1,316 research outputs found

    Low Power Processor Architectures and Contemporary Techniques for Power Optimization – A Review

    Get PDF
    The technological evolution has increased the number of transistors for a given die area significantly and increased the switching speed from few MHz to GHz range. Such inversely proportional decline in size and boost in performance consequently demands shrinking of supply voltage and effective power dissipation in chips with millions of transistors. This has triggered substantial amount of research in power reduction techniques into almost every aspect of the chip and particularly the processor cores contained in the chip. This paper presents an overview of techniques for achieving the power efficiency mainly at the processor core level but also visits related domains such as buses and memories. There are various processor parameters and features such as supply voltage, clock frequency, cache and pipelining which can be optimized to reduce the power consumption of the processor. This paper discusses various ways in which these parameters can be optimized. Also, emerging power efficient processor architectures are overviewed and research activities are discussed which should help reader identify how these factors in a processor contribute to power consumption. Some of these concepts have been already established whereas others are still active research areas. © 2009 ACADEMY PUBLISHER

    Mesh Connected Computers With Multiple Fixed Buses: Packet Routing, Sorting and Selection

    Get PDF
    Mesh connected computers have become attractive models of computing because of their varied special features. In this paper we consider two variations of the mesh model: 1) a mesh with fixed buses, and 2) a mesh with reconfigurable buses. Both these models have been the subject matter of extensive previous research. We solve numerous important problems related to packet routing, sorting, and selection on these models. In particular, we provide lower bounds and very nearly matching upper bounds for the following problems on both these models: 1) Routing on a linear array; and 2) k-k routing, k-k sorting, and cut through routing on a 2D mesh for any k ≥ 12. We provide an improved algorithm for 1-1 routing and a matching sorting algorithm. In addition we present greedy algorithms for 1-1 routing, k-k routing, cut through routing, and k-k sorting that are better on average and supply matching lower bounds. We also show that sorting can be performed in logarithmic time on a mesh with fixed buses. As a consequence we present an optimal randomized selection algorithm. In addition we provide a selection algorithm for the mesh with reconfigurable buses whose time bound is significantly better than the existing ones. Our algorithms have considerably better time bounds than many existing best known algorithms

    Fast Ant Colony Optimization on Runtime Reconfigurable Processor Arrays

    Get PDF
    Ant Colony Optimization (ACO) is a metaheuristic used to solve combinatorial optimization problems. As with other metaheuristics, like evolutionary methods, ACO algorithms often show good optimization behavior but are slow when compared to classical heuristics. Hence, there is a need to find fast implementations for ACO algorithms. In order to allow a fast parallel implementation, we propose several changes to a standard form of ACO algorithms. The main new features are the non-generational approach and the use of a threshold based decision function for the ants. We show that the new algorithm has a good optimization behavior and also allows a fast implementation on reconfigurable processor arrays. This is the first implementation of the ACO approach on a reconfigurable architecture. The running time of the algorithm is quasi-linear in the problem size n and the number of ants on a reconfigurable mesh with n2 processors, each provided with only a constant number of memory words

    Geometric modeling for computer aided design

    Get PDF
    The primary goal of this grant has been the design and implementation of software to be used in the conceptual design of aerospace vehicles particularly focused on the elements of geometric design, graphical user interfaces, and the interaction of the multitude of software typically used in this engineering environment. This has resulted in the development of several analysis packages and design studies. These include two major software systems currently used in the conceptual level design of aerospace vehicles. These tools are SMART, the Solid Modeling Aerospace Research Tool, and EASIE, the Environment for Software Integration and Execution. Additional software tools were designed and implemented to address the needs of the engineer working in the conceptual design environment. SMART provides conceptual designers with a rapid prototyping capability and several engineering analysis capabilities. In addition, SMART has a carefully engineered user interface that makes it easy to learn and use. Finally, a number of specialty characteristics have been built into SMART which allow it to be used efficiently as a front end geometry processor for other analysis packages. EASIE provides a set of interactive utilities that simplify the task of building and executing computer aided design systems consisting of diverse, stand-alone, analysis codes. Resulting in a streamlining of the exchange of data between programs reducing errors and improving the efficiency. EASIE provides both a methodology and a collection of software tools to ease the task of coordinating engineering design and analysis codes

    Achieving High Speed CFD simulations: Optimization, Parallelization, and FPGA Acceleration for the unstructured DLR TAU Code

    Get PDF
    Today, large scale parallel simulations are fundamental tools to handle complex problems. The number of processors in current computation platforms has been recently increased and therefore it is necessary to optimize the application performance and to enhance the scalability of massively-parallel systems. In addition, new heterogeneous architectures, combining conventional processors with specific hardware, like FPGAs, to accelerate the most time consuming functions are considered as a strong alternative to boost the performance. In this paper, the performance of the DLR TAU code is analyzed and optimized. The improvement of the code efficiency is addressed through three key activities: Optimization, parallelization and hardware acceleration. At first, a profiling analysis of the most time-consuming processes of the Reynolds Averaged Navier Stokes flow solver on a three-dimensional unstructured mesh is performed. Then, a study of the code scalability with new partitioning algorithms are tested to show the most suitable partitioning algorithms for the selected applications. Finally, a feasibility study on the application of FPGAs and GPUs for the hardware acceleration of CFD simulations is presented

    Design and Analysis of Optical Interconnection Networks for Parallel Computation.

    Get PDF
    In this doctoral research, we propose several novel protocols and topologies for the interconnection of massively parallel processors. These new technologies achieve considerable improvements in system performance and structure simplicity. Currently, synchronous protocols are used in optical TDM buses. The major disadvantage of a synchronous protocol is the waste of packet slots. To offset this inherent drawback of synchronous TDM, a pipelined asynchronous TDM optical bus is proposed. The simulation results show that the performance of the proposed bus is significantly better than that of known pipelined synchronous TDM optical buses. Practically, the computation power of the plain TDM protocol is limited. Various extensions must be added to the system. In this research, a new pipelined optical TDM bus for implementing a linear array parallel computer architecture is proposed. The switches on the receiving segment of the bus can be dynamically controlled, which make the system highly reconfigurable. To build large and scalable systems, we need new network architectures that are suitable for optical interconnections. A new kind of reconfigurable bus called segmented bus is introduced to achieve reduced structure simplicity and increased concurrency. We show that parallel architectures based on segmented buses are versatile by showing that it can simulate parallel communication patterns supported by a wide variety of networks with small slowdown factors. New kinds of interconnection networks, the hypernetworks, have been proposed recently. Compared with point-to-point networks, they allow for increased resource-sharing and communication bandwidth utilization, and they are especially suitable for optical interconnects. One way to derive a hypernetwork is by finding the dual of a point-to-point network. Hypercube Q\sb{n}, where n is the dimension, is a very popular point-to-point network. It is interesting to construct hypernetworks from the dual Q\sbsp{n}{*} of hypercube of Q\sb{n}. In this research, the properties of Q\sbsp{n}{*} are investigated and a set of fundamental data communication algorithms for Q\sbsp{n}{*} are presented. The results indicate that the Q\sbsp{n}{*} hypernetwork is a useful and promising interconnection structure for high-performance parallel and distributed computing systems

    Visibility-Related Problems on Parallel Computational Models

    Get PDF
    Visibility-related problems find applications in seemingly unrelated and diverse fields such as computer graphics, scene analysis, robotics and VLSI design. While there are common threads running through these problems, most existing solutions do not exploit these commonalities. With this in mind, this thesis identifies these common threads and provides a unified approach to solve these problems and develops solutions that can be viewed as template algorithms for an abstract computational model. A template algorithm provides an architecture independent solution for a problem, from which solutions can be generated for diverse computational models. In particular, the template algorithms presented in this work lead to optimal solutions to various visibility-related problems on fine-grain mesh connected computers such as meshes with multiple broadcasting and reconfigurable meshes, and also on coarse-grain multicomputers. Visibility-related problems studied in this thesis can be broadly classified into Object Visibility and Triangulation problems. To demonstrate the practical relevance of these algorithms, two of the fundamental template algorithms identified as powerful tools in almost every algorithm designed in this work were implemented on an IBM-SP2. The code was developed in the C language, using MPI, and can easily be ported to many commercially available parallel computers

    Principles, fundamentals, and applications of programmable integrated photonics

    Full text link
    [EN] Programmable integrated photonics is an emerging new paradigm that aims at designing common integrated optical hardware resource configurations, capable of implementing an unconstrained variety of functionalities by suitable programming, following a parallel but not identical path to that of integrated electronics in the past two decades of the last century. Programmable integrated photonics is raising considerable interest, as it is driven by the surge of a considerable number of new applications in the fields of telecommunications, quantum information processing, sensing, and neurophotonics, calling for flexible, reconfigurable, low-cost, compact, and low-power-consuming devices that can cooperate with integrated electronic devices to overcome the limitation expected by the demise of Moore¿s Law. Integrated photonic devices exploiting full programmability are expected to scale from application-specific photonic chips (featuring a relatively low number of functionalities) up to very complex application-agnostic complex subsystems much in the same way as field programmable gate arrays and microprocessors operate in electronics. Two main differences need to be considered. First, as opposed to integrated electronics, programmable integrated photonics will carry analog operations over the signals to be processed. Second, the scale of integration density will be several orders of magnitude smaller due to the physical limitations imposed by the wavelength ratio of electrons and light wave photons. The success of programmable integrated photonics will depend on leveraging the properties of integrated photonic devices and, in particular, on research into suitable interconnection hardware architectures that can offer a very high spatial regularity as well as the possibility of independently setting (with a very low power consumption) the interconnection state of each connecting element. Integrated multiport interferometers and waveguide meshes provide regular and periodic geometries, formed by replicating unit elements and cells, respectively. In the case of waveguide meshes, the cells can take the form of a square, hexagon, or triangle, among other configurations. Each side of the cell is formed by two integrated waveguides connected by means of a Mach¿Zehnder interferometer or a tunable directional coupler that can be operated by means of an output control signal as a crossbar switch or as a variable coupler with independent power division ratio and phase shift. In this paper, we provide the basic foundations and principles behind the construction of these complex programmable circuits. We also review some practical aspects that limit the programming and scalability of programmable integrated photonics and provide an overview of some of the most salient applications demonstrated so far.European Research Council; Conselleria d'Educació, Investigació, Cultura i Esport; Ministerio de Ciencia, Innovación y Universidades; European Cooperation in Science and Technology; Horizon 2020 Framework Programme.Pérez-López, D.; Gasulla Mestre, I.; Dasmahapatra, P.; Capmany Francoy, J. (2020). Principles, fundamentals, and applications of programmable integrated photonics. Advances in Optics and Photonics. 12(3):709-786. https://doi.org/10.1364/AOP.387155709786123Lyke, J. C., Christodoulou, C. G., Vera, G. A., & Edwards, A. H. (2015). An Introduction to Reconfigurable Systems. Proceedings of the IEEE, 103(3), 291-317. doi:10.1109/jproc.2015.2397832Kaeslin, H. (2008). Digital Integrated Circuit Design. doi:10.1017/cbo9780511805172Trimberger, S. M. (2015). Three Ages of FPGAs: A Retrospective on the First Thirty Years of FPGA Technology. Proceedings of the IEEE, 103(3), 318-331. doi:10.1109/jproc.2015.2392104Mitola, J. (1995). The software radio architecture. IEEE Communications Magazine, 33(5), 26-38. doi:10.1109/35.393001Nunes, B. A. A., Mendonca, M., Nguyen, X.-N., Obraczka, K., & Turletti, T. (2014). A Survey of Software-Defined Networking: Past, Present, and Future of Programmable Networks. IEEE Communications Surveys & Tutorials, 16(3), 1617-1634. doi:10.1109/surv.2014.012214.00180Papagianni, C., Leivadeas, A., Papavassiliou, S., Maglaris, V., Cervello-Pastor, C., & Monje, A. (2013). On the optimal allocation of virtual resources in cloud computing networks. IEEE Transactions on Computers, 62(6), 1060-1071. doi:10.1109/tc.2013.31Peruzzo, A., Laing, A., Politi, A., Rudolph, T., & O’Brien, J. L. (2011). Multimode quantum interference of photons in multiport integrated devices. Nature Communications, 2(1). doi:10.1038/ncomms1228Metcalf, B. J., Thomas-Peter, N., Spring, J. B., Kundys, D., Broome, M. A., Humphreys, P. C., … Walmsley, I. A. (2013). Multiphoton quantum interference in a multiport integrated photonic device. Nature Communications, 4(1). doi:10.1038/ncomms2349Miller, D. A. B. (2013). Self-aligning universal beam coupler. Optics Express, 21(5), 6360. doi:10.1364/oe.21.006360Miller, D. A. B. (2013). Self-configuring universal linear optical component [Invited]. Photonics Research, 1(1), 1. doi:10.1364/prj.1.000001Carolan, J., Harrold, C., Sparrow, C., Martín-López, E., Russell, N. J., Silverstone, J. W., … Laing, A. (2015). Universal linear optics. Science, 349(6249), 711-716. doi:10.1126/science.aab3642Harris, N. C., Steinbrecher, G. R., Prabhu, M., Lahini, Y., Mower, J., Bunandar, D., … Englund, D. (2017). Quantum transport simulations in a programmable nanophotonic processor. Nature Photonics, 11(7), 447-452. doi:10.1038/nphoton.2017.95Birth of the programmable optical chip. (2015). Nature Photonics, 10(1), 1-1. doi:10.1038/nphoton.2015.265Zhuang, L., Roeloffzen, C. G. H., Hoekman, M., Boller, K.-J., & Lowery, A. J. (2015). Programmable photonic signal processor chip for radiofrequency applications. Optica, 2(10), 854. doi:10.1364/optica.2.000854Pérez, D., Gasulla, I., Capmany, J., & Soref, R. A. (2016). Reconfigurable lattice mesh designs for programmable photonic processors. Optics Express, 24(11), 12093. doi:10.1364/oe.24.012093Capmany, J., Gasulla, I., & Pérez, D. (2015). The programmable processor. Nature Photonics, 10(1), 6-8. doi:10.1038/nphoton.2015.254Pérez, D., Gasulla, I., Crudgington, L., Thomson, D. J., Khokhar, A. Z., Li, K., … Capmany, J. (2017). Multipurpose silicon photonics signal processor core. Nature Communications, 8(1). doi:10.1038/s41467-017-00714-1Clements, W. R., Humphreys, P. C., Metcalf, B. J., Kolthammer, W. S., & Walsmley, I. A. (2016). Optimal design for universal multiport interferometers. Optica, 3(12), 1460. doi:10.1364/optica.3.001460Perez, D., Gasulla, I., Fraile, F. J., Crudgington, L., Thomson, D. J., Khokhar, A. Z., … Capmany, J. (2017). Silicon Photonics Rectangular Universal Interferometer. Laser & Photonics Reviews, 11(6), 1700219. doi:10.1002/lpor.201700219Shen, Y., Harris, N. C., Skirlo, S., Prabhu, M., Baehr-Jones, T., Hochberg, M., … Soljačić, M. (2017). Deep learning with coherent nanophotonic circuits. Nature Photonics, 11(7), 441-446. doi:10.1038/nphoton.2017.93Ribeiro, A., Ruocco, A., Vanacker, L., & Bogaerts, W. (2016). Demonstration of a 4 × 4-port universal linear circuit. Optica, 3(12), 1348. doi:10.1364/optica.3.001348Annoni, A., Guglielmi, E., Carminati, M., Ferrari, G., Sampietro, M., Miller, D. A., … Morichetti, F. (2017). Unscrambling light—automatically undoing strong mixing between modes. Light: Science & Applications, 6(12), e17110-e17110. doi:10.1038/lsa.2017.110Perez, D., Gasulla, I., & Capmany, J. (2018). Toward Programmable Microwave Photonics Processors. Journal of Lightwave Technology, 36(2), 519-532. doi:10.1109/jlt.2017.2778741Chen, L., Hall, E., Theogarajan, L., & Bowers, J. (2011). Photonic Switching for Data Center Applications. IEEE Photonics Journal, 3(5), 834-844. doi:10.1109/jphot.2011.2166994Miller, D. A. B. (2017). Meshing optics with applications. Nature Photonics, 11(7), 403-404. doi:10.1038/nphoton.2017.104Thomas-Peter, N., Langford, N. K., Datta, A., Zhang, L., Smith, B. J., Spring, J. B., … Walmsley, I. A. (2011). Integrated photonic sensing. New Journal of Physics, 13(5), 055024. doi:10.1088/1367-2630/13/5/055024Smit, M., Leijtens, X., Ambrosius, H., Bente, E., van der Tol, J., Smalbrugge, B., … van Veldhoven, R. (2014). An introduction to InP-based generic integration technology. Semiconductor Science and Technology, 29(8), 083001. doi:10.1088/0268-1242/29/8/083001Coldren, L. A., Nicholes, S. C., Johansson, L., Ristic, S., Guzzon, R. S., Norberg, E. J., & Krishnamachari, U. (2011). High Performance InP-Based Photonic ICs—A Tutorial. Journal of Lightwave Technology, 29(4), 554-570. doi:10.1109/jlt.2010.2100807Kish, F., Nagarajan, R., Welch, D., Evans, P., Rossi, J., Pleumeekers, J., … Joyner, C. (2013). From Visible Light-Emitting Diodes to Large-Scale III–V Photonic Integrated Circuits. Proceedings of the IEEE, 101(10), 2255-2270. doi:10.1109/jproc.2013.2275018Hochberg, M., & Baehr-Jones, T. (2010). Towards fabless silicon photonics. Nature Photonics, 4(8), 492-494. doi:10.1038/nphoton.2010.172Bogaerts, W., Fiers, M., & Dumon, P. (2014). Design Challenges in Silicon Photonics. IEEE Journal of Selected Topics in Quantum Electronics, 20(4), 1-8. doi:10.1109/jstqe.2013.2295882Soref, R. (2006). The Past, Present, and Future of Silicon Photonics. IEEE Journal of Selected Topics in Quantum Electronics, 12(6), 1678-1687. doi:10.1109/jstqe.2006.883151Chrostowski, L., & Hochberg, M. (2015). Silicon Photonics Design. doi:10.1017/cbo9781316084168Heck, M. J. R., Bauters, J. F., Davenport, M. L., Doylend, J. K., Jain, S., Kurczveil, G., … Bowers, J. E. (2013). Hybrid Silicon Photonic Integrated Circuit Technology. IEEE Journal of Selected Topics in Quantum Electronics, 19(4), 6100117-6100117. doi:10.1109/jstqe.2012.2235413Keyvaninia, S., Muneeb, M., Stanković, S., Van Veldhoven, P. J., Van Thourhout, D., & Roelkens, G. (2012). Ultra-thin DVS-BCB adhesive bonding of III-V wafers, dies and multiple dies to a patterned silicon-on-insulator substrate. Optical Materials Express, 3(1), 35. doi:10.1364/ome.3.000035Heideman, R., Hoekman, M., & Schreuder, E. (2012). TriPleX-Based Integrated Optical Ring Resonators for Lab-on-a-Chip and Environmental Detection. IEEE Journal of Selected Topics in Quantum Electronics, 18(5), 1583-1596. doi:10.1109/jstqe.2012.2188382Roeloffzen, C. G. H., Zhuang, L., Taddei, C., Leinse, A., Heideman, R. G., van Dijk, P. W. L., … Boller, K.-J. (2013). Silicon nitride microwave photonic circuits. Optics Express, 21(19), 22937. doi:10.1364/oe.21.022937Corbett, B., Loi, R., Zhou, W., Liu, D., & Ma, Z. (2017). Transfer print techniques for heterogeneous integration of photonic components. Progress in Quantum Electronics, 52, 1-17. doi:10.1016/j.pquantelec.2017.01.001Van der Tol, J. J. G. M., Jiao, Y., Shen, L., Millan-Mejia, A., Pogoretskii, V., van Engelen, J. P., & Smit, M. K. (2018). Indium Phosphide Integrated Photonics in Membranes. IEEE Journal of Selected Topics in Quantum Electronics, 24(1), 1-9. doi:10.1109/jstqe.2017.2772786Bachmann, M., Besse, P. A., & Melchior, H. (1994). General self-imaging properties in N × N multimode interference couplers including phase relations. Applied Optics, 33(18), 3905. doi:10.1364/ao.33.003905Soldano, L. B., & Pennings, E. C. M. (1995). Optical multi-mode interference devices based on self-imaging: principles and applications. Journal of Lightwave Technology, 13(4), 615-627. doi:10.1109/50.372474Madsen, C. K., & Zhao, J. H. (1999). Optical Filter Design and Analysis. Wiley Series in Microwave and Optical Engineering. doi:10.1002/0471213756Desurvire, E. (2009). Classical and Quantum Information Theory. doi:10.1017/cbo9780511803758Knill, E., Laflamme, R., & Milburn, G. J. (2001). A scheme for efficient quantum computation with linear optics. Nature, 409(6816), 46-52. doi:10.1038/35051009Capmany, J., & Pérez, D. (2020). Programmable Integrated Photonics. doi:10.1093/oso/9780198844402.001.0001Spagnolo, N., Vitelli, C., Bentivegna, M., Brod, D. J., Crespi, A., Flamini, F., … Sciarrino, F. (2014). Experimental validation of photonic boson sampling. Nature Photonics, 8(8), 615-620. doi:10.1038/nphoton.2014.135Mennea, P. L., Clements, W. R., Smith, D. H., Gates, J. C., Metcalf, B. J., Bannerman, R. H. S., … Smith, P. G. R. (2018). Modular linear optical circuits. Optica, 5(9), 1087. doi:10.1364/optica.5.001087Perez-Lopez, D., Sanchez, E., & Capmany, J. (2018). Programmable True Time Delay Lines Using Integrated Waveguide Meshes. Journal of Lightwave Technology, 36(19), 4591-4601. doi:10.1109/jlt.2018.2831008Pérez-López, D., Gutierrez, A. M., Sánchez, E., DasMahapatra, P., & Capmany, J. (2019). Integrated photonic tunable basic units using dual-drive directional couplers. Optics Express, 27(26), 38071. doi:10.1364/oe.27.038071Jinguji, K., & Kawachi, M. (1995). Synthesis of coherent two-port lattice-form optical delay-line circuit. Journal of Lightwave Technology, 13(1), 73-82. doi:10.1109/50.350643Mookherjea, S., & Yariv, A. (2002). Coupled resonator optical waveguides. IEEE Journal of Selected Topics in Quantum Electronics, 8(3), 448-456. doi:10.1109/jstqe.2002.1016347Heebner, J. E., Chak, P., Pereira, S., Sipe, J. E., & Boyd, R. W. (2004). Distributed and localized feedback in microresonator sequences for linear and nonlinear optics. Journal of the Optical Society of America B, 21(10), 1818. doi:10.1364/josab.21.001818Fandiño, J. S., Muñoz, P., Doménech, D., & Capmany, J. (2016). A monolithic integrated photonic microwave filter. Nature Photonics, 11(2), 124-129. doi:10.1038/nphoton.2016.233Miller, D. A. B. (2012). All linear optical devices are mode converters. Optics Express, 20(21), 23985. doi:10.1364/oe.20.023985Brown, S. D., Francis, R. J., Rose, J., & Vranesic, Z. G. (1992). Field-Programmable Gate Arrays. doi:10.1007/978-1-4615-3572-0Lee, E. K. F., & Gulak, P. G. (1992). Field programmable analogue array based on MOSFET transconductors. Electronics Letters, 28(1), 28-29. doi:10.1049/el:19920017Lee, E. K. F., & Gulak, P. G. (s. f.). A transconductor-based field-programmable analog array. Proceedings ISSCC ’95 - International Solid-State Circuits Conference. doi:10.1109/isscc.1995.535521Pérez, D., Gasulla, I., & Capmany, J. (2018). Field-programmable photonic arrays. Optics Express, 26(21), 27265. doi:10.1364/oe.26.027265Zheng, D., Doménech, J. D., Pan, W., Zou, X., Yan, L., & Pérez, D. (2019). Low-loss broadband 5  ×  5 non-blocking Si3N4 optical switch matrix. Optics Letters, 44(11), 2629. doi:10.1364/ol.44.002629Densmore, A., Janz, S., Ma, R., Schmid, J. H., Xu, D.-X., Delâge, A., … Cheben, P. (2009). Compact and low power thermo-optic switch using folded silicon waveguides. Optics Express, 17(13), 10457. doi:10.1364/oe.17.010457Song, M., Long, C. M., Wu, R., Seo, D., Leaird, D. E., & Weiner, A. M. (2011). Reconfigurable and Tunable Flat-Top Microwave Photonic Filters Utilizing Optical Frequency Combs. IEEE Photonics Technology Letters, 23(21), 1618-1620. doi:10.1109/lpt.2011.2165209Rudé, M., Pello, J., Simpson, R. E., Osmond, J., Roelkens, G., van der Tol, J. J. G. M., & Pruneri, V. (2013). Optical switching at 1.55 μm in silicon racetrack resonators using phase change materials. Applied Physics Letters, 103(14), 141119. doi:10.1063/1.4824714Zheng, J., Khanolkar, A., Xu, P., Colburn, S., Deshmukh, S., Myers, J., … Majumdar, A. (2018). GST-on-silicon hybrid nanophotonic integrated circuits: a non-volatile quasi-continuously reprogrammable platform. Optical Materials Express, 8(6), 1551. doi:10.1364/ome.8.001551Edinger, P., Errando-Herranz, C., & Gylfason, K. B. (2019). Low-Loss MEMS Phase Shifter for Large Scale Reconfigurable Silicon Photonics. 2019 IEEE 32nd International Conference on Micro Electro Mechanical Systems (MEMS). doi:10.1109/memsys.2019.8870616Carroll, L., Lee, J.-S., Scarcella, C., Gradkowski, K., Duperron, M., Lu, H., … O’Brien, P. (2016). Photonic Packaging: Transforming Silicon Photonic Integrated Circuits into Photonic Devices. Applied Sciences, 6(12), 426. doi:10.3390/app6120426Bahadori, M., Gazman, A., Janosik, N., Rumley, S., Zhu, Z., Polster, R., … Bergman, K. (2018). Thermal Rectification of Integrated Microheaters for Microring Resonators in Silicon Photonics Platform. Journal of Lightwave Technology, 36(3), 773-788. doi:10.1109/jlt.2017.2781131Cocorullo, G., Della Corte, F. G., Rendina, I., & Sarro, P. M. (1998). Thermo-optic effect exploitation in silicon microstructures. Sensors and Actuators A: Physical, 71(1-2), 19-26. doi:10.1016/s0924-4247(98)00168-xZecevic, N., Hofbauer, M., & Zimmermann, H. (2015). Integrated Pulsewidth Modulation Control for a Scalable Optical Switch Matrix. IEEE Photonics Journal, 7(6), 1-7. doi:10.1109/jphot.2015.2506153Seok, T. J., Quack, N., Han, S., & Wu, M. C. (2015). 50×50 Digital Silicon Photonic Switches with MEMS-Actuated Adiabatic Couplers. Optical Fiber Communication Conference. doi:10.1364/ofc.2015.m2b.4Zortman, W. A., Trotter, D. C., & Watts, M. R. (2010). Silicon photonics manufacturing. Optics Express, 18(23), 23598. doi:10.1364/oe.18.023598Mower, J., Harris, N. C., Steinbrecher, G. R., Lahini, Y., & Englund, D. (2015). High-fidelity quantum state evolution in imperfect photonic integrated circuits. Physical Review A, 92(3). doi:10.1103/physreva.92.032322Pérez, D., & Capmany, J. (2019). Scalable analysis for arbitrary photonic integrated waveguide meshes. Optica, 6(1), 19. doi:10.1364/optica.6.000019Oton, C. J., Manganelli, C., Bontempi, F., Fournier, M., Fowler, D., & Kopp, C. (2016). Silicon photonic waveguide metrology using Mach-Zehnder interferometers. Optics Express, 24(6), 6265. doi:10.1364/oe.24.006265Chen, X., & Bogaerts, W. (2019). A Graph-based Design and Programming Strategy for Reconfigurable Photonic Circuits. 2019 IEEE Photonics Society Summer Topical Meeting Series (SUM). doi:10.1109/phosst.2019.8795068Zibar, D., Wymeersch, H., & Lyubomirsky, I. (2017). Machine learning under the spotlight. Nature Photonics, 11(12), 749-751. doi:10.1038/s41566-017-0058-3Lopez, D. P. (2020). Programmable Integrated Silicon Photonics Waveguide Meshes: Optimized Designs and Control Algorithms. IEEE Journal of Selected Topics in Quantum Electronics, 26(2), 1-12. doi:10.1109/jstqe.2019.2948048Harris, N. C., Bunandar, D., Pant, M., Steinbrecher, G. R., Mower, J., Prabhu, M., … Englund, D. (2016). Large-scale quantum photonic circuits in silicon. Nanophotonics, 5(3), 456-468. doi:10.1515/nanoph-2015-0146Spring, J. B., Metcalf, B. J., Humphreys, P. C., Kolthammer, W. S., Jin, X.-M., Barbieri, M., … Walmsley, I. A. (2012). Boson Sampling on a Photonic Chip. Science, 339(6121), 798-801. doi:10.1126/science.1231692O’Brien, J. L., Furusawa, A., & Vučković, J. (2009). Photonic quantum technologies. Nature Photonics, 3(12), 687-695. doi:10.1038/nphoton.2009.229Kok, P., Munro, W. J., Nemoto, K., Ralph, T. C., Dowling, J. P., & Milburn, G. J. (2007). Linear optical quantum computing with photonic qubits. Reviews of Modern Physics, 79(1), 135-174. doi:10.1103/revmodphys.79.135Politi, A., Cryan, M. J., Rarity, J. G., Yu, S., & O’Brien, J. L. (2008). Silica-on-Silicon Waveguide Quantum Circuits. Science, 320(5876), 646-649. doi:10.1126/science.1155441Politi, A., Matthews, J., Thompson, M. G., & O’Brien, J. L. (2009). Integrated Quantum Photonics. IEEE Journal of Selected Topics in Quantum Electronics, 15(6), 1673-1684. doi:10.1109/jstqe.2009.2026060Thompson, M. G., Politi, A., Matthews, J. C. F., & O’Brien, J. L. (2011). Integrated waveguide circuits for optical quantum computing. IET Circuits, Devices & Systems, 5(2), 94. doi:10.1049/iet-cds.2010.0108Silverstone, J. W., Bonneau, D., O’Brien, J. L., & Thompson, M. G. (2016). Silicon Quantum Photonics. IEEE Journal of Selected Topics in Quantum Electronics, 22(6), 390-402. doi:10.1109/jstqe.2016.2573218Poot, M., Schuck, C., Ma, X., Guo, X., & Tang, H. X. (2016). Design and characterization of integrated components for SiN photonic quantum circuits. Optics Express, 24(7), 6843. doi:10.1364/oe.24.006843Saleh, M. F., Di Giuseppe, G., Saleh, B. E. A., & Teich, M. C. (2010). Modal and polarization qubits in Ti:LiNbO_3 photonic circuits for a universal quantum logic gate. Optics Express, 18(19), 20475. doi:10.1364/oe.18.020475Harris, N. C., Carolan, J., Bunandar, D., Prabhu, M., Hochberg, M., Baehr-Jones, T., … Englund, D. (2018). Linear programmable nanophotonic processors. Optica, 5(12), 1623. doi:10.1364/optica.5.001623Qiang, X., Zhou, X., Wang, J., Wilkes, C. M., Loke, T., O’Gara, S., … Matthews, J. C. F. (2018). Large-scale silicon quantum photonics implementing arbitrary two-qubit processing. Nature Photonics, 12(9), 534-539. doi:10.1038/s41566-018-0236-yLee, B. G., & Dupuis, N. (2019). Silicon Photonic Switch Fabrics: Technology and Architecture. Journal of Lightwave Technology, 37(1), 6-20. doi:10.1109/jlt.2018.2876828Cheng, Q., Rumley, S., Bahadori, M., & Bergman, K. (2018). Photonic switching in high performance datacenters [Invited]. Optics Express, 26(12), 16022. doi:10.1364/oe.26.016022Wonfor, A., Wang, H., Penty, R. V., & White, I. H. (2011). Large Port Count High-Speed Optical Switch Fabric for Use Within Datacenters [Invited]. Journal of Optical Communications and Networking, 3(8), A32. doi:10.1364/jocn.3.000a32Hamamoto, K., Anan, T., Komatsu, K., Sugimoto, M., & Mito, I. (1992). First 8×8 semiconductor optical matrix switches using GaAs/AlGaAs electro-optic guided-wave directional couplers. Electronics Letters, 28(5), 441. doi:10.1049/el:19920278Van Campenhout, J., Green, W. M., Assefa, S., & Vlasov, Y. A. (2009). Low-power, 2×2 silicon electro-optic switch with 110-nm bandwidth for broadband reconfigurable optical networks. Optics Express, 17(26), 24020. doi:10.1364/oe.17.024020Dupuis, N., Lee, B. G., Rylyakov, A. V., Kuchta, D. M., Baks, C. W., Orcutt, J. S., … Schow, C. L. (2015). D

    Generation of a Reconfigurable Logical Cell Using Evolutionary Computation

    Get PDF
    Adaptation in nature is a relevant research area that has many applications in artificial systems, which can be used for the benefit of society. Particularly in biology, a neuron can reconfigure itself to develop different tasks using the same structure; however, this procedure is a mystery. The processes of adaptation, learning, and coupling between them have been research pursuits therein, and the understanding of this processes can help to build artificial devices.The act of joining living tissue with electronics has long been imagined in the world of science fiction, but cybernetic organisms are now one step closer to reality, thanks to work emerging from researchers that have built tiny electronic meshes out of silicon nanowires and have used them as scaffolds to grow nerve, heart, and muscle tissu
    corecore