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Abstract: Predicting stock market (SM) trends is an issue of great interest among researchers, investors
and traders since the successful prediction of SMs’ direction may promise various benefits. Because
of the fairly nonlinear nature of the historical data, accurate estimation of the SM direction is a
rather challenging issue. The aim of this study is to present a novel machine learning (ML) model to
forecast the movement of the Borsa Istanbul (BIST) 100 index. Modeling was performed by multilayer
perceptron–genetic algorithms (MLP–GA) and multilayer perceptron–particle swarm optimization
(MLP–PSO) in two scenarios considering Tanh (x) and the default Gaussian function as the output
function. The historical financial time series data utilized in this research is from 1996 to 2020,
consisting of nine technical indicators. Results are assessed using Root Mean Square Error (RMSE),
Mean Absolute Percentage Error (MAPE) and correlation coefficient values to compare the accuracy
and performance of the developed models. Based on the results, the involvement of the Tanh (x) as
the output function, improved the accuracy of models compared with the default Gaussian function,
significantly. MLP–PSO with population size 125, followed by MLP–GA with population size 50,
provided higher accuracy for testing, reporting RMSE of 0.732583 and 0.733063, MAPE of 28.16%,
29.09% and correlation coefficient of 0.694 and 0.695, respectively. According to the results, using the
hybrid ML method could successfully improve the prediction accuracy.

Keywords: stock market; machine learning; multilayer perceptron; financial data; artificial
intelligence; artificial neural networks; online trading; big data; social science data; evolutionary
algorithms; optimization

1. Introduction

Accurately predicting the stock market (SM) index direction has frequently been a topic of great
interest for many researchers, economists, traders and financial analysts [1]. Nonetheless, the SM field
is neither static nor predictable. In fact, SM trends are sensitive to both external and internal drivers.
Thus, SM index movement estimation can be categorized under complex systems [2]. Stock price
movement is often interpreted as the direction of stock price and used for prediction. Determining the
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future direction of stock price movement is of utmost importance to investors to evaluate the market
risks. Predicting direction of stock price movement has been seen as a challenging and complex task to
model [3]. Complex system is a framework to work how a system’s sub-categories interact with each
other and how the whole system interacts and manages relationships with its environment. Whereas
modeling such complex systems, challenges have encountered during constructing a reliable and
effective technique and deciding its architecture [4].

Stock price movement forecasting is a compelling task because of the high volatility, anomaly
and noisy signal in the SMs’ area. Over the past two decades, this topic has attracted the attention of
researchers in different fields, particularly artificial intelligence [5]. Stock prices are nonlinear with
regard to historical data and other technical and macroeconomic indicators [6]. Many researchers often
preferred to use time-series analyses which is utilized to estimate future events according to historical
data before the capabilities of neural networks were discovered. Autoregressive integrated moving
average (ARIMA), autoregressive conditional heteroskedasticity (ARCH) model and Generalized
autoregressive conditional heteroskedasticity (GARCH) model, support vector machine (SVM) are
among the best-known models among the methodologies [7]. Moreover, regression analysis and
artificial neural networks (ANNs) have frequently been used for forecasting and classification in
order to cope with these nonlinear relationships [7–10]. Systems that utilize technical analysis,
across expert systems, hybrid systems and various types of computational intelligence have as well
been suggested [11–13]. Interests of researchers continue to increase for applying different types of
artificial intelligence to forecast SM index direction. Due to the nonlinear structures of the problems,
the prediction approaches are typically highly complex, meanly needing to develop efficient solution
methods for such models. Technical analysts work with many data, technical tools and especially
technical indicators to decide price trends and market trends on the basis of price and volume
conversions in the market [14]. In light of existing literature, several technical indicators have been
preferred as input data in the creating of forecasting methodologies to predict the direction of a
SM index [15–22]. Cervelló Royo and Guijarro, 2019 employed four ML based prediction methods
including gradient boosting machines (GBM), random forest (RF), generalized linear models (GLM)
and deep learning (DL) for to address the estimation of market trends as a comparison analysis by
accuracy rate (%) [23].

In several studies, technical indicators are used as input data. The trend was to identify novel
methods that provide the highest accuracy for the classification methods in the index direction
prediction. When we provide real-valued technical indicators as inputs to the models, forecasting
techniques to be classified in accordance with the values of technical indicators are created [15,20].
When technical indicators are utilized, the prediction models consider each indicator as input data,
regardless of the index being considered [7]. The studies in which the methods that deal with technical
indicators as input data are used in the index direction prediction constitute the framework of this study.
Estimating the BIST 100 index’s direction is a significant financial issue that has carefully monitored in
financial markets around the world [24,25]. In this context, this research aims to predict stock price
movement direction through an integrated multilayer perceptron methodology. More specifically,
two novel models, i.e., multilayer perceptron–genetic algorithms (MLP–GA) and multilayer–particle
swarm optimization (MLP–PSO) with Tanh (x) as the output function, have been proposed and applied
for prediction compared with the default Gaussian function. Thus, it is intended to fill a gap in SM
direction prediction literature. PSO has been employed by researchers for the prediction of stock
market. Lahmiri, 2018 developed spectrum analysis and support vector regression integrated with
PSO to estimate the stock price using time series data [26]. Pulido et al., 2014 employed PSO for
the optimization of a hybrid ANN–Fuzzy model for the prediction of Mexican Stock Exchange [27].
Lahmiri, 2016 employed PSO for the optimization of the architecture of a feed forward neural network
in the prediction of stock market [28].
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The rest of this research is organized as follows: The next section reviews the relevant literature.
Section 3 deals with the research methodology. The results are given in Section 4, while the findings
are discussed in Section 5. The conclusions are presented in the final section.

2. Literature Review

In recent years, there have been a great deal of papers investigating the direction of the next day
trends of SMs. Academicians and traders have made enormous efforts to forecast the next day trends
of SM index for translating the predictions into profits (Kara et al., 2011). In this section, we focus the
review of methods and technical indicators utilized for forecasting of direction movement of stock
index. As shown in Table 1, an ANN model was used in some of the studies [18,25,29,30], whilst hybrid
models were preferred in other studies [17,21,31–33] as displayed in Table 2. In Table 1. the notable
algorithms are back-propagation neural network (BPNN), independent component analysis- BPNN
(ICA–BPNN), Naive Bayes (NB), and k-nearest neighbors algorithm (k-NN).

Table 1 summarizes several machine learning methods proposed for stock exchange index
direction prediction. The most popular methods are RF, SVM and ANN, followed by k-NN and NB,
with dissimilar accuracy outcomes. The state of the art shows a research gap in using hybrid models.

Table 2 summarizes the notable machine learning models. Hybrid models of the SVM trained
with simple evolutionary algorithms such as GA have been the most popular. The state of the art of
hybrid models shows a research gap in using more sophisticated machine learning models trained
with advanced soft computing techniques.

Table 1. Stock market index direction forecasting with machine learning considering comparative
analysis involving ANN-based methods.

References Method/s Application/Data Result

[15] ANN, ARIMA KLCI (1984–1991) ANN outperformed ARIMA model.
[16] SVM, BPNN KOSPI (1989–1998) SVM outperformed ANN.
[32] ICA–BPNN, BPNN TAIEX (2003–2006) ICA–BPNN is superior.
[17] ANN, NB, DT BSE (2003–2010) Hybrid RSs outperformed ANN.
[34] PNN, SVM S&P 500 (2000–2008) PNN provided high accuracy.
[24] ANN, SVM BIST 100 (1997–2007) 75% accuracy using ANN.
[29] ANN TEPIX (2002–2009) ANN showed promising results.
[35] ANN, GA TEPIX (2000–2008) ANN delivered next day estimates.
[25] ANN BIST 100 (2002–2007) ANN achieved success with 82.7%.
[36] SVM, ANN IBEX-35 (1990–2010) SVM outperformed ANN.
[37] k-NN, PNN S&P 500 (2003–2008) k-NN outperformed PNN.
[18] ANN BOVESPA (2000–2011) ANN suitable for direction estimation.
[38] LSSVM, PNN, CSI 300 (2005–2012) LSSVM outperformed other models.

[39] Random walk, ANN,
SVM, fuzzy BSE-SENSEX (2011–2012) The fuzzy metagraph-based model has reached

a classification rate of 75%.
[40] ANN, RF, k-NN Amadeus (2009–2010) RF outperformed ANN.
[20] NB, ANN, SVM CNX Nifty (2003–2012) NB outperformed other models.
[41] DWT, ANN, SVM–MLP DJIA-S&P500 (2000–2012) SVM–MLP is superior.
[42] Probit, Logit, Extreme Value S&P 500 (2011–2015) Extreme Value outperfomed Logit and Probit.
[7] PSO–ANN S&P 500, IXIC (2008–2010) Acceptable prediction and robustness.
[43] RF & ANN S&P 500 (2009–2017) RF outperformed ANN.
[44] Hybrid fuzzy NN DAX-30 (1999–2017) minimum risky strategies.

[45] GA, SVM, ANN BM&FBOVESPA
PETR4 (1999–2017) SVM performed better than ANN.
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Table 2. Stock market index direction studies using methods other than ANNs.

Author/s Method/s Application Result

[31] GA–SVM, random walk, SVM,
ARIMA, BPNN

S&P 500
(2000–2004)

GA–SVM has been shown to outperform
other models.

[14]
Fuzzy sets, physical, support
vector regression, partial least

squares regression

TAIEX and HIS
(1998–2006)

Their proposed models outperform the
compared models according to the RMSE.

[46] Random forest CROBEX
(2008–2013)

Random forests can be successfully
preferred to estimate.

[19] Fuzzy rule-based expert system Apple company
(2010–2014)

The fuzzy expert system has significant
performance with minimal error.

[21] GMM–SVM Indonesia ASII.JK
(2000–2017)

The GMM–SVM model has been found to
be superior to other models.

[47] Bayesian network iBOVESPA
(2005–2012)

Mean accuracy with the proposed model
configuration was almost 71%.

[48] TOPSIS, SVM, NB,
Decision tree, kNN

BSE SENSEX, S&P500
(2015–2017)

While SVM model performs better in BSE
SENSEX index, k-NN is superior to other

models in S&P 500 index.

[22] ANFIS Apple stock data
(2005–2015)

The proposed method outperformed the
existing methods.

[49] RKELM BSE, HIS, FTSE
(2010–2015)

They proved the superiority of the RKELM
model over the ANN, naive Bayes and SVM.

[3] Mean Profit Rate (MPR)
DJIA, S&P500, HSI,

Nikkei 225, SSE
(2007–2017)

MPR is an effective classifier.

Technical Indicators

As mentioned above, technical indicators have been useful and effective financial instruments
for estimating direction of stock price index for years. Technical indicators used for SM direction
prediction from past to present can be seen in Table 3.

In summary, MACD, %K, %D, RSI, %R, A/D, MOM, EMA, CCI, OSCP and SMA are the technical
indicators that are frequently preferred by researchers. Furthermore, ANN and its extensions (MLP,
PNN, etc.) are the most used methods. As far as the authors know, MLP–GA and MLP–PSO
methodologies with and without Tanh (x) as the output function have not been proposed to forecast
stock exchange movement prediction for any stock exchange in the literature. As a result, it is
anticipated that this paper will constitute a significant contribution to the related field.

Table 3. Technical indicators used in SM direction estimation.

Author/s Technical Indicators

[15] Simple moving average (SMA), stochastic K (%K), momentum (MOM), stochastic D (%D),
relative strength index (RSI).

[16]
Slow D%, MOM, rate of change (ROC), K%, Larry William’s R% (%R),
Accumulation/Distribution (A/D) oscillator, disparity5, RSI, disparity10, price oscillator
(OSCP), D%, Commodity Channel Index (CCI).

[31]

OSCP, Stochastic oscillator (SO), Slow stochastic oscillator (SSO), CCI, ROC, MOM, SMA,
Moving variance (MV), Moving variance ratio (MVR), Exponential moving average (EMA),
Moving average convergence and divergence (MACD), A/D oscillator, Price (P), disparity5,
disparity10, Moving stochastic oscillator (MSO), RSI, linear regression line (LRL).

[32] The previous day’s cash market high, low, volume, 6-day RSI, today’s opening cash index,
10-day total amount weighted stock price index.

[17] %K, Positive volume index, %R, negative volume index, %D, on balance volume, RSI,
MACD, MOM, A/D oscillator, 25-day SMA.

[34] SMA, OSCP, MOM, %D, ROC, disparity, %K.

[29] MACD, SMA, %R, CCI, A/D oscillator, %D, weighted moving average (WMA), RSI,
MOM, %K.

[24] %D, %K, RSI, MOM, MACD, WMA, %R, A/D oscillator, SMA, CCI.
[35] SMA, MACD, RSI, OSCP, MOM, volume.
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Table 3. Cont.

Author/s Technical Indicators

[18] MACD, RSI, %D, SMA, Bollinger band, MOM, %R.

[14] SMA for 5 days, SMA for 10 days, bias to moving average (BIAS), RSI, psychological line
(PSY), %R, MACD, MOM.

[38] %K, %R, %D, CCI, A/D oscillator, MOM, MACD, RSI, SMA and WMA.
[39] MA, exponential moving average (EMA), MACD, RSI.
[19] High price, low price, volume, change of closed price, MACD, MA, BIAS, RSI, %R.
[20] %D, RSI, WMA, MACD, CCI, A/D oscillator, %K, %R, SMA.

[46] 5-day SMA, 5-day WMA, 10-day SMA, 10-day WMA, %K, %D, MACD, CCI, 5-day disparity,
10-day disparity, OSCP, ROC, MOM, RSI, 5-day standard deviation.

[41] SMA, EMA, A/D oscillator, %K, RSI, OSCP, closing price, maximum price.
[42] SMA, WMA, MOM, %K, %D, %R, RSI, MACD.

[7] Change of price, change of volume, 5-day SMA, 10-day SMA, 30-day SMA, moving price
level (30 days), moving price level (120 days), percentage price oscillator.

[21] A/D oscillator, mean of rising days, CCI, SMA, MACD, MOM, on balance volume, ratio of
rising days, RSI, %R.

[44] Triangular moving average (TMA), RSI, SMA, EMA, modified moving averages (MMA),
volatility ratio (VR), %R, true strength index (TSI), average true range (ATR).

[48] SMA, %K, %D, %R, MACD, RSI.
[45] SMA, WMA, MOM, RSI.
[22] 1-week SMA, 2-week SMA, 14-day disparity, R%.
[3] %D, %K, RSI, MOM, MACD, WMA, %R, A/D oscillator, SMA, CCI.

[49] SMA, MACD, %K, %D, RSI, %R.

3. Materials and Methods

3.1. Data

As shown in Table 4, nine technical indicators for each trading day were utilized as input data.
Plenty of investors and traders handle certain criteria for technical indicators. A great deal of technical
indicators is available. As already mentioned above, technical indicators have often been considered
as input variables in the construction of forecasting systems for estimating the trend of movement
of SM index [24]. As a result, we determined nine technical indicators by previous studies and the
opinion of area experts.

Table 4. Selected technical indicators.

Technical Indicators Abbreviation Formulas

Simple n (10 here)-day Moving Average SMA SMA = Ct + Ct − 1+···+ Ct − n
n

Simple n (10 here)-day Moving Average WMA WMA = 10 × Ct + 9 × Ct−1+···+C1
n + (n − 1) +···+ 1

Momentum MOM MOM = Ct −Ct−9

Stochastic D% STOCH Stokastik%D =
∑n−1

i=0 Kt−i
10 %

Relative Strength Index RSI RSI = 100− 100
1+(

∑n−1
i=0 UPt−i/n)/(

∑n−1
i=0 DWt−i/n)

Moving Average Convergence
Divergence MACD MACD = MACD(n)t−1 +

2
n + 1 × (DIFFt −MACD(n)t − 1)

Larry William’s R% LWR William′s%R = Hn − Ct
Hn − Ln

× 100
Accumulation/Distribution Oscillator A/D A/D = Ht − Ct − 1

Ht − Lt

Commodity Channel Index CCI CCI = Mt − SMt
0.015Dt

Ct is the closing price, Lt the low price, Ht the high price at time t, DIFF: EMA(12)t– EMA(26)t, EMA exponential
moving average, EMA = a× xt + (1− a) × xt−m, α smoothing factor: 2/(1 + k), k is time period of k day exponential
moving average, LLt and HHt mean lowest low and highest high in the last t days, respectively, Mt: (Ht+Lt+Ct)/3;

SMt :
(

n∑
i=1

Mt−i+1/n
)
, Dt =

(
n∑

i=1

∣∣∣Mt−i+1 − SMt
∣∣∣)/n, Upt means the upward price change, Dwt means the downward

price change at time t.

The input variables utilized in this work are technical indicators described in Table 4 and the
direction of change in the daily Borsa Istanbul (BIST 100) SM index. The entire data contains the period
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from 28 March 1996 to 7 February 2020, providing a total of 5968 trading day observations. Furthermore,
information about opening and closing price is available for each trading day. The number of entire
data with decreasing direction is 2827 (47.36%), whereas the number of entire data with increasing
direction is 3141 (52.64%). All the data were obtained from Matriks Information Delivery Services Inc.
(https://www.matriksdata.com).

3.2. Methods

3.2.1. Multilayer Perceptron (MLP)

The architecture of ANN is based on connections of layers by nodes called neurons as well as
the biological neurons of brain [50]. Each path transmits a signal among neurons in a manner similar
to that of synapses [51]. MLP, as a feedforward ANN, contains three main parts: one input layer,
one or more hidden layers and one output layer, which can be successfully employed for prediction,
classification, signal processing and error filtering [52]. Each node employs one nonlinear function.
MLP employs backpropagation learning algorithm for training process [53,54]. MLP as popular and
frequently used techniques among other MLPs was employed to predict the direction value. MLP was
developed by the use of MATLAB software. Figure 1 indicates the architecture of developed network.
Initially, the network divided data into two sets of training data (with a share of 80%) and testing
data (with a share of 20%) randomly. In the first step of the training process, training to find the
optimum number of neurons in the hidden layer. In each training process, Mean Square Error (MSE)
was computed as the performance function.
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Genetic algorithm (GA) and particle swarm optimization (PSO), as evolutionary algorithms,
have been employed to train the neural network. This approach of hybridization of ANN has a lot of
advantages such as increasing the accuracy of ANN by updating the weights and bias values using
GA and PSO [55,56]. The aim of this study is to estimate the weights of hidden and output layers of
an ANN architecture using GA and PSO during a convergence and accurate estimation process to
generate accurate results, and, on the other hand, to control the deviation from target point in such a
way that it prevents deviation and large errors even in different performances. However, the neural
network needs to be left alone due to the random selection of a sample in order to arrive at an answer
with appropriate accuracy. Therefore, this can be attributed to the stability and reliability of the neural
network through GA and PSO.
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3.2.2. Genetic Algorithm (GA)

GA is a subset of approximation techniques in computer science to estimate a proper solution
for optimization problems. GA is a type of evolutionary algorithm (EA) that employs biological
techniques such as heredity and mutations [57,58]. The hypothesis begins with a completely random
population and continues for generations. In each generation, the total population capacity is assessed,
several individuals are selected in a random process from the current generation (based on competencies)
and modified (deducted or re-combined) to form a new generation, and the next repetition of the
algorithm becomes the current generation [59–61].

The optimization process in the genetic algorithm is based on a randomly guided process.
This method is based on Darwin’s theory of gradual evolution and fundamental ideas. In this method,
a set of objective parameters is randomly generated for a fixed number of so-called populations. Or the
fit of that set of information is attributed to that member of that population [62–64]. This process is
repeated for each of the created members, then formed by calling the operators of the genetic algorithm,
including mutation and next-generation selection, and this process will continue until the convergence
criterion is met [59,65]. There are three common criteria for stopping: Algorithm execution time,
the number of generations that are created and the convergence of the error criterion. The process of
implementing GA, which is the basis of evolutionary algorithms, is presented in Figure 2. which is
adapted and regenerated from [66].
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Figure 2. The implementation process of GA.

The main components of the Genetic algorithm include: representation of the environment,
evaluation function, Population (set of answers), the process of choosing parents, Operators of
Diversity (Generation), The process of selecting the living (choosing the best population to build the
next generation) and stop condition. Genetic organization determines how each person displays
themselves and behaves, and their physical quality. Differences in genetic organization are one of
the criteria for distinguishing between different methods of evolutionary computation. The genetic
algorithm uses linear binary organization. The most standard type of this organization is the use of an
array of bits. Of course, an array of other types of data can also be used. This is due to their constant
size. This facilitates integration operations [61,67,68]. However, it is possible to use variable length
structures in organizing GA, which makes the implementation of integration very complex.

In this research, the genetic algorithm was utilized to find the optimal point of complex nonlinear
functions in integrating with the artificial neural network. Genetic algorithms optimize artificial neural
network weights and bias values. In fact, the objective function of the genetic algorithm is a function
of the statistical results of the MLP. To train, the P number of population of each generation, MLP was
randomly initialized and the error rate was calculated using training data. In the next step, the network
characteristics were updated according to the input and output values. The training process of the
algorithm was repeated until the network features improved, taking into account the newly population.
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In the last step, the output gathered from the network execution was compared with the actual values
and the model execution finished by minimizing the difference between the two values. Figure 3
presents the flowchart of the MLP–GA algorithm. Table 5 presents the setting parameters for GA.Entropy 2020, 22, x 9 of 20 
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Table 5. The characteristics of the MLP–GA.

Input Neuron 9
Hidden layer 2

Hidden layer activation function Logsig
Output layer activation function Gaussian, Tanh (x)

Pop. type Double vector
Pop. size 50, 100 and 150

Crossover function Scattered
Crossover fraction 0.8
Selection function Uniform
Migration interval 10
Migration fraction 0.2

3.2.3. Particle Swarm Optimization (PSO)

PSO is a popular and robust optimization method to deal with problems in the n-dimensional
space. The PSO is a mass search algorithm that is modeled on the social behavior of bird groups.
Initially, the algorithm was employed for pattern detection of flight of birds at the same time and to
suddenly change their path and optimize the shape of the handle. In PSO, particles flow in the search
space which is affected by their experience and knowledge of their neighbors; thus the position of
another particle mass affects how a particle is searched. Results of recognition of this behavior is the
searching for particles to reach successful areas. The particles follow each other and move towards
their best neighbors. In PSO particles are regulated throughout their neighborhood [69–72].

At the beginning of the work, a group of particles are produced to reach the best solution.
Each particle is updated through the finest position (pbest) and the finest position ever obtained by the
particle population used by the algorithm (gbest) in each step, which is presented in Figure 4 based on
an adaptation from [73–77]. Updating the velocity and location of each particle is the next step after
finding the best values, Equations (1) and (2):

v(t + 1) = v(t) + c1× rand(t) × (pbest(t) − position(t) + c2× rand(t) × (gbest(t) − position(t)) (1)

position(t + 1) = v(t + 1) + position(t) (2)
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Equation (1) has three parts in the right side, current particle velocity v(t), the second part
c1× rand(t)× (pbest(t) − position(t)) and third part c2× rand(t)× (gbest(t) − position(t)) are responsible
for the rate of change of particle velocity and its direction towards the best personal experience
(nostalgia) and the finest experience of the group (collective intelligence). If the first part is not
considered in this equation v(t), then the velocity of the particles is determined according to the current
position and the best particle experience, and in practice the effect of the current velocity and its inertia
is eliminated. Accordingly, the best particle in the group stays in place, and the others move toward
that particle. In fact, the mass movement of particles without the first part of Equation (1) will be a
process in which the search space gradually shrinks and local search is formed around the best particle.
The parameters c1 and c2 (the value is about 2) determine the importance and weight of collective
intelligence and nostalgia [74–76]. As for the condition of stopping, the following ways are available:

• A certain number of repetitions,
• Achieve a decent threshold,
• A number of repetitions that do not change the competence (for example, if after 10 repetitions

the competency was constant and did not improve),
• The last way is based on the aggregation density around the optimal point.

One of the advantages of PSO over GA is the simplicity and its low parameters. Selecting the
best values for the cognitive and social component leads to accelerating the algorithm and preventing
premature convergence occurs locally at optimal points. In PSO optimization, the proposed variables
are included in the training of a neural network, including network weights and bias. The process is as
follows: First, N vector of position Xi, which N is equal to the number of members of the category, is
generated randomly. The neural network is executed according to the parameters equal to the variables
of these vectors and the error obtained from each run is considered as the degree of fit of the variable
vector of that network. This process is repeated till the final convergence is achieved. The ultimate
convergence is to achieve the optimal position vector (values of optimal weights and bias) so that the
training error is minimized. So the objective function in this optimization need to be minimized as the
amount of error Forecast [78–80]. Table 6 presents the setting values of the MLP–PSO.
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Table 6. The characteristics of the MLP–PSO.

Input Neuron 9
Hidden layer 2

Hidden layer activation function logsig
Output layer activation function Gaussian, Tanh (x)

Number of Max. Iteration 500
Pop. size 50, 75, 100 and 125

c1 2
c2 2

3.2.4. Training Phase

Training process categorized into two main steps. First is to select the best architecture of the
ANN, the second is to integrate MLP with optimizers. Therefore, training was developed with 10 to
19 neurons in the first hidden layer and 2 neurons in the second hidden layer with the 80 percent of total
data, according to Table 7. MLP models called as Models 1–6. After this process, MLP was integrated
with GA using population size 50, 100 and 150 (models 7–9, respectively) and PSO using particle size
50, 75, 100 and 125 (models 10–13, respectively). Training was performed into two scenarios, with Tanh
(x) as the output function and with Gaussian function as the default function.

Table 7. The description of the developed models.

Model 1 MLP (9-10-2-1) Model 8 MLP–GA (100)
Model 2 MLP (9-12-2-1) Model 9 MLP–GA (150)
Model 3 MLP (9-14-2-1) Model 10 MLP–PSO (50)
Model 4 MLP (9-15-2-1) Model 11 MLP–PSO (75)
Model 5 MLP (9-17-2-1) Model 12 MLP–PSO (100)
Model 6 MLP (9-19-2-1) Model 13 MLP–PSO (125)
Model 7 MLP–GA (50)

Figure 5 indicates a sample of the training process with MLP–GA which is extracted from the
training process. The rest of data (20 percent) was employed in testing process.
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3.2.5. Evaluation Metrics

Table 8 presents evaluation criteria which compares predicted and output values. These equations
are metrics for indicating the performance of models in predicting the target values as the model
output values. In fact, this metrics compares the output of models and target values to calculate a
value for indicating the accuracy of models [51,56,81].

Table 8. Model Evaluation metrics.

Accuracy and Performance Index Description

Correlation coefficient =
N

∑
(XY) −

∑
(X)

∑
(Y)

√
[N

∑
X2−(

∑
X) 2][N

∑
X2−(

∑
XY) 2]

N: Number of Data
X: Target value
Y: Output value.MAPE (%) = 1

N

N∑
i=1

∣∣∣∣Xi−Yi
Xi

∣∣∣∣
RMSE =

√
1
N

∑
(X −Y)2

4. Results

Training was performed by 80% of total data. Results were evaluated in terms of correlation
coefficient, MAPE and RMSE, according to Tables 9 and 10. Table 9 presents results of the training
step without the use of Tanh (x) (using the Gaussian function as default) as the output function and
Table 10 gives results of the training step with Tanh (x) as the output function.

Table 9. Results for training phase with the Gaussian function as default.

Model Correlation
Coefficient RMSE MAPE

(%)
Processing
Time (s) Model Correlation

Coefficient RMSE MAPE
(%)

Processing
Time (s)

Model 1 0.67 0.741035 32.02% 3.82 Model 8 0.694 0.718928 30.57% 8.33
Model 2 0.68 0.733079 31.55% 4.11 Model 9 0.70 0.713458 30.31% 10.82
Model 3 0.676 0.735209 31.52% 4.97 Model 10 0.692 0.721568 30.40% 6.78
Model 4 0.682 0.730448 30.88% 5.11 Model 11 0.689 0.724479 30.89% 7.32
Model 5 0.689 0.723326 30.84% 5.22 Model 12 0.693 0.720478 30.28% 9.02
Model 6 0.693 0.719818 30.59% 5.30 Model 13 0.704 0.708774 29.93% 10.03
Model 7 0.692 0.720763 30.59% 7.22

Table 10. Results for training phase with tanh(x) function.

Model Correlation
Coefficient RMSE MAPE

(%)
Processing
Time (s) Model Correlation

Coefficient RMSE MAPE
(%)

Processing
Time (s)

Model 1 0.684 0.745674 30.12% 3.82 Model 8 0.709 0.72298 28.79% 7.96
Model 2 0.692 0.738467 29.59% 4.11 Model 9 0.716 0.717001 28.69% 9.87
Model 3 0.69 0.739543 29.62% 4.97 Model 10 0.710 0.720822 28.93% 6.22
Model 4 0.698 0.730832 29.09% 5.11 Model 11 0.703 0.728695 29.03% 7.12
Model 5 0.709 0.724664 29.23% 5.22 Model 12 0.708 0.721266 28.48% 8.45
Model 6 0.707 0.724155 28.66% 5.30 Model 13 0.720 0.712372 28.16% 9.23
Model 7 0.708 0.723435 28.78% 7.05

As is clear from Tables 9 and 10, Model 13 provides higher accuracy compared with other models.
It is also clear that using Tanh (x) as the output function of MLP increases the accuracy of the prediction.
According to the results, the hybrid methods increase the processing time (s) compared with those for
the single methods. This was also claimed by Mosavi et al., 2019 [82] and Ardabili et al., 2019 [83].
The main reason can be due to the optimizing process on setting the weights and bias values of the MLP
which consumes more processing time (s). On the other hand, according to the Tables 9 and 10, it is
clear that the GA requires more processing time compared with that of the PSO. More processing time
also can be due to the complexity of the optimizers [84,85]. Using Tanh (x) reduced the processing time.
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Testing Results

Tables 11 and 12 present the testing results, respectively, for the Gaussian function and with Tanh
(x). as is clear, in testing process, results are different from those of training process. According to
results of testing process, Model 7 followed by Model 13 for both scenarios, with Tanh (x) and Gaussian
function, provide higher accuracy and lower error compared with other models. It is clear that the
presence of Tanh (x) as the output function increases the accuracy and reduces the error values.

Table 11. Results for testing phase with the Gaussian function as default.

Model Correlation
Coefficient MAPE (%) RMSE Correlation

Coefficient MAPE (%) RMSE

Model 1 0.648 32.63% 0.759687 Model8 0.681 31.00% 0.730846
Model 2 0.661 32.11% 0.748273 Model 9 0.664 31.44% 0.746575
Model 3 0.657 32.07% 0.752376 Model 10 0.680 31.11% 0.731245
Model 4 0.673 31.31% 0.737857 Model 11 0.663 31.89% 0.747604
Model 5 0.663 31.71% 0.747776 Model 12 0.678 30.97% 0.733873
Model 6 0.671 31.24% 0.740842 Model 13 0.677 31.04% 0.735221
Model 7 0.681 30.84% 0.729959

Table 12. Results for testing phase with Tanh (x).

Model Correlation
Coefficient MAPE (%) RMSE Model Correlation

Coefficient MAPE (%) RMSE

Model 1 0.662 30.92% 0.76042 Model 8 0.692 29.10% 0.734701
Model 2 0.673 30.15% 0.751537 Model 9 0.679 29.95% 0.744885
Model 3 0.669 30.13% 0.753864 Model 10 0.694 29.50% 0.73393
Model 4 0.688 29.54% 0.738487 Model 11 0.674 30.10% 0.749981
Model 5 0.670 30.29% 0.74539 Model 12 0.694 29.20% 0.733235
Model 6 0.684 29.48% 0.740869 Model 13 0.694 29.09% 0.732583
Model 7 0.695 29.16% 0.733063

Figure 6 presents the deviation from target values of all models into two scenarios with the
Gaussian function as the default and with Tanh(x) as the output function. According to Figure 6,
it can be concluded that the presence of Tanh (x) as the output function reduces the range of deviation.
Models with a high accuracy have lower deviation values compared to others.

Figure 7 indicates a simple yet essential form of Taylor diagram for the testing process of the
developed models. This diagram is developed according to correlation coefficient and standard
deviation. A point with a lower standard deviation and higher correlation coefficient has higher
accuracy compared with other points. As is clear from Figure 7, Model 13 and Model 7 present higher
accuracy compared with other models.

According to the results, the advantage of the single models is their lower processing time, but the
lowest accuracy can be the most important limitation and disadvantage of the single models compared
with the hybrid ones. This was also claimed by several researches. In the case of using the hybrid
models, the advantages of MLP–PSO such as higher accuracy and lower processing time overtake
the MLP–GA.
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5. Conclusions

In this paper, modeling was performed by MLP–GA and MLP–PSO in two scenarios including
with Tanh (x) and with the Gaussian function as default as the output function in thirteen categories.
Research outcomes were evaluated using RMSE and correlation coefficient values to compare the
accuracy and performance of the developed models in training and testing steps. Based on the results,
using Tanh (x) as the output function improved the accuracy of models significantly. MLP–PSO with
population size 125 followed by MLP–GA with population size 50 provided higher accuracy in the
testing step by RMSE 0.732583 and 0.733063, MAPE of 28.16%, 29.09% and correlation coefficient 0.694
and 0.695, respectively. As is clear, the only advantage of the single MLP is its lower processing time
but the important disadvantage can be claimed the lower accuracy compared with the hybrid models.
According to the results, using hybrid ML method could successfully improve the prediction accuracy.
Accordingly, MLP–PSO with lower processing time and higher accuracy (as the main advantage of the
PSO compared with GA) overtakes the MLP–GA. In this way, the problem statements were successfully
covered by the solution presented in the study. The main limitation for the future, is about presenting
and beating a new stock market index using evolutionary methods. The future work will address
the beating of stock market, that the variance of stock market will be successfully addressed. Thus,
the return variance poses a limitation of the present research.
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Abbreviations

MLP Multilayer perceptron TEPIX Tehran stock exchange price index
MV Moving variance LDA linear discriminant analysis
GA Genetic algorithms BPNN Back propagation neural network
RMSE Root mean square error BSE-SENSEX Bombay Stock Exchange
ANN Artificial neural network TAPI 10 10-day total amount weight stock price index
MOM momentum ICA Independent Component Analysis

SVM Support vector machine TAIEX
Taiwan Stock Exchange Capitalization Weighted
Stock Index

ROC rate of change KOSPI Korea Composite Stock Price Index
BIST 100 Borsa Istanbul 100 index MAPE Mean Absolute Percentage Error
%D stochastic D CSI 300 Capitalization-weighted SM index
CROBEX Zagreb stock index CNX Nifty Standard & Poor’s CNX Nifty stock index
DAX-30 German DAX-30 DJIA Dow Jones Industrial Average
HIS Hang Seng Index FTSE Financial Times Stock Exchange
k-NN k-nearest neighbor QDA quadratic discriminant analysis
S&P 500 Standard & Poor’s 500 GMM Gaussian mixture model
RBF Radial basis function RKELM Robust kernel extreme learning machine
SMA simple moving average KLCI Kuala Lumpur Composite Index
RSI relative strength index BOVESPA Bolsa de Valores de São Paulo
%K stochastic K PNN Probabilistic neural network
%R Larry William’s R% A/D Accumulation/Distribution
OSCP price oscillator CCI Commodity Channel Index
SO Stochastic oscillator MSO Moving stochastic oscillator
SSO Slow stochastic oscillator PSO Particle swarm optimization
MVR Moving variance ratio EMA Exponential moving average
LRL Linear regression line MACD Moving average convergence and divergence
NB Naive Bayes SM Stock market
RS Rough sets DWT Discrete wavelet transform
IBEX-35 Spanish SM ARIMA Autoregressive integrated moving average
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