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Abstract Mesh connected computers have become attractive models of computing 

because of their varied special features. In this paper we consider two variations of 
the mesh model: 1) a mesh with fixed buses, and 2) a mesh with reconfigurable buses. 

Both these models have been the subject matter of extensive previous research. We 

solve numerous important problems related to packet routing, sorting, and selection on 

these models. In particular, we provide lower bounds and very nearly matching upper 

bounds for the following problems on both these models: 1) Routing on a linear array; 

and 2) k - k routing, k - k sorting, and cut through routing on a 2D mesh for any 

k 2 12. We provide an improved algorithm for 1 - 1 routing and a matching sorting 

algorithm. In addition we present greedy algorithms for 1 - 1 routing, k - k routing, 

cut through routing, and k - k sorting that are better on average and supply matching 

lower bounds. We also show that sorting can be performed in logarithmic time on a 

mesh with fixed buses. As a consequence we present an optimal randomized selection 

algorithm. In addition we provide a selection algorithm for the mesh with reconfigurable 

buses whose time bound is significantly better than the existing ones. Our algorithms 

have considerably better time bounds than many existing best known algorithms. 

'This research was supported in part by an NSF Research Initiation Award CCR-92-09260 and an ARO grant 



1 Introduction 

1.1 Packet Routing 

A single step of inter-processor communication in a fixed connection network can be thought of as 

the following task (also called packet routing): Each node in the network has a packet of information 

that has to  be sent to some other node. The task is to send all the packets to their correct 

destinations as quickly as possible such that at the most one packet passes through any wire at any 

time. 

A special case of the routing problem is called the partial permutation routing. In partial 

permutation routing, each node is the origin of a t  the most one packet and each node is the 

destination of no more than one packet. A packet routing algorithm is judged by 1) its run time, 

i.e., the time taken by the last packet to reach its destination, and 2)  its queue length, which is 

defined as the maximum number of packets any node will have to store during routing. Contentions 

for edges can be resolved using a priority scheme. Furthest destination first, furthest origin first, 

etc. are examples of priority schemes. We assume that a packet not only contains the message 

(from one processor to  another) but also the origin and destination information of this packet. An 

algorithm for packet routing is specified by 1) the path to be taken by each packet, and 2) a priority 

scheme. 

1.2 Different Models of Packet Routing and k - k Sorting 

How large a packet is (when compared with the channel width of the communication links) will 

determine whether a single packet can be sent along a wire in one unit of time. If a packet is very 

large it may have to be split into pieces and sent piece by piece. On this criterion many models 

of routing can be derived. A packet can be assumed to be either atomic (this model is known as 

the store and forward model), or much larger than the channel width of communication links (thus 

necessitating splitting). 

In the later, if each packet is broken up into k pieces (also called flits), where k depends on 

the width of the channel, the routing problem can be studied under two different approaches. We 

can consider the k flits to be k distinct packets, which are routed independently. This is known 

as the multipacket routing approach [20]. Each flit will contain information about its origin and 

destination. The problem of k - k routing is one where 5 k packets originate from any node and 

5 k packets are destined for any node under the multipacket model. 

Alternatively, one can consider the k flits to  form a snake. All flits follow the first one, known 

as the head, to  the destination. A snake may never be broken, i.e., at any given time, consecutive 
flits of a snake are at the same or adjacent processors. Only the head has to contain the origin and 

destination addresses. This model is called the cut through routing with partial cuts or simply the 

cut through routing [28]. 



Figure 1: Some Possible Connection Patterns 

The problem of k - k sorting on any fixed connection machine is the problem of sorting where 

exactly k packets are input at any node. Given a set of N numbers and an i 5 N ,  the problem of 

selection is to  find the ith smallest element from out of the N given numbers. 

1.3 Definition of Models 

The fixed connection machines assumed in this paper are: 1) the mesh connected computer with 

fixed buses (denoted as Mf), and 2) the mesh with reconfigurable buses (denoted as M,). The 

basic topology of a two dimensional mesh is an n x n square grid with one processor per grid point. 

Except for processors at  the boundary, every other processor is connected to its neighbors to the 

left, right, above, and below through bidirectional links. The instruction stream assumed is MIMD. 

This in particular means that each node can send and receive a packet (or a flit) from all its (four 

or less) neighbors in one unit of time. 

In Mf we assume that each row and each column has been augmented with a broadcast bus. 

Only one packet can be broadcast along any bus at  any time, and this message can be read by all 

the processors in the row or column associated with this bus in the same time unit. 

In the model M,,  processors are connected to a reconfigurable broadcast bus. At any given 

time, the broadcast bus can be partitioned (i.e., reconfigured) dynamically into subbuses with the 

help of locally controllable switches. Each subbus connects a collection of successive processors. 
One of the processors in this collection can choose to broadcast a message which is assumed to 

be readable in one unit of time by all the other processors in this collection. For instance, in an 
n x n mesh, the different columns (or different rows) can form subbuses. Even within a column (or 

row) there could be many subbuses, and so on. It is up to the algorithm designer to  decide what 

configuration of the bus should be used at  each time unit. Each processor has 4 I /O ports. In 
PARBUS model, any combination of 4 port connections is permitted for each processor [lo]. (See 
Figure 1). 

In fact, this is the model we assume in the paper. However, the algorithms given can be adopted 
to other variation of M,, in which case the stated time bounds will also change. This model has 

been assumed in previous works as well (see e.g., [lo, 91). 



Both M, and Mf are becoming popular models of computing because of the absence of diameter 

consideration and because of the commercial implementations [2, 29, 52, 271. 

Mesh connected computers have drawn the attention of computer scientists in recent times 

because of their many special properties. Some of the special features of meshes are: 1) they have a 

simple interconnection pattern, 2) many problems have data which map naturally onto them, and 

3) they are linear-scalable. 

1.4 Previous and New Results 

Numerous papers have been written on routing and sorting on the conventional mesh (see e.g., 

[53, 55, 47, 43, 44, 19, 20, 21, 24, 22, 28, 39, 40, 38, 37, 36, 16, 15, 141). An excellent reference for 

algorithms on the conventional mesh is Leighton [23]. 

Meshes with multiple buses have been studied by various researchers in the past (see e.g., 

[49, 50, 3, 18, 51,4,  25, 26, 171). An equally impressive amount of work has been done on the mesh 

with reconfigurable buses as well (see e.g., [2, 30, 31, 48, 57, 321). 

Mesh with fixed buses 
Leung and Shende [25,26] have shown that on a linear array with a bus, permutation routing needs 

9 steps in the worst case and presented a 9 step algorithm as well. They also proved that on a 

two dimensional mesh M f ,  permutation routing needs at least ?f steps in the worst case and can 

be performed within n + 4: + o(n) time, the queue length being 2q, for any 1 5 q 5 n. 

In this paper we prove a lower bound for routing on a linear array for any input (not necessarily 

the worst case input), and present an algorithm whose run time matches this lower bound (up to  

a o(n) lower order term). For the problem of permutation routing on a 2D mesh M f ,  we present a 

very simple randomized algorithm with a run time of n + $ + o(J-) and a queue length of 

q + o(q) for any 1 < q < n. 

Next we consider the problems of k - k routing, k - k sorting, and cut through routing. We 

show that $ is a lower bound for the worst case run time of any algorithm for these problems on 

a 2D mesh. We also give randomized algorithms for k - k routing and k - k sorting which run in 

kf + o(kn) steps with high probability, and a randomized algorithm for cut through routing that 
kn runs in 7 + 1.5n + o(kn) steps with high probability, for any k 2 12. All these algorithms have a 

queue length of k + o(k) with high probability and extend to higher dimensional meshes as well. 

We also present greedy algorithms for 1 - 1 routing, k - k routing, cut through routing, and k - k 

sorting which are better on the average. We prove a matching lower bound for the expected run 

time of any algorithm for random k - k routing, k - k sorting, and cut through routing problems. 

These results highlight a crucial difference between a conventional mesh and a mesh with buses. 
For instance, in a conventional 2D mesh, the worst case run time for 1 - 1 routing is 2n - 2 and 

one can show that 2n - o(n) is a lower bound for the expected routing time of a random routing 



problem. Remarkably, in the case of M f ,  the worst case lower bound and the average case lower 

bound differ widely. 

In addition we show that sorting of n keys can be performed on an n x n x n mesh or on 

an n2 x n2 mesh M f  in O(1ogn) time. As a consequence we show that selection on an n x n 

mesh Mf (from out of n2 elements) can be accomplished within 0(n1I3) time using a randomized 

algorithm. The best known previous algorithm has a run time of 0(n'l3(log n)2/3) [I$]. In [18, 5 11, 

a lower bound of C2(n1I3) is proven for selection and related problems and hence our algorithm is 

asymptotically optimal. Our selection algorithm also runs in 0(n1I4) time on an n5I4 x n3I4 mesh, 
which is optimal and is an improvement over the run time of O(nl/* log n)  that the algorithm of 

[4] has. 

Reconfigurable Mesh 
A number of interesting results have been obtained on the reconfigurable mesh. Some of them are: 

1) Prefix and other problems [30]; 2) Constant time sorting and routing algorithms [2, 32, 571; 3) 

Random Access Read and Random Access Write [30]; 4) Histogramming and Related Problems 

[12, 13, 101; 5) Permutation Routing and Sorting [3$, 161; 6) Selection [7, 9, 61. In this paper we 

show that k - k routing, k - k sorting, and cut through routing need 9 steps on MT and show 

that there exist algorithms for these three problems with matching time bounds, for any k > 8. 

More interestingly, we provide algorithms for these three problems that are optimal on the average. 

In particular these algorithms run in time 9 + o(kn) for k - k routing and k - k sorting and in 

9 + 1.5n + o(kn) time for cut through routing, for any k > 8. We prove a lower bound of 2 for 

these three problems. 

The problem of selection has been well studied on M T .  ElGindy and Wegrowicz [7] presented 

an O(log2 n) time deterministic algorithm; Doctor and Krizanc [6] have recently presented three 

algorithms. Specifically, their algorithms can 1) select in O(blog* n)  time if the numbers are dis- 

tinct and of length at  the most b bits; or 2) select in O(1ogn) expected time assuming that each 

input permutation is equally likely; or 3) select in randomized O(log2 n)  time (with no assump- 

tions). Very recently Hao, MacKenzie, and Stout [9] have given three algorithms as well: 1) An 

O((b/ log b )  max{log* n -log* b, I)) time algorithm for selecting among b-bit words; 2) An algorithm 

that runs in O(log* n)  time assuming that each input permutation is equally likely (However no 

details of the algorithm appear in the proceedings); and 3) an O(1ogn) time algorithm without 

making any assumptions. In this paper we show that selection can be done using a randomized 

algorithm that runs in 1) O(log* n) expected time assuming that each input permutation is equally 

likely (This is an independent work); or 2) O(log* nloglog n)  time (with no assumptions). 

Table I summarizes best known results for packet routing, sorting and selection on M j  and M T .  
In this table W.C. stands for worst case, Av. stands for average case, and q stands for queue size. 

[d denotes new results presented in this paper. Also, y stands for 1.5n. Define log(') z as logz, 

and log(') z as 1 0 ~ ( l o ~ ( ~ - ' )  z )  (for any integer i 1 2). Then, log* z is nothing but the smallest i such 



that  log(i) a: 5 1. 

Table I: Contributions of this paper 

1.5 Some Definitions 

We say a randomized algorithm uses 6 ( g ( n ) )  amount of any resource (like time, space, etc.) if there 

exists a constant c such that  the amount of resource used is no more than c a g ( n )  with probability 

> 1 - n-O on any input of length n and for any a. Similar definitions apply to  C ( g ( n ) )  and other - 
such 'asymptotic' functions. 

By high probability we mean a probability of > 1 - n-" for any fixed a 2 1 ( n  being the input 

size of the problem a t  hand). 

Let B ( n , p )  denote a binomial random variable with parameters n and p,  and let 'w.h.p.' stand 

for 'with high probability' . 

Mf (Av.)  

n  + o(n> [dl 
% + o ( k n )  [dl 
9 + o ( k n )  [JJ 
2 + n  + o ( k n )  [J1 

0(nl i3)  [dl 

Mr. (Av. )  [ 

1.6 Chernoff Bounds 

M, ( W . C . )  

n  + 0(") + o ( n )  [38] 

% + o ( k n )  [Jj 
$ + o ( k n )  [Jj 

9 + 7 + o ( k n )  [J1 
 log* n  log log n )  [J1 

PROBLEM 

Permutation Routing 
k  - k  Routing 
k  - k  Sorting 
Cut Thro' Routing 
Selection 

n + o ( n )  [dl 
9 + o ( k n )  [J1 
9 + o ( k n )  [JJ 

$ + n  + o ( k n )  [J1 
 log* n )  191 14 

One of the  most frequently used facts in analyzing randomized algorithms is ChernofS bounds. These 

bounds provide close approximations to  the probabilities in the tail ends of a binomial distribution. 

Let X stand for the number of heads in n independent flips of a coin, the pr~babi l i t~y of a head 

in a single flip being p. X is also known to  have a binomial distribution B ( n , y ) .  The following 

three facts (known as Chernoff bounds) are now folklore (and were discovered by Chernoff [5] and 

M f  (W.C. )  

n  + O ( $ )  + o ( n )  [26] 

% + o ( k n )  [J1 
+ o ( k n )  [J1 

% + + + o ( k n )  [J1 
O(n113) [dl 

' 

- 

Prob.[X > (1 + c)np]  5 e x p ( - c 2 n y / 2 ) ,  and 

Prob.[X < (1 - ~ ) n p ]  5 e x p ( - ~ ~ n y / 3 ) ,  

for any 0 < E < 1, and m > n p .  



2 Locally Optimal Routing on a Linear Array Mf 

Leung and Shende [25, 261 have shown that routing on an n-node linear array with a fixed bus 

needs a t  least steps in the worst case. They also matched this lower bound with an algorithm 

that runs in 9 steps in the worst case. Thus as far as the worst case input is concerned, the 

permutation routing problem on a linear array has been solved. 

An interesting question is: 'Can we perform optimal routing on a linear array for any input?' 

In the case of a conventional array, the maximum distance any packet will have to travel is clearly 

a lower bound for routing on any input and this lower bound can be matched with an algorithm as 

well [44]. In the case of Mf it is not even clear what a lower bound will be for any input. In this 
section we prove such a lower bound and present an algorithm that matches this lower bound (up 

to  a o(n) lower order term). 

A Lower Bound: Let C be an n-node linear array with a fixed bus and n be a permutation to  be 

routed. If the number of packets that have to travel a distance of d or more is nd, then min{d, nd) 

is a lower bound for the routing time of n (for each 1 < d < n). 

Proof: From among the packets that have to travel a distance of d or more, if there exists at least 

one packet that  never uses the bus, a lower bound for routing is d. On the other hand, if all of 

these packets use the bus one time or the other, clearly, nd steps will be needed. CI 

The above observation yields the following 

Lemma 2.1 Routing a permutation T needs al  least maxd {min{d, nd)) steps on u linear array 

with a fixed bus. 

Our algorithm for routing uses a subroutine for calculating prefix sums: 

Computing Prefix Sums: Given a sequence of n numbers, say, kl, k2,. . . , k, the problem of 

prefix sums computation is to calculate kl, kl + kZ, . . . , k1 + k2 + . . . f kn. Assume that k; is in 
processor i of a linear array Mf. The following Lemma is proven in [3, 49, 501: 

Lemma 2.2 Prefix sums of n numbers can be computed on an n-node linear array Mf in O(fi) 
time steps. Q(fi) time is needed for computing prefix sums. 

Locally Optimal Routing: The idea of this algorithm is to exploit Lemmas 2.1 and 2.2. We 
first compute d' = maxd{min{d, nd)). We route all the packets that have to travel a distance of 

d' or more using the bus, and the other packets are routed using the edge connections under the 

furthest destination first priority scheme. 
We claim that d' can be computed in O(fi1ogn) time. Observe that 1) For a given dl we can 

compute nd in O ( f i )  time using Lemma 2.2; and 2) As d increases nd remains nonincreasing (it 
might decrease more often). Thus we could determine d' using a binary search on the values of d. 

Once we determine d', we can perform routing in time max{d1, ndt). Thus we arrive at  



Theorem 2.1 There ezists an algorithm for routing on a linear array that is optimal for every 

input up to a o ( n )  lower order term. 

Observation. In the case of a conventional linear array, if L is the maximum distance any packet 
has to  travel, we can perform routing in L steps, provided we know the value of L. But for the 

above algorithm, no such information about the input is needed. 

Routing on a linear array M,: Rajasekaran and McKendall [38] have presented an algorithm 

for routing a permutation that runs in Q n  steps. The obvious lower bound is 5. The problem of 

optimal routing still remains open. 

3 Routing on a 2D Mesh Mf 

In this section we present a very simple randomized algorithm that has a run time slightly better 

than that of [26]'s. This is only a minor result in this paper. Leung and Shende's algorithm 125, 261 

is deterministic and runs in n + 4: + o ( n )  time, the queue size being 29, for any 1 5 q 5 n .  This 

time bound will be n+ o ( n ) ,  for instance, if we pick q = log n.  They also proved a lower bound of 9 
steps for routing. We believe that n is a lower bound in the worst case for the partial permutation 

routing time. We are currently working on this problem. The algorithm presented in this section 

is very simple and has a run time of n + 11- + 6( J-), the queue length being q + G(q) (for any 
29 

1 I q < n). 
The algorithm is similar to an algorithm given in [38]. Color each packet as red or blue initially 

(each color being equally likely). We describe the algorithm used by the red packets now: Partition 

the mesh into horizontal slices of f rows each. There are three phases in the algorithm. In phase I 
a red packet goes to  a random node along its column of origin within the same slice of origin. In 

phases 11 and I11 it greedily travels to its destination, first traversing along the row and then along 

the column. Blue packets execute a symmetric algorithm. That is, the mesh is partitioned into 
vertical slices of columns each, and so on. 

In this algorithm in phase I only edge connections are used. In phases I1 and 111 only buses are 

used t o  transport packets. 

Lemma 3.1 The above algorithm runs in time n+%+B(~n=~), the queue length beingq+6(q), 

for any 15 q 5 n .  

Proof Easy and omitted. 

Permutation Routing on M,: In [38], a randomized algorithm is given whose run time for routing 

any permutation is n + O ( f )  + Z(n), where q is the queue size. They also present a deterministic 

algorithm with a run time of 1.25n + 0($)  + o ( n ) .  The lower bound of 5 steps holds for routing 

on a 2D mesh also. Here again finding an optimal routing algorithm is open. 



4 k - k Routing and Cut Through Routing on MI 

In this section we prove a lower bound of 9 for k - k routing and cut through routing on a two 

dimensional mesh with fixed buses and match this lower bound with an algorithm whose run time 
k n  is 7 + 6(kn) for k - k routing and is 9 + 1 .5n f  Z(kn) for cut through routing, whenever k > 12. 

The algorithm we use resembles the one given by Rajasekaran in [36] but there are many crucial 

differences. The lower bound of % applies t o  k - k sorting as well. 

The Lower Bound: Consider a permutation in which we need t o  interchange packets in the left 

half of the mesh with packets in the right half. There are $ packets in each half. The interchange 

can occur only via row edges through nodes in column n / 2  or through the row buses. There are 

a total of n row buses and a total of n nodes in column n / 2 .  Realize that  the edge connections 

are bidirectional whereas only one packet can be broadcast along any bus a t  any time. Let the 

number of packets that  cross column n / 2  in either direction using edge connections be N 1 ,  and let 

the number of packets that  cross this column using broadcast buses be N 2 .  Clearly, N 1  + N2 = kn2 .  

The time needed for crossing is > maxi$, %). The minimum of this quantit.y is %. This leads 

t o  the following 

Lemma 4.1 k - k routing, cut through routing, and k - k sorting on an n x n mesh M j  need > % 
steps each. 

4.1 Routing on a Linear Array 

The algorithm for k - k routing on a 2D mesh consists of 3 phases where each phase corresponds to  

routing along a linear array. Here we state and prove a Lemma that  will prove useful in analyzing 

all the three phases of the mesh algorithm. 

Problem 1. There are a total of ekn + o ( k n )  packets in an n-node linear array (for some constant 

c 5 l), such that  the number of packets originating from or the number of packets destined for any 

successive i nodes is 5 cki + o ( k n )  (for any 1 5 i < n). Route the packets. 

Lemma 4.2 Problem 1 can be solved in  time % f 5 ( k n )  under the model Mf if k 2 2. 
Proof. Let the nodes of the array be named 1,2 , .  . . , n. Certain packets (call them special packets) 

will be routed using the bus, whereas the other packets will be routed using edge connections under 

the furthest destination first priority scheme. Whether or not a packet is special is decided by a 

coin flip. A packet can become special with probability i. 
Using Chernoff bounds, the number of special packets is + Z(kn). We could perform a prefix 

sums computation in o ( n )  time and arrive a t  a schedule for these special packets. Thus the special 

packets can be routed within the  stated time bound. 



Observe that the number of non special packets originating from or destined for any successive 

i nodes is $ki + Z(kn) (for any 1 5 i < n).  Let /3 = $. 
Consider only non special packets whose destinations are to the right of their origins. Let i be 

an arbitrary node. It suffices to show that any packet that ever wants to  cross node i from left to 

right will do so within 9 + E(kn) steps. Ignore the presence of packets that do not have to  cross 

node i. 

The number of packets that want to cross node i from left to  right is min{pki , pk(n- i)} +C(kn). 

The maximum of this number over all i's is f Z(kn). It immediately follows that the non special 

packets will be done in 9 + + Z(kn) steps. But our claim is slightly stronger. If node i is busy 

transmitting a flit at every time unit, the result follows. There may be instances when i may be 

idle. We could prove the claim using the involved proof given in [16]. But we give a very simple 

proof. 

Consider only non special packets whose destinations are to  the right of their origins. Let i be 

an arbitrary node. The proof makes use of the free sequence idea introduced in [43]. The number 

of non special packets with a destination to the right of i is pk(n - i )  + Z(kn). Let 11, 12,. . . , l, 
be the number of such packets, at the beginning, at nodes 1 , 2 , .  . . , n, respectively. Let ,m be such 

that l ,  > 1 and ern, 5 1 for ,m < cm' 5 n. Call the sequence . . , C, the free sequence. Notice 

that a packet in the free sequence will not be delayed by any other packet in the future. It is easy 

to  see that a t  least one new packet joins the free sequence at every time step. Moreover, if r is 

the leftmost node in which a packet (that has to cross i)  can be found, clearly, this left boundary 

moves roughly one position to the right every pk steps. More precisely, the left boundary moves 

2 t positions to  the right every @kt + Z(kn) steps (for any 1 5 t 5 n).  

Case  1 :  i < ;: Even if all the packets that originate to the left of i want to cross i ,  they can do 

so within Pki + Z(kn) time, since there are only these many packets to the left of i and the left 

boundary will move one step roughly every pk steps. (See the 2 statements immediately above 

Case 1.) 
Case  2: i > $: Here the claim is that all the packets that have to cross i will do so within 

pk(n - i)  + 2i - n + C(kn) steps. Clearly, after pk(n - i)  + C(kn) steps, all the non special packets 

that have t o  cross i will be in the free sequence. Also, the left boundary (i.e., the leftmost node in 

which a packet (that has to  cross i )  can be found) moves 2 t positions to  the right every Pkt +C(kn) 

steps (for any 1 5 t 5 n). Therefore, after Pk(n - i) + E(kn) steps, the maximum distance any 

packet (that has to  cross i) has to  travel, in order to  cross i is i - (n - 2 ) .  Thus the claim of Case 

2 follows. 

Case 1 and Case 2 immediately imply that all the non special packets will reach their destinations 
within + G(kn) steps. 

Corol lary 4.1 k - k routing (for any b > 2) on a (conventional) linear array can be performed in 

% steps using the furthest destination first priority scheme. 



4.2 Routing on an n x n Mesh 

Next we show that k - k routing can be completed using a randomized algorithm in time + o"(kn). 
This algorithm has three phases. This three phase algorithm will be employed later on in many 

other contexts as well. Call this algorithm Algorithm B. 

Algor i thm B 

To start with each packet is colored red or blue using an unbiased coin. The 

algorithm used by red packets is described next. Blue packets execute a sym- 

metric algorithm using, at any given time, the dimension unused by the red 

packets. Let q be any red packet whose origin is (i, j )  and whose destination 
is (T,s). 

P h a s e  I: q chooses a random node in the column of its origin (each such node 

being equally likely). If (z', j )  was the node chosen, it traverses along column 

j up to  this node. 

P h a s e  11: q travels along row s' up to  column s. 

P h a s e  111: The packet q reaches its destination traversing along column s. 

A blue packet in phase I chooses a random node in the row of its origin and 

goes there along the row. In phase I1 it traverses along the current column 

to  the row of its destination and in phase 111 it travels along the current row 

to its destination. Because of the MIMD model assumed in this paper, and 

because all the three phases are disjoint there will not be any conflict between 

blue and red packets. 

Our algorithm for k - I c  routing is Algorithm B with some slight modifications. We only describe 

the algorithm for red packets. Blue packets execute a symmetric algorithm. Routing of packets in 

phase I1 is done using the algorithm of section 4.1. The algorithm for routing in phases I and I11 is 

slightly different. We describe the algorithm for phase I and the same is used in phase 111 as well. 

Algor i thm for  phase  I: Consider the task of routing along an arbitrary column. Let A and I: be 

the regions of the first nodes and the last -& nodes of this n-node linear array, respectively. 

Let B be the region of the rest of the nodes in the array. Any packet that originates from A whose 

destination is in C and any packet that originates from C with a destination in A will be routed 

using the bus. Scheduling for the bus is done using a prefix sums operation. The rest of the packets 

are routed using the edge connections employing the furthest destination first priority scheme. 

T h e o r e m  4.1 The above algorithm for k - k routing runs in time % + iS(kn), the queue length 

being k + Z(k), for any k > 12. 

Proof.  Both the number of blue packets and the number of red packets is B(knZ, 1/2). Thus w.h.p. 

these two numbers will be nearly the same. Further, the number of blue (red) packets that will 



participate in row routing of phases I and I11 (phase 11) is B(kn, 112) each. Also, the number of red 

(blue) packets that participate in column routing of phases I and I11 (phase 11) is B(kn, 112) each. 

Thus using Lemma 4.2 (with t = 1/2) we can show that phase I1 can be completed in % + G(kn) 

steps, for any k 2 6. 

We claim that phase I and phase I11 can be completed within 2 + Z(kn) steps each, for any 

k 2 12. We only provide the analysis for phase I, since phase I11 is just the reverse of phase I. 

Analysis of phase I: Consider only blue packets and an arbitrary row. If i is any node in this 

row, it suffices t o  show that all the packets that ever want to cross node i from left to  right will do 

so within 2 + G(kn) steps. In the following case analysis we only obtain an upper bound for the 

number of packets that want to  cross i. But i may not be busy transmitting a packet at  every time 

unit. We could employ the proof technique of section 4.1 to show that the given time is enough 

even after accounting for possible idle times of i .  Observe that the number of packets that originate 

from region A with a destination in region C is 2 + 6(kn). 

Case 1. i 5 -&: The number of packets that have to cross node i from left to right is 5 

$ ("-'-:Ifi) + ~ ( k n ) .  This number is < %(f i -2)+6(kn)  = +a(kn), 
for any i in region A. 

Case 2. -& < i < n - A: In this case the number of packets that want to  cross i from 

left t o  right is 5 !$ (+) - 2 + G(kn). This number is no more than 2 + G(kn) 

for any i in region I?. 
k ' - " / a )  (q) + a(kn), Case 3. i > n - &: Number of packets that have to cross i is 5 ( 

which is 5 + G(kn) for any i in region C. 

Thus phase I (and phase 111) can be completed within + G(kn) steps. 

Queue size analysis. The total queue length of any successive logn nodes is 6 ( k l o g n )  (because 

the expected queue length at any single node is k implying that the expected queue length in 

logn successive nodes is klogn; now apply Chernoff bounds). One could employ the technique of 

Rajasekaran and Tsantilas [43] to distribute packets locally such that the number of packets stored 

in any node is 6 ( k ) .  The queue length can further be shown to  be k + G(k) using the same trick. 

Corollary 4.2 If k = O(nV) for some constant v < 1, the queue length of the above algorithm is 

only k + o(1) .  

The following Theorem pertains to k - k routing on r-dimensional meshes. 

Theorem 4.2 k-k routing on an r -  dimensional mesh can be performed within ?+O"(krn('-')l') 

steps, the queue length being k + Z(k), as long as k >_ 12. If k = O(nV),  the queue length is only 
k + G(1). 



Similar Theorems can be proven for cut through routing as well. The proofs of the following 

Theorems are omitted: 

Theorem 4.3 Cut thmugh routing can be completed in  time % + $n + G(kn),  the queue length 

being k + 5 ( k )  for any k 2 12. 

Theorem 4.4 Cut through routing on an r-dimensional mesh Mf can be performed in  % + ( r  + 
1): + 6(krn( ' - ' ) / ' )  steps, the queue length being k + G(k),  for any k > 12. If k = O ( n Y )  for some 

constant v < 1, the queue length is only k + 6(l) .  

5 k - k Routing and Cut Through Routing on Mr 

In this section we consider the problems of k -  k routing and cut through routing on M,. It turns out 

that % is a lower bound for these problems on M,.  Kaufmann, Rajasekaran, and Sibeyn [16] show 

that k - k routing and cut through routing can be performed in % + 6 ( k n )  and $ + 1.5n + G(kn)  

steps respectively. 
The algorithm used in [16] is nothing but Algorithm B. We could make use of the same algorithrn 

to route on M, also. In particular, we won't be making use of the reconfiguration facility at  all-we 

don't need to. The lower bound of $ also can be proven easily. Consider the task of exchanging 

the $ packets in the left half of the mesh M, with packets in the right half. All the packets (there 

are k n  of them) will have to  cross column f .  The time for crossing is reduced only if the horizontal 

bidirectional edges incident on the nodes of column f are used. Even then only two packets can 

cross through any node at  any time. Thus the lower bound follows. Therefore we have the following 

Theorem 5.1 9 is a lower bound for k - k routing, k - k sorting, and cut through routing on 

the mesh M,. W e  can perform k - k routing and cut through routing in  time % + Z(kn)  and 
kn -2- + 1.5n + G(kn), respectively, the queue length being k + G(k),  for any k 2 8 .  

Theorem 5.2 k - k routing on an r -  dimensional mesh M,  can be performed within 9 + 
6(krn( '- ' )")  steps, the queue length being k + G(k),  for any k 2 8.  If k = O ( n U ) ,  the queue 

length is only k + 6 ( 1 ) .  Cut through routing on an r-dimensional mesh can be performed in 
*R 2 + ( r  + l ) f  + d(krn( '- ' ) f ' )  steps, the queue length being k + G(k),  i f  k 2 8.  

6.1 Sorting on M f  

We show here that sorting of kn2  elements can be accomplished on an n x n mesh M j  with fixed 
buses in time that is only o ( k n )  more than the time needed for k - k routing w.h.p. 



Many optimal algorithms have been proposed in the literature for 1 - 1 sorting on the conven- 

tional mesh (see e.g. [23]). A 2n + o(n) step randomized algorithm has been discovered for sorting 

by Kaklamanis and Krizanc [14]. But 2n - 2 is a lower bound for sorting on the conventional 

mesh. Recently Rajasekaran and McKendall [38] have presented an n + o(n) randomized algorithm 

for routing on a reconfigurable mesh, where it was shown that sorting can be reduced to  routing 

easily if there exists a mechanism for broadcasting. Using this reduction, Krizanc, Rajasekaran, 

and Shende [17] have given an algorithm for Mf that runs in time n + 4: + G(n), the queue size 

being 2q. In this section also we adopt this reduction. 

Summary. Random sampling has played a vital role in the design of parallel algorithms for 

comparison problems (including sorting and selection). Reischuk's [46] sorting algorithm and the 

FLASHSORT of Reif and Valiant [45] are good examples. Given n keys, the idea is to: 1) randomly 

sample nc (for some constant E < 1) keys, 2) sort this sample (using any nonoptimal algorithm), 

3)partition the input using the sorted sample as splitter keys, and 4) to  sort each part separately 

in parallel. Similar ideas have been used in many other works as well (see e.g., [46, 45, 15, 14, 36, 

38, 17, 421). 

Let X = kl, kz,.  . . , k, be a given sequence of n keys and let S = {ki, ki, . . . , k t )  be a random 

sample of s keys (in sorted order) picked from X. X is partitioned into (s + 1) parts defined 

as follows. XI = {l E X : l < ki), X J  = (1 E X : kJ-l < 1 < kj} for 2 5 j 5 s, and 
X,+l = {l E X : 1 > kt). The following Lemma [46, 411 probabilistically bounds the size of each 

of these subsets, and will prove helpful to our algorithm. 

Lemma 6.1 The cardinality of each Xj (1 5 j 5 (s + 1)) is d(: log n).  

Next we describe our algorithm and prove its time bound. This algorithm is similar to  the one 

given in [38]. We only provide a brief summary of the algorithm. More details can be found in [38] 

or [15]. The mesh is partitioned into blocks of size n4I5 x n4I5. 

i) A random sample of size very nearly kn3I5 is chosen and broadcast to the whole mesh, such 

that each block stores a copy of all these splitter (i.e., sample) keys. 

ii) We compute the partial ranks of the sample keys in each block after sorting the block. 

iii) Then we perform a prefix sums operation on these partial ranks so as to  obtain the global 

ranks of the sample keys. 

iv) Now we route each packet to  an approximate destination that is a random node in an ap- 

propriate block of size n4I5 x n4I5. This approximate destination is very close to  its actual 

destination and depends on the two splitter keys between which it falls. In particular, the 
approximate destination of any packet will be at  the most a block away from it.s actual 

destination w .h.p. 



v) Next we sort the individual blocks and compute the rank of each key in the mesh. 

vi) Finally we route the packets to  their actual destinations. 

Analysis. The key t o  the analysis is the observation that  the global ranks of the sample keys can 

be computed in o(kn) steps. This observation was first made in [38] in connection with sorting on 

a reconfigurable mesh. 

Step i) takes 0(kn3I5) steps, since a single key can be broadcast to  the whole mesh in 2 steps 

using the buses. Step ii) involves sorting blocks of size n4I5 x n4i5 (together with the sample keys) 

and can be completed in 0(kn4I5)  time using any standard sorting algorithm. In step iii), the 

global rank of a single key can be computed in time 0(n1i5).  This can be done for instance by 

concentrating all the partial ranks of this key in a region of size n1I5 x n1/5. Thus the global ranks 

of all the keys can be determined in time 0(n1 i5  x kn3I5) = 0(kn4I5).  

In step iv), routing takes $ + o"(kn) steps using the algorithm of section 4.2. Sorting in step v )  

takes 0(kn4I5) time. Step vi) also can be finished in time ~ ( k n ~ / ~ )  because the actual destination 

of any key can be a t  the most one block away from where i t  is after step iv) (c.f. Lemma 6.1). 

Thus we have the following 

Theorem 6.1 k - k sorting on a n  n x n mesh with buses can be performed in % + 6(kn) steps, 

the queue length being k + 5(k), for any k 2 12. 

The above algorithm together with the routing algorithm given in section 3 yield the following 

theorem (which is a slight improvement over the algorithm of [17]). 

Theorem 6.2 1 - 1 sorting on the mesh Mi can be completed in time n + 2 + o"(n), the queue 
29 

size being q + Z(q).  

6 . 2  Sorting on MT 

The following Lemma due t o  Miller, Prasanna, Reisis, and Stout [30] deals with the problem of 

prefix computation and will be used in our algorithm. 

Lemma 6.2 Prefix computation on an n x n mesh MT (with one item per node) can be performed 

in O(1og n )  time. 

We prove now that  k - k sorting on MT can be done in % + 6(kn) steps. The idea is use t o  

make use of the randomized algorithm of section 6.1. Step i )  now also takes 0(kn3I5) time, since a 

single key can be broadcast in 2 steps. Step ii) takes 0(kn4I5)  time. Step iii) can be completed in 

~ ( n ~ / ~ l o g n )  time, since the global rank of a key can be computed in O(1ogn) time using a prefix 

computation (c.f. Lemma 6.2). Routing in step iv) takes time % + 6(kn) (c.f. Theorem 5.1). Steps 

v) and vi) can be performed in a total of 0(kn4I5)  time. Thus we get 



Theorem 6.3 k - k sorting o n  M, can be completed in % + G(kn) t ime,  the queue size being 

k + G(k), for any k 2 8. 

On the conventional mesh, there exists a randomized algorithm for k - k sorting that runs in 

9 + 2n + Z(kn) time [36]. 

7 Algorithms with Better Average Performance 

In this section we present algorithms for routing and sorting that perform better on average than 

the worst case behavior of algorithms presented in previous sections. The average case behavior 

assumed here is that each packet is destined for a random location (this notion being the same as 

the one assumed in [22]). Leighton [22] has shown that the greedy algorithm for 1 - 1 routing on 

the conventional mesh indeed runs in time 2n - o"(n), the queue size at. any node being no more 

than 4 plus the number of packets destined for this node. (The greedy algorithm referred to here 

is: a packet originating from ( 2 ,  j )  with a destination at ( r ,  s) is sent along row i up to column s, 

and then along column s up to  row T .  Also, the high probability involved in the definition of 6() 
here is over the space of all possible inputs.) 

In a conventional mesh, it is easy to see that if a single packet originates from each node and if 

this packet is destined for a random node, then there will be at least one packet that has to travel 

a distance of 2 2n - o(n) with high probability. Thus 2n - o(n) is a lower bound even on average 

(compared with the 2n - 2 lower bound for the worst case 1 - 1 permutation routing time). 

However, on a mesh with fixed buses, there seems to be a clear separation of the average case 

and the worst case. For instance, on a linear array 1 - 1 routing needs 9 steps in the worst case, 
3-\/5 n whereas in this section we show that on average it only takes F; 382n steps. We also prove 

similar results for routing on a 2 0  mesh, k - k routing, k - k sorting, and cut through routing. 

The following Lemmas are folklore (see e.g., [33, 231) and will prove helpful in our analysis: 

Let zl, ~ 2 , .  . . , Z, be O,1 valued independent random variables such that Prob.[zj = 11 = pj for 

1 < j < m. Let Sm = C s  z and the expectation of Sm be p = E[Sm] = Cy==l pj. We are 

interested in the probability that Sm is above or below its expectation. The following Lemma 

bounds the probability that Sm is below its mean. 

Lemma 7.1 For 0 < T < p ,  Prob.[Sm < T] 5 e - ( z - T ) 2 / ( 2 p ) .  

The next Lemma bounds the probability that Sm is above its mean. 

Lemma 7.2 For p < T < 2p, Prob.[Sm 2 T] < e - ( T - ~ ) 2 / ( 3 p ) .  



7.1 The Case of a Linear Array M j  

Problem 2. Let L be a linear array with n nodes numbered 1,2 , .  . . , n. There is a packet a t  each 

node to  start with. The destination of each packet could be any of the n nodes all with equal 

probability. Route the packets. 

3 - 6  Lemma 7.3 Problem 2 can be solved in time v n  + G(n) steps. 

Proof. Make use of the optimal algorithm given in section 2. The claim is that the algorithm will 

terminate within the specified time. 

For some fixed d, 1 5 d 5 n, let A stand for the first d nodes, f3 stand for the next (n  - 2d) 

nodes, and C stand for the last d nodes of L. 
From among the packets originating from region A, the expected number of packets that have 

to  travel a distance of d or more is ~n-d)+(n-d-')S"'+(n-2d+1~ 1 . 5 d Z  d  
n = d - - + z. From among the 

packets originating from region B, the expected number of packets that will travel a distance of d or 
n - 2 d ) ( n - 2 d + l )  more is n which simplifies to n-4d+4$ + 1 - %. Also, the expected number of packets 

that have to  travel d or more distance from region C is ( n - d ) + ( n - d - l ) + f ( n - Z d + l )  = d - t z. 1.5dZ d 
n 

Summing, the total expected number of packets that will travel a distance of d or more is 
= E~ = d 2 + n 2 - 2 d n + n - d  - - I n - d ) ( n - d + l l  

n n . Using Lemma 7.2, the actual number of packets is only 

G(n) more than the expectation. The algorithm will run for d' + G(n) time where d' is such that 

Ed, z d'. d' can be seen to  be no more than + O(1). 

7.2 The Case of a 2D Mesh Mf 

Problem 3. There is a packet to  start with a t  each node of an n x n mesh M,. The destination of 

each packet is a random node in the mesh, each such node being equally likely. Route tlhe  packet,^. 

Lemma 7.4 Problem 3 can be solved in time 2(2 - &)n + Z(n) z 0.536n $ G(n) using the greedy 

algorithm. The queue size at each node is no more than 2 plus the number of packets destined for 

that node. 

Proof. The greedy algorithm referred to is the following: Initially each packet is colored red or blue 

each color being equally likely. A red packet travels along the row of its origin up to its destination 

column in phase I. In phase I1 this red packet travels along its destination column to its actual 
destination. A blue packet executes a symmetric algorithm, i.e., it travels along the column of its 

origin in phase I and in phase I1 it travels along its destination row. 
Assume that the two phases of the greedy algorithm are disjoint. Then, each phase is nothing 

but routing along a linear array. The number of packets originating from any i successive nodes 
can be seen to  be $ + O(n). This fact, together with a computation similar to that. given in the 
proof of Lemma 7.3, implies that the expected number of packets that have to travel a distance of 



n-d)  n-d+l d or more in any of the phases is = Ed = ( 1, 1 + 6(n ) .  Thus, a single phase will terminate 

in time d' + 6(n) where d' is such that Ed, sz dl. One can see that d' is nearly = (2 - &)n + 6 ( n ) .  

The proof of the queue size is cumbersome. However, we could modify the greedy algorithm 

using the trick described in [44]. The idea is based on the fact that the expected queue size at the 

end of phase I a t  any node is 1. This in particular means that the total queue size in any successive 

ne nodes (for some constant E < 1) is nC + 6(.\/-). Thus we could group the processors in 

each row into groups of n' processors each, and locally distribute packets destined for each group. 

The extra queue size then will not exceed 2 w.h.p. 

Observations. Notice that the expected run time of the greedy algorithm is less than the lower 

bound for the worst case input. This is also true for routing on a linear array. Thus in the model 

Mf, there is a clear separation between the average case and worst case routing. 

7.3 A Lower Bound 

3 - 6  As far as routing on a linear array is concerned, 9, - B(n) can be seen to  be a lower bound 

as well for the expected running time. (This is just an application of Lemma 7.1 together with the 

expected computation done in the proof of Lemma 7.3)  

One could prove a similar lower bound on the expected run time of routing on a 2D mesh using 

the greedy algorithm. A tedious but routine calculation shows that the expected number of packets 

I 4 d3 that have to  travel a distance of d or more in a 2D mesh is = Ed rc; nZ 1 - 2 5  + - is]. 
There are a total of 2 n  buses in the mesh. Therefore, a lower bound for routing is d' - G(n) where 

d' is such that Ed, z 2nd'.  Such a d' can be seen to be sz 0.386n. But this lower bound is not tight 

since a packet may have to  take two buses before it reaches its destination. But  the above proof 

uses only the fact that some packets will have to take a bus at least once. 

7.4 Random Routing on M, 

On an n x n mesh M,, if a t  the most one packet originates from any node and the destination of 

each packet is random, we could make use of the last two phases of Algorithm B. There will be only 

+ 6 ( n )  packets that perform phase I1 (phase 111) along any row (column). Therefore each phase 

can be completed in q + 5(n) time; we just perform a prefix computation followed by a broadcast 

of packets one at  a time. Therefore we obtain 

Theorem 7.1 R a n d o m  routing o n  M, can be done in n + Z(n) t ime ,  the queue size being 6(1) .  

7.5 k - k Routing, k - k Sorting, and Cut Through Routing on M j  

In this section we show that the greedy algorithm for k - k routing indeed has a run time of 
kn 6 + 6 ( k n )  on a random input. The queue size can also shown to be k + 6 ( k )  using the ideas given 
in section 7.2 



The greedy algorithm referred to here is also the last two phases of Algorithm B. Scheduling 

for the bus in both the phases is done exactly as in phase I of algorithm in section 4.2. 

Theorem 7.2 The above greedy algorithm terminates in an expected % + O(kn) steps and the 

queue length can be adjzlsted to be k + Z(k),  for any k 2 12. 

Proof. Phase I1 and Phase I11 of Algorithm B (as applied to  the random case) can be analyzed 

along the same lines as that of phase I in section 4.2. This is because on a random input, routing 

of phase I1 as well phase I11 correspond very nearly to the problem of randomizing a linear array 

(as in phase I of section 4.2), for a very large fraction of all possible inputs. The queue size can 

also be analyzed using the trick employed in section 7.2. 

Similarly we can also prove the following 

Theorem 7.3 Cut through routing takes an ezpected %+n+i5(kn) steps using the greedy algorithm, 

the queue length being k + Z ( k ) ,  for any k 2 12. 

Theorem 7.4 k - k sorting can be performed i n  an ezpected % f G(kn) steps on a random input, 

for any k 2 12. 

A Lower Bound. Consider a random k - k routing problem. The expected number of packets 

that have t o  cross from the left half of the mesh to  the right half as well as the number of packets 

that have to  cross from the right half to the left half is clearly $. Using Lemma 7.1, the number 

of packets that have to  cross from the left half to the right half is a t  least $ - i5(kn2). These 

packets can cross only using the row buses or via the nodes in column $ using edge connections. 

Let the number of packets that cross column 5 in either direction using edge connections be N 1  
and let the number of packets that cross this column using broadcast buses be N z .  Notice also that 

NI  + N2 > - C(kn2).  The time needed for crossing is at  least mau $, 2 . The minimum { "  " )  
of this quantity is % - G(kn). This lower bound establishes that the greedy algorithms for k - k 

routing, k - k sorting, and cut through routing are indeed very nearly optimal on average. 

7.6 k - k Routing, k - k Sorting and Cut Through Routing on M, 

Consider the problem of k - k routing on M,. At the most k packets originate from any node and 

the destination of any packet is random. For this problem it turns out that the greedy algorithm 

runs in time $ + Z(kn) ,  for any k 2 8. $ - B k n )  is a lower bound for routing as well. 

The lower bound can easily be seen from a count of how many packets will have to cross from 

the left half of the mesh to the right half and vice-versa. Expected number of packets that will 
cross from one side to  the other is F. Applying Lemma 7.1, this number is 2 $ - G(kn).  These 

packets can only cross using the nodes in column and hence the lower bound follows. 



We make use of the last two phases of Algorithm B. Packets are routed using the furthest 

destination first priority scheme. We don't even have to  use the reconfiguration facility. 

Consider the red packets and phase 11. There are $ + G(kn) red packets being routed along any 

row. If i is any node in an arbitrary row, the number of packets that will cross i from left to right 

is $? + Z(kn). The maximum of this over all i's is 9 + G(kn). Using an argument similar to 

the one used in the proof of Lemma 4.2, we conclude that phase I terminates in 9 + o"(kn) time. 

Similar analysis can be done for phase 11 and red packets yielding the following 

Theorem 7.5 Random k - k routing on M, can be completed in $ + o"(kn) time, the queue size 

being k + Z(k), for any k > 8. 

Observation Realize that in the above algorithm we haven't made use of the reconfiguration 

facility at  all. Therefore, the above Theorem holds for the conventional mesh as well. 

The following Theorem is now easy: 

Theorem 7.6 k - k sorting and cut through routing on MT can be realized in time % + o"(kn) and 
k n  + n + Z(kn), respectively assuming random inputs, for any k 2 8. 

8 A Logarithmic Time Sorting Algorithm for Mf 

In this section we show that sorting of n keys can be performed on an n x n x n mesh or on an 

n2 x n2 mesh with fixed buses can be performed in O(1ogn) time. The algorithm for sorting is 

based on a subroutine for adding n numbers in O(1ogn) time. The idea is to  compute the rank of 

each key and route the key whose rank is i to node i (for i = 1 , 2 , .  . . , n).  We provide details below: 

(Some notations: Let (*, *, t) stand for the whole mesh, (i, c ,  *) stand for the 2D submesh in which 

the first coordinate is i. Similar notations apply to all the other 2D submeshes. Let (*, j ,  k )  stand 

for the one dimensional submesh (also called a 'row' or a 'column') in which the second and third 

coordinates are j and k respectively. Similar notations apply to all other ID submeshes.) 

To obtain the sum of n numbers using an n x n mesh: Consider n numbers bl ,  b 2 , .  . . , b, 
that we want to  compute the sum of. Let the nodes in the 2D mesh be named (i ,  j ) ,  1 < i, j < n. 

b; is input at  node (i, 1) for 1 5 i 5 n. The following Lemma is due to  Kumar and Raghavendra 

[18]: 

Lemma 8.1 The sum of n numbers can be computed in O(1ogn) time using an n x n mesh Mf. 

Computing Ranks using an n x n x n mesh: Let kl, k2, .  . . , k, be the given n keys. We use a 

submesh of size n x n to compute the rank of each key. Each node in the mesh is named with a 

triple ( i ,  j , ! ) ,  (1 < i, j , l <  n). Assume that the input is given in the processors ( i ,  1, l), 1 5 i 5 n 

one key per processor. The algorithm has the following steps: 



a Step 1. Broadcast ki along the row (i, 1, *) (for i = 1,2,  . . . , n). This takes one unit of time. 

Now each 2D mesh of the form (*, * , e )  (for e = 1,2,  . . . , n) has a copy of the input. 

Step 2. Submesh (*, * , t )  computes the rank of ke (for ! = 1 ,2 , .  . . , n)  in O(1og n )  time as 

follows: Broadcast ke to  the row (*, 1,t) .  Processors in this row compare ke with every key 

in the input. In particular, processor (i, l,!) computes bi,e = 'Is ki 5 kt?'. Processors in the 

submesh (*, *, t )  add up the n bits bl,e, b2,e , .  .. , b,,e, to obtain the rank of kt (using Lemma 

8.1). 

Routing: After the above rank computation, the rank of key kt is available in processor (1, l,!) 

(for t = 1,2, .  . . , n). We make use of the 2D submesh (*, 1, t) to  route the packets in O(1) time as 

follows: Broadcast packet kt along row (*, 1, t )  (for l = 1,2 , .  . . , n). Now broadcast the key whose 

rank is i along the row (i, I ,*)  (for i = 1,2, .  . . , n). After this broadcast the n numbers are available 

in the row (+, 1 , l )  in sorted order. 

Thus we have the following 

Theorem 8.1 Sorting of n keys can be performed on an n x n x n mesh with fixed buses in time 

O(1og n),  the queue size being 2. 

Along the same lines we can prove the following 

Theorem 8.2 Sorting of n keys can be performed on an n2 x n2 mesh Mf in O(1og n)  time, the 

queue sire being 2. 

9 An Optimal Randomized Selection Algorithm on Mf 

In this section we show that selection on an n x n mesh Mf can be performed within 6(n1I3)  steps. 

The problem of selection is: Given n2 elements from a linear order (one element per node of the 

mesh), and an integer i 5 n2,  find the ith smallest element. The best known previous algorithm 

is due to  Kumar and Raghavendra [18] and it runs in ~ ( n ' / ~ ( l o ~  n)2/3) time. In [18, 511, a lower 

bound of fl(n1i3) is proven for selection and related problems and hence our selection algorithm 

is optimal. Our algorithm also runs in an optimal & , 1 / 4 )  time on an n5j4 x n3I4 mesh Mf. In 

contrast, the best known previous selection algorithm on an n5I4 x n3I4 mesh had a run time of 

0 (n1I4 log n)  [4]. 

Randomized selection algorithms have a rich history. Floyd and Rivest [8] presented an optimal 

randomized sequential algorithm for selection. Followed by this work, Reischuk [46] and Vishkin 

[56] showed how to perform selection in parallel on various models. Recently, Rajasekaran [35] 

gave an optimal selection algorithm for the hypercube. More recently, Kaklamanis, et. al. [15] 

have presented an efficient selection algorithm for the MIMD mesh that runs in 1.22n + G(n) steps. 



All these randomized algorithms have the following general scheme: 1) Sample o ( n )  keys from the 

input; 2) Sort the sample and identify two keys in the sample (call these C1 and t 2 )  such that the 

element to  be selected has a value in between el and C2 w.h.p.; 3) Eliminate all the keys from the 

input whose values fall outside the range [el,e2]; and 4) Finally perform an appropriate selection 

in the set of remaining keys. 

We also use a variation of this scheme in our algorithm. But the implementation is very different 

from previous approaches (such as [35, 151). The following Lemma from Kumar and Raghavendra 

[18] will be helpful in our algorithm: 

Lemma 9.1 Prefix sums computation of n2 elements on  an n x n mesh Mf can be performed 

within ~ ( n ' / ~ )  time ( in row major or snake-like row major ordering). 

Let S = {kl ,  k2, . . . , k,} be a random sample from a set X of cardinality N .  Let 'select(X, i)' 

stand for the i th smallest element of X for any set X and any integer i. Also let k i ,  ki, . . . , k: be 

the sorted order of the sample S. If r; is the rank of k: in X and if IS1 = s, the following Lemma 

[41] provides a high probability confidence interval for r;. 

Lemma 9.2 For every a ,  Prob. ( / r ,  - i t 1  > ca og N < N-" for some constant c .  3J-) 
INPUT: n2 elements (one element per node), and an i (1 5 i 5 n 2 ) .  

OUTPUT: The i th smallest element from out of the n2 input elements. 

The Algorithm 
In the following algorithm each element (or key) is alive to  start with. 

repeat forever 

a Step 1. Count the number of alive keys usin.g the prefix sums algorithm. Let N be this 

number. If N is 5 n1l3 then quit and go to Step 7; 

n1 / 3  Step 2. Each alive element includes itself in a sample S with probability 7. The total 

number of keys in the sample will be 6(n1/3); 

Step 3. Concentrate the sample keys in a square submesh and sort this submesh. Let tl be 

select(S, i f i  - 6 )  and let Cz be select(S, i* + S), where S = d J m  for some constant d 

(> ccu) to  be fixed; 

Step 4. Broadcast el and l z  to the whole mesh; 

Step 5.  Count the number of alive keys < Cl (call this number N1); Count the number of 

alive keys > l2 (call this number N2); If i is not in the interval ( N I ,  N - Nz], go to  Step 2 

else let i := i - N1; 



Step 6. Any alive key whose value does not fall in the interval [el, 12] dies; 

end repeat 

Step 7 

Concentrate the alive keys in a square submesh and sort i t ;  Output the i th smallest key 

from this set. 

Theorem 9.1 The above selection algorithm runs in Zj(n1/3) time. 

Proof. We first show that  the repeat loop is executed no more than 11 times w.h.p. Followed by 

this, we show that  each of the seven steps in the algorithm runs in 6(n'I3) time each. 

An application of Lemma 9.2 implies that if d is chosen t o  be large enough (> ca),  the ith 

smallest element will lie between el and l2 w.h.p. Also, the number of keys alive after j runs of the 

repeat loop is 6 ( & ( f i ) j ) .  After I1 runs, this number is 6 (n116( f i )11)  = d(n'I3). 

Step 1 takes 0(n1I3) time since it involves just a prefix sums computation. Step 2, Step 4, and 

Step 6 take O(1) time each. In Step 3, concentration of keys can be done by broadcasting each 

sample key. Realize that  a single packet can be broadcast to  the whole mesh in 2 steps, and that  a 

schedule for the sample keys can be determined with a prefix sums computation. Also, sorting can 

be done in O(1ogn) time (c.f. Theorem 8.2). Thus this step runs in 6(n1/" time. Step 5 involves 

two prefix sums computations and hence can be finished within 0 (n ' I3 )  time. Finally, Step 7 is 

similar t o  Step 3. 
In an analogous way the following Theorem can also be proven: 

Theorem 9.2 Selection on an n5I4 x n3I4 mesh M j  can be performed in an  optimal 6(n'I4) time. 

10 Selection on Mr 

The problem of selection on M, has been studied by many researchers [7, 6, 91. ElGindy and 

Wegrowicz have presented an O(log2 n )  time algorithm. Doctor and Krizanc's algorithms can 

select in 1) O(blog* n)  time, given that the numbers are at the most b bits long; or 2) O(1ogn) 

expected time assuming that  each input permutation is equally likely; or 3) Randomized O(log2 n) 

time with no assumptions. Hao, MacKenzie, and Stout [9] show that  selection can be done in: 1) 

O((b/ log b) maxilog* n -log* b, 1)) time given that  the numbers are b-bits long; or 2) O(log* n)  time 

assuming a uniform distribution on all possible inputs; or 3) O(1ogn) time with no assumptions. 

In this section we show that  selection on M, can be performed in: 1)  O(log* n )  expected time 

assuming that  each input permutation is equally likely (Though the same result, is present.ed in [9], 

no details of the algorithm have been given in the proceedings; o u ~ .  work is independent); and 2)  

Randomized O(log* nloglog n)  time, with no assumptions. 



10.1 Some Basics 

The following Lemmas will be employed in our selection algorithm: 

Lemma 10.1 Jang, Park, and Prasanna [lo]: If each node i n  an n x n mesh MT has a bit, the 

number of 1's can be computed i n  O(log* n) time. 

Lemma 10.2 Jang and Prasanna [Ill: For any 1 5 r 5 n, elements in  the first r rows of an n x n 

mesh MT can be sorted in  O(r)  time. 

Problem 4. Consider an n x n mesh M r .  Say there are C; elements arbitrarily distributed in row 

i ,  for 1 5 i 5 n. Let C = max{el, 12, . . . , l,). For each i, concentrate the elements of row i in the 

first 1; columns of row i. 

Lemma 10.3 Problem 4 can be solved i n  time O(l )  if C is given. 

Proof. It is easy to  solve Problem 4 in O(1ogn) time using Lemma 6.2. In order to solve this 

problem in O(C) time we use the following algorithm: There are l rounds in the algorithm (for 

t = 1,2,  ..., el. 

f o r t  := 1 t o e  do 

(* Computation is local to each row i, 1 5 i 5 n *) 

Step 1. If node j in row i has an element, then it sends a 1 to  its right,; a t  
the same time it opens its switch so that any message from left is blocked. If 

node j has no element, it simply closes its switch so that any message from 

left is simply forwarded to the right. 

Step 2. If a node has an element and if it receives a 1 from left it simply 

accepts failure in this round. The node with an element which does not receive 

a 1 from left broadcasts its packet so that it can be concentrated in column t 

of row i. Realize that there can be only one such node that get,s to broadcast, 

in any round. The node that gets to broadcast will not. participate in any 

future rounds, whereas every other node with an element will participate in 

the next round. 

Clearly, the above algorithm runs correctly in O(C) time. The above algorithm, though very 
simple, brings out the power of reconfiguration. 

Lemma 10.4 Problem 4 can be solved in O(C +loge log* n)  time if B is unknown. Within the same 

time, we will also be able to estimate l to within a factor of 2. 



Proof. The idea is t o  make use of the same algorithm with a slight modification. We make use of 

the 'doubling' trick. We guess a value of 2 for L? and run two rounds of the above algorithm. At the 

end of two rounds we make use of Lemma 10.1 to  check if all the elements have been concentrated. 

This checking takes O(logf n )  time. 

Even if there is a single packet that has not been concentrated, we increase the guess for & to 

4 and perform 2 more rounds of the algorithm, and so on. Clearly, the number of rounds made is 

< 2& and the number of checkings done is O(log1). Thus the claim follows. The second part of the 

Lemma is obvious. Call this algorithm as Algorithm C. U. 

Corollary 10.1 Say there are only & elements i n  an n x n mesh Mr .  Then we could compute the 

prefix sums of these elements in  time O(1)  i f  & is given, or i n  time O ( t  + log* nloge) if L is not 

known. 

Lemma 10.5 If i is any row and j is any column of an n x n mesh M T ,  and if each node of row 

i has an  element, then, we can copy the elements of row i into column j i n  constant time. 

Proof. Brodcast the elements of row i along the columns so that elements of row i appear along 
the diagonal. Now perform another broadcast of the diagonal elements along the rows. 

10.2 The Algorithm for the Uniform Case 

The selection algorithm to be described assumes that each input permutation is equally likely and 

is similar t o  the one given in section 9. But there are many important differences. More details 

follow: 

Each element (or key) is alive to start with. 

repeat forever 

Step 1. Count the number of alive keys using the algorithm of Lemma 10.1. Let N be this 

number. If N is 5 n1I3 then quit and go to Step 7; 

n 1 / 3  Step 2. Each alive element includes itself in a sample S with probability 7. The total 

number of keys in the sample will be 8(n1I3); 

a Step 3. Concentrate the sample keys in row i tightly to the left (employing Lemma 10.4), 

for each 1 < i < n in parallel. Let & be the upper bound obtained for the maximum number 

of sample keys in any row. Sort the first l columns using the algorithm of Lemma 10.2. Let 

el be select(S, i$ - 6) and let e2 be select(S, i $  + +), where 6 = d , . / m  for some constant 

d (> crr) to  be fixed; 

a Step 4. Broadcast el and l2 to the whole mesh; 



Step 5. Count the number of alive keys < el (call this number N1); Count the number of 

alive keys > t2 (call this number N2); If i is not in the interval (N1, N - N2], go to Step 2 

else let i := i - N1; 

a Step 6. Any alive key whose value does not fall in the interval [el, 12] dies; 

end repeat 
Step 7 

Concentrate the alive keys in any row tightly to  the left (c.f. Lemma 10.4); If ! is an 

estimate on the maximum number of keys in any row, sort the first t columns using 

Lemma 10.2. Output the i th smallest key from this set. 

Theorem 10.1 The above algorithm selects in O(log* n )  expected time assuming that each input 

permutation is equally likely. 

Proof. Like in the proof of Theorem 9.1, the repeat loop is executed no more than 11 times w.h.p. 

The crucial fact is that  each of the above seven steps can be performed in 6(log* n )  time. This 

follows from the fact that  the value of l in any iteration is G(1). Notice that  in any iteration, there 

are only 8(n1/3) sample keys and these sample keys will be uniformly distributed among all the 

n rows. Expected number of packets in any row will be @(+), immediately implying that  the 

number of sample keys in any row is 6(1). 
Steps 2, 4, and 6 take O(1) time each. Counting in steps 1 and 5 takes O(log* n )  time (c.f. 

Lemma 10.1). Given that  l is 6(1), steps 3 and 7 take &log* n) time each (c.f. Lemma 10.4). 

Thus the theorem follows. EI 

10.3 A Selection Algorithm for the General Case 

The algorithm t o  be used for the general case is the same as the one given in section 10.2, with 

some crucial modifications. In the average case, in any iteration, the alive keys will be uniformly 

distributed among the nodes of the mesh. Thus an expected O(1) number of iterations (of the 

repeat loop) sufficed. The same need not hold in general. For instance, the alive keys after the first 

iteration may appear concentrated in a small region of the mesh (e-g., in a a x submesh). 

The same might be the case after every iteration. Thus it seems R(log1ogn) iterations will be 

needed. Also, concentrating the sample keys (in order to  identify ll and C 2 )  now becomes more 

complicated, for the same reason namely, these sample keys may not appear uniformly distributed 

among the nodes. Next we present the algorithm: 

Each element (or key) is alive to  start with. 

repeat forever 



r Step 1. Count the number of alive keys using the algorithm of Lemma 10.1. Let N be this 

number. If N is < loglogn then quit and go to  Step 7; 

N' / 6  
a Step 2. Each alive element includes itself in a sample S with probability 7. The total 

number of keys in the sample will be 8 ( ~  

r Step 3. 

3.1 Concentrate the sample keys as follows: Some of the keys will be concentrated 

along the rows and the others will be concentrated along the columns. This is 

done by simultaneously concentrating the keys along the rows as well as along the 

columns. I.e., perform one round of Algorithm C concentrating along the rows, 

followed by one round of Algorithm C concentrating along the columns, and so on. 

If a node succeeds in concentrating its element along the row (say), this element 

will be eliminated from future consideration. In particular, in the next run, this 

node will behave as though it does not have any element. Concentration stops when 

each sample key has been concentrated either along the row or along the column. 

Let r and c stand for the maximum number of rows and columns, respectively, used 

for concentrating the sample keys. Let l = max{r, c). (We'll show that C is 0( I) .)  

3.2 Now copy the l or less rows of sample keys into columns (using the algorithm 

of Lemma 10.5). This copying is done one row at a time. 

3.3 Sort the 5 2 l  columns of sample keys using Lemma 10.2. Let C1 be select,(S, 26- 
6) and let l2 be select(S, i% + S), where 6 = d Jm' for some constant d (> ccu) 

to  be fixed; 

a Step 4. Broadcast el and l2 to the whole mesh; 

a Step 5. Count the number of alive keys < ll (call this number N1); Count the number of 

alive keys > l2 (call this number N2); If i is not in the interval (N1, N - N2], go to Step 2 

else let i := i - N1;  

r Step 6. Any alive key whose value does not fall in the interval [el, t2]  dies; 

end repeat 

Step 7 

Concentrate the alive keys in the first row. This can be done for instance by broadcasting 

one key at a time. Realize that if there are only l elements in the mesh, we can perforrri 



a prefix computation (c.f. Corollary 10.1) to  arrive a t  a schedule for the broadcasts in 

O( t )  time. Output the i th  smallest key from this set. 

Theorem 10.2 The above algorithm runs in time 6(log* nloglog n). 

Proof. It suffices to  show that the value of t in Step 3.1 is 6 (1) .  The rest of the steps can be 

analyzed as before. 

Let a be the  probability parameter (i.e., the algorithm will terminate in the specified amount 

of time with probability 2 1 - n-"). If there are N alive keys a t  the beginning of some iteration 
~ 1 1 6  of the repeat loop, then each alive key will be included in the sample with probability 7. 

How many rows will have more than 12 sample keys? Realize that  if there are pi alive keys in 

some row i, the expected number of sample keys from this row will be p , ~ - 5 / %  Classify a row 

as either dense or sparse, depending on whether it has > N ~ / ~  active elements or 5 N4I6 active 

elements, respectively. For any sparse row, applying Chernoff bounds (equation l ) ,  the number of 

sample keys in this row can not be more than 6P with probability > ( 1  - N W P ) ,  for any /3 1 1. 

Since there are a t  the most N rows in the mesh, the expected number of sparse rows that have 

> 12 sample keys is < N - l .  This in turn means that the number of sparse rows with > 12 sample 

keys is 6(1). That is, every other row with > 12 elements has t o  be dense. 

Sample keys in the sparse rows (except for 6 ( 1 )  of them) will potentially get concentrated along 

the rows. Also notice that  there can be at the most ~ ' 1 ~  dense rows. Even if these dense rows 

and the sparse rows with > 12 sample keys are such that  each column (when restricted to  these 

rows) is completely full with active elements, the number of sample keys in each column can only 

be 6 ( 1 )  and hence these sample keys will get concentrated along the columns. 

In the above algorithm, if N is the number of alive keys a t  the beginning of any iteration, then 

a t  the end of this iteration the number of alive keys is no more than N ' ' / ' ~  w.h.p. Here, the high 

probability is with respect t o  the current size of the problem, i.e., N. Therefore we conclude that  

the expected number of iterations of the repeat loop is O(log1ogn). We can also show that the 

number of iterations is 6(loglog n). Moreover, the above analysis shows that each iteration takes 

6(log* n)  time. 

A Note on Optimality: I t  is easy to  see that  a single step of computation on the mesh M, 
can be simulated in O(1) time on the Parallel Comparison Tree ( P C T )  model of Valiant [54]. The 

effect of reconfiguration can be achieved for free on the PCT, since the later charges only for the 

comparisons performed. Thus it will follow that  selection needs R(log1ogn) time on the mesh 

M, using any deterministic comparison based algorithm. (The same fact is mentioned in [9] as 
well). We believe that  R(log1og n)  is a lower bound for selection on M, even using a randomized 

comparison algorithm. This is an interesting open problem. 



11 Conclusions 

In this paper we have addressed numerous important problems related to  packet routing, sorting, 

and selection on a mesh with fixed buses and on a mesh with reconfigurable buses. Many existing 

best known results have been improved. Some remaining open problems are: 1)  Is n a lower 

bound for the worst case partial permutation routing time on a 21) mesh M, or Mf?; 2) Can 

the randomized algorithms given in this paper be matched with deterministic algorithms?; 3) Can 

sorting be performed in time asymptotically less than log n on a fixed dimensional mesh Mf with 

a polynomial number of processors? 
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