.  The essence of the first stage is to reduce the dimension 

of the data without any consideration for whether or not they can predict the response 

variables accurately.  The second stage uses Bayesian decision theory approach to select 

some of the extracted wavelet coefficients that can predict each of the response variables 

accurately.  The two stage procedure was implemented using near-infrared spectroscopy 

data and shaft misalignment data.  The results show that the second stage further reduces 

the dimension and the prediction results are encouraging. 
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Chapter 1 

Introduction 

The availability of advanced information technologies such as the various types of 

automatic data acquisitions and sensor systems has created a tremendous capability to 

access valuable process data.  The effective processing of this data remains the backbone 

of intelligent process monitoring and manufacturing.  The need for more practical process 

monitoring models continues to grow as these technologies become more sophisticated.  

This chapter provides an introduction to the research.  Section 1.1 presents a background 

for the research; the motivation for the research is discussed in Section 1.2.  The 

contributions of the research are presented in Section 1.3.  The organization of the rest of 

this dissertation is outlined in Section 1.4. 

 

1.1 Background 

The changing world of manufacturing is shifting process monitoring and control 

strategies.  This is necessary since timely and accurate information about incipient faults 

or failures of processes and machines brings about a reduction in production costs by 



 2

reducing process downtime, avoiding overstocking of spare parts, improving 

productivity, enhancing product quality, and improving workers' learning curves.  It also 

increases customers' reliability on prompt delivery of products.  Effective process 

monitoring and control depends on some reliable, prompt, and accurate data processing 

techniques. 

A process monitoring involves the use of data provided/collected during inspections or 

through sensors as basis for decision making.  Such data has been classified into two 

groups: direct and indirect data (Christer and Wang, 1995).  Direct data relates process 

conditions directly to the collected data; this data is called primary data because it does 

not require further processing.  It provides a "what-you-see-is-what-you-get" kind of 

information.  An example is the thickness of a brake pad.  Indirect data, on the other 

hand, provides associated information that is influenced by the condition of the process.  

Such data requires further processing for a complete understanding of its meaning and 

implications; hence, this data is called secondary data.  Some examples of secondary data 

are sensor data, vibration frequency analysis, and an oil analysis.  Whatever the source of 

available data, the objective is to predict the immediate and/or subsequent conditions of 

the process and to use such data as input to modeling process control and management 

designs.  A general procedure for process monitoring can be depicted as shown in Fig. 

1.1.  This procedure also applies to several other real-world applications.  However, both 

primary and secondary data are integral part of sets of information that can be used as 

basis for subsequent control decisions. 
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Fig. 1.1.  A general procedure for process monitoring and control design. 
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Other factors that may influence control monitoring design and implementation include: 

• The level of the required control and monitoring tasks (easy, difficult, or 

extremely difficult). 

• The available resources (time, money, materials, and personnel). 

• The significance of the affected process (downstream or upstream; high or low 

priority process). 

• The production schedule, the anticipated downtime, and the allowable downtime. 

These factors are depicted as other input factors in Fig. 1.1.  Therefore, process 

monitoring and control design and implementation is a multidimensional process that can 

be represented as follows: 

 ( )1 2, , , ,zf=PDI F F F…  (1.1) 
 

where PDI  is a process design and implementation factor and iF  represents vector of a 

quantitative measure for a set of z factors that characterize the system.  Some of these 

factors are information processing (process monitoring) output, the available resources, 

the level of work required, and the anticipated and allowable downtime.  In this research, 

one of these factors – process monitoring – is being considered. 

Process monitoring is the tracking of all or specific events on processes, machines, or 

machine parts in order to deduce information that can be used to determine key 

performance indicators such as uptime, downtime, cycle times and in some cases 

replacement.  Increasingly, manufacturing companies are striving to get accurate 
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information from production machines or processes in order to deduce factors that affect 

their margins and efficiencies. Given the importance of this inferred information it is vital 

that the processing of the secondary data is accurate and dependable. 

Most real-world problems involve secondary data that are high-dimensional and 

functional in nature.  High-dimensional problems are very challenging problems because 

there are more predictor variables than the sample size.  The biscuit dough data discussed 

in this research has 256 predictors and 39 samples; the shaft misalignment problem also 

discussed in this research has 3072 predictors and 50 samples.  These are examples of 

typical high-dimensional ( )p n  problems; these problems are also called small n large 

p problems.  The technologies used for collecting data in these cases are usually 

expensive; this high cost constrains researchers to a few experimental units.  The methods 

most commonly used for analyzing high-dimensional data fall into two classes: variable 

selection and factor-based methods (Brown et al., 2001).  Two of these methods are 

principal components regression (PCR) (Cowe and McNicol, 1985) and partial least 

squares regression (PLS) (Wold et al., 1983); they are both widely used as standard 

approaches.  The increasing power of computer has renewed interests in advanced 

techniques.  Support vector regression is one of the new approaches for small n large p 

problems. 

Furthermore, most of the secondary process data have observations that are curves or 

images.  Curves and images are examples of functions and such observed curves and 

images are called "functional" data.  Statistical methods for analyzing such data are 
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known as "functional data analysis" (FDA), which was coined by Ramsay and Dalzell 

(1991).  The biscuit dough and the shaft misalignment problems are some examples of 

functional data.  In addition, some of the high-dimensional functional data may have 

multiple response variables.  The biscuit dough problem has four predictands (response 

variables) and the shaft misalignment problem has two predictands.  Most classic 

methods were developed for single response variables.  Their applications to multiple 

predictands require the implementation of the technique for each of the response 

variables without consideration for any relationship that may exist between each of the 

response variables and the predictors.  These qualities make this type of data an important 

and a challenging data mining problem. 

Therefore in developing the focus for this research, the following issues were considered: 

a) How to represent secondary data in such a way that the features conserve the 

condition information essential for real-time decisions. 

b) How to obtain a set of parsimonious features which are able to capture new 

information and also preserve the condition information in the original 

signals. 

c) How to reduce the uncertainty in selecting subset features for prediction 

purposes. 

d) How to effectively update values of regression parameters such that the 

profile of the incoming data plays a role in the computation and these values 

change as the profile changes. 
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The analysis of the secondary data can be used to determine the current/subsequent health 

status of a process or machine (diagnostics) and to predict the remaining useful life of a 

machine (prognostics).  Therefore, the objective of the process control could be to 

prevent failure, to reduce risk, enhance productivity, or to rectify defects at a lesser cost.     

Several quantitative and qualitative based models have been developed for process 

monitoring.  The quantitative models are based on linear and nonlinear techniques 

including Principal Components Regression (PCR), Partial Least Squares (PLS), 

Artificial Neural Networks (ANN), and recently Support Vector Regression (SVR).  Two 

of the common qualitative models are Expert Systems (ES) and Qualitative Trend 

Analysis (QTA).  These techniques vary in their accuracy, prediction efficiency, 

robustness, and transparency.   A comprehensive review of these techniques (except 

SVR) and their applications in condition monitoring is presented by Venkatasubramanian 

et al. (2003).  In addition, an overview of PCR and PLS in condition monitoring was 

given by MacGregor et al. (1994), Geldi and Kowalski (1986), Hoskuldsson (1988), and 

Joliffe (2002).  Omitaomu et al. (2006) recently present an application of support vector 

regression to shaft misalignment prediction using high-dimensional functional data.  

 

1.2 Motivation 

The motivations for this research are discussed in relation to the characteristics of process 

monitoring problems.  The problems usually have the following characteristics: 
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1. Process data arrive continuously in time rather than in batches.  Therefore, the 

data is more suitable for an on-line type of prediction rather than a batch type of 

prediction.  This ensures availability of real time information for process control 

and improvement before serious damages could occur.  This is true for time series 

data in which the prediction for time 1nt +  is based upon the condition information 

obtained at time 1t  up to time nt .  It is also true for other applications where 

condition information at time nt  is based on information about other parameters 

also at time nt .  In both cases, real time information is required for prediction.  

The techniques mentioned in Section 1.1 are not suitable for on-line applications 

because the addition of a new sample to the already existing training samples 

requires that the technique retrain the entire training sample, which may require 

re-optimizing the value of the regression parameters. 

2. Most real-world process data involves small sample size, high-dimensional 

explanatory variables, and multiple response variables.   This is called 

multivariate small n large p problems.  Most of the above techniques are 

applicable to problems with single response variable and their implementation for 

multiple response variable problems mean applying the technique to each of the 

response variable in sequence.  This adds to the uncertainties in the developed 

models.  Furthermore, some of the techniques require sample expansion or 

variable reduction in order to apply them.  Sometimes, some of the explanatory 

variables may be highly correlated with each other and require special 

preprocessing. 
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3. The distribution of the incoming data changes over time in relation to the changes 

in the operating condition.  Such changes are gradual in most cases and this leads 

to gradual changes in the relationship between the explanatory and response 

variables.  Therefore, the prediction technique used should account for this 

gradual change in relationship.  Most of the above mentioned techniques do not 

have provision for such implementation.  This may be due to the fact that they 

were not developed for on-line prediction.  This is another source of uncertainty 

in using those techniques. 

4. Typically, process data is susceptible to noise.  The use of noisy data results in 

biased models.  The application of the above techniques requires filtering the 

noise in the data.  The filtering process can be expensive especially for high-

dimensional functional data.  All the techniques mentioned above expect SVR do 

not have inherent property of avoiding the noise in the data.  Even in SVR, an 

estimation of the noise in the data is necessary to guarantee correct application of 

this feature.  However, such estimation may not be possible or accurate especially 

in on-line applications. 

As a result of the inherent properties of SVR for small n large p problems, Ma et al. 

(2003) present accurate on-line support vector regression (AOSVR) algorithm.  The 

approach combines the advantage of the conventional batch support vector regression 

with the capability of efficiently updating trained support vectors whenever a sample is 

added to or removed from the training set (Ma et al., 2003) without retraining the entire 

training data.  The application of AOSVR technique in rotary machinery using high-
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dimensional dataset was recently investigated (Omitaomu et al., 2006).  However, 

AOSVR algorithm uses fixed value for regression parameters even though the 

distribution of the incoming data is not fixed.  It does not take the position of the 

available data into consideration in predicting the response variable.  That is, the same 

weight is use for all data samples as if they have equal role in the prediction model.  

Therefore, in order to use AOSVR for on-line prediction and reduce some of these 

uncertainties there must be a technique for updating the values of SVR parameters.  

There also must be a process of incorporating the non-stationary characteristics of the 

training data into this technique.  Furthermore, there must be a procedure for selecting 

explanatory variables with high reliability to predict multiple response variables at the 

same time. 

Furthermore, the sparseness property of the transformation method used would play a 

major role in order to reduce the dimension of the secondary data without loss of 

significant information.  One transformation method that has been found outstanding 

because of its several properties is wavelet transforms.  However, most of the wavelet-

based feature extraction procedures in the literature are developed without a control of 

any error rate.  Furthermore, the process of extracting significant features does not 

account for the relationship between these features and the response variables.  

Accounting for such relationship, however, in high-dimensional problems may not be 

feasible.  Therefore, there is a need for a two-stage feature extraction procedure that will 

achieve dimension reduction and select only features that could explain a greater amount 

of the variability in each of the response variables. 
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1.3 Contributions of the Dissertation 

Based on the issues in Section 1.1 and the motivations in Section 1.2, the contributions of 

this dissertation are: 

1.  A new methodology is developed for updating SVR parameters in relation to the 

changing characteristics of the training data (that is, by incorporating the non-

stationary property of the training data into the prediction models). 

2. The performance of the developed weighting functions is assessed in order to 

determine their effective and the type of data they can be used for. 

3. A new on-line support vector regression algorithm that uses the weighting techniques 

developed in (1) above is also developed; therefore, the new algorithm uses adaptive 

regression parameters rather than fixed parameters.   

4. The new algorithm is demonstrated using feedwater flow rate data and time-series 

data and the experimental results are discussed. 

5. A novel wavelet-based procedure for extracting features in high-dimensional data for 

single curve and for multiple curves in order to achieve better computational 

efficiency, enhance compactness in data representation, and minimize relative 

similarity in variable vector is also developed. 

6. An application of the new feature extraction procedures to some popular simulated 

signals in the literature, the biscuit dough problem, and the shaft misalignment 

problem is implemented.  In addition, the predictions of the procedure compared with 

the other procedures in the literature are also discussed. 
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7. Finally, a new two-stage wavelet-based feature extraction methodology for high-

dimensional data with multiple response variables is presented and the application of 

this methodology for the biscuit dough and shaft misalignment data is also discussed. 

 

1.4 Outline of the Dissertation 

The remainder of this dissertation is organized as follows: Chapter 2 reviews relevant 

literature on SVR, methods of computing SVR parameters, and types of kernels used in 

SVR.  In addition, the descriptions of the shaft misalignment and biscuit dough problems 

are given in Chapter 2. 

In Chapter 3, the two weighting functions, modified logistic weight function (MLWF) 

and modified Gompertz weight function (MGWF), for updating regularization constant 

and accuracy parameter for on-line support vector regression algorithm are presented.  To 

use the proposed weighting functions, the on-line support vector regression algorithm 

with adaptive weighting parameters (AOLSVR) is also presented.  Furthermore, the 

results of the application of these weighting functions and AOLSVR algorithm to both 

feedwater flow rate and time-series problems are discussed. 

A wavelet-based feature extraction methodology for multivariate small n large p 

problems is presented in Chapter 4.  The step-down thresholding (SDT) procedure using 

multiple hypotheses testing approach for extracting significant features for single curve 

and the voting selection strategy for extracting significant representative features for 
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multiple curves are also presented.  In addition, a two-stage wavelet-based predictive 

modeling methodology for multivariate process data is also presented.  The first stage 

uses SDT procedure for multiple curves and the second stage uses Bayesian decision 

theory approach to select some of the extracted features that can predict each of the 

response variables accurately.  The proposed procedure was demonstrated with a shaft 

misalignment and biscuit dough data.  The conclusions from this research and 

recommendations for future research are discussed in Chapter 5. 
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Chapter 2 

Formulation of Support Vector Regression 

and Description of Representative Problems  

An introduction to support vector machines is given in Section 2.1 and a review of 

support vector regression formulation is presented in Section 2.2.  The types of kernel 

functions used in SVR implementation are discussed in Section 2.3.  Section 2.4 reviews 

some approaches of computing SVR parameters.  In Section 2.5, the descriptions of the 

data-sets used in this research are presented. 

 

2.1 Introduction to Support Vector Machines 

The support vector machines (SVM) technique (Vapnik, 1995; 1998) is based on 

statistical learning theory and it is used for learning classification and regression rules 

from data (Osuna et al., 1997). When used for classification problems, the algorithm is 

called support vector classification (SVC) and when used for regression problems, the 

algorithm is support vector regression (SVR).  Therefore in this dissertation, as found in 

the literature, SVM will be used to refer to both SVC and SVR.  Unlike other predictive 
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model, the SVM attempts to minimize the upper bound on the generalization error based 

on the principle of structural risk minimization (SRM) rather than minimizing the training 

error.  This approach has been found to be superior to the empirical risk minimization 

(ERM) principle employed in artificial neural network (Gunn, 1998; Vapnik et al., 1996).  

In addition, the SRM principle incorporates capacity control that prevents over-fitting of 

the input data (Bishop, 1995).  The SVM technique has sound orientations towards real-

world applications (Smola and Schölkopf, 2004); therefore, it is applicable to condition 

monitoring problems (Omitaomu et al., 2006, 2005a, and 2005b). 

The SVM technique continues to gain popularity for prediction because of its several 

outstanding properties (Muller et al., 1997; Fernandez, 1999; Cao and Tay, 2003).  Some 

of these properties are the use of kernel function that makes the technique applicable to 

both linear and non-linear approximations, good generalization performance as a result of 

the use of only the so-called support vectors for prediction, the absence of local minima 

because of the convexity property of the objective function and its constraints, and the 

fact that it is based on structural risk minimization that seeks to minimize the upper 

bound of the generalization error rather than the training error.  Since this research is 

concerned with regression problems, all the discussions henceforth will focus on SVR.  

Most of these discussions are also applicable to SVC.  The SVR algorithm was developed 

after successful implementation of SVC algorithm for classification problems.  The two 

key features in SVR implementation are mathematical programming and kernel 

functions.  The model coefficients are obtained by solving a quadratic programming 

problem with linear equality and inequality constraints.  The SVR technique has been 
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applied successfully to a wide range of pattern recognition and prediction problems (for 

example, Omitaomu et al., 2006, 2005a, & 2005b; Mattera & Haykin, 1999; Muller et al., 

1999). 

 

2.2 Support Vector Regression Formulation 

A detailed formulation of SVR equations is provided by Vapnik (1995; 1998).  Given a 

set of training inputs: 

 { }1 2, ,..., mX x x x χ= ⊂  (2.1) 

and their corresponding outputs: 

 { }1 2, ,..., .mY y y y γ= ⊂  (2.2) 

The training set, T, can then be represented by: 

 ( ) ( ) ( ){ }1 1 2 2, , , ,..., , ,m mT x y x y x y=  (2.3) 

where nx X∈ ⊂  and y Y∈ ⊂ .  Assume a non-linear function, ( )f x , given by: 

 ( ) ,if x b= +Tw Φ(x )  (2.4) 

where w  is the weight vector, b is the bias, and ( )iΦ x  is the high dimensional feature 

space, which is linearly mapped from the input space x.  Assume further that the goal is 
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to fit the data T by finding a function ( )f x  that has a largest deviation ε  from the actual 

targets iy  for all the training data T, and at the same time it is as small as possible.  

Therefore, Eq. (2.4) is transformed into a constrained convex optimization problem as 

follows: 

 ( )
( )

1minimize    
2

subject to:     
,

i i

i i

y b

y b

ε

ε

⎧ − + ≤⎪
⎨

− + ≥⎪⎩

T

T

T

w w

w Φ(x )

w Φ(x )

 (2.5) 

where ( )0ε ≥  is user defined and represents the largest deviation.  Eq. (2.5) can also be 

written as: 

 

1minimize    
2

subject to:   
.

i i

i i

y b

b y

ε

ε

⎧ − − ≤⎪
⎨

+ − ≤⎪⎩

T

T

T

w w

w Φ(x )

w Φ(x )

 (2.6) 

The goal of the objective function in Eq. (2.6) is to make the function as "flat" as 

possible; that is, to make w  as "small" as possible while satisfying the constraints.  In 

order to solve Eq. (2.6), slack variables are introduced to cope with possible infeasible 

optimization problems.  One silent assumption here is that ( )f x  actually exists; in other 

words, the convex optimization problem is feasible.  However, this is not always the 

case; therefore, one might want to trade off errors by flatness of the estimate.  This idea 

leads to the following primal formulations as stated in Vapnik (1995): 
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( )
1

1minimize      
2

subject to:    

, 0,

m

i i
i

i i i

i i i

i i

C

y b

b y

ξ ξ

ε ξ

ε ξ

ξ ξ

+ −

=

+

−

+ −

+ +

⎧ − − ≤ +
⎪

+ − ≤ +⎨
⎪ ≥⎩

∑T

T

T

w w

w Φ(x )

w Φ(x )
 (2.7) 

where C ( > 0) is a pre-specified regularization constant and represents the penalty 

weight.  The first term in the objective function ( )Tw w  is the regularized term and 

makes the function as "flat" as possible whereas the second term ( )
1

m

i i
i

C ξ ξ+ −

=

⎛ ⎞+⎜ ⎟
⎝ ⎠
∑  is 

called the empirical term and measured the ε -insensitive loss function.  According to Eq. 

(2.7), all data points whose y-values differ from ( )f x  by more than ε  are penalized.  

The slack variables,  and i iξ ξ+ − , correspond to the size of this excess deviation for upper 

and lower deviations, respectively, as represented graphically in Fig. 2.1.  The ε -tube is 

the largest deviation and all the data points inside this tube do not contribute to the 

regression model since their coefficients are equal to zero.  Data points outside this tube 

or lying on this tube are used in determining the decision function and they are called 

support vectors and have non-zero coefficients.  Eq. (2.7) assumes ε -insensitive loss 

function (Vapnik, 1995) as shown in Fig. 2.1 and defined as: 

 
0         if 

      otherwise.ε

ξ ε
ξ

ξ ε

⎧ ≤⎪= ⎨
−⎪⎩

 (2.8) 
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Fig. 2.1.  An illustration of ε -tube for support vector regression. 
(Adopted from Vapnik, 1998) 

 

To solve Eq. (2.7), some Lagrangian multipliers ( ), , ,i i i iα α η η+ − + −  are introduced in order 

to eliminate some of the primal variables.  Hence, the Lagrangian of Eq. (2.7) is given as: 

 

( ) ( )

( )( )

( )( )

1 1

1

1

1
2

   

. . , , , 0.

m m

p i i i i i i
i i

m

i i i i
i

m

i i i i
i

i i i i

L C

y b

y b

s t

ξ ξ η ξ η ξ

α ε ξ

α ε ξ

α α η η

+ − + + − −

= =

+ +

=

− −

=

+ − + −

= + + − +

− + − + +

− + + − −

≥

∑ ∑

∑

∑

T

T

T

w w

w Φ x

w Φ x

 (2.9) 

Two advantages of Eq. (2.9) are that it provides the key for extending SVM to nonlinear 

functions and it makes solving Eq. (2.7) easier.  It then follows from the saddle point 

condition (the point where the primal objective function is minimal and the dual objective 

function is maximal) that the partial derivatives of pL  with respect to the primal variables 

( ), , ,i ib ξ ξ+ −w  have to vanish for optimality. 

+ ε- ε

x

ξ

x

ξ+

- εx

x

x x
x

x

x
x

x

x
xx

x

x

x

ξ -

x + ε

ε-insensitive loss function
+ ε- ε

x

ξ

+ ε- ε

x

ξ

x

ξ+

- εx

x

x x
x

x

x
x

x

x
xx

x

x

x

ξ -

x + ε

ε-insensitive loss function
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Therefore, 

 ( )
1

              = 0,
m

b P i i
i

L α α+ −

=

∂ = −∑  (2.10) 

 ( )
1

0,
m

P i i i
i

L xα α+ −

=

∂ = − − =∑W w  (2.11) 

 ( )
( ) ( )

*
* *and     0,

i
P i iL C

ξ
α η∂ = − − =  (2.12) 

where (*) denotes variables with + and - superscripts.  Substituting (2.10) and (2.12) into 

(2.9) lets the terms in b and ξ  vanish.  In addition, Eq. (2.12) can be transformed into 

[ ]0,i Cα ∈ .  Therefore, substituting Eqs. (2.10) to (2.12) into (2.9) yields the following 

dual optimization problem: 

 

( )( )( )

( ) ( )

( )
[ ]

, 1

1 1

1

1maximize ,
2

 

0
subject to         

, 0, ,

m

i j i i j j
i j

m m

i i i i i
i i

m

i i
i

i i

K

y

C

α α α α

ε α α α α

α α

α α

+ − + −

=

+ − + −

= =

+ −

=

+ −

− −

+ + − −

⎧ − =⎪
⎨
⎪ ∈⎩

∑

∑ ∑

∑

x x

 (2.13) 

where ( ),i jK x x  is called the kernel function.   The flexibility of a kernel function allows 

the technique to search a wide range of solution space.  The kernel function must be 

positive definite in order to guarantee a unique optimal solution to the quadratic 

optimization problem.  It allows non-linear function approximations with the SVM 
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technique, while maintaining the simplicity and computational efficiency of linear SVM 

approximations.  Some of the common kernel functions are polynomial kernel and 

Gaussian radial basis function kernel.  Descriptions of the common types of kernel used 

in SVM are discussed in Section 2.3. 

The dual problem in Eq. (2.13) has three advantages: the optimization problem is now a 

quadratic programming problem with linear constraints, which is easier to solve and 

ensures a unique global optimum.  Second, the input vector only appears inside the dot 

product, which ensures that the dimensionality of the input space can be hidden from the 

remaining computations.  That is, even though the input space is transformed into a high 

dimensional space, the computation does not take place in that space but in the linear 

space (Gunn, 1998).  Finally, the dual form does allow the replacement of the dot product 

of input vectors with a non-linear transformation of the input vector.  In deriving Eq. 

(2.13), the dual variables ,i iη η+ −  were already eliminated through the condition in Eq. 

(2.12).  Therefore, Eq. (2.11) can be rewritten as: 

 ( )
1

.
m

i i i
i

xα α+ −

=

= −∑w  (2.14) 

Hence, Eq. (2.4) becomes: 

 ( ) ( )
1

( ) , .
m

i i i j
i

f x K bα α+ −

=

= − +∑ x x  (2.15) 
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This is the Support Vector Regression expansion.  That is, w can be completely described 

as a linear combination of the training patterns ix .  Some outstanding advantages of Eq. 

(2.15) are that it is independent of both the dimensionality of the input space χ  and the 

sample size m. 

Like the PCR and PLS, the SVR expansion is not suitable for on-line prediction, because 

the addition of a data point requires the retraining of the entire training set.  As a result, 

Ma et al. (2003) proposed accurate on-line support vector regression (AOSVR).  Several 

approximate on-line SVM algorithms have previously been proposed (Li and Long, 1999; 

Cauwenberghs and Poggio, 2001; Csato and Opper, 2001; Gentile, 2001; Graepel et al., 

2001; Herbster, 2001; Kivinen et al., 2002).  The procedure involved in AOSVR is that 

whenever a new sample is added to the training set, the corresponding coefficient is 

updated in a finite number of steps until it meets the KKT conditions, while at the same 

time ensuring that the existing samples in the training set continue to satisfy the KKT 

conditions at each step.  A detailed presentation of AOSVR can be found in Ma et al. 

(2003).  However, this on-line algorithm uses a fixed value for ε  and C; even though, the 

characteristic of the training set is not stationary.  Therefore, to use varying (adaptive) 

values for SVR parameters (C and ε ), there must be some modifications to the original 

algorithm and there must also be some procedures for updating the values for SVR 

parameters at each step of training. 
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2.3 Types of Kernel Functions used in SVM 

( ),i jK x x  is defined in Eq. (2.13) as the kernel function.  Its value is equal to the inner 

product of two vectors ix  and jx  in the feature space ( )iΦ x  and ( )jΦ x .  That is, 

 ( ) ( ) ( ), .i j i jK = ⋅x x Φ x Φ x  (2.16) 
 

Therefore, the SVM techniques use a kernel function to map the input space into a high-

dimensional feature space through some non-linear mapping chosen a priori and used to 

construct the optimal separating hyperplane in the feature space.  This makes it possible 

to construct linear decision surfaces in the feature space instead of constructing non-

linear decision surfaces in the input space.  There are several types of kernel function 

used in SVM.  The type of SVM constructed is a function of the selected kernel function.  

This also affect the computation time of implementing the SVM.  According to Hilber-

Schmidt theory, ( ),i jK x x  can be any symmetric function satisfying the following 

conditions (Courant and Hilbert, 1953): 

Mercer Conditions: To guarantee that the symmetric function ( ),i jK x x  has the 

expansion 

 ( ) ( ) ( )
1

,i j k k i k j
k

K x x x xα ψ ψ
∞

=

=∑  (2.17) 
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with positive coefficients 0kα >  (that is, ( ),i jK x x  describes an inner product in some 

feature space), it is necessary and sufficient that the condition 

 ( ) ( ) ( ), 0i j i j i jK x x g x g x dx dx >∫∫  (2.18) 

be valid for all 0g ≠  for which 

 ( )2 .i ig x dx < ∞∫  (2.19) 

Based on this theorem, three of the popular kernel functions used in SVM are: 

• A polynomial kernel function constructed using: 

 ( ) ( ), , , 1, 2,3, .
d

i j i jK x x d= =x x  (2.20) 

An alternative form of Eq. (2.20), which avoids computation problem encountered in 

using Eq. (2.20) is: 

 ( ) ( )( ), , 1 , 1, 2,3, .
d

i j i jK x x d= + =x x  (2.21) 

• A Gaussian radial basis kernel function can be constructed using: 

 ( ) ( )2

2, exp ,i j
i j

x x
K

σ

⎛ ⎞−⎜ ⎟= −
⎜ ⎟
⎝ ⎠

x x  (2.22) 

where σ  (> 0) is the kernel width. 
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• A sigmoid kernel function constructed using: 

 ( ) ( )( ), tanh .i j i jK x x b x x c= ⋅ −  (2.23) 

The Gaussian radial basis function kernels, usually called radial basis function (RBF) 

kernels in SVM literature, are widely used in artificial neural networks (Haykin, 1999), 

support vector machines (Vapnik, 1998), and approximation theory (Schölkopf & Smola, 

2002).  The RBF kernel is usually a reasonable first choice because of its outstanding 

features: it can handle linear and non-linear input-output mapping effectively; it requires 

less number of hyper-parameters than polynomial kernel, which reduces computation 

cost in terms of tuning for optimum hyper-parameters; the kernel values for RBF ranges 

between 0 and 1, hence less numerical difficulties; whereas these values can range 

between 0 and infinity for polynomial kernel.  The sigmoid kernel is not always 

considered because it does not always fulfill the Mercer Condition (Vapnik, 2000), which 

is a requirement for an SVR kernel.  In addition, sigmoid kernel is similar to RBF kernel 

when the kernel width is a small value (Lin & Lin, 2003).  Therefore, because of its 

outstanding advantages, the RBF kernel is adopted for all analyses and computations in 

this dissertation.  A simple example of the kernel mapping from a two dimensional input 

space ( )2  into a six dimensional feature space ( )6  using polynomial kernel as 

defined in Eq. (2.21) is given in Example 2.1: 
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Example 2.1 (Quadratic features in 2 ): 

( )( ) ( ) ( )
( ) ( )( ) ( )

( ) ( )

2 2

1 1 2 2 1 1 2 2

2 2

1 1 1 1 2 2 2 2

1 1 2 2

1 2 1

2

2 2 1.

i j i j i j i j i j

i j i j i j i j

i j i j

x x x x x x x x x x

x x x x x x x x

x x x x

⋅ + = + + + +

= + + +

+ +

 

Therefore,  

( ) 1 2 2
1 2 1 2 1 2 1 2

2

, 2 2 2 1 .
x

K k x x x x x x
x

⎛ ⎞ ⎡ ⎤= =⎜ ⎟ ⎣ ⎦⎝ ⎠

T
x x  

 

2.4 Methods of Computing SVR Parameters 

The performance of SVR technique depends on the setting of three training parameters 

(kernel, C, and ε ) for ε -insensitive loss function.  However, for any particular type of 

kernel the values of C and ε  are what affect the complexity of the final model.  The 

value of ε  affects the number of support vectors (SV) used for predictions.  Intuitively, a 

larger value of ε  results in a smaller number of support vectors, which leads to less 

complex regression estimates.  On the other hand, the value of C is the trade off between 

model complexity and the degree of deviations allowed in the optimization formulation.  

Therefore, a larger value of C undermines model complexity (Cherkassky and Ma, 2004).  

The selection of optimum values for these training parameters (C andε ) that will 

guarantee less complex models is an active area of research.  There are several existing 

approaches for selecting optimum value for these parameters. 
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The most common approach is based on users' prior knowledge or expertise in applying 

SVM techniques (Cherkassky and Mulier, 1998; Schölkopf et al., 1999).  However, this 

approach could be subjective and it is not appropriate for new users of SVR.  It is also not 

applicable for on-line application since it requires manual intervention at each step of 

learning.  This approach constitutes a source of uncertainty when used by non-experts 

and experts of SVM not familiar with the characteristics of the data set under 

consideration.  Mattera and Haykin (1999) proposed that the value of C be equal to the 

range of output values; but this approach is not robust to outliers (Cherkassky and Ma, 

2004), especially in condition monitoring problems where data is prone to outliers due to 

faulty sensors or instruments.  Another approach is the use of cross-validation techniques 

for parameter selection (Cherkassky and Mulier, 1998; Schölkopf et al., 1999).  Even 

though this is a good approach for batch processing, it is data-intensive; hence, it is very 

expensive to implement in terms of computation time, especially for larger datasets.  

Furthermore, re-sampling techniques are not applicable to on-line applications.  One 

more approach is that ε  values should be selected in proportion to the variance of the 

input noise (Smola et al., 1998; Kwok, 2001); this approach is independent of the sample 

size and it is only suitable for batch processing where the entire data set is available.  

Cherkassky and Ma (2004) presented another approach based on the training data.  They 

proposed that C values should be based on the training data without resulting to re-

sampling using the following estimation: 

 ( )max 3 , 3 ,y yC y yσ σ= + −  (2.24) 



 28

where y and yσ are the mean and standard deviation of the y values of the training data.  

One advantage of this approach is that it is robust to possible outliers.  They also 

proposed that the value of ε  should be proportional to the standard deviation of the input 

noise.   Using the idea of Central Limit Theorem, they proposed that ε  be given by: 

 ln3 ,n
n

ε σ=  (2.25) 

where σ  is the standard deviation of the input noise and n is the number of training 

samples.  Since the value of σ  is not known a priori, the following equation can be use 

to estimate σ  using the idea of k-nearest-neighbor's method: 

 ( )
1/5

2
1/5

1

1ˆ ˆ , 2 6,
1

n

i i
i

n k y y k
n k n

σ
=

= ⋅ − ≤ ≤
− ∑  (2.26) 

where n is the number of training samples, k is the low-bias/high variance estimators, and 

ŷ is the predicted value of y by fitting a linear regression to the training data to estimate 

the noise variance.  Again, this approach is only applicable to batch processing.  Cao and 

Tay (2003) proposed ascending regularization constant ( )iC  and descending tube ( )iε  

for batch SVR applications in financial time series data.  They adopt the following 

definitions: 

 2

1 exp 2
iC C

ia a
m

=
⎛ ⎞⎛ ⎞+ − ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 (2.27) 
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and 

 
1 exp 2

,
2i

ib b
mε ε

⎛ ⎞⎛ ⎞+ − ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠=  (2.28) 

where i represents the data sequence, iC  is the ascending regularization constant, iε  is 

the descending tube, a is the parameter that controls ascending rate, and b is the 

parameter that controls descending rate.  Even though their approach is adaptive, it is not 

suitable for on-line learning and its application to AOSVR will damage the on-line 

algorithm because the computation of the parameter that controls the ascending and the 

descending rates also requires re-sampling techniques (Cao and Tay, 2003).  

Furthermore, their approach is not flexible regarding setting the lower and upper bound 

of the parameter values.  Some of the approaches above are very appropriate to batch 

processing but they are not practical for on-line learning.  Therefore, there is a need for 

appropriate approaches for computing SVR parameters in on-line settings. 

 

2.5 Description of the Representative Problems 

This section introduces the two representative high-dimensional problems consider in this 

research: shaft misalignment problem and biscuit dough problem. 
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2.5.1 Shaft Misalignment Problem 

A typical mechanical system consists of a driver machine, a driven machine, and a 

coupling as depicted in Fig. 2.2. 

The coupling could be a rotating shaft, rigid or elastic joints, belt and gear trains.  A shaft 

transmission system is one of the most fundamental and important parts of rotating 

machinery; therefore, the ability to estimate and predict shaft alignment or misalignment 

accurately can significantly enhance the predictive maintenance task of a production 

system.  A proper shaft alignment is indispensable because it reduces excessive axial and 

radial forces on the most vulnerable parts of a machine system such as the bearings, seals, 

and couplings (Wowk, 2000).  It also minimizes the amount of shaft bending thereby 

permitting full transmission of power from the driver machine to the driven machine and 

eliminates the possibility of shaft failure from cyclic fatigue. 

 

 

 

 

Fig. 2.2.  A schematic diagram of a driver-coupling-driven system. (Adapted from 
Giordana et al., 1993) 
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In addition, it minimizes the amount of wear in the coupling components, reduces 

mechanical seal failure, and lowers vibration levels in machine casings, bearing housings, 

and rotor.  Therefore, monitoring and predicting shaft alignment condition is important in 

order to make intelligent decisions on when to perform alignment maintenance, which 

plays an essential role in increasing maintenance effectiveness and reducing maintenance 

costs. 

Shaft misalignment is one of the prevalent faults associated with rotating machines and it 

occurs when the shaft of the driven machine and the shaft of its driver machine do not 

rotate on a common axis; that is, the shafts are not coaxial.  Shaft misalignment is a 

measure of how far apart the two centerlines are away from each other (Wowk, 2000; 

Kuropatwinski et al., 1997).  Such shift in centers can be in parallel position (when the 

centerlines of the two shafts are parallel with each other, but at a constant distance apart), 

in angular position (when the centerlines are at an angle to each other), or a combination 

of these positions (Piotrowski, 1995) as depicted in Fig. 2.3. 

 

 

 

 

Fig. 2.3.  An illustration of parallel, angular, and combined misalignments. 

(a) Parallel Misalignment (b) Angular Misalignment

(c) Combined Parallel-Angular Misalignment
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Even though a perfect shaft alignment is unlikely during operating cycles, there is a limit 

to the maximum amount of misalignment that is allowable.  Therefore, shaft alignment 

can be classified into four grades: unsafe, poor, acceptable, and excellent.  Two of these 

grades (poor and unsafe) are wake-up calls for maintenance actions.  A poor grade results 

when the alignment is within the manufacturer's allowances but outside the machine's 

recommended limits, so it is somewhat a warning grade.  An unsafe grade means the 

alignment is outside the manufacturer's design specification allowance and must be 

attended to. 

Industry invests significant amount of time and money on shaft misalignment because it 

causes a decrease in motor efficiency and makes the machine more prone to failure due to 

increased loads on the shaft support devices such as the bearings, seals, and couplings.  It 

is generally agreed that proper alignment is critical to the life of a machine, which means 

that coupling wear or failure, bearing failures, bent rotors, and bearing housing damage 

are direct evidence of poor shaft alignment (Eisenmann and Eisenmann, 1998).  One way 

to overcome this problem is to monitor the condition of the shaft during machine 

operations and collect data to predict the state of the shaft.  It has been estimated that 

more than 50% of all problems with coupled machines are due to misalignment and over 

50% of all vibration troubles with coupled machines are due to shaft misalignment.  

Furthermore, up to 50 percent of the expected bearing life can be lost with as small as a 5 

mil offset misalignment.  Therefore, eliminating shaft misalignment is a major focus 

because it increases machine reliability, increases machine life, and reduces maintenance 

and cost.  However, the detection and prediction of shaft misalignment requires a proven 
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technique with high performance capability especially in a system that alerts operators of 

impending faults so that corrections could be made before any damage to the motor 

system.  Such notification would allow maintenance to be performed at scheduled 

shutdowns rather than creating unnecessary machine downtime. 

Various quantitative based models have been used for predicting shaft misalignment 

conditions.   The most popular techniques are Principal Components Regression (PCR), 

Partial Least Squares (PLS), and Artificial Neural Networks (ANN) (Kuropatwinski et 

al., 1997; Hines et al., 1997; 1998; 1999).  These techniques vary in their accuracy, 

prediction efficiency, robustness, and transparency.  The performance of PLS depends on 

the number of factors used.  The degree of bias is dependent on the choice of the number 

of factors.  A smaller number of factors result in larger bias but a large number of factors 

will produce high variance.  In the case of non-linear relationships between predictors 

and response, PLS might results in a solution with large bias.  Therefore, ANN is usually 

considered and used for non-linear relationships.  However ANN has two disadvantages, 

a black box approach and a computationally expensive training process (Haykin, 1999), 

which make its acceptance and implementation in the industry difficult.  The purpose of 

using PCR model is to find factors that have a much lower dimension than the original 

data set, which can be used for prediction; thereby reducing computation time and 

avoiding the use of correlated features.  One limitation of this technique is that it is time 

invariant, while most of the real processes are time-varying (Venkatasubramanian, 2003). 

The objective of this study is to predict motor shaft misalignment from the motor's power 

spectrum using a modified support vector regression approach.  The motivation for using 
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motor power spectrum is that electric motors generate a force that turns the motor shaft 

through a coupling.  Deviations in the motor shaft system cause immediate changes to the 

input power of the motor.  A system based on power changes is more sensitive than one 

based on vibration changes because the information is immediately transferred instead of 

having to be passed through the different structures of the motor. 

The original shaft misalignment data has 3072 predictors, 10 samples, and two response 

variables (parallel and angular misalignment conditions).  Five sets of the original data 

were taken to increase the number of samples to 50.  The original data set was duplicated 

to allow for more observations for each alignment condition.   This new data set includes 

10 samples of combined parallel and angular misalignment conditions and 20 samples 

each of parallel and angular misalignment conditions.  Fig. 2.4 shows a 3D plot of the 

dataset for the original 10 conditions and the first 500 predictors and a 2D plot for three 

of the curves.  The red colored signal in the 2D plot is for an angular misalignment 

condition, the blue colored signal is for a parallel misalignment condition, and the black 

colored signal is for a combined misalignment condition.  These plots show that there is 

no significant difference between the data points; therefore, all the predictors can be said 

to be significant.  However, there may be internal characteristics that are not feasible in 

this domain.  Transforming the data into another domain may reveal these internal 

characteristics. 
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Fig. 2.4. Plots of shaft misalignment data. 

 

2.5.2 Chemical Composition Problem 

Quantitative near-infrared (NIR) spectroscopy is used to analyze the chemical 

composition or biological properties of samples and has applications in several industries 

including food and drink, medicine, geology, paper, petrochemical, pharmaceutical, and 

biotechnology (Osborne et al., 1993).  The example studied in this dissertation arises 

from an experiment to measure the composition of biscuit dough pieces for possible on-

line implementation (Brown et al., 2001).  The purpose of the work was to investigate if 

NIR would be of practical benefit in the monitoring of automatic metering equipment 

used for fat, dry flour, sugar, and water in short dough biscuit production (Osborne et al., 

1984).  Two similar sample sets (training and testing sets) with the standard recipe varied 

to provide a large range for each of the four constituents under investigation: fat, sucrose, 

fry flour, and water.  Thus, there are four predictands and 39 samples for training and 
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testing.  For each sample, there are 700 points measured from 1100 to 2498 nanometers 

(nm) in steps of 2 nm.  However, for analysis, only data points from 1380 nm and 2400 

nm in steps of 4 nm are used.  Therefore, the number of predictors is 256.  Fig. 2.5 shows 

a 3D plot of the dataset and a 2D plot for one of the curves.  The red colored signal in the 

2D plot is for the first sample, the blue is for the 15th sample, and the black colored signal 

is for the 34th sample.  Again, these curves have slight differences in the original domain 

and it may be difficult to select the significant samples in this domain. 

 

 
Fig. 2.5. Plots of biscuit dough spectroscopy data. 
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Chapter 3 

On-Line Support Vector Regression with 

Adaptive Weighting Parameters 

An introduction to weighting functions for on-line prediction is presented in Section 3.1.  

The proposed weighting functions for on-line prediction, modified logistic weight 

function (MLWF) and modified Gompertz weight function (MGWF), are presented in 

Sections 3.2 and 3.3 respectively.  Descriptions of some potential areas of application of 

the weighting functions are presented in Section 3.4.  The modified AOSVR algorithm 

called on-line support vector regression with adaptive weighting parameters (AOLSVR) 

algorithm is presented in Section 3.5.    Applications of AOLSVR using MLWF and 

MGWF for two spectra problems and two time-series benchmark data are presented in 

Section 3.6. 

 

3.1 Introduction to Weighting Functions for On-line Prediction 

For on-line learning, one approach of selecting C and ε  is to vary their values with 

respect to the relative importance of the training samples.  In general, for on-line 
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predictions, recent data points provide more quality information than past data points.  

Furthermore, recent data points are more critical to prediction, especially for condition 

monitoring applications and financial time series data.  Process condition information 

increases monotonically over time starting from a zero level.  Therefore, recent data 

should be given more attention (more weight) than distant data points.  To extend the 

application of adaptive regularization constant and tube to on-line learning and to 

enhance the application of AOSVR, two simple weighting functions for computing SVR 

parameters for on-line applications are proposed.   

 

Another motivation for these weighting schemes is that the rate at which learning evolves 

can be divided into three phases: an initialization phase, a progress phase, and a stable 

phase.  The initialization phase is the starting phase when we just start gathering data but 

we have not enough data for stable learning.  The prediction error for this phase is usually 

very high.  After some rounds of learning, we have the progress phase.  This is when 

learning picks up as a result of the availability of more data and we expect the prediction 

error to start decreasing at a faster rate.  That is, the addition of one sample of data brings 

about a significant reduction in prediction error.  The last phase is the stable phase and 

this occurs at a point when we have had enough data for learning and can confidently say 

that the learning is somewhat stable.  At this phase, the prediction error is also stable and 

there is no significant improvement in prediction error for additional training samples.  

These phases are as depicted in Fig. 3.1, where 1, ,i n= …  and n is the sample size.  From 

Fig. 3.1, as the sample size increases the prediction error decreases until the learning 

becomes stable.  In on-line learning, we want to achieve a stable prediction as soon as  
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Fig. 3.1.  An illustration between training error and sample size 

 

possible since training data is usually sparse.  Using a weight function may help achieve 

this objective without using a large training set.  Based on this description, if recent 

samples are more important than past samples the value of the regularization constant 

should increase over time as the number of data sequence increases.  On the other hand, 

the accuracy parameter should decrease over time as the number of data sequence 

increases.  In addition, in using SVM algorithms the value of the regularization constant 

should be much greater, possibly tending towards infinity and the value of the accuracy 

parameter should be much smaller, possibly tending towards zero depending on the 

estimate of noise in the data.  Therefore, two sigmoidal weight functions for on-line 

learning are proposed: modified Logistic weight function (MLWF) and modified 

Gompertz weight function (MGWF). 
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3.2 Modified Logistic Weight Function 

One of the most popular classical symmetric functions that use only one equation is the 

Logistic function.  It has wide applications in several areas including engineering, natural 

sciences, and statistics.  It combines two characteristic exponential growth (exponential 

and bounded exponential).  Logistic function has been widely used in neural network as 

the preferred activation function, because it has good properties for updating training 

weights.  However, the standard form of Logistic function is not flexible in setting lower 

and upper bounds on weights.  For time-dependent predictions, it is reasonable to have a 

certain initial weight at the beginning of the training.  Therefore, in order to extend the 

properties of Logistic function to estimating SVR parameters, we propose modified 

Logistic weight function (MLWF) equations for adaptive SVR parameters.  The adaptive 

regularization constant ( )iC  is defined as: 

 
( )( )

max
min

c1 expi
CC C
g i m

⎡ ⎤
= + ⎢ ⎥

+ − × −⎢ ⎥⎣ ⎦
 (3.1) 

and the MLWF equation for adaptive accuracy parameter ( )iε  is defined as: 

 ( )( )
max

min
c

,
1 expi g i m

εε ε
⎡ ⎤

= + ⎢ ⎥
+ × −⎢ ⎥⎣ ⎦

 (3.2) 

where 1, , ,i m= …  m is the number of training samples, cm  is the changing point, minC  

and minε  are the desired lower bound for the regularization constant and the accuracy 
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parameter respectively, maxC  and maxε  are the desired upper bound for the regularization 

constant and the accuracy parameter respectively, and g  is an empirical constant that 

controls the curvature (slope) of the function; that is, it represents the factor for the 

relative importance of the samples.  The essence of the lower bound is to avoid 

underestimation and the upper bound avoids overestimation of the parameters.  The value 

of g could range from zero to infinity but we consider only four special cases in this 

dissertation.  The behaviors of these four cases are summarized as follows: 

i. Constant weight:  This is the case with conventional AOSVR in which all data 

points are given the same weight.  This is more suitable for data from the same 

process.  This can be achieved in Eqs. (3.1) and (3.2) when 0g = , therefore 

min max 2iC C C≅ +  min maxand 2iε ε ε≅ + .   

ii. Linear weight:  This is applicable to cases in which the weight is linearly 

proportional to the size of the training set.  This is the case when 0.005,g =  then 

the value of iC  is a linearly increasing relationship and the value of iε  is a 

linearly decreasing relationship.   

iii. Sigmoidal weight: Different sigmoidal pattern can be achieved using different 

values of g in relation to the number of training set.  One possibility is when 

0.03,g =  the weight function follows a sigmoidal pattern.  The value of g can 

also be set to achieve a pattern with a zero slope at the beginning and at the end of 

the training. 
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iv. Two distinct weights: In this case, the first one-half of the training set is given 

one weight and the second one-half is given another weight.  A possible 

application is the case of data from two different processes.  This is possible when 

5,g =  then,  

min c min max c

min max c min c

,    ,    
     and    

,    ,    .i i

C i m i m
C

C C i m i m
ε ε

ε
ε

< + <⎧ ⎧
≅ ≅⎨ ⎨+ ≥ ≥⎩ ⎩

 

The pictorial representations of the different weights for these g values are shown in plots 

a and b in Fig. 3.2.  Both plots a & b show that the profile for MLWF is symmetric 

around the mid point ( )cm  of the total training set.  For the plots in Fig. 3.2, the minC  and 

maxC  are set to 5.0 and 60.0 respectively and minε  and maxε  are set to 0.01 and 0.45 

respectively for m = 300 and cm = 150. 

 

3.3 Modified Gompertz Weight Function 

In order to generate asymmetric profiles for non-stationary process data, we present 

modified Gompertz weight function (MGWF) equations for SVR parameters.  The 

asymmetric property is useful if we do not want a balanced weight profile as seen in case 

of MLWF.  This is a double exponential function, but its behavior is similar to MLWF.  

The MGWF equation for adaptive regularization constant ( )iC  is defined as: 
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Fig. 3.2:  The pictorial representations of MLWF and MGWF with different values of g. 

 

 ( )( )( )( )min max cexp expiC C C g i m= + − − × −  (3.3) 

 and the MGWF function for adaptive accuracy parameter ( )iε  is defined as: 

 ( )( )( )( )min max cexp exp ,i g i mε ε ε= + − × −  (3.4) 

where min max min max, , , ,  ,  ,  and ci m g C C ε ε  have the same definitions and explanations as 

in Eqs. (3.1) and (3.2).  As in Section 3.2, we also consider the same values of g for the 

four cases considered.  The behaviors of Eqs. (3.3) and (3.4) for the four cases considered 
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is summarized as follows and their pictorial representations are shown in plots c and d in 

Fig. 3.2. 

1. Constant weight: When 0g = , min max min max   and   i iC C C e eε ε ε≅ + ≅ + .  That 

is, a fixed value is used for all data points. 

2. Linear weight: When 0.005,g =  the value of iC  is a linearly increasing 

relationship and the value of iε  is a linearly decreasing relationship. 

3. Sigmoidal weight: When 0.03,g =  the weight function follows a sigmoidal 

pattern. 

4. Two distinct weights: When 5g = ,  

min c min max c

min max c min c

,    ,    
   and   

,    ,    .i i

C i m i m
C

C C i m i m
ε ε

ε
ε

< + <⎧ ⎧
≅ ≅⎨ ⎨+ ≥ ≥⎩⎩

 

Both plots c and d in Fig. 3.2 show that the MGWF profile is asymmetric around the mid 

point ( )cm  of the total training set. 

For these applications, if the recent samples are more important than past samples, g must 

be greater than zero ( )0g >  as shown in Sections 3.2 and 3.3.  Other values can also be 

used depending on the objectives of each problem.  However, if past samples are more 

important than recent samples, then g must be less than zero ( )0g <  for all equations 

described in Sections 3.2 and 3.3; these cases are not considered in this dissertation. 
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Some of the advantages of these functions include: 

• Selection of C and ε  parameters directly in relation to the relative importance of 

data samples and/or their respective position in the data sequence without using 

re-sampling methods. 

• Flexibility in setting lower and upper bound for the parameters without using re-

sampling techniques. 

• The use of a curvature control parameter that has only fewer possible values that 

will enhance a priori settings. 

• The use of parameters that can be set with the slightest knowledge of the 

characteristics of the incoming data. 

In this dissertation, the lower and the upper bounds are set empirically; however, there 

are techniques in the literature that can be used to compute these values.  For example, 

Cherkassky and Ma (2004) presented an approach that is data dependent and robust to 

outliers. 

 

3.4 Potential Areas of Application of the Weight Functions 

The on-line weighting functions (MLWF and MGWF) can be used in several modeling 

cases; we generalized those cases into three: 
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1. The functions can be used in time series prediction where the prediction for time 

1nt +  is based upon the condition information obtained at the past times up to time 

nt .  In such cases, the most recent condition information is more valuable than 

distant condition information.  Therefore, the most recent data has more weight 

than distant data in predicting the next condition.  One possible example is in 

machine wear condition monitoring, the future wear of a machine part is 

dependent upon all past condition information and such dependency increases 

monotonically over time from somewhat perfect condition. 

2. These functions are also applicable to other situations where condition 

information at time nt  is based on information about other parameters also at time 

nt .  In such cases, the volume of available data enhances the performance of the 

prediction.  The more the data points available for prediction, the greater the 

accuracy of the prediction.  Therefore, as the volume of available data increases, 

more weight is given to the data until the prediction is somewhat stable and the 

value of the parameters become constant. 

3. They are also applicable to cases where there is enough data for prediction.  In 

such cases, the learning rate is set so small so that all data points are given equal 

weight in the prediction.  Instead of a sigmoidal pattern of weighting profile, the 

learning rate can also be set to achieve linear weighting profiles as shown in Fig. 

3.2. 
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3.5 On-line SVR with Adaptive Weighting Parameters 

Two weight functions are proposed in Section 3.3 for computing adaptive regularization 

constant and adaptive accuracy parameter.  In order to use any of these proposed 

functions for on-line predictions, we modify both the empirical error (risk), which is 

measured by the ε -insensitive loss function, and the constraints of the AOSVR 

formulation, which will lead to a new set of KKT conditions.  Therefore, the regularized 

constant adopts adaptive regularization constant iC  and every training sample uses 

adaptive accuracy parameter (different tube size) iε . The modified algorithm will 

compute the SVR parameters, ( )and i iC ε , as explained in Section 2; while it avoids re-

training of the training set. 

For AOLSVR, Eq. (2.6) of SVR becomes: 

 

1minimize      
2

subject to:    
,

i i i

i i i

y b

b y

ε

ε

⎧ − − ≤⎪
⎨

+ − ≤⎪⎩

T

T

T

w w

w Φ(x )

w Φ(x )

 (3.5) 

where iε  is varying (adaptive) accuracy parameter.  This idea leads to the following 

primal formulations: 
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( )
1

1minimize      
2
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m

i i i
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i i i i

i i i i

i i
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ε ξ
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ξ ξ
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=
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w Φ(x )
 (3.6) 

where iC  is the varying (adaptive) regularization constant.  Therefore, the Lagrangian of 

Eq. (3.6) is given as: 
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 (3.7) 

Therefore, the necessary conditions for α  to be a solution to the original optimization 

problem, Eq. (3.6), are given by the following: 
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∑
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We can rewrite Eq. (3.7) as follows: 
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Substituting Eq. (3.8) into Eq. (3.9), in order to eliminate , , ,  and ,i ib ξ ξ+ −w  results in the 

following dual optimization problem: 
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 (3.10) 

Following the approach by Ma et al. (2003), the Lagrange of Eq. (3.10) can be written as: 
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 (3.11) 

where , , , ,i i i iu uδ δ ζ+ − + −  are Lagrange multipliers.  Optimizing Eq. (3.11) leads to the 

following Karush-Kuhn-Tucker (KKT) conditions: 
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 (*) (*) (*)0, 0,i i iδ δ α≥ =  (3.14) 

 ( )(*) (*) (*)and    0, 0.i i iu u Cα≥ − =  (3.15) 

Using the following definitions, 

 ( ), ,ij i jQ K= x x  (3.16) 

 and ,i i i j j jθ α α θ α α+ − + −= − = −  (3.17) 

 ( ) ( )
1

and   .
m

i i i ij j i
j

h x f x y Q y bθ
=

≡ − = − +∑  (3.18) 

where ( )ih x  is the error of the target value for vector i.  The KKT conditions in Eqs. 

(3.12), (3.13), (3.14), and (3.15) can be rewritten as: 
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where ( )*
iψ  is the adaptive margin function and can be described as threshold for error on 

both sides of the adaptive ε − tube.  Modifying the approach by Ma et al. (2003), these 

KKT conditions lead to five new conditions for AOLSVR: 
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 (3.20) 

These conditions can be used to classify the training set into three subsets defined as 

follows: 
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Based on these conditions, we modify the AOSVR algorithm appropriately and 

incorporate the algorithms for computing adaptive SVR parameters for the on-line 

training as described in Sections 3.2 and 3.3. 

 

3.5.1 Initializing and Updating the Algorithm 

To initialize the algorithm, we adapt a two-sample solution approach (Ma et al., 2003) in 

which the coefficients are given by: 
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( )

( )

1 2 12
1 12

11 12

2 1

1 2

2max 0,min ,
2

2.

y yC
K K

b y y

εθ

θ θ

⎛ ⎞⎛ ⎞− −
= ⎜ ⎟⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠
= −

= +

 (3.22) 

The subscript 1 and 2 denotes the parameter for the first two samples; whereas subscript 

1 or 2 denotes the parameter for sample 1 or 2 respectively.  The E, S, and R sets are 

initialized from these two points using equations in (3.21) if the S set is empty.  However, 

if the S set is nonempty, the variation relations will have to be used to initialize the sets. 

 

Variation Relations:  Following the approach of AOSVR, the idea for adding a new 

sample ( )c  to the training set is to change its coefficient cθ  in a finite time until it meets 

the KKT conditions, whereas the existing samples in the training set must continue to 

satisfy the KKT conditions during each step of training.  Using the KKT conditions and 

Eq., (3.20), the variation relations between ( )*
iψΔ , bΔ , εΔ , and iθΔ  are given by: 

 
1

m

i ic c ij j i
i

Q Q bψ θ θ ε+

=

Δ = Δ + Δ + Δ + Δ∑  (3.23) 

 

 
1

0
m

c i
i

θ θ
=

Δ + Δ =∑  (3.24) 
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 2i i iψ ψ ε− +Δ = −Δ + Δ  (3.25) 

If the added sample must remain in S, then 0εΔ =  and 0iψ +Δ ≡  since i S∈ .  Therefore, 

Eqs. (3.23) and (3.25) becomes: 

 ij j ic c
j S

Q b Qθ θ
∈

Δ + Δ = − Δ∑  (3.26) 

 .j c
j S

θ θ
∈

Δ = −Δ∑  (3.27) 

Assuming { }1 2, , ,
smS S S S= … , Eq. (3.26) can be represented in matrix form as: 

 1 1

1

,

m m

S S c
c

S S c

b
Q

Q

Q

θ
θ

θ

Δ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥Δ⎢ ⎥ ⎢ ⎥⋅ = − Δ
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥Δ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 (3.28) 

where Q is defined as: 

 1 1 1

1

0 1 1
1

1

m

m m m

S S S S

S S S S

Q Q
Q

Q Q

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (3.29) 

Therefore, from (3.28),  
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1

m m

S S c
c

S S c

b
Q

Q

Q

θ
θ

θ

−

Δ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥Δ⎢ ⎥ ⎢ ⎥= − ⋅ Δ
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥Δ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 (3.30) 

and thus the variation in the cθ  value of a new vector c influences iθ  values of vector 

i S∈ through the following equations: 

 cb δ θΔ = Δ  (3.31) 

 j j cθ δ θΔ = Δ  (3.32) 

where 

 1 1

1

m m

S S c

S S c

Q

Q

δ
δ

δ

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= −
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

R  (3.33) 

and 1.Q−=R  

For vectors i S∉ , the variation relation is obtained by replacing jθΔ  and bΔ  by their 

equivalence in Eqs. (3.31) and (3.32) and noting that 0εΔ ≠ .  Therefore, 



 55

 

i ic c ij j i
j S

ic c ij j c c i
j S

ic ij j c i
j S

Q Q b

Q Q

Q Q

ψ θ θ ε

θ δ θ δ θ ε

δ δ θ ε

+

∈

∈

∈

Δ = Δ + Δ + Δ + Δ

= Δ + Δ + Δ + Δ

⎛ ⎞
= + + Δ + Δ⎜ ⎟
⎝ ⎠

∑

∑

∑

 

 i c iγ θ ε= Δ + Δ  (3.34) 

where 

 .i ic ij j
j S

Q Q i Sγ δ δ
∈

= + + ∀ ∉∑  (3.35) 

The γ  values are defined for only i S∉  because for i S∈ , iψ +Δ = 0; therefore, 0iγ ≡  for 

.i S∈   In summary, Eq. (3.34) shows how iψ +  values change as cθ  changes for vector 

not in S; Eq. (3.32) shows how iθ  values change as cθ  changes for vector i S∈ .  

Furthermore, Eq. (3.31) shows how b varies as cθ  changes.  These equations are valid if 

vectors do not migrate from one set to the other while maintaining the KKT conditions.  

In some other situations, in order to reach the KKT conditions for the new vector, it may 

be necessary for some of the vectors to change membership.  In these cases, cθ  is initially 

set to zero and then incrementally increase or decrease its value under the KKT 

conditions and update the R matrix. 
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The R matrix is defined in Eq. (3.33) as the inverse of Q but we only need R to update 

θ .  We adapt the efficient approach of updating the R matrix (Ma et al., 2003).  When 

the kth sample skx  in the S set is removed from the S set, the new R can be obtained 

using the following equation: 

 [ ], 0ik kj
ij ij j i

kk

k m= − ∀ ≠ ∈
R R

R R
R

…  (3.36) 

where the index 0 refers to the b-term.  On the other hand, when a new sample is added to 

S set, the new R can be updated as follows: 

 
1

1

0
1 1 ,

0
0 0 0

1

m

m

S
new

S S
c

S

δ
δ

δ δ δ
γ

δ

⎡ ⎤
⎡ ⎤ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎡ ⎤= + ⋅ ⎣ ⎦⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎢ ⎥⎣ ⎦

R
R  (3.37) 

Therefore, the new algorithm for adding a new data point, c, to the training set is shown 

in Algorithm 3.1.  Similarly, the algorithm for removing an old data sample c from the 

training set is given in Algorithm 3.2. 

The two algorithms can also be used efficiently for updating an old, possibly incorrect, 

sample using these two steps: 

 

 

 



 57

Algorithm 3.1: Algorithm for Adding a New Sample 
1. Set cθ  to 0 
2. Compute cC  and cε  for the new sample using the appropriate weighting function 
3. Compute cψ +  and cψ −  for the new sample 
4. If  0cψ + >  and 0cψ − > , Then add x to R and exit 
5. If  0cψ + ≤ , Then 

Increase cθ , update iθ  for i S∈  and ,i iψ ψ+ −  for i S∉ , until one of the following 
conditions holds: 
- 0cψ + = : add c to S, update R and exit 
- c cCθ = : add c to E+  and exit  
- transfer vector between neighbor sets and update set memberships and R matrix.
Else { }0cψ − ≤  

Decrease cθ , updating iθ  for i S∈  and ,i iψ ψ+ −  for i S∉ , until one of the 
following conditions holds: 
- 0cψ − = : add c to S, update R and exit 
- c cCθ = − : add c to E− and exit 
- transfer vector between neighbor sets and update set memberships and R 
matrix. 

Return to 2. 
 

Algorithm 3.2: Algorithm for Removing an Old Sample 
1. Determine cψ +  and cψ −  for the affected sample 
2. If  0cψ + >  and 0cψ − > , Then remove c from R and exit 
3. If  0cψ + ≤ , Then 

Decrease cθ , updating iθ  for i S∈  and ,i iψ ψ+ −  for i S∉ , until one of the 
following conditions holds: 
- 0cθ = : remove x from R and exit 
- transfer vector between neighbor sets and update set memberships and R matrix.
Else { }0cψ − ≤  

Increase cθ , updating iθ  for i S∈  and ,i iψ ψ+ −  for i S∉ , until one of the 
following conditions holds: 
- 0cθ = : remove c from R and exit 
- transfer vector between neighbor sets and update set memberships and R 

matrix. 
Return to 1. 
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1. The removal of the old incorrect sample using algorithm 3.2 for removing old 

samples. 

2. The addition of the correct sample using algorithm 3.1 for adding new samples.  

However, only algorithm 3.1 is implemented in our experimental studies. 

 

3.6 Decisions Based on the Weighting Functions and AOLSVR 

In this section, we apply the proposed AOLSVR to real-world data sets: feedwater flow 

rate data and time-series data.  For the implementations, we used a typical on-line time 

series prediction scenario as presented by Tashman (2000) and used a prediction horizon 

of one time step.  The procedure used is, consider given a time series ( ){ }, 1,2,x t t = …  

and prediction origin O, time from which the prediction is generated, we construct a set 

of training samples, ,O BA , from the segment of time series ( ){ }, 1, ,x t t O= …  as  

( ) ( ){ }, , , , ,0 1O B t y t t B= = −A X … , 

where ( ) ( ) ( ), , 1
T

t x t x t B= − +⎡ ⎤⎣ ⎦X … , ( ) ( )1y t x t= + , and B is the embedding 

dimension of the training set ,O BA , which in this dissertation is taken to be five.  We train 

the predictor ( ), ;O BP A X  from the training set ,O BA .  Then, predict ( )1x O +  using 

( ) ( )( ),ˆ 1 ;O Bx O P O+ = A X .  When ( )1x O +  becomes available, we update the 

prediction origin; that is, 1O O= +  and repeat the procedure.  As the origin increases, the 
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training set keeps growing and this can become very expensive.  However, on-line 

prediction take advantage of the fact that the training set is augmented one sample at a 

time and continues to update and improve the model as more data arrive. 

 

3.6.1 Application for Inferential Sensing 

In nuclear power plant, the accurate prediction of an important variable, such as 

feedwater flow rate, can reduce periodic monitoring.  Such prediction can be used to 

assess sensor performance thereby reducing maintenance costs and increasing reliability 

of the instrument.  Feedwater flow rate directly estimates the thermal power of a reactor.  

Nuclear power plants use venturi meters to measure feedwater flow rate.  These meters 

are sensitive to measurement degradation due to corrosion products in the feedwater 

(Gribok et al., 2000).   Therefore, measurement error due to feedwater fouling results in 

feedwater flow rate overestimation.  As a result, the thermal power of the reactor is also 

overestimated and the reactor must be adjusted to stay within regulatory limits, which is 

an unnecessary action and involves unnecessary costs.  To overcome this problem, 

several on-line inferential sensing systems have been developed to infer the "true" 

feedwater flow rate (Kavaklioglu and Upadhyaya, 1994; Gross et al., 1997; Gribok et al., 

1999; Gribok et al., 2000; Hines et al., 2000).  Inferential sensing is the use of correlated 

variables for prediction.  Inferential measurement is different from conventional 

prediction where a parameter value is estimated at time 1nt + , based on information about 

other parameters at time nt .  In inferential measurements, a parameter is estimated at time 
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nt  based on information about other parameter also at time nt .  A detailed description of 

this problem is available in (Gribok et al., 1999; Gribok et al., 2000).  Like other non-

stationary processes, inferential sensing is an ill-posed problem and SVR has been found 

useful for ill-posed problems.  We think that the AOLSVR approach can further enhance 

prediction accuracy of inferential sensing problems. 

 

To infer feedwater flow rate, twenty-four variables were selected as predictors based on 

engineering judgment and on their high correlation with feedwater flow (Gribok et al., 

1999).  The difference between the estimated (inferred) flow rate and the measured flow 

rate is called drift and the mean of the drift is used to quantify the prediction 

performance.  The data set has 700 samples and 24 variables.  The objective here is to 

determine if we can estimate the feedwater flow rate at any point in the power cycle.  The 

results of the experiments are shown in Table 3.1.  For this implementation, we use 

min 2.0,C =  max 20.0,C =  min 0.01,ε =  max 0.45,ε =  and RBF kernel with p = 1.  We 

implemented the algorithm for both weight functions and for the four cases of weight 

patterns described in Section 3.2.  The g values for these cases are 0.0 for constant 

weight, 0.005 for linear weight, 0.3 for sigmoidal weight, and 5.0 for two distinct 

weights.  

 

 



 61

 

Table 3.1: Drift Performance for the Feedwater Flow Rate Data 

Mean Drift (klb/hr) 
AOSVR AOLSVR 

 
Weight 

Function g = 0.0 g = 0.005 g = 0.3 g = 5.0 
MLWF 98.0619 70.8623 4.1354 4.0713 
MGWF 67.7703 28.3342 4.0732 4.0713 

 
 

The results in Table 3.1 show that AOLSVR performs better than AOSVR for this data 

using both weight functions.  We observe significant difference in prediction 

performance between AOSVR and AOLSVR.  Both sigmoidal weight and two distinct 

weights models achieve the smallest mean drift; using linear weight also achieves smaller 

mean drift than AOSVR but its value is on the high side, which indicates that the linear 

weight is not very useful for this application.  The type of the weight function used 

becomes irrelevant when g = 5.0 because they both have the same characteristic behavior.  

The difference in the performance between MGWF and MLWF in other cases is due to 

their different properties: MLWF is symmetric and MGWF is asymmetric. 

 

3.6.2 Time-Series Informatics 

We also demonstrate the application of the weighting function and the AOLSVR 

algorithm and compare its performance to the existing AOSVR using two of the widely 

used benchmark data in time-series predictions.  The two time series benchmark data 

used are the Mackey-Glass equation with 17τ =  (Mackey and Glass, 1977) and the Santa 
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Fe Institute Competition time series A (Weigend and Gershenfeld, 1994).  The Mackey-

Glass equation (MG17) data has 1500 data points; whereas the Santa Fe Institute 

Competition time series A (SFIC) data has 1000 data points.  The results of the 

experiments for MG17 and SFIC are summarized in Tables 3.2 and 3.3 respectively. 

Here, we used the value of min 5.0,C =  max 60.0,C =  min 0.01,ε =  and max 0.45ε =  and a 

Gaussian radial basis function (RBF) kernel, ( )2
exp i jp− −x x , with p = 1.  We also 

implemented the algorithm for both weight functions and for the four cases of weight 

patterns described in Section 3.2.  The g values for these cases are 0.0 for constant 

weight, 0.005 for linear weight, 0.3 for sigmoidal weight, and 5.0 for two distinct 

weights. 

Table 3.2: Performance Comparison for the Mackey-Glass Equation Data 

MSE (MAE) 
AOSVR AOLSVR 

 
Weight 

Function g = 0.0 g = 0.005 g = 0.3 g = 5.0 
MLWF 0.0216 

(0.1283) 
0.0071 

(0.0736) 
4.89E-05 
(0.0058) 

4.63E-05 
(0.0058) 

MGWF 0.0121 
(0.0959) 

0.0011 
(0.0294) 

4.65E-05 
(0.0058) 

4.63E-05 
(0.0058) 

 
 

Table 3.3: Performance Comparison for the Santa Fe Institute Competition Data 

MSE (MAE) 
AOSVR AOLSVR 

 
Weight 

Function g = 0.0 g = 0.005 g = 0.3 g = 5.0 
MLWF 0.0238 

(0.1200) 
0.0226 

(0.1166) 
0.0037 

(0.0195) 
0.0037 

(0.0186) 
MGWF 0.0164 

(0.0985) 
0.0149 

(0.0937) 
0.0037 

(0.0186) 
0.0037 

(0.0186) 
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As shown in Tables 2 and 3, AOLSVR performs better than AOSVR for both data sets 

considered, which further confirms that using varying parameters capture more of the 

properties of the data than using fixed parameters.  These results show that better test 

prediction errors are achieved as a result of updating the values of the regression 

parameters for the incoming training data.  Furthermore, there is no significant difference 

between using two distinct weights and sigmoidal weight.  As expected, the type of 

weight function used with g = 5.0 does not matter because both iC  and iε  have the same 

characteristics. 
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Chapter 4 

Wavelet-Based Feature Extraction 

Procedures 

Introduction to feature extraction and wavelet transform are given in Sections 4.1 and 4.2 

respectively.  A review of wavelet transform in process monitoring is presented in 

Section 4.3.  The step-down thresholding (SDT) procedure is described in Section 4.4; in 

addition, the results of the application of the SDT procedure are also presented in Section 

4.4.  A two-stage wavelet-based feature extraction methodology and the application of 

the methodology to shaft misalignment and biscuit dough data are presented in Section 

4.5. 

 

4.1 Introduction to Feature Extraction 

Data pre-processing is an integral part of an effective decision-making process.  The 

output of the pre-processing steps affect the time spent in coming up with final decisions 

and the quality of such decisions.  In implementing data mining procedures, data pre-

processing steps take considerable amount of time and this has been estimated to be about 
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50 to 70 per cent of the total time spent in implementing any particular procedure (Liu, 

2003).  The estimated time may even be more if the data involve has several thousands of 

predictor variables as the case with several real-world applications including medical 

data, condition monitoring data, semiconductor fabrication data, and chemical 

manufacturing data (Gardner et al., 1997; Bakshi, 1998; Jin and Shi, 1999; Ganesan et al., 

2003; Lada et al., 2002, Omitaomu et al., 2006, & 2005a).  There are several data pre-

processing techniques including techniques for feature selection and/or feature extraction.  

In this dissertation, we will use the term feature extraction process to represent both 

feature selection process and feature extraction process.  Feature selection is the selection 

of significant features in the original (primary) data domain; whereas feature extraction 

process selects significant features in a derived (secondary) data domain (Webb, 1999).  

Suppose y  a variable of interest and 1, , px x…  a set of potential explanatory variables or 

predictors are vectors of n  observations.  The problem of feature extraction arises when 

one wants to model the relationship between y  and a subset of 1, , px x… .  There is 

uncertainty about which subset contains most of the information in the original set.  In 

addition, as stated in Section 1.1, the secondary data should be represented in such a way 

that it conserves the essential data required for effective decisions and preserve the 

information contained in the original signals.  This situation is particularly of interest 

when p is large, n is small, and y  is multivariate ( )1, qy y… .  Therefore, feature 

extraction is a transformation process in which the reduced set of features is more 

manageable and conserves the information in the original signals.  The transformed 

dataset iky is given by: 
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1,...,
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ik ijx
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=
=
=
<

y

 (4.1) 

Such that β  is the transformation factor, which can be a scalar or a vector, ijx  is the 

original dataset, n is the number of object, p is the number of original features, and m is 

the number of extracted features. 

The feature extraction can be performed by selecting a subset of the available variables to 

improve the prediction performance.  The number of possible combinations to select the 

best subset of size m from a given set of measurements on p variables is given by the 

following equation (Webb, 1999): 

 
( )

!
! !m

pN
m p m

=
−

, (4.2) 

which can be very large even for small values of p and m.  For example, selecting the best 

2 features out of 3000 original features (that is, 3000 and 2p m= = ) means that 

4,498,500 features sets must be considered.  Therefore, this option is not feasible in 

problems where p  is even larger than 3000.  There are several other techniques available 

for reducing the number of variables such as correlation analysis (Hastie et al., 2001), all 

possible regressions, stepwise regression, wavelet-based procedures (Jeong et al., 2006), 

and principal components analysis.  Other feature extraction procedures are available in 

the literature (Guyon and Elisseeff, 2003; Bedrick and Tsai, 1994; Webb, 1999).  The 
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objectives of the processes are to reduce the number of features in order to eliminate 

redundancy in the prediction model, reduce prediction model instability, and enhance 

generalization performance of the prediction model (Webb, 1999), which will lead to a 

better understanding of the conditions that generated the data (Guyon and Elisseeff, 

2003).  These feature extraction (data-reduction) procedures have been classified into 

sampling approaches, modeling and transformation techniques, and data splitting 

methods (Lu, 2001).  The application of these procedures to complicated functional or 

spatial data with nonstationary and correlated variables are difficult to handle (Jeong et 

al., 2006).  The major problem is that the selection of significant features in the original 

domain is usually expensive or infeasible especially for high-dimensional data.  In most 

cases, it may be better to select significant features in derived domains such as fast 

Fourier transform and discrete wavelet transform.  One advantage of wavelet transforms 

over fast Fourier transform is its "universality;" that is, functions from a wide range of 

problems have a parsimonious representation in wavelet series (Abramovich et al., 1998).  

This sparseness property means that only few wavelet coefficients are actually 

"significant."   

 

4.2 Discrete Wavelet Transforms 

Wavelets are basis functions that allow transformation of signals from their original 

domain to another domain in which some operations can be performed in an easier way.  

The wavelet transform (WT) resembles the fast Fourier transform (FFT); however, FFT 
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uses sine and cosine functions; whereas WT uses basic wavelet types (basic building 

blocks).  There are different types of wavelets that can be used as basic building blocks.  

Some of the popular types are shown in Fig. 4.1. 

Furthermore, FFT are local in frequency domain but global in time domain; wavelets are 

well localized in both time and frequency domain.  The local character of wavelet basis 

function means that they differ from zero only in a limited time domain; which makes 

WT applicable for condition monitoring problems.  The major issue for condition 

monitoring is that the FFT-based methods are not suitable for non-stationary signals; 

therefore, not able to reveal the inherent information in such signals (Peng and Chu, 

2004).   

Fig. 4.1.  Some basic types of wavelets. 
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Non-stationary characteristic of the signals is important in condition monitoring because 

it reveals several information such as changes in the operating environment and faults in 

the machines.  There are several other transformation techniques suitable for analyzing 

non-stationary signals such as Wigner-Ville distribution (WVD) (Russell et al., 1998), 

and the short time Fourier transform (STFT) (Koo and Kim, 2000).  These methods map 

one-dimensional signal ( )x t  to a two-dimensional function of time and frequency 

( ): ,TFR x t ω .  Therefore, they are suitable for non-stationary signals.  However for 

WVD, the support areas of the signal do not overlap each other, which will mislead the 

signal analysis (Peng and Chu, 2004).  The major problem with STFT is that there exist 

no orthogonal bases, which makes it difficult to find a fast and effective algorithm to 

calculate STFT (Peng and Chu, 2004).  The wavelet transform can be used for multi-scale 

analysis of a signal through dilation and translation, so it can extract time-frequency 

features of a signal effectively.  Therefore, it is suitable for the analysis of non-stationary 

signals (Francois and Patrick, 1995). 

Mathematically, a wavelet is a function ( ) ( )2t Lψ ∈  with the following basic 

properties: 

 ( ) ( )20 and 1,t dt t dtψ ψ= =∫ ∫  (4.3) 

where ( )2L  space is the space of all square-integrable functions defined on the real line 

.  Wavelets can be used to create a family of time-frequency atoms, 
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( ) ( )1/ 2
,s u t s st uψ ψ= − , using both the dilation ( )s  and the translation ( )u  factors.  A 

scaling function is defined as ( ) ( )2t Lφ ∈  and satisfies the following equations: 

 ( ) ( )20 and 1.t dt t dtφ φ≠ =∫ ∫  (4.4) 

Selecting the scaling and wavelet functions as: 

 ( ) ( ){ }/ 2
, 2 2 ;   L L

L k t t k kφ φ= − ∈  

and 

 ( ) ( ){ }/ 2
, 2 2 ;   ,j j

j k t t k j L kψ ψ= − ≥ ∈  

respectively, one can form an orthonormal basis to represent a signal function: 

 ( ) ( ) ( ), , , , ,L k L k j k j k
k j L k

f t c t d tφ ψ
∈ ≥ ∈

= +∑ ∑∑  (4.5) 

where  denote the set of all integers { }0, 1, 2, ,± ± …  and the coefficients 

( ) ( ), ,L k L kc f t t dtφ= ∫  are considered to be the coarser-level coefficients characterizing 

smoother data patterns, and ( ) ( ), ,j k j kd f t t dtψ= ∫  are viewed as the finer-level 

coefficients describing (local) details of data patterns.  The following version of Eq. (4.5) 

is used in practice: 
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 ( ) ( ) ( )
2 1 2 1

, , , ,
0 0

,
L jJ

L k L k j k j k
k j L k

f t c t d tφ ψ
− −

= = =

= +∑ ∑∑  (4.6) 

where J > L and L corresponds to the lowest decomposition level.  An example of scale 

families of wavelets is shown in Fig. 4.2.  At time t, it is assumed that signal ( )y t can be 

decomposed into signal plus noise: ( ) ( ) ,ty t f t ε= +  where ( )f t  is the true signal space 

and tε  is the random noise that are iid ( )20,N σ .  In the sequence of data 

( ) ( )( )1 , ,
T

Ny t y t=y  taken from ( ) ( )( )1 , ,
T

Nf t f t=f …  at equally spaced discrete time 

Fig. 4.2.  An example of wavelet family. 
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points, where the superscript T denotes the vector transpose, ( )iy t  is assumed to be iid 

( )( )2, ,iN f t σ  1, ,i N= … .  The discrete wavelet transform (DWT) of y is defined as: 

 ,= = +d Wy Wf Wε  (4.7) 

where W  is the orthonormal ( )N N×  matrix corresponding to the discrete wavelet 

transform and d  is a ( )1N ×  vector of wavelet coefficients describing features of the 

original function.  Equation (4.7) is achieved in only ( )O N  operations; hence, the 

wavelet transforms can be computed very quickly and have good compression properties.  

A similar procedure for principal component analysis (PCA) requires ( )3O n  operations 

and FFT requires ( )logO n n  operations.  The wavelet transforms have been found to be 

effective in several applications including noise removal (denoising), baseline removal, 

zero crossing to find second derivatives, signal compression, and wavelet regression.  In 

Eq. (4.6), by letting 

 ( )1, , , , ,T
L L L J+=d c d d d…  (4.8) 

 

where ( ),0 ,2 1
, , L

T

L L L
c c

−
=c … , ( ) ( )1,0 1 , 1,0,2 1 1,2 1

, , , , , ,L L

T T

L L L LL L
d d d d ++ +− + −

= =d d… …  

( ),0 ,2 1
, , , J

T

J J J
d d

−
=d… … are wavelet coefficients at various subbands (scales).  The total 

number of wavelet coefficients is equal to the number of signal measurements; that is, 

( )12JN += .  The ,L kc s  capture low frequency oscillations that represent the coarsest 
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(smoothest) scale whereas the ,J kd s  capture the high frequency oscillations that represent 

the finest (detailed) scale (Morettin, 1997).  To simplify notation, d in Eq. (4.8) can be 

written as: 

 ( )1 2, , , .T
Nd d d= …d  (4.9) 

 

Using the inverse DWT, the 1N ×  vector y  of the original signal can be reconstructed 

using: 

 1 .−=y W d  (4.10) 
 

Wavelets exist in an abundant variety as shown in Fig. 4.1; therefore, we can choose a 

wavelet that satisfies special signal properties.  This is an additional strength for wavelet 

transforms.  One problem, however, is deciding which wavelet will produce the best 

result for a particular application.  Additional properties that have made wavelet 

transforms popular include localization, sparseness, multi-resolution, non-stationary, de-

correlation, and quicker computation. 

 

4.3 Wavelet Transforms in Process Monitoring 

In the last 15 years, the application of wavelet transforms for machine fault diagnostics 

has been at a very rapid rate especially for small n large p problems.  This section reviews 

the application of wavelet in condition monitoring.  Leducq (1990) used wavelet to 
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analyze the hydraulic noise of a centrifugal pump.  Wang and McFadden (1993) applied 

wavelet transform to analyze gear vibration signals.  Wavelets have also been used for 

crack detection including edge cracks in cantilever beams (Zhang et al., 2001), cracks in 

rotors (Zou et al., 2002), and cracks in metallic structures (Bieman et al., 1999).  

Wavelets are also used for feature extraction in condition monitoring problems because 

they have good energy concentration properties (Peng and Chu, 2004).  Momoh and Dias 

(1996) used both the FFT and the wavelet transform as feature extractors to diagnose the 

type and location of faults in a power distribution system and concluded that feature 

extracted from wavelet transforms gave better results.  Ye et al. (2000) used wavelet 

coefficients to detect the induction motor rotor bar breakage.  Momoh et al. (1995) 

compared the performances of feature extractors for DC power system faults using the 

FFT, the Hartley transform, and the wavelet transform.  Their conclusion is that the 

wavelet extractors exhibited superior performance.  Wavelets have also been used in 

other areas such as singularity detection (Tang and Shi, 1997), denoising and extraction 

of the weak signals (Donoho, 1995; Zheng et al., 2000; Altmann and Mathew, 2001; 

Littler and Morrow, 1996).  A comprehensive review of application of wavelet transform 

in condition monitoring and fault diagnostics is presented by Peng and Chu (2004).  

Despite the extensive use of wavelet transform in condition monitoring, its applications 

have not achieve a standard status.  This may be attributed to the fact that unlike the FFT, 

the results of the wavelet transform have no straightforward physical implication; 

therefore, it is difficult to extract useful information directly from the results of the 

wavelet transform (Peng and Chu, 2004).  This is not a major problem in this research 

since we are concern with secondary data that requires further processing and our 
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objective is to enhance the further processing of the secondary data and wavelet 

transforms have been shown to have the qualities to achieve such enhancement. 

 

4.4 Step-Down Thresholding Procedure for Single Curve 

As a result of the many properties of wavelet transforms, several wavelet thresholding 

methods have been developed for data denoising or data reduction applications.  Once the 

original data is transformed into wavelet coefficients, the more important of the wavelet 

coefficients are selected for prediction purposes.  One of the popular nonlinear 

approximation method used to achieve this selection is the shrinkage technique.  This 

method selects important wavelet coefficients (usually the largest in magnitude) and set 

to zero the unimportant coefficients (usually those representing noise).  In this scheme, 

wavelet coefficients are set to zero if their absolute values are below or equal to a certain 

threshold level, λ .  The thresholding process has the effect of removing data noises; 

hence, the shrinkage methods are also called data denoising methods.  The major issue in 

applying this technique is the determination of the threshold value.  A large threshold 

value will results in over-smoothing of the data curves by setting more data points to 

zero.  A smaller threshold value, on the other hand, will allow many coefficients to be 

included in the reconstruction, giving a result closer to the original noisy data.  A 

comprehensive overview of threshold selection process is given by Antoniadis et al. 

(1997). 
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From a statistical point of view, thresholding is closely related to multiple hypotheses 

testing, where each coefficient is tested whether it is a zero or not (Donoho and 

Johnstone, 1994).  Only coefficients that are "significantly different from zero" are used 

in model building.  If the results of a hypothesis testing should guide the choice of 

significant coefficients, a stronger control of error is needed so that no truly zero 

coefficients are used in the model (Abramovich and Benjamini, 1996).  Some of the 

thresholding methods in the literature shrink insignificant coefficients without a control 

of any error rate; furthermore some of the methods assumed that the noise level ( )σ  in 

the data is known or can be estimated.  The step-down procedure borrows its main idea 

from Venter and Steel's approach (Venter and Steel, 1998) for identifying active contrasts 

from unreplicated fractional factorial experiments.  The use of experimental design 

approach for wavelet thresholding has many features that make it attractive from a 

practical point of view: the approach is simple and easily interpretable in that it involves 

only two quantities; assumed least number of insignificant coefficients and significant 

test level.  Furthermore, the approach provides a flexible guidance for checking the 

sparseness property of wavelet coefficients by computing the p-values and comparing 

with the significant level.  Corresponding with the need of aggressively shrinking data 

dimension for large data sets (as in the shaft misalignment example), the procedure 

suggested in this dissertation facilitates controlling the shrinkage ratio through the user-

specified error rate. 
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4.4.1 Review of Thresholding Methods 

The three most popular thresholding procedures are VisuShrink (Donoho and Johnstone, 

1994), RiskShrink (Donoho and Johnstone, 1995), and SURE (Donoho and Johnstone, 

1995).  The VisuShrink threshold method, usually called a universal threshold method, 

requires an estimation of the standard deviation ( )σ  for calculating the threshold value as 

given by the following: 

 2 log .VisuShrink Nλ σ∼  (4.11) 
 
Therefore, different estimates of σ  may give different thresholds and different number of 

wavelet coefficients.  The RiskShrink is a minimax threshold method and minimizes a 

theoretical upper bound on the asymptotic risk.  The SURE thresholding is based on 

minimizing Stein's Unbiased Risk Estimate (Stein, 1981) at each resolution level.  The 

SURE threshold for d  with K coefficients is defined as: 

 ( )0arg min ,SURE t SURE tλ ≥= d  (4.12) 
 
where 

 ( ) ( ){ }2 2
,

1 1

, 2 1 min , / ,
K K

k t
k k

SURE t K k tσ σ≤⎡ ⎤⎣ ⎦
= =

= − +∑ ∑dd d  (4.13) 

 

The SURE threshold can perform poorly if the coefficients are very sparse.  Of the three 

methods, the VisuShrink method gives smoother estimates than RiskShrink and SURE 

but has higher bias.  Other data-driven thresholding rules in the literature include the use 

of adjusted cross-validation approach for choosing the threshold level (Nason, 1995, 

1996).  Abramovich and Benjamini (1995, 1996) and Ogden and Parzen (1996a, b) use 
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multiple-hypothesis testing procedure to determine threshold level.  Johnstone and 

Silverman (1997) developed a level-dependent threshold procedure for data with 

correlated noise.  Chipman et al. (1997), Clyde et al. (1998), Vidakovic (1998), and 

Abramovich et al. (1998) use a Bayesian approach to determine wavelet thresholding 

level. 

 

Some of the wavelet-based data reduction techniques include Approximate Minimum 

Description Length (AMDL) method proposed by Saito (1994).  The method selects sN  

to minimize the following objective function: 

 ( ) ( )2

2 2 ,
1

ˆ1.5 log 0.5 log ,
s

N

s s i i N
i

AMDL N N N N y y
=

⎡ ⎤= + −⎢ ⎥⎣ ⎦
∑  (4.14) 

 
where ,ˆ

si Ny  is the approximation model constructed from the sN  largest-magnitude 

wavelet coefficients and the data iy  is ( )y t  evaluated at it t= .  Two recently developed 

data-reduction methods are RREh and RREs (Jeong et al., 2006).  The RREh is based on 

hard-thresholding policy and balances two ratios (the relative data-energy in the 

approximation model and the relative number of coefficients used).  The thresholding 

equation is defined as: 

 ( )
( ) ( )

2

0
2

ˆˆ
,

hh

h

E dE d d
RRE

NE d

λλ
λ ω

−
= +  (4.15) 
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where ( ) ( ),10 0
ˆ ˆN

h h ii
d dλ λ

=
=∑  is the number of coefficients selected and ( ), 0

ˆ 1h id λ = , 

if ( ),
ˆ 0;h id λ ≠  ( ), 0

ˆ 0h id λ = , otherwise.  The RREs, on the other hand, is based on the 

soft-thresholding policy defined as: 

 ( )
( )

( )
( )

( )
1 1
2 2

2

1

2
1

ˆˆ
,

ss

s

E dE d d
RRE

E dE d

λλ
λ ω

−
= +  (4.16) 

 
where ( ) ( ),11

ˆ ˆN
s s ii

d dλ λ
=

=∑ .  These thresholding and data-reduction methods shrink 

data dimension without a control of any error rate.  However, if we seek to aggressively 

shrink data dimension while reconstructing the original signal effectively for large data 

set, it is essential for users to control the resolution level of wavelet-transformed signal 

by specifying an error rate.  In the following section, we present a wavelet thresholding 

procedure that controls a user specified error rate in order to guide against shrinking 

"significant" coefficients. 

 

4.4.2 The Step-Down Thresholding Procedure 

In this section, a wavelet thresholding procedure that designates a user-specified error 

rate in order to control the risk of shrinking significant coefficients is proposed.  A user 

specifies a lower bound on the number of insignificant coefficients.  The procedure starts 

testing the wavelet coefficients farthest from zero and proceed inwards (hence, step-

down) until some criteria are met. 
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Rewrite the DWT equation, Eq. (4.7), as 

 ,θ ′d = + ε  (4.17) 

where ( )1, , T
Nθ θ θ≡ = Wf…  and ( )1, , T

Nε ε ε′ ≡ = Wε… .  Due to orthogonality of , iε ′W  

has an identical structure with iε  as iid ( )20,N σ ; hence, id  is iid ( )2,iN θ σ  for 

1, ,i N= … .  One can obtain the signal f  from inverse wavelet transformation of .θ   

However, the true value ( )1, , T
Nθ θ…  and 2σ  are unknown and must be estimated from 

the wavelet coefficients d  only; that is, no estimation of 2σ  independent of d  is 

available.  Different estimates of σ  will lead to distinct threshold, different shrinkage 

schemes of wavelet coefficients, thus different amounts of data reduction.  In general, 

small-valued coefficients are contributed from noise data; hence, thresholding out these 

coefficients has an effect of “removing data noises.”  Relatively few of large-valued 

coefficients can effectively contribute to reconstruction of original signals (“sparseness 

property of wavelet coefficients”).  In using any type of wavelet thresholding procedure, 

the main issue is how to choose the threshold value.  The thresholding rule is intimately 

associated with identifying active (that is, “non-zero”) contrasts in experimental design 

problems. 

Consider a linear model for an experimental design 

 ,= +Y Xβ ε  (4.18) 
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where Y  is a ( )1N ×  vector of responses, design matrix X  is orthogonal, and ε  is a 

( )1N ×  vector of random errors and assumed to be iid ( )20, NMVN σ I .  Then an ordinary 

least squares estimator ( ) 1ˆ T Tβ
−

= X X X Y  becomes ˆ Tβ = X Y , the orthogonal 

transformation of the observations.  The stepwise elimination of inactive constrasts in the 

model corresponds to elimination of the components with the smallest absolute value of 

t-statistics in β̂ .  This amounts to eliminating the components in β̂  with the smallest 

absolute value.  Since the design is orthogonal, the values of the remaining β̂  do not 

change in the process of elimination.  This step-down procedure characterizing a multiple 

hypotheses-testing approach is considered as the hard-thresholding rule as the case of 

orthogonal wavelet transforms (Vidakovic, 1999 p. 177); that is, 

 *
ˆ ˆ, if

ˆ
ˆ0, if ,

i i

i

i

β β λ
β

β λ

⎧ >⎪= ⎨
≤⎪⎩

 (4.19) 

where *β̂  is a chosen contrast as active for the threshold ( )0λ > . 

Introducing the multiple hypotheses-testing approach to wavelet thresholding problems, 

we seek a test of the overall null hypotheses that all id s  are zero (referred to as 0H ), and 

if the 0H  is rejected, the non-zero id s  that cause the rejection are identified.  The 

procedure is designed to control the probability of mistakenly declaring at least one of the 

insignificant coefficients as significant using their p-values.  The step-down procedure 

proceeds downwards from the largest absolute coefficient, declaring the corresponding 
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wavelet-coefficients active if its test statistics value exceeds the corresponding critical 

value, stopping on reaching the first insignificant test statistic value or when only pre-

assumed number of inactive coefficients remain.  The wavelet step-down thresholding 

(SDT) procedure involves the following steps: 

1. Sort absolute wavelet coefficients d  so that ( ){ }( ) ( 1) 1N Nd d d−< < <  be the 

order statistics d , where ( )Nd  is the smallest absolute wavelet coefficient. 

2. Define a scale invariance ratio qT  as: 

 ( )

( )

1
21 2

1

,
1

1

q
q l

q
i

d
T

d
l

−

=

=
⎛ ⎞
⎜ ⎟−⎝ ⎠

∑
 (4.20) 

 

where l  is a specified lower bound on the number of wavelet coefficients with 

approximately zero mean (insignificant coefficients) and q  is an assumed number 

of non-zero wavelet coefficients (significant coefficients) for 1, ,q l N= + … .  The 

denominator is a fixed scale-equivalent function that depends only on the pre-

determined value l.  The scale ratio is a form of standardization that will 

guarantee evaluating the coefficients on the same scale (Montgomery, 2005, p. 

90).  Section 4.4.3 discusses guidelines for determining the lower bound l  and 

investigates their effect on the overall performance of the SDT procedure.   

3. The testing of the statistic to determine the number of insignificant coefficients, is 

achieved using p-value: 
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 ( )( ) ,j j jP T c Hκ κ≥ =  (4.21) 

where jH  denotes the parameter configuration in which exactly j  of the wavelet 

coefficients are zero and κ  is a false discovery error rate which controls the 

expected proportion of falsely rejected hypotheses (Benjamini and Hochberg, 

1995).  ( ) ( )1jc thκ κ= −  quantile of the distribution of the ratio of the largest 

absolute value statistic of a sample of size j  from an ( )20,N σ  to the scaling 

function based on ( )1j −  smallest of the order statistics.  By scale-invariance of 

the ratio, its distribution does not depend on 2σ  (Venter and Steel, 1998) and we 

will take 2 1σ =  for convenience when calculating ( )jc κ .  The exact 

computation of the p-value (Eq. (4.21)) may be difficult; therefore, an 

approximate method using simulation approach will be used in this dissertation.  

The approximate method is described in Section 4.4.3. 

4. Test the statistic by proceeding downwards from the largest absolute coefficient.  

A coefficient is significant if its p-value is less or equal to the false discovery 

error rate ( )κ .  The first absolute wavelet coefficient whose  p-value is less or 

equal to κ , denoted by  dτ , becomes the threshold value ( )λ ; that is, 

 SDT dτλ =  (4.22) 

5. Extract the significant wavelet coefficients using either hard or soft thresholding 

criterion.  The soft thresholding criterion is defined by: 
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( )( )* ,

0, .
i i SDT i SDTs

i
i SDT

sign d d if d
d

if d

λ λ

λ

⎧ − >⎪= ⎨
≤⎪⎩

 (4.23) 

 
This is a "kill or shrink" rule, where absolute coefficients less or equal to the 

threshold value are set to zero (killed) and absolute coefficients greater than the 

threshold value are shrunk towards zero.  Alternatively, we defined the hard 

thresholding criterion by: 

 * ,
0, .

i i SDTh
i

i SDT

d if d
d

if d
λ
λ

⎧ >⎪= ⎨ ≤⎪⎩
 (4.24) 

 
The hard thresholding criterion is a "kill or keep" rule in which the retained 

coefficients are kept.  The procedure based on the soft thresholding is called SDTs 

and the procedure based on hard thresholding is SDTh.  In reconstructing the 

wavelet coefficients, Donoho and Johnstone (1994) suggested that the coefficients 

of the first coarse levels should always be included even if these coefficients do 

not pass the thresholding level.  We adopt this suggestion in this study.  However, 

more flexibility options are also possible depending on applications. 

 

4.4.3 Approximate Method of Solution 

A simulation-based approach provides simple but effective alternative of calculating p-

value.  Let qT  be a random variable whose distribution is the same as that of qT  under 

qH .  Then the procedure used is: 
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a) A realization of qT  is generating by iid ( )0,1N -distributed random variables 

1 2, , NX X X… .  

b) Set ( ) ( )

1
221

1
1l

q q qq
T X X l−

=
⎛ ⎞= −⎜ ⎟
⎝ ⎠∑ , where ( ) ( ){ }1NX X< <…  are order 

statistics of { }1 , , NX X… .  Then, ( )( )q qP T c κ κ≥ =  with qP  denoting 

probability computed under the distribution of qT .  By defining the p-value 

associated with qT  as the solution of the equation ( )q q qc P T=  and taking qPκ = , 

( )q q qP P T T= ≥ .   

c) Generate realizations ( ) ( )1 , , B
q qT T…  of qT , where B is the number of replications.  

Using ( ) ( )1 , , B
q qT T… , approximate qP  by the fraction of ( )b

qT s that exceed or equal 

to qT  as: 

 ( )
1

1 .
B

q q q
b

P I T T
B =

⎛ ⎞= ≥⎜ ⎟
⎝ ⎠

∑  (4.25) 

 

4.4.4 Estimation of the Hyperparameters 

To execute the proposed step-down thresholding procedure effectively, it is necessary to 

determine values of the hyperparameters: assumed number of insignificant wavelet 

coefficients ( )l , false discovery error rate ( )κ , and the number of simulation replications 
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(B) in Eq. (4.20), (4.21), and (4.25) respectively.  Our suggestions for determining these 

values are as follows. 

Actually, the value of l should be less than the anticipated number of insignificant 

coefficients in order to safeguard against eliminating some of the significant coefficient 

from the SDT procedure.  If the number of extracted significant coefficients equals the 

number of tested coefficients in process, we decrease the l value and implement the 

procedure again.  To determine the value of l, denote a normalized energy at position j as 

22 2
j jd d= d  and sort them to be ordered normalized energies so that 

( ) ( ) ( ){ }2 2 2
1 1, , ,N Nd d d− … .  Using a cumulative ordered normalized energy for l smallest 

( ) ( )
22

1

l
d jj

E l d
=

= ∑ d , the criterion for selecting the value of l  is defined as 

 ( )( ) ( )
1

1 ,
N

j
l N I E l δ

=

⎛ ⎞
= − ≥ −⎜ ⎟

⎝ ⎠
∑ d  (4.26) 

where δ  is a cumulative energy level of interest and ( )1 δ−  is the energy cut-off point. 

Because wavelet coefficients have sparseness property, much greater cumulative 

normalized energy are compacted into fewer coefficients.  For three different curves of 

antenna data from Jeong et al. (2006), when we give an instance of energy cut-off as 0.2, 

approximately 40% of the coefficients have cumulative energy greater than the cut-off 

value for curve 1, approximately 30% for curve 2, and about 20% for curve 6 as shown in 

Fig. 4.3.  A pictorial explanation of notations used in developing the criteria for 

determining the value of l is shown in Fig. 4.4. 
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Fig. 4.3. A plot of cumulative normalized energies for three samples. 

 

 

 

 

 

 

 

 

 

Fig. 4.4. An explanation of notations for determining the value of l. 
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The choice of κ  affects the threshold level and the number of significant coefficients; 

therefore, different values of κ  have to be implemented in order to investigate their 

impacts on the extracted wavelet features.  However, we fix κ  to either 0.01 or 0.05 to 

secure 95% or 99% confidence level in real world applications.  The number of 

simulation replicates can also affect the overall thresholding procedure.  It should be 

large enough to achieve desirable accuracy of approximation with consistent results.  One 

way to guide against inaccurate approximation is to try different values of B, but if the 

values of B are large enough, they should give almost the same results. 

 

4.4.5 Applications and Comparisons 

In this section, we compare the performance of our procedure with other existing 

thresholding procedures using simulated examples and three real-world applications.  The 

simulated data patterns used are four well-known testing signals from the wavelet 

literature and shown in Fig. 4.5.  In Section 4.4.5.1, we used noise-free simulated 

examples and in Section 4.4.5.2, we used noisy simulated examples.  The results obtained 

using real-world data are discussed in Section 4.4.5.3.  In all the methods, the wavelet 

coefficients on the five coarsest levels were not thresholded and in all cases, except for 

SDT and RRE, the soft thresholding was applied.  The "s8" wavelet was used for Bumps, 

HeaviSine, and Doppler signals and the "haar" wavelet was used for Blocks signal.  The 

goodness of fit of each estimator was measured by the number of selected coefficients  
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Fig. 4.5. Four noise-free testing signals from the literature. 

( )sN , the compression ratio (CR), AMDL(Ns) measure, and average mean-square error 

(AMSE) defined as ( )2
1

1
ˆN

i ii
N f f−

=
−∑  for 100 runs. 

 

4.4.5.1 Simulation Study using Noise-Free Signals 

The four “noise-free” testing signals (Fig. 4.5) characterize different types of features 

usually seen in imaging, seismography, manufacturing, and other engineering fields 

(Donoho and Johnstone, 1994; 1995).  Each of the testing signals has 1024 data points 

(wavelet coefficients). 



 90

Table 4.1 shows a summary of the performance measures.  From the results, we can see 

that SDT methods achieve smaller extracted features than other soft thresholding 

methods except RREh.  This is true in all cases; therefore, the SDT methods have the 

highest compression ratio than other methods except for RREh in case of Bumps and 

Doppler signals.  For all implementations in this dissertation, the value of α  (Eq. (4.21)) 

is 0.05 and the value of δ  (Eq. (4.26)) for SDT is 0.99.  However, the SDT methods have 

the higher AMSE because it extracted smaller number of features.  Both SDTh and SDTs 

achieve smoother reconstruction and capture the peaks as shown in Figs. 4.6 to 4.8 for the 

Doppler, Bumps, and HeaviSine signals respectively.  These figures confirm that smaller 

AMSE alone is not enough in determining a better method.  The probability that the 

reconstructed signal is as smooth as the original signal should be very high.  We also 

notice that SDTh and SDTs achieve smooth reconstruction error with a high probability 

since we have 95% confidence level about the selected coefficients.  In conclusion, the 

SDT methods achieve smooth reconstruction signals using the minimum number of 

features possible. 

 

4.4.5.2 Simulation Study using Noisy Signals 

The performance of the SDT procedure was also compared using noisy signals.  In a 

series of experiments, various amounts of random normal noises were added to the 

original testing signals discussed in Section 4.4.5.1.  Fig. 4.9 shows some noisy Bumps 
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Table 4.1: Results for the Noise-Free Signals 

Method Measures Bumps HeaviSine Doppler 
VisuShrink Ns 

CR (%) 
AMSE 

646 
37 

8.50 

288 
72 

4.25 

600 
41 

7.93 
RiskShrink Ns 

CR (%) 
AMSE 

664 
36 

0.07 

314 
69 

0.67 

618 
40 

0.18 
SURE Ns 

CR (%) 
AMSE 

722 
29 

1.25E+06 

422 
59 

8.05E+06 

707 
31 

4.56E+08 
AMDL Ns 

CR (%) 
AMSE 

1023 
0.09 

2.63E-08 

194 
81 

32.5 

619 
40 

0.18 
RREh Ns 

CR (%) 
AMSE 

68 
93 

1.74E+15 

29 
97 

1.53E+21 

38 
96 

9.04E+20 
RREs Ns 

CR (%) 
AMSE 

402 
61 

1.05E+08 

143 
86 

1.30E+11 

271 
73 

1.30E+11 
SDTh Ns 

CR (%) 
AMSE 

111 
89 

5.04E+14 

32 
97 

9.43E+20 

265 
74 

7.40E+09 
SDTs Ns 

CR (%) 
AMSE 

111 
89 

2.39E+15 

32 
97 

9.43E+20 

265 
74 

1.48E+11 
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Fig. 4.6.  Reconstruction of the Doppler signal. 

Fig. 4.7. Reconstruction of the Bumps signal. 

 



 93

Fig. 4.8. Reconstruction of the HeaviSine signal. 

 

 

 

 

 

 

 

Fig. 4.9. Noisy Bumps signal at various SNR values. 

0 1
-0.5

0

0.5

1
SNR=10

0 1
-0.5

0

0.5

1
SNR=7

0 1
-0.5

0

0.5

1
SNR=5

0 1
-0.5

0

0.5

1
SNR=3



 94

signals at different signal-to-noise ratio (SNR).  Table 4.2 gives a summary of the 

performance measures for the four SNR cases.  The results in Table 4.2 indicate that, for 

other methods, as the SNR value gets larger (less noisy), the value of AMSE also gets 

larger.  This indicates that denoising methods are less effective for noise-free signals.  

This is noted in case of VisuShrink, RiskShrink, and SURE. 

However, the reduction ratio for SDT methods is somewhat consistent irrespective of the 

value of SNR, which indicates that SDT is applicable for data-denoising as well as for 

data-reduction without any concern about the amount of noise in the data.  The results 

also show that the difference in AMSE for all the methods is smaller in case of noisy data 

than in case of less noisy data.  The results show in Table 4.2 has different meaning with 

respect to the objectives of the chosen method.  As stated in Section 4.1, the AMSE alone 

is not sufficient for final decision because these methods are based on different criteria.  

For example, Fig. 4.10 is the reconstruction plot for Bumps signal with SNR equals 3.  

The Ns for these methods are 84, 137, 221, 44, 68, 245, 104, and 104 respectively.  From 

the figure, we can see that SDTh and SDTs achieve a smooth reconstruction without any 

element of the random noise.  However, RiskShrink, SURE, and RREs still has some 

random noise present in the reconstructed signal. 
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Table 4.2: AMSE for the Noisy Signals 

Functions SNR Visu Risk SURE RREh SDTh SDTs 
Bumps 10 

7 
5 
3 

2.48 
2.25 
2.07 
1.78 

0.71 
0.70 
0.70 
0.72 

0.45 
0.49 
0.46 
0.57 

3.92 
2.33 
1.61 
1.09 

2.65 
2.25 
1.38 
0.89 

3.35 
2.39 
1.95 
1.40 

Blocks 10 
7 
5 
3 

1.46 
1.45 
1.41 
1.28 

0.66 
0.67 
0.67 
0.68 

0.48 
0.48 
0.48 
0.48 

2.61 
1.69 
1.25 
1.02 

2.75 
2.73 
2.76 
1.46 

2.41 
2.32 
2.30 
2.08 

HeaviSine 10 
7 
5 
3 

1.01 
0.96 
0.93 
0.90 

0.72 
0.73 
0.73 
0.74 

0.70 
0.77 
0.81 
0.79 

1.26 
1.00 
0.93 
0.86 

0.72 
0.76 
0.89 
0.86 

0.88 
0.88 
0.91 
0.89 

Doppler 10 
7 
5 
3 

1.33 
1.25 
1.18 
1.09 

0.72 
0.72 
0.71 
0.71 

0.65 
0.71 
0.74 
0.80 

1.68 
1.24 
1.03 
0.90 

0.68 
0.71 
0.81 
0.80 

0.94 
0.93 
0.99 
0.95 



 96

Fig. 4.10. Reconstruction of the Bumps noisy signal (SNR = 3). 

 

4.4.5.3 Applications to Process Monitoring Problems 

Three real-world datasets are also used to compare the SDT procedure with six other 

methods.  The first data set is a data collected for developing a procedure to monitor 

antenna manufacturing quality (Jeong et al., 2006).  The original data set has 256 wavelet 

coefficients.  Fig. 4.11 shows a reconstruction of the data curve. 

The plots show that SDT provides a reasonable fitting and also captures the peaks.  The 

fitting is also smoother than the case for RREh and RREs.  The results for the antenna 

data are summarized in Table 4.3.  The results show that SDT uses the smallest number of 

features with the smoothest fitting and achieves 88% reduction ratio, which is better than 

other methods.  RREh uses the smallest number of features but the fitting is not smooth  
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Fig. 4.11. Reconstruction of the antenna data 

 

Table 4.3: Results for the Antenna Data 

Method Ns CR (%) AMSE AMDL(Ns) 
VisuShrink 55 79 1.55 1765 
RiskShrink 73 71 0.19 1597 

SURE 185 28 7196.3 4884 
AMDL 55 79 0.52 1562 
RREh 29 89 5.85 1698 
RREs 50 81 3.56 1858 
SDTh 36 86 3.02 1660 
SDTs 36 86 4.31 1725 
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especially the center peaks.  Therefore, we can say that SDT produces the smoothest 

reconstruction curve using the smallest possible coefficients needed to achieve that. 

Another important application of this procedure is the biscuit dough problem (Brown et 

al., 2001) and has 256 spectra points.  The reconstruction of the data is shown in Fig. 4.12 

and the results are shown in Table 4.4.  Again, we can see that SDT has the smallest 

AMSE and uses only 35 coefficients.  One interesting observation, however, is that RREs 

also uses 32 wavelet points but has different RelErr, AMSE, and AMDL.  One 

implication of such a significant reduction in spectra features is that several standard 

prediction techniques such as Partial Least Squares (PLS) can easily be used to predict 

the sample composition. 

The shaft misalignment data was also used to demonstrate the application of this 

procedure.  For this analysis, the shaft misalignment data described in Chapter 2 was 

used.  The data set used has 1024 points by sampling every other data points.  The 

reconstructed data is shown in Fig. 4.13 and the results are summarized in Table 4.5.  The 

results show that the SDT procedure, like the RREh procedure, is more aggressive than 

the other methods for this data.  However, comparing the original pattern and the 

reconstructed patterns by SDT and RREh shows that these methods capture the extreme 

outer peaks and all the inner peaks in the patterns.  Comparing the number of extracted 

features to the original features shows that we can easily used any of the classical 

prediction techniques to predict misalignment conditions. 
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Fig. 4.12. Reconstruction of the biscuit dough data 

 

Table 4.4: Results for the Biscuit Dough Data 

Method Ns CR (%) AMSE AMDL(Ns) 
VisuShrink 32 88 4.69E-03 418.08 
RiskShrink 32 88 4.69E-03 418.08 

SURE 187 27 1.90E+07 6362.97 
AMDL 100 61 8.29E-08 -786.98 
RREh 32 88 4.69E-03 418.08 
RREs 32 88 1.12E-01 1004.76 
SDTh 33 86 6.55E-04 90.19 
SDTs 33 86 1.96E-03 293.16 

 



 100

Fig. 4.13. Reconstruction of the misalignment data 

 

Table 4.5: Results for the Misalignment Data 

Method Ns CR (%) AMSE AMDL(Ns) 
VisuShrink 1022 0.19 1.33E+01 22364.2 
RiskShrink 1023 0.10 2.59E-03 16067.1 

SURE 237 77 1.61E+09 24335.5 
AMDL 36 96 1.28E+06 16049.5 
RREh 32 97 1.39E+06 16050.1 
RREs 838 18 4.48E+04 25602.2 
SDTh 32 97 1.39E+06 16050.1 
SDTs 32 97 1.39E+06 16050.1 

 

 



 101

4.5 Two-Stage Wavelet-Based Feature Extraction Methodology 

The SDT procedure presented in Section 4.4.2 and other thresholding procedures 

discussed in Section 4.4.1 are only applicable to single curve.  In order to apply the 

procedure for process monitoring problem in which there are multiple curves and 

multiple response variables, we present a two-stage wavelet-based feature extraction 

procedure for process monitoring.  This two-stage procedure is also applicable to 

problems with single response variable. 

The wavelet-based procedure for monitoring process conditions and detecting process 

faults involves two stages: 

1. The extraction of significant wavelet coefficients for each data curve using the 

step-down thresholding procedure as discussed in Section 4.4 and the selection of 

representative significant wavelet coefficients for all the curves.  The second step 

of this first stage is discussed in this section. 

2. The application of Bayesian decision theory approach for selecting the extracted 

features that can predict the response variables accurately. 

 

4.5.1 Selection of Representative Significant Wavelet Positions for all Data Curves 

The number of wavelet coefficients extracted for each curve based on any of the data-

reduction procedures can be different from one curve to another.  In addition, if the 

number of extracted features is the same, the position of the extracted features may vary 
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from one curve to another.  Therefore, the challenge is in determining the wavelet 

positions to represent adequately the overall structure of the reduced data.  The 

application of wavelet data-reduction procedures for multiple data curves involves using 

the union or intersection strategy to select wavelets position to construct a representative 

of the original data curves.  Lada et al. (2002) present an application of these two 

selection strategies. 

For N wavelet positions and M curves, the union strategy selects a position if the position 

is identified significant for at least one curve.  One advantage of this strategy is that it 

captures the most important features of each curve.  However, the strategy usually results 

in larger sets of features, which is not consistent with data reduction objectives.  The 

intersection strategy, on the other hand, selects a wavelet position if that position is 

identified significant for all the M curves; it usually results in fewer sets of features.  

Therefore, this strategy may ignore some active positions and make the model to be over-

smooth.  In this dissertation, we present a more general procedure, the voting selection 

strategy, in which a wavelet position is selected if that position is identified significant 

for C-out-of-M curves.  Therefore, when the value of C is one, this strategy reduces to 

union strategy and if the value of C is equal to M, it becomes the intersection strategy.  

For the voting method, the value of C ranges from 2 to M-1.  

Let [ ]T1 2, , ,i i i iNy y y=y …  be a vector of N equally-spaced data points from a signal curve 

where 2JN =  with some positive integer J (resolution or scale level) and 1,2, ,i M= … .  

Let 
TT T T

1 2, , , M⎡ ⎤= ⎣ ⎦Y y y y…  be the collection of M multiple curves.  When discrete 
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wavelets transform (DWT) W is applied to a data set, the matrix of wavelet coefficients 

obtained from this transformation is =D YW , where 
TT T T

1 2, , , M⎡ ⎤= ⎣ ⎦D d d d… , 

[ ]T1 2, , ,i i i iNd d d=d … , and imd  is the wavelet coefficient at the mth wavelet-position for 

the ith data curve.  When W is orthonormal, the original observations Y can be recovered 

using the inverse DWT; that is, T=Y DW .  Therefore, the voting selection strategy for 

the SDT procedure can be stated as: 

 ( ) ( )1, if  

0, otherwise             
q q

voting im

I T T C
d

⎧ ≥ ≥⎪Ψ = ⎨
⎪⎩

 (4.27) 

 

where C is the number of reference curves; that is, the minimum number of experimental 

replicates necessary for sufficient information about the process.  Different approach can 

be used to determine the value of C for the voting strategy.  A better approach will be to 

use different values of C and compare their respective reduced data in order to make the 

final decision.  In this dissertation, we assume “pooling” 80 percent of the number of 

curves; therefore, C equal 0.8M. 

Using the same approach, the union strategy for the SDT procedure can be stated as: 

 
( ) ( ) ( ) ( )( )

( )
1 1 2 2

1

max , , ,

1,

union im q q q q Mq Mq

M

iq iq
i

d I T T I T T I T T

I T T
=

Ψ = ≥ ≥ ≥

= ≥ =∏

…
 (4.28) 

 

and the intersection selection strategy for the SDT procedure can be given by the 

following equations: 
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( ) ( ) ( ) ( )( )

( )
intersection 1 1 2 2

1

min , , ,

.

im q q q q Mq Mq

M

iq iq
i

d I T T I T T I T T

I T T M
=

Ψ = ≥ ≥ ≥

= ≥ =∏

…
 (4.29) 

These selection strategies are depicted pictorially in Fig. 4.14 for M number of curves. 

 

4.5.2 Applications and Comparisons of the Multiple Curve Procedure 

In order to compare the data reduction methods, we implement the selection strategies 

using four different thresholding methods (SDT, SURE, RRE, and AMDL).  The soft 

thresholding criterion is used in each case.  For this analysis, we used the shaft 

misalignment data described in Chapter 2.  The original data has 3072 patterns and 50 

curves.  The data set used in the dissertation has 1024 patterns obtained by taking every 

other pattern.  The results of the number of coefficients extracted are given in Table 4.6. 
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Fig. 4.14. An illustration of the selection strategies. 



 105

Table 4.6:  Number of Coefficients Extracted for the Shaft Misalignment Data 

Selection Strategies  
Data Reduction 

Method 
Voting Intersection Union 

SDT 32 32 32 
SURE 201 109 258 
RRE 32 32 32 

AMDL 40 32 49 

 

The results in Table 4.6 indicate that the SDT method extracts the smallest number of 

coefficients for each of the selection strategy.  In addition, SDT consistently extracts the 

same wavelet coefficients, which indicates that the method extracts about the same 

coefficients for each curve.  The consistency is due to the testing approach used by the 

method.  The SURE method returns almost the same number of wavelet coefficients for 

two of the strategies.  This is not a surprise since the method was not initially developed 

for data reduction problem but for data denoising problems.  The method fails since this 

data contains no noise.  The AMDL method also performs very well compare to SDT.  

The method extracts the same number of coefficients as SDT using the voting selection 

strategy but slightly higher numbers for others.  The RRE method also gives reduced 

coefficients but the number of extracted coefficients is still very large compare to the 

number of curves.  These results indicate that the shaft misalignment problem is a very 

difficult problem and most of the procedures perform poorly extracting significant 

features. 
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We also test the performance of the proposed procedure using a set of biscuit dough 

spectroscopy data collected to measure the composition of formed biscuit dough pieces 

(Brown et al., 2001) and described in Chapter 2.  The original data set has 256 wavelet 

coefficients and 39 samples (curves).  The results of the experiment are shown in Table 

4.7. 

The results again show that SDT, like SURE and RRE in this case, is consistent in the 

number of extracted coefficients.  The coefficients extracted in case of RRE and SURE 

are the coefficients in the coarser level; SDT extracted seven more coefficients in 

addition to those in the coarser level making 39.  The AMDL method extracts the highest 

number of coefficients of the four methods for each of the selection strategy. 

 

Table 4.7:  Number of Coefficients Extracted for the Biscuit Dough Data 

Selection Strategies  
Data Reduction 

Method 
Voting Intersection Union 

SDT 33 32 33 
SURE 151 110 250 
RRE 56 52 68 

AMDL 92 83 133 
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4.5.3 Multivariate Bayesian Decision Theory Approach for Process Monitoring 

In this section, we present the Bayesian decision theory procedure (the second stage of 

the feature extraction methodology) for process monitoring.  The choice of explanatory 

variables in linear regression has attracted considerable attention in the literature, from 

backward and forward stepwise regression (for example, see Hrushka, 1987), model 

selection criteria such as Akaike’s information criterion, to Bayesian techniques (Brown 

et al., 1999).  The idea behind these techniques is to identify a subset from either the 

actual variables or derived variables (such as, wavelet coefficients) that will produce the 

smallest possible prediction errors for future samples.  In this research, we focus on 

Bayesian framework for feature extraction using wavelet coefficients.  Several 

researchers have developed Bayesian based methodology for extracting features in 

wavelet domain.  Brown et al. (1998a, b) present Bayesian variable selection methods 

that use mixture priors for multivariate data.  Brown et al., (2001) investigated using 

mixing priors and Markov Chain Monte Carlos (MCMC) methods, an approach which 

led to model averaging.  Vannucci et al. (2003) present a feature selection approach for 

high-dimensional data using conjugate Bayesian decision theory approach.  In this 

research, we apply a methodology for selecting extracted wavelet coefficients using non-

conjugate Bayesian decision theory approach.  The previous application of this 

methodology for variable selection is using the original data domain (see Brown et al., 

1999; Fang and Dawid, 2002).  We extend this idea to feature selection in the wavelet 

domain.  In this stage, we omit some of the extracted coefficients in the final model not 

because we believe their coefficients are zero but because they cost too much relative to 
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their predictive benefit.  This approach has a number of features including a multivariate 

response, a proper non-conjugate prior distribution avoiding determinism, and simulated 

annealing search technique. 

 

4.5.3.1 Non-Conjugate Bayesian Decision Theory 

Bayesian inference is widely used for feature selection because it does not place any 

constraints on the number of features that can be used.  When the number of features 

becomes large, the inference becomes very sensitive to the prior distribution (Fang and 

Dawid, 2002).  Different prior distribution has been investigated in the literature.  Dawid 

(1988) investigates the implications and consequences of using the conjugate prior 

distribution.  The use of conjugate prior implies a strong belief in the possibility of 

deterministic prediction, which means that the response variable can be predicted with 

arbitrarily high accuracy by using a sufficiently large number of predictors.  This idea is 

reasonable in certain applications such as pattern recognition.  However, in most other 

contexts such deterministic assumption may not be reasonable because it leads to 

predictions which may be too simply in most realistic contexts.  Therefore, the use of 

conjugate prior in such contexts is inappropriate.  As a result, non-conjugate prior has 

been investigated (Brown et al., 1999; Fang and Dawid, 2002).  The use of non-conjugate 

prior has several advantages including easy of implementation and indeterminism while 

avoiding overfitting (Fang and Dawid, 2002).  In this research, we apply non-conjugate 

Bayesian decision theory to feature selection in the wavelet domain. 
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The model considered in this research follows notation introduced by Dawid (1981) for 

matrix-variate distribution.  This notation makes Bayesian manipulations easier and 

preserves the matrix structure (Brown et al., 2001).  A detailed formulation of non-

conjugate Bayesian decision theory is provided by Fang and Dawid (2002) and Brown et 

al. (1999) and this section is based on these papers.  To construct a non-conjugate prior, 

suppose that the response Y  is the sum of an unobservable variable η  and an  error α , 

independent of each other; the joint distribution of η  and the explanatory variables qX  is 

normal; α  has an independent normal distribution.  Therefore, the model is: 

 ,η α= +Y  (4.30) 
 

 ( ) ( ) ( ), ~ 1, , ~ 1, ,q r qN Nη α+ ΦX Σ  (4.31) 
 

with ( ), qη X  and α  conditionally independent, given ( ) ( )r q r q+ × +  and r r×  

covariance matrices r q+Σ  and Φ , respectively.  The means of all these variables are zero 

since both X and Y are assumed centered.  If γ  is a binary q-vector that identifies 

subsets, 

 1 included,i ixγ = ↔  (4.32) 

that is, where the ith feature is selected if the ith entry of γ  is a 1 and not if 0.  A typical 

selected model will have p qγ= <  features.  A particular submodel γ  involving p of 

the explanatory variables has the distribution in Eqs. (4.30) and (4.31) with qX  and r q+Σ  

replaced by γX  (the row vector of p variables) and r γ+Σ  (the appropriate 
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( ) ( )r p r p+ × +  submatrix of r q+Σ ) respectively.   The joint normality of Y and qX  

implies that 

 ( )~ 1, ,Nγ γ γ γ+ ΔY X X B  (4.33) 

 ( )~ 1, ,Nγ γγX Σ  (4.34) 

where the joint covariance matrix r γ+Σ  is partitioned as the ( ) ( )r p r p+ × +  matrix and 

 00 0

0

.r
γ

γ
γ γγ

+

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

Σ Σ
Σ

Σ Σ
 (4.35) 

 

If ( )1
0 p rγ γγ γ

−= ×B Σ Σ  and 1
00. 00 0 0γ γ γγ γ

−= −Σ Σ Σ Σ Σ , then ( )00. r rγ γΔ = + ×Σ Φ .  An 

inverse Wishart prior distribution is assigned for r q+Σ , which by implication also assigns 

for r γ+Σ , as: 

 ( )~ ;r q r qIW δ+ +Σ Q  (4.36) 
 

where 0δ >  is the shape parameter and r q+Q  is an ( ) ( )r q r q+ × +  positive definite scale 

matrix.  The assumption used in this formulation is that the error covariance matrix Φ  is 

proportional to the residual explainable covariance matrix 00.qΣ .  Let 

 ( ) 1

00. 00.q r q qw
−

= +I Σ Σ Φ  (4.37) 
 
for some scalar qw . 

 

The training data consist of n independent realizations from Eqs. (4.30) and (4.31) 

leading to ( )l n r×Y  and ( )l
q n q×X .  In this section, the superfix l is used to note 

explicitly that n observations of the training data are involved, whereas f as a superfix 
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denotes a future observation.  The interest is on predicting fY  for a future case with 

f f fη α= +Y , and ( ),f f
qη X  and fα  independent realizations of model (4.30) and (4.31) 

conditional on the covariance matrices ( ),r q+Σ Φ . 

 

Using a p-variate subset γ  of the q regressor variables for prediction and considering the 

quadratic prediction loss defined as 

 ( ) ( )( )ˆ ˆ ˆ, ,f f f f f fL tr ⎧ ⎫′= − −⎨ ⎬
⎩ ⎭

Y Y Y Y Y Y  (4.38) 

 

with any r r×  positive definite matrix of weight constants.  The Bayes predictor ˆ fY  is 

the predictor of fY  assuming all variables have been measured in the learning data 

,l l
qY X  but that only the selection γ  of the f

qX  is available for prediction and is given as: 

 ( ) ( )ˆ , , , , ,f f f l l f f l l
q qE Eγ γη= =Y Y X X Y X X Y  (4.39) 

since f f fη α= +Y  and ( ), , 0f f l l
qE γα =X X Y .  Conditioning the right-hand side of Eq. 

(4.39) on the unobserved 'error-free' variables ( )l n rη × , the right-hand side can then be 

simplified to 

 ( ), , .f f l l
qE γη ηX X  (4.40) 

 
Evaluating Eq. (4.40) simplifies Eq. (4.39) to 

 ( ) ( )1
0

ˆ , , ,f f f l l f
qE qγ γ γγ γ

−= =Y Y X X Y X P P  (4.41) 

 
where 

 ( ) ( )0 0 ,l l l l
qq Eγ γ γη ′= +P Q X Y X . (4.42) 
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Therefore, the Bayes predictor for quadratic loss is given by Eq. (4.41).  Factorizing the 

inverse Wishart prior distribution (Eq. (4.36)) for r q+Σ  and given 00., , ,l l
q q qw Σ Y X , the 

posterior distribution of lη  is given as: 

 ( ) ( ) ( ) ( )
1

**
00.1 , 1 ,l l l l

n q q qq q q q q q qN w w wη
−⎛ ⎞⎧ ⎫′ ′+ Ι + − + −⎜ ⎟⎨ ⎬⎜ ⎟⎩ ⎭⎝ ⎠

X Q X X X Σ  (4.43) 

with 

 ( )** *1l l
q q q qw wη = + −Y X B  (4.44) 

and 

 ( ) ( ) ( ) ( )
1

*
0 .l l l l

q qq q q q q q qw w
−

⎧ ⎫ ⎧ ⎫′ ′= + +⎨ ⎬ ⎨ ⎬
⎩ ⎭ ⎩ ⎭

B Q X X Q X Y  (4.45) 

 
Since the posterior mean **η  depends on qw , the value of qw  will be specify a priori in 

this application.  Therefore, the quantity ( )** ,l l l
qEη η= X Y  needed in Eq. (4.42) to 

evaluate ˆ fY  (the Bayes predictor of fY  given in Eq. (4.41)) is found in Eq. (4.44).  The 

hyperparameters that need to be specified are the matrices r q+Q  in Eq. (4.36) and the 

scalar qw  in Eq. (4.37), which is assumed fixed.  In addition, 0 0q =Q  and 00Q  is not 

needed to evaluate Eq. (4.41)  The simplest prior structure used is to take qq qk= ΙQ , 

where k is a scalar to be specified (Brown et al., 1999). 
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4.5.3.2 Simulated Annealing Search Method 

Since there are q wavelet coefficients, 2q possible subsets are possible.  Simple forward 

and backward stepwise algorithms could be used but with so many possible subsets they 

tend to get easily trapped into local minima; therefore, an optimization method is 

employed.  Several stochastic optimization methods have been in the literature for feature 

extraction.  Kalivas et al. (1989) used simulated annealing; Leardi et al. (1992) used 

genetic algorithm; and Brown et al. (2001) used metropolis search.  In this research, we 

use simulated annealing to optimize the expected utility for the selection of final wavelet 

coefficients.  One motivation for using this approach is that it is easy to implement. 

Simulated annealing (SAN) is a searching technique that moves sequentially through the 

space of all possible subsets with a good chance of finding at least some of the best (that 

is, low cost subsets).  It is a simple stochastic technique that combines a simulation 

technique with an annealing process, which has analogy to the cooling of a liquid or 

solid.  “An annealing is a process in which a solid in a heat bath is melted by increasing 

the temperature to a high value and then reducing it slowly until the system eventually 

freezes down to a configuration of minimum energy” (Vannucci et al., 2003). 

With the use of the binary q-vector γ  that identifies subsets, the search moves 

sequentially through the space of all possible binary vectors trying to find good ones, that 

is, low cost ones.  The cost function used is defined as 

 ( ) ( ){ } ,C tr R cpγ γ= +  (4.46) 
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where c is the common cost value,  p is the number of nonzero components of γ , and 

( )R γ  is the terminal cost of using a particular γ  subset of the q regressors.  At each step 

the algorithm constructs newγ  from oldγ  by choosing at random between three types of 

move: 

• Move 1:  Add a variable by choosing at random a 0 in oldγ  and changing it to a 1.  

Move chosen with probability PA. 

• Move 2:  Delete a variable by choosing at random a 1 in oldγ  and changing it to a 

0.  Move chosen with a probability PD. 

• Move 3:  Swap two variables by choosing independently at random a 0 and a 1 in 

oldγ  and changing both of them.  Move chosen with probability 1 - PA – PD. 

At the boundaries, with all variables included or no variable present, only deletion or 

addition is possible respectively and then we choose this move with probability 1.  At 

each step ( ) ( )new oldd C Cγ γ= −  is calculated.  If d < 0, newγ  is accepted.  Otherwise, it is 

accepted with probability ( )exp d T− , where T is a control parameter called temperature.  

We chose a cooling schedule of the form ( )1 0 1i iT Tρ ρ−= < < , reducing temperature at 

each iteration i.  Allowing moves to 'worse' subsets may help to avoid local minima.  The 

starting configuration described involves specifying parameter θ  and a random set of 

chosen features with expected size qθ .  We stop when the temperature becomes so low 

that the system essentially stops moving.  Every m steps we calculate an acceptance ratio 

AR, the proportion of m steps that have been accepted and stop if AR τ≤ .  If γ  is the 
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vector with minimum cost given by the search, a good practice is to 're-heat' by starting a 

new annealing with 0γ γ= .  This will allow a 'jump' from γ  in an attempt to avoid being 

trapped in a local minimum.  The implementation of SAN requires a number of choices, 

starting temperature, cooling schedule, and stopping criteria.  There are no prescriptive 

rules for setting these hyperparameters.  However, a lot can be learn by guessing some 

sensible values and watch the outcomes of the search, which is what we did in this 

research. 

 

4.5.4 Applications of the Two-Stage Procedure to Functional Data 

In order to implement the second stage procedure, we need to specify the inverse Wishart 

prior distribution (Eq. (4.36)) for r q+Σ  and the value of c in Eq. (4.46).  We use the 

following simple choices: 3δ =  for minimally informative prior knowledge; 

0.009 ^ 2k =  to provide enough shrinkage to prevent numerical problems occurring 

when the search investigates subsets with many variables, but this would likely have little 

effect on the relatively small subsets that we are interested in finding since the first stage 

procedure has decrease the available features considerably; 0.5qw =  for indeterminism 

parameter; the value of c is estimated using the following 1 4 0.1r× × ; this implies that 

we want to reduce the number of additional variables by 25% and expect to reduce the 

variance to around 0.1.  Therefore, the value of c for the biscuit dough data is 0.0125 and 

for the misalignment data c is 0.05. 
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For the optimization, we ran the simulated annealing sampling with 0γ  all ones.  The 

initial temperature was 0 300T = .  From the many types of cooling schedule that have 

been proposed, (see for example Dowsland (1995)), we choose a geometric schedule in 

which the temperature is reduced by a factor of 0.999ρ =  after each accepted move.  For 

all the searches the three types of moves were chosen with equal probabilities of 1
3 ; that 

is, adding and deleting steps were chosen with probabilities 1
3A DP P= =  and the 

swapping with a probability 1
31 A DP P− − = .  The acceptance ratio, AR, was calculated 

every 500 iterations, 500m = , and the search stopped when AR = 0, that is, 0τ = .  With 

the combination of large m and AR = 0, the annealing search can confidently be said to 

have frozen.   

We exemplify the two-stage procedure using the biscuit dough and the shaft 

misalignment data.  As stated in Section 4.5.2, we apply the SDT procedure to each of the 

data curve and select representative features using the voting method.  From Table 4.7, 

the 33 features selected using the SDT procedure are then passed on for the second stage 

procedure using non-conjugate Bayesian approach and simulated annealing.  For the 

prediction, the data was divided into training and testing sets.  Twenty of the 39 samples 

were used for training and 19 samples used for testing.  The simulated annealing 

procedure selected 19 features (out of the 33 features) with the minimum cost that can be 

used for predicting each of the four response variables (fat, flour, sugar, and water 

content).  The selected features are 1, 5 – 9, 15 – 19, 24 – 27, and 32 – 35.  These selected 

features represent 1380nm, 1396 – 1412nm in increment of 4nm, 1436 – 1452 nm in 
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increment of 4nm, 1472 – 1484nm in increment of 4nm, and 1504 – 1516nm in 

increment of 4nm.  The simulation annealing search stopped after 15,001 iterations 

giving a vector γ  with a minimum cost of 1.5199.  The selected coefficients are used for 

prediction using Bayes model and partial least squares.  In order to ensure fair 

comparisons, all the extracted features are used for prediction using partial least squares.  

The prediction results are summarized in Tables 4.8.  From the Table, we can see that the 

Bayes model performs better than PLS for all the response variables.  One advantage of 

this procedure for this type of samples is that data can be collected only at this selected 

wavelength for predicting the composition of the response variables rather than collecting 

the samples over a wider range of wavelength.  This approach thereby reduces the cost of 

data collection and improves data prediction. 

The two-stage procedure was also applied to the shaft misalignment problem.  As stated 

in Section 2.5.1, the original data of 10 samples was duplicated to have a data set of 50 

samples.  This is to allow for more observations for each alignment conditions.  

Therefore, dividing the data set into training and testing sets as we did for the biscuit 

Table 4.8: Prediction Results using the Two-Stage Procedure 
for the Biscuit Dough Data 

 
MSE Response Variable 

Bayes Model PLS 
Fat 0.0998 0.1354 

Flour 0.1273 2.3449 
Sugar 1.2401 1.7543 

Water content 0.0986 0.1196 
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dough problem is not a practically correct option.  Since the 50 samples are made up of 5 

sets of each sample, we predict the response variables using a leave-five-out cross-

validation method.  Therefore, we developed 10 different models for the shaft 

misalignment problem.  For each model, the 32 representative features selected using 

SDT procedure for multiple curves and voting selection strategy were used for the second 

stage.  We notice that the simulated annealing search method selects either 25 or 26 

features for each model.  In cases where 25 features are selected, the selected features are 

1-3, 5-15, 20-27, 30-32.  In other cases where 26 features are selected, all the 25 features 

listed above are also selected in addition to feature number 16.  The selected features for 

each model were used to predict the two response variables (parallel and angular 

misalignment conditions) using Bayes model and partial least squares.  The averages of 

the mean squared error (MSE) for the 10 models are shown in Table 4.9.  Again, the 

Bayes model performs better than the PLS model.  However, the results show that the 

problem is a difficult and challenging problem.  The use of Bayes model has improved 

the prediction error but there is a need for further improvement in the prediction errors. 

Some of the choices in this implementation are made arbitrarily but the objective is to 

identify a much smaller set of variables than did from the first stage.  We cannot claim to 

have found the optimum subset since not all the original features are used in the second 

stage.  Moreover, only an exhaustive search technique will justify such a claim.  We 

have, however, found some very good subsets of the wavelet coefficients that can predict 

each of the response variables better. 
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Table 4.9: Prediction Results using the Two-Stage Procedure for 
the Shaft Misalignment Data 

 
MSE Response Variable 

Bayes Model PLS 
Parallel 88.09 94.91 
Angular 61.46 71.16 
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Chapter 5 

Conclusions and Future Research 

This chapter gives the overall summary of the research in Section 5.1 and provides some 

areas for future research in Section 5.2. 

 

5.1 Summary of Results 

In this dissertation, we have proposed and implemented two weight functions (MGWF 

and MLWF) for updating SVR parameters for on-line predictions.  Based on 

experimental results, MGWF is more applicable to problems in which past samples 

should be given much lesser weight; whereas, MLWF is more applicable to data that 

should be given more weight than what MGWF gives under the same relative importance 

conditions.  In order to apply the proposed functions for on-line predictions, we presented 

a modified on-line SVR algorithm called on-line SVR with adaptive weighting 

parameters (AOLSVR) in order to incorporate the proposed function into the regression 

formulations. 
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We compared the performance of the proposed procedure with conventional AOSVR 

based on two spectra data and two benchmark time-series data.  As demonstrated in the 

experiments, AOLSVR predicts better than AOSVR in all cases.  The proposed two 

weighting functions, MLWF and MGWF, can also be used in cases where past data is 

more important than recent data.  In such cases, the relative importance parameter (g) 

must be less than zero (g < 0) for all the equations.  For batch implementations in which 

all data samples are given equal weight, g is set to zero (g = 0). 

We also presented step-down thresholding (SDT) procedures for single and multiple 

curves.  The single curve procedure uses multiple hypothesis testing approach and 

controls false discovery error rate.  Our procedure was exemplified using common 

simulated signals in the literature and real-world data.  The results show that our 

procedure performs better than some of the common techniques in the literature and gives 

the same performance as several others.  In order to use the procedure for process data, 

we propose a voting selection strategy for selecting representative features for multiple 

curves.  The procedure is to apply the SDT procedure for each of the curves and use the 

voting selection strategy for extracting representative features.  This feature extraction 

was achieved without any consideration for relationships between the predictors and the 

response variable(s).  Therefore, we also developed a two-stage wavelet-based feature 

extraction procedure.  The first stage is the same procedure for applying the SDT 

procedure for multiple curves.  The second stage uses Bayesian decision theory approach 

in order to minimize the uncertainty in extracting features for prediction problems.  The 

non-conjugate Bayes approach uses simulated annealing optimization technique to search 
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the data spaces.  The selected features based on the two-stage procedures were used for 

prediction using Bayes model and PLS model.  The results show that the extracted 

features accounts for most of the variability in each of the response variables.  

Furthermore, there is a significant reduction in the number of extracted features. 

 

5.2 Future Research 

Future work is needed to explore the strengths and weaknesses in other areas of 

applications (for example, classification/data clustering in data mining) and to extend the 

proposed idea to other areas of condition monitoring (for example, spatial image data in 

process monitoring, bioengineering data, and medical data).  We will also consider 

extending the feature extraction procedure for on-line predictions. 

To further reduce uncertainty surrounding the implementation of the proposed procedure, 

we will develop Bayesian approach to compute prediction intervals rather than point 

predictions since these prediction intervals are more useful in process monitoring.  The 

choice of wavelets, decomposition level, and type of error rate can affect the performance 

of the SDT procedure; therefore, we need further research on how to reduce these sources 

of uncertainty in order to further improve predictions and reduce computation time. 

My research procedures have wide applications in several other areas including nano-

machining process, semiconductor fabrication, automobile industry, and chemical 
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industry.  Therefore, I will further explore these other applications areas in order to 

enhance the performance of the procedures. 
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