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Abstract 

There has been an alarming increase in the number of skin cancer cases worldwide in recent years, which 

has raised interest in computational systems for automatic diagnosis to assist early diagnosis and 

prevention. Feature extraction to describe skin lesions is a challenging research area due to the difficulty 

in selecting meaningful features. The main objective of this work is the find the best combination of 

features, based on shape properties, colour variation and texture analysis, to be extracted using various 

feature extraction methods. Several colour spaces are used for the extraction of both colour- and texture-

related features. Different categories of classifiers were adopted to evaluate the proposed feature 

extraction step and several feature selection algorithms were compared for the classification of skin 

lesions. The developed skin lesion computational diagnosis system was applied to a set of 1104 

dermoscopic images using a cross-validation procedure. The best results were obtained by an optimum-

path forest classifier with very promising results. The proposed system achieved an accuracy of 92.3%, 

sensitivity of 87.5% and specificity of 97.1% when the full set of features was used. Furthermore, it 

achieved an accuracy of 91.6%, sensitivity of 87% and specificity of 96.2%, when 50 features were 

selected using a correlation-based feature selection algorithm. 

Keywords: Feature extraction and selection; Fractal dimension analysis; Discrete wavelet transform; 

Co-occurrence matrix. 

1. Introduction 

Dermoscopic images are widely applied for automated diagnosis of pigmented skin lesions. Such 

images can be acquired from dermatoscopes or specific cameras to provide a better visualization of the 

pigmentation pattern on the skin surface. Several computational systems have been proposed to assist 

dermatologists in obtaining an effective diagnosis [1-3]. These systems can be used to monitor benign 

skin lesions, and malignant lesions may be diagnosed at an early stage, so that the patient has a higher 
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probability of being cured with less aggressive therapies. The ABCD dermoscopy rule is usually taken 

into account for skin lesion diagnoses and when designing feature extraction methods; therefore, such 

diagnoses are based on the analysis of asymmetry, border, colour and differential structures, A, B, C 

and D, respectively. The asymmetry criterion can be defined by the asymmetry analysis of the skin 

lesion border, its colour or structures. The border criterion analyses the abrupt cut-off of the network at 

the lesion border, and the colour criterion identifies the presence of possible basic colours, such as white, 

red, light-brown, dark-brown, blue-grey and black. The differential structures criterion is characterized 

by the presence of pigment networks, vascularization, regression structures, streaks and dots/globules 

[4]; nevertheless, the identification of these structures are rarely used for automated diagnosis of skin 

lesions, mainly due to their complexity [5].  

The features extracted from skin lesion images must represent their class, e.g., benign or malignant. 

Several methods to extract shape-, colour- and texture-related features for the automated diagnosis have 

been proposed in the literature [6-11]. Such features are based on the ABCD rule and they can 

characterize skin lesion properties adequately. Equivalent diameter, solidity, rectangularity, aspect ratio 

and eccentricity, are some examples of the shape features used, which represent both the A and B criteria 

of the ABCD rule. Statistical measures in several colour spaces are used to represent colour features 

based on this rule, and texture analysis methods, e.g. grey-level co-occurrence matrix are commonly 

used to represent the D criterion [12,7,5]. Nevertheless, few of the systems that have been proposed 

combine different methods to extract features in a similar category, e.g., texture analysis. Texture 

analysis methods are usually categorized as structural, statistical, model-based and transform. Although 

the structural approach provides a good symbolic description, some extracted features can be more 

useful for synthesis tasks rather than analysis tasks [13]. Among the various statistical methods that have 

been proposed, the co-occurrence matrix has shown potential for effective texture discrimination with 

dermoscopic images [14,5,15]. Fractal dimension is a model-based method that is also potentially useful 

for texture analysis in skin lesion images [16]. Fourier [17], Gabor [18] and wavelet [7] transforms have 

been also applied to extract texture features in skin lesion images.  

The assessment of classifiers is an important issue for pattern recognition processes [19,20]. The 

most commonly used classifiers in skin lesion pattern recognition [24] include the nearest neighbours 

[12,21], Bayes networks [7,5], decision tree [17,7], artificial neural network [2,22] and support vector 

machine [7,6]. Other difficulties for pattern recognition processes involve defining which features are 

meaningful to describe the skin lesions, including the presence of highly correlated, redundant and 

irrelevant features. Some studies have proposed feature selection methods [23] to overcome these 

difficulties, such as feature selections based on correlation, gain information and relief-F [7,6]. An 

overview of the computational methods for pigmented skin lesion classification in images, which 

addresses the feature extraction and selection, and the classification steps, is presented in Oliveira et al. 

[24]. 
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The aim of the present study was to evaluate and propose the most relevant features for skin lesion 

computational diagnosis based on the ABCD rule, including shape properties, colour variation and 

texture analysis using several different methods. The main contributions of this study were expected  to 

be the texture analysis based on four colour spaces and the combination of different texture extraction 

methods, since texture features are usually extracted from grey-level images or from a few colour 

channels, and using only one texture extraction method [25,7]. In addition, good classification results 

were also expected when these features were combined with shape and colour features. 

This article is organized as follows: The proposed feature extraction system, based on shape, colour 

and texture properties, is explained in Section 2. The algorithms used for selecting features and 

classifying skin lesions in dermoscopic images are detailed in Section 3. The experimental results are 

presented in Section 4. A discussion about the results obtained with the skin lesion classification is 

presented in Section 5. Finally, the conclusions drawn and proposals for future studies are presented in 

Section 6. 

2. Proposed feature extraction 

In this section, a combination of features to represent the skin lesion images is proposed. These 

features are based on the ABCD rule of dermoscopy, which is commonly used by dermatologists when 

diagnosing skin lesions. Various approaches have been proposed in the literature for skin lesion 

diagnosis in dermoscopic images [24]. Here, the feature extraction step is based on the intensities of the 

pixels in the regions of interest (ROIs) defined by specialists, i.e., binary masks, where the non-zero 

pixels belong to the lesion, and the others to the background skin. The binary masks were used in order 

to obtain trustworthy classification results and conclusions. Fig. 1 provides an overview of the approach 

proposed in this study. The features were categorized into shape properties, colour variation and texture 

analysis as described in Table 1. The extracted features were combined in a pool in the following 

sequence: shape, colour and texture. A dataset was built from this pool of features with a number of 

samples (𝑥#), according to the number of images 𝑛 for a given classification problem, 𝑖 = 1,2, … , 𝑛. 

Each sample (𝑥#) was composed of 𝑚 features (𝑥-.) and the class to which it belongs (𝑦-). Such a dataset 

was used in the image classification process of benign or malignant lesions using different classifiers 

and feature selection algorithms to evaluate the proposed approach. 
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Fig. 1 Overview of the proposed approach for the skin lesion computational diagnosis. 

Table 1 Features extracted from skin lesion images based on shape properties, colour variation and texture 
analysis. 

Skin lesion features Denotation 

Number of 
features  

(channels  
𝑐 = 1,2,… ,12) 

Shape properties   
     Geometrical properties 𝐴,𝑃, 𝐸𝐷, 𝐶𝑂, 𝐶𝐼, 𝑆, 𝑅, 𝐴𝑅, 𝑒 9 
     Lesion asymmetry 𝜇<, 𝑠<>, 𝑠< 3 
     Border irregularity 𝑝@, 𝑣@, 𝑙@, 𝑝C, 𝑣C, 𝑙C 6 
Colour variation   
     Colour average, variance and standard deviation 𝜇D, 𝑠D>, 𝑠D  3 (× 12) 
     Minimum and maximum colours 𝑚𝑖𝑛D,𝑚𝑎𝑥D 2 (× 12) 
     Colour skewness 𝑆𝐾D 1 (× 12) 
Texture analysis   
     Fractal dimension analysis 𝐷D> 1 (× 12) 
     Discrete wavelet transform 𝐸(𝑆𝑏)D,𝐻(𝑆𝑏)D; 𝑆𝑏 = 1,2,… ,10 20 (× 12) 
     Co-occurrence matrix 𝐴𝑆𝑀D,𝐶D, 𝐶𝑅𝐿D,𝑉𝐴𝑅D, 𝐼𝐷𝑀D, 𝑆𝐴D, 𝑆𝑉D, 

𝑆𝐻D,𝐻D,𝐷𝑉D,𝐷𝐻D,𝐶𝑅𝐿1D, 𝐶𝑅𝐿2D,𝑀𝐶𝐶D 
14 (× 12) 

2.1. Shape properties 

Shape properties provide measures of the lesions based on their geometrical properties, their 

asymmetry or irregularity of their borders. These features are important for skin lesion diagnosis, as an 

asymmetric shape, border irregularity or ill-defined structure can characterize malignant lesions. Other 

geometrical properties of the lesion area which are commonly computed include the number of pixels 

inside the lesion region, aspect ratio, compactness, perimeter, greatest and shortest diameters, equivalent 

diameter, eccentricity, solidity, rectangularity, and circularity [7,14,6].The lesion asymmetry can be 

evaluated by dividing the region of the lesion under analysis into two sub-regions using an axis of 

symmetry, and thereby analyse the similarity of the area by overlapping the two sub-regions of the lesion 

along the axis. In some studies, the axis of symmetry is based both major and minor axes [7,6]. Features 

extracted from a wavelet transform [27,7], Fourier transform [28], fractal dimension [29], and 

irregularity index [7] have also been used to assess border irregularity. More details about shape 

classification and analysis can be found in [26]. In this study, 18 shape features of lesion were extracted 
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from each image under analysis. These features are based on some of the standard features previously 

mentioned and some new features presented in a previous study [16]. 

2.1.1. Geometrical property measures  

These measures can provide the geometrical properties of a lesion by comparing the shape of the 

lesion with geometrical objects, e.g., a circle or a rectangle. However, some of these features depend on 

the image resolution and frequently the properties of the images are different as they may have been 

acquired from different distances and therefore, have different resolutions. Consequently, a 

normalization procedure is required. This will be considered in the following sections.  

a) Lesion area and border perimeter: The lesion area 𝐴 is the number of pixels within the lesion border, 

and the border perimeter 𝑃 is the number of pixels along the lesion border.  

b) Equivalent diameter, compactness and circularity: These measures are based on a circle. The 

equivalent diameter 𝐸𝐷 is the diameter of a circle whose area is same as the lesion area 𝐴, which is 

given by 𝐸𝐷 = O4	𝐴 𝜋⁄ . The compactness 𝐶𝑂 measures the ratio of the lesion area to a circle with 

the same perimeter. Nonetheless, an alternative version based on the perimeter can be calculated as 

the ratio between the equivalent diameter 𝐸𝐷 and maximum diameter 𝑀𝐷 of the lesion [6], 𝐶𝑂 =

		𝐸𝐷 𝑀𝐷⁄ . The circularity 𝐶𝐼 is the measure of how closely the lesion area approaches that of a 

circle, 𝐶𝐼 = 4	𝐴	𝜋 𝑃>⁄ . 

c) Solidity and rectangularity: These measures are based on a convex hull (it checks a curve for 

convexity defects and corrects them) and a bounding rectangle from the lesion area. The solidity 𝑆 

is computed by the ratio of lesion area 𝐴 to its convex hull area 𝐶𝐻, 𝑆 = 𝐴 𝐶𝐻⁄ . Rectangularity 𝑅 

is the ratio of the lesion area to the bounding rectangle area 𝐵𝐴, i.e., a bounding-box, 𝑅 = 𝐴 𝐵𝐴⁄ , 

where	𝐵𝐴 = 𝑤𝑖𝑑𝑡ℎ ∗ ℎ𝑒𝑖𝑔ℎ𝑡. 

d) Aspect ratio and eccentricity: These measures can be based on the structure of moments, up to the 

3rd order of a lesion shape [6]. The aspect ratio 𝐴𝑅 is determined by the ratio of the length of the 

major axis 𝐴[ to the length of the minor axis 𝐴>, 𝐴𝑅 = 𝐴[ 𝐴>⁄ , where 𝐴[ and 𝐴> are given by: 

𝐴[, 𝐴> 	= \8^𝑚𝑢`> +𝑚𝑢>` ± [(𝑚𝑢`> − 𝑚𝑢>`)> + 4𝑚𝑢[[][ >⁄ fg
[ >⁄

,                                         (1) 

where 𝑚𝑢-h, defined in Eq. (2), is the (𝑖, 𝑗)th order of central moments of the lesion shape. The 

relation j𝑐k, 𝑐lm denotes the lesion shape centroid given by: 𝑐k = 𝑚[` 𝑚``⁄  and 𝑐l = 𝑚`[ 𝑚``⁄ , 

which is computed from the geometric moments, 𝑚-h, given by Eq. (3). 

𝑚𝑢-h = ∑ ∑ (𝑥 − 𝑐k)- ∙ j𝑦 − 𝑐lm
hDpq<

lr[
spt<
kr[ ,                                                                                     (2) 

𝑚-h = ∑ ∑ 𝑥- ∙ 𝑦hDpq<
lr[

spt<
kr[ .                                                                                                              (3) 

The eccentricity 𝑒 is a measure of the shape elongation of the lesion region, which can be computed 

as: 

𝑒 = [(𝑚𝑢`> − 𝑚𝑢>`)>4𝑚𝑢[[] (𝑚𝑢`> + 𝑚𝑢>`)>⁄ ,                                                                       (4) 
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where 𝑚𝑢-h is the central moments defined in Eq. (2). 

2.1.2. Lesion asymmetry 

In order to extract features based on the asymmetry properties, adapted from Oliveira et al. [16], the 

region of the lesion under analysis is divided into two sub-regions (𝑅[, 𝑅>) by an axis, according to the 

longest diagonal, 𝑑, defined by the Euclidian distance: 𝐷(u,v) = O(𝑥[ − 𝑥>)> + (𝑦[ − 𝑦>)>, where 

(𝑥[, 𝑦[) and (𝑥>, 𝑦>) are the coordinates of the border pixels 𝑝 and 𝑞. All the border pixels are analysed 

in order to find which pair has the greatest distance 𝐷(u,v). Perpendicular lines	𝑆- from the pixels of the 

longest diagonal 𝑑 are computed to analyse the similarity between two sub-regions of the lesion. 

Afterwards, two semi-lines are determined from each perpendicular line of the set 𝑆-, one semi-line 

represents the sub-region 𝑅[, and the other represents the sub-region 𝑅>.  

The distance 𝐷(u,v) of the semi-line for both sub-regions (𝑅[, 𝑅>) is computed for each perpendicular, 

where 𝑝 is a pixel of the diagonal 𝑑 and 𝑞 is a pixel of the border. The ratio between the shortest and 

longest distances based on the semi-lines (𝑅[, 𝑅>) from each perpendicular line of set 𝑆- are computed. 

The ratio between the two semi-lines can determine whether the lesion area is more symmetric or more 

asymmetric to a particular pixel of the longest diagonal. Three features are extracted to represent the 

lesion asymmetry: average 𝜇<, variance 𝑠<> and the standard deviation 𝑠< from the ratios between the two 

semi-lines based on all perpendicular lines of set 𝑆-.  

2.1.3.  Border irregularity 

The border is represented by pixels that make up the lesion boundary. A one-dimensional border of 

the lesion under analysis is defined to extract features based on this property. The number of peaks, 

valleys and straight lines of the border is computed using the vector product and inflexion point 

descriptors from the one-dimensional border, according to Oliveira et al. [16]. The inflexion point 

descriptor aims to analyse border pixels 𝑃- to define which pixels show a change of direction. On the 

other hand, the vector product descriptor aims to analyse the border pixels to identify peaks and valleys 

with substantial irregularities. Six features are extracted to represent border irregularities: 1) the number 

of peaks 𝑝@, valleys 𝑣@ and straight lines 𝑙@ based on small irregularities of the border using the inflexion 

point descriptor; and 2) the number of peaks 𝑝C, valleys 𝑣C and straight lines 𝑙C based on large 

irregularities of the border using the vector product descriptor.  

2.2. Colour spaces 

Several colour spaces, described in the literature, are used to obtain more specific information about 

the colours of a lesion [24]. Some studies were focused on using only RGB images, and most of them 

only used the red channel as it is suitable to characterise skin lesions due to the dark colour of malignant 

lesions and the reddish colour of benign lesions [30]. Other studies used the RGB space combined with 

other colour spaces to describe the colours of skin lesions, such as the HSV, CIE Lab and CIE Luv spaces 
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that represent colours based on human perception [14,12,6,5]. Furthermore, CIE Lab and CIE Luv spaces 

are approximately perceptually uniform colour spaces which can facilitate the human perception of the 

colour properties [31]. Here, for the extraction of colour and texture features, four colour spaces were 

used: RGB, HSV, CIE Lab and CIE Luv, which correspond to the defined sequence of the channels 𝑐 =

1,2, … , 𝑛, where 𝑛 is the number of channels (𝑛 = 12), in order to explore the potential of each of them 

as already mentioned.  

a) RGB colour space: This colour space represents the numerical values of the red, green and blue 

channels, and is widely used, since the images are originally obtained with this colour space. 

Moreover, the original RGB colour image can be used for conversion to other colour spaces. 

Although this colour space presents some disadvantages such as high correlation between the 

channels and no perceptual uniformity [32], several studies have achieved good results from it 

[6,14].  

b) HSV colour space: This colour space represents the hue, saturation and value channels, which define 

the perceived colour of an area, the purity of colour and the brightness of colour, respectively. The 

conversion from the RGB colour space to the HSV colour spaces is given by: 

𝑉 = max	(𝑅, 𝐺, 𝐵), 

𝑆 = | [𝑉 − min(𝑅, 𝐺, 𝐵)]/𝑉, 𝑖𝑓	𝑉 ≠ 0
	0	,																																													𝑖𝑓	𝑉 = 0, 

𝐻 = �
60(𝐺 − 𝐵)/[𝑉 − min(𝑅, 𝐺, 𝐵)],																𝑖𝑓	𝑉 = 𝑅
120 + 60(𝐵 − 𝑅)/[𝑉 −min(𝑅, 𝐺, 𝐵)], 𝑖𝑓	𝑉 = 𝐺
240 + 60(𝑅 − 𝐺)/[𝑉 − min(𝑅, 𝐺, 𝐵)], 𝑖𝑓	𝑉 = 𝐵

.                

𝐻 = 𝐻 + 360, 𝑖𝑓	𝐻 < 0,                                                                                                               (5) 

where 0 ≤ 𝐻 ≤ 360, 0 ≤ 𝑆 ≤ 1 and 0 ≤ 𝑉 ≤ 1, and the separation of each channel corresponds to 

𝐻 = 𝐻/2, 𝑆 = 255𝑆 and 𝑉 = 255𝑉. 

c) CIE Lab and CIE Luv colour spaces: These colour spaces were proposed by the International 

Commission on Illumination (CIE, in French), whose main goal was to provide a uniform colour 

space. This means that the distance between two colours in such a colour space is strongly correlated 

with the human visual perception. Another advantage of these colour spaces is the separation of the 

luminance component L from the chrominance channels (a, b) and (u, v). A difference between these 

two colour spaces is that the CIE Lab colour space normalizes the values by division with the white 

colour point of the CIE XYZ colour space, whereas the CIE Luv colour space normalizes the values 

by the subtraction of such a white colour point [32,31]. The conversion from RGB colour space to 

the CIE Lab and CIE Luv colour spaces is based on the CIE XYZ colour space. Considering the 

values 𝑋�, 𝑌�, and 𝑍� as being the white colour points, the CIE Lab colour space is computed by 

the following equations: 

𝐿 = 	 |116(𝑌 𝑌�⁄ )[ �⁄ − 16	, 𝑓𝑜𝑟	𝑌 > 0.008856
903.3 𝑌 𝑌�⁄ ,																	𝑓𝑜𝑟	𝑌 ≤ 0.008856

, 
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𝑎 = 500�(𝑋 𝑋�⁄ )[ �⁄ − (𝑌 𝑌�⁄ )[ �⁄ �,                                                                                      

𝑏 = 200�(𝑌 𝑌�⁄ )[ �⁄ − (𝑍 𝑍�⁄ )[ �⁄ �,                                                                                                (6) 

where 0 ≤ 𝐿 ≤ 100, −127 ≤ 𝑎 ≤ 127 and −127 ≤ 𝑏 ≤ 127, and the separation of each channel 

corresponds to 𝐿 = 𝐿 ∗ 255/100, 𝑎 = 𝑎 + 128 and 𝑏 = 𝑏 + 128. And finally the CIE Luv colour 

space is computed by the following equations: 

𝐿 = 	 |116(𝑌 𝑌�⁄ )[ �⁄ − 16	, 𝑓𝑜𝑟	𝑌 > 0.008856
903.3 𝑌 𝑌�⁄ ,																		𝑓𝑜𝑟	𝑌 ≤ 0.008856

, 

𝑢 = 13𝐿(𝑢� − 𝑢�), 𝑣 = 	13𝐿(𝑣� − 𝑣�),       

𝑢� = 4𝑋/𝑋 + 15Y + 3Z, 𝑣� = 9𝑌/𝑋 + 15Y + 3Z, 

𝑢� = 4𝑋�/𝑋� + 15𝑌� + 3𝑍�, 𝑣� = 9𝑌�/𝑋� + 15𝑌� + 3𝑍�,                                                       (7) 

where 0 ≤ 𝐿 ≤ 100, −134 ≤ 𝑢 ≤ 220 and −140 ≤ 𝑣 ≤ 122, and the separation of each channel 

corresponds to 𝐿 = 𝐿 ∗ 255/100, 𝑢 = 255/354(𝑢 + 134) and 𝑣 = 255/262(𝑣 + 140). 

2.3. Colour variation 

Statistical measures based on several colour spaces are commonly applied to the feature extraction 

from the lesion region [14,5,6]. Furthermore, these measures are also applied to other regions associated 

with the lesion border. The background skin [14] and surrounding skin (inner or outer peripheral regions) 

[6] are examples of such regions that are considered for feature extraction. Skin lesion features based 

on relative colours have been proposed [14,6] in order to assess colour features from the different regions 

associated with the lesion. Basic colours in the skin lesions have also been considered and computed 

[33]. 

In order to analyse the colour variation, six statistical measures are computed for each colour channel 

𝑐 of the lesion region using the four-colour spaces as defined earlier, with	𝑐 = 1,2, … , 𝑛, where 𝑛 is the 

number of channels used for the colour feature extraction. 

a) Colour average, variance and standard deviation: These measures evaluate the average and the 

variation of a set of lesion intensity values 𝐼u, of each colour channel 𝑐. The average 𝜇D, variance 

𝑠D>, and standard deviation 𝑠D are computed by the following equations:  

𝜇D =
[
�
∑ (𝐼u)�
ur[ ,                                                                                                                             (8) 

𝑠D> =
[

��[
∑ j𝐼u − 𝜇Dm

>�
ur[ ,                                                                                                              (9) 

𝑠D = O𝑠D>,                                                                                                                                       (10) 

where 𝑁 is the number of pixels of the ROI in the image. 

b) Minimum and maximum colours: These measures define the minimum value, 	

𝑚𝑖𝑛D = 𝑚𝑖𝑛j𝐼um, and the maximum value, 𝑚𝑎𝑥D = 𝑚𝑎𝑥j𝐼um of the set of lesion intensity values 

𝐼u, of each colour channel 𝑐.  
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c) Colour skewness: This measure computes the asymmetry 𝑆𝐾D of the data around the set of lesion 

intensity values 𝐼u:  

𝑆𝐾D = �[
�
∑ j𝐼u − 𝜇Dm

��
ur[ � /𝑠D�,                                                                                                   (11) 

where 𝜇, 𝑠 are the average and the standard deviation of the set of lesion intensity values 𝐼u, and 𝑁 

is the number of pixels of the ROI in the image. 

2.4. Texture analysis 

The best features to represent the skin lesion texture were acquired by using three texture analysis 

methods. The texture features are computed for each colour channel using the four-colour spaces as 

defined earlier. Thus, a total of 420 texture features are extracted: 12 features from the fractal dimension 

analysis [34], 240 features from the discrete wavelet transform [35] and 168 features from the single-

channel co-occurrence matrix [36].  

2.4.1.  Colour image-based fractal dimensional analysis 

In order to extract the texture properties of the skin lesions, fractal dimensions are computed from 

the image under study using a box-counting method (BCM), since it is simple and effective for skin 

lesion analysis [16]. A fractal dimension [34] is a procedure for splitting the input image into several 

quadrants to quantify the irregularity level or self-similarity of the image fractals, according to 𝐷 =

log(P) log(1 T⁄ )⁄ , where 𝑃 represents the number of elements of the self-similar parts that reconstruct 

the original image, and T is the number of quadrants corresponding to a fraction of its previous size. 

BCM projects a grid over the image; i.e., it divides the image into several squares. The process is 

iterative, in which the size of each square decreases and the number of squares that covered the fractal 

is counted at each iteration.  

The bi-dimensional fractal dimension 𝐷D>, which is computed individually for each channel 𝑐 of the 

colour spaces, is defined as:  

𝐷D> =
[
�
j∑ ∑ 𝐷-,hDpq<

hr[
spt<
-r[ m + 1, with	𝑐 = 1,2, … , 𝑛	,                                             (12) 

where 𝐷-,h is the fractal dimension obtained at each iteration, i.e., it is computed individually for each 

row 𝑖 and column 𝑗 of the image, 𝑁 is the total number of fractal dimensions, and 𝑛 is the number of 

channels used for the texture feature extraction.  

2.4.2.  Colour image-based wavelet transform 

There are several transform methods that have been applied to diagnose skin lesions based on texture 

feature analysis, including the Fourier [17], Gabor [18] and wavelet [7] transforms. Texture analysis 

methods based on the Fourier transform may present poor performance due to its lack of spatial 

localization, whereas a Gabor filter allows a superior spatial localization. However, the wavelet 

transform presents several advantages compared to the Gabor transform; for example, the variation of 
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the spatial resolution allows it to represent textures using a more suitable scale. There are several scales 

available to the wavelet function and therefore it can chose the best one for a given application [13]. In 

this work, a discrete wavelet transform (DWT) was adopted to extract texture features from images, 

since it provides a representation that is easy to interpret [35], and that can be efficiently implemented 

with a pyramidal structure using quadrature mirror filters for texture discrimination [37].  

A bi-dimensional wavelet transform is used to decompose a 2-D image, to which one-dimensional 

transformations are applied individually along the horizontal and vertical directions of an image [35]. 

The decomposition of a one-dimensional signal 𝑓(𝑡) is based on a family of wavelet functions that 

usually is defined as complete and with an orthogonal base: 

𝑊¦,§ = ∫ 𝑓(𝑡)𝜓¦,§(𝑡)𝑑𝑡
ª
�ª .                                                                                                                 (13) 

This family is obtained by dilating and translating a single function defined as the mother wavelet 

𝜓: 

𝜓¦,§(𝑡) =
[
√¦
𝜓 ¬�§

¦
®,                                                                                                                          (14) 

where 𝑎 and 𝑏 are the parameters of dilating and translating, respectively. When 𝑎 and 𝑏 are defined for 

discrete signals, a DWT is obtained.  

The DWT, based on a multi-resolution, decomposes an input signal in two new signals with different 

frequencies using quadrature mirror filters. Such signals correspond to low- and high-pass filters that 

represent the wavelet functions (mother wavelet) 𝜓(𝑡) and scaling functions (father wavelet) 𝜙(𝑡), 

respectively. The low-pass filter corresponds to approximation coefficients, whereas the high-pass filter 

corresponds to detail coefficients. 

The decomposition of a bi-dimensional signal using DWT yields a sub-sample with four sub-bands 

for one-level of decomposition that are: LL, LH, HL, HH. The sub-band LL corresponds to the clustering 

of low-pass filtering in the lines and columns. The sub-band LH corresponds to the clustering of low-

pass filtering in the lines and high-pass filtering in the columns. The sub-band HL corresponds to the 

clustering of high-pass filtering in the lines and low-pass filtering in the columns. The sub-band HH 

corresponds to the clustering of high-pass filtering in the lines and columns. These sub-bands have an 

equal number of pixels as the original image. A multi-level decomposition can be considered, when the 

decomposition is applied recursively to the LL sub-band. The result of such decomposition is a standard 

pyramidal wavelet transform. 

A problem in this wavelet decomposition approach is the large number of features that can be 

obtained depending on the number of levels used and it can give the classification a high computational 

cost. In addition, the resolution of the images decreases at each level decomposition and smaller details 

can gradually disappear [37]. Therefore, a-three-level decomposition was used to decompose the images 
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based on experiments performed by Mallat [37] who illustrated the numerical stability of this level for 

the decomposition and reconstruction processes with good quality. Based on this, the number of sub-

bands		𝑛𝑠 was defined as 10 for each channel of the colour spaces. A Haar wavelet filter was used to 

implement the DWT, with the coefficients defined as ℎ = j1.0/√2, 1.0/√2m. This filter was used since 

it is simple and has been previously applied to extract texture from skin lesion images [38].  

The energy 𝐸(𝑆𝑏)D and entropy 𝐻(𝑆𝑏)D measures for the feature extraction from the coefficients 

obtained by DWT are computed for each sub-band 𝑆𝑏 = 1,2, … , 𝑛𝑠 and each colour channel 𝑐:  

𝐸(𝑆𝑏)D = °[
�
∑ ∑ j𝑆𝑏-,h> mDpq<

hr[
spt<
-r[ ,                                                                                                       (15) 

𝐻(𝑆𝑏)D =
[
�
∑ ∑ �𝑆𝑏-,h> × logj𝑆𝑏-,h> m�Dpq<

hr[
spt<
-r[ ,                                                                                     (16) 

where 𝑆𝑏-,h corresponds to the sub-band coefficient for the pixel 𝑖, 𝑗 and 𝑁 is the total number of pixels 

in the sub-band. These measures are commonly used to represent the texture of skin lesion images [7]. 

2.4.3.  Colour image-based co-occurrence matrices 

The grey-level co-occurrence matrices (GLCMs) represent the relationship between the intensities 

of neighbouring pixels to characterize the texture of an image [36]. Such a matrix 𝑚(𝑖, 𝑗, 𝑑, 𝜃) is obtained 

by the joint probability of occurrence of grey-levels considering each pair of neighbour pixels 𝑖, 𝑗 of an 

image, where these pixels are separated by a distance 𝑑 and in a specific direction 𝜃.  

In this study, co-occurrence matrices (CMs) were used for the colour channels. The single-channel 

co-occurrence matrices (SCMs) were applied separately to each colour channel, with 𝑐 = 1,2, … , 𝑛, 

where 𝑛 is the number of colour channels. The parameters used to set up the matrices are based on 

Haralick et al. [36]. The intensities of each channel are quantized by an equal probability quantizing 

algorithm, with 𝑞 = 16. The distance 𝑑 between one pixel and its neighbours is 𝑑 = 1, and four 

orientations 𝜃 are considered 𝜃 = j0°, 45°, 90°, 135°m. In order to extract rotation invariant features, a 

normalized SCM is obtained from the SCMs corresponding to the four orientations.  

From the normalized SCM, 14 statistical measures based on Haralick’s texture features [36] were 

extracted from the image: angular second moment 𝐴𝑆𝑀D, contrast 𝐶D, correlation 𝐶𝑅𝐿D , variance 𝑉𝐴𝑅D, 

inverse difference moment 𝐼𝐷𝑀D, sum average 𝑆𝐴D, sum variance 𝑆𝑉D, sum entropy 𝑆𝐻D , entropy 𝐻D, 

difference variance 𝐷𝑉D, difference entropy 𝐷𝐻D, information measure of correlation 1 𝐶𝑅𝐿1D , 

information measure of correlation 2 𝐶𝑅𝐿2D , and maximal correlation coefficient 𝑀𝐶𝐶D . These features 

are expressed in Eq. (17)-(30), where 𝑚-,h  is the entry value in the position 𝑖, 𝑗 of the normalized matrix, 

and 𝑁 is the number of different intensities contained in the quantized image:  

𝐴𝑆𝑀D = ∑ ∑ j𝑚-,hm
>�

hr[
�
-r[ ,                                                                                                                (17) 
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𝐶D = ∑ ∑ �𝑚-,h(𝑖 − 𝑗)>��
hr[

�
-r[ ,                                                                                                            (18) 

𝐶𝑅𝐿D = �∑ ∑ j𝑖 × 𝑗 × 𝑚-,hm�
hr[

�
-r[ − 𝜇k𝜇l� 𝜎k𝜎l´ ,                                                                             (19) 

where 𝜇k , 𝜇l, 𝜎k and 𝜎l are the averages and standard deviations of 𝑚k = ∑ j𝑚-,hm�
hr[  and 𝑚l =

∑ j𝑚-,hm�
-r[ ; and: 

𝑉𝐴𝑅D = ∑ ∑ �(𝑖 − 𝜇)>𝑚-,h��
hr[

�
-r[ ,                                                                                                      (20) 

𝐼𝐷𝑀D = ∑ ∑ �𝑚-,h/1 + (𝑖 − 𝑗)>��
hr[

�
-r[ ,                                                                                              (21) 

𝑆𝐴D = ∑ j𝑖 × 𝑚kµl(-)m>�
-r> ,                                                                                                                  (22) 

𝑆𝑉D = ∑ �(𝑖 − 𝑆𝐸D¶)>𝑚kµl(-)�>�
-r> ,                                                                                                       (23) 

𝑆𝐻D = −∑ �𝑚kµl(-) logj𝑚kµl(-)m�>�
-r> ,                                                                                             (24) 

𝐻D = ∑ ∑ �𝑚-,h logj𝑚-,hm��
hr[

�
-r[ ,                                                                                                         (25) 

𝐷𝑉D = 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒j𝑚k�lm,                                                                                                                     (26) 

𝐷𝐻D = −∑ �𝑚k�l(-) logj𝑚k�l(-)m���[
-r` ,                                                                                           (27)  

where 𝑚kµl(·) = ∑ ∑ j𝑚-,hm�
hr[

�
-r[ , with 𝑘 = 2,3, … ,2𝑁, 𝑖 + 𝑗 = 𝑘, and 𝑚k�l(·) = ∑ ∑ j𝑚-,hm�

hr[
�
-r[ , 

with 𝑘 = 0,1, … ,𝑁 − 1, |𝑖 − 𝑗| = 𝑘; with: 

𝐶𝑅𝐿1D = (𝐻𝑋𝑌 −𝐻𝑋𝑌1) 𝑚𝑎𝑥(𝐻𝑋,𝐻𝑌)⁄ ,                                                                                        (28) 

𝐶𝑅𝐿2D = (1 − 𝑒𝑥𝑝[−2.0(𝐻𝑋𝑌2 − 𝐻𝑋𝑌)])[ >⁄ ,                                                                                 (29) 

where 𝐻𝑋 and 𝐻𝑌 are entropies of 𝑚k(-) and 𝑚l(h), 𝐻𝑋𝑌 = −∑ ∑ �𝑚-,h logj𝑚-,hm��
hr[

�
-r[ , 𝐻𝑋𝑌1 =

−∑ ∑ �𝑚-,h logj𝑚k(-)𝑚l(h)m��
hr[

�
-r[ , and 𝐻𝑋𝑌2 = −∑ ∑ �𝑚k(-)𝑚l(h) logj𝑚k(-)𝑚l(h)m��

hr[
�
-r[ , and: 

𝑀𝐶𝐶D = (𝑠𝑒𝑐𝑜𝑛𝑑	𝑙𝑎𝑟𝑔𝑒𝑠𝑡	𝑒𝑖𝑔𝑒𝑛	𝑣𝑎𝑙𝑢𝑒	𝑜𝑓	𝑄)[ >⁄ ,                                                                           (30) 

where 𝑄-,h = ∑ �j𝑚-,·𝑚h,·m/j𝑚k(-)𝑚l(·)m��
· . 

3. Skin lesion classification 

Here, first the set of features for skin lesion diagnosis are constructed, and then classified. The 

classification process must be accurate, since it is used to assist dermatologists in their diagnosis; 

however, the accuracy of the classification depends on several factors, such as a reliable dataset. The 

pre-processing step in this study included data normalization, dataset balancing and feature selection. 

The classification was carried out using the Weka library [39].  

3.1. Data pre-processing 
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The data pre-processing step, which precedes the classification process, normalizes the dataset values 

from the feature extraction process as they contain different ranges, and some classifiers cannot handle 

such differences. The normalization procedure scales all numeric values in the dataset to within the same 

interval [0,1] by computing: 

𝑥𝑛-. = [𝑥-. − min	(𝑥-.)]/[max(𝑥-.) − min	(𝑥-.)],                                                                     (31) 

where 𝑥-. is the actual value of the feature 𝑚 in the sample 𝑖, with the minimum and maximum values 

of features of all the samples, and 𝑥𝑛-. is the normalized value of the same feature 𝑚 in the same sample 

𝑖.  

Unbalanced datasets can affect the performance of classifiers. For example, here the dataset was 

composed of 916 samples of benign lesions and 188 samples of malignant lesions. This unbalanced 

dataset, i.e., with different numbers of samples in each class, can decrease the accuracy of the evaluation 

result, since classifiers tend to prioritize classes with a higher number of samples. Sampling methods 

have effective strategies to overcome such a problem and are commonly used [40]. In this work a 

combined resampling strategy was applied to the dataset [39], considering the random under-sampling 

and random over-sampling methods that are the two basic methods used for balancing classes. The 

random under-sampling removes samples randomly in the majority class, i.e., samples of benign lesions, 

while the random over-sampling replicates samples randomly in the minority class, i.e., samples of 

malignant lesions. This strategy produced a random subsample of the original dataset using sampling 

with replacement, where the samples are replicated or removed in the minority or majority class until a 

uniform distribution of the samples is reached. This strategy was adopted because it ensured a uniform 

distribution of the samples without removing to many samples from the majority class and without 

replacing to many samples in the minority class. This process established 552 samples of benign lesions 

and 552 samples of malignant lesions. 

Another problem that also affects the performance of classifiers is the choice of meaningful features 

to represent the input images. Therefore, feature selection algorithms are used to define the best features 

to solve such a problem [41]. Feature selection consists of finding the best features through an evaluation 

process according to either ranking or search strategies. The ranking strategy produces a ranked list of 

features based on the evaluation process. On the other hand, the search strategy influences the search 

direction and execution time of the selection process depending on the search strategy adopted, which 

can be complete, sequential, or random [42]. The sequential search strategy is usually used for skin 

lesion feature selection and it can be by the forward, backward or bi-direction selection depending on 

the search method used. The forward selection process starts with an empty set, and the best features are 

gradually added to the set, according to the performance obtained from the evaluation method, whereas 

the backward selection process starts with all features and the worst features are removed at each 

iteration. The bi-direction selection combines both the forward and backward searches. 
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The evaluation process using filters allows for assessing the quality of selected features without using 

any classification algorithms. Each candidate subset is evaluated by applying an independent criterion, 

which can be based on several measures to compare it with the best current subset previously 

established. If the new evaluated subset is considered better then it becomes the best current subset. 

These measures can be defined as [43]: 

• Distance measures that try to find the feature that can separate the classes as far as possible from 

each other;  

• Information measures that establish the information gain from a feature and the feature with the 

most information is preferred; and 

• Dependency measures that are also known as correlation measures applied to evaluate the ability to 

predict the value of one feature from the value of another, or how strongly a feature is in regard to 

the class. 

In this study, six feature selection algorithms, based on the measures discussed above and on a feature 

transformation algorithm, were used to generate different subsets of features. These six algorithms are 

commonly used for the selection of skin lesion features [24], since they present several advantages over 

others, such as computationally efficient, simpler and faster algorithms, independent evaluation criteria, 

and ability to overcome over-fitting. 

a) Relief-F feature selection [44]: This algorithm is an extension of the relief algorithm to deal with 

noise and multi-class problems. The dataset samples are randomly defined. For each sample that is 

defined, the closest samples of the same and different classes are selected using a nearest-neighbour 

algorithm [45]. The quality of each feature is estimated, according to its value in regard to these 

closest samples.  

b) Information gain-based feature selection [41]: This algorithm estimates the quality of a feature, 

according to its information gain in regard to the class. The information gain between each feature 

𝐹 and the class 𝐶 is measured by the entropy 𝐻, according to the information theory criteria [46]. 

Therefore, the features that have high information gain 𝐼𝑔(¼,½) are considered the most relevant, 

where 𝐼𝑔(¼,½) = 𝐻(𝐶) − 𝐻(𝐶|𝐹).  

c) Gain ratio-based feature selection (GRFS) [39]: This algorithm is also based on the entropy 𝐻 and 

it estimates the quality of a feature 𝐹, according to its gain ratio in regard to the class 𝐶. Therefore, 

the features that have high gain ratio 𝐺𝑟(¼,½) are considered the most relevant, where 𝐺𝑟(¼,½) =

[𝐻(𝐶) − 𝐻(𝐶|𝐹)]/𝐻(𝐹). 

d) Correlation coefficient-based feature selection [41]: This algorithm estimates the quality of a 

feature, according to its Pearson’s correlation coefficient in regard to the class. The correlation 

coefficient is computed by a covariance and variance between the features and the class. 
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e) Correlation-based feature selection (CFS) [47]: This algorithm tries to find a set of features that are 

highly correlated with a class and with low inter-correlation between them. The degree of correlation 

between the features is computed by a symmetrical uncertainty, which is a modified version of the 

information gain measure. 

f) Principal-component analysis (PCA) [48]: Here the features are transformed to a PC based on a 

correlation matrix, where eigenvectors (vectors of features) are defined, according to some 

percentage of the variance in the original data. The worst eigenvectors are removed and the new 

features are ranked, according to the best eigenvalues. 

All feature selection algorithms discussed above are single-feature evaluators, with the exception of 

CFS that is a feature subset evaluator. The single-feature evaluators are used with a ranking strategy, 

where the features are ranked individually according to their evaluation, i.e., the most relevant [39]. 

Here, in order to study different stopping criteria for the ranking strategy, the numbers of features to be 

retained (N) were empirically defined: 25, 50 and 75. On the other hand, the feature subset evaluator, 

i.e., CFS, measures the quality of a subset of features and returns a value that is used in the search [39]. 

In this study, the greedy stepwise and best first search methods were compared for use with the CFS 

algorithm. The greedy stepwise method searches for feature subsets in either the forward or backward 

directions in a greedy way [39]. The selection process using the greedy stepwise method and the CFS 

algorithm must stop when the addition or removal of any feature worsens the quality of the best-found 

subset, i.e., when the evaluation of the current subset presents a lower quality than the evaluation of the 

subset of the previous iteration. The best first method searches the feature subsets by greedy hill-

climbing, and the search direction can be forward, backward or bi-direction [39]. The stopping criterion 

for the best first method and CFS algorithm was to stop after five successive iterations that did not 

improve the previous result. 

3.2. Classification 

In this study, the focus is on models with a single classifier that can choose the best classification 

using different datasets, e.g., using a stratified k-fold cross-validation procedure [39]. This approach 

splits the training set in k subsets of equal size and the procedure is repeated k times. In each procedure, 

one subset is employed as a test set while the others are used as the training set. The best model is 

chosen, according to its performance, which is measured by averaging the accuracy obtained from each 

trial. This procedure can be applied to avoid over-fitting while testing the capacity of the classifier to 

generalize. In addition, this approach has shown good results compared with other procedures [49]. 

Six different categories of classifier were applied in this work to evaluate the dataset from the 

extracted features: the k-nearest neighbours (KNN) [45], Bayes networks (Bayes Net) [50], C4.5 

decision tree [51], multilayer perceptron (MLP) [52], and support vector machine (SVM) [53] were the 

most commonly used classifiers, according to the categories presented by Oliveira et al. [24]. In addition, 
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the optimum-path forest (OPF) classifier [22] was also used in this study. To the best our knowledge, 

no previous study has used this later classifier to identify skin lesions in images.  

a) kNN: Here, a search algorithm and a distance function are used to assess which sample of the 

training set is closest to an unknown sample and then assigning the unknown sample to the class 

with the majority of k-nearest neighbours. The main advantages of these classifiers are their 

simplicity to implement and the possibility to add new samples to the training set at any time.  

b) Bayes Net: This is a Bayesian learning-based algorithm [50] that computes the probability of a given 

set of features to belong to each class, assuming that the features are independent. The Bayes Net 

learning uses search algorithms and quality measures, which provide a network structure and 

conditional probability distributions.  

c) C4.5: This algorithm is used to create a decision tree [54] that has a structure similar to a flowchart, 

in which each internal node (non-leaf) represents a test of a feature, each branch represents the result 

of the test, and each external node (leaf) indicates a prediction of the class. A complete decision tree 

can contain unnecessary structures, and strategies of pre-pruning and post-pruning can be performed 

to simplify its structure. Pre-pruning involves decision making during the tree building process, 

whereas in the post-pruning this is done afterwards. The C4.5 algorithm divides the features at the 

nodes based on information gain. It prevents over-fitting which is also a form of pre-pruning. The 

post-pruning in C4.5 yields a dense decision tree very quickly. It can also deal with situations in 

which two features that individually present no contribution, but are powerful predictors when 

combined [39].  

d) MPL: This algorithm is one of the most commonly used architectures of artificial neural network 

(ANNs) [52] that are parallel distributed systems composed of layers of input and output elements 

linked by weighted connections. During the learning phase, the weights are adjusted to predict the 

correct class based on the input samples. The MPL can include one or more layers of processing, 

also called hidden layers, placed between the input and output layers. Back-propagation is a 

supervised learning method widely used in the MLP architecture, which consists of forward and 

backward processes applied to adjust the weight values of the connections. The MLP algorithm has 

good capability and flexibility to overcome various non-separable problems. 

e) SVM: This classifier is used to build a hyper-plane to separate data, according to the defined classes. 

This kind of classifier has been commonly applied to classify skin lesions due to its good overall 

properties. Furthermore, kernel functions simplify the process of separating the non-linear data 

using a simple hyper-plane in a high dimension feature space. The radial basis function (RBF) and 

polynomial kernels have been frequently used in several different studies [24]. For the SVM 

classifier, Platt's [55] sequential minimal optimization algorithm was used.  

f) OPF: This is applied to solving pattern recognition problems as a graph based on prototypes to 

represent each class by one or more optimum-path trees, considering some key samples. The training 
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samples are nodes of a complete graph; whose arcs are the link of all pairs of nodes. The arcs are 

weighted by the distances between the feature vectors of their corresponding nodes. The 

classification of a new sample is defined, according to the strong connectivity of the path between 

the sample and the prototype. Therefore, the path with minimum-cost, among all paths, is considered 

the optimum one. The OPF classifier shows some interesting properties, such as speed, simplicity, 

ability to deal with multi-class classification and overlapping between classes, parameter 

independence and no assumptions are based on the shape of the classes. For the application of the 

OPF classifier, it was used the Weka library based on LibOPF [22] as proposed by Amorim et al. 

[56]. 

The performance of the classification was evaluated using accuracy (ACC), sensitivity (SE) and 

specificity (SP) measures, which are based on outcomes of classifiers, according to the predicted class 

and known class. These outcomes represent the number of correct (true) and incorrect (false) 

classification for each class, positive and negative. These measures are commonly used according to 

[24] and they are defined as: 

𝐴𝐶𝐶 = ¾¿µ¾�
¿µ�

× 100%,                                                                                                                       (32) 

𝑆𝐸 = ¾¿
¾¿µ½�

× 100%,                                                                                                                         (33) 

𝑆𝑃 = ¾�
¾�µ½¿

× 100%,                                                                                                                          (34) 

where P is the number of positive samples and N is the number of negative samples of the dataset. Here, 

the positive samples represent the benign lesions and the negative samples the malignant lesions. 

Therefore, TP (true positive) is the number of correctly classified benign lesions, TN (true negative) is 

the number of correctly classified malignant lesions, FP (false positive) is the number of incorrectly 

classified malignant lesions, and FN (false negative) is the number of incorrectly classified benign 

lesions.  

A cost function 𝐶 adopted from Barata et al. [12] is used to deal with the trade-off between SE and 

SP, which is defined as: 

𝐶 = DÁÂ([�@Ã)µDÂÁ([�@¿)
DÁÂµDÂÁ

,                                                                                                                       (35) 

where 𝑐[` is the cost of an incorrectly classified benign lesion, and 𝑐`[ is the cost of an incorrectly 

classified malignant lesion. The costs used to evaluate the classification were defined according to 

Barata et al. [12], where 𝑐[` = 1 and 𝑐`[ = 1.5. These authors chose a higher cost for	𝑐`[, since an 

incorrect classification of a malignant lesion is more critical. The lower the value of cost 𝐶, the better 

the classification performance is. 

4. Experimental results 
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In order to evaluate the proposed feature extraction in the classification of benign and malignant skin 

lesions, two experiments were performed. First, the experiments for the skin lesion classifications using 

all features of the dataset are presented. Second, the experiments for the feature selection of skin lesions 

are presented as well as these for the lesion classification. In this section, classification results are 

described and discussed. In addition, the image dataset used to evaluate the results is presented, as well 

as the computational time of the system. 

4.1. Dermoscopic image dataset 

The dermoscopic images of pigmented skin lesions used to evaluate the extraction of features were 

collected from the International Skin Imaging Collaboration (ISIC) dataset [57]. Examples of these 

images are shown in Fig. 2. In addition, the images are paired with the expert manual that contains the 

skin lesion diagnoses, as well as the ground truth lesion segmentations in the form of binary masks. In 

this study, a feature extraction approach, based on shape properties, colour variation and texture analysis, 

is proposed. Moreover, since the shape properties are obtained from the lesion borders, only the images 

where the lesion fitted completely within the image frame were selected so that the features could be 

extracted with greater precision. A total of 1,104 images were selected from the original dataset. Of these, 

916 images were benign lesions and 188 images were malignant lesions. The images of the dataset were 

resized to an average resolution of  400 × 299 pixels to simplify their processing.   

 

Fig. 2 Four examples of dermoscopic images: (a) and (b) are benign lesions, (c) and (b) are malignant lesions. 

4.2. Evaluation of the proposed feature extraction 

The performance of the classification using all extracted features was evaluated by different 

classifiers, which were described in the previous section. Each classifier was used with several different 

parameters to find the best results with a ten-fold cross-validation procedure. The set of parameters 

evaluated in this study was defined based on previous studies that had used these classifiers for skin 
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lesion classifications [12,5,58,59,21]. The kNN classifier used a linear nearest neighbour search 

algorithm and three distance functions were compared, i.e., Euclidean, Chebyshev and Manhattan, to 

find the nearest neighbours. Different values of k were applied for each distance function and the number 

of neighbours used was 𝑘 = {5,7, … ,25}. The Bayes net classifier used a hill-climbing search algorithm 

to find the network structures, and a simple estimator to estimate the conditional probabilities of a 

network. The parameter alpha for the simple estimator was settled with the following values: 𝐴 =

{0.1,0.2, … ,0.9}. The C4.5 classifier used two sets to define the minimum number of samples per leaf, 

𝑀[ = {2,4, … ,20} and 𝑀> = {82,84,… ,100}, and the values of the confidence factor used for pruning 

were 𝐶𝐹 = {0.1,0.2, … ,0.9}. 

The MPL classifier analysed two values: one hidden layer of the neural network, with 𝐻[ =

(𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 + 𝑐𝑙𝑎𝑠𝑠𝑒𝑠)/2 and the other 𝐻> = 𝑐𝑙𝑎𝑠𝑠𝑒𝑠. The learning rate 𝐿 = 0.3 is the number of the 

weights that were updated, and the momentum 𝑀 = 0.2 was applied to the weights when updating. The 

SVM classifier analysed two kernels: the polynomial and RBF kernels. In the RBF kernel, the parameter 

gamma was carried out with different values of 𝐺 = {0.001,0.002,… ,0.1}, and the complexity 

parameter 𝐶 = {1,2, … ,10} was applied to both kernels. And finally the OPF classifier compared three 

distance functions: Euclidean, Chebyshev and Manhattan, in order to find the distances between the 

feature vectors. 

As aforementioned, the best parameters for each classifier were defined based on initial experiments. 

Table 2 indicates the values of the parameters used in the following experiments performed in this study. 

Table 3 shows that good results were achieved using these parameters and the proposed extracted 

features, mainly for the specificity of the malignant lesion classification (SP). 

Table 2 Best parameters achieved by each classifier. 
Classifier Parameters 

k-nearest neighbours 
k:5 
search algorithm: Linear NN Search 
(distance function: Manhattan) 

Bayes networks estimator: Simple Estimator (alpha: 0.1) 
search algorithm:  hill-climbing 

C4.5 decision tree confidence factor: 0.3  
minimum number: 2 

Multilayer perceptron 
one hidden layer: (𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 + 𝑐𝑙𝑎𝑠𝑠𝑒𝑠)/2 
learning rate: 0.3  
momentum: 0.2 

Support vector machine complexity parameter: 10  
kernel: RBF (gamma: 0.1) 

Optimum-path forest distance function: Euclidean 

 

Table 3 Performance results for each classifier using all features. 

Classifier ACC SE SP C 
kNN                         75.8% 69.4% 82.2% 0.229 
Bayes Net    68.2% 54.0% 82.4% 0.290 
C4.5                                                  86.9% 82.2% 91.5% 0.122 
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4.3. Performance evaluation using feature selection 

The best results were obtained by the OPF and SVM classifiers as shown in Table 3 (in bold), where 

both classifiers achieved a good generalization between the classes. Despite the fast training of the Bayes 

Net classifier, the classification results were not so expressive, as this classifier is sensitive to redundant 

features as it assumes that the features should be independent. The kNN classifier did not make a good 

distinction between the benign and malignant classes. This classifier is sensitive to the existence of 

irrelevant features, which explains these results. Although the MLP classifier is competent to solve 

several non-separable problems, it was not able to make a good distinction between the classes. 

Furthermore, this type of classifier needs a long training time for the size of the feature set. The C4.5 

classifier, on the other hand, resulted in a more balanced classification result between the two classes. 

However, this classifier can have difficulties in dealing with correlated features. All these classifiers can 

achieve superior results using feature selection algorithms. 

In order to improve the classification results and to avoid over-fitting caused by a large number of 

features, several different feature selection algorithms were used to find the best features for the 

classification process. These algorithms considered two types of evaluators as mentioned earlier. The 

single-feature evaluators that use a ranking method, i.e., the correlation coefficient, GRFS, information 

gain, relief-F and PCA, were applied until a certain number of features are selected, which correspond 

to the stopping criterion belonging to the set 𝑁 = {25,50,75}, with the exception of the PCA algorithm 

that chooses enough eigenvalues to rank the new transformed features. The maximum number of 

features 𝐹 = 5 was used for the PCA algorithm in order to include this number of features in each 

transformed feature, and the proportion of variance 𝑉 = 0.95 was used to retain a sufficient number of 

PC features. Accordingly, 31 eigenvalues were selected by the PCA algorithm to represent the vector 

with the new features. The number of nearest neighbours for the relief-F was defined as 𝑘 = 10 for the 

feature estimation. 

In the case of the feature subset evaluator, i.e., CFS, the greedy stepwise search method, in either 

forward or backward directions, was applied until the addition or removal of any feature in the subset 

caused a lower evaluation, i.e., low correlation to the class and high correlation with one or more of the 

other features relative to the previous evaluation. This resulted in 37 features selected by the forward 

direction and 50 by the backward direction. The best first search method was also performed in the 

directions: forward, backward or bi-direction. However, experimental results, using the classifiers 

discussed in the previous section, showed that this second method did not improve the classification 

MLP                                   74.5% 61.2% 87.7% 0.229 
SVM                                    91.7% 87.1% 96.2% 0.074 
OPF                                   92.3% 87.5% 97.1% 0.067 
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performance over that obtained using the stepwise search method alone. Therefore, only the stepwise 

method was used with CFS for comparison with the other feature selection algorithms.  

Fig. 3 shows the percentage of selected features for each feature selection algorithm. The features 

were divided into five categories: shape, colour, fractal texture, wavelet texture and Haralick’s texture; 

the percentage was computed individually for each category. Only the best configurations from the 

classification results were used for each feature selection algorithm and the features selected were: the 

first 75 ranked features from the correlation coefficient, GRFS, information gain and relief-F algorithms, 

the first 31 new features ranked by the PCA algorithm, and a subset of 50 features defined by the CFS 

algorithm.  

 

Fig. 3 Percentage of selected features after applying feature selection algorithms: (a) correlation 
coefficient, (b) GRFS, (c) information gain, (d) relief-F, (e) PCA, and (f) CFS. 
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Figure 3 shows that there were large differences between the feature selection algorithms. The 

correlation coefficient and information gain were the only algorithms that did not select features from 

all the categories. The PCA algorithm selected the greatest percentage of features from the shape and 

colour categories, whereas the information gain algorithm selected the greatest percentage of texture 

features. The relief-F algorithm selected over 80% of the fractal texture, but it did not select the wavelet 

and Haralick’s texture features proportionally. On the other hand, the GRFS and CFS algorithms 

selected features from amongst all the categories in a more uniform way. The results of this feature 

selection process were evaluated using several different classifiers. The objective of this evaluation was 

to analyse which feature selection algorithms achieved the best classification results. The algorithms 

that select features from all the categories were expected to obtain the best classification results, 

according to the objective proposed in this study. 

Table 4 shows the best classification results using the feature selection algorithms. These results, 

show that the OPF classifier with the features selected by the CFS algorithm and the MPL classifier with 

the features selected by the GRFS algorithm achieved superior results compared to the others, as 

presented in Table 4 (in bold). In addition, the features selected by the CFS and GRFS algorithms 

obtained better results for the classifiers than the other algorithms. As mentioned earlier, these 

algorithms selected the features of all the categories more uniformly (Fig. 3), which explains these 

results. The features selected by the PCA algorithm also obtained good results among the classifiers, 

despite the fact that it did not select the features uniformly; also the C4.5 classifier had a high SP result. 

However, this classifier did not stand out as much as the OPF and MPL classifiers, i.e., the C4.5 classifier 

had a higher classification cost. 

Table 4 The best classification results using feature selection algorithms. 

Classifier FS algorithm 
(Search) Features ACC SE SP C 

kNN CFS (Backward stepwise) 50 75.8% 67.8% 83.9% 0.225 
Bayes Net CFS (Forward stepwise) 37 74.4% 64.3% 84.4% 0.236 
C4.5  PCA (Ranker) 31 89.7% 83.5% 95.8% 0.091 
MLP GRFS (Ranker) 75 90.6% 86.6% 94.6% 0.086 
SVM Relief-F (Ranker) 75 80.1% 76.1% 84.1% 0.191 
OPF CFS (Backward stepwise) 50 91.6% 87.0% 96.2% 0.075 

The classification results are presented in more details in Fig. 4, where it is possible to analyse the 

variation of the accuracy, sensitivity and specificity, according to the number of ranked features defined 

by the correlation coefficient, GRFS, information gain and relief-F algorithms. Fig. 5 shows the variation 

of the results for the features selected by the PCA and CFS algorithms. In addition, the classification 

results for each feature selection are compared with the results using the entire set of features. From the 

feature selection, the OPF and kNN classifiers maintained their results, but they did not achieve better 

results. The MPL, C4.5 and Bayes Net classifiers had better results with the feature selection, whereas 

the SVM classifier achieved much better results with the entire set of features. 
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Fig. 4 Variation of the classification measures, according to the number of features defined by the ranker of each 
feature selection algorithm for all features of the dataset: (a) correlation coefficient, (b) GRFS, (c) information 
gain, and (d) relief-F. 
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Fig. 5 Variation of the classification measures, according to the automatic number of features established by the 
feature selection algorithms for all features of the dataset: (a) PCA and (b) CFS. 

In order to evaluate the/a combination of features (fractal texture, wavelet texture, and Haralick’s 

texture categories combined with shape and colour features), as proposed in this study, some 

experiments considering feature subsets for each category individually and the best classifier achieved 

(OPF) were also performed. A texture subset, i.e., with the combination of all features of the texture 

categories achieved better results (ACC = 91.6%, SE = 86.8%, SP = 96.4%, C = 0.074) than using each 

category individual, i.e., fractal texture (ACC = 89.7%, SE = 84.1%, SP = 95.7%, C = 0.089), wavelet 

texture (ACC = 90.7%, SE = 85%, SP = 96.4%, C = 0.082), and Haralick’s texture (ACC = 88.3%, SE 

= 80.1%, SP = 96.6%, C = 0.100). The extracted texture features combined with shape and colour 

features obtained superior results for skin lesion diagnosis (ACC = 92.3%, SE = 87.5%, SP = 97.1%, C 

= 0.067) than when only shape and colour features were used (ACC = 90.5%, SE = 85%, SP = 96%, C 

= 0.084). 

4.4. Computational time 

The proposed approach was developed using: 1) Visual Studio Express 2012 environment, C/C++ 

and OpenCV 2.4.9 library for the feature extraction algorithms; and 2) Eclipse IDE 4.6.1 environment, 

java 1.8.0_111, and Weka 3.8 library for the classification algorithms. Table 5 shows the computational 

time of the processing of all images for each task, which includes feature extraction, and classification 

with and without feature selection using the best classification model. All algorithms were performed on 
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an Intel(R) Core(TM) i5 CPU 650 @ 3.20 GHz with 8 GB of RAM, running Microsoft Windows 7 

Professional 64-bits. 

Table 5 Computational time for the feature extraction and classification tasks considering all images. 

Task Features Time 
Shape feature extraction 18 10.26 min 
Colour feature extraction 72 10.12 min 
Fractal feature extraction 12 26.79 min 
Wavelet feature extraction 240 34.37 min 
Haralick’s feature extraction 168 29.48 min 
Classification  
(without feature selection) 510 8.01 sec 

Classification  
(with feature selection) 50 5.91 sec 

The values in Table 5 indicate that the feature extraction step was the most time-consuming; 

however, the computation time required by this step can be considerably decreased using optimized 

C/C++ implementations. To find the lesion asymmetry, the proposed algorithm will take 𝑂(𝑛>) time 

where 𝑛 is the number of boundary points; however, the rotating callipers method [63] can be used to 

reduce the complexity to 𝑂(𝑛	𝑙𝑜𝑔	𝑛). 

5. Discussion 

The main objective of this study was to evaluate and propose a set of features based on shape 

properties, colour variation and texture analysis, using several different methods, to diagnose skin cancer 

with a dataset of 1104 dermoscopic images. The full set of features (Table 1) achieved ACC = 92.3%, 

SE = 87.5% and SP = 97.1% using the OPF classifier. The best set of features from the selection process 

was obtained using the CFS algorithm and the OPF classifier that obtained ACC = 91.6%, SE = 87% 

and SP = 96.2%. This set was defined with the following features (Table 1): 𝐶𝑂, 𝐶𝐼, 𝐴𝑅, 𝑠<>, 𝑠<, 𝜇>, 𝑠>>, 

𝑠>, 𝑚𝑎𝑥�, 𝑚𝑖𝑛Æ, 𝑠Ç>, 𝜇È, 𝑠È>, 𝑆𝐾È, 𝑠É>, 𝑠É, 𝑆𝐾É, 𝑚𝑎𝑥Ê, 𝑠[[> , 𝑠[[, 𝐷�>, 𝐸(4)>, 𝐸(3)�, 𝐻(8)�, 𝐸(8)Ç, 𝐻(5)Ç, 

𝐻(6)Ç, 𝐻(2)Ê, 𝐻(3)[`, 𝐸(7)[[, 𝐻(2)[>, 𝐻(4)[>, 𝐻(7)[>, 𝑉𝐴𝑅>, 𝑆𝐴�, MCC�, 𝑆𝑉Æ, CRL1Æ, MCCÆ, 

𝑉𝐴𝑅Ç, MCCÇ, 𝑉𝐴𝑅È, CRL1È, 𝐼𝐷𝑀É, DVÉ, DHÉ, 𝑆𝐴Ê, CRL1Ê, 𝑆𝑉[[, CRL1[[. The selected features were 

from all of the proposed categories, i.e., shape, colour, fractal texture, wavelet texture and Haralick’s 

texture. In addition, the four colour spaces were considered by the automatic selection of the colour and 

texture features. Although the feature selection results reduced the number of features, i.e., removed the 

redundant and irrelevant features, the full set of features presented the best results, since the OPF 

classifier deals very well with redundant and irrelevant features.  

There are some important issues to be analysed in this study regarding the extracted features. One of 

the texture extraction methods adopted in this article was based on DWT. There are also several other 

effective methods based on transform, such as discrete cosine transform (DCT) and wavelet packet 

decomposition (WPD) also known as tree-structured wavelet, which have been used for texture analysis 

in images [64,65]. Therefore, comparing the results of the combination of features proposed in this 

article using other transform methods would be very interesting in order to improve the findings of this 
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study. Since the extracted features in this study are all represented in one pool in sequence as mentioned 

earlier, the feature selection process using a sequential search strategy can select different features if the 

feature extraction considers another representation, e.g., randomly. However, this representation did not 

affect significantly the results of any of the studied classifiers. For example, only two different features 

were selected by the CFS algorithm, probably redundant features from the features defined before, 

because the OPF classifier achieved the same results and thus, the random representation did not 

influence its generalization. 

One limitation with the research described in this article is that the experiments were based on only 

one strategy to reduce the unbalance of the classes, i.e., a combination between the under-sampling and 

over-sampling methods. Although this combination overcame the problem of the unbalanced classes, 

there are several other effective methods that can be used to deal with such a problem. For example, the 

synthetic minority over-sampling technique (SMOTE) [66], which is an over-sampling method for 

overcoming the over-fitting and expand the decision region for the minority class samples. Sampling 

methods can also be combined with ensemble methods for addressing unbalanced classes and they can 

present effective results [67]. The lack of a lesion segmentation process may be considered another 

limitation of the present study; however, ground-truth lesion segmentation masks were used in order to 

obtain a more accurate computational system. For example, the segmentation approach presented by Ma 

and Tavares [61] can be used to evaluate the effectiveness of the proposed classification model in the 

segmented images. On other hand, since the study did not use all the images of the original dataset as 

mentioned earlier, the results cannot be compared with the results obtained in the studies using the same 

dataset and the ground-truth lesion segmentation masks presented in Gutman et al. [57]. These studies 

considered a set of 1279 images partitioned into training and test sets. The best results were achieved by 

Lequan et al. [62] (with ACC = 0.855, SE = 0.547 and SP = 0.931), who proposed a novel method for 

melanoma recognition by leveraging very deep convolutional neural networks. 

Several automatic diagnosis systems have been proposed using models with a single classifier for 

skin lesion classification, as was used in this study. In Celebi et al. [6] the proposed classification model 

based on the SVM classifier achieved SE = 93.33% and SP = 92.34% in a dataset of 564 dermoscopic 

images. The authors extracted 11 shape, 354 colour and 72 texture features. In Abbas et al. [25], the 

proposed system obtained SE = 88.2% and SP = 91.3% in a dataset of 120 dermoscopic images. These 

authors applied the SVM classifier to distinguish between benign and malignant lesions using 

asymmetry, border quantification, colour and differential structure features; however, the number of 

features used was not mentioned. Zortea et al. [60] proposed a computational system to differentiate 

benign lesions and melanoma using a discriminant analysis classifier, which achieved SE = 86% and SP 

= 52% in a dataset of 206 dermoscopic images. The feature extraction in this work used 6 asymmetry, 

11 colour, 3 border, 3 geometry and 30 texture features of skin lesions.  
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Other diagnosis systems that used different feature extraction approaches can also be mentioned. For 

example, Sharma and Virmani [68] proposed a decision support system for the detection of renal 

diseases using GLCM statistical features and a SVM classifier from ultrasound images. The authors 

explored the potential of five texture feature vectors that were obtained in various ways using GLCM 

statistics exhaustively. The proposed system achieved the highest overall classification result of ACC = 

85.7% for the differential diagnosis between normal and MRD images. Wang et al. [69] developed an 

improved parameter and structure identification of an adaptive neuro-fuzzy inference system (ANFIS) 

for feature extraction in images. Colour, morphology and texture features were used as inputs and the 

least-square and k-mean clustering methods were employed as the learning algorithms for such a system. 

The training errors for the affective values were tested and compared using the International Affective 

Picture System, which achieved 14% of maximum errors. A new approach of diagnosis by timed 

automata was proposed in Azzabi et al. [70]. The approach is based on the operating time and is 

applicable to systems whose dynamic evolution depends on the order of discrete events and on their 

duration as in industrial processes. The effectiveness of this approach was analysed in a hydraulic 

system. 

Li et al. [71] proposed reliability indices for rule-based for rule-based knowledge presentation by 

using a back-propagation neural network with a Bayesian regularization algorithm. The proposed 

method was applied for shoe design in a KANSEI evaluation system, and it achieved superior 

performance compared to the other algorithms in terms of the performance, gradient, Mu, effective 

number of parameters, and the sum square parameter in KANSEI support and confidence time series 

prediction. In Ghosh et al. [72], a classification system for an automated glaucoma diagnosis was 

proposed. The proposed system is based on both the grid colour moment method as a feature vector to 

extract the colour feature and a neural network classifier. This system was tested using an open RIM-

ONE database to classify both with and without glaucoma retina images and it achieved ACC = 87.47%. 

An effective method for analysing plantar pressure images in order to obtain the key areas of foot plantar 

pressure characteristics was proposed by Li et al. [73]. A plantar pressure imaging dataset of diabetic 

patients was used to evaluate the proposed method. First, the dataset was pre-processed by using 

watershed transformation to determine the region of interest. Afterward, the convolutional neural 

network based on k-mean clustering and parameterized manifold learning using an improved isometric 

mapping algorithm were used to attain segments of the imaging dataset. The experiments achieved an 

average accuracy of 80% for the clustering result, and the proposed manifold learning method achieved 

an average accuracy of 87.2%. 

6. Conclusion and future works 

In this article, a combination of features based on shape properties, colour variation and texture 

analysis using several different feature extraction methods was presented. Geometrical properties, lesion 

asymmetry and border irregularity were used for the extraction of the shape properties. Statistical 
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measures were used to analyse the colour features. The fractal dimension analysis, discrete wavelet 

transform and co-occurrence matrix methods were applied to obtain the texture features. Four colour 

spaces, i.e., RGB, HSV, CIE Lab and CIE Luv, were used for the extraction of both colour and texture 

properties. For the evaluation of the proposed feature extraction method, six different categories of 

classifiers were adopted; namely: kNN, Bayes networks, C4.5 decision tree, MLP, SVM and OPF. 

Furthermore, the classification performance was also evaluated using six different feature selection 

algorithms, which were: correlation coefficient, GRFS, information gain, relief-F, PCA and CFS.  

Promising results were obtained with the proposed feature extraction for all the models evaluated. 

The best classification results were from the OPF classifier when all the features were used. The OPF 

results were: ACC = 92.3%, SE = 87.5% and SP = 97.1%. The OPF classifier also obtained the best 

classification results using feature selection algorithms for the skin lesion computational diagnosis 

system and achieved: ACC = 91.6%, SE = 87% and SP = 96.2%, when 50 features were selected using 

a CFS algorithm. It should be noted that the OPF classifier did not achieve better results by applying the 

feature selection algorithms, but it maintained the good results obtain when using all features. Moreover, 

the feature selection step reduced the computational time for the skin lesion classification. Another 

interesting result is that in most cases, the performance of the classifiers tends to improve when a 

percentage of features of all categories are select, i.e., shape, colour, fractal texture, wavelet texture and 

Haralick’s texture by feature selection algorithms.  

The main contributions of this study were: (1) the texture analysis based on four colour spaces, since 

the combination of several different colour spaces presented quite good results; skin lesion texture 

features proposed in the literature are usually extracted using grey-level images or only a few colour 

channels [25,7,6]; (2) the combination of several methods applied to analyse the skin lesion texture, 

including fractal dimension, wavelet transform and co-occurrence matrix based on colour image, since 

the combination presented better results than when only one texture method was used; and (3) the 

extracted texture features combined with shape and colour features obtained superior results compared 

to when such features are used seperately.  

Future studies regarding the pigmented skin lesion classification of dermoscopic images should 

involve searching for new methods aiming to develop more efficient and effective systems for better 

skin lesion diagnoses. However, the classification results can be improved with ensemble methods 

[39,67,74]. Such methods consist of combining the results of several classification models in order to 

develop a more robust system that provides more accurate results than using a single classifier. Another 

solution to improve the classification results would be using deep learning architectures [75], since these 

architectures have shown that they have the  capacity to learn from a large dataset. 
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