
Old Dominion University
ODU Digital Commons

Computer Science Theses & Dissertations Computer Science

Spring 1996

Visibility-Related Problems on Parallel
Computational Models
Himabindu Gurla
Old Dominion University

Follow this and additional works at: https://digitalcommons.odu.edu/computerscience_etds

Part of the Computer Sciences Commons

This Dissertation is brought to you for free and open access by the Computer Science at ODU Digital Commons. It has been accepted for inclusion in
Computer Science Theses & Dissertations by an authorized administrator of ODU Digital Commons. For more information, please contact
digitalcommons@odu.edu.

Recommended Citation
Gurla, Himabindu. "Visibility-Related Problems on Parallel Computational Models" (1996). Doctor of Philosophy (PhD),
dissertation, Computer Science, Old Dominion University, DOI: 10.25777/enxv-sp59
https://digitalcommons.odu.edu/computerscience_etds/78

https://digitalcommons.odu.edu?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F78&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience_etds?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F78&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F78&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience_etds?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F78&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F78&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience_etds/78?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F78&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu

VISIBILITY-RELATED PROBLEMS ON PARALLEL

COMPUTATIONAL MODELS

by

Himabindu Gurla
B.E. (CS), July 1991, Osmania University, India

A Dissertation Submitted to the Faculty of
Old Dominion University in Partial Fulfillment of the

Requirements of the Degree of

DOCTOR OF PHILOSOPHY

COMPUTER SCIENCE

OLD DOMINION UNIVERSITY
April 1996

App o

:phan Olariu (Advisor)

T. -ScSw in g (A d y fso r’l

larry. son

hester E. Grosch

Przemysla*^ Bogacki

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

ABSTRACT

VISIBILITY-RELATED PROBLEMS ON PARALLEL

COMPUTATIONAL MODELS.

Himabindu Gurla
Old Dominion University, 1996

Advisors: Drs. Stephan Olariu and Janies L. Schwing

Visibility-related problems find applications in seemingly unrelated and diverse fields

such as computer graphics, scene analysis, robotics and VLSI design. While there

axe common threads running through these problems, most existing solutions do

not exploit these commonalities. With this in mind, this thesis identifies these com

mon threads and provides a unified approach to solve these problems and develops

solutions that can be viewed as template algorithms for an abstract computational

model. A template algorithm provides an architecture independent solution for a

problem, from which solutions can be generated for diverse computational models.

In particular, the template algorithms presented in this work lead to optimal solu

tions to various visibility-related problems on fine-grain mesh connected computers

such as meshes with multiple broadcasting and reconfigurable meshes, and also on

coarse-grain multicomputers.

Visibility-related problems studied in this thesis can be broadly classified

into Object Visibility and Triangulation problems. To demonstrate the practical

relevance of these algorithms, two of the fundamental template algorithms identified

as powerful tools in almost every algorithm designed in this work were implemented

on an IBM-SP2. The code was developed in the C language, using MPI, and can

easily be ported to many commercially available parallel computers.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Ill

To my father

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

ACKNOWLEDGEMENTS

This work could not be completed without the help of many individuals, to whom

I would like to express my appreciation. First and foremost, I would like to thank

my advisors, Drs. Stephan Olariu and James Schwing, who have put a great deal

of time and effort into the guidance of this work. I would like to thank Dr. Schwing

for his help in conducting the experiments on IBM-SP2 at NASA langley.

Next, I would like to convey my sincere thanks to the other members of

my dissertation committee, Drs. Larry Wilson, Chester Grosch and Przemyslaw

Bogacki. Their expertise, thorough reviewing and valuable suggestions have also led

to a greatly improved dissertation.

I wish to extend my appreciation to the faculty of the department, and my

fellow students for providing a stimulating research environment.

I am grateful to my family for their encouragement and support. Finally,

special thanks to my husband, Adarsh, for his understanding and patience during

the several evenings and weekends required to complete this work.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

V

TABLE OF CONTENTS

LIST OF TABLES viii

LIST OF FIGURES ix

1 INTRODUCTION 1

1.1 OVERVIEW... 1

1.2 STATE OF THE A R T ... 8

2 THE MODELS OF COMPUTATION 12

2.1 ENHANCED MESH-CONNECTED COM PUTERS............................ 13

2.1.1 MESHES WITH MULTIPLE BRO A D CA STIN G13

2.1.2 RECONFIGURABLE M ESHES... 15

2.2 COARSE-GRAIN M ULTICOM PUTERS... 17

3 OBJECT VISIBILITY ON THE ABSTRACT MODEL 23

3.1 ENDPOINT AND SEGMENT V ISIB ILIT Y ...26

3.2 DISK V ISIB IL IT Y ... 41

3.3 RECTANGLE V IS IB IL IT Y ... 43

3.4 DOMINANCE GRAPH ..46

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

4 OBJECT VISIBILITY ON ENHANCED MESHES 50

4.1 TOOLS FOR THE M M B ...51

4.2 OBJECT VISIBILITY ALGORITHMS ON THE MMB53

4.3 TOOLS FOR THE R M E S H ..63

4.4 OBJECT VISIBILITY ALGORITHMS ON THE R M E S H 64

5 OBJECT VISIBILITY ON COARSE-GRAIN MULTICOMPUT

ERS 68

5.1 T O O L S ... 69

5.2 OBJECT VISIBILITY ALGORITHM S...78

6 TRIANGULATION ON THE ABSTRACT MODEL 83

6.1 SPECIAL MONOTONE P O L Y G O N S ...87

6.2 SET OF P O IN T S... 93

6.3 CONVEX REGIONS WITH ONE CONVEX H O L E95

6.4 CONVEX REGIONS WITH RECTANGULAR HOLES........................100

6.5 CONVEX REGION WITH ORDERED SEG M EN TS........................... 107

7 TRIANGULATION ON ENHANCED MESHES 109

7.1 TOOLS FOR THE MMB ...109

7.2 TRIANGULATION ON THE MMB ..110

7.3 TOOLS FOR THE R M E S H ..116

7.4 TRIANGULATION ON THE R M E S H ...116

8 TRIANGULATION ON COARSE-GRAIN MULTICOMPUTERS 121

8.1 T O O L S ... 121

8.2 TRIANGULATION A LG O R IT H M S..128

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

v ii

9 IMPLEMENTATION NOTES AND CONCLUSIONS 133

9.1 EXPERIMENTAL R E SU L T S..133

9.2 C O N C L U SIO N S.. 139

BIBLIOGRAPHY 144

VITA 155

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

LIST OF TABLES

TABLE PAGE

3.1 Illustrating Stage 1 of the algorithm ...38

3.2 Illustrating Stage 2 of the algorithm ...39

3.3 The solution to the endpoint visibility problem ... 40

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

LIST OF FIGURES

FIGURE PAGE

2.1 A mesh with multiple broadcasting of size 4 x 5 14

2.2 A reconfigurable mesh of size 4 x 5 .. 16

2.3 A coarse-grain m ulticom pu ter... 18

2.4 Illustration of broadcast, scat ter/gatner communication primitives . . 19

2.5 Illustration of all-gather and all-to-all communication primitives . . . 21

3.1 Illustrating the endpoint and segment visibility p ro b lem s..................28

3.2 The set of segments in Figure 3.1 and the associated binary tree . . . 35

3.3 Illustrating the disk visibility problem .. 42

3.4 Illustrating the rectangle visibility p rob lem ...44

3.5 A set of rectangles and its dominance g r a p h ..47

6.1 A monotone polygon in the direction 8 ... 86

6.2 A special monotone p o ly g o n .. 87

6.3 Illustrating Step 3 of the triangulation of a special monotone polygon 89

6.4 Illustrating the special monotone polygon after Step 4 90

6.5 The triangulated special monotone polygon .. 91

6.6 Edges of the convex hull of S included in the trian g u la tio n 93

6.7 Diagonals added in Step 2 of the a lgorithm ...94

6.8 S is triangulated after Step 3 ..95

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

6.9 Triangulating a convex region with a convex h o l e 96

6.10 Illustrating Case 1 .. 97

6.11 Illustrating Case 2 .. 99

6.12 Illustrating the convex region C with rectangular h o l e s101

6.13 Determining the rectangle visibility for R .. 102

6.14 Illustrating the computation of closest c o n to u r s103

6.15 Illustrating the partitioning of C' after Step 3 ...104

6.16 Illustrating the triangulation after Step 4 .. 105

6.17 Illustrating the proof of Theorem 6 . 8 ...106

6.18 Illustrating the solutions to EV in Step 2 of triangulation of segments 107

6.19 Illustrating the convex hull H after Step 4 ... 108

9.1 Running time of Stage 1 of E V ...135

9.2 Comparison of sequential and parallel algorithms for E V136

9.3 Running times of triangulation of special monotone p o ly g o n138

9.4 Comparison of sequential and parallel algorithms for monotone poly

gon tr ian g u la tio n ..140

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

1

CHAPTER 1

INTRODUCTION

1.1 OVERVIEW

The design of optimal parallel algorithms is an art taking into consideration the

challenges it poses to an algorithm designer. Two major challenges that are posed

to the designer in providing parallel solutions to various problems are:

• To design the fa s te s t algorithm for the particular model of computation under

consideration,

• To develop template algorithms or paradigms tha t work in relatively many

cases, possibly across diverse computational platforms.

Among the two, the first challenge is the relatively easier one to meet. This is

obvious from the fact tha t there are few methods that work in relatively many cases

and which are, therefore, worth becoming standard tools in the repertoire of every

algorithm designer.

Geometric problems provide a fertile ground for challenging the designer of

parallel algorithms. The solutions to these problems require the designer to make

cautious decisions for each step of the algorithm, including mapping the input data

to various processors of the parallel machine, balancing out the communication and

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

computation steps, while exploiting the inherent geometrical relations between the

input items.

Ongoing research in the study of geometric problems is motivated by their

significance in diverse applications in computer graphics, image processing and sev

eral other fields. Due to the real-time requirements of some of the applications in

which geometric problems arise, the quest for faster and more efficient algorithms

has made parallelism imperative.

Using these observations for motivation, this thesis will investigate the design

of efficient, time-optimal algorithms for a subset of geometric problems, with the

aim of developing architecture independent techniques that would serve as paradigms

across diverse computational models. The paradigms will be specified as template

algorithms designed for an abstract computational model. Implementing these tem

plate algorithms on a specific computational model requires the development of tools

specific to that computational model. The computational models being studied are

chosen from the opposite ends of the spectrum of the various parallel computational

models, and are also practically relevant ones. Mesh-connected computers enhanced

with various bus systems are studied among the fine-grain models. The coarse-grain

multicomputer lying a t the other end of the spectrum is the other computational

model that is considered. A byproduct of this exercise of porting the template al

gorithms to these diverse computational models will be a rich collection of tools for

each of the computational models that can be reused in other contexts.

The class of geometric problems that receives focus in this thesis are the

visibility-related problems, involving visibility relations among objects in a plane.

The basic concept in visibility problems is that two points p\ and p2 are mutually

visible if the line segment P1P2 does not intersect any forbidden-curve. Visibility

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

3

is normally defined with respect to a viewpoint u. One reason for choosing these

problems stems from the variety of applications they have found in diverse fields

such as computer graphics, scene analysis, robotics and VLSI design. Also, a review

of the existing solutions to various members of this class of problems demonstrates

that they do not follow a unified approach and there has been little or no emphasis

on exploring the commonality between solutions. This thesis provides a unified look

at these problems and, thus, identifies the common threads that run through these

problems.

To set the stage for what follows, it is appropriate to introduce concepts

concerning visibility problems. Let us begin with a brief survey on where and how

visibility-related problems can be applied, which further lends emphasis to their

significance across a wide variety of applications:

• In computer graphics, visibility from a point plays a crucial role in ray tracing

and hidden-line elimination [39, 76].

• Visibility relations among objects are of significance in path planning and

collision avoidance problems in robotics [54,88, 89] where a navigational course

for a mobile robot is sought in the presence of various obstacles.

• In VLSI design, visibility plays a fundamental role in the compaction process

of integrated circuit design [53, 55, 58, 61, 77, 78, 82]. It is customary to

formulate the compaction problem as a visibility problem involving a collection

of iso-oriented, non-overlapping, rectangles in the plane.

The class of visibility-related problems explored in this thesis can be broadly

classified into two categories:

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

4

• O b je c t V isibility : This class of problems involves determining the visibility

relations among a collection of objects such as line segments, rectangles, or

disks in the plane.

• T riangu lations: The class of triangulation problems involves partioning a

planar region containing a sequence of forbidden subregions into triangles,

without intersecting the forbidden subregions.

Visibility-related problems have been widely studied in both sequential and

parallel settings. As the challenge to solve large and complex problems has con

stantly increased, achieving high performance by using large scale parallel machines

became imperative. To effectively apply a high degree of parallelism to a single

application, the problem data is spread across the processors. Each processor com

putes on behalf of one or a few data elements in the problem. This approach is called

data — level parallel [30] and is effective for a broad range of computation-intensive

applications including problems in vision geometry and image processing.

As the choice of computational platforms forms another important aspect

of this thesis, let us briefly survey salient aspects of algorithm development in var

ious parallel environments. In the parallel setting, much of the theoretical work

done thus far has focussed on designing parallel algorithms for Parallel Random

Access Machines (PRAM). The simple characteristics of PRAM make it suitable for

theoretical results in evaluating the complexity of parallel algorithms, but only a

small number of real architectures (some bus-based multiprocessors like Encore and

Sequent) can be considered conceptually similar in design with the PRAM model.

Although any real machine can simulate the PRAM model, it is nevertheless

true that algorithms designed for network-based models will better match the archi

tectures of existing parallel machines like Intel Paragon, IBM SP2, Intel iPSC/860,

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

CM-5, MasPar MP-1 etc, where processors with local memories are interconnected

through a high-speed network supporting message-based communication.

One of the goals of any algorithm designer is tha t the algorithms be practi

cally relevant and be applicable to models of computation that are close to various

commercially available parallel machines. With this in mind, among the fine-grain

models of computation, mesh-connected computers enhanced with buses are stud

ied in this thesis. In particular, mesh-connected computers enhanced with static

and dynamically reconfigurable bus systems are considered, which are referred to as

meshes with multiple broadcasting, and reconfigurable meshes, respectively.

The mesh-connected computer has emerged as one of the most widely inves

tigated parallel models of computation. It provides a natural platform for solving

a large number of problems in computer graphics, image processing, robotics, and

VLSI design. In addition, due to its simple and regular interconnection topology,

the mesh is well suited for VLSI implementation [12]. The large communication

diameter being a bottle neck in the case of applications requiring nonspatially or

ganized communications [40] where several hops have to be performed to complete

data exchanges between nonadjacent processors, mesh-connected computers are en

hanced by various bus systems. In particular, meshes with multiple broadcasting

are mesh-connected computers where every row and every column of processors are

connected to a bus, while the reconfigurable meshes are mesh-connected computers

enhanced with dynamically reconfigurable bus systems.

Being of theoretical interest as well as commercially available, the mesh

with multiple broadcasting has attracted a great deal of attention. In recent years,

efficient algorithms to solve a number of computational problems on meshes with

multiple broadcasting have been proposed in the literature. These include image

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

6

processing [48, 75], computational geometry [15, 18, 21, 47, 72, 73, 74], semigroup

computations [10, 17, 26, 47], sorting [16], multiple-searching [21], and selection

[19, 26, 47], among others.

At the same time, the huge demand for real-time computations in manufac

turing, computer science, and the engineering community has motivated researchers

to consider adding reconfigurable features to high-performance computers. Along

this line of thought, a number of bus systems whose configuration can change, under

program control, have been proposed in the literature. Examples include the bus

automaton [81], the reconfigurable mesh [66], the GCN chip [84, 85], the polymorphic

torus [50, 59], and the PPA architecture [60]. Among these, the reconfigurable mesh

has emerged as a very attractive and versatile architecture. In recent years a number

of efficient algorithms for problems ranging from sorting to computational geometry,

image processing, and graph theory have been proposed on the reconfigurable mesh

[13, 45, 52, 66, 68, 69, 70, 71, 90].

Another very interesting model of computation considered in this thesis is

the coarse-grain multicomputer model. More recently, coarse-grain multicomputers

are being considered to obtain solutions to various geometric problems. In theory,

there are mapping methods to simulate fine-grain algorithms on coarse-grain ma

chines, and it is claimed that this will not affect their asymptotic running time. In

practice, the local computation and the interprocess communication have different

contributions to the total running time and therefore changing the granularity of

local processing may affect the scalability of the algorithms. It is obvious that there

is a need to develop algorithms for the coarse-grain models of computation, with the

aim of minimizing the computational time as well as the number of communication

operations. The challenge is to reduce the computational time, by a factor propor

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

tional to the number of processors, compared to the sequential computational time

for the various algorithms without drastic increase in the cost of communication

operations required to achieve that. Some progress in this direction has been made

by Dehne,ef al. [32], Devillers and Fabri [33], Atallah et al. [9], Hristescu [41], and

others.

The work done on the coarse-grain multicomputers assumes a parallel model

that is architecture independent, communication round model. In this model, n in

puts are evenly distributed among p processors, p < n, each having local memory of

size 0 (|) . The processors communicate via an interconnection network in a com

munication round in which they specify the type of communication to occur. Algo

rithms are designed by specifying the local computation done within each processor

between the communication rounds, and by specifying the type of communication

performed in a communication round.

The organization of the remainder of this thesis is as follows: the following

section of Chapter 1 discusses the state of the art for visibility-related problems

on various computational models. Chapter 2 presents a detailed discussion of the

diverse models of computation considered in this thesis, Chapter 3 discusses the

object visibility problems in the context of an abstract computational model and

presents solutions in the form of template algorithms, Chapters 4 and 5 discuss the

porting of the template algorithms to fine-grain and coarse-grain models of compu

tation respectively, Chapter 6 presents template algorithms for solving triangulation

problems on the abstract computational model, Chapters 7 and 8 specify how these

template algorithms are ported to fine-grain and coarse-grain computational mod

els. Finally, Chapter 9 presents the experimental results on IBM-SP2 along with

the concluding remarks.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

s

1.2 STATE OF THE ART

Parallelism seems to hold the greatest promise for major reductions in computation

time for various classes of geometric problems. The first look at parallel geometric

algorithms dates back to 1950s and the modem approach to parallel computational

geometry was pioneered by A. Chow in her Ph.D thesis [27]. For a survey of the

first ten years of research in computational geometry the reader is referred to [3].

The early models of computation included Perceptrons, proposed in the late

1950’s [80] and Cellular Automata [28]. The next generation of models considered are

the interconnection networks including the linear arrays, meshes or two-dimensional

arrays, several variations of meshes including the meshes with broadcast buses re

ferred to as meshes with multiple broadcasting, and the meshes with reconfigurable

buses. Tree networks, mesh-of-trees, pyramid networks, hypercube, cube-connected

cycles, Butterfly, AKS Sorting network, Star and Pancakes are among the other

network based models of computation which have been studied. On the other hand,

shared memory models of computation were also studied and included parallel ran

dom access machines, scan model, broadcasting with selective reduction etc.

In particular, mesh-connected computers and enhanced mesh computers have

been thoroughly investigated in the context of efficient algorithms for geometric

problems as specified in the several references in the introduction. More recently,

these problems are being looked at on coarse-grain multicomputers [9, 32, 33, 41].

Visibility problems include computation of visibility relations among objects

in a plane from a view point, and determination of visibility pairs of line segments,

the visibility polygon from a point inside a polygon, determination of a polygon

visible in a direction. The problem of determination of visibility polygon has been

solved in [31] using divide-and-conquer on a mesh of size y /n x y /n and runs in 0(-v/n)

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

9

time using 0 (n) processors and in 0(re) time on a linear array [4] of size re. Given a

view point w in the plane and an n-vertex polygonal chain, the portion of the chain

visible from w can be determined in O(logn) time using O(n/logra) processors on

a concurrent read exclusive write PRAM, referred to as CREW-PRAM [7].

Let us discuss the state-of-the-art for object visibility problems on various

computational models. The segment visibility problem and its variants have a t

tracted a good deal of attention in the literature. Given a set of re opaque non

intersecting line segments, the problem involves determining parts of the segments

visible from a point w in the same plane. This problem has a sequential lower-bound

of fi(n logn). A technique called critical — point merging is used in [5] to solve this

problem in O(lognloglogre) time, on CREW-PRAM with 0 (n) processors, and this

solution has been refined in [6] using cascading divide-and-conquer to run in O(log n)

time. Another solution to this problem is discussed in [44] and has a running time of

O(logn) in the CREW-PRAM model with n processors. These algorithms use the

concept of plane-sweep tree of Atallah et al. [6]. The construction of the plane-sweep

tree is nontrivial and uses the powerful technique of cascading divide-and-conquer.

Yet another solution to the vertical segment visibility problem with the same time

and processor complexity and using cascading divide-and-conquer has been reported

in [24].

An algorithm to solve the vertical segment visibility on a linear array of size

A is given in [8] and runs in O(relogre/log A) time using 0 (A) processors, where

A < re. The problem has been solved on the hypercube with 0(re) processors [57]

using multiway divide-and-conquer, and runs in 0 (S 0 R T (n)) time. A randomized

algorithm is given in [79] that solves the problem of determining which of a set of non

intersecting line segments are visible from (0, oo) by using trapezoidal decomposition

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

10

in O(logn) probablistic time on an 0 (n) processor butterfly.

Another object visibility problem that has been studied in the literature and

involves determination of visibility relations among a set of rectangles in the plane,

is the construction of dominance and visibility graphs. Bhagavathi et al have a

O(logn) time algorithm on EREW-PRAM model of computation using trapezoidal

decomposition [20].

Another problem of interest is the visibility pair problem and is defined as

follows. A pair of vertical line segments s, and sj form a visibility pair if there exists

a horizontal line that intersects s,- and sj and does not intersect any other segment

lying between s,- and Sj. A sequential solution to the problem of finding visibility

pairs of line segments in a set of vertical line segments runs in O (nlogn) time [82]

and that is the lower bound for the problem as well. Special cases of the problem

exist which run in 0 (n) time. There is a O(logn) tim e solution to the visibility

pairs problem on a mesh of trees of size n2 [53].

The problem of determining the lower envelope of non-intersecting line seg

ments in the plane, which is nothing but the segment visibility problem with the

view point at (0, — oo), is the only known object visibility problem studied in the

coarse-grain models. Dehne et al. [32] have given a 0 (^ lo g n -f Tsort(n,p)) time

algorithm for this problem on coarse-grain multicomputer model.

Let us now discuss the existing results for triangulation problems on various

computational models. Triangulating a set S of n points in the plane has a sequential

lower bound of ft(n logn) [78]. An algorithm is given in [25] that triangulates a set

of n points in the plane on a linear array of size n in 0 (n) time. Two more 0(log n)

time algorithms for triangulating point sets in parallel, on the CREW-PRAM with

0(n) processors are presented in [62, 91]. The algorithm in [91] is adapted to run

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

11

on an n-processor hypercube by MacKenzie and Stout [57] running in 0 (SORT(n))

time. An algorithm given in [36] triangulates a point set in arbitrary dimensions in

0(log2n) time using O(ra/logn) processors on a CREW-PRAM.

Recently, Nigam and Sahni [69] have proposed a constant time algorithm on

reconfigurable meshes to triangulate a set of points in the plane. Their algorithm

uses the well-known strategy of Wang and Tsin [91]. On coarse-grain models, only

known parallel triangulation algorithm for a given set of points in the plane is the

one presented by Hristescu [41], who has designed a 0 (T s 0r t { n , p)) time algorithm

on coarse-grain multicomputers.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

12

CHAPTER 2

THE MODELS OF COMPUTATION

This chapter presents a detailed description of the diverse models of computation

considered in this thesis. As stated in the introduction, the following two models of

computation are considered in the context of fine-grain models, both belonging to

the class of enhanced meshes:

• Mesh with multiple broadcasting, i.e, a mesh-connected computer enhanced

with static buses,

• Reconfigurable mesh, which is also a mesh-connected computer enhanced with

a dynamically reconfigurable bus system.

The other model of computation considered in this thesis lies at the other end of the

spectrum of the parallel models of computation. It is a coarse-grain, communication-

round model and is briefly described as follows:

• Coarse-grain multicomputer, consists of a number of state-of-the-art comput

ers, communicating through an arbitrary interconnection network.

The organization of the chapter is as follows. Section 2.1 discusses the fine-grain

models of interest. In particular, Subsection 2.1.1 discuss the architecture of a mesh

with multiple broadcasting and Subsection 2.1.2 discusses the reconfigurable mesh.

Finally, Section 2.2 discusses the coarse-grain multicomputer model in detail.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

13

2.1 ENHANCED MESH-CONNECTED COM

PUTERS

Being a natural platform for solving a large number of problems in computer graph

ics, image processing, robotics, and VLSI design, the mesh-connected computer has

emerged as one of the most widely investigated parallel models of computation. As

mentioned in the introduction, because of its simple and regular interconnection

topology, the mesh is well suited for VLSI implementation [12]. However, the large

diameter of the mesh does not deliver high performance in applications requiring

nonspatially organized communications [40] where several hops have to be performed

to complete data exchanges between nonadjacent processors.

To overcome this problem, the mesh architecture has been enhanced by var

ious types of bus systems [22, 47, 50, 59, 81, 86]. Two popular architectures among

the enhanced meshes are discussed in the following subsections.

2.1.1 MESHES W ITH MULTIPLE BROADCASTING

Recently, a powerful architecture, referred to as a mesh with multiple broadcasting,

has been obtained by adding one bus to every row and to every column of the

mesh [47, 75]. The mesh with multiple broadcasting has proven to be feasible to

implement in VLSI, and is used in the DAP family of computers [75].

A mesh with multiple broadcasting of size M x N, referred to as a MMB,

consists of M N identical processors positioned on a rectangular array overlaid with

a bus system. In every row of the mesh the processors are connected to a horizontal

bus. Similarly, in every column the processors are connected to a vertical bus as

illustrated in Figure 2.1.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

14

Figure 2.1: A mesh with multiple broadcasting of size 4 x 5

Processor P(i , j) is located in row i and column j (1 < i < M, 1 < j <

N), with P (l , 1) in the north-west comer of the mesh. Every processor P (i , j) is

connected to its four neighbors P (i—1, j) , P (i + l , j) , P{ i , j — 1), P (i , j + 1), provided

they exist. It is assumed that the mesh with multiple broadcasting operates in SIMD

mode: in each time unit, the same instruction is broadcast to all processors, which

execute it and wait for the next instruction. Each processor is assumed to know

its own coordinates within the mesh and to have a constant number of registers of

size O(log MN) . In unit time, every processor performs some arithmetic or boolean

operation, communicates with one of its neighbors using a local link, broadcasts

a value on a bus, or reads a value from a specified bus. These operations involve

handling at most 0(log M N) bits of information.

For practical reasons, only one processor is allowed to broadcast on a given

bus at any one time. However, all the processors on the bus can simultaneously read

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

15

the value being broadcast. In accord with other researchers [10, 22, 26, 47, 48, 50,

59, 75, 81], it is assumed that communications along buses take 0(1) time. Although

inexact, recent experiments with the DAP and the YUPPIE multiprocessor array

systems seem to indicate tha t this is a reasonable working hypothesis [50, 59, 75].

2.1.2 RECONFIGURABLE MESHES

The huge demand for real-time computations in manufacturing, computer science,

and the engineering community has motivated researchers to consider adding recon

figurable features to high-performance computers. Among the various architectures

that emerged, the reconfigurable mesh has proved to be a very attractive and ver

satile platform.

A reconfigurable mesh, RMESH for short, of size M x N consists of M N

identical SIMD processors positioned on a rectangular array with M rows and N

columns. As in the MMB, it is assumed that every processor knows its own coordi

nates within the mesh: let P(i , j) denote the processor placed in row i and column

j , with P (l , 1) in the northwest comer of the mesh. Every processor P (i , j) is con

nected to its four neighbors P(i — 1 , j) , P(i + 1,j) , P (i , j — 1), and P (i , j + 1),

provided they exist. It is assumed that the processors have a constant number of

registers of O(log M N) bits and a very basic instruction set. Every processor has 4

ports denoted by N, S, E, and W (see Figure 2.2). Local connections between these

ports can be established, under program control, creating a powerful bus system

that changes dynamically to accommodate various computational needs. This com

putational model allows at most two connections involving distinct sets of ports to

be set in each processor at any one time. For practical reasons, at any given time,

only one processor can broadcast a value onto a bus, while all the processors on the

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

16

2 3 4 5

2

3

4

1

E

Figure 2.2: A reconfigurable mesh of size 4 x 5

bus can read the value on it simultaneously.

It is worth mentioning that at least two VLSI implementations have been per

formed to demonstrate the feasibility and benefits of the two-dimensional RMESH:

one is the YUPPIE (Yorktown Ultra-Parallel Polymorphic Image Engine) chip [50,

59] and the other is the GCN (Gated-Connection Network) chip [84, 85]. These

two implementations suggested that the broadcast delay, although not constant, is

very small. For example, only 16 machine cycles are required to broadcast on a

106-processor YUPPIE. The GCN has further shortened the delay by adopting pre

charged circuits. Recently, it has been shown in [83] that the broadcast delay is even

further reduced if the reconfigurable bus system is implemented using fiber optics

as the underlying global bus system and electrically controlled directional coupler

switches (ECS) [38] for connecting or disconnecting fibers. In the light of these ex

periments and in accord with other workers [1, 22, 50, 59, 66, 81, 84, 85] assume, as

a working hypothesis, that communications along buses take 0 (1) time.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

17

2.2 COARSE-GRAIN MULTICOMPUTERS

Most commercially-available parallel machines including Intel Paragon, IBM SP2,

Intel iPSC/860, and CM-5 axe coarse-grain where each processor has considerable

processing power and local memory. This contrasts sharply with the 0(1) memory

registers per processor, traditionally assumed in fine-grain models. Another feature

of commercially available parallel machines is that basic communication primitives

(e.g., broadcasting, and routing) are usually available as system calls or as highly

optimized utilities. By using these primitives, an applications programmer can de

sign solutions in an architecture-independent setting without having to be familiar

with the specific communication patterns of the problem being solved.

The model of computation considered in this thesis is a coarse-grain mul

ticomputer, referred to as CGM(n,p), where p is the number of processors in the

parallel machine, and n is the size of the instance of the problem that can be solved

using this machine since each of the processors is assumed to have O(^) local mem

ory. Unlike the fine-grain scenario where the processors are assumed to have 0(1)

memory words and limited processing capability, each processor in CGM(n,p) is

assumed to have considerable processing power. The p processors of the CGM(n,p)

are enumerated as Pq, P i, , Pp- i and each processor Pt- is assumed to be aware of

its identity i. These processors are connected through an arbitrary interconnection

network and communicate using various communication primitives. They are as

sumed to be operating in SPMD (Single Program Multiple Data) mode, where all

the them are executing the same program but on different data items in their local

memories. This computational model represents the various commercially available

parallel machines mentioned above.

The objective in designing solutions to various problems in this model is to

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

IS

Interconnec
tion Network

Figure 2.3: A coarse-grain multicomputer

design algorithms where the computational time of the algorithm for an input size

of n is 0 (^ ^) , where fi(/(n)) is the sequential lower-bound for the problem at

hand. The running time of an algorithm is taken to be the sum of the total time

spent on computation within any of the p processors and of the total time spent

on interprocessor communication. Optimal solutions to various problems in this

scenario would require the designer to reduce the computational time, keeping the

number of communication rounds as low as possible.

For the computational model to be practically relevant and the algorithms

designed for this computational model to be portable across various computational

platforms, including shared memory machines, the communication primitives as

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

19

sumed to be available on the CGM(n,p) are the collective communication primitives

defined by the Message Passing Interface Standard, referred to as MPI for short [67].

Data ----------------

AO

AO

AO

AO

AO

AO

AO A1 A2 A3 A4 A5

Scatter

Gather

AO

A1

A2

A3

A4

A5

Figure 2.4: Illustration of broadcast, scatter/gather communication primitives

The MPI standardization is an effort involving more then 40 organizations

around the world, with the aim of providing a widely used standard for writing

message-passing programs and thus establishing a practical, portable, efficient, and

flexible standard for message passing. The list of the collective communication

primitives as defined by the MPI standard are as follows:

• Broadcast data from one processor, referred to as the root, across all the

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

20

processors. Refer to Figure 2.4, where processor Pq broadcasts an item A0 to

all the processors in the CGM.

• Gather data from all processors to one processor. Refer to Figure 2.4, where

the gather operation is illustrated. Every processor Pi stores data item A,- and

after the gather operation, processor Pq has items Ao, A i, . . . , Ap_i.

• Scatter data from one processor to all the processors. As illustrated in Figure

2.4, this data movement is just the reverse of the gather operation. Proces

sor Pq stores data items Ao, A i,. . . , Ap and after the scatter operation, any

processor Pi has the item Aj

• All-Gather is a variation of gather where all the processors receive the result of

the gather operation and is illustrated in Figure 2.5. Initially, each processor

Pi has an item A,- and after the all-gather operation, every Pi has a copy of

the items A0, A i,. . . , Ap_i.

• All-to-all involves Scatter/Gather data from all processors. This is also called

complete exchange operation. This operation is clearly illustrated in Figure

2.5. Initially, every processor stores p items, where the first item is to be sent to

processor Po, second to processor Pi and so on. After the all-to-all operation,

every processor receives the p items, one from each of the processors (including

itself).

• Global reduction operations such as sum, max, min or any other user-defined

functions.

Note tha t, MPI extends the functionality of scatter, gather, all-gather and

all-to-all operations by allowing a varying count of data from each processor. The

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

21

Data

AO

All-gather

AO BO CO DO EO FO

BO AO BO CO DO EO FO

CO AO BO CO DO EO FO

DO AO BO CO DO EO FO

EO AO BO CO DO EO FO

FO AO BO CO DO EO FO

AO AI A2 A3 A4 A5 AO BO CO DO EO FO

BO B1 B2 B3 B4 B5 AI B1 Cl D1 El FI

CO Cl C2 C3 C4 C5 All-to-all A2 B2 C2 D2 E2 F2

DO D1 D2 D3 D4 D5 A3 B3 C3 D3 E3 F3

EO El E2 E3 E4 E5 A4 B4 C4 D4 E4 F4

FO FI F2 F3 F4 F5 AS B5 C5 D5 E5 F5

Figure 2.5: Illustration of all-gather and all-to-all communication primitives

processing among the p processors can be viewed as p processes running one per

processor. MPI also provides primitives to divide the processes into various groups,

each referred to as a process group. All the communication primitives can be applied

within each of the process groups, in parallel. In the various algorithms designed

on this model of computation, the time taken by any communication operation is

denoted by Toperat,on(A^,p), where N is the number of data items involved in the

communication operation, and p is number of processors in the process group.

Earlier work for geometric problems on Coarse-Grain Multicomputers has

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

been done by Dehne, et al. [32], Devillers and Fabri [33], Atallah et al [9], Hristescu

[41], etc. The model of computation assumed by them is slightly different from

the one considered in this thesis. They assume a different set of communication

primitives like sorting, routing, etc. to be available for the various communication

rounds. However, for the model to be practically relevant this work assumes that

the communication primitives identified by the MPI standard are the only ones

available.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

23

CHAPTER 3

OBJECT VISIBILITY ON THE ABSTRACT

MODEL

As mentioned in Chapter 1, a recurring problem in a number of contexts in computer

graphics, VLSI design, and robot navigation involves computing the visibility of a

set of objects in the plane from a distinguished point u. In computer graphics,

for example, visibility from a point plays a crucial role in ray tracing and hidden

line elimination [39, 76]. The same problem arises in path planning and collision

avoidance problems in robotics [54, 88, 89] where a navigational course for a mobile

robot is sought in the presence of various obstacles. Yet another field where visibility

plays a fundamental role is VLSI design, in the compaction process of integrated

circuit design [53, 58, 61, 77, 78]. In this context, it is customary to formulate

the compaction problem as a visibility problem involving a set of iso-oriented, non

overlapping, rectangles in the plane. For simplicity, the compaction process is often

one-dimensional, i.e. the components are moved in the x-direction or ^-direction

only. Hence, it is convenient to abstract rectangles as vertical or horizontal line

segments. In this context, the compaction is referred to as stick compaction and

reduces to a special instance of the visibility problem of vertical line segments [53,

55, 82].

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

24

This chapter discusses architecture independent methodologies that provide

solutions to the visibility problem for the following classes of objects: segments,

disks, and iso-oriented rectangles in the plane. Template algorithms are designed for

each of these problems for an abstract computational model, which can be ported to

diverse models of computation discussed in Chapter 2. These template algorithms, in

turn, are designed with emphasis on reusability of concepts developed and exploiting

the existing tools.

The segment visibility problem turns out to be a very powerful tool in solving

a host of object visibility problems. This problem can be described generically as

follows: Given a point u in the plane along with an ordered set S = {si, s2, - . . , -s„}

of non-intersecting line segments in the same plane, it is required to determine the

portions of each segment s,- tha t is visible to an observer positioned at u.

It will soon be evident that the segment visibility algorithm is a key ingre

dient in the determination of visibility relations among objects in the plane, such

as a set of rectangles or disks. Other examples include determining the visibility

pairs among a given set of vertical segments, and constructing the dominance and

visibility graphs of a set of iso-oriented rectangles in the plane.

As mentioned earlier, the various template algorithms discussed in this chap

ter assume an abstract computational model, referred to as ACM, for short. The

ACM is defined as follows:

An ACM(n,p, M) consists of p processors, each having 0 (M) memory, where

n< M *p, (n is the size of the instance of the problem at hand). The p processors

are assumed to be identical and are enumerated as P0 , P \ , . . . , P p- \ . Each of the

processors P, (0 < i < p — 1) is assumed to know its identity i. All the processors

communicate via an interconnection network. In addition, it is assumed that utilities

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

25

to perform the following operations are available:

• Broadcasting: Processor Pi (0 < i < p — 1) can inform every other processor in

the ACM(n,p, M) about k (1 < k < M) data items it stores. The time required to

broadcast k items is TBroadcast(k,p, M).

• Merging : Given two sorted sequences of items Si = < <*1, 02, . . . , a r > and S 2

= < bi, 62, . . . , b3 > , where r + s = n, stored at most M per processor in the first

processors 1 of an ACM(n,p, M), the result of the merge operation gives a se

quence S= < ci,C2 , . . . ,C n > stored in the first processors so that processor Pi

(0 < i < — 1) stores the items c,«a/+i, . . . , The time required to perform

the merge operation is TMerge(n,p, M).

• Sorting : Given a sequence of items S = < Ci,C2, . . . ,Cn > from a totally ordered

universe, stored M per processor among the first ^ processors of an ACM(n,p, M),

the sorting problem requires the determination of the corresponding sorted se

quence enumerated as qi, q2, . . . , qn, such that processor Pi (0 < i < — 1), stores

the items , 9(i+i)«M- The time required to perform the sort operation is

TSort{n ,p ,M).

• Compaction: Consider a sequence of items S = < ai, a2, . . . , an > stored M items

per processor, in the first processors of an ACM(n,p, M), with r (1 < r < n) of

the items marked. The marked items are enumerated as B = < b\, b2, . . . , br > and

every marked a,- (0 < i < n) knows its rank in the sequence B. The compaction op

eration asks to obtain the ordered sequence B, in order, in the first O(j j) processors

storing 5 , so that any processor P, (0 < i < — 1) stores items 6,-.m+i, • • •, i(i+i).m-

The time required to perform this operation is Tc0mpact(n,p,M).

Note that, in the various algorithms that follow, the ACM(n, p ,M) may be viewed

this discussion, ceilings are implicitly assumed

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

26

as consisting of I independent ACM’s given by ACM(M) (where p is at most

f), whenever I identical subproblems axe to be solved in each one of them in parallel.

In the following sections, let us discuss the various object visibility problems

on the ACM(n ,p ,M). Section 3.1 discusses the template algorithms for endpoint

and segment visibility problems, followed by Sections 3.2 and 3.3 which discuss

the disk visibility and rectangle visibility algorithms, using the endpoint visibility

algorithm as a basic ingredient. Finally, Section 3.4 discusses the template algorithm

for dominance graphs, which in turn uses the algorithm for rectangle visibility as a

basic tool.

3.1 ENDPOINT AND SEGMENT VISIBILITY

In this section, let us discuss the template algorithm for solving the endpoint and

segment visibility problems for the abstract computational model. First, let us

discuss the various terms used in the description of the algorithms that follow. Let

oj be a distinguished point and let S = s i , s 25■ ■ ■ ~sn be a set of non-intersecting

line segments in the plane. The set 5 is said to be well ordered if for every i , j

(1 < h i < n)i I < j guarantees that any ray that originates at u and intersects

both Si and Sj, intersects s,- before Sj.

For an endpoint e of a line segment in S , let eu> denote the ray originating at

e and directed towards w. Similarly, let eUJ be the ray emanating from e, collinear

with u> and away from ui. Let us first define the endpoint visibility problem (EV,

for short) which is intimately related to segment visibility problem (SV, for short)

mentioned earlier. Specifically, given a set S of well ordered line segments, the

EV problem asks to determine, for every endpoint e of a segment in 5, the closest

segments (if any) intersected by the rays euj and euJ. As an example, in Figure 3.1,

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

the closest segments intersected by the rays / 3a; and / 3U; are Si and Se, respectively.

To state the SV problem, define the contour of S from u to be the ordered

sequence of segment portions that are visible to an observer positioned at u>. The

SV problem asks to compute the contour of S from « . For an illustration refer to

Figure 3.1 where the sequence of heavy lines, when traversed in increasing polar

angle about u, yields the contour of the set of segments.

The following discussion presents a solution to the EV and SV problems on

an ACM(n,p, M). Consider an arbitrary set S = {sj, S2, . . . , sn} of well ordered line

segments, with every segment being specified by its two endpoints. The set S is

assumed to be stored in the first processors, at most M segments per processor,

of an ACM(n,p, M). Without loss of generality, assume that the viewpoint u lies to

the left of S (i.e. its x-coordinate is smaller than that of any endpoint of a segment

in S). The endpoints are specified by their polar coordinates with u as pole and

the vertical ray from u to —00 as polar axis. Also assume that the segments are in

general position, with no two endpoints sharing the same polar angle. The reader

will not fail to observe that these assumptions are made for convenience only and are,

in fact, non-essential. For example, if u> does not lie to the left of S, the problem can

be divided into two subproblems by splitting some of the segments into two parts,

if necessary. The solutions of the two subproblems can be easily combined to yield

the required solution.

Every line segment s,- in S has its endpoints denoted in increasing polar angle

as f i and standing for first and last, respectively. With a generic endpoint e,- of

segment s,- associate the following variables:

• the identity of the segment to which it belongs (i.e. s;);

• a bit indicating whether et- is the first or last endpoint of s,-;

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

28

Figure 3.1: Illustrating the endpoint and segment visibility problems

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

29

• £(e,-), the identity of the first segment, if any, that blocks the ray etu>;

• a(et), the identity of the first segment, if any, tha t blocks the ray e,-a7.

The notation £(et) and a(e,) is meant to indicate directions towards and

away from the viewpoint u>, respectively. At the beginning of the algorithm, t(e,)

and a(e,), for every endpoint e,-, are initialized to 0. When the algorithm terminates,

<(e.) and a(e,-) will contain the desired solutions.

The algorithm begins by computing an approximate solution to the EV

problem. This involves determining for each of the rays e,u; and e;uJ whether it is

blocked by some segment in 5 , without specifying the identity of the segment. This

approximate solution is then refined into an exact solution.

Let us proceed with a high-level description of the algorithm. Imagine plant

ing a complete binary tree T on S , with the leaves corresponding, in left-to-right

order, to the segments in S. Given an arbitrary node v of T , let L{v) stand for the

set of leaf-descendants of v. Further assume that the nodes in T are numbered level

after level in left-to-right order. For a generic endpoint e,- of segment s,-, let:

• t-blocked(e,) stand for the identity of the first node in T on the path from the

leaf storing the segment s,- to the root, at which it is known that the ray e,u;

is blocked by some segment in S;

• a-blocked(e,) stand for the identity of the first node in T on the path from the

leaf storing S{ to the root, at which it is known that the ray e;u; is blocked by

some segment in S.

Both t-blocked(e,) and a-blocked(e,) are initialized to 0.

The algorithm proceeds in two stages. In the first stage, the tree T is tra

versed, in parallel, from the leaves to the root, computing for every endpoint et-,

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

30

t-blocked(e,) and a-blocked(et). In case t-blocked(e,-) is not 0, it is guaranteed that

some segment in S blocks the ray e,o;. However, the identity of the blocking segment

is not known at this stage. Similarly, if a-blocked(e,) is not 0, then it is guaranteed

that some segment in S blocks the ray e,u?. As before, the identity of the blocking

segment is unknown. In the second stage of the algorithm, the tree T is traversed

again, from the leaves to the root, and in the process the information in t-blocked(ei)

and a-blocked(e,) is refined into t(et) and a(e,).

For convenience, the algorithm is viewed as a sequence of processing tasks

involving the nodes of T . A node v of T is said to be ■processed when the subproblem

involving segments in L(v) has been solved. Specifically, consider a generic node v

of T with left and right children u and w, respectively. The following variables are

associated with node v:

• E(v), the sequence of endpoints of segments in L(v) sorted by increasing polar

angle;

• BT(u), the set of all endpoints e,- in L(v) for which t-blocked(e,)=u;

• BA(u), the set of all endpoints e,- in L(v) for which a-blocked(e;)=u;

• LC(u), the set of all endpoints e,- in L{v) for which t-blocked(e,)=0;

• RC(u), the set of all endpoints e; in L(v) for which a-blocked(e,)=0.

The sets BT(u), BA(w) are initialized to the empty set. For a leaf a of T , F (o),

LC(o:), and RC(a) contain the two endpoints of the corresponding segment in S ,

sorted by increasing polar angle.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

31

The details of the template algorithm for the EV problem are as follows.

T em p la te A lg o rith m 3.1:

The template algorithm takes as input the set S of ordered segments, and initializes

the various data structures as specified above. The details of the Stage 1 and Stage

2 of the EV algorithm on the ACM follow.

S tage 1 . This stage proceeds by processing the nodes of T , level by level, beginning

from the leaves of T . Note that, all the nodes at a particular level of the tree T are

processed in parallel.

Consider a generic node v in T with left and right children u and w, respec

tively. The tasks performed in the transition from u and w to v, is as follows:

S tep 1. E(v) is obtained by merging E(u) and E(w). Note that if E(u) and E(w)

are stored in the same processor Pi, as in the case of the first logM levels of T ,

the merge operation can be performed by Pi using the sequential merge algorithm

in 0 (N) time, where N =| i?(u)| +| E(w)\. Note that, in the processing of the first

log M levels of the tree T , each processor Pi {0 < i < — 1), storing M segments,

has to process lĵ - nodes, where / is the number of nodes at that particular level of

the tree. The processing of each of the nodes a t a particular level of the tree is done

sequentially by each Pi, in parallel, and takes 0 (M) time. Thus, the processing

of the first log M levels takes O (M logM) time. If E(u) and E(w) are distributed

across several processors, for node v with the level greater than log M , the proces

sors storing every pair of sequences E(u) and E(w), for every v belonging to the

same level, can be viewed as independent ACM’s. Each independent ACM is infact

an A C M (N ,p , M), where p is at most and I is the number of nodes at the same

level as v. Thus the merge operations corresponding to I nodes at the same level of

the tree can be carried out in each of the A C M (N ,p , M), in parallel. This can be

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

32

accomplished in TMerge{N,p ,M) time. Note that, TMerge(NiP,M) is bounded by

r̂'Merge{P")Pt M).

After the merge operation, for every endpoint e; in the sorted sequence

E(u), let pred(e,-, E(w)) and succ(e,-, E(w)) stand for the predecessor and succes

sor in E (w), that is, the endpoints that precede and succeed e,- in E(w), respec

tively. For an endpoint e,- in E(w) the predecessor and successor pred(e,-, E{u)) and

succ(e,-, E(u)) in E(u) are defined analogously.

S tep 2 . Next, t-blocked(e:) and a-blocked(e,-) are computed. The well ordering of

the segments in S guarantees that if an endpoint e,- in E(u) has t-blocked(e,)=0

just prior to processing v, then t-blocked(e,)=0 holds after v has been processed.

Similarly, if the endpoint e,- in E(w) has a-blocked(e,)=0 just prior to processing

u, then a-blocked(e,)=0 after v has been processed. Now, let et- be an endpoint in

E(u) with a-blocked(e,-)=0. Write ej=pred(et-, E(w)) and et=succ(e,-, E(w)). Af

ter v has been processed, a-blocked(e,)= 0 only if e* and ej belong to different

segments and t-blocked(ej), a-blocked(ej), t-blocked(ejt), and a-blocked(e^) are all

0’s. Otherwise, a-blocked(e,) is set to v. Similarly, let e,- be an endpoint in E{w)

with t-blocked(ei)=0, and write ej=pred(ei, E(w)) and efc=succ(e;, E(w)). Now t-

blocked(e,)= 0 after processing v, only if e* and ej belong to different segments and

t-blocked(ej), a-blocked(ej), t-blocked(e*), a-blocked(efc) are all 0’s. Otherwise, t-

blocked(ej) is set to v. This can be accomplished in O(JVf) time for each level of the

tree. The correctness of this assignment is guaranteed by the following result.

L em m a 3.1.

(a) Let e,- be an endpoint in E(u) with a-blocked(e,)=0. If, in the transition from u

and w to v, a-blocked(e,)=u, then the ray e,-a; intersects some segment in L(w).

(b) Let e,- be an endpoint in E(w) with t-blocked(e,)=0. If, in the transition from

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

u and w to v, t-blocked(e,)=u, then the ray e,a; intersects some segment in L(u).

P ro o f. The proof is by induction on the level of v in T . The statement is vacuously

true at the leaves of T which are at level 0. Assume that both (a) and (b) hold for

u and w, and suppose that in the transition from u and w to u, a-blocked(e,)=u for

some endpoint et- in E(u). As above, write ej=pred(e,-, E{w)) and efc=succ(e,-, E(w)).

Since a-blocked(e,-)=u, one of the following cases must have occurred:

C ase 1 . ej and e& belong to the same segment.

Let sp be the segment in S(w) with endpoints ej and e*. Since S is well ordered,

i < p and, consequently, sp blocks the ray e,aJ, as claimed.

C ase 2. a-blocked(ej)^ 0 or a-blocked(ejt)^ 0.

Consider the case a-blocked^*)^ 0, the other following by a mirror argument. By

the induction hypothesis, a-blocked(efc)^ 0 guarantees the existence of a segment sq

in S{w) tha t blocks the ray eyZ. Since 5 is well ordered, i < q. Furthermore, since

ej and e* are consecutive in E(w), the first endpoint of sq cannot occur between ej

and et and, therefore, sq blocks the ray e,uj.

C ase 3. t-blocked(ej)^ 0 or t-blocked(efc)^ 0.

Consider the case t-blocked(ej)^ 0, the other following by a mirror argument. By

the induction hypothesis, t-blocked(ej)^ 0 guarantees the existence of a segment sp

in S(w) that blocks the ray eju;. The fact tha t S is well ordered guarantees that

i < p. Since ej and e* are consecutive in E(w), the last endpoint of sp cannot occur

between ej and et and, therefore, sp blocks the ray e,uJ.

This completes the proof of (a). The proof of (b) is similar. □

By virtue of Lemma 3.1, when root(T), the root of T , is reached at the end of

Stage 1, all the endpoints e,- having t-blocked(e,)=0 know that the ray e,o; is blocked

by no segment in S . All the endpoints e,- with a-blocked(e,)=0 set a(e,) = +oo. The

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

34

running time of the Stage 1 is bounded by 0(M\ogM)+0(\ogpTMerge{n,p, M))

time.

S tag e 2. As in Stage 1, the computation in Stage 2 proceeds by processing the

nodes of the tree T , level after level, beginning from the leaves. Again, all the

nodes at the same level of tree are processed in parallel by viewing the ACM as

consisting of several independent ACM’s. The main goal of this stage is to use the

information obtained in Stage 1 to compute the actual values of t(e,-) and a(et), for

every endpoint e;. A key role in the computation specific to this stage is played by

the sets BT(v), BA(u), LC(u), and RC(u) defined in the preamble to the template

algorithm.

For all nodes v of T , determine BT(v) and BA(u) from the information

obtained in Stage 1. Note that, LC(u) contains a sorted sequence of endpoints e,- in

E(v) whose t-blocked(e,)=0, after node v in T has been processed. Put differently,

Lemma 3.1 guarantees tha t LC(v) contains all the endpoints in E(v) for which the

ray e,-u> is blocked by no segment in L(v). For this reason, and since u> lies to the

left of 5, LC(v) is referred to as the left contour at v. It is im portant to note that

the left contour LC(u) provides a partial solution to the segment visibility problem.

The set RC(u) is defined similarly and will be referred to as the right contour at v.

Consider again a generic node v in T with left and right children u and w,

respectively. The sets RC(u), RC(w), LC(u), and LC(u>) are updated into RC(u)

and LC(u) in the transition from u and w to v, as follows.

W ith U standing for the set-merge,

RC(u) = (RC(«0 U RC(u)) - BA(u) (3.1)

and

LC(u) = (LC(u>) U LC(ti)) - BT(»). (3.2)

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

35

g=root(T) level

3

Figure 3.2: The set of segments in Figure 3.1 and the associated binary tree

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

36

The determination of the sequence RC(u) in equation 3.1 from RC(u), RC(ttf),

and BA(u) is explained below. Begin by merging RC(u) and RC(u>) into a sequence

E'(v). This operation takes O (M logM) time for the first log M levels of the tree

T . For the rest of the levels of the tree having I nodes to process, just as in Stage 1,

the ACM(n,p, M) can be viewed as I independent ACM’s given by ACM(N , p , M)

where N =[RC(u)|+[RC(u;)|, and p is at most From E'(v), delete those endpoints

e,- that have a-blocked(e,)=u time, i.e, the sequence BA(u), thus giving RC(u) cor

responding to the unblocked endpoints in E'(v). Compact the endpoints in RC(u)

in each ACM (N,p’,M) in TcomPact(N,p , M) time. The computation of LC(v) in

equation 3.2 is perfectly similar.

Consider, again, the processing that takes place in the Stage 2 of the al

gorithm, in the transition from u and w to v. Having computed the sets RC(u),

RC(u7), LC(u), and LC(w), the values of t(e,) and a(e,) for all endpoints in BA(u)

and BT(u) are determined. For this purpose, RC(u) and BT(u) are merged.

In the process of merging, every endpoint ej in BT(v) determines the identity

of two endpoints ej and e* such that ej=pred(e,-,RC(u)) and e*=succ(e,-,RC(u)). The

value of t(e,-) is set as follows:

• in case ej and e* are endpoints of the same segment sp, then t(e ,)= sp;

• if both ej and e/t are last endpoints, then t(e;) is set to the segment sp whose

last endpoint is e&;

• if both ej and e* are first endpoints, then t(e,) is set to the segment sp whose

first endpoint is ej-,

• if et is a first endpoint and ej is a last endpoint then t(e,)=t(ej)=t(eA:).

The correctness of this assignment follows by an easy inductive argument. The cor

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

rect value of a(e,) for every endpoint e; in BA(u) is computed similarly.

Stage 2 takes 0(M \ogM)+ 0(logpT Merge{n,p1 M)) +O(logpTCompact{n,p ,M)) time

on the ACM(n,p, M). Thus, the following result is obtained.

Theorem 3.2. The EV problem for a set S of n ordered segments, stored M per pro

cessor in the first f j processors of an ACM(n,p, M), can be solved in TEv(n,p , M) =

0 {M \ogM)+ 0(\ogpT M„ge(n ,p ,M))+ 0(logpTcompact{n ,p ,M)) time. □

It is important to note that from the information in LC(roof(7”)) at the end

of Stage 2, along with t(e,) and a(e,), the contour of S from u can be computed as

follows. Let LC(root(T)) contain the endpoints e i,e2, . . . , e m sorted in increasing

polar angle. For every i (2 < i < m):

• if e,_i and e,- belong to the same segment sp in 5 , then sp belongs to the

contour;

• if e,_i is a last endpoint and e,- is a first endpoint, then with sp standing for the

common value of a(ej_i) and a(e;), the portion of sp between the rays e,_iuJ

and e{[J belongs to the contour;

• if both e,_i and et- are first endpoints, then with sp standing for the segment

whose first endpoint is e{_i, the portion of sp between e;_i and the ray eiuJ

belongs to the contour;

• if both e,_i and e,- are last endpoints, then with sp standing for the segment

whose last endpoint is e,-, the portion of sp between the ray e,_iu; and e,- belongs

to the contour.

Consequently, the algorithm just described also solves the SV problem. Thus, the

following result is obtained.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

3S

Table 3.1: Illustrating Stage 1 of the algorithm

level 0 1 2 3

val. t-blkd a-blkd t-blkd a-blkd t-blkd a-blkd t-blkd a-blkd

fi 0 0 0 0 0 0 0 0

li 0 0 0 0 0 e 0 e

I2 0 0 0 0 0 0 0 g

12 0 0 0 0 0 0 0 0

I3 0 0 0 0 e 0 e g

I3 0 0 0 0 0 0 0 g

u 0 0 0 0 0 0 0 g

14 0 0 0 0 0 0 0 g

f5 0 0 0 0 0 f g f

Is 0 0 0 0 0 0 g 0

fis 0 0 0 0 0 0 g 0

le 0 0 0 0 0 0 g 0

{7 0 0 0 0 0 0 g 0

I7 0 0 0 0 f 0 f 0

fs 0 0 0 0 0 0 g 0

18 0 0 0 0 0 0 g 0

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

39

Table 3.2: Illustrating Stage 2 of the algorithm

NODE BT BA LC RC

a <i> fl ll f2 I2 fl li f2 I2

b 4> <f> f3 13 £4 14 izhUU
c <f> <f> f6 6̂ £5 I5 f6 16 f5 I5

d <f> <f> £7 I7 f8 18 f7 l7 f8 18

e £3 li fl ll I3 f4 I4 {2 I2 fl f3 I3 f4 I4 f2 I2

f It f5 f6 16 f7 f5 U fs 8̂ f6 16 £r I7 Is f8 18

g f5 U f6 U h f8 18 f2 f3 I3 £4 U £l ll U £4 U f2 I2 f6 16 f7 I7 I5 f8 18 I2

T h eo rem 3.3. The SV problem for a set S of n ordered segments stored in the

first ^ processors, at most M per processor on an ACM(rz,p, M), can be solved in

TSv (n ,p , M)= 0 (M logM)+0(logprM erfle(n,p, M)) +0(logpTbompact(rc,P, M)) time.

□

A complete worked example based on the set of segments featured in Figure

3.1 is presented for the reader’s benefit. Figure 3.2 shows the set of input segments

along with the binary tree T tha t guides the algorithm. The various data items

computed in Stage 1 are summarized in Table 3.1. The results of Stage 2 are

captured, in succinct form, in Tables 3.2 and 3.3. Specifically, the solution to the

endpoint visibility problem is contained in Table 3.3.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

40

Table 3.3: The solution to the endpoint visibility problem

level —+ 0 1 2 3

Values of t a t a t a t a

fi —00 +00 —00 +00 —00 +00 —00 +00

li —00 0 —00 0 —00 S3 —00 S3

f2 —00 0 —00 0 —00 0 —00 ss

12 —00 +00 —00 +00 —00 +00 —00 +00

f3 0 0 0 0 S l 0 S l S6

13 —00 0 —00 0 —00 0 —00 S5

u —00 0 —00 0 —00 0 —00 S5

14 —00 0 —00 0 —00 0 —00 S5

u 0 0 0 0 0 S7 S3 S7

Is 0 +00 0 +00 0 +00 S2 + O O

u 0 +00 0 +00 0 +00 S l + O O

le 0 +00 0 +00 0 +00 S3 + O O

h 0 +00 0 +00 0 +00 S3 + O O

17 0 +00 0 +00 S5 +00 S5 + O O

u 0 +00 0 +00 0 +00 S2 +00

Is 0 +00 0 +00 0 +00 S2 + O O

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

41

3.2 DISK VISIBILITY

Given a set D — {di, d2, . - . , dn} of n non-overlapping opaque disks and a viewpoint

lc in the plane, the disk visibility problem (DV, for short) involves determining the

portion of each disk d:- £ D, that is visible to an observer positioned at ui. The

DV problem finds applications to path planning in robotics where a mobile robot

must navigate amidst a set of planar obstacles. It is customary to consider, in a

first approximation, that all these obstacles are circular (i.e. disks). In this setup,

the robot is shrunk to a point while the disks are augmented using Minkowski sums

[49, 54], reducing the navigational problem to an instance of the DV problem.

The purpose of this section is to present an architecture independent method

ology to solve the DV problem, which leads to optimal solutions to this problem in

diverse computation models. As in the case of SV problem, the template algorithm

for the DV problem assumes the ACM model of computation and the discussion

on porting the template algorithms to various computational models is described in

Chapters 4 and 5.

Consider an arbitrary set D = {di, d2, . . . , dn} of disks stored M per proces

sor among the first ^ of the p processors of an ACM(n,p, M), so that any processor

Pi (0 < i < — 1) stores the subset of disks, dt-„A/+i, • . . , d(,+1)»A/. For simplicity, it

is assumed that u> lies to the left of £>, that is, all the disks lie in the right half-plane

determined by the vertical ray from u? to —oo.

The details of the algorithm is as follows:

T em p la te A lgo rithm 3.2:

As a preprocessing step, inform all the processors storing the input about the view

point a;, and this is accomplished by broadcasting the value uj to all the processors

storing the input. This can be performed in TBroadcast{1- ,P,M) time.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

42

Figure 3.3: Illustrating the disk visibility problem

S tep 1 . Every P, (0 < i < f j) , storing M disks - - -, determines the

tangents to each one of them, from the viewpoint u. The length of these tangents,

i.e. the distance between w and the tangency points, is also determined. This

requires 0 (M) computation time.

S tep 2. W ith every disk d{ associate the line segment s,- obtained by joining the

corresponding tangency points. For an illustration, refer to Figure 3.3. Next, sort

the V s by increasing distance of their endpoints to u>. This is done in Ts0rt(n,p , M)

time. Without loss of generality, let S = {si, S2, . . . , sn} be the set of these segments

in sorted order.

L em m a 3.4. The sorted sequence S is well ordered.

P ro o f. Suppose not. This implies that there exist subscripts i, j with i < j and

some ray 6 originating at u that intersects Sj before intersecting s,-. Let d, and dj

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

43

be the two corresponding disks and let Si and 6 2 be the supporting rays to dj from

a?. Let a and b be the points where 6 1 and S2 meet dj.

Consider the circle C centered at u and of radius the length | Ua |= | ajb | of

the segments om and ub. Let A stand for the planar region defined as the intersection

of C with the half-plane determined by the line collinear with a and b that does not

contain o;. Let Oj be the center of dj. Simple geometric considerations guarantee

that A lies entirely within the triangle determined by a, b, and Oj, which in turn,

lies completely within dj.

Observe that the ray 8 that intersects both s,- and Sj must lie in the wedge

determined by 8 \ and S2. Since 8 intersects Sj before s,, it follows tha t at least one

of the endpoints of s, lies in A. This, however, contradicts the assumption that the

disks do not intersect. □

S tep 3. Lemma 3.4 guarantees that SV algorithm developed in the Section 3.1 can

be applied to the set of segments S. Once the visible portions of the segments are

determined, the portions of the disks visible from lo can be trivially computed. This

step requires 0 (M) + Tsv{n ,p ,M) time. Thus, the following result is obtained.

T h eo rem 3.5. The DV problem for a set S of n non-overlapping disks in the plane,

stored M per processor in the first j j processors of an ACM(n,p, M), can be solved

in Tdv{ti,P, M)= 0(T sv(n ,p , M))+0(Tsort{n,p, M)) time. □

3.3 RECTANGLE VISIBILITY

Given a set R = {Ri, R 2, . . . , R„.} of n iso-oriented, non-overlapping, opaque rectan

gles in the plane and a viewpoint u>, the rectangle visibility problem (RV, for short)

involves determining the portions of each rectangle that are visible to an observer

positioned at u. The RV problem finds applications to computer graphics, digital

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

44

geometry, collision avoidance, VLSI design, and image processing [76, 77, 88].

(a)

CD

CD

s
.»

».“2

Ri
r 2

i-------------«
•

* U4
* 1------I >

(c)

Figure 3.4: Illustrating the rectangle visibility problem

The purpose of this section is to present a template algorithm to solve the

RV problem on an ACM(n,p, M). Consider a set R = {jR15 R2, • • -, Rn) of iso

oriented, non-overlapping, rectangles stored at most M per processor, in the first

f t processors of the ACM(n,p, M). For simplicity, assume that the viewpoint u lies

to the left of R, i.e. that all the rectangles lie in the right half-plane determined

by the vertical ray from u to —oo. Each rectangle Ri is specified by its bottom-left

and top-right corners, from which the four sides of the rectangle referred to as top,

bottom, l e f t and right edges, can be trivially determined. The algorithm to solve

the R.V problem is described below.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

45

T em p la te A lg o rith m 3.3:

S tep 1 . Solve the instance of the EV problem obtained by considering the top and

bottom edges of every rectangle R i € R . Begin by sorting these top and bottom

edges by increasing y-coordinate. It is an easy observation that the sorted set of

these segments is well ordered and so the EV algorithm applies. Thus, this step can

be accomplished in T j s v (n ,p ,M) + 0 (T s o r t (r c ,p ,M)) time.

S tep 2. The above process is repeated for the left and right edges of every rectangle

R i € R . Now, every generic comer e,- of rectangle r t- has four solutions: al(e,), tl(e ,),

a2(e,), and t2(e,-) obtained in Step 1 and Step 2, respectively. A comer et- is marked

if tl(e,)= t2(e,)=0. Now, every marked corner e,- combines the information stored

in a l(e t) and a2(e,) by selecting, among them, the segment closer to e,- along the

ray e,u;. If in the process e,- discovers that the closer of a l(et) and a2(e,) is an edge

that belongs to its own rectangle, then e,- becomes unmarked. This step can be

accomplished in 0 (M) + T e v (t i , P , M)+ 0(T sor<(n,p,M)) time.

S tep 3. Finally, after sorting the remaining marked corners by increasing polar

angle, the contour of the set of rectangles can be determined as in the case of

SV problem. This step takes 0 (7sor<(n,p, M)) time. Thus, the following result is

obtained.

T h eo rem 3.6. The RV problem for a set 5 of n iso-oriented, non-overlapping

rectangles in the plane, stored M per processor in the first jfc processors of an

ACM(n,p, M), is solved in Tpy{n,P, M)=0(TEv{n,p, M))+ 0(Tsort(n,p, M)) time.

□

For an illustration, the reader is referred to Figure 3.4. For every rectangle

Ri (1 < i < 3), let ti, bi, and r,- stand for the top, bottom, left, and right edges

of Ri, respectively.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

46

• Step 1 is depicted in Figure 3.4(a). At the end of this step, the solutions

corresponding to the comers of Ri are as follows: al(ui)=&i, a l(ii2)=+oo,

a l(u 3)=<3, a l(u 4)= t3, t l (« i)= 0, t l(u 2)= 0, t l (« 3)= 0, and t l(u 4)= fi.

• Step 2 is depicted in Figure 3.4(b). At the end of this step, the solutions

corresponding to the comers of Ri are as follows: a2(ui)=+oo, a2(u2)= /2,

a2(«3)=+oo, a2(u4)=+oo, t2(u i)= 0, t2(u2)= 0, t2(us)=0, and t2(u4)= 0.

• After Step 2, only the comers iti, u2, and are marked. Of these, u\ detects

that the closer segment along the ray uiZJ is bi, and so becomes unmarked.

The resulting contour is featured in Figure 3.4(c).

3.4 DOM INANCE GRAPH

Consider a set R = {i?i, i?2, . . . , R n } of n non-overlapping iso-oriented rectangles in

the plane. A rectangle R i is said to be above rectangle R j if there are points in R i and

R j sharing the same x-coordinate, with the points in R i having larger ^-coordinates.

A rectangle R i is directly above R j if R i is above R j and no rectangle R k is such that

R i is above R k and R k is above R j . The dominance graph of the set R is a directed

graph D whose vertices correspond to the rectangles in R with two vertices u and

v in D linked by a directed edge (u, v) whenever the rectangle corresponding to v

is directly above the rectangle corresponding to u (see Figure 3.5). The dominance

graph problem (DG, for short), involves computing the dominance graph of a given

set of non-overlapping rectangles in the plane.

The purpose of this section is to describe a template algorithm for the DG

problem on an ACM(n,p, M). Consider an arbitrary instance of size n of the DG

problem stored in the first - j of the p processors in the ACM(n,p, M), with each

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

47

^ s z

Figure 3.5: A set of rectangles and its dominance graph

processor storing at most M rectangles. Assume that the rectangles are specified

by their bottom-left and top-right corners. For every i (1 < i < n), the top edge U

and the bottom edge, 6,- of rectangle Ri can be trivially computed.

T em p la te A lg o rith m 3.4:

S tep 1. The rectangles are sorted by the x-coordinate of their bottom left corners.

For convenience, continue to refer to the resulting sequence as R — {Ri, R 2 , . . . , Rn}-

For each rectangle Ri (1 < i < n), i is said to be the identity of Ri. This step can

be accomplished in Tsort(p->P,M) time.

S tep 2. Next, solve the instance of the EV problem consisting of the set of top

and bottom edges of rectangles, with the viewpoint u; a t (0, —00). For each b{,

compute the segments visible in the negative y-direction. Similarly, for each f;

compute the segments visible in the positive y-direction. This can be accomplished

in 0 (T e v (t i , p , M)) time.

S tep 3. W ith each endpoint associate a 4-tuple (L ,U ,x ,T B), whose semantics are

as follows: for each endpoint of a top segment, L is assigned the identity of its

own rectangle and U is assigned the identity of the rectangle visible in the positive

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

4 8

y-direction (—1 if undefined). Similarly, for each endpoint of a bottom segment, U

is assigned the identity of its own rectangle and L is assigned the identity of the

rectangle visible in the negative y-direction (—1 if undefined). In both cases, T B is

a bit indicating whether the endpoint belongs to a top or bottom segment, and x is

the x-coordinate of the endpoint. Sort the set of tuples first by L and then by x.

This is accomplished in O{Ts0rt{n,P,M)) time.

S te p 4. Now, consider the tuples (L i ,U i ,x 1,T B i) and {L2 ,U2 ,X2 , T B 2) adjacent

to each other in the sorted sequence. If Li = L2 and Ui = U2 then record an

edge in D , from the rectangle corresponding to L\ to the rectangle corresponding

to U\. Each edge is stored as (Li,Ui). After sorting the resulting ordered pairs,

the dominance graph can be constructed trivially. This step is also accomplished in

O { T s o r t{n ,p , M)) time.

In order to prove the correctness of this algorithm, it must be shown that

the algorithm reports all directly above relations and no others. Consider first the

situation where R i is directly above R j . A number of cases occur. For illustration,

let us consider the case where both bottom endpoints of R i report R j as visible. The

proofs of all the other cases axe similar. Since both bottom endpoints report R j as

visible, both will set U = i and L = j . Due to the assumption that Rj is directly

above R j , no other tuples can appear between these in the sorted sequence. Thus,

the algorithm will report an edge in the dominance graph corresponding to these

rectangles.

Next, consider the case where R j is not directly above R j . Let us distinguish

between the following two cases.

C ase 1. R i is not above R j . In this case R j does not have any tuple containing the

identity of R j , so the edge between R j and R j cannot be reported.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

49

C ase 2 . R i is above R j and there exists a rectangle R k such that R i is above R k

and R k is above R j . In this case the tuples containing information about R i and R j

cannot occur consecutively. Again, the edge between R i and R j cannot be reported.

This completes the proof of correctness. Thus, the following result is obtained.

T h eo rem 3.7. The DG problem for a set of n iso-oriented, non-overlapping rectan

gles in the plane, stored M rectangles per processor in the first j j processors of an

ACM (n,p,M), can be solved in TDG(n ,p ,M)= 0 (T Ev(n,p,M))-{-0(TsoTt(n,p,M))

time. □

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

50

CHAPTER 4

OBJECT VISIBILITY ON ENHANCED

MESHES

The objective of this chapter is to present a detailed discussion on how the tem

plate algorithms designed for the class of object visibility problems on the abstract

computational model axe ported to the MMB and the RMESH.

In particular, Section 4.1 discusses the various tools designed for the MMB,

Section 4.2 discusses the porting of template algorithms discussed in Chapter 3

to give time-optimal algorithms on the MMB, Section 4.3 discusses the tools for

the RMESH and, finally, Section 4.4 discusses the 0(1) time algorithms for object

visibility problems on the RMESH, obtained by applying the template algorithms.

An MMB or RMESH of size n x n can be mapped to the abstract com

putational model ACM(n ,p ,M) as follows: Each processor of the MMB has 0(1)

memory registers. The n2 processors of the MMB correspond to the n2 processors of

the ACM(n, n2, 1). A processor of the mesh, referred to as P (i , j) , where i is the row

number and j is the column number to which the processor belongs, corresponds to

the processor P(,_1)n+j_1 in the ACM(n, n2, 1). The input for the various algorithms

is assumed to be stored in the first row of the mesh, corresponding to the first n /M

(here, M = 1) processors of the ACM (n,n2, 1).

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

51

4.1 TOOLS FOR THE MMB

Template algorithms for the object visibility problems, when ported to the MMB,

yield time-optimal algorithms. Thus, in order to prove the time-optimality of each

of these algorithms for this model of computation, the corresponding lower bound

argument is also discussed. To port the various template algorithms to the MMB,

there is a need to first discuss how the various operations assumed by the ACM

are implemented on the MMB. These tools can then be applied to the template

algorithm to obtain the required solutions.

Let us discuss how the various tools that are assumed by the ACM(n,p, M)

are implemented on the MMB of size n x n.

• Broadcasting : Processor P(z\ j) can broadcast the item it holds to every other

processor in the MMB in 0(1) time using the row and column buses. Thus, the

broadcast operation can be performed on the MMB in 0(1) time per data item.

• Merging : Recently, Olariu et al. [72] have proposed an 0(1) time algorithm to

merge two sorted sequences of total length n stored in one row of a MMB of size

n x n.

Here are the details of the algorithm for merging two sorted sequences

Si = < cti, a2, . . . , ar > and S2 = < &i, b2, . . . , b s > , with r + s = n, stored in the first

row of a MMB of size n x n, with P (l,z) holding a,- (1 < i < r) and P (l , r + i)

holding bi (1 < i < s). To begin, using vertical buses, the first row is replicated in

all rows of the MMB. Next, in every row i (1 < i < r), processor P (i , i) broadcasts

Oj horizontally on the corresponding row bus. It is easy to see that for every i, a

unique processor P (i ,r + j) (1 < j < s), will find that bj-i < a,- < bj (b0 is taken to

be -oo). Clearly, this unique processor can now use the horizontal bus to broadcast

j back to P{i,i). In turn, P(i,i) has enough information to compute the position

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

52

of a,- in S. In exactly the same way, the position of every bj in S can be computed

in 0(1) time. Finally, a simple data movement sends every element to its final des

tination in the first row of the MMB.

P ro p o sitio n 4.1. Two sorted sequences Si = < a i ,a 2, . . . , a r > and 52 = <

&i,62, . . . , 6s > , with r + s = n, stored in the first row of a MMB of size n x n,

with P (l , i) holding a,- (1 < i < r) and P (l , r -1- i) holding 6; (1 < i < s), can be

merged into a sorted sequence S in 0(1) time. □

• Sorting : Proposition 4.1 is the main stepping stone for a time-optimal sorting

algorithm developed in [72]. This algorithm implements the well-known strategy

of sorting by merging. Here is a brief sketch of the data movement operations per

formed in the sorting algorithm of [72]. First, the input sequence is divided into a left

subsequence containing the first [j l items and a right subsequence containing the

remaining |_f J items. Further, imagine dividing the original MMB into four equal

submeshes of size f x f • Note that for computational purposes, the north-west and

south-east submeshes can be treated as independent MMB’s.

In preparation for sorting, the right subsequence is broadcast to the first

row of the south-eastern submesh. The algorithm then proceeds to recursively sort

the data in each submesh. The resulting sorted subsequences are merged using the

process described in Proposition 4.1. It is easy to see that the overall running time

of this simple algorithm is O(logn).

Proposition 4.2. An n-element sequence of items from a totally ordered universe

stored one item per processor in the first row of a MMB of size n x n can be sorted

in 0(log n) time. Furthermore, this is time-optimal. □

• Compaction: The details of a data movement that allows to compact a sequence

by eliminating some of its elements is as follows. Supposing that the processors in

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

the first row of the MMB store a sequence < a i, a2, . . . , an > of items with some of

the items marked. Assume further tha t every marked item knows its rank among

the marked items. The aim is to obtain an ordered subsequence consisting of the

marked elements stored, in order, in the leftmost positions of the first row of the

MMB. This task can be performed as follows. Suppose that a,- is the fc-th marked

element in the sequence; processor P (l , i) will broadcast a,- vertically to processor

P(k, i) which, in turn, will broadcast a,- horizontally to P(k, k). Finally, P(k, k) will

broadcast a,- vertically to P (l,fc), as desired. Consequently, the following result is

obtained.

L em m a 4.3. Consider a sequence < a\, a2, . . . , a„ > of items stored in the

first row of a MMB of size n x n, one item per processor, with some of the items

marked. If every marked item knows its rank among the marked items, then an

ordered subsequence consisting of the marked elements stored in order in the leftmost

positions of the first row of the MMB can be obtained in 0(1) time. □

4.2 OBJECT VISIBILITY ALGORITHMS ON

THE MMB

This section involves a discussion on how the template algorithms for the class of

object visibility problems discussed in Chapter 3 are instantiated in the context of

the MMB using the tools developed in the Section 4.1.

4.2.1 EN D PO IN T AND SEGM ENT VISIBILITY

The purpose of this subsection is to demonstrate that the template algorithm 3.1 to

solve SV and EV can be ported to the MMB to yield time-optimal solutions. Let

us first discuss time lower bounds for the SV and the EV problems on the MMB. In

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

54

fact, the time lower bound also holds for the CREW-PRAM.

Let us briefly recall the definitions of the EV and SV problems. Given a

set S of well ordered line segments, the EV problem asks to determine, for every

endpoint e of a segment in S, the closest segments (if any) intersected by the rays

eu and euj, in the directions towards and away from the view point u respectively.

The SV problem asks to compute the contour of S from u> i.e, the portions of the

segments that are visible to an observer placed at u.

The following discussion presents an ft(log n) lower bound for EV problem

on the CREW-PRAM by reducing OR to EV. The well-known OR problem, given a

sequence of n bits 61, 62, . . . , bn, asks for computing their logical OR. The following

fundamental result of Cook et al. [29] that will be used in all the time lower bound

arguments in this chapter and also in Chapter 7.

P ro p o sitio n 4.4. The time lower bound for computing the OR of n bits on the

CREW-PRAM is fi(logn) no m atter how many processors and memory cells are

used. □

In addition, the lower bound arguments rely on the following result of Lin et al.

[52].

P ro p o sitio n 4.5. Any computation that takes 0(t(n)) computational steps on

an n-processor MMB can be performed in 0 (t(n)) computational steps on an n-

processor CREW-PRAM with O(n) extra memory. 0

It is important to note that Proposition 4.5 guarantees that if 7A/(n) is the

execution time of an algorithm for solving a given problem on an ra-processor MMB,

then there exists a CREW-PRAM algorithm to solve the same problem in Tp(n) =

time using n processors and 0 (n) extra memory. In other words, too fa s t an

algorithm on the MMB implies too fa s t an algorithm for the CREW-PRAM. This

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

observation is exploited in [52] to transfer known time lower bounds for the PRAM

to the MMB.

Let 61, 62, • • bn be an arbitrary input to the OR problem. Now consider any

algorithm that correctly solves the EV problem with u> at (—00,0) and with input 20,

zi, 22, . . . , 2n+j, where 2,- is the vertical segment with endpoints bottom(zi) = (i, 0)

and top(zi) = (z',3) in case 6,- = 1, and the segment with endpoints bottom(zi) =

(z,0) and top(zi) = (i, 1) if 6,- = 0. To complete the construction, we let zq and

2n+1 be the segments with endpoints bottom(z0) = (0, 0) and top(z0) = (0, 2), and

bottom(zn+i) = (n + 1,0) and top(zn+1) = (n + 1,3), respectively. The construction

guarantees that the resulting set of segments is well ordered. Clearly, the answer to

the OR problem is 0 if, and only if, the ray top(zo)u encounters the segment zn+1.

The conclusion follows by Proposition 4.4.

Lemma 4.6. The task of solving the EV problem for a set of n well ordered line

segments in the plane has a time lower bound of fl(logn) on the CREW-PRAM, no

m atter how many processors and memory cells are used. □

Lemma 4.6 and Proposition 4.5 combined, imply the following result.

Corollary 4.7. The task of solving the EV problem for a set of n well ordered line

segments in the plane has a time lower bound of fi(logn) on the MMB of size n x n .

□

It is now shown that the same lower bound applies to the SV problem. As

before, this is achieved by reducing OR to SV. Let 61, 62, . . . , bn be an arbitrary

input to the OR problem. Now consider any algorithm that correctly solves the SV

problem with input 2 1, 2 2 , . . . , zn+1, where 2,- is the vertical segment with endpoints

(i, 0) and (i, 1) in case = 1, and the (degenerate) segment with endpoints (i, 0) and

(i, 0) if b{ = 0. To complete the construction, let zn+1 be the segment with endpoints

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

56

(n + 1,0) and (n + 1,1) and place the viewpoint u; at (0,1). The construction

guarantees that the resulting set of segments is well ordered. Clearly, the answer to

the OR problem is 0 if, and only if, the entire segment zn+1 is visible from u. The

conclusion follows by Proposition 4.4. Thus, the following result is obtained.

L em m a 4.8. The task of solving the SV problem for a set of n well ordered line

segments in the plane has a time lower bound of fl(logn) on the CREW-PRAM, no

m atter how many processors and memory cells are used. □

Lemma 4.8 and Proposition 4.5 combined, imply the following result.

C oro llary 4 .9. The task of solving the segment visibility problem for a set of n

well ordered line segments in the plane has a time lower bound of ft(log n) on the

MMB of size n x n. □

The next goal is to show that the time lower bounds of Corollaries 4.7 and

4.9 are tight, by devising an algorithm that solves an arbitrary instance of size n of

the EV and SV problems in O(logn) time on a MMB of size n x n. Consider an

arbitrary set S = {si, S2, . . . , sn} of well ordered line segments, with every segment

being specified by its endpoints. The set S is assumed to be stored, one segment

per processor, in the first row of a MMB of size n x n.

The terminology and data structures used in this algorithm are identical to

that used by the template algorithm 3.1. Let us briefly discuss how the two stages of

the template algorithm proceed, each involving processing the nodes of an abstract

tree T .

S tage 1. Consider a generic node v in T with left and right children u and w,

respectively. Let E(v) be the sequence of endpoints in segments L(v) (set of leaf

descendents of u). First, E(v) is obtained by merging E(u) and E(w). By Proposi

tion 4.1, this task is carried out in 0(1) time. Note that in the process of merging

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

E(u) and E(w) into E(v), every endpoint et- updates its predecessor and successor

information in 0 (1) time. Updating t-blocked(ej) and a-blocked(ei) for endpoints

e,- € E(u) or e,- £ E(w) is thus accomplished in 0(1) time. Since the processing

of each level of T takes at most 0(1) time, the over all running time of Stage 1 is

O(logn).

S tage 2. As mentioned in the template algorithm, the main goal of this stage is to

use the information obtained in Stage 1 to compute the actual values of t(e;) and

a(et) for every endpoint e,-.

Begin by sorting the endpoints of segments in S separately, first by a-

blocked(e,) and then by t-blocked(e,). By Proposition 4.2 this operation can be

performed in O(logn) time. As a result, the two sorted sequences are obtained: in

the first one, all the endpoints that have the value a-blocked(e,)=u occur consecu

tively, and will be referred to as BA(v). In the second one, all the endpoints that

have the value t-blocked(e,-)=u occur consecutively, and will be denoted by BT(u).

Both BT(w) and BA(u) feature endpoints sorted in increasing polar angle: this can

be easily achieved by using two keys for sorting and the complexity will not be

affected.

Equations 3.1 and 3.2 can be applied to obtain RC(u) and LC(w). Merge

RC(u) and RC(tu) into a sequence E'[v), and again this can be accomplished in

0(1) time. Next, delete the endpoints e* from E'(v) tha t have a-blocked(e,)=u, and

the items to be deleted are determined by merging E'(v) with the sequence BA(u)

that is readily available by virtue of the sorting step described above. Again, by

Proposition 4.1, the merging operation runs in 0(1) time. Every endpoint et- whose

a-blocked(e,) value is 0 after node v has been processed, computes its rank in RC(u).

Now, Lemma 4.3 guarantees that a compacted version of RC(v) can be obtained in

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

58

0(1) time. The computation of LC(u) is perfectly similar.

To determine the values of t(e,) and a(e,), merge RC(u) with BT(v) and

LC(tn) with BA(u) and the values of t(e,) and a(e,) for every endpoint in BT(v) and

BA(u), respectively, can be determined in 0(1) time. Thus the following result is

obtained.

Theorem 4.10. An arbitrary n-segment instance of the EV problem can be solved

in O(logn) time on a MMB of size n x n. Furthermore, this is time-optimal. □

As mentioned in Chapter 3, the contours can be trivially computed from the

solution to the EV problem, thus the following result is obtained.

Theorem 4.11. An arbitrary n-segment instance of the SV problem can be solved

in O(logn) time on a MMB of size n x n. Furthermore, this is time-optimal. □

4.2.2 DISK VISIBILITY

The purpose of this subsection is to show that the tem plate algorithm 3.2 leads

to a time-optimal solution to the DV problem when ported to the MMB. Recall

the definition of the DV problem discussed in the Chapter 3: Given a set D =

{di,d2, . . . ,d „ } of n non-overlapping opaque disks and a viewpoint u in the plane,

the DV problem involves determining the portions of each disk that are visible to

an observer positioned at o j.

First, a f2(log n) lower bound is presented for DV problem on the CREW-

PRAM model by reducing OR to DV. Let b\, &2> be an arbitrary input to the

OR problem. Now, consider any algorithm that correctly solves the DV problem

with w at (- o o ,0) and with input d j,d 2, . . . ,dn+i, where d; (1 < i < n) is the disk

of unit radius, centered at (?, — 1) if 6; = 0, and centered at (i, 1) if 6; = 1. To

complete the construction, add the disk dn+1 of unit radius centered at (n + 1, 1).

This construction guarantees that the solution to OR is 0 if and only if dn+1 is visible

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

59

from o j . The conclusion follows by Proposition 4.4.

L em m a 4.12. The task of solving the disk visibility problem for a set of n disks in

the plane has a time lower bound of fi(log n) on the CREW-PRAM, no m atter how

many processors and memory cells are used. □

Lemma 4.12 and Proposition 4.5 combined, imply the following result.

C o ro lla ry 4.13. The task of solving the disk visibility problem for a set of n disks

in the plane has a time lower bound of D(logn) on the MMB of size n x n. □

Now, let us confirm that the running time of the DV algorithm for input

size of n, obtained by applying template algorithm 3.2 to an MMB of size n x n

is time-optimal i.e, had a running time of O(logn). Assume that an arbitrary set

D = {di,d2 . . . , dn} of disks is stored, one disk per processor, in the first row of the

MMB. The other assumptions about the position of the view point and the disks as

well as the terminology is as described in the template algorithm 3.2.

In 0(1) time, the viewpoint oj is broadcast in the first row of the MMB and

each processor holding a disk can determine the tangents to the disk from u;, as well

as the length of these tangents. As described in the template algorithm, with every

disk d{ associate the line segment s,- obtained by joining the corresponding tangency

points. Sort the Sj’s by increasing distance of their endpoints to o j . By Proposition

4.2, this can be done in O(logn) time. Apply the SV algorithm developed in the

Subsection 4.2.1 to the sequence of sorted segments and this can be accomplished

in O(logn) time. Once the visible portions of the segments are determined, the

portions of the disks visible from oj can be trivially computed in 0(1) time. Thus,

the following result is obtained.

T h eo rem 4.14. The DV problem for a set of n disks can be solved in O(logn) time

on a MMB of size n x n. Furthermore, this is time-optimal. □

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

60

4.2.3 RECTANGLE VISIBILITY
The purpose of this subsection is to show that the template algorithm 3.3 for the

RV problem, when ported to the MMB, results in a time-optimal algorithm. First,

let us establish an fl(log n) lower bound for the RV problem on the CREW-PRAM

model by reducing the OR problem to RV. Let bi, 62, • • •, bn be an arbitrary input

to the OR problem. Now consider any algorithm that correctly solves the instance

of the RV problem with u at (—00,0) and with input R i , i?2, • • •, Rn+i, where i?,

(1 < i < n) is the rectangle with top-left comer at (i, 2) and bottom-right corner

at (i + 0.5,0) in case 6,- = 1, and with top-left comer at (i, 1) and bottom right

comer at (i + 0.5,0) otherwise. To complete the construction, add the rectangle

Rn+i with with top-left and bottom-right comers at (n + 1, 2) and (n + 1.5,0). This

construction guarantees that the solution to OR is 0 if and only if Rn+i is visible

from a?. The conclusion follows by Proposition 4.4. The following result is thus

obtained.

Lemma 4.15. The task of solving the RV problem for a set of n iso-oriented

rectangles in the plane has a time lower bound of fi(log n) on the CREW-PRAM,

no m atter how many processors and memory cells are used. □

Lemma 4.15 and Proposition 4.5 combined, imply the following result.

Corollary 4.16. The task of solving the RV problem for a set of n iso-oriented

rectangles in the plane has a time lower bound of fi(logn) on the MMB of size

n x n. □

Now, let us discuss the porting of template algorithm 3.3 to the MMB and

confirm that the resulting algorithm is time-optimal, i.e, it has a running time of

O(logrc). Consider a set R = { R i ,R 2 , . . . ,R n } of iso-oriented, non-overlapping,

rectangles stored one per processor in the first row of a MMB of size n x n. Sort the

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

61

top and bottom edges by increasing y-coordinate, and apply the EV algorithm for

the resulting set of ordered segments. This can be done in O(logn) time. Repeat

the same for the vertical segments of every rectangle.

As described in the template algorithm, every generic comer et- of rectangle

r t- has four solutions: a l(e ,), tl(e ,), a2(e,), and t2(e,). A comer et- is marked if

tl(e ,)= t2(ej)= 0 . Now, every marked comer e,- combines the information stored in

al(e,) and a2(e,) by selecting the segment closer to e,- along the ray e.-u;. If in the

process e,- discovers that the closer of al(e,) and a2(e,) is an edge tha t belongs to its

own rectangle, then et- becomes unmarked. Sort the remaining marked comers by

increasing polar angle, and the contour of the set of rectangles can now be computed

as specified in the template algorithm. The following result is thus obtained.

Theorem 4.17. An arbitrary instance of size n of the RV problem can be solved

in O(logn) time on a MMB. Furthermore, this is time-optimal. □

4.2.4 DO M INANCE GRAPH

This subsection discusses the DG problem in the context of MMB’s where the tem

plate algorithm 3.4, can be ported to obtain a time-optimal solution to the problem.

First, the lower bound of fl(log n) is established for the DG problem on both

the CREW-PRAM and the MMB. As usual, this is done by reducing the OR prob

lem to DG. Let 6j, 62, . . . , bn be an arbitrary input to the OR problem. Based on this

sequence, construct an instance 1Z = {R q, R i , . . . ,R n } of the DG problem as follows:

• the bottom-left and the top-right corners of Ro are (0 ,-1) and (n, —0.75);

• if b{ = 0, then the bottom-left and the top-right comers of Ri are (n + i — 0.75,0)

and (n + i — 0.25,1);

• if bi — 1, then the bottom-left and the top-right corners of R, are (i — 0.75,0) and

(i - 0.25,1).

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

62

Clearly this construction takes 0(1) time. It is easy to verify tha t the solution to

the OR problem is 0 if, and only if, the out-degree of the vertex corresponding to

Ro is 0.

The conclusion follows by Proposition 4.4. Thus, the following result is obtained.

L em m a 4.18. The DG problem for a set of n non-overlapping iso-oriented rect

angles in the plane has a time lower bound of D(log ri) on the CREW-PRAM, no

m atter how many processors and memory cells are used. □

Lemma 4.18 and Proposition 4.5 combined, imply the following result.

C o ro lla ry 4.19. The DG problem for a set of n non-overlapping iso-oriented rect

angles in the plane has a time lower bound of f2(log n) on the MMB of size n x n.

□

Consider an arbitrary instance of size n of the DG problem stored in the

first row of a MMB of size n x n. Sort the rectangles sorted by the x-coordinate

of their bottom left comers in O(logn) time. Let the sorted sequence be R, —

{ i? i , R.2 , . . •, Rn}. Solve the instance of the EV problem consisting of the set of

top and bottom edges of rectangles, with the viewpoint uj at (0, —oo). By virtue

of Theorem 4.10, this step can be performed in O(logra) time. As in the template

algorithm, with each endpoint associate a 4-tuple (L ,U ,x ,T B). For each endpoint

of a top segment, sort the set of tuples first by L and then by x. This step takes

O(logn) time. Now, consider the tuples (L i ,U i ,x i ,T B i) and (L i,U 2 , x i ,T B i) in

adjacent processors. If L\ = L i and \J\ = Ui then record an edge in D, from the

rectangle corresponding to L\ to the rectangle corresponding to U\. Each edge is

stored as (L i,U \). After sorting the resulting ordered pairs, the dominance graph

can be constructed trivially. This leads to the following result.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

63

Theorem 4.20. Given a set 1Z of n rectangles stored in the first row of the MMB

of size n x n, the DG problem can be solved in 0(log n) time. Furthermore, this is

time-optimal. □

4.3 TOOLS FOR THE RMESH

This section discusses the tools required to solve the object visibility problems in

the context of the RMESH. The various template algorithms discussed in Chapter 3

can be applied to obtain 0 (1) time solutions to the object visibility problems using

the collect of tools discussed in this section. However, the EV/SV problem is solved

independent of the template algorithm and the power of dynamically reconfigurable

bus system can be exploited to obtain a much simpler, 0 (1) tim e solution.

The purpose of this section is to discuss how the various operations assumed

by the ACM are implemented on a RMESH. The operations or tools are then applied

to the various template algorithms discussed in Chapter 3 to obtain 0(1) time

solutions to the various object visibility problems.

• Broadcasting : Processor P (i , j) can broadcast the item it holds to every other

processor in the mesh in 0(1) time by configuring the bus appropriately. Thus, the

broadcast operation can be performed on the RMESH in 0(1) time per item.

• Merging : Recently, Olariu et al. [70] have proposed the following result.

Proposition 4.21. Let Si = < a i , a 2, . . . , a r > and S2 = < 6i , 62, . . . , 65 >, with

r -f s = n, be sorted sequences stored in the first row of a RMESH of size n x n,

with P (l , i) holding a,- (1 < i < r) and P (l , r + i) holding 6,- (1 < i < s). The two

sequences can be merged into a sorted sequence in 0 (1) time. □

• Sorting : Recently, Lin et al. [51], Jang and Prasanna [46], and Nigam and Sahni

[68] have shown that an n-element sequence of items chosen from a totally ordered

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

64

universe can be sorted in 0(1) time on a RMESH of size n x n. Furthermore, this

result achieves the VLSI lower bound for the problem.

P ro p o sitio n 4.22. An n-element sequence from a totally ordered universe can be

sorted in 0(1) time on a RMESH of size n x n. □

4.4 OBJECT VISIBILITY ALGORITHMS ON

THE RMESH

This section provides 0(1) time algorithms for the various object visibility problems

on the RMESH by applying the template algorithms from Chapter 3 can be applied

for the DV, RV and DG problems. However, the solution to the SV/EV problem is

much simpler because of the powerful bus system available.

4.4.1 ENDPO INT AND SEGMENT VISIBILITY

This subsection presents a single algorithm that implements EV and SV problems in

0(1) time on the RMESH. The powerful bus system of this parallel machine, makes

it unnecessary to use the tree-fashioned computation described in the template al

gorithm. The details of the algorithm for the RMESH is as follows:

Consider a set of n segments stored, one segment per processor, in the first

row of a RMESH, M., of size n x n such that P (l , i) stores s,-. The idea of the

algorithm is to dedicate row i of M to segment s,-. For this purpose, after having

established vertical buses in all columns of the mesh, mandate the processors in

the first row to broadcast the segment they hold on the bus in their own column,

thus replicating S in all rows of M . Next, in every row of the mesh the processors

connect their ports E and W. Let e be a generic endpoint of s,-. To determine /(e),

processor P (i,i) broadcasts e westbound on the horizontal bus in row i. Every

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

65

processor P (i ,i) (j < i) checks whether the ray e~ intersects the Sj. If so, P (i,j)

disconnects the horizontal bus and broadcasts the identity of sj eastbound from its

port E. Since the segments are well ordered, the information (if any) received by

P (i,i) from its port W is precisely /(e). In case no information is received, /(e) is

set to —oo. Thus,, the following result is obtained.

T h eo rem 4.23. Given a set S of n well ordered segments in the plane, stored in the

first row of a RMESH of size n x n, the corresponding instance of the EV problem

can be solved in 0 (1) time. □

Once the solution to EV problem is obtained, the solution to the SV problem

can be obtained in 0(1) time. Thus, the following result is obtained.

T h e o re m 4.24. Given a set S of n well ordered segments in the plane, stored in the

first row of a RMESH of size n x n, the corresponding instance of the SV problem

can be solved in 0 (1) time. □

4.4.2 DISK VISIBILITY

In this subsection, the template algorithm for DV problem presented in Section 3.3

of Chapter 3 is instantiated in the context of the RMESH to obtain an 0(1) time so

lution. Consider a set of n non-overlapping disks in the plane, D = {da, d2, . . . , d„},

stored one disk per processor in the first row of the RMESH of size n x n . As in the

template algorithm 3.2, each processor in the first row of the mesh, determines the

tangents to the disk it stores, from the viewpoint w. The length of these tangents,

i.e. the distance between u and the tangency points, is also determined. This would

require 0(1) computation time. As before, with every disk </,• associate the line seg

ment Si obtained by joining the corresponding tangency points. Next, sort the s;’s

by increasing distance of their endpoints to u. This is done in 0 (1) time, by virtue

of Proposition 4.22. Let S=s\, S2 , . . . , sn be the set of these segments in sorted order

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

66

and the SV algorithm can be applied to S. Once the visible portions of the segments

are determined, the portions of the disks visible from ui can be trivially computed.

This step would require 0(1) time. Thus the following result is obtained.

T h eo rem 4.25. Given a set D of n non-intersecting disks in the plane, stored in the

first row of a RMESH of size n x n, the corresponding instance of the DV problem

can be solved in 0 (1) time. □

4.4.3 RECTANGLE VISIBILITY

In this subsection, the template algorithm 3.3 for RV problem is applied to obtain a

0(1) solution to the problem on the RMESH. Consider a set % = { R \ ,R 2 . . . , /? „ }

of n non-overlapping, opaque rectangles in the plane with edges parallel to the axes,

stored one rectangle per processor in the first row of a RMESH M of size n x n . Sort

the top and bottom edges of the rectangles in 1Z by increasing y-coordinate, and

apply the EV algorithm to the resulting sequence of well ordered segments. Repeat

the same for the top and bottom edges, after sorting them in increasing order of

their i-coordinates. Combine the solutions obtained above as described in template

algorithm 3.3. This can be accomplished in 0(1) by virtue of Proposition 4.22 and

Theorem 4.23. Thus, the following result is obtained.

T h eo rem 4.26. Given a set 1Z = {i?i, R 2, . . . , R n}, of n iso-oriented, non-overlapping

rectangles stored one per processor on a RMESH of size n x n , the corresponding

instance of the RV problem can be solved in 0(1) time. □

4.4.4 DOM INANCE GRAPH

In this subsection, let us discuss the 0(1) time solution to the DG problem on the

RMESH obtained by porting the template algorithm 3.4.

Consider an arbitrary instance of size n of the DG problem stored one rect

angle per processor in the first row of the RMESH of size n x n . The rectangles are

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

67

sorted by the z-coordinate of their bottom left comers. For convenience, continue

to refer to the resulting sequence as 7 l = {Ri, i?2, - • -, Rn}- Next, solve the instance

of the EV problem consisting of the set of top and bottom edges of rectangles, with

the viewpoint u at (0, —oo). This can be accomplished in 0(1) time, by virtue of

Theorem 4.23. With each endpoint associate a 4-tuple (L ,U ,x ,T B) as described

in the tem plate algorithm. Sort the set of tuples first by L and then by z. This is

accomplished in 0(1) time, as stated in Proposition 4.22. Now, consider the tuples

(Li, U i ,x i ,T B \) and (Z2, I/2,z 2, T i?2) adjacent to each other in the sorted sequence.

If Li = L 2 and U\ = t/2 then record an edge in D, from the rectangle corresponding

to L\ to the rectangle corresponding to U\. Each edge is stored as (Li,Ui). After

sorting the resulting ordered pairs, the dominance graph can be constructed triv

ially. This step is also accomplished in 0(1) time, by virtue of Proposition 4.22.

Thus, the following result is obtained.

T h e o re m 4.27. The DG problem for a set of n iso-oriented, non-overlapping rect

angles in the plane can be solved in 0(1) time on a RMESH of size n x n. □

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

68

CHAPTER 5

OBJECT VISIBILITY ON COARSE-GRAIN

MULTICOMPUTERS

The objective of this chapter is to present a detailed discussion on how the tem

plate algorithms, designed for the class of object visibility problems on the abstract

computational model, are ported to coarse-grain multicomputers. In particular,

Section 5.1 discusses the various tools developed for coarse-grain multicomputers,

and Section 5.2 discusses the porting of the template algorithms for object visibility

problems for this model.

Recall that a coarse-grain multicomputer, referred to as CGM(n,p), consists

of p processors, each having O(^) local memory. The p processors, enumerated as

Po, P i , . . . , Pp_i, are assumed to be connected through an arbitrary interconnection

network and communicate using various communication primitives as described in

Chapter 2.

In this model, an algorithm is said to be computationally optimal whenever

the computational time of the algorithm is 0 (* ^)) , where f2(/(n)) is the sequential

lower bound for the problem. However, since the communication across various

processors is an expensive operation, the objective in designing solutions to various

problems in this model is to minimize the number of communication rounds, while

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

69

keeping the amount of computation as low as possible. The running time of the

algorithm is the sum of the total time spent on computation by of the p processors

and the total time spent on interprocess communication.

The CGM(n.p) can be be viewed as an ACM(n,p, ^), where the p pro

cessors of the CGM correspond to the p processors of the ACM, each of them

having 0 (M)= 0 (^) local memory. In the various algorithms every processor, P,

(0 < i < p — 1), of the CGM(ra,p) is assumed to store ^ of the input items. The

CGM(n,p) can be viewed as independent CGMs by dividing the p processors into

disjoint process groups as mentioned in Chapter 2.

5.1 TOOLS

In purpose of this section is to devise a variety of tools that are useful in porting

the template algorithms to the CGM(n,p). The various operations assumed by the

ACM in Chapter 3 are implemented on the CGM as follows:

• Broadcasting : The broadcast operation assumed by the ACM can be implemented

using the broadcast primitive available, in TBroadcast(k,p) time, where k (1 < k <

is the number of data items to be broadcast.

• Merging : The merge operation is performed on the CGM(n,p) as described in

Subsection 5.1.2.

• Sorting : The sort operation is performed on the CGM(ra,p) as described in Sub

section 5.1.3.

• Compaction : The compaction operation is performed as specified in Subsection

5.1.4.

Before discussing the implementation details of these basic tools, a dynamic load

balancing scheme is discussed in Subsection 5.1.1. This scheme plays a very crucial

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

70

role in the design of basic tools such as merging and sorting.

5.1.1 DYNAM IC LOAD BALANCING

Several problems on the CGM(n,p) can be classified as problems that require dy

namic balancing of the load on the various processors depending on the particular

instance of the input. The situation in which this scheme is needed is described as

below.

Given the following input:

• A sequence S = < S i,s2, . . . ,s n > of n items stored ^ per processor in a

CGM(n,p), where any processor Pi stores the subsequence of items Si = <

S(,-„a)+i,. . . , s,-,a > . Every item s,- € 5 is associated with a solution , depending

on the problem to which the dynamic load balancing scheme is being applied.

Thus, it is required to determine the solution to every sj € S.

• A sequence D = < d i,d 2, . . . ,d„ > of n elements stored ^ per processor in

a CGM(n,p), where each processor Pi stores a subsequence of items Di = <

daMn)+ i,. . . ,d ims. > . Each Di is referred to as a pocket. The solution to each
V P ' P

Sj 6 S is determined by exactly one pocket Di < i <

• A sequence B = < &i, 62, . . . , bn > of n elements stored ^ per processor in a

CGM(n,p), where each processor P,- stores the subsequence of items Bi = <

6(,-,a)+i , . . . , &f«a > . Every element bj € B, is the subscript of the pocket D^

which determines the solution to the item sj € S.

Thus, every processor Pi is given B,-, the sequence corresponding to the pocket to

which each Sj € Si belongs, and has to determine the solution to every sj. For every

item Sj 6 Si with bj = i, the solution can be determined sequentially within the

processor. However, if bj is not equal to i, there is a need to send every such Sj to

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

71

the processor storing the pocket Db} -

Let Ni be the number of items Sj £ S , such that bj = i. In general, the value

° f Ni (0 < i < p — 1) may vary from 0 to 0 (n) depending on the particular instance

of the input. Since, a processor has at most O(^) memory, atmost O(^) items

with bj = i can be sent to the processor storing at one time. This motivates

the need to schedule the movement of the every sj £ 5 , in order to determine its

solution. In this section, the dynamic load balancing scheme provides a solution

to this scheduling problem. The various steps involved in obtaining the solution of

every Sj, using the dynamic load balancing scheme, is discussed below:

S tep 1. The purpose of this step is to determine IV,- for every pocket D{. Every

processor Pi (0 < I < p — 1) determines the number Cik of items Sj £ Si such that

bj = k. This takes O(^) computation time. Next, every Pi obtains information about

Co/, Cu, . . . , C(p-i)t from processors Po, P i, • • •, Pp-i respectively. This step takes

TAiitoaii{p-, p) time where each processor Pm sends the values Cmo, Cmi, • • •, CTO(p_i)

to processors Po, Pi, ■ • •, Pp- i, respectively. Upon receiving Co/, C i/,. . . , C(p_i)/ from

every processor, P/ determines their sum in 0(p) time, to obtain the value IV/. The

p items N o ,N i , . . . ,N p- i are replicated in each of p processors using an all-gather

operation. This step takes a communication time of TAugather{PiP)-

Let c * ^ (where c is an integer constant greater than or equal to 2) be a

value that is known to every P/. Now, a pocket Dk is said to be sparse if Nk is less

than or equal to c * otherwise Dk is said to be dense. In O(^) time, every Pt-

(0 < i < p — 1) determines for every bj £ P t, whether Db} is a dense pocket or not.

Step 2. The aim of this step is to obtain the solution of every item Sj £ S where

pocket Df)j is sparse.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Let every P,- send sj € S i , to processor P^ , storing the pocket Dbj, where

pocket Dbj is sparse. This can be accomplished by performing an all-to-all commu

nication operation. Note tha t, any processor P i would receive at most O(^) items.

This step would take TAiitoaii(n,P) time for the communication operation. The so

lution to every item Sj tha t is sent to the processor storing the pocket containing

its solution, can now be determined sequentially in each of processors P:- storing a

sparse pocket. Let the tim e taken for this computation be 0 (/(^)) . The solutions

can be sent back by performing a reverse data movement to the one performed ear

lier in T Au toa ii(n ,p) time.

Step 3. Finally, let us determine the solution to every Sj € S , where pocket is

dense. In order to ensure tha t atmost O(^) such s / s axe moved to any processor,

there is a need to make copies of every dense pocket Dk. This is accomplished as

follows.

Let rid be the number of dense pockets. Determine the number of copies that

each dense pocket Dk should have, and is given by Afk =
P

Observation 5.1. The total number of copies of all the dense pockets Dk s given

by Afo+Afi+ . . .+Afnd- 1 is no more than | . □

Let the rid dense pockets be enumerated as Dmi, Dm2, . . . , Dmnd in increasing or

der of their subscripts. Similarly, let the p — rid sparse pockets be enumerated as

Dq,, Dq2, . . . , Dqp_nd in increasing order of their subscripts. Since, the sparse pock

ets are already processed, the processors storing them are marked as available to

hold copies of the dense pockets. Let the marked processors be enumerated as

Pq^Pqi-, ■ ■ •, Pqp-nd • Let every processor Pi, such that Di is a dense pocket, retain

a copy of pocket D i. Now, the rest of the copies of each of the dense pockets are

scheduled among the marked processors Pqi,Pq2, . . . , P9p_„d. The scheduling of the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

73

copies is done as follows. The copies of Dmi are assigned to the first J\fm, — 1 marked

processors. The copies of D m2 are assigned the next J\fm2 — 1 processors, and so on.

Now, each of the processors that should be storing the copy of the a dense

pocket Dk, including P*, join a process group. Note that, there are exactly rid

process groups. Now, in a broadcast operation in each of the process groups, every

processor Pi can obtain the copy of the dense pocket it is to store. Note that this

operation can be performed using an all-to-all communication operation which takes

TAiitoaiiiPiP) time.

Since there may be several copies of a dense pocket Dk, each processor Pi

needs to determine to which copy it has to send its items Sj with bj = k. This can

be accomplished as follows: for each dense pocket Dk, the processor Pk is aware of

Cok, Cifc,. . . , C(p_i)fc, and performs a prefix sum on this sequence giving the sequence

Qok, Qiki • - -, Q(p-i)k- Every Qik is sent to processor Pt. This could also be performed

in one all-to-all communication operation, in TAutoaii(p2,P) time. Note that, at this

stage, every processor Pi has information to determine to which processors each of

the unsolved items Sj € Si is to be sent.

Now, move the unsolved items Sj 6 S i from every processor P i to the pro

cessor containing the copy of dense pocket Dk determined in the previous step. The

solution to each one of them is then determined in 0 (/(^)) time and sent back to

the corresponding processor. Thus, the required dynamic load balancing operation

is accomplished and the solutions for every Sj € S is determined.

Lemma 5.2. An instance of size n of a problem applying the dynamic load balanc

ing scheme can be solved in 0 (^)+ 0 (/(^)) computational time, where function /

depends on the particular problem, and a communication time of 0{TAiitoaii{n,p)).

a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

74

5.1.2 MERGING

In this subsection, the solution to the merge problem on a CGM(n,p) is presented.

This solution uses the dynamic load balancing scheme discussed in Subsection 5.1.1.

The computation time of the algorithm is O (^), and since the sequential lower bound

of the merge problem is fl(n), this algorithm is computationally time-optimal.

Let Si = < <zi,a2, . . . , a a > and S2 = < &i,&2, ,&=• > , be two sorted

sequences of j items each. Let Si be stored in processors Po, Pi , . . . ,P |_ i of the

CGM(n,p), ^ per processor. Similarly, let S 2 be stored in Pz, Pe+i, Pp- 1, ^ per

processor. Any P, (0 < i < | — 1) stores items Sn = < a,-,a+i,. . . ,a (:+i)«i > be

longing to Si. Similarly, any Pj (§ < i < p — 1) stores items 5 ,-2 = < 6(,-_|),n+1, . . . ,

6(i_ |+i)«a > belonging to S2. The two sequences Si and S2 are to be merged into

a sorted sequence S = < Ci,c2, . . . ,c „ > , so that any processor P, stores items

< C i,|+1,...,C ({+1) , | > in the sorted sequence. Define the rank of an item e in

any sorted sequence Q = < qi, q2, . . . , qT > as the number of items in the sequence

Q that are less than the item e, and is denoted as rank(e , Q). In order to merge

the sequences Si and S2, determine rank(a{, S) for every a,• € S and rank{bj, S)

for every bj 6 S2. First, determine the rank(a{, S2) for every a,- 6 Si. The sum of

rank(ai,S2) and rank(ai, Si) given by z, gives the value of rank{a^S). Similarly,

rank(bj,Si) and rank(bj, S2) is to be determined for every bj € S2, to obtain the

value of rank(bj, S). This can be accomplished as described in the following steps.

Step 1. Let every processor Pm (0 < m < | — 1) set the value of the rank(ai,Si)

to i, for every at- € Smi. Similarly, let every processor Pm (| < m < (p - 1)) set the

value of the rank(bj, S2) to j , for every bj € Sm2. This can be accomplished in O(^)

time.

Step 2. Every processor Pm determines the largest item it holds, and that is re

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ferred to as the sample item lm. Since the sequence of items stored by any Pm are

already sorted, the value of lm can be obtained in 0(1) time. Now, perform an

all-gather operation so that every processor has a copy of the sequence of sample

items L = < l0,h , - - -, lp- i > . This can be accomplished in TAiigather{p,p)-

In every Pm (0 < m < | — 1), perform the following computation in parallel.

Determine the pocket for every a, £ Smi, where pocket for any a{ is determined as

follows. Given the sequence of sample items L = < Z0, Zl5. . . , Zp_x > , a,- finds its

rank in Z-2 = < Z e , . . . , l(p-i) > (P2 is determined from L). The value r a n k (a i , L2)

corresponds to the pocket of o,:. Similarly, in every Pm (| < m < (p — 1)), perform

the following computation in parallel. Determine the pocket for every bj £ Sm2,

where pocket for any bj is determined as follows. Given the sequence of sample

items L = < Zo,Zi,. . . , Zp_i > , bj finds its rank in L\ — < Zo, . . . , Z e _ ! > {L\ is

determined from L). The value r a n k (b j , L\) gives the pocket of bj.

Observation 5.3. The value of ran&(a,-, Sk2), where k is the pocket of a,-, gives the

rank of a, in the sorted list S 2 as rank{a^ S 2)=rank(ai, Sk2)+{k — |) * f • Similarly,

the value of rank(bj,Ski), where k is the pocket of bj, gives the rank of bj in the

sorted list S\ as rank(bj, Si)=rank(bj, Ski)+(k * ^). □

Now, each of the items a,- £ Si with pocket k, has to calculate rank(ai, Sk2), in order

to determine rank(a{, S). Also, each item bj £ S 2 with pocket k, has to calculate

rank(bj, Ski)- In the worst case, it is possible that all the a,-’s have the same pocket

and all the 6/ s have the same pocket. Thus, there is a need to apply the dynamic

load balancing scheme.

Step 3. The load balancing scheme is applied to determine the rank(a{, Sk2) for

every a, £ Si and rank(bj, Ski) for every bj £ S 2 . This can be performed as described

in Subsection 5.1.1 in O(^) computational time and 0 (T Aut0a u (n , p)) communication

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

76

time. Now, determine the rank of every a,- £ Si, in the sorted sequence S as

rank(a{, Si) + ran&(a,', S2)- Equivalent computation is performed for every item

bj £ S2.

S tep 4. Once every item a,- € Si and bj £ S2 determines its rank in S, denoted as

r a n k (a S) and rank(bj, S), respectively, the destination processor for each item a,- is

determined as [ran-i°"s Ĵ and for bj as [ranfcl6j ’5' j , respectively. This is accomplished
P P

in O(^) time. In one all-to-all communication operation, the items can be moved to

their final positions giving the sorted sequence S. This step requires TAUtoaii{n,p)

communication time. Thus the following result is obtained.

Lemma 5.4. Consider two sorted sequences, Si = < a,i,a2, . . . , a z >, S2 = <

61, 62, . . . , > , stored ^ per processor, with Si stored in processors Po, Pi, • - •, P f - i

and S2 in processors Pe, Pe+1 , . . . , Pp_i, of a CGM(n,p). The two sequences can be

merged in O(^) computational time, and 0(TAiito*u(n,p)) communication time. □

5.1.3 SORTING

Lemma 5.4 is the main stepping stone for the sorting algorithm developed in this

section. This algorithm implements the well-known strategy of sorting by merging.

The computational time of the algorithm is 0 ("1-°sn-) and since the sequential lower

bound for sorting is ft(n logn), this algorithm is computationally time-optimal.

Let S = < ai, a2, .. ■, an > be a sequence of n items from a totally ordered

universe, stored O(^) per processor on a CGM(n,p), where any processor P,- stores

the items a(;„s)+1, . . . , . The sorting problem requires the sequence S to be sorted

in a specified order and the resulting sequence of items < bi,b2, . . . , b n > , are stored

2 per processor so that any processor P, stores the items, < . . . , 6,-.n > The
V ' p / ~ p

details of the algorithm are as follows:

First, the input sequence is divided into a left subsequence containing the first |

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

items and a right subsequence containing the remaining j items. Further, imagine

dividing the original CGM(n,p) into two independent machines, C G M (|, |) . This

can be accomplished by dividing the p processors into two process groups having |

processors each.

The algorithm proceeds to recursively sort the data in each of the two CGM’s.

The resulting sorted subsequences are merged using the algorithm described in Sub

section 5.1.2. The recursion terminates when each of the CGM’s is a CGM(^,1), and

the data items can be sorted using the sequential algorithm running in 0 (nl°Kra) time.

It is easy to see that the overall running time of this simple algorithm is 0 (n1̂ -)

computation time and 0 (log pTAiitoaii{n-, p)) communication time.

L em m a 5.5. Given a sequence S = < ai,<Z2, . . . , a n > of n items from a totally

ordered universe, stored O(^) per processor on a CGM(n,p), sorting of the sequence

can be accomplished in 0 (nl°s") computation time and 0 (log pTAiitoaii{n,p)) com

munication time. □

5.1.4 COMPACTION

The compaction operation involves a sequence of items S = < oi, a.2 , . . •, an > stored

^ items per processor, in the p processors of an CGM(n, p), with r (1 < r < n), items

marked. The marked items are enumerated as B = < 6j, b2, . . . , bT > and every a,-

(0 < i < n) knows its rank in the sequence B. The result of the compaction oper

ation is to obtain the ordered sequence B , in order, in the first 0 (("•§•]) processors
P

storing S, so that any processor Pi (0 < i < [§1) stores items bi„s.+ll. . . , b(i+1)ms..
p P K 1 P

This data movement operation can be accomplished by determining the destina

tion processors for each of the marked items as [Z2̂ i \ in O (-) computational time,
p p

followed by an all-to-all operation to move the marked items to their destination

processors. This can be accomplished in T4;/toa/;(n,p) time.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

78

Thus the following result is obtained.

L em m a 5.6. Consider a sequence S = < <zi,a25• • • > of items stored ^ per

processor in the p processors of a CGM(n,p), with r of the items marked. The

marked items can be compacted to the first [•£] processors of the CGM(n,p) in
P

0 (|) computation time and 0(TAiitoa ii{n ,p)) communication time. □

5.2 OBJECT VISIBILITY ALGORITHMS

This section presents a brief discussion on how the template algorithms for the var

ious object visibility problems discussed in Chapter 3 are ported to the CGM(n,p).

5.2.1 ENDPO INT AND SEGMENT VISIBILITY

The purpose of this subsection is to show that the template algorithm 3.1 to solve

SV and EV can be ported to the CGM(n,p) using the various tools developed in

Section 5.1. The computational time of the resulting algorithm is 0 (—| s~). Since

the sequential lower bounds to these problems is fl(n logn), this algorithm is com

putationally time-optimal.

Consider an arbitrary set S of n vertical line segments with every segment

being specified by its top and bottom endpoints. The set S is assumed to be stored,

| segments per processor, in a CGM(n,p), where any processor Pi stores segments

St = - • •, s(,-+i) , |} .

The various assumptions and the terminology is identical to what is described

in the template algorithm. Let us discuss the porting of the two stages of the

template algorithm on the CGM(n,p).

S tage 1 . Consider a generic node v in the abstract tree T with left and right children

u and w, respectively. E(v) is obtained by merging E(u) and E(w). If the level of v

is less than or equal to log the merging of E(u) and E(w), for every node at that

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

79

level of the tree is carried out using the sequential algorithm running in 0 (|£(u)] +

| £(u?)|) tinae. As noted in the template algorithms, for the first O(log j) levels the

merging can be accomplished in O (M og^) time. For the nodes at level greater

than log the merging of E(u) and E(w) is accomplished by applying the merge

algorithm discussed in the Subsection 5.1.2. The task of determining t-blocked(e,)

and a-blocked(e,) are performed exactly as mentioned in the template algorithm and

requires O(^) computational time. Stage 1 takes 0 (—SS") computational time and

0(\ogpTAiitoaii(n,p)) communication time.

S tage 2 . The values of RC(u) and LC(u) are computed as specified in equations

3.1 and 3.2. Merge RC(u) and RC(u?) into a list E'(v), and from E'(v) delete those

endpoints e,- that have a-blocked(et)=u and thus determine the endpoints in RC(v)

and rank them. Obtain a compacted version of RC(u) applying the compaction

operation in 0 (^)+ 0(TAiitoau{n,p)) time. The computation of LC(u) is perfectly

similar. Again, the determination of the values of t(e,) and a(e,) for all endpoints

in BA(i?) and BT(u), can be accomplished using the merge operation, exactly as

described in the template algorithm. Stage 2 takes 0 (nl°sn) computational time and

0(logpTAiitoaii(n,p)) communication time. Thus the following result is obtained.

T heo rem 5.7. An arbitrary n-segment instance of the EV problem can be solved

in 0 (?1°sn) computational time and 0(\ogpTAihoau{n-,p)) communication time, on

a CGM(n,p). □

As mentioned in the template algorithm, the contours can be trivially computed

from the solution to the EV problem, thus the following result is obtained.

T h eo rem 5.8. An arbitrary n-segment instance of the SV problem can be solved

in 0 (—psn) computational time and O(logpTAmoaii(n,p)) communication time, on

a CGM(n,p). □

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

so

5.2.2 DISK VISIBILITY
Assume that an arbitrary set D = {di,d2, . . . ,dn} of disks is stored, ^ disks per

processor, in a CGM(ra,p), so that any processor Pi (0 < i < p — 1) stores the disks

Di = {d;»a+1, . . . The other assumptions about the position of the view

point and the disks is as described in the template algorithm 3.2.

Each processor determines the tangents to the disks it stores from tu, as well

as the length of these tangents, i.e. the distance between u and the tangency points,

in 0 (~) computational time. As before, with every disk d{ associate the line segment

Si obtained by joining the corresponding tangency points, sort the segments and

obtain the solution to SV problem. This can be done in 0 (nl°gn) computational time

and 0(logpTAiitoaii{n -,p)) communication time, by virtue of Lemma 5.5 and Theorem

5.8. Once the visible portions of the segments are determined, the portions of the

disks visible from u can be trivially computed in O(^) time. Thus, the following

result is obtained.

Theorem 5.9. The DV problem for a set of n disks can be solved in Q(nl°s")

computational time and O(logpTAiitoaii(n,p)) communication time, on a CGM(n,p).

□

5.2.3 RECTANGLE VISIBILITY

The purpose of this subsection is to show how the tem plate algorithm 3.3 for the

RV algorithm, is ported to the CGM(n,p). Consider a set 11 = {R i ,R 2,. . . ,i?n} of

iso-oriented, non-overlapping, rectangles stored ^ per processor, in a CGM(n,p), so

that any processor Pi stores the rectangles Ri*^+1, • • -, i?(,+i).a.

Solve the instance of the EV problem obtained by considering the top and

bottom edges of every rectangle in TZ. Repeat the same for the vertical segments of

every rectangle. This can again be performed in 0 (- 1°gn) computational time and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

81

0(logpTAiitoaii{n,p)) communication time by virtue of Theorem 5.7.

As described in the template algorithm, every generic comer e,- of rectangle r,-

has four solutions: al(e,), tl(e ,), a2(et), and t2(et). The solution to the RV problem

can be obtained from this information as described in the template algorithm. The

following result is thus obtained.

T h eo rem 5.10. An arbitrary instance of size n of the RV problem can be solved

in 0 (nl°s?) computational time and O(logpTAiitoaii{n ip)) communication time, on

a CGM(n,p). □

5.2.4 DOM INANCE GRAPH

In this subsection, let us discuss how the template algorithm 3.4 can be applied

to the CGM(n,p) to obtain computationally optimal algorithm for the dominance

graph problem.

Consider an arbitrary instance of size n of the DG problem stored ^ per pro

cessor on a CGM(n,p). Sort the rectangles by the x-coordinate of their bottom left

comers. Solve the instance of the EV problem consisting of the set of top and bot

tom edges of rectangles, with the viewpoint u at (0, —oo) in 0 (”1°s~) computational

time and 0(logpTAUtoaii(n,p)) communication time. As in the template algorithm

3.4, with each endpoint associate a 4-tuple (L ,U ,x ,T B). Sort the set of tuples first

by L and then by x as discussed in Subsection 5.1.3. This can be accomplished

in 0 (nl°K") computational time and 0 (logpTAjiioaii(ra,p)) communication time as

stated in Lemma 5.5. Consider the tuples (L \ ,U i ,x i ,T B i) and (L 2 ,U2 ,X2 , T B 2)

tha t are adjacent in the sorted sequence. If Li = L 2 and U\ = U2 then record an

edge in D, from the rectangle corresponding to L\ to the one corresponding to U\.

Each edge is stored as (Li,Ui). After sorting the resulting ordered pairs, the domi

nance graph can be constructed trivially. This leads to the following result.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

82

T h eo rem 5.11. An arbitrary instance of size n of the DG problem can be solved

in 0 (- -"sn) computational time and 0(logpTA i i t oa i i (n ,p)) communication time, on

a CGM(n,p). □

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

83

CHAPTER 6

TRIANGULATION ON THE ABSTRACT

MODEL

One of the natural problems tha t arises in a number of seemingly unrelated areas

in manufacturing, robotics, CAD, VLSI design, and pattern recognition involves

partitioning a planar region of interest into simple subregions, typically triangles.

The motivation for doing so is that the restriction of the original problem to a

triangular subregion is often more tractable and, furthermore, once the problem is

solved for each of the triangles in the partition, the overall solution is obtained by a

conquer process.

Such a situation occurs, for example, in pattern recognition and computa

tional morphology where one desires to infer properties of a region by averaging a

certain objective function over the triangles in the partition [88]. The same problem

appears in unstructured multigrid strategies [23] that are being used to speed up the

convergence of computationally intensive PDE solution schemes. Here, the domain

is discretized and decomposed into triangular subregions in order to meet stabil

ity requirements. Yet another example is provided by motion planning in robotics

where, in an unknown terrain, a robot builds a navigational plan by combining a

number of simpler courses each through a triangular region [49]. As is often the case,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

84

the terrain contains natural obstacles that must be excluded from the triangulation.

More generally, one is interested in the following problem: given a planar

region along with a sequence of forbidden subregions, partition the given region

into triangular subregions, none of which intersects the forbidden subregions. The

instance of this generic problem where the region of interest is implicitly specified by

the convex hull of a set of points with no forbidden subregions is commonly referred

to as the triangulation problem. Instances of the generic problem featuring forbidden

subregions of some sort are typically referred to as constrained triangulations. Being

of practical relevance and of theoretical interest triangulation problems have been

extensively studied in the literature. For an excellent discussion the reader is referred

to [88] where many of the above applications are summarized.

This chapter, discusses architecture independent methodologies to solve var

ious triangulation problems. Template algorithms are designed for these problems

for an abstract computational model, which can be ported to the diverse models of

computation discussed in Chapter 2.

As described in Chapter 3, an ACM(n,p, M) consists of p processors having

0 (M) memory each, so that n< M * p, where n is the size of the instance of the

problem at hand. The p processors are assumed to be identical and are enumerated

as Pq, Pi, . . . , Pp_! and each of the processors Pi (0 < i < p — 1) is assumed to know

its identity i. All the processors communicate via an interconnection network. In

addition to the operations assumed to be available on the ACM(n,p, M) in Chapter

3, it is assumed that the following are available:

• All Nearest Larger Values : The all nearest larger values problem (ANLV, for

short) is defined as follows. Given a sequence of n real numbers < <zi, 02, .. .,an > ,

stored at most M per processor in the first processors of an ACM(n ,p ,M), for

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

85

each a,- (1 < i < n), find the nearest element to its left and the nearest element to its

right (if any) tha t is larger than a,-. The time to solve the ANLV on an ACM(n, p, M)

is given by TANLv(n,p,M).

• Convex Hull: The convex hull of a set of planar points is the smallest convex set

containing the given set. Given a set of n points in the plane, stored at most M per

processor in the first ^ processors of an ACM(n,p, M), the time to compute the

convex hull is given by Tconvexhxdl^-,?-, M).

In the various algorithms, the ACM(n,p, M), can be viewed as I independent

ACM’s, each solving subproblems of sizes Ni, JV2, . . . , A/), respectively (where Ni +

N 2 + . . . + Ni < = n). A subproblem i of size Ni is solved on an ACM(Ni,p ,M) (p

is at most Ê L).
T l '

Before presenting the triangulation algorithms, let us discuss the terminology

used in the various template algorithms for the triangulation problems.

Specifying an n-vertex polygon P in the plane amounts to enumerating its

vertices in clockwise order as Vi,V2 , . . . , v n (n > 3). Here utu,+i (1 < i < n — 1) and

vnv\ define the edges of P. This representation is also known as the vertex represen

tation of P. Note that the vertex representation of a polygon can be easily converted

into an edge representation: namely, P is represented by a sequence ei, e2, • . . , en of

edges, with e,- (1 < i < n — 1) having u,- and u:+i as its endpoints, and en having vn

and Vi as its endpoints.

A polygon P is termed simple if no two of its non-consecutive edges intersect.

Recall that well known Jordan Curve Theorem guarantees that a simple polygon

partitions the plane into two disjoint regions, the interior (bounded) and the exterior

(unbounded) that are separated by the polygon. A simple polygon is convex if its

interior is a convex set. In particular, the convex hull of a set of points is a convex

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

86

polygon. A polygon P is said to be monotone in some direction 8 if any normal to

8 intersects P in at most two points as illustrated in Figure 6.1.

Figure 6.1: A monotone polygon in the direction 8

Let Vi and Vj be the first and last vertices of P in the direction 8 . These

two vertices partition P into two polygonal chains monotone with respect to 8 . A

monotone polygon is termed special if one of these chains reduced to a single edge,

termed the base edge. Refer to Figure 6.2 for an illustration. As it turns out, special

monotone polygons have interesting properties that will be exploited in a number

of contexts.

In the following sections, let us discuss the various triangulation algorithms

on the ACM(n,p, M), assumed to be equipped with the powerful tools to solve

ANLV and convex hull problems, in addition to the tools discussed in Chapter 3.

In Section 6.1, the triangulation of special monotone polygons is discussed,

which in turn is a powerful tool to solve several triangulation problems. Section

6.2 discusses the problem of triangulating a set of points in the plane using the

triangulation of monotone polygons as a basic building block. Section 6.3 discusses

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

87

Figure 6.2: A special monotone polygon

the triangulation of a convex region in the presence of a convex forbidden region.

Sections 6.4 and 6.5 discuss two other cases of constrained triangulations where

the forbidden regions are specified as a set of rectangles and ordered segments,

respectively.

6.1 SPECIAL MONOTONE POLYGONS

In this section, let us discuss an algorithm for triangulating a special monotone

polygon. This algorithm turns out to be very handy tool in providing solutions to

the triangulation of a set of points in the plane and to the constrained triangulations.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ss

Consider a special monotone polygon M. = Vi, V2 , . . . , vn in the plane with its

vertices specified in clockwise order and with v\vn denoting the base edge. Assume

that the interior of the polygon lies in the positive half-plane determined by the line

v\vn. The vertices of the polygon are assumed to be stored at most M vertices per

processor among the first j j processors of an ACM(n,p, M). The polygonal chain

ui, V2 , . . . , vn is termed the monotone chain. Further subdivide the monotone chain

into (sub)chains monotone in the y-direction. Such chains axe termed ascending and

descending. Now, let us discuss the template algorithm.

T em p la te A lg o rith m 6.1:

The details of the various steps involved in triangulating the special monotone poly

gon M are as follows:

S tep 1 . By checking its neighbors, every vertex Vi of M. determines whether it

belongs to an ascending or descending chain. Vertices achieving local minima in the

y-direction are treated as part of both ascending and descending chains. Assum

ing that every vertex stores the information about its neighbors, this step can be

accomplished in O(M) time.

S tep 2 . With each vertex V{ = (x,-, yt) of M. associate an element s,- = y,- and

solve the resulting instance of the ANLV problem. This can be accomplished in

TANLv{n,p,M) time. Let l(vi) = s j , where /(u,) is the solution to ANLV for s,- to

its left. Similarly, let r(uj) = s*, where r(ut) is the solution to the right.

For a vertex u,- on an ascending (resp. descending) chain of M the vertex

Vj is said to be a match if sj is a solution obtained in Step 2 and vj belongs to a

descending (resp. ascending) chain.

S tep 3. Every vertex u,- that has identified (at least) a match Vj adds the diagonal

ViVj to the triangulation and records the resulting triangle. This takes 0 (M) time.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

89

A segment in the triangulation

Vertex vt-
on an as
cending
chain i

Vertex Vj, a
match to v,-

Figure 6.3: Illustrating Step 3 of the triangulation of a special monotone polygon

S tep 4. The following vertices mark themselves:

• V\ and vn;

• vertices tha t have identified no match;

• vertices achieving local minima in the y-direction tha t have found only one

match.

It is important to note tha t in case the base edge v\vn is horizontal, only v\ and vn

are marked. Step 4 is accomplished in 0 (M) time.

S tep 5. Let Vi = u,-,, u,-2, . . . , u,r = v n be the sequence of marked vertices enumerated

by increasing x-coordinate and let M ' be the monotone polygon determined by these

marked vertices. Rotate M.' so that vivn becomes parallel to the x-axis and repeat

Steps 2 to 4. This step takes another 0 (M) + 0 (T A N L , v (n , p , M)) time.

Various steps of the algorithm are illustrated in Figures 6.3, 6.4 and 6.5. The

diagonals to be added are determined by finding a match for each of the vertices

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

90

Vertex on ascending chain

Vertex on descending chain

Vertex on both ascending
and descending chains

V ;= V / ,

Segments added by vertices on ascending chains
Segments added by vertices on descending chains

Figure 6.4: Illustrating the special monotone polygon after Step 4

as shown in Figure 6.3. Figure 6.4 shows M. after the diagonals are added in Step

3. The vertices marked in Step 4 are utl, . . . , u,-4. Notice that at the end of Step

4, the only part of the original polygon that is not triangulated is bounded by the

marked vertices. Figure 6.5 shows the entire polygon triangulated. It is easy to see

that after having rotated the edge ViVn, the solution /(u,-2) = sn, confirming that the

diagonal v^vn (i.e. V3 Vn) will be added to the triangulation. The correctness and

the tim e complexity of the algorithm are established by the following result.

T h e o re m 6.1. The problem of triangulating an n-vertex special monotone polygon,

stored M vertices per processor among the first processors of a ACM(n,p, M),

can be solved in TMonotone{n,p, M) = 0 (M) + 0 (T AN L v (n , p , M)) time.

P ro o f. In order to show that the triangulation is done correctly, it is enough to prove

that the diagonals added in Step 3 do not intersect and tha t when the algorithm

terminates there are no polygons with more than three sides left.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

91

Vi4

vn

Figure 6.5: The triangulated special monotone polygon

Let belong to an ascending chain and let Vk be a match found in Step 2.

By definition, Vk belongs to a descending chain and Vk has a lower y-coordinate than

V{. The diagonal is added in Step 3. If some other diagonal vpvg, added in Step

3, intersects u,Ufc then, exactly one of vp and vq lies on the monotone chain from Vi

to Vk. Assume, without loss of generality, that vp does. But now, either r(vt) = sp

in case the y-coordinate of vp is lower than that of u,-, or l(vp) = s,/ and r(vp) =

Sfci, otherwise, with u,/ and lying between u,- and u*. Both scenarios lead to a

contradiction.

Let Vi = u.-j, u,-2, . . . , ViT = vn be the sequence of marked vertices obtained

in Step 4, enumerated by increasing x-coordinate. Let A be the portion of the

monotone chain between two adjacent marked vertices and u,J+1.

It can be claimed that the interior of A is triangulated. The proof involves

a simple counting argument. Let m be the total number of vertices between V{} and

v ,J+1. Let p be the number of local maxima in the y-direction in A. It follows that

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

92

the number of local minima is p — 1. Every vertex internal to A that is not a local

maximum or a local minimum adds exactly one diagonal in Step 3. Further, vertices

that are local maxima add no edges, while vertices that are local minima add two

edges. Thus, the total number of edges added to A in Step 3 i s m — 2 — 2p + l +

2(p — 1) = m — 3. As shown before, these internal diagonals are non-intersecting,

and thus A is triangulated, as claimed.

Finally, let M.' be the polygon determined by the marked vertices. To com

plete the proof, it is necessary to show that when the algorithm terminates M.' is

triangulated. It is clear tha t M.' is monotone in the x-direction and that M.' is

special. Observe that, M.' has much stronger properties.

O bservation 6 .2 . A i ’ is monotone in both x and y direction.

(First, assume that Vi has a lower y-coordinate than vn. Now, if M.' fails to be

monotone in the y-direction, then there must exist two vertices Vip= (xJp, yJp) and

Vig= (x{q,yiv) in A i ' such that x,p < x,-? and y,p > ytiJ. However, this leads to a

contradiction: both horizontal rays to the right and to the left originating at u!p

must find a solution in Step 2 and so u,p cannot possibly be marked. The case where

vn has a lower y-coordinate than v\ is similar.)

O bservation 6.3. A i ' is monotone with respect to the direction of the edge v\vn.

(Follows immediately from the definition of A i ' and Observation 6.2.)

Now, consider what happens when A i' is rotated as to make the edge vivn

parallel to the x-axis. By Observations 6.2 and 6.3, A i' is a special polygon mono

tone in the new x-direction. Therefore, after applying Steps 2-4 above, the only

marked vertices of M ! are v\ and vn and so, by the above argument, the triangula

tion of the original polygon M. is complete. This establishes the correctness of the

algorithm. □

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

93

6.2 SET OF POINTS

The purpose of this section is to present a template algorithm to triangulate a set

of points in the plane. The algorithm to triangulate special monotone polygons,

discussed in Section 6.1, plays a very significant role in providing the solution to

this problem.

Figure 6.6: Edges of the convex hull of S included in the triangulation

Consider a set S of n points in the plane stored in the first ^ processors of

an ACM(n,p, M), at most M per processor.

T em pla te A lg o rith m 6 .2 :

S tep 1 . Compute the convex hull of S', in Tc0nvexhuii(n,P, M) time. Note that all

the edges of the convex hull will be part of the desired triangulation (see Figure 6.6).

S tep 2 . Next, in T s 0r t (n , p , M) time, sort the points in S in increasing order of their

x-coordinates and add a diagonal between adjacent points in the sorted sequence.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

94

Figure 6.7: Diagonals added in Step 2 of the algorithm

S tep 3. Referring to Figure 6.7, observe that the diagonals added in Step 2 divide

the entire region within the hull into special monotone polygons having the convex

hull edges as base edges. Consider the lower hull with I edges, and let JVj, A^, . . . ,N i

be the number of vertices in the monotone polygons with each of the I lower hull

edges as the base edges. Consider all the monotone polygons having at most M

vertices, such that all the vertices are stored in one processor. All such monotone

polygons can be triangulated in 0 (M) time, in each of the processors sequentially.

The remaining monotone polygons are triangulated independently, in parallel, using

the algorithm for triangulating a special monotone polygon described in Section 6.1,

where a polygon i with N{ vertices is solved on an ACM(N i,p ',M) (p is at most

2~L)- The same can be repeated for the special monotone polygons with the base

edge on the upper hull. Thus, the convex hull of S is triangulated as illustrated

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

95

in Figure 6.8. The above steps can be performed in at most 0(TMmotone(n ,p ,M))

time.

S

Figure 6.8: S is triangulated after Step 3

Consequently, the following result is obtained.

T h e o re m 6.4. An arbitrary set S of n points in the plane, stored M points per

processor in the first processors of an ACM (n,p,M), can be triangulated in

O i T c o n v e x h u l l i ^ p , M))+0(TsoTt(n,P, M)) + 0 (T m o n o to n e (n,p, M))+ 0 (M) time. □

6.3 CONVEX REGIONS W ITH ONE CONVEX

HOLE

In this section, let us discuss the template algorithm for the triangulation of a

convex region with a convex hole. Let C = ci ,c2, . . . , c n be a convex region of the

plane and H = hi, h2, • • •»hm be a convex hole within C. In many applications in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

96

computer graphics [76], computer-aided manufacturing and CAD [37], it is necessary

to triangulate the region C \ H . The task at hand can be perceived as a constrained

triangulation of C. For an illustration refer to Figure 6.9.

Figure 6.9: Triangulating a convex region with a convex hole

Note that, the algorithm for triangulating a convex region with a convex hole will be

a key ingredient in the constrained triangulation algorithms discussed in the Section

6.4.

Let C be stored 2M vertices per processor among the first ^7 processors

of the ACM(n,p, M) and H be stored 2M vertices per processor in the next —j

processors of the ACM. The triangulation algorithm proceeds as follows.

T em plate A lg o rith m 6.3:

S tep 1 . Determine an arbitrary point w interior to H and in TBroadcast(l,P, M)

time broadcast its value to the first processors of the ACM(n ,p ,M). Convert

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

9 7

the vertices of C and H to polar coordinates having u as pole and the positive

x-direction as polar axis. This can be accomplished in 0 (M) time.

Since u? is interior to C and if , convexity guarantees that the vertices of both

C and H occur in sorted order about

S tep 2 . The two sorted sequences corresponding to vertices of C and if , are merged

in 0{TMeTge{n,p, M)) time. Let B = bi, 62, • • •, h+m be the resulting sequence and

is sorted by polar angle.

Figure 6.10: Illustrating Case 1

In the process of triangulating C \ H let us distinguish the following two cases.

Case 1 . Consider the subsequences of B having the following form. For some i (1 <

i < m) hi = bj and hi+1 = bk with j +1 < k. Each of these subsequences corresponds

to a polygon which can be triangulated as described below. Referring to Figure 6.10,

note that in this case, the line segment bj+ibk-i lies in the wedge determined by

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

98

hi, h{+i and u. Furthermore, the polygon bj+2, . . . , is convex. It is clear

that this polygon can be triangulated in by simply adding all the possible diagonals

originating at bj+i.

C ase 2. Again, consider the subsequences of B having the following form: for some

i (1 < * < n) a = bj and c,-+i = 6* with j + 1 < k. Let us show the triangulation of

the polygon with vertices c,- = bj, bk, bk-i, bk-2 , - • -, 6j+i- Let us make the following

simple observation that follows immediately by the convexity of H.

O bserva tion 6.5. Let t (j + 1 < t < k — 1) be such that c,- is visible from vertex

bt. Then c,- is visible for every vertex hs with j -f 1 < s < t- □

O bserva tion 6 .6 . Every vertex bt (j + 1 < t < k — 1) on H is visible from either

d or c,'+i . □

Referring to Figure 6.11, let bT be the vertex among bj+i, bj+2, . . . , bk-i with the

smallest Euclidian distance to the line segment c,c,+i. Clearly, br is visible from

both c,- and c,+i . Now the conclusion follows from Observation 6.5.

Observations 6.5 and 6.6 justify the following approach to triangulating the

polygon Ci = bj, bk, bk-i, bk-2 , • • •, fy+i* First, determine the vertex bT by de

termining the vertex achieving the minimum euclidean distance to the line segment

c,-Cf+i. Add to the triangulation all the edges Cihs with j + 1 < s < r and all the

edges Ci+\hu with r < u < k — 1.

S tep 3. In this step, subsequences in B corresponding to Case 1 and Case 2 de

scribed above, are identified and each of the corresponding polygons is triangulated.

The details are as follows: assume that the sequence bi, b?,, . . . , bn+m is stored

2M per processor in the first processors of an ACM(n ,p ,M). Let us solve the

polygons determined by subsequences belonging to Case 1. First, determine all pairs

hi, hi+1 that bound the subsequences of the form in Case 1. Note that there are at

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

99

: - l

(O

Figure 6.11: Illustrating Case 2

most m such pairs and all the vertices of C that lie between each pair hi, h,+1 are

said to belong to Hi. Every Hi having less than M vertices, with all the vertices

stored locally in a processor Pj of the ACM, can be solved sequentially in 0 (M) time

on every such Pj. Every Hi that is not stored in any one processor, can be processed

in parallel on independent ACMs as follows. Broadcast bj+ 1 and add diagonals from

every vertex in Hi to 6J+1, as described in Case 1. Next, all pairs Cj, Cj+1 as in Case

2 above are detected and all vertices of H lying between them are said to belong to

a subsequence Cj. Every Cj can be processed in parallel on an independent ACM

as follows. Determine the vertex in Cj, belonging to H, achieving the m i n i m u m

euclidean distance from CjCj+i, and add the diagonals as described in Case 2 . The

running time of this step is bounded by 0 (M) + 0 (T B r o a d c a s t (l , P , M)) time.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

100

Theorem 6.7. Let C be an n-vertex convex region, stored at most 2M vertices

per processor among the first processors of an ACM(n,p, M), and let H be an

m-vertex convex hole (m 6 0(n)) within C, also stored 2M vertices per processor

in the next processors of the ACM(n,p, M) . The planar region C \ H can be

triangulated in T q p? ~ C (fyf'j -|-0 (T'sroadcast (1 ? P, Af)) time. Q

6.4 CONVEX REGIONS W ITH RECTANGU

LAR HOLES

This section discusses a particular case of constrained triangulation problems involv

ing rectangular forbidden regions within a convex region to be triangulated. The

template algorithm for this problem for the ACM(n,p, M) is developed and uses as

building blocks the algorithms for the triangulation of special monotone polygons

and the triangulation of convex region with convex holes.

Let C = Ci, C2, . . . , Cn be a convex region containing n rectangular holes spec

ified by a set 72. = {f?i, R 2 , . . . , R n } of iso-oriented, non-overlapping rectangles. The

task at hand is to triangulate C \ 1 Z . The required triangulation can be obtained in

two phases after determining the convex hull of the set 72 of rectangles. Let C ’ be

the convex hull of 72. In the first phase of the algorithm C \ C ' is triangulated and

in the second phase C ' is triangulated. The details of the tem plate algorithm are as

follows:

Template Algorithm 6.4:

Step 1 . The task of computing the convex hull of 72 is a particular instance of

the convex hull problem and can be solved in T c 0n v e x h u i i (n , P , M) time. Now, the

triangulation of the region C \ C ' can be done in T Con v e x h o i e (n ,p , M) time.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

101

Thus, the focus is now on the second phase where the problem reduces to triangulat

ing C'. Let tr(R{), tl(Ri), br(Ri), and bl(Ri) stand for top-right, top-left, bottom-

right, and bottom-left comers of Ri, respectively. Refer to the left vertical edge of f?,

as le ft(R i) and the right vertical edge as right(Ri). For convenience, each rectangle

Ri is given the identity i. To the given set 1Z of rectangles, add two rectangles Rq

and Rn+1 with 6/(Ro) = (^mtn Lj/mm 1 = ("̂ min ^iVinax *f" 1 4" c)

and bl^Rnj.i) — x max 4- £,ymin 1 = (s-mar 4~ 1 iVmax 4" 1 "I" c), where

and ymaxi Vmin are the maximum and minimum values among the coor

dinates of the endpoints of the rectangles in x and y directions and e > 0 is a small

constant (see Figure 6.12).

Cl

Rq and R^+i a re th e d u m m y rec tang les appended to R.

Figure 6.12: Illustrating the convex region C with rectangular holes

S tep 2 . Solve the rectangle visibility for the set R q , R i , . . . , Rn+i ■ This can be done

in T r v (t i , p , M) time (see Figure 6.13).

S tep 3. Associate with each corner point of rectangle Ri an information packet

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

102

Figure 6.13: Determining the rectangle visibility for R

containing its coordinates and two numbers u and v. For endpoints of le ft(R i) , u is

set to its identity i and v is set to the identity of the rectangle visible in the negative

x-direction. Similarly, for endpoints of right(Ri), v is set to the identity of Ri and

u is set to the identity of the rectangle visible in the positive x-direction. Sort the

information packets, first on the u value and then on the y-coordinate. Cleaxly, this

step requires 0 (r s 0rt(” ,P, M)) time.

Notice that after the sort, for every le ft(R i) the identities of R j , with r(e) =

le ft(R i) where e is an endpoint of Rj, will occur in consecutive positions. A diagonal

connecting two corner points belonging to Rp and R q is added to the triangulation

if p and q occur in adjacent positions corresponding to some left(Rk) (see Figure

6.14). Note that this determination takes 0(1) time.

For any le ft(R i), the sequence of diagonals, including the rectangle edges

between them, is called the closest contour of le ft(R i) and denoted by CL(Ri).

The above process is repeated for right(Ri), (0 < z < n + 1) and for any

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

103

• *

abcdfg - the closest contour of right (Rq)
bijc, dkef- special trapezoids

Figure 6.14: Illustrating the computation of closest contours

right(Ri), the closest contour C R (R i) is computed similarly. Consider the parti

tioning of C ' after the addition of the diagonals. The various pieces of partitions

belong to one of the following types:

• the rectangles (Ri s);

• the special monotone polygons formed by the left and right edges of various

rectangles with their closest contours;

• the remaining regions referred to as special trapezoids.

S tep 4. All the special trapezoids can be identified as follows. Consider two rectan

gles Rp and R q such that r(br(Rp)) = r(fr(i?9)) and l(bl(Rp)) = l(tl(Rq)). The

region joining br(Rp) with tr (R q) and bl(Rp) with t l(R q) is a special trapezoid

and can be triangulated by adding a diagonal (see Figure 6.15). Also, the spe

cial monotone polygons can be identified and triangulated in independent ACM’s in

TMon oto ne(n ,P ,M) time. Thus, C ' is triangulated.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

104

Figure 6.15: Illustrating the partitioning of C' after Step 3

Thus the following result is obtained.

T h eo rem 6 .8 . Triangulation of the convex hull of a given set of n iso-oriented rect

angular holes can be done in T r v (« ,P , M) + T M onotone(n , p , M) + T Sort(n -,p , M)+ 0 (M)

time on an ACM(rc, p , M).

P roof. The running time of the algorithm is obvious from the time taken by each

of the steps. To prove the correctness it suffices to show that every point interior to

the convex region determined by R is within a triangle.

Consider a point q within the convex hull. Let Ri and Rr be the two rect

angles hit by q~ and q+, respectively. Note that, Ri and R r always exist because of

the rectangles Rq and jRn+i appended by us.

Observe that, if C R(R i) is <j> then q € CL(Rr). Similarly, if CL(Rr) is <j>

then q 6 CR(Ri). If C R (R i) = (j) then bl(R,.) < br(Ri) < tr(Ri) < tl(Rr). To see

that this is true, assume 6/(i2r) > br(Ri). Since, CR(Ri) is empty, br(Rr) cannot

be blocked by Ri. This implies that there exists some rectangle Rx blocking the

horizontal ray towards negative x-direction from br(Rr). Obviously, the top edge of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

105

Rx lies below q and tl(Rx) cannot be blocked by left(Ri). By repeating the above

argument there should exist a rectangle below q that has le ft(R i) as its solution,

contradicting the assumption that CR(Ri) is empty. Other cases can be argued

similarly. Thus, the horizontal strip (see Figure 6.17) determined by the horizontal

rays from tr(Ri) and br(Ri) blocked by right{Rr) contains no other rectangle and q

is in CL(Rr). Similarly if CL(Rr) is <£, q lies in CR{Ri).

Figure 6.16: Illustrating the triangulation after Step 4

The only other case left is when both CR(Ri) and CL(Rr) exist. In this

case, consider the rectangles R a and R b above and below q respectively, having the

closest y-coordinates. At least one of R a and Rb is guaranteed to exist because of

the assumption that both the contours CL(Rr) and CR(Ri) exist. Note that, the

bottom edge of R a should be above q and the top edge of Rb below q. As shown in

the Figure 6.17, let e be the diagonal of the triangulation joining bl(Ra) with tl(Rb)

and e' be the one joining br(Ra) with tr (R b). Since, e G C R (R {) and e' G C L (R r), q

belongs to either of the contours or the special trapezoid bounded by R a, R b with e

and e'. Since each of these regions is triangulated, it is guaranteed that every point

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

106

Figure 6.17: Illustrating the proof of Theorem 6.8

within the convex region belongs to some resulting triangle. □

Once C \ C ' is triangulated, the problem at hand is solved as illustrated in Figure

6.16. Thus, the following result is obtained.

T h eo rem 6.9. Triangulation of a convex region, of size n, with n iso-oriented

rectangular holes can be done in 0 (T R V { n , p , M)) + 0 (T Monotone{ n , p , M)) + 0 { M) +

0(Tco nv exh ui i (n ,p , M)) + 0 (T c o n v e x h o i e (n , P , M)) time on an ACM(n,p, M) . □

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

107

6.5 CONVEX REGION W ITH ORDERED SEG

MENTS

In this section let us discuss another variation of the constrained triangulation prob

lem where a convex region containing an ordered set of line segments is to be trian

gulated, including the various segments in the triangulation.

The problem is stated as follows: given a set of n well ordered segments

S = { s i,S2 1 . . . , s„} contained in a convex region C with n vertices, it is required to

determine the triangulation of C including the given segments.

Assume that the set S is stored M segments per processor in the first ^

processors of an ACM(n,p, M), where a processor P,- (0 < i < — 1) stores the

seqments s , - .m + i» - • • ? -S (» + i)a /- Add two segments S o and s n + 1 to S as illustrated in

Figure 6.18. Also, C is stored M vertices per processor in the first processors of

an ACM (n,p,M).

s q ^

Figure 6.18: Illustrating the solutions to EV in Step 2 of triangulation of segments

The approach to this problem is similar to the triangulation in presence of

rectangular forbidden regions.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

10S

Figure 6.19: Illustrating the convex hull H after Step 4

T em p la te A lg o rith m 6.5:

S te p 1. Determine the convex hull i f of S' in 0 (T convexhun { n 1p 1 M)) time.

S tep 2 . Triangulate C \ i f in 0 (T c o n v e x h o i e (n , P i M)) time by applying template

algorithm 6.4.

S tep 3. In order to triangulate H , solve EV problem for S in Tev{ti,p, M) time.

The solution to the EV problem for the segments in Figure 6.17 is illustrated in Fig

ure 6.18. The definition of closest left contour C L(si), and the closest right contour

CR(si) for each of the segments is identical to tha t for the rectangles in Section 6.4.

For every segment s,- compute CL(s{), and CR(s,). Observe that in this case there

will be no special trapezoids. The convex hull of the segments is divided into several

special monotone polygons.

S te p 4. Triangulate all the special monotone polygons in parallel, as described in

Section 6.4. This is accomplished in 0 (T M on oto n e(n ,p , M)) time.

T h eo rem 6 .10 . The problem of triangulating a convex region, of size n , containing

a set of n ordered segments S = si, S2, . . . , s n stored M per processor among the first

j j processors of an ACM(n,p, M) is solved in O { T Convexhuii{n,p, M))+ 0 (IW (n ,p , M)) +

0 (T M o n o t o n e (n , P , M)) time. □

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

109

CHAPTER 7

TRIANGULATION ON ENHANCED MESHES

In this chapter, let us discuss how the template algorithms for the triangulation

problems discussed for the abstract computational model, ACM(n,p, M), in Chapter

6, are ported to enhanced meshes. Not surprisingly, porting the template algorithms

to the RMESH results in 0(1) time solutions to the various triangulation problems,

thus proving for another time that the power of reconfigurability of the bus system

can be exploited to design very fast algorithms.

The organization of the chapter is as follows. Section 7.1 discusses the tools

needed to port the template algorithms from Chapter 6 to the MMB. Next, Sec

tion 7.2 discusses the triangulation algorithms on the MMB. Section 7.3 discusses

the various tools for the RMESH and finally Section 7.4 presents the 0(1) time

triangulation algorithms for the RMESH.

7.1 TOOLS FOR THE MMB

In this section, let us discuss the implementation of the various tools that are needed

to port the template algorithms to the MMB.

• AN LV : Given an arbitrary sequence of real numbers < c^, a2, . . . , a„ > , stored

one per processor in the first row of an mesh with multiple broadcasting of size

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

110

n x n , associate with every a,- a vertical line segment s,- with endpoints (z, —oo) and

(z, a,). Assume that the viewpoint ta lies at (—oo,0). It is easy to confirm that

the resulting set S of vertical line segments is well ordered, and the EV algorithm

discussed in Section 4 can be applied to solve the visibility relations between the

segments. Clearly, for every endpoint (z, a,-) the solution corresponds to the nearest

line segment that is blocking a horizontal ray emanating from (z, a,) to the left and

to the right. This translates immediately into a solution to the ANLV, as desired.

Consequently, the following result is obtained.

L em m a 7.1. An arbitrary instance of size n of the all nearest larger values problem

stored in the first row of the MMB of size n x n can be solved in O(logzz) time. □

• Convex hull: Quite recently, Olariu et al. [72] have proposed a time-optimal

algorithm to compute the convex hull of a set of points in the plane, on the MMB.

More precisely, they proved the following result.

P ro p o sitio n 7.2. The convex hull of an n-element set of points in the plane, stored

one item per processor in one row or one column of the MMB of size n x n can be

computed in O(logn) time. Furthermore, this is time-optimal. □

7.2 TRIANGULATION ON THE MMB

In this section, let us discuss the various triangulations in the context of the MMB,

which are instantiations of the template algorithms discussed in Chapter 6.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

I l l

7.2.1 TRIANGULATING A SPECIAL M ONOTONE POLY
GON

In this subsection, let us discuss how the template algorithm 6.1 to triangulate a

special monotone polygon is ported to the MMB.

Let A i — vi,V2 , . . . , v n be an n-vertex special monotone polygon with its

vertices specified in clockwise order and with ViVn denoting the base edge. The

vertices of the polygon are assumed to be stored in the first row of a mesh with mul

tiple broadcasting of size n x n, one vertex per processor. The details of the various

steps involved in triangulating the special monotone polygon A i are identical to the

template algorithm and can be ported to an MMB as follows. Every vertex v, of

A i determines whether it belongs to an ascending or descending chain. This can be

performed in 0(1) time. As in the template algorithm, each vertex v, = (x,-, y,) of A i

is associated with an element st- = y,- and solve the resulting instance of the ANLV

problem. Every vertex u; that has identified (at least) a match vj adds the diagonal

V{Vj to the triangulation. This can be accomplished in O(logn) time by virtue of

Lemma 7.1. Mark the vertices as specified in Step 4 of the template algorithm 6.1.

Let Vi = u,-j, u,-2, . . . , Vir = vn be the sequence of marked vertices enumerated by

increasing x-coordinate and let A i ' be the monotone polygon determined by these

marked vertices. Rotate A i' so that v\vn becomes parallel to the x-axis and repeat

the above process. This can again be accomplished in O(logn) time. Thus the

following result is obtained.

T h eo rem 7.3. The problem of triangulating an n-vertex special monotone polygon

can be solved in O(log n) time on the MMB of size n x n. □

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

112

7.2.2 TRIANGULATING A SET OF POINTS

This subsection discusses the solution to the problem of triangulating a given set

S of n points in the plane obtained by porting the template algorithm 6.2 to the

MMB. Furthermore, this algorithm is found to be time-optimal on the MMB.

Let us begin by showing tha t for both the CREW-PRAM and the mesh with

multiple broadcasting, the task of triangulating a set of n points in the plane has a

time lower bound of fl(logn).

The stated time lower bound can be derived by reducing the OR problem

to triangulation. Let 61, 62, • - - , 6n be an arbitrary input to OR. Construct a set

{ P o i P i i - ■ ■■>P n + i } of points in the plane by setting for every i (1 < i < n), p:- = (z, 0)

if 6,- = 0, and by setting pi = (z, 1) if 6,- = 1. To complete the construction, add the

points p0 = (0,1) and pn+i = (n + 1, 1). Now, the solution to the OR problem is

0 if, and only if, the segment popn+i belongs to the triangulation. The conclusion

follows by Proposition 4.4.

Lemma 7.4. The problem of triangulating a set of n points in the plane has a time

lower bound of fl(logn) on the CREW-PRAM, no m atter how many processors and

memory cells are used. □

Now Lemma 7.4 and Proposition 4.5 combined, imply the following result.

Corollary 7.5. The problem of triangulating a set of n points in the plane has a

time lower bound of fi(logn) on a mesh with multiple broadcasting of size n x n. □

Now, let us confirm that the application of template algorithm 6.2 results in a time-

optimal algorithm to the triangulation problem on the MMB. Begin by computing

the convex hull of 5, and by Proposition 7.2 this task can be performed in O(log n)

time. Next, sort all the points in S by their x coordinates. By virtue of Proposition

4.6, this task can be performed in O(logn) time. Further, join every point with

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

its immediate neighbor in the sequence sorted by x. All the convex hull edges and

the edges drawn between two adjacent points are included in the triangulation. As

noted in the template algorithm, the chain determined by joining adjacent points in

the sorted sequence divides the entire region within the hull into special monotone

polygons. Each of these polygons with a base edge on the lower hull can be trian

gulated independently in parallel using the algorithm described in Subsection 7.2.1.

The same can be repeated for the polygons with a base edge belonging to the upper

hull. Now, Theorem 7.3 guarantees that each of the above steps can be performed

in O(logn) time and thus the triangulation can be computed in O(logn) time. The

time-optimality of the algorithm is guaranteed by Corollary 7.5. Thus, the following

result is obtained.

Theorem 7.6. The problem of triangulating a set S of n points in the plane can

be done in O(log n) time on a mesh with multiple broadcasting. Furthermore, this

is time-optimal. □

7.2.3 TRIANGULATING A CONVEX HULL W ITH A CON

VEX HOLE

In this subsection, let us discuss how the triangulation of convex region with a con

vex hole is implemented on the MMB, which is in fact an adaptation of the template

algorithm 6.3 to the MMB.

Let C be stored at most two vertices per processor in the first | processors,

in the first row of the MMB and H be stored at most two vertices per processor

in the next y processors in the first row of the MMB of size n x n. Begin by

chosing an arbitrary point interior to H and convert the vertices of C and H to

polar coordinates having w as pole and the positive x-direction as polar axis. Since

uj is interior to C and H , convexity guarantees that the vertices of both C and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

114

H occur in sorted order about u j . Next, these two sorted sequence are merged in

0(1) time as described in Proposition 4.1, and let 61, 62, . . . , 6n+m be the resulting

sequence sorted by polar angle.

Identify the Case 1 sequences and Case 2 sequences as in the template al

gorithm. All the polygons corresponding to the Case 1 sequences can be solved in

parallel by replicating the first row in all the rows of the mesh and solving a subse

quence per row. Case 2 items can be solved similarly. This can be accomplished in

0(1) time. Thus the following result is obtained.

Theorem 7.7. Let C be an n-vertex convex region and let H be an m-vertex con

vex hole (m G 0 (n)) within C. Assuming that C and H are stored in one row or

column of a mesh with multiple broadcasting of size n x n , the planar region C \ H

can be triangulated in 0 (1) time. □

7.2.4 TRIANGULATING A CONVEX REGION W ITH

RECTANGULAR HOLES

This subsection discusses the implentation of the template algorithm 6.4 to the

MMB, to solve the problem of triangulating a convex region with rectangular for

bidden regions.

Let C = ci,C2, . . . ,c„ be a convex region containing n rectangular holes

specified by a set 1Z= {R\,R.2 , . . . , Rn} of rectangles with their sides parallel to the

axes. The task at hand is to triangulate C \ R . Let C' be the convex hull of the

set R of rectangles. Triangulate C \ C ' , using the algorithm discussed in Subsection

7.2.3. Now to triangulate C , as in the template algorithm, add two rectangles R q

and Rn+h to the given set R of rectangles. Solve the rectangle visibility for the

set Ro, R \ i . . . , Rn+i- This can be done in O(logn) time as stated in Theorem 4.17.

Associate with each corner point of rectangle Ri an information packet containing its

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

115

coordinates and two numbers u and v, as specified in the template algorithm. Sort

the information packets, first on the u value and then on the y-coordinate. Clearly,

this step requires O(logn) time. Determine the closest contours, and identify the

special trapezoids and special monotone polygons. The special trapezoids can be

trivially triangulated in 0(1) time. Also, the special monotone polygons can be

identified and triangulated in independent submeshes of the original mesh in O(log n)

time as stated in Theorem 7.3.

T h eo rem 7.8. Triangulation of the convex region, of size n, containing a given

set of n iso-oriented rectangular holes can be done in O(log n) time on a mesh with

multiple broadcasting of size n x n. □

7.2.5 TRIANGULATING A CONVEX REGION W ITH

ORDERED SEGMENTS

In this subsection let us discuss triangulation problem where a convex region con

taining an ordered set of line segments is to be triangulated, including the various

segments in the triangulation.

Consider a set of n well ordered segments S = {si, s2, • • - 5 sn} in the plane

enclosed in a convex region C. C is stored one vertex per processor in the first

row of the MMB and S is stored one segment per processor in the first row of the

MMB. As described in the template algorithm, determine the convex hull H of the

endpoints of S. Triangulate C \ H in 0(1) time, as described in Subsection 7.2.3.

H can be triangulated as described in template algorithm 6.5 after applying the EV

algorithm to S and determining the closest contours. By virtue of Theorem 4.10 and

Theorem 7.3, H can be triangulated in O(logrc) time. Thus, the following result is

obtained.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

116

T h eo rem 7.9. The problem of triangulating a convex region, of size n, containing

a set of n ordered segments 5 = $i,S2, . . . , s „ stored one per processor in the first

row of the MMB, can be done in O(logn) time. □

7.3 TOOLS FOR THE RMESH

The purpose of this section is to discuss a number of data movement techniques for

the RMESH that will be instrumental in the instantiation of the template algorithms

to the RMESH.

In addition to the various tools discussed in Chapter 4, the following tools

are needed for the various triangulation algorithms.

• A N L V : Given the solution to the SV problem, ANLV problem can be solved in

0(1) time. Thus the following result is stated.

L em m a 7.10. The ANLV problem of an n element set can be determined in 0(1)

time on a RMESH of size n x n. □

• Convex hull: Quite recently, Olariu et al. [71], Wang and Chen [90], and Nigam

and Sahni [69] have proposed a 0(1) tim e algorithm to compute the convex hull of

a set of points in the plane. More precisely, they all proved the following result.

P ro p o sitio n 7.11. The convex hull of an n-element set of points in the plane,

stored one item per processor in one row or one column of a RMESH of size n x n

can be computed in 0 (1) time. □

7.4 TRIANGULATION ON THE RMESH

In this section, the template algorithms for the various triangulation problems are

ported to the RMESH, giving 0(1) time solutions.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

117

7.4.1 TRIANGULATING A SPECIAL M ONOTONE POLY

GON

In this subsection, template algorithm 6.1 to triangulate special monotone poly

gons is implemented on the RMESH. Consider a special monotone polygon, M. =

Vi, v2, . . . , vn, specified in clockwise order and with v\vn denoting the base edge. The

vertices of the polygon are assumed to be stored in the first row of a RMESH M.

of size n x n, one vertex per processor. The details of the various steps involved

in triangulating the special monotone polygon M. are spelled out as follows: By

checking its neighbors, every vertex u,- of M. determines whether it belongs to an

ascending or descending chain, in 0(1) time. Each vertex u:- = (z,-,y,) of M. is

associated with a element yt- and solve the resulting instance of ANLV problem. By

virtue of Lemma 7.10, this can be accomplished in 0(1) time. As in the template

algorithm, every vertex ut- that has identified (at least) a match Vj adds the diago

nal V{Vj to the triangulation and records the resulting triangle in 0(1) time. Mark

the vertices as in Step 4 of the template algorithm. Let v\ = u«:, u,-2, . . . , u,r = vn

be the sequence of marked vertices enumerated by increasing z-coordinate and let

M ' be the monotone polygon determined by these marked vertices. Rotate M.' so

that vivn becomes parallel to the z-axis and triangulate it by repeating the above

process. The following result is thus obtained.

T h eo rem 7.12. The problem of triangulating an n-vertex special monotone poly

gon stored in the first row of a RMESH size n x n can be solved in 0(1) time. □

7.4.2 TRIANGULATING A SET OF POINTS

The purpose of this subsection is to demonstrate a 0(1) time triangulation algo

rithm for points in the plane. Template algorithm 6.2 is instantiated in the context

of the RMESH to achieve this.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

118

Specifically, consider a set S of n points in the plane stored in the first row

of a RMESH of size n x n, one point per processor. Computing the convex hull

of the 5. This computation takes 0(1) time as stated in Proposition 7.11. Note

that all the edges of the convex hull will be part of the desired triangulation. Next,

sort the points in S in increasing order of their x-coordinates and add a diagonal

between adjacent points in the sorted sequence, which divide the region within the

convex hull into several monotone polygons as stated in the template algorithm.

This is accomplished in 0(1) time, as stated in Proposition 4.22. Each of these

polygons with the base edge on the lower hull can be triangulated independently, in

parallel, using the algorithm for triangulating a special monotone polygon described

in Subsection 7.4.1. The same can be repeated for the polygons with an edge on the

upper hull. Theorem 7.12 guarantees that the above step can be performed in 0(1)

time. Consequently, the following result is obtained.

T h eo rem 7.13. An arbitrary set S of n points in the plane, stored on point per

processor in the first row of a RMESH of size n x n, can be triangulated in 0(1)

time. □

7.4.3 TRIANGULATING A CONVEX REGION W ITH

ONE CONVEX HOLE

This subsection discusses how the problem of triangulation a convex region with a

convex hole is implemented on the RMESH, based on the template algorithm 6.3.

Let C = ci, c2, . . . , Cn be a convex region of the plane and H = h\, h2, . . . , hm

be a convex hole within C. Let both C and H be stored one vertex per processor

in the first row of a RMESH M. of size n x n. As in the template algorithm,

choose an arbitrary point interior to H and convert the vertices of C and H to polar

coordinates having u as pole and the positive x-direction as polar axis, and merge

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

119

the vertices of C and H. This can be done in 0(1) time as specified in Proposition

4.21, and let &x, b2, . . . , bn+m be the resulting sequence sorted by polar angle.

Consider the sequence i>x, b2, .. -, bn+m is stored in order by the processors

in the first row of the mesh, at most two vertices per processor. Identification and

triangulation of the polygons corresponding to Case 1 and Case 2 subsequences de

tailed in the template algorithm is identical to the way it is implemented on the

MMB and is accomplished in 0(1) time. Thus the following result is obtained.

T h eo rem 7.14. Let C be an n-vertex convex region and let H be an m-vertex

convex hole (m € 0 (n)) within C. Assuming that C and H are stored in one row

or column of a RMESH of size n x n, the planar region C \ H can be triangulated

in 0 (1) time. □

7.4.4 TRIANGULATING A CONVEX REGION WITH

RECTANGULAR HOLES

In this subsection, the template algorithm 6.4 to triangulate a convex region in the

presence of rectangular holes is ported to a 0(1) time algorithm on the RMESH.

Let C = c i ,C 2 , . . . , c n be a convex region containing n rectangular holes

specified by a set %= {Rx, R 2, . . . , R„} of rectangles with their sides parallel to the

axes. Convex hull C' of 71 can be determined in 0(1) time by Proposition 7.11.

Triangulate C \ C ' using the algorithm discussed in Subsection 7.4.3 and this takes

0(1) time by virtue of Theorem 7.14. As in the template algorithm, to the given

set of rectangles add two rectangles Rq and Rn+1. Solve the rectangle visibility for

the set Ro,Rx, . . . , Rn+i- This can be done in 0(1) time as stated in Theorem 4.26.

Associate with each corner point of rectangle Ri an information packet containing

its coordinates and two numbers u and v, as in the template algorithm. Sort the

information packets, first on the u value and then on the y-coordinate. Clearly, this

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

120

step requires 0(1) time. The closest left and right contours can be identified in

0(1) time. Now in another 0(1) time the special trapezoids can be identified and

triangulated by adding appropriate diagonals. Also, the special monotone polygons

can be identified and triangulated in independent submeshes of the original mesh in

0(1) time as stated in Theorem 7.12. Thus, the following result is obtained.

T heorem 7.15. Triangulation of a convex region, of size n, containing a given set

of n iso-oriented rectangular holes can be done in 0(1) time on a RMESH of size

n x n. □

7.4.5 TRIANGULATING A CONVEX REGION W ITH

ORDERED SEGM ENTS
Consider a set of n well ordered segments 5 = s i,S 2, .. . , s n contained in a convex

region C of n vertices. The segments in S are stored one per processor in the first

row of the mesh. Similarly, the vertices of C are stores one vertex per processor in

the first row of the mesh. The approach to this problem is similar to the triangu

lation in the presence of rectangular holes and the details are omitted. Thus, the

following result is obtained.

T heo rem 7.16. The problem of triangulating a convex region, of size n, containing

a set of n ordered segments S = S\,S2 , • - • ,s n stored one per processor can be done

in 0(1) time on a RMESH of size n x n. □

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

121

CHAPTER 8

TRIANGULATION ON COARSE-GRAIN

MULTICOMPUTERS

In this chapter, let us develop some very powerful tools for the coarse-grain multi

computers, in addition to the ones developed in Chapter 5, and use them to port

the various template algorithms for the triangulation problems to coarse-grain multi-

computers. The computation time of the resulting algorithms is found to be optimal.

The organization of the chapter is as follows. Section 8.1 discusses the tools

developed for the CGM in order to apply the template algorithms for the trian

gulation problems, to this model of computation. This is followed by Section 8.2,

where the application of the template algorithms to provide computationally optimal

algorithms on the CGM is discussed.

8.1 TOOLS

In addition to the tools developed in Chapter 5, the following tools are essential to

port the template algorithms designed for the ACM(re, p ,M) to the CGM(rc,p).

• ANLV: The ANLV problem is solved on the CGM(n,p) as discussed in Subsection

8 . 1. 1.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• Convex H u l l : The convex hull of a set of points in the plane is computed on the

CGM(n,p) as described in Subsection 8.1.3.

Also, Subsection 8.1.2 discusses the problem of merging two convex hulls

which is an essential ingredient of the convex hull algorithm discussed in Subsection

8.1.3.

8.1.1 ALL NEAREST LARGER VALUES

The purpose of this section is to exhibit an efficient solution for the ANLV problem

on a CGM(n,p). It can be solved by viewing the ANLV as special instance of EV

problem in 0 (—̂ gn)+ 0 (logpTAiitoaii(n ->p)) time. However, the ANLV problem can

be solved in 0 (^)+ 0(TAiitoaii(n,P)) time using the dynamic load balancing scheme

discussed in Chapter 5. Since the sequential lower bound for this problem is f2(n),

this algorithm is computationally time-optimal.

Consider a sequence of n real numbers < a i, 02, . . . , a„ > , ^ per processor in

a CGM(n,p), such that any processor P, stores the items A,- = a,-,s+1, . . . ,a (I+1),n.

Let us discuss only the computation of the nearest larger value to the left of every

a,-, the computation of the ones to the right can be done symmetrically.

Given the input sequence of real numbers < a i , . . . ,an > , a sequence of verti

cal segments is obtained by associating the element aj with a segment Sj with its top

endpoint specified by the coordinated (j, aj) and the bottom endpoint represented by

(j, — 00). Now, every Pi stores the subsequence Si =< s,«a+i , . . . ,S (j+i).a > . Note

that the sequence of segments < s \ , . . . , s n > are sorted by their ^-coordinates.

S tep 1 . Let every processor Pj solve a local instance of ANLV problem for the

items in A; = < o.-.a+i,. . . , a(t+1),a > , where every item determines the nearest

larger value to its left and right. This is equivalent to determining the nearest line

segment that is blocking a horizontal ray emanating from each of the top endpoints

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

of sj £ Si, in positive and negative x directions. This can be accomplished using the

sequential algorithm to compute the ANLV in O(^) time [78]. Consider the subset

of segments in 5,-, whose top endpoints did not find their solution, in negative x

direction,within the set S,-. This subset of Si is said to be the left contour and is

referred to as LC(S,). Similarly, the subset of S i , whose top endpoints that did not

find their solutions in the right direction are said to belong to the right contour and

are referred to as RC(S,).

After determining the left and the right contours of Si, every Pi needs to

determine if any of the segments in RC(5/t), k < i, block the horizontal ray emanat

ing from the top endpoint of each Sj £ LC(5,). This can be accomplished using a

successive refinement technique, where as a first step, every Pi determines for every

Sj £ LC(Si), the pocket to which its solution belongs to. Note that, the pocket of

sj £ LC(S',) is k if the RC(S*) contains the solution to Sj. Once this information

is available, the dynamic load balancing scheme detailed in the Chapter 5 could be

applied to obtain the actual solutions to every S j . The details are as follows.

S tep 2 . Every processor Pi determines the tallest segment it holds, and that

is considered the sample item f,-. Once LC(5t) and RC(5,) are determined, U

can be obtained in 0(1) time. Now, perform an all-gather operation so that ev

ery processor has a copy of the sequence of sample items from every processor,

T =< T0,f i , . . . , tp _ i > . This can be accomplished in TAugaiher(p,p) time.

In every Pi perform the following computation in parallel. Determine the

right contour of the sample T , given by RC(T). Now, for every Sj £ LC(5,), deter

mine if any of the segments t k £ RC(T) block the horizontal ray emanating from its

top endpoint. This can be accomplished in O(^) time. For each endpoint in LC(Sj),

determine the pocket to be k, if it is blocked by the segment tk £ RC(jT).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

124

O bserva tion 8.1. The actual segment that would block Sj € LC(5,) is contained

in RC(Sfc), where k is its pocket of Sj. □

S tep 3. The dynamic load balancing scheme discussed in Subsection 5.1.1 can be

applied to determine the final solutions for every sj 6 LC(5,). This can be accom

plished in 0 (£) computational time, and 0(TAUtoaii{n,p)) communication time, by

virtue of Lemma 5.2. Thus, the following result is obtained.

T h eo rem 8 .2 . The All Nearest Larger Values problem for a sequence of n items,

stored ^ per processor on a CGM(n,p), can be solved in 0 (|) computational time,

and 0(TAUtoaii(n,p)) communication time. □

8.1.2 HULL MERGE
This subsection discusses the problem of merging two upper hulls of size j vertices,

stored in | processors each, on a CGM(n,p). This is accomplished by computing

the supporting line of the two upper hulls and updating the ranks of the vertices on

the resulting hull. The running time of the algorithm is O(^) computational time

and 0 (TBroadcast(p ? p)) time. Since the sequential lower bound for this problem is

f l(n), this algorithm is computationally time-optimal.

Let us discuss a few terms that are used in the following discussion. Consider

the upper hull U = uj, u2, . . . , Uk of a set S of points in the plane. A sample of U

is a subset of vertices in U enumerated in the same order as in U. Consider an

arbitrary sample A = (ui = a o ,o j,. . . ,a a = Uk) of U. The sample A partitions U

into s pockets Ai, A 2 l. . . , As, such tha t A,- involves the vertices in U lying between

a,_i and a

Now, let us discuss the problem of computing the supporting line of two

separable upper hulls U = iq, u2, . . . ,« s and V = v i,v2, .. - , v r , having - vertices

each. The | vertices of U are stored in the processors ^ per

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

processor, in the CGM(n,p). Again, V vertices is stored in processors Pe, . . . , Pp_i

of the CGM(n,p), ^ per processor. Consider the sample A of U consisting of every

~th vertex in U (including the last vertex) and is enumerated as ao = u i,a i =

u j+ i , . . . , a |_ i = U (|_ i)a+ i,a | = u e . Similarly, let B be the sample of V given

by bo = vi,bi = us+ i, . . . , 6| _ x = = v e . The two samples determine

pockets Ai, A2, . . . , A e and Bi, B 2 , . . . , B e in U and V , respectively. Let the

supporting line of A and B be achieved by a, and bj, and let the supporting line

of U and V be achieved by up and vq. The following technical result has been

established in [5].

P ro p o sitio n 8 .3 . At least one of the following statements is true:

(a) up € Ai;

(b) Up € Ai+i;

(c) vq 6 Bj;

(d) Vq € Bj+1. □

Proposition 8.3 suggests the following procedure to determine the supporting line

of the two hulls. In an all-gather operation, the samples A and B are replicated

in every processor Pi (0 < i < p — 1) of the CGM(n,p). This is accomplished in

PAiiga.th.eT {pi p) time. In O(logp) time, let every P,- compute the supporting line for A

and B , using the sequential algorithm [78], and let a,- and bj achieve the supporting

line of A and B . The next task is to check which of the four conditions in Proposition

8.3 holds. For example, condition (b) is equivalent to saying that up lies to the right

of a,- and left of a,+1. To check (b), the supporting lines s and s' from a,- and at+i to

V are computed, as follows. Every processor P,- (| < i < p — 1), determines if any of

the vertices Vk of V it holds is such that vjta; is the supporting line s to V. Exactly

one processor determines s, and broadcasts the value of Vk and similarly s' is also

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

126

computed. This takes 0 (^)+ 0 (T B roodcasi(l,p)) time. Next, the processor storing

a,+i checks if the right neighbor of a,- in U lies above s'. Similarly, the processor

storing a,- checks if the right neighbor of a,- in U lies above s. It is easy to see that

Up belongs to Ai+i if, and only if, both these conditions hold. The other conditions

are checked similarly.

Assume without loss of generality that condition (b) holds. The next target

is to compute the supporting line of A,'+i and B , which is accomplished by the

processor holding pocket A,+i in Q(log j) time, using the sequential algorithm. It

is important to note that convexity guarantees tha t if the supporting line of A,+\

and B is not a supporting line to U and V, then the pocket B t that contains vq can

be determined. Therefore, the supporting line of U and V can be determined by

identifying the pocket B t and determining the supporting line of A:+j and Bt, which

is nothing but the supporting line of U and V. Note that, this step would require

O(log |) computational tim e and also 0 (TBroadcast^,?)) communication tim e to

move B t to processor storing A,+1.

Once the supporting line of U and V is determined, in Tsroadcasti^iP) time

all the processors can be informed of the supporting line, and in O(^) computational

time, the ranks of the various vertices on the upper hull can be updated. Thus, the

following result is obtained.

L em m a 8 .4 . Given two separable upperhulls U and V of | vertices each, stored

^ vertices per processor in the p processors of a CGM(n,p), the two hulls can be

merged in O(^) computational time and 0 (TBToadcast(^,p)) time. □

8.1.3 CONVEX HULL

This subsection discusses the convex hull algorithm and as stated earlier uses the

algorithm to merge convex hulls, described in Subsection 8.1.2. The running time

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

of the algorithm is 0 (nl°gn) computational tim e and 0(\og pTAiitoaii{n, p)) commu

nication time. Since the sequential lower bound for this problem is fl(nlogn), this

algorithm is computationally time-optimal.

Consider a set S’ = {si, S2 , - . . , sn} of n points in the plane, stored ^ per pro

cessor, in an CGM(n,p). To avoid tedious details, assume without loss of generality,

that the points in S are in general position, with no three points collinear and no

two having the same x and y coordinates. The algorithm proceeds by determining

the upper and lower hulls of S separately and then merges them. The details of

the computation of the upper hull is as follows. Note that, the lower hull can be

computed similarly.

S tep 1 . Sort the points in S in increasing order of their x coordinates, and this can

be done in 0 (—°s”) computational time, and O(logpTAiitoaii{n,p)) communication

time, as stated in Lemma 5.5. Next, in each processor P,-, the convex hull of the ^

points it holds is determined in O(M og^) time, using the sequential algorithm to

compute the convex hull of a set of points [78].

S tep 2. This step involves log p iterations. In the first iteration, the CGM(n,p) can

be viewed as | independent CGM’s, given by C G M (^ ,2) and the upper hulls held

in the two processors of each CGM can be merged using the algorithm discussed in

previous subsection. In general, in any iteration t, the CGM(n,p) can be viewed as

consisting of £ independent CGM’s, given by C G M (^-,2 ‘) and in each such CGM,

the pair of hulls obtained in iteration t — 1 are merged. At the end of logp steps,

the convex hull of S is obtained. The running tim e of each of the steps is bounded

by 0(*) computational time and 0(TAutoaii(n,p)) communication time. Thus, the

following result is obtained.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

L em m a 8.5 . The convex hull of a set S of n points in the plane, stored ^ per

processor, on a CGM(n,p), can be determined in 0 (nI°K-n) computational tim e and

0 (logpTAutoaii(n,p)) communication time. □

8.2 TRIANGULATION ALGORITHMS

W ith the various tools in hand, the porting of the template algorithms for the tri-

angulation problems to the CGM(n,p) is accomplished as described in the following

subsections.

8.2.1 TRIANGULATING A SPECIAL MONOTONE POLY
GON

Let M. = u i,u2, . . . , u n be an n-vertex special monotone polygon with its vertices

specified in clockwise order and with v\vn denoting the base edge, stored ^ vertices

per processor in a CGM(n,p).

As in the template algorithm 6.1, each vertex ut- = of M is associated

with an element yi and solve the resulting instance of the ANLV problem. Every

vertex u; tha t has identified (at least) a match Vj adds the diagonal ViVj to the

triangulation. Mark the vertices as specified in Step 4 of the template algorithm.

Let Uj = u,-,, v,-2, . . . , ViT = vn be the sequence of marked vertices enumerated by

increasing a;-coordinate and let M ' be the monotone polygon determined by these

marked vertices. Rotate M.' so that vivn becomes parallel to the x-axis and repeat

the above process. Thus the following result is obtained.

T h eo rem 8.6. The problem of triangulating an n-vertex special monotone poly

gon can be solved in 0 (£) computational time and 0 (T Aatoali(n,p)) communication

time, on a CGM(n,p). □

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

129

8.2.2 TRIANGULATING A SET OF POINTS
This subsection discusses the problem of triangulating a given set 5 of n points in

the plane, on a CGM(n,p), obtained by applying template algorithm 6.2. The run

ning time of the algorithm is 0 (—?s~) computational time and 0 (logpTAiitoaii(n,p))

communication time. Since the sequential lower bound for this problem is Q(n log n),

this algorithm is computationally time-optimal.

Begin by computing the convex hull of 5 , and by Lemma 8.5, this task can be

performed in 0 (—1°K") computational time and 0 (lo g pTAiitoaiiin, p)) communication

time. Next, sort all the points in S by their x coordinates. By virtue of Lemma 5.5,

this task can be performed in 0 (nl°s ~) computational time and OilogpTAiitoaii(n, p))

communication time. Further, join every point with its immediate neighbor in the

sequence sorted by x. All the convex hull edges and the edges drawn between two

adjacent points are included in the triangulation. The chain determined by joining

adjacent points in the sorted sequence divides the entire region within the hull into

special monotone polygons. Each of these polygons with a base edge on the lower

hull can be triangulated independently in parallel using the algorithm described

above. The same can be repeated for the polygons with a base edge belonging to

the upper hull. Now, Theorem 8.6 guarantees tha t each of the above steps can be

performed in O(^) computational time and 0(TAiitoaii{n,P)) communication time.

Thus, the following result is obtained.

T h eo rem 8.7. The problem of triangulating a set S of n points in the plane can

be solved in 0 (—| s”) computational time and 0 (log pTAiitoaii(n,p)) communication

time, on a CGM(n,p). □

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

130

8.2.3 TRIANGULATING A CONVEX HULL W ITH A CON
VEX HOLE

In this subsection let us discuss the algorithm to triangulate a convex hull with a

convex hole, which is based on template algorithm 6.3.

Let C be stored ^ vertices per processor among the first | processors of the

CGM(n,p) and H be stored — vertices per processor in the next processors of
p p

the CGM(n,p). The triangulation algorithm proceeds as in the template algorithm

6.3, where an arbitrary point ui interior to H is chosen and the vertices of C and

H are converted to polar coordinates having ui as pole and the positive x-direction

as polar axis. This can be accomplished in O(^) time. Next, the two sequences of

vertices of C and H are merged in 0(TMerge(n,P)) time. Let B = &i, b2, . . . , bn+m

be the resulting sequence sorted by polar angle. Case 1 and Case 2 subsequences

are identified and solved in parallel as specified in the template algorithm. Thus the

following result is obtained.

Theorem 8.8. Given a convex hull C be stored 2s. vertices per processor among

the first | processors of the CGM(n,p) and convex hole H stored y vertices per

processor in the next %; processors of the CGM(n,p), the planar region C \ H can
P

be triangulated in 0 (|) computational time and 0(TAiitoaii(n,p)) communication

time. □

8.2.4 TRIANGULATING A CONVEX REGION W ITH

RECTANGULAR HOLES

This subsection discusses the algorithm to triangulate a convex region with rectan

gular holes on a CGM(n,p), based on template algorithm 6.4.

Let C = c i,c2, . . . ,Cn be a convex region containing n rectangular holes

specified by a set TZ= {R i, • • •, Rn} of rectangles with their sides parallel to the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

131

axes. The task at hand is to triangulate C\1Z. Let C' be the convex hull of the set ‘R.

of rectangles. Triangulate C \ C ' using the algorithm discussed in Subsection 8.2.3.

This is accomplished in 0 (|) computation tim e and 0(TAiitoaii{n, p)) communication

time,as stated in Theorem 8.8.

As in the template algorithm, add two rectangles Rq and Rn+\ to the given

set of rectangles and solve the RV problem. Associate with each comer point of rect

angle Ri an information packet containing its coordinates and two numbers u and

v , as specified in the template algorithm. Sort the information packets, first on the

u value and then on the y-coordinate. Determine the closest contours, and identify

the special trapezoids and special monotone polygons which are then triangulated

in parallel. By virtue of Lemma 5.5, Theorem 5.10 and Theorem 8.6, the following

result is obtained.

T h eo rem 8.9. Triangulation of a convex region, of size re, containing a given set of

n iso-oriented rectangular holes can be solved in 0 (nl°K") computational time and

0 (logpTAutoaii(n,p)) communication time, on a CGM(re,p). □

8.2.4 TRIANGULATING A CONVEX REGION W ITH

ORDERED SEGM ENTS
This subsection briefly presents the result of porting template algorithm 6.5 to tri

angulate a convex region containing a set of ordered segments to a CGM(re,p).

Consider a set of n well ordered segments S = Si,S2, . . . , sn in the plane, stored ^

per processor in the CGM(re,p). The vertices of C are also stored ^ per processor

in the CGM(re,p). The approach to this problem is similar to the triangulation in

the presence of rectangular holes and the details are omitted. Thus, the following

result is obtained.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

132

Theorem 8.10. The problem of triangulating a convex region, of size n , containing

a given set of n ordered segments S = s i ,s 2, . . . , s n stored ^ per processor on

a CGM(n,p) is solved in 0 (tdgg") computational time and 0 (lo g p T A ii to a i i (n ,p))

communication time. □

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

133

CHAPTER 9

IMPLEMENTATION NOTES AND

CONCLUSIONS

9.1 EXPERIMENTAL RESULTS

To demonstrate the practical relevance of the several algorithms presented in this

thesis, two fundamental algorithms discussed in this work were implemented. The

problems chosen to be implemented are two of the basic algorithms used by the var

ious visibility-related problems as very useful tools, namely the endpoint visibility

algorithm (EV), and the algorithm for triangulating a special monotone polygon.

These algorithms were implemented using MPI and timed on IBM-SP2. Note that,

the code can be ported to several commercially available parallel computers, includ

ing shared memory computers, by just recompiling the code.

Before going into the implementation details, let us briefly discuss the IBM-

SP2 architecture. It consists of RISC System/6000 processors connected via the SP2

communication subsystem. This subsystem is based upon a low latency, high band

width switching network called the High-Performance Switch. The primary goal of

the SP2 communication subsystem is to be scalable, modular, and easily integrated.

The communication network consists of bidirectional multistage interconnection net

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

134

works [87]. Clearly, the SP2 can be classified as a Coarse-Grain Multicomputer

(CGM), the coarse-grain computational model discussed in this thesis.

9.1.1 ENDPO INT VISIBILITY

Given a set of n ordered segments in the plane, template algorithm 3.1 can be applied

to solve the EV problem. The implementation of the algorithm was straightforward

and the program was timed on IBM-SP2 using 16 processors. A sequential algorithm

for solving the EV problem was also implemented and run on a single processor of

the SP2 and the speed up was determined.

The code was tested for several input sets assuming that the viewpoint is

at (oo,0). The input sets were assumed to be vertical segments and were sorted by

their x -values to ensure that they are well ordered (see Chapter 3). The code was

timed for segment sets where the y-values of the endpoints were generated using a

random number generator. The size of the input sets varied from 215 to 220 segments.

Since the timing of the program is dependent on certain geometric patterns in the

set of input segments, several special cases were also timed.

Figure 9.1 shows the running times of the parallel EV algorithm on 16 pro

cessors of the SP2. The curve labeled Case 1 corresponds to input sets where the

endpoints are generated using a random number generator. The randomness in the

coordinates of the endpoints diminishes the possibility of having dense pockets dur

ing the last logp merge steps corresponding to the top logp levels of the tree T .

The curve labeled Case 3 corresponds to the input sets where the endpoints are

in a geometric pattern guaranteeing that all the endpoints belong to dense pockets

during each of the logp merge operations, forcing the algorithm to use dynamic

load-balancing at every step. This results in an increase in the running time by a

small quantity over Case 1 because of the extra overhead in processing dense pock-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

tim
e

in
se

co
nd

s

135

16
Case 1 -e—
Case 2 -*—
Case 3 - s —14

12

10

200000 400000 600000 800000 1e+06 1.2e+06 1.4e+06
nlogn/p, where n = number of input segments, p = 16

Figure 9.1: Running time of Stage 1 of EV

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

tim
e

in
se

co
nd

s

136

30

P = 8

25

20

500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06
nlogn/p, where n = number of input segments

Figure 9.2: Comparison of sequential and parallel algorithms for EV

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ets. The curve labeled Case 2 corresponds to the input sets where the endpoints are

in a geometric pattern such that during each of the logp merge steps about half the

endpoints belong to sparse pockets and rest of them belong to dense pockets. As

expected, for Case 2 the running time is slightly less than Case 3 and slightly more

than Case 1. Figure 9.2 compares the average running times of the sequential and

parallel algorithms for randomly generated input sets. The speedup of the parallel

algorithm over the sequential algorithm was found be about 6.2 for 8 processors

and about 10.74 for 16 processors. It has also been observed tha t a single processor

cannot handle input sizes of the order of 220 as it runs out of memory for that large

a input size.

9.1.2 TRIANGULATION OF A SPECIAL M ONOTONE

POLYGON

The problem of triangulating a special monotone polygon, where the base edge is

assumed to be parallel to the x-axis, has been implemented based on the template

algorithm 6.1. As in the case of the EV algorithm, the performance of the parallel

algorithm, running on 16 processors of IBM-SP2, was compared against a O(n)

time sequential implementation for the triangulation problem running on a single

processor of the SP2. The program was timed for special monotone polygons whose

vertices generated using a random number generator. The number of vertices in

the input polygons varied from 216 to 221. Again, since the timing of the algorithm

is dependent on the geometrical patterns within the set of input vertices, several

special cases were timed.

In Figure 9.3, the curve labeled Case 1 corresponds to the randomly gen

erated vertex sets, and the low run time can be explained because of the fact the

randomness increases the likelihood of a vertex finding its match (refer to template

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

tim
e

in
se

co
nd

s

138

2
Case
Case
Case
Case

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0
500000 1e+06 1.5e+06 2e+06 2.5e+06

number of input vertices

Figure 9.3: Running times of triangulation of special monotone polygon

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

algorithm 6.1) within the same processor and this corresponds to the situation where

there are no vertices that belong to dense pockets and there are 0 (N) (where N « n)

vertices belonging to sparse pockets. The curve labeled Case 2 corresponds to the

arrangement of the vertices of the special monotone polygon, where the resulting

instance of ANLV in Step 2 of the template algorithm is such that 0 (n) vertices

belong to sparse pockets. As expected the running tim e for Case 2 is slightly higher

than that of Case 1 because of the fact that 0{n) vertices move across the 16 pro

cessors to determine their solutions. The curve labeled Case 4 corresponds to the

case where 0 (n) vertices belong to dense pockets, thus increasing the running time

because of the extra overhead involved in processing dense pockets. The curve la

beled Case 3 corresponds to the case where 0 (|) vertices belong to sparse pockets

and 0 (|) vertices belong to dense pockets. The comparison of the average running

times of the parallel algorithm and the sequential algorithm is given in Figure 9.4

and the speed up is found to be about 14.2.

9.2 CONCLUSIONS

As stated in the introduction, the design of optimal parallel algorithms poses two

major challenges to an algorithm designer. For a given problem, the first challenge is

to design optimal algorithm for the particular model of computation under consider

ation. The second and the more difficult challenge to meet is to develop a template

solution that can be ported to diverse computational platforms to give an optimal

solution on that platform.

In this thesis, the class of visibility-related problems was studied with the

intent of investigating the process of developing architecture independent techniques

that serve as template algorithms across various parallel computational models. As

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

tim
e

in
se

co
nd

s

140

0.7
16 Processors

1 Processor -+■

0.6

0.5

0.4

0.3

0.2

0.1

500000 1.5e+061e+06 2e+06 2.5e+06
number of input vertices

Figure 9.4: Comparison of sequential and parallel algorithms for monotone polygon

triangulation

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

141

stated in the introduction, these problems find applications in seemingly unrelated

and diverse fields such as computer graphics, scene analysis, robotics and VLSI de

sign. Considering the fact that the existing solutions to various members of this class

of problems do not exploit the common threads that run between them, this the

sis provided an unified approach to these problems by identifying the commonality

between them.

The problems investigated in this work can be broadly classified into object

visibility and closely related triangulation problems. This thesis has studied these

problems in great detail and to a significant extent met the challenges of develop

ing optimal solutions to the problems at hand on various computational models,

which in fact are the instantiations of template algorithms designed for an abstract

computational model.

First, a detailed discussion on the class of object visibility problems includ

ing segment/endpoint visibility, disk visibility, rectangle visibility, dominance graph

problems, was presented. Template algorithms for each of these problems were

discussed on the abstract computational model and it was observed that the solu

tions to the problems are inter-dependent and revealed a number of aspects that

are common to visibility relations among general objects in the plane. The seg

ment/endpoint visibility problem for a set of ordered segments has been discovered

as a powerful tool which makes the solutions to the rest of the problems very sim

ple. In addition to various object visibility problems discussed here, others like

determining the visibility pairs among a given set of segments, ANLV, and several

constrained triangulations use this solution to obtain optimal solutions.

Next, various tools required to port the template algorithms for various

object visibility problems to the fine-grain enhanced mesh connected computers,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

142

namely the meshes with multiple broadcasting and reconfigurable meshes were de

signed. The template algorithms when ported to the meshes with multiple broad

casting resulted in time-optimal solutions to the object visibility problems as shown

by the various lower-bound arguments presented. Not surprisingly, the same algo

rithms when applied to the reconfigurable meshes resulted in 0(1) time solutions

to the various problems. Following this, a detailed discussion on the various tools

developed on the coarse-grain multicomputers and their application to the template

algorithms for the object visibility problems to provide computationally optimal

algorithms was presented.

The class of triangulation problems, which is closely related to object vis

ibility, is the other class of interesting problems that received focus in this thesis.

Again, the segment/endpoint visibility problem for ordered segments is a very im

portant important tool for the various template algorithms developed. The concept

of special monotone polygons and their triangulation emerged as another funda

mental result which can be used in the template algorithms to various constrained

triangulation problems.

Next, the development of required tools to apply the template algorithms

to enchanced mesh connected computers was discussed, followed by the discussion

on porting the template algorithms to these platforms. Once again this resulted

in optimal algorithms on meshes with multiple broadcasting and 0(1) time algo

rithms on reconfigurable meshes. Next, a detailed discussion on the additions to

the rich collection of tools developed for the coarse-grain multicomputers was pre

sented. The tools developed were than applied to the template algorithms to give

computationally optimal solutions to various triangulations on the CGM.

As already mentioned a byproduct of the exercise of porting the template

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

143

algorithms to these diverse computational models is a rich collection of tools that

can be reused in other contexts. The powerful tools that were developed for the

enhanced meshes include the compaction algorithm, the EV algorithm, and the

triangulation of special monotone polygons. For the coarse-grain multicomputers,

a very vast collection of tools has been designed. These include the algorithms to

merge two sorted sequences, to sort a collection of items from a totally ordered

universe, to determine the all nearest larger values for a given sequence of items, to

solve the segment visibility problem for a set of well ordered segments, to merge two

convex hulls and to determine the convex hull for a given set of points in the plane.

To demonstrate the practical relevance of the various algorithms discussed in

this work, the two most fundamental algorithms for segment visibility and triangu

lation of special monotone polygons were implemented using MPI, and their running

times analyzed on an IBM-SP2. It has been observed that the parallel algorithms

provide significant speedup over their sequential counterparts. The code developed

can be readily ported to various commercially available parallel machines including

shared memory machines.

This work opens avenue to several open problems. It would be of interest to

see what other visibility related problems can be solved using the various concepts

and template algorithms designed in this thesis. In particular, the segment visibility

problem, involving a collection of ordered segments, has been discovered as the

stepping stone for almost all the other algorithms discussed in this work. It seems

to have a lot of potential that could be exploited in the context of several other

geometric problems.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

144

BIBLIOGRAPHY

[1] A. Aggarwal, Optimal bounds for finding maximum on array of processors with

k global buses, IEEE Transactions on Computers, C-35, 1986, 62-64.

[2] S.G.Akl, and K.S. Lyons, Parallel Computational Geometry, Prentice Hall, En

glewood Cliffs, NJ 07632.

[3] S. G. Akl, The design and analysis o f parallel algorithms, Prentice-Hall, Engle

wood Cliffs, New Jersey, 1989.

[4] T. Asano, and H. Umeo, Systolic algorithms for computing the visibility poly

gon for a polygonal region with holes, Transactions o f the IECE Japan E-68, V

ol 9, 1985, 557-559.

[5] M.J. Atallah, and M.T. Goodrich, Efficient plane sweeping in parallel, Pro

ceedings o f the Second Annual ACM Symposium on Computational Geometry,

Yorktown Heights, New York, June 1986, 216-225.

[6] M. J. Atallah, R. Cole and M. T. Goodrich, Cascading divide-and-conquer: A

technique for designing parallel algorithms, SIAM Journal on Computing, 18,

1989, 499-532.

[7] M. J. Atallah, and D. Z. Chen, An optimal parallel algorithm for the visibility of

a simple polygon from a point, Proceedings o f the 5th Annual ACM Symposium

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

145

on Computational Geometry, Saarbruchen, Germany, June 1989, 114-1*23.

[8] M.J. Atallah, J.J. Tsay, On the parallel-decomposability of geometric prob

lems, Proceedings o f the Fifth Annual Symposium on Computational Geometry,

Saarbruchen, Germany, June 1989, 104-113.

[9] M.J. Atallah, F. Dehne and S.E. Hambrusch. A coarse-grained, architecture-

independent approach for connected component labeling, Manuscript, Purdue

University, 1993.

[10] A. Bar-Noy and D. Peleg, Square meshes are not always optimal, IEEE Trans

actions on Computers, 40, 1991, 196-204.

[11] G.H.Barnes, R.M. Brown, M. Kato, D.J. Kuck, D.L. Slotnick, and R.A. Stokes,

The ILLIAC IV computer, IEEE Transactions on Computers, C-17, 1968, 746-

757.

[12] K. E. Batcher, Design of Massively Parallel Processor, IEEE Transactions on

Computers, C-29, 1980, 836-840.

[13] Y. Ben-Asher, D. Peleg, R. Ramaswani, and A. Schuster, The power of recon

figuration, Journal o f Parallel and Distributed Computing, 13, 1991, 139-153.

[14] 0 . Berkman, D. Breslauer, Z. Galil, B. Schieber, and U. Vishkin, Highly paral-

lelizable problems, Proceedings o f Annual Symposium o f Theory o f Computing,

1989, 770-780.

[15] D. Bhagavathi, S. Olariu, J. L. Schwing, and J. Zhang, Convex polygon prob

lems on meshes with multiple broadcasting, Parallel Processing Letters, 2, 1992,

249-256.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

146

[16] D. Bhagavathi, H. Gurla, R. Lin, S. Olariu, J. L. Schwing and J. Zhang, Time-

and VLSI-optimal sorting on meshes with multiple broadcasting, Proceedings

of International Conference on Parallel Processing, St-Charles, Illinois, August

1993, III, 196-201.

[17] D. Bhagavathi, S. Olariu, W. Shen, and L. Wilson, A unifying look a t semigroup

computations on meshes with multiple broadcasting, Proceedings o f Parallel

Architectures and Languages Europe, Munchen, Germany, June 1993, LNCS

694, 561-569.

[18] D. Bhagavathi, V. Bokka, H. Gurla, S. Olariu, J. L. Schwing, and Zhang,

Square meshes are not optimal for convex hull computation, Proceedings o f

International Conference on Parallel Processing, St-Charles, Illinois, August

1993, III, 307-311.

[19] D. Bhagavathi, P. J. Looges, S. Olariu, J. L. Schwing, and J. Zhang, A fast

selection algorithm on meshes with multiple broadcasting, IEEE Transactions

on Parallel and Distributed Systems, 5, 1994, 772-778.

[20] D. Bhagavathi, H. Gurla, S. Olariu, J. L. Schwing, and Zhang, Time-optimal

parallel algorithms for Dominance and Visibility graphs, Journal o f VLSI de

sign, Vol 4, 1996, 33-40.

[21] D. Bhagavathi, S. Olariu, W. Shen, and L. Wilson, A time-optimal multiple

search algorithm on enhanced meshes, with applications, Journal of Parallel

and Distributed Computing, to appear.

[22] S. H. Bokhari, Finding maximum on an array processor with a global bus, IEEE

Transactions on Computers, 33, 1984, 133-139.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

147

[23] W. Briggs, Multigrid tutorial, SIAM Press, Philadelphia, 1987.

[24] I.-W. Chan, and D. K. Friesen, An optimal parallel algorithm for the vertical

segment visibility reporting problem, Proceedings o f ICCV91, Lecture Notes in

Computer Science Vol. 497, Springer-Verlag, 1991, 323-334.

[25] B. Chazelle, Computational Geometry on a systolic chip, IEEE Transactions

on Computers, Vol. C-33, No. 9, September 1984, 774-785.

[26] Y. C. Chen, W. T. Chen, G.-H. Chen and J. P. Sheu, Designing efficient parallel

algorithms on mesh connected computers with multiple broadcasting, IEEE

Transactions on Parallel and Distributed Systems, 1, 1990.

[27] A.L.Chow, Parallel algorithms for geometric problems, Ph.D. thesis, University

of Illinois at Urbana-Champaign, 1980.

[28] C.F. Codd, Cellular Automata, Academic Press, Newyork, 1968.

[29] S. A. Cook, C. Dwork, and R. Reischuk, Upper and lower time bounds for

parallel random access machines without simultaneous writes, SIAM Journal

on Computing, 15, 1986, 87-97.

[30] David L. Waltz, "Application of the Connection Machine”, Computer, January

1987, 85-97.

[31] F. Dehne, Solving visibility and separability problems on a mesh-of-processors,

The Visual Computer, Vol 3., 1988, 356-370.

[32] F. Dehne, A. Fabri and A. Rau-Chaplin, Scalable Parallel Geometric Algo

rithms for Coarse Grained Multicomputers, Proceedings o f the ACM Symposium

on Computational Geometry, 1993.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

148

[33] Oliver Devillers, and Andreas Fabri, Scalable algorithms for bichromatic line

segment intersection problems on Coarse Grained Multicomputers, 1993.

[34] R. 0 . Duda and P. E. Hart, Pattern Classification and Scene Analysis, Wiley

and Sons, New York, 1973.

[35] C.R. Dyer and A. Rosenfeld, Parallel image processing by memory augumented

cellular automata, IEEE Transactions on Pattern Analysis and Machine Intel

ligence, Vol PAMI-3, 1981, 29-41.

[36] H. ElGindy, An optimal speed-up parallel algorithm for triangulating simplicial

point sets in space, International Journal o f Parallel Programming, Vol 15, No.

5, 1986, 389-398.

[37] J. Encamacao and E. G. Schlechtendahl, Computer Aided Design, Springer-

Verlag, Berlin, 1990.

[38] D. G. Feitelson, Optical Computing, MIT Press, 1988.

[39] L. D. Foley, A. van Dam, S. K. Feiner, and J. F. Hughes, Computer graphics,

principles and practice, Second Edition, Addison-Wesley, Reading, MA, 1990.

[40] H. Freeman and G. Pieroni, Eds., Computer architecture fo r spatially distributed

data, Springer-Verlag, Heidelberg, Berlin, 1985.

[41] Gabriela Hristescu, Parallel Triangulation of a Set of Points for Coarse Grained

Multicomputers, Rutgers University, Technical Report DCS-TR-313, Septem

ber 1994.

[42] Grand Challenges: High Performance Computing and Communication, a report

by the Committee on Physical, Mathematical, and Engineering Sciences, to

supplement the U.S. President’s Fiscal Year 1992 Budget.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

149

[43] D. Hillis, The Connection Machine, MIT press. Cambridge, Mass., 1985.

[44] J. JaJa, An introduction to parallel algorithms, Addison-Wesley, Reading, MA,

1992.

[45] J. Jang and V. Prasanna, Parallel geometric problems on the reconfigurable

mesh, Proceedings o f the International Conference o f Parallel Processing, St.

Charles, Illinois, III, 1992, 127-130.

[46] J. Jang and V. K. Prasanna, An optimal sorting algorithm on reconfigurable

meshes, Proceedings o f International Parallel Processing Symposium, 1992, ISO-

137.

[47] V. Prasanna Kumar and C. S. Raghavendra, Array processor with multiple

broadcasting, Journal o f Parallel and Distributed Computing, 2, 1987, 173-190.

[48] V. Prasanna Kumar and D. I. Reisis, Image computations on meshes with

multiple broadcast, IEEE Transactions on Pattern Analysis and Machine In

telligence, 11, 1989, 1194-1201.

[49] J.-P. Laumond, Obstacle growing in a non-polygonal world, Information Pro

cessing Letters, 25, 1987, 41-50.

[50] H. Li and M. Maresca, Polymorphic-torus network, IEEE Transactions on Com

puters, 38, 1989, 1345-1351.

[51] R. Lin, S. Olariu, J. L. Schwing, and J. Zhang, Sorting in 0(1) time on a

reconfigurable mesh of size N x N , Parallel Computing: From Theory to Sound

Practice, Proceedings o f EW PC ’92, Plenary Address, IOS Press, Amsterdam,

1992, 16-27.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

150

[52] R. Lin, S. Olariu, J. L. Schwing, and J. Zhang, Simulating enhanced meshes,

with applications, Parallel Processing Letters, 3, 1993, 59-70.

[53] E. Lodi and L. Pagli, A VLSI solution to the vertical segment visibility problem,

IEEE Transactions on Computers, 35, 1986, 923-928.

[54] T. Lozano-Perez, Spatial planning: a configurational space approach, IEEE

Transactions on Computers, 32, 1983, 108-119.

[55] F. Luccio, S. Mazzone, and C. K. Wong, A note on visibility graphs, Discrete

Mathematics, 64, 1987, 209-219.

[56] M. Lu and P. Varman, Solving geometric proximity problems on mesh-

connected computers, Proceedings o f 1985 Workshop on Computer Architecture

fo r Pattern Analysis and Image Database Management, 248-255.

[57] P.D. MacKenzie, and Q.F. Stout, Asymptotically efficient hypercube algorithms

for computational geometry, Proceedings of the Third Symposium on the Fron

tiers of Massively Parallel Computation, College Park, Maryland, October 1990,

8- 11.

[58] A. A. Malik, An efficient algorithm for generation of constraint graph for com

paction, Proceedings o f International Conference on CAD, 1987, 130-133.

[59] M. Maresca and H. Li, Connection autonomy and SIMD computers: a VLSI

implementation, Journal o f Parallel and Distributed Computing, 7, 1989, 302-

320.

[60] M. Maresca, H. Li, and P. Baglietto, Hardware support for fast reconfigura

bility in processor arrays, Proceedings o f International Conference on Parallel

Processing, St. Charles, Illinois, I, 1993, 282-289.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

151

[61] C. A. Mead and L. Conway, Introduction to VLSI Systems, Addison-Wesley,

Reading, MA, 1979.

[62] E. Merks, An optimal parallel algorithm for triangulating a set of points in the

plane, International Journal o f Parallel Programming, Vol. 15, No. 5 , 1986,

399-411.

[63] R. Miller, and Q.F. Stout, Geometric algorithms for digitized pictures on a

mesh-connected computer, IEEE Transactions on Pattern Analysis and Ma

chine Intelligence, PAMI-7, 1985, 216-228.

[64] R. Miller, and Q.F. Stout, Mesh computer algorithms for computational ge

ometry, Technical Report No. 86-18, State University of New York at Buffalo,

Department of Computer Science, July 1986.

[65] R. Miller, and Q.F. Stout, Mesh Computer Algorithms for Line Segments and

Simple Polygons.

[66] R. Miller, V. K. P. Kumar, D. Reisis, and Q. F. Stout, Parallel Computations on

Reconfigurable Meshes, IEEE Transactions on Computers, 42, 1993, 678-692.

[67] Message Passing Interface Forum. Document for a standard message-passing

interface standard. Technical Report No. CS-93-214 (revised), University of

Tennesse, April 1994.

[68] M. Nigam and S. Sahni, Sorting n numbers on n x n reconfigurable mesh with

buses, CIS, University of Florida, Technical Report TR-92-04, 1992.

[69] M. Nigam and S. Sahni, Constant time computational geometry on reconfig

urable meshes with buses, CIS, University of Florida, Technical Report TR-92-

35, 1992.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[70] S. Olariu, J. L. Schwing, and J. Zhang, Fundamental Data Movement for Re

configurable Meshes, Proceedings o f the International Phoenix Conference on

Computers and Communications, Scottsdale, Arizona, April 1992, 472-480.

[71] S. Olariu, J. L. Schwing, and J. Zhang, Time-Optimal Convex Hull Algorithms

on Enhanced Meshes, BIT, 33, 1993, 396-410.

[72] S. Olariu, J. L. Schwing, and J. Zhang, Optimal convex hull algorithms on

enhanced meshes, BIT, 33, 1993, 396-410.

[73] S. Olariu and I. Stojmenovic, Time-optimal proximity algorithms on meshes

with multiple broadcasting, Proceedings of 8th International Parallel Processing

Symposium, Cancun, Mexico, April 1994, 94-101.

[74] S. Olariu and I. Stojmenovic, Time-optimal nearest-neighbor computations on

enhanced meshes, Proceedings o f PARLE, Patras, Greece, July 1994.

[75] D. Parkinson, D. J. Hunt, and K. S. MacQueen, The AMT DAP 500, 33rti IEEE

Computer Society International Conference, 1988, 196-199.

[76] T. Pavlidis, Computer Graphics, Computer Science Press, Potomac, MD, 1978.

[77] B. T. Preas and M. J. Lorenzetti (Eds.), Physical Design Automation o f VLSI

Systems, Benjamin/Cummings, Menlo Park, 1988.

[78] F. P. Preparata and M. I. Shamos, Computational Geometry: An Introduction,

Springer-Verlag, 1985.

[79] J.H. Reif and S. Sen, Randomized algorithms for binary search and load balanc

ing on fixed interconnection networks with geometric applications, Proceedings

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

o f the Second ACM Symposium on Parallel Algorithms and Architectures, Crete,

July 1990, 327-337.

[80] F. Rosenblatt, Principles o f Neurodynamics, Spartan Books, New York, 1962.

[81] J . Rothstein, Bus automata, brains, and mental models, IEEE Transactions on

Systems Man Cybernetics 18 (1988) 522-531.

[82] M. Schlag, F. Luccio, P. Maestrini, D. T. Lee, and C. K. Wong, A visibility

problem in VLSI layout compaction, in F. P. Preparata (Ed.), Advances in

Computing Research, Vol. 2, 1985, 259-282.

[83] A. Schuster and Y. Ben-Asher, Algorithms and optic implementation for recon

figurable networks, Proceedings o f the 5th Jerusalem Conference on Information

Technology, October 1990.

[84] D. B. Shu, L. W. Chow, and J. G. Nash, A content addressable, bit serial asso

ciate processor, Proceedings o f the IEEE Workshop on VLSI Signal Processing,

Monterey CA, November 1988.

[85] D. B. Shu and J. G. Nash, The gated interconnection network for dynamic

programming, S. K. Tewsburg et al. (Eds.), Concurrent Computations, Plenum

Publishing, 1988.

[86] H. S. Stone, High-Performance Computer Architecture, Second Edition,

Addison-Wesley, Reading, MA, 1990.

[87] C. B. Stunkel, G. D. Shea, B. Abali, M. Atkins, C. A. Bender,

Grice D. G., P. H. Hochschild, D. J. Joseph, R. A. Swetz, R. F.

Stucke, M. Tsao, P. R. Varker, The SP2 Communication Subsystem,

URL:http://ibm.tc.comell.edu/ibm/pps/doc/css/css.ps.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://ibm.tc.comell.edu/ibm/pps/doc/css/css.ps

154

[88] G. T. Toussaint, Computational Geometry, Elsevier Science Publishers, North-

Holland, Amsterdam, 1985.

[89] D. Vernon, Machine vision, automated visual inspection and robot vision,

Prentice-Hall, Englewood Cliffs, New Jersey, 1991.

[90] B. F. Wang and G. H. Chen, Sorting and computing convex hulls on processor

arrays with reconfigurable bus systems, Information Sciences, to appear.

[91] C. A. Wang and Y. H. Tsin, An O(logn) tim e parallel algorithm for triangu

lating a set of points in the plane, Information Processing Letters, 25, 1988,

55-60.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

155

VITA

Himabindu Gurla was bom in Hyderabad, India on June 19, 1970. She

received her Bachelor of Engineering in Computer Science from Osmania Univer

sity, India, in July 1991. She worked as a Systems Engineer for the Research and

Development Division of Computer Maintenance Corporation, India, from August

1991 to August 1992. In September 1992, she started working on her Ph.D Degree

in Computer Science at Old Dominion University, Virginia. Since August 1995,

she has been working for the Business Computing Services Division of AT&T Bell

Laboratories, NJ.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

	Old Dominion University
	ODU Digital Commons
	Spring 1996

	Visibility-Related Problems on Parallel Computational Models
	Himabindu Gurla
	Recommended Citation

	tmp.1550585656.pdf.C6Zyz

