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ABSTRACT

VISIBILITY-RELATED PROBLEMS ON PARALLEL 

COMPUTATIONAL MODELS.

Himabindu Gurla 
Old Dominion University, 1996 

Advisors: Drs. Stephan Olariu and Janies L. Schwing

Visibility-related problems find applications in seemingly unrelated and diverse fields 

such as computer graphics, scene analysis, robotics and VLSI design. While there 

axe common threads running through these problems, most existing solutions do 

not exploit these commonalities. With this in mind, this thesis identifies these com

mon threads and provides a unified approach to solve these problems and develops 

solutions that can be viewed as template algorithms for an abstract computational 

model. A template algorithm provides an architecture independent solution for a 

problem, from which solutions can be generated for diverse computational models. 

In particular, the template algorithms presented in this work lead to optimal solu

tions to various visibility-related problems on fine-grain mesh connected computers 

such as meshes with multiple broadcasting and reconfigurable meshes, and also on 

coarse-grain multicomputers.

Visibility-related problems studied in this thesis can be broadly classified 

into Object Visibility and Triangulation problems. To demonstrate the practical 

relevance of these algorithms, two of the fundamental template algorithms identified 

as powerful tools in almost every algorithm designed in this work were implemented 

on an IBM-SP2. The code was developed in the C language, using MPI, and can 

easily be ported to many commercially available parallel computers.
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CHAPTER 1 

INTRODUCTION

1.1 OVERVIEW

The design of optimal parallel algorithms is an art taking into consideration the 

challenges it poses to an algorithm designer. Two major challenges that are posed 

to the designer in providing parallel solutions to various problems are:

•  To design the fa s te s t  algorithm for the particular model of computation under 

consideration,

•  To develop template algorithms or paradigms tha t work in relatively many 

cases, possibly across diverse computational platforms.

Among the two, the first challenge is the relatively easier one to meet. This is 

obvious from the fact tha t there are few methods that work in relatively many cases 

and which are, therefore, worth becoming standard tools in the repertoire of every 

algorithm designer.

Geometric problems provide a fertile ground for challenging the designer of 

parallel algorithms. The solutions to these problems require the designer to make 

cautious decisions for each step of the algorithm, including mapping the input data 

to various processors of the parallel machine, balancing out the communication and
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computation steps, while exploiting the inherent geometrical relations between the 

input items.

Ongoing research in the study of geometric problems is motivated by their 

significance in diverse applications in computer graphics, image processing and sev

eral other fields. Due to the real-time requirements of some of the applications in 

which geometric problems arise, the quest for faster and more efficient algorithms 

has made parallelism imperative.

Using these observations for motivation, this thesis will investigate the design 

of efficient, time-optimal algorithms for a subset of geometric problems, with the 

aim of developing architecture independent techniques that would serve as paradigms 

across diverse computational models. The paradigms will be specified as template 

algorithms designed for an abstract computational model. Implementing these tem

plate algorithms on a specific computational model requires the development of tools 

specific to that computational model. The computational models being studied are 

chosen from the opposite ends of the spectrum of the various parallel computational 

models, and are also practically relevant ones. Mesh-connected computers enhanced 

with various bus systems are studied among the fine-grain models. The coarse-grain 

multicomputer lying a t the other end of the spectrum is the other computational 

model that is considered. A byproduct of this exercise of porting the template al

gorithms to these diverse computational models will be a  rich collection of tools for 

each of the computational models that can be reused in other contexts.

The class of geometric problems that receives focus in this thesis are the 

visibility-related problems, involving visibility relations among objects in a plane. 

The basic concept in visibility problems is that two points p\ and p2  are mutually 

visible if the line segment P1P2  does not intersect any forbidden-curve. Visibility
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is normally defined with respect to a  viewpoint u. One reason for choosing these 

problems stems from the variety of applications they have found in diverse fields 

such as computer graphics, scene analysis, robotics and VLSI design. Also, a review 

of the existing solutions to various members of this class of problems demonstrates 

that they do not follow a unified approach and there has been little or no emphasis 

on exploring the commonality between solutions. This thesis provides a  unified look 

at these problems and, thus, identifies the common threads that run through these 

problems.

To set the stage for what follows, it is appropriate to introduce concepts 

concerning visibility problems. Let us begin with a brief survey on where and how 

visibility-related problems can be applied, which further lends emphasis to their 

significance across a  wide variety of applications:

• In computer graphics, visibility from a point plays a crucial role in ray tracing 

and hidden-line elimination [39, 76].

• Visibility relations among objects are of significance in path planning and 

collision avoidance problems in robotics [54,88, 89] where a navigational course 

for a mobile robot is sought in the presence of various obstacles.

•  In VLSI design, visibility plays a fundamental role in the compaction process 

of integrated circuit design [53, 55, 58, 61, 77, 78, 82]. It is customary to 

formulate the compaction problem as a visibility problem involving a  collection 

of iso-oriented, non-overlapping, rectangles in the plane.

The class of visibility-related problems explored in this thesis can be broadly 

classified into two categories:
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•  O b je c t V isibility : This class of problems involves determining the visibility 

relations among a collection of objects such as line segments, rectangles, or 

disks in the plane.

• T riangu lations: The class of triangulation problems involves partioning a 

planar region containing a sequence of forbidden subregions into triangles, 

without intersecting the forbidden subregions.

Visibility-related problems have been widely studied in both sequential and 

parallel settings. As the challenge to solve large and complex problems has con

stantly increased, achieving high performance by using large scale parallel machines 

became imperative. To effectively apply a  high degree of parallelism to a  single 

application, the problem data is spread across the processors. Each processor com

putes on behalf of one or a few data elements in the problem. This approach is called 

data — level parallel [30] and is effective for a broad range of computation-intensive 

applications including problems in vision geometry and image processing.

As the choice of computational platforms forms another important aspect 

of this thesis, let us briefly survey salient aspects of algorithm development in var

ious parallel environments. In the parallel setting, much of the theoretical work 

done thus far has focussed on designing parallel algorithms for Parallel Random 

Access Machines (PRAM). The simple characteristics of PRAM make it suitable for 

theoretical results in evaluating the complexity of parallel algorithms, but only a 

small number of real architectures (some bus-based multiprocessors like Encore and 

Sequent) can be considered conceptually similar in design with the PRAM model.

Although any real machine can simulate the PRAM model, it is nevertheless 

true that algorithms designed for network-based models will better match the archi

tectures of existing parallel machines like Intel Paragon, IBM SP2, Intel iPSC/860,
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CM-5, MasPar MP-1 etc, where processors with local memories are interconnected 

through a  high-speed network supporting message-based communication.

One of the goals of any algorithm designer is tha t the algorithms be practi

cally relevant and be applicable to models of computation that are close to various 

commercially available parallel machines. With this in mind, among the fine-grain 

models of computation, mesh-connected computers enhanced with buses are stud

ied in this thesis. In particular, mesh-connected computers enhanced with static 

and dynamically reconfigurable bus systems are considered, which are referred to as 

meshes with multiple broadcasting, and reconfigurable meshes, respectively.

The mesh-connected computer has emerged as one of the most widely inves

tigated parallel models of computation. It provides a  natural platform for solving 

a large number of problems in computer graphics, image processing, robotics, and 

VLSI design. In addition, due to its simple and regular interconnection topology, 

the mesh is well suited for VLSI implementation [12]. The large communication 

diameter being a bottle neck in the case of applications requiring nonspatially or

ganized communications [40] where several hops have to be performed to complete 

data exchanges between nonadjacent processors, mesh-connected computers are en

hanced by various bus systems. In particular, meshes with multiple broadcasting 

are mesh-connected computers where every row and every column of processors are 

connected to a bus, while the reconfigurable meshes are mesh-connected computers 

enhanced with dynamically reconfigurable bus systems.

Being of theoretical interest as well as commercially available, the mesh 

with multiple broadcasting has attracted a  great deal of attention. In recent years, 

efficient algorithms to solve a  number of computational problems on meshes with 

multiple broadcasting have been proposed in the literature. These include image
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processing [48, 75], computational geometry [15, 18, 21, 47, 72, 73, 74], semigroup 

computations [10, 17, 26, 47], sorting [16], multiple-searching [21], and selection 

[19, 26, 47], among others.

At the same time, the huge demand for real-time computations in manufac

turing, computer science, and the engineering community has motivated researchers 

to consider adding reconfigurable features to high-performance computers. Along 

this line of thought, a number of bus systems whose configuration can change, under 

program control, have been proposed in the literature. Examples include the bus 

automaton [81], the reconfigurable mesh [66], the GCN chip [84, 85], the polymorphic 

torus [50, 59], and the PPA architecture [60]. Among these, the reconfigurable mesh 

has emerged as a very attractive and versatile architecture. In recent years a number 

of efficient algorithms for problems ranging from sorting to computational geometry, 

image processing, and graph theory have been proposed on the reconfigurable mesh 

[13, 45, 52, 66, 68, 69, 70, 71, 90].

Another very interesting model of computation considered in this thesis is 

the coarse-grain multicomputer model. More recently, coarse-grain multicomputers 

are being considered to obtain solutions to various geometric problems. In theory, 

there are mapping methods to simulate fine-grain algorithms on coarse-grain ma

chines, and it is claimed that this will not affect their asymptotic running time. In 

practice, the local computation and the interprocess communication have different 

contributions to the total running time and therefore changing the granularity of 

local processing may affect the scalability of the algorithms. It is obvious that there 

is a  need to develop algorithms for the coarse-grain models of computation, with the 

aim of minimizing the computational time as well as the number of communication 

operations. The challenge is to reduce the computational time, by a  factor propor
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tional to the number of processors, compared to the sequential computational time 

for the various algorithms without drastic increase in the cost of communication 

operations required to achieve that. Some progress in this direction has been made 

by Dehne,ef al. [32], Devillers and Fabri [33], Atallah et al. [9], Hristescu [41], and 

others.

The work done on the coarse-grain multicomputers assumes a parallel model 

that is architecture independent, communication round model. In this model, n  in

puts are evenly distributed among p processors, p <  n, each having local memory of 

size 0 ( | ) .  The processors communicate via an interconnection network in a com

munication round in which they specify the type of communication to occur. Algo

rithms are designed by specifying the local computation done within each processor 

between the communication rounds, and by specifying the type of communication 

performed in a communication round.

The organization of the remainder of this thesis is as follows: the following 

section of Chapter 1 discusses the state of the art for visibility-related problems 

on various computational models. Chapter 2 presents a detailed discussion of the 

diverse models of computation considered in this thesis, Chapter 3 discusses the 

object visibility problems in the context of an abstract computational model and 

presents solutions in the form of template algorithms, Chapters 4 and 5 discuss the 

porting of the template algorithms to fine-grain and coarse-grain models of compu

tation respectively, Chapter 6 presents template algorithms for solving triangulation 

problems on the abstract computational model, Chapters 7 and 8 specify how these 

template algorithms are ported to fine-grain and coarse-grain computational mod

els. Finally, Chapter 9 presents the experimental results on IBM-SP2 along with 

the concluding remarks.
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1.2 STATE OF THE ART

Parallelism seems to hold the greatest promise for major reductions in computation 

time for various classes of geometric problems. The first look at parallel geometric 

algorithms dates back to 1950s and the modem approach to parallel computational 

geometry was pioneered by A. Chow in her Ph.D thesis [27]. For a survey of the 

first ten years of research in computational geometry the reader is referred to [3].

The early models of computation included Perceptrons, proposed in the late 

1950’s [80] and Cellular Automata [28]. The next generation of models considered are 

the interconnection networks including the linear arrays, meshes or two-dimensional 

arrays, several variations of meshes including the meshes with broadcast buses re

ferred to as meshes with multiple broadcasting, and the meshes with reconfigurable 

buses. Tree networks, mesh-of-trees, pyramid networks, hypercube, cube-connected 

cycles, Butterfly, AKS Sorting network, Star and Pancakes are among the other 

network based models of computation which have been studied. On the other hand, 

shared memory models of computation were also studied and included parallel ran

dom access machines, scan model, broadcasting with selective reduction etc.

In particular, mesh-connected computers and enhanced mesh computers have 

been thoroughly investigated in the context of efficient algorithms for geometric 

problems as specified in the several references in the introduction. More recently, 

these problems are being looked at on coarse-grain multicomputers [9, 32, 33, 41].

Visibility problems include computation of visibility relations among objects 

in a plane from a view point, and determination of visibility pairs of line segments, 

the visibility polygon from a point inside a polygon, determination of a polygon 

visible in a direction. The problem of determination of visibility polygon has been 

solved in [31] using divide-and-conquer on a mesh of size y /n  x y /n  and runs in 0(-v/n)
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time using 0 (n ) processors and in 0(re) time on a linear array [4] of size re. Given a 

view point w in the plane and an n-vertex polygonal chain, the portion of the chain 

visible from w  can be determined in O(logn) time using O(n/logra) processors on 

a  concurrent read exclusive write PRAM, referred to as CREW-PRAM [7].

Let us discuss the state-of-the-art for object visibility problems on various 

computational models. The segment visibility problem and its variants have a t

tracted a good deal of attention in the literature. Given a set of re opaque non

intersecting line segments, the problem involves determining parts of the segments 

visible from a point w in the same plane. This problem has a sequential lower-bound 

of fi(n logn). A technique called critical — point merging  is used in [5] to solve this 

problem in O(lognloglogre) time, on CREW-PRAM with 0 (n) processors, and this 

solution has been refined in [6] using cascading divide-and-conquer to run in O(log n) 

time. Another solution to this problem is discussed in [44] and has a running time of 

O(logn) in the CREW-PRAM model with n  processors. These algorithms use the 

concept of plane-sweep tree of Atallah et al. [6]. The construction of the plane-sweep 

tree is nontrivial and uses the powerful technique of cascading divide-and-conquer. 

Yet another solution to the vertical segment visibility problem with the same time 

and processor complexity and using cascading divide-and-conquer has been reported 

in [24].

An algorithm to solve the vertical segment visibility on a linear array of size 

A  is given in [8] and runs in O(relogre/log A ) time using 0 (A ) processors, where 

A  < re. The problem has been solved on the hypercube with 0(re) processors [57] 

using multiway divide-and-conquer, and runs in 0 (S 0 R T (n )) time. A randomized 

algorithm is given in [79] that solves the problem of determining which of a set of non

intersecting line segments are visible from (0, oo) by using trapezoidal decomposition
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in O(logn) probablistic time on an 0 (n ) processor butterfly.

Another object visibility problem that has been studied in the literature and 

involves determination of visibility relations among a set of rectangles in the plane, 

is the construction of dominance and visibility graphs. Bhagavathi et al have a 

O(logn) time algorithm on EREW-PRAM model of computation using trapezoidal 

decomposition [20].

Another problem of interest is the visibility pair problem and is defined as 

follows. A pair of vertical line segments s, and sj form a visibility pair if there exists 

a horizontal line that intersects s,- and sj and does not intersect any other segment 

lying between s,- and Sj. A sequential solution to the problem of finding visibility 

pairs of line segments in a set of vertical line segments runs in O (nlogn) time [82] 

and that is the lower bound for the problem as well. Special cases of the problem 

exist which run in 0 (n) time. There is a  O(logn) tim e solution to the visibility 

pairs problem on a mesh of trees of size n2 [53].

The problem of determining the lower envelope of non-intersecting line seg

ments in the plane, which is nothing but the segment visibility problem with the 

view point at (0, — oo), is the only known object visibility problem studied in the 

coarse-grain models. Dehne et al. [32] have given a 0 (^ lo g n  -f Tsort(n,p)) time 

algorithm for this problem on coarse-grain multicomputer model.

Let us now discuss the existing results for triangulation problems on various 

computational models. Triangulating a set S  of n  points in the plane has a sequential 

lower bound of ft(n logn) [78]. An algorithm is given in [25] that triangulates a set 

of n points in the plane on a linear array of size n in 0 (n ) time. Two more 0(log n) 

time algorithms for triangulating point sets in parallel, on the CREW-PRAM with 

0(n) processors are presented in [62, 91]. The algorithm in [91] is adapted to run
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on an n-processor hypercube by MacKenzie and Stout [57] running in 0 (SORT(n))  

time. An algorithm given in [36] triangulates a point set in arbitrary dimensions in 

0(log2n) time using O(ra/logn) processors on a CREW-PRAM.

Recently, Nigam and Sahni [69] have proposed a  constant time algorithm on 

reconfigurable meshes to triangulate a set of points in the plane. Their algorithm 

uses the well-known strategy of Wang and Tsin [91]. On coarse-grain models, only 

known parallel triangulation algorithm for a given set of points in the plane is the 

one presented by Hristescu [41], who has designed a 0 ( T s 0r t { n , p ) )  time algorithm 

on coarse-grain multicomputers.
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CHAPTER 2 

THE MODELS OF COMPUTATION

This chapter presents a detailed description of the diverse models of computation 

considered in this thesis. As stated in the introduction, the following two models of 

computation are considered in the context of fine-grain models, both belonging to 

the class of enhanced meshes:

•  Mesh with multiple broadcasting, i.e, a mesh-connected computer enhanced 

with static buses,

•  Reconfigurable mesh, which is also a mesh-connected computer enhanced with 

a  dynamically reconfigurable bus system.

The other model of computation considered in this thesis lies at the other end of the 

spectrum of the parallel models of computation. It is a coarse-grain, communication- 

round model and is briefly described as follows:

•  Coarse-grain multicomputer, consists of a number of state-of-the-art comput

ers, communicating through an arbitrary interconnection network.

The organization of the chapter is as follows. Section 2.1 discusses the fine-grain 

models of interest. In particular, Subsection 2.1.1 discuss the architecture of a  mesh 

with multiple broadcasting and Subsection 2.1.2 discusses the reconfigurable mesh. 

Finally, Section 2.2 discusses the coarse-grain multicomputer model in detail.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



13

2.1 ENHANCED MESH-CONNECTED COM

PUTERS

Being a natural platform for solving a large number of problems in computer graph

ics, image processing, robotics, and VLSI design, the mesh-connected computer has 

emerged as one of the most widely investigated parallel models of computation. As 

mentioned in the introduction, because of its simple and regular interconnection 

topology, the mesh is well suited for VLSI implementation [12]. However, the large 

diameter of the mesh does not deliver high performance in applications requiring 

nonspatially organized communications [40] where several hops have to be performed 

to complete data exchanges between nonadjacent processors.

To overcome this problem, the mesh architecture has been enhanced by var

ious types of bus systems [22, 47, 50, 59, 81, 86]. Two popular architectures among 

the enhanced meshes are discussed in the following subsections.

2.1.1 MESHES W ITH MULTIPLE BROADCASTING

Recently, a powerful architecture, referred to as a mesh with multiple broadcasting, 

has been obtained by adding one bus to every row and to every column of the 

mesh [47, 75]. The mesh with multiple broadcasting has proven to be feasible to 

implement in VLSI, and is used in the DAP family of computers [75].

A mesh with multiple broadcasting of size M  x N,  referred to as a MMB, 

consists of M N  identical processors positioned on a rectangular array overlaid with 

a bus system. In every row of the mesh the processors are connected to a horizontal 

bus. Similarly, in every column the processors are connected to a vertical bus as 

illustrated in Figure 2.1.
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Figure 2.1: A mesh with multiple broadcasting of size 4 x 5

Processor P( i , j )  is located in row i and column j  (1 <  i < M,  1 <  j  <  

N ), with P ( l ,  1) in the north-west comer of the mesh. Every processor P ( i , j ) is 

connected to its four neighbors P ( i—1, j ) ,  P ( i + l , j ) ,  P{ i , j  — 1), P ( i , j  + 1), provided 

they exist. It is assumed that the mesh with multiple broadcasting operates in SIMD 

mode: in each time unit, the same instruction is broadcast to all processors, which 

execute it and wait for the next instruction. Each processor is assumed to know 

its own coordinates within the mesh and to have a constant number of registers of 

size O(log MN) .  In unit time, every processor performs some arithmetic or boolean 

operation, communicates with one of its neighbors using a local link, broadcasts 

a value on a bus, or reads a value from a specified bus. These operations involve 

handling at most 0(log M N )  bits of information.

For practical reasons, only one processor is allowed to broadcast on a given 

bus at any one time. However, all the processors on the bus can simultaneously read
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the value being broadcast. In accord with other researchers [10, 22, 26, 47, 48, 50, 

59, 75, 81], it is assumed that communications along buses take 0(1) time. Although 

inexact, recent experiments with the DAP and the YUPPIE multiprocessor array 

systems seem to indicate tha t this is a  reasonable working hypothesis [50, 59, 75].

2.1.2 RECONFIGURABLE MESHES

The huge demand for real-time computations in manufacturing, computer science, 

and the engineering community has motivated researchers to  consider adding recon

figurable features to high-performance computers. Among the various architectures 

that emerged, the reconfigurable mesh has proved to be a  very attractive and ver

satile platform.

A reconfigurable mesh, RMESH for short, of size M  x N  consists of M N  

identical SIMD processors positioned on a rectangular array with M  rows and N  

columns. As in the MMB, it is assumed that every processor knows its own coordi

nates within the mesh: let P( i , j )  denote the processor placed in row i and column 

j ,  with P ( l ,  1) in the northwest comer of the mesh. Every processor P ( i , j ) is con

nected to its four neighbors P(i  — 1 , j ) ,  P( i  + 1,j ) ,  P ( i , j  — 1), and P ( i , j  +  1), 

provided they exist. It is assumed that the processors have a constant number of 

registers of O(log M N )  bits and a very basic instruction set. Every processor has 4 

ports denoted by N, S, E, and W (see Figure 2.2). Local connections between these 

ports can be established, under program control, creating a  powerful bus system 

that changes dynamically to accommodate various computational needs. This com

putational model allows at most two connections involving distinct sets of ports to 

be set in each processor at any one time. For practical reasons, at any given time, 

only one processor can broadcast a value onto a bus, while all the processors on the
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Figure 2.2: A reconfigurable mesh of size 4 x 5

bus can read the value on it simultaneously.

It is worth mentioning that at least two VLSI implementations have been per

formed to demonstrate the feasibility and benefits of the two-dimensional RMESH: 

one is the YUPPIE (Yorktown Ultra-Parallel Polymorphic Image Engine) chip [50, 

59] and the other is the GCN (Gated-Connection Network) chip [84, 85]. These 

two implementations suggested that the broadcast delay, although not constant, is 

very small. For example, only 16 machine cycles are required to broadcast on a 

106-processor YUPPIE. The GCN has further shortened the delay by adopting pre

charged circuits. Recently, it has been shown in [83] that the broadcast delay is even 

further reduced if the reconfigurable bus system is implemented using fiber optics 

as the underlying global bus system and electrically controlled directional coupler 

switches (ECS) [38] for connecting or disconnecting fibers. In the light of these ex

periments and in accord with other workers [1, 22, 50, 59, 66, 81, 84, 85] assume, as 

a working hypothesis, that communications along buses take 0 (1) time.
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2.2 COARSE-GRAIN MULTICOMPUTERS

Most commercially-available parallel machines including Intel Paragon, IBM SP2, 

Intel iPSC/860, and CM-5 axe coarse-grain where each processor has considerable 

processing power and local memory. This contrasts sharply with the 0(1) memory 

registers per processor, traditionally assumed in fine-grain  models. Another feature 

of commercially available parallel machines is that basic communication primitives 

(e.g., broadcasting, and routing) are usually available as system calls or as highly 

optimized utilities. By using these primitives, an applications programmer can de

sign solutions in an architecture-independent setting without having to be familiar 

with the specific communication patterns of the problem being solved.

The model of computation considered in this thesis is a coarse-grain mul

ticomputer, referred to as CGM(n,p), where p is the number of processors in the 

parallel machine, and n is the size of the instance of the problem that can be solved 

using this machine since each of the processors is assumed to have O(^) local mem

ory. Unlike the fine-grain scenario where the processors are assumed to have 0(1) 

memory words and limited processing capability, each processor in CGM(n,p) is 

assumed to have considerable processing power. The p processors of the CGM(n,p) 

are enumerated as Pq, P i, , Pp- i  and each processor Pt- is assumed to be aware of 

its identity i. These processors are connected through an arbitrary interconnection 

network and communicate using various communication primitives. They are as

sumed to be operating in SPMD (Single Program Multiple Data) mode, where all 

the them are executing the same program but on different data items in their local 

memories. This computational model represents the various commercially available 

parallel machines mentioned above.

The objective in designing solutions to various problems in this model is to
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Figure 2.3: A coarse-grain multicomputer

design algorithms where the computational time of the algorithm for an input size 

of n is 0 ( ^ ^ ) ,  where fi(/(n )) is the sequential lower-bound for the problem at 

hand. The running time of an algorithm is taken to be the sum of the total time 

spent on computation within any of the p processors and of the total time spent 

on interprocessor communication. Optimal solutions to various problems in this 

scenario would require the designer to reduce the computational time, keeping the 

number of communication rounds as low as possible.

For the computational model to be practically relevant and the algorithms 

designed for this computational model to be portable across various computational 

platforms, including shared memory machines, the communication primitives as
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sumed to be available on the CGM(n,p) are the collective communication primitives 

defined by the Message Passing Interface Standard, referred to as MPI for short [67].

Data ----------------

AO

AO

AO

AO

AO

AO

AO A1 A2 A3 A4 A5

Scatter

Gather

AO

A1

A2

A3

A4

A5

Figure 2.4: Illustration of broadcast, scatter/gather communication primitives

The MPI standardization is an effort involving more then 40 organizations 

around the world, with the aim of providing a widely used standard for writing 

message-passing programs and thus establishing a practical, portable, efficient, and 

flexible standard for message passing. The list of the collective communication 

primitives as defined by the MPI standard are as follows:

• Broadcast data from one processor, referred to as the root, across all the
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processors. Refer to Figure 2.4, where processor Pq broadcasts an item A0 to 

all the processors in the CGM.

•  Gather data  from all processors to one processor. Refer to  Figure 2.4, where 

the gather operation is illustrated. Every processor Pi stores data item A,- and 

after the gather operation, processor Pq has items Ao, A i, . . . ,  Ap_i.

• Scatter data from one processor to all the processors. As illustrated in Figure

2.4, this data movement is just the reverse of the gather operation. Proces

sor Pq stores data items Ao, A i,. . . ,  Ap and after the scatter operation, any 

processor Pi has the item Aj

•  All-Gather is a variation of gather where all the processors receive the result of 

the gather operation and is illustrated in Figure 2.5. Initially, each processor 

Pi has an item A,- and after the all-gather operation, every Pi has a copy of 

the items A0, A i,. . . ,  Ap_i.

•  All-to-all involves Scatter/Gather data from all processors. This is also called 

complete exchange operation. This operation is clearly illustrated in Figure

2.5. Initially, every processor stores p items, where the first item is to be sent to 

processor Po, second to processor Pi and so on. After the all-to-all operation, 

every processor receives the p items, one from each of the processors (including 

itself).

•  Global reduction operations such as sum, max, min or any other user-defined 

functions.

Note tha t, MPI extends the functionality of scatter, gather, all-gather and 

all-to-all operations by allowing a varying count of data from each processor. The
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Figure 2.5: Illustration of all-gather and all-to-all communication primitives

processing among the p processors can be viewed as p  processes running one per 

processor. MPI also provides primitives to divide the processes into various groups, 

each referred to as a process group. All the communication primitives can be applied 

within each of the process groups, in parallel. In the various algorithms designed 

on this model of computation, the time taken by any communication operation is 

denoted by Toperat,on(A^,p), where N  is the number of data items involved in the 

communication operation, and p is number of processors in the process group.

Earlier work for geometric problems on Coarse-Grain Multicomputers has
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been done by Dehne, et al. [32], Devillers and Fabri [33], Atallah et al [9], Hristescu 

[41], etc. The model of computation assumed by them is slightly different from 

the one considered in this thesis. They assume a different set of communication 

primitives like sorting, routing, etc. to be available for the various communication 

rounds. However, for the model to be practically relevant this work assumes that 

the communication primitives identified by the MPI standard are the only ones 

available.
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CHAPTER 3 

OBJECT VISIBILITY ON THE ABSTRACT  

MODEL

As mentioned in Chapter 1, a recurring problem in a number of contexts in computer 

graphics, VLSI design, and robot navigation involves computing the visibility of a 

set of objects in the plane from a distinguished point u.  In computer graphics, 

for example, visibility from a point plays a  crucial role in ray tracing and hidden 

line elimination [39, 76]. The same problem arises in path planning and collision 

avoidance problems in robotics [54, 88, 89] where a  navigational course for a mobile 

robot is sought in the presence of various obstacles. Yet another field where visibility 

plays a fundamental role is VLSI design, in the compaction process of integrated 

circuit design [53, 58, 61, 77, 78]. In this context, it is customary to formulate 

the compaction problem as a visibility problem involving a set of iso-oriented, non

overlapping, rectangles in the plane. For simplicity, the compaction process is often 

one-dimensional, i.e. the components are moved in the x-direction or ^-direction 

only. Hence, it is convenient to abstract rectangles as vertical or horizontal line 

segments. In this context, the compaction is referred to as stick compaction and 

reduces to a special instance of the visibility problem of vertical line segments [53, 

55, 82].
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This chapter discusses architecture independent methodologies that provide 

solutions to the visibility problem for the following classes of objects: segments, 

disks, and iso-oriented rectangles in the plane. Template algorithms are designed for 

each of these problems for an abstract computational model, which can be ported to 

diverse models of computation discussed in Chapter 2. These template algorithms, in 

turn, are designed with emphasis on reusability of concepts developed and exploiting 

the existing tools.

The segment visibility problem turns out to be a very powerful tool in solving 

a host of object visibility problems. This problem can be described generically as 

follows: Given a point u  in the plane along with an ordered set S  =  {si, s2, - . . ,  -s„} 

of non-intersecting line segments in the same plane, it is required to determine the 

portions of each segment s,- tha t is visible to an observer positioned at u.

It will soon be evident that the segment visibility algorithm is a key ingre

dient in the determination of visibility relations among objects in the plane, such 

as a set of rectangles or disks. Other examples include determining the visibility 

pairs among a given set of vertical segments, and constructing the dominance and 

visibility graphs of a  set of iso-oriented rectangles in the plane.

As mentioned earlier, the various template algorithms discussed in this chap

ter assume an abstract computational model, referred to as ACM, for short. The 

ACM is defined as follows:

An ACM(n,p, M )  consists of p processors, each having 0 (M)  memory, where 

n< M  *p, (n is the size of the instance of the problem at hand). The p processors 

are assumed to be identical and are enumerated as P0 , P \ , . . . , P p- \ .  Each of the 

processors P, (0 <  i < p — 1) is assumed to know its identity i. All the processors 

communicate via an interconnection network. In addition, it is assumed that utilities
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to perform the following operations are available:

• Broadcasting: Processor Pi (0 <  i < p — 1) can inform every other processor in 

the ACM(n,p, M )  about k (1 <  k < M) data items it stores. The time required to 

broadcast k  items is TBroadcast(k,p, M).

• Merging : Given two sorted sequences of items Si = < <*1, 02, . . . , a r >  and S 2  

=  <  bi, 62, . . . ,  b3 > , where r  +  s =  n, stored at most M  per processor in the first

processors 1 of an ACM(n,p, M ), the result of the merge operation gives a se

quence S= <  ci,C2 , . . . ,C n  > stored in the first processors so that processor Pi 

(0 <  i <  — 1) stores the items c,«a/+i, . . . ,  The time required to perform

the merge operation is TMerge(n,p, M).

•  Sorting : Given a sequence of items S  =  <  Ci,C2, . . .  ,Cn > from a  totally ordered 

universe, stored M  per processor among the first ^  processors of an ACM(n,p, M ), 

the sorting problem requires the determination of the  corresponding sorted se

quence enumerated as qi, q2, . . . ,  qn, such that processor Pi (0 <  i < — 1), stores

the items , 9(i+i)«M- The time required to perform the sort operation is

TSort{n ,p ,M ).

•  Compaction: Consider a sequence of items S  = < ai, a2, . . . ,  an > stored M  items 

per processor, in the first processors of an ACM(n,p, M ), with r  (1 <  r  <  n) of 

the items marked.  The marked items are enumerated as  B  = < b\, b2, . . . ,  br > and 

every marked a,- (0 <  i < n) knows its rank in the sequence B. The compaction op

eration asks to obtain the ordered sequence B,  in order, in the first O(j j)  processors 

storing 5 , so that any processor P, (0 <  i <  — 1) stores items 6,-.m+i, • • •, i(i+i).m-

The time required to perform this operation is Tc0mpact(n,p,M).

Note that, in the various algorithms that follow, the ACM(n, p ,M ) may be viewed

this discussion, ceilings are implicitly assumed
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as consisting of I independent ACM’s given by ACM( M)  (where p  is at most 

f ), whenever I identical subproblems axe to be solved in each one of them in parallel.

In the following sections, let us discuss the various object visibility problems 

on the ACM(n ,p ,M ).  Section 3.1 discusses the template algorithms for endpoint 

and segment visibility problems, followed by Sections 3.2 and 3.3 which discuss 

the disk visibility and rectangle visibility algorithms, using the endpoint visibility 

algorithm as a basic ingredient. Finally, Section 3.4 discusses the template algorithm 

for dominance graphs, which in turn uses the algorithm for rectangle visibility as a 

basic tool.

3.1 ENDPOINT AND SEGMENT VISIBILITY

In this section, let us discuss the template algorithm for solving the endpoint and 

segment visibility problems for the abstract computational model. First, let us 

discuss the various terms used in the description of the algorithms that follow. Let 

oj be a distinguished point and let S  =  s i , s 25■ ■ ■ ~sn be a  set of non-intersecting 

line segments in the plane. The set 5  is said to be well ordered if for every i , j  

(1 <  h i  <  n )i I < j  guarantees that any ray that originates at u  and intersects 

both Si and Sj, intersects s,- before Sj.

For an endpoint e of a  line segment in S , let eu> denote the ray originating at 

e and directed towards w. Similarly, let eUJ be the ray emanating from e, collinear 

with u> and away from ui. Let us first define the endpoint visibility problem (EV, 

for short) which is intimately related to segment visibility problem (SV, for short) 

mentioned earlier. Specifically, given a set S  of well ordered line segments, the 

EV problem asks to determine, for every endpoint e of a segment in 5, the closest 

segments (if any) intersected by the rays euj and euJ. As an example, in Figure 3.1,

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



the closest segments intersected by the rays / 3a; and / 3U; are Si and Se, respectively.

To state the SV problem, define the contour of S  from u  to be the ordered 

sequence of segment portions that are visible to an observer positioned at u>. The 

SV problem asks to compute the contour of S  from « . For an illustration refer to 

Figure 3.1 where the sequence of heavy lines, when traversed in increasing polar 

angle about u,  yields the contour of the set of segments.

The following discussion presents a solution to the EV and SV problems on 

an ACM(n,p, M ). Consider an arbitrary set S  =  {sj, S2, . . . ,  sn} of well ordered line 

segments, with every segment being specified by its two endpoints. The set S  is 

assumed to be stored in the first processors, at most M  segments per processor, 

of an ACM(n,p, M). Without loss of generality, assume that the viewpoint u  lies to 

the left of S  (i.e. its x-coordinate is smaller than that of any endpoint of a segment 

in S). The endpoints are specified by their polar coordinates with u  as pole and 

the vertical ray from u  to —00 as polar axis. Also assume that the segments are in 

general position, with no two endpoints sharing the same polar angle. The reader 

will not fail to observe that these assumptions are made for convenience only and are, 

in fact, non-essential. For example, if u> does not lie to the left of S, the problem can 

be divided into two subproblems by splitting some of the segments into two parts, 

if necessary. The solutions of the two subproblems can be easily combined to yield 

the required solution.

Every line segment s,- in S  has its endpoints denoted in increasing polar angle 

as f i  and standing for first and last, respectively. With a generic endpoint e,- of 

segment s,- associate the following variables:

• the identity of the segment to which it belongs (i.e. s;);

• a bit indicating whether et- is the first or last endpoint of s,-;
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Figure 3.1: Illustrating the endpoint and segment visibility problems
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•  £(e,-), the identity of the first segment, if any, that blocks the ray etu>;

•  a(et), the identity of the first segment, if any, tha t blocks the ray e,-a7.

The notation £(et) and a(e,) is meant to indicate directions towards and 

away from the viewpoint u>, respectively. At the beginning of the algorithm, t(e,) 

and a(e,), for every endpoint e,-, are initialized to 0. When the algorithm terminates, 

<(e.) and a(e,-) will contain the desired solutions.

The algorithm begins by computing an approximate solution to the EV 

problem. This involves determining for each of the rays e,u; and e;uJ whether it is 

blocked by some segment in 5 , without specifying the identity of the segment. This 

approximate solution is then refined into an exact solution.

Let us proceed with a  high-level description of the algorithm. Imagine plant

ing a complete binary tree T  on S , with the leaves corresponding, in left-to-right 

order, to the segments in S. Given an arbitrary node v of T , let L{v) stand for the 

set of leaf-descendants of v. Further assume that the nodes in T  are numbered level 

after level in left-to-right order. For a generic endpoint e,- of segment s,-, let:

• t-blocked(e,) stand for the identity of the first node in T  on the path from the 

leaf storing the segment s,- to the root, at which it is known that the ray e,u; 

is blocked by some segment in S;

• a-blocked(e,) stand for the identity of the first node in T  on the path from the 

leaf storing S{ to the root, at which it is known that the ray e;u; is blocked by 

some segment in S.

Both t-blocked(e,) and a-blocked(e,) are initialized to 0.

The algorithm proceeds in two stages. In the first stage, the tree T  is tra

versed, in parallel, from the leaves to the root, computing for every endpoint et-,
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t-blocked(e,) and a-blocked(et). In case t-blocked(e,-) is not 0, it is guaranteed that 

some segment in S  blocks the ray e,o;. However, the identity of the blocking segment 

is not known at this stage. Similarly, if a-blocked(e,) is not 0, then it is guaranteed 

that some segment in S  blocks the ray e,u?. As before, the identity of the blocking 

segment is unknown. In the second stage of the algorithm, the tree T  is traversed 

again, from the leaves to the root, and in the process the information in t-blocked(ei) 

and a-blocked(e,) is refined into t(et) and a(e,).

For convenience, the algorithm is viewed as a sequence of processing tasks 

involving the nodes of T .  A node v of T  is said to  be ■processed when the subproblem 

involving segments in L(v) has been solved. Specifically, consider a generic node v 

of T  with left and right children u and w, respectively. The following variables are 

associated with node v:

•  E(v), the sequence of endpoints of segments in L(v) sorted by increasing polar 

angle;

•  BT(u), the set of all endpoints e,- in L(v) for which t-blocked(e,)=u;

• BA(u), the set of all endpoints e,- in L(v) for which a-blocked(e;)=u;

• LC(u), the set of all endpoints e,- in L{v) for which t-blocked(e,)=0;

•  RC(u), the set of all endpoints e; in L(v) for which a-blocked(e,)=0.

The sets BT(u), BA(w) are initialized to the empty set. For a leaf a  of T , F (o), 

LC(o:), and RC(a) contain the two endpoints of the corresponding segment in S , 

sorted by increasing polar angle.
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The details of the template algorithm for the EV problem are as follows. 

T em p la te  A lg o rith m  3.1:

The template algorithm takes as input the set S  of ordered segments, and initializes 

the various data structures as specified above. The details of the Stage 1 and Stage 

2 of the EV algorithm on the ACM follow.

S tage  1 . This stage proceeds by processing the nodes of T , level by level, beginning 

from the leaves of T . Note that, all the nodes at a particular level of the tree T  are 

processed in parallel.

Consider a  generic node v in T  with left and right children u  and w, respec

tively. The tasks performed in the transition from u and w to v, is as follows:

S tep  1. E(v) is obtained by merging E(u) and E(w). Note that if E(u) and E(w) 

are stored in the same processor Pi, as in the case of the first logM  levels of T ,  

the merge operation can be performed by Pi using the sequential merge algorithm 

in 0 (N) time, where N  =| i?(u)| +| E(w)\. Note that, in the processing of the first 

log M  levels of the tree T , each processor Pi {0 < i  < — 1), storing M  segments,

has to process lĵ -  nodes, where / is the number of nodes at that particular level of 

the tree. The processing of each of the nodes a t a  particular level of the tree is done 

sequentially by each Pi, in parallel, and takes 0 (M )  time. Thus, the processing 

of the first log M  levels takes O (M logM ) time. If E(u) and E(w) are distributed 

across several processors, for node v with the level greater than log M , the proces

sors storing every pair of sequences E(u) and E(w), for every v belonging to the 

same level, can be viewed as independent ACM’s. Each independent ACM is infact 

an A C M (N ,p ,  M ), where p is at most and I is the number of nodes at the same 

level as v. Thus the merge operations corresponding to I nodes at the same level of 

the tree can be carried out in each of the A C M (N ,p , M), in parallel. This can be
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accomplished in TMerge{N,p ,M )  time. Note that, TMerge(NiP,M) is bounded by 

r̂'Merge{P")Pt M ).

After the merge operation, for every endpoint e; in the sorted sequence 

E(u),  let pred(e,-, E(w)) and succ(e,-, E(w )) stand for the predecessor and succes

sor in E ( w ), that is, the endpoints that precede and succeed e,- in E(w ), respec

tively. For an endpoint e,- in E(w) the predecessor and successor pred(e,-, E{u)) and 

succ(e,-, E(u))  in E(u)  are defined analogously.

S tep  2 . Next, t-blocked(e:) and a-blocked(e,-) are computed. The well ordering of 

the segments in S  guarantees that if an endpoint e,- in E(u)  has t-blocked(e,)=0 

just prior to processing v, then t-blocked(e,)=0  holds after v has been processed. 

Similarly, if the endpoint e,- in E(w)  has a-blocked(e,)=0 just prior to processing 

u, then a-blocked(e,)=0 after v has been processed. Now, let et- be an endpoint in 

E(u)  with a-blocked(e,-)=0. Write ej=pred(et-, E(w)) and et=succ(e,-, E(w)).  Af

ter v has been processed, a-blocked(e,)= 0  only if e* and ej belong to different 

segments and t-blocked(ej), a-blocked(ej), t-blocked(ejt), and a-blocked(e^) are all 

0’s. Otherwise, a-blocked(e,) is set to v. Similarly, let e,- be an endpoint in E{w) 

with t-blocked(ei)=0, and write ej=pred(ei, E(w))  and efc=succ(e;, E(w)). Now t- 

blocked(e,)= 0  after processing v, only if e* and ej belong to different segments and 

t-blocked(ej), a-blocked(ej), t-blocked(e*), a-blocked(efc) are all 0’s. Otherwise, t- 

blocked(ej) is set to v. This can be accomplished in O(JVf) time for each level of the 

tree. The correctness of this assignment is guaranteed by the following result. 

L em m a 3.1.

(a) Let e,- be an endpoint in E(u)  with a-blocked(e,)=0. If, in the transition from u 

and w to v, a-blocked(e,)=u, then the ray e,-a; intersects some segment in L(w).

(b) Let e,- be an endpoint in E(w)  with t-blocked(e,)=0. If, in the transition from
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u and w to v, t-blocked(e,)=u, then the ray e,a; intersects some segment in L(u). 

P ro o f. The proof is by induction on the level of v in T .  The statement is vacuously 

true at the leaves of T  which are at level 0. Assume that both (a) and (b) hold for 

u and w, and suppose that in the transition from u and w to u, a-blocked(e,)=u for 

some endpoint et- in E(u).  As above, write ej=pred(e,-, E{w)) and efc=succ(e,-, E(w)).  

Since a-blocked(e,-)=u, one of the following cases must have occurred:

C ase 1 . ej and e& belong to the same segment.

Let sp be the segment in S(w)  with endpoints ej and e*. Since S  is well ordered, 

i < p and, consequently, sp blocks the ray e,aJ, as claimed.

C ase 2. a-blocked(ej)^ 0 or a-blocked(ejt)^ 0.

Consider the case a-blocked^*)^ 0, the other following by a mirror argument. By 

the induction hypothesis, a-blocked(efc)^ 0 guarantees the existence of a segment sq 

in S{w) tha t blocks the ray eyZ. Since 5  is well ordered, i < q. Furthermore, since 

ej and e* are consecutive in E(w),  the first endpoint of sq cannot occur between ej 

and et and, therefore, sq blocks the ray e,uj.

C ase 3. t-blocked(ej)^ 0 or t-blocked(efc)^ 0.

Consider the case t-blocked(ej)^ 0, the other following by a mirror argument. By 

the induction hypothesis, t-blocked(ej)^ 0 guarantees the existence of a segment sp 

in S(w ) that blocks the ray eju;. The fact tha t S  is well ordered guarantees that 

i < p. Since ej and e* are consecutive in E(w),  the last endpoint of sp cannot occur 

between ej and et and, therefore, sp blocks the ray e,uJ.

This completes the proof of (a). The proof of (b) is similar. □

By virtue of Lemma 3.1, when root(T), the root of T , is reached at the end of 

Stage 1, all the endpoints e,- having t-blocked(e,)=0 know that the ray e,o; is blocked 

by no segment in S .  All the endpoints e,- with a-blocked(e,)=0 set a(e,) =  +oo. The
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running time of the Stage 1 is bounded by 0(M\ogM)+0(\ogpTMerge{n,p, M))  

time.

S tag e  2. As in Stage 1, the computation in Stage 2 proceeds by processing the 

nodes of the tree T , level after level, beginning from the leaves. Again, all the 

nodes at the same level of tree are processed in parallel by viewing the ACM as 

consisting of several independent ACM’s. The main goal of this stage is to use the 

information obtained in Stage 1 to compute the actual values of t(e,-) and a(et), for 

every endpoint e;. A key role in the computation specific to  this stage is played by 

the sets BT(v), BA(u), LC(u), and RC(u) defined in the preamble to the template 

algorithm.

For all nodes v of T , determine BT(v) and BA(u) from the information 

obtained in Stage 1. Note that, LC(u) contains a sorted sequence of endpoints e,- in 

E(v)  whose t-blocked(e,)=0, after node v  in T  has been processed. Put differently, 

Lemma 3.1 guarantees tha t LC(v) contains all the endpoints in E(v)  for which the 

ray e,-u> is blocked by no segment in L(v). For this reason, and since u> lies to the

left of 5, LC(v) is referred to as the left contour at v. It is im portant to note that

the left contour LC(u) provides a  partial solution to the segment visibility problem. 

The set RC(u) is defined similarly and will be referred to as the right contour at v.

Consider again a generic node v in T  with left and right children u and w, 

respectively. The sets RC(u), RC(w), LC(u), and LC(u>) are updated into RC(u) 

and LC(u) in the transition from u and w  to v, as follows.

W ith U standing for the set-merge,

RC(u) =  (RC(«0 U RC(u)) -  BA(u) (3.1)

and

LC(u) =  (LC(u>) U LC(ti)) -  BT(»). (3.2)
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g=root(T) level

3

Figure 3.2: The set of segments in Figure 3.1 and the associated binary tree
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The determination of the sequence RC(u) in equation 3.1 from RC(u), RC(ttf), 

and BA(u) is explained below. Begin by merging RC(u) and RC(u>) into a  sequence 

E'(v). This operation takes O (M logM ) time for the first log M  levels of the tree 

T . For the rest of the levels of the tree having I nodes to process, just as in Stage 1, 

the ACM(n,p, M)  can be viewed as I independent ACM’s given by ACM( N , p , M )  

where N  =[RC(u)|+[RC(u;)|, and p is at most From E'(v), delete those endpoints 

e,- that have a-blocked(e,)=u time, i.e, the sequence BA(u), thus giving RC(u) cor

responding to the unblocked endpoints in E'(v). Compact the endpoints in RC(u) 

in each ACM (N,p’,M )  in TcomPact(N,p , M )  time. The computation of LC(v) in 

equation 3.2 is perfectly similar.

Consider, again, the processing that takes place in the Stage 2 of the al

gorithm, in the transition from u and w to v. Having computed the sets RC(u), 

RC(u7), LC(u), and LC(w), the values of t(e,) and a(e,) for all endpoints in BA(u) 

and BT(u) are determined. For this purpose, RC(u) and BT(u) are merged.

In the process of merging, every endpoint ej in BT(v) determines the identity 

of two endpoints ej and e* such that ej=pred(e,-,RC(u)) and e*=succ(e,-,RC(u)). The 

value of t(e,-) is set as follows:

• in case ej and e* are endpoints of the same segment sp, then t(e ,)= sp;

• if both ej and e/t are last endpoints, then t(e;) is set to the segment sp whose 

last endpoint is e&;

• if both ej and e* are first endpoints, then t(e,) is set to the segment sp whose 

first endpoint is ej-,

• if et is a first endpoint and ej is a last endpoint then t(e,)=t(ej)=t(eA:).

The correctness of this assignment follows by an easy inductive argument. The cor
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rect value of a(e,) for every endpoint e; in BA(u) is computed similarly.

Stage 2 takes 0(M \ogM )+ 0(logpT Merge{n,p1 M)) +O(logpTCompact{n,p ,M)) time 

on the ACM(n,p, M). Thus, the following result is obtained.

Theorem 3.2. The EV problem for a set S  of n ordered segments, stored M  per pro

cessor in the first f j  processors of an ACM(n,p, M ), can be solved in TEv(n,p , M ) = 

0 {M \ogM )+ 0(\ogpT M„ge(n ,p ,M ))+ 0(logpTcompact{n ,p ,M ))  time. □

It is important to note that from the information in LC(roof(7”)) at the end 

of Stage 2, along with t(e,) and a(e,), the contour of S  from u  can be computed as 

follows. Let LC(root(T)) contain the endpoints e i,e2, . . . , e m sorted in increasing 

polar angle. For every i (2 <  i < m ):

•  if e,_i and e,- belong to the same segment sp in 5 , then sp belongs to the 

contour;

•  if e,_i is a last endpoint and e,- is a  first endpoint, then with sp standing for the 

common value of a(ej_i) and a(e;), the portion of sp between the rays e,_iuJ 

and e{[J belongs to the contour;

• if both e,_i and et- are first endpoints, then with sp standing for the segment 

whose first endpoint is e{_i, the portion of sp between e;_i and the ray eiuJ 

belongs to the contour;

• if both e,_i and e,- are last endpoints, then with sp standing for the segment 

whose last endpoint is e,-, the portion of sp between the ray e,_iu; and e,- belongs 

to the contour.

Consequently, the algorithm just described also solves the SV problem. Thus, the 

following result is obtained.
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Table 3.1: Illustrating Stage 1 of the algorithm

level 0 1 2 3

val. t-blkd a-blkd t-blkd a-blkd t-blkd a-blkd t-blkd a-blkd

fi 0 0 0 0 0 0 0 0

li 0 0 0 0 0 e 0 e

I2 0 0 0 0 0 0 0 g

12 0 0 0 0 0 0 0 0

I3 0 0 0 0 e 0 e g

I3 0 0 0 0 0 0 0 g

u 0 0 0 0 0 0 0 g

14 0 0 0 0 0 0 0 g

f5 0 0 0 0 0 f g f

Is 0 0 0 0 0 0 g 0

fis 0 0 0 0 0 0 g 0

le 0 0 0 0 0 0 g 0

{7 0 0 0 0 0 0 g 0

I7 0 0 0 0 f 0 f 0

fs 0 0 0 0 0 0 g 0

18 0 0 0 0 0 0 g 0
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Table 3.2: Illustrating Stage 2 of the algorithm

NODE BT BA LC RC

a <i> fl ll f2 I2 fl li f2 I2

b 4> <f> f3 13 £4 14 izhUU
c <f> <f> f6 6̂ £5 I5 f6 16 f5 I5

d <f> <f> £7 I7 f8 18 f7 l7 f8 18

e £3 li fl ll I3 f4 I4 {2 I2 fl f3 I3 f4 I4 f2 I2

f It f5 f6 16 f7 f5 U fs 8̂ f6 16 £r I7 Is f8 18

g f5 U f6 U h f8 18 f2 f3 I3 £4 U £l ll U £4 U f2 I2 f6 16 f7 I7 I5 f8 18 I2

T h eo rem  3.3. The SV problem for a set S  of n  ordered segments stored in the 

first ^  processors, at most M  per processor on an ACM(rz,p, M), can be solved in 

TSv (n ,p , M )= 0 (M  logM )+0(logprM erfle(n,p, M )) +0(logpTbompact(rc,P, M))  time. 

□

A complete worked example based on the set of segments featured in Figure 

3.1 is presented for the reader’s benefit. Figure 3.2 shows the set of input segments 

along with the binary tree T  tha t guides the algorithm. The various data items 

computed in Stage 1 are summarized in Table 3.1. The results of Stage 2 are 

captured, in succinct form, in Tables 3.2 and 3.3. Specifically, the solution to the 

endpoint visibility problem is contained in Table 3.3.
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Table 3.3: The solution to the endpoint visibility problem

level —+ 0 1 2 3

Values of t a t a t a t a

fi —00 +00 —00 +00 —00 +00 —00 +00

li —00 0 —00 0 —00 S3 —00 S3

f2 —00 0 —00 0 —00 0 —00 ss

12 —00 +00 —00 +00 —00 +00 —00 +00

f3 0 0 0 0 S l 0 S l S6

13 —00 0 —00 0 —00 0 —00 S5

u —00 0 —00 0 —00 0 —00 S5

14 —00 0 —00 0 —00 0 —00 S5

u 0 0 0 0 0 S7 S3 S7

Is 0 +00 0 +00 0 +00 S2 + O O

u 0 +00 0 +00 0 +00 S l + O O

le 0 +00 0 +00 0 +00 S3 + O O

h 0 +00 0 +00 0 +00 S3 + O O

17 0 +00 0 +00 S5 +00 S5 + O O

u 0 +00 0 +00 0 +00 S2 +00

Is 0 +00 0 +00 0 +00 S2 + O O
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3.2 DISK VISIBILITY

Given a set D — {di, d2, . - . ,  dn} of n non-overlapping opaque disks and a viewpoint 

lc in the plane, the disk visibility problem (DV, for short) involves determining the 

portion of each disk d:- £ D, that is visible to an observer positioned at ui. The 

DV problem finds applications to path planning in robotics where a mobile robot 

must navigate amidst a set of planar obstacles. It is customary to consider, in a 

first approximation, that all these obstacles are circular (i.e. disks). In this setup, 

the robot is shrunk to a point while the disks are augmented using Minkowski sums 

[49, 54], reducing the navigational problem to an instance of the DV problem.

The purpose of this section is to present an architecture independent method

ology to solve the DV problem, which leads to optimal solutions to this problem in 

diverse computation models. As in the case of SV problem, the template algorithm 

for the DV problem assumes the ACM model of computation and the discussion 

on porting the template algorithms to various computational models is described in 

Chapters 4 and 5.

Consider an arbitrary set D  =  {di, d2, . . . ,  dn} of disks stored M  per proces

sor among the first ^  of the p processors of an ACM(n,p, M ), so that any processor 

Pi (0 <  i <  — 1) stores the subset of disks, dt-„A/+i, • . . ,  d(,+1)»A/. For simplicity, it

is assumed that u> lies to the left of £>, that is, all the disks lie in the right half-plane 

determined by the vertical ray from u? to —oo.

The details of the algorithm is as follows:

T em p la te  A lgo rithm  3.2:

As a preprocessing step, inform all the processors storing the input about the view 

point a;, and this is accomplished by broadcasting the value uj to all the processors 

storing the input. This can be performed in TBroadcast{1- ,P,M)  time.
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Figure 3.3: Illustrating the disk visibility problem

S tep  1 . Every P, (0 <  i < f j ) ,  storing M  disks - - -, determines the

tangents to each one of them, from the viewpoint u. The length of these tangents, 

i.e. the distance between w and the tangency points, is also determined. This 

requires 0  (M) computation time.

S tep  2. W ith every disk d{ associate the line segment s,- obtained by joining the 

corresponding tangency points. For an illustration, refer to  Figure 3.3. Next, sort 

the V s  by increasing distance of their endpoints to u>. This is done in Ts0rt(n,p , M )  

time. Without loss of generality, let S  = {si, S2, . . . ,  sn} be the set of these segments 

in sorted order.

L em m a 3.4. The sorted sequence S  is well ordered.

P ro o f. Suppose not. This implies that there exist subscripts i, j  with i < j  and 

some ray 6  originating at u  that intersects Sj before intersecting s,-. Let d, and dj
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be the two corresponding disks and let Si and 6 2  be the supporting rays to dj from 

a?. Let a and b be the points where 6 1  and S2  meet dj.

Consider the circle C  centered at u  and of radius the length | Ua |= | ajb | of 

the segments om and ub. Let A  stand for the planar region defined as the intersection 

of C  with the half-plane determined by the line collinear with a and b that does not 

contain o;. Let Oj be the center of dj. Simple geometric considerations guarantee 

that A  lies entirely within the triangle determined by a, b, and Oj, which in turn, 

lies completely within dj.

Observe that the ray 8  that intersects both s,- and Sj must lie in the wedge 

determined by 8 \ and S2. Since 8  intersects Sj before s,, it follows tha t at least one 

of the endpoints of s, lies in A. This, however, contradicts the assumption that the 

disks do not intersect. □

S tep  3. Lemma 3.4 guarantees that SV algorithm developed in the Section 3.1 can 

be applied to the set of segments S. Once the visible portions of the segments are 

determined, the portions of the disks visible from lo can be trivially computed. This 

step requires 0 ( M ) +  Tsv{n ,p ,M )  time. Thus, the following result is obtained. 

T h eo rem  3.5. The DV problem for a  set S  of n  non-overlapping disks in the plane, 

stored M  per processor in the first j j  processors of an ACM(n,p, M), can be solved 

in Tdv{ti,P, M )= 0(T sv(n ,p , M))+0(Tsort{n,p, M)) time. □

3.3 RECTANGLE VISIBILITY

Given a set R  = {Ri, R 2, . . . ,  R„.} of n iso-oriented, non-overlapping, opaque rectan

gles in the plane and a viewpoint u>, the rectangle visibility problem (RV, for short) 

involves determining the portions of each rectangle that are visible to an observer 

positioned at u.  The RV problem finds applications to computer graphics, digital
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geometry, collision avoidance, VLSI design, and image processing [76, 77, 88].

(a)

CD

CD

s
.»

».“2

Ri
r 2

i-------------«
•

* U4
* 1------I >

(c)

Figure 3.4: Illustrating the rectangle visibility problem

The purpose of this section is to present a  template algorithm to solve the 

RV problem on an ACM(n,p, M). Consider a  set R  =  {jR15 R2, • • -, Rn) of iso

oriented, non-overlapping, rectangles stored at most M  per processor, in the first 

f t  processors of the ACM(n,p, M). For simplicity, assume that the viewpoint u  lies 

to the left of R, i.e. that all the rectangles lie in the right half-plane determined 

by the vertical ray from u  to —oo. Each rectangle Ri is specified by its bottom-left 

and top-right corners, from which the four sides of the rectangle referred to as top, 

bottom, l e f t  and right edges, can be trivially determined. The algorithm to solve 

the R.V problem is described below.
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T em p la te  A lg o rith m  3.3:

S tep  1 . Solve the instance of the EV problem obtained by considering the top and 

bottom edges of every rectangle R i  € R .  Begin by sorting these top and bottom 

edges by increasing y-coordinate. It is an easy observation that the sorted set of 

these segments is well ordered and so the EV algorithm applies. Thus, this step can 

be accomplished in T j s v ( n ,p ,M ) + 0 ( T s o r t ( r c ,p ,M ) )  time.

S tep  2. The above process is repeated for the left and right edges of every rectangle 

R i  €  R .  Now, every generic comer e,- of rectangle r t- has four solutions: al(e,), tl(e ,), 

a2(e,), and t2(e,-) obtained in Step 1 and Step 2, respectively. A comer et- is marked 

if tl(e,)= t2(e,)=0. Now, every marked corner e,- combines the information stored 

in a l(e t) and a2(e,) by selecting, among them, the segment closer to e,- along the 

ray e,u;. If in the process e,- discovers that the closer of a l(et) and a2(e,) is an edge 

that belongs to its own rectangle, then e,- becomes unmarked. This step can be 

accomplished in 0 ( M ) + T e v ( t i , P ,  M )+ 0(T sor<(n,p,M)) time.

S tep  3. Finally, after sorting the remaining marked corners by increasing polar 

angle, the contour of the set of rectangles can be determined as in the case of 

SV problem. This step takes 0 (7sor<(n,p, M )) time. Thus, the following result is 

obtained.

T h eo rem  3.6. The RV problem for a set 5  of n iso-oriented, non-overlapping 

rectangles in the plane, stored M  per processor in the first jfc processors of an 

ACM(n,p, M ), is solved in Tpy{n,P, M )=0(TEv{n,p, M ))+ 0(Tsort(n,p, M)) time. 

□

For an illustration, the reader is referred to Figure 3.4. For every rectangle 

Ri (1 <  i < 3), let ti, bi, and r,- stand for the top, bottom, left, and right edges 

of Ri, respectively.
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•  Step 1 is depicted in Figure 3.4(a). At the end of this step, the solutions 

corresponding to the comers of Ri  are as follows: al(ui)=&i, a l(ii2)=+oo, 

a l(u 3)=<3, a l(u 4)= t3, t l ( « i)= 0, t l(u 2)= 0, t l ( « 3)= 0, and t l(u 4)= fi.

•  Step 2 is depicted in Figure 3.4(b). At the end of this step, the solutions 

corresponding to the comers of Ri  are as follows: a2(ui)=+oo, a2(u2)= /2, 

a2(«3)=+oo, a2(u4)=+oo, t2(u i)= 0, t2(u2)= 0, t2(us)=0, and t2(u4)= 0.

•  After Step 2, only the comers iti, u2, and are marked. Of these, u\ detects 

that the closer segment along the ray uiZJ is bi, and so becomes unmarked. 

The resulting contour is featured in Figure 3.4(c).

3.4 DOM INANCE GRAPH

Consider a set R  = {i?i, i?2, . . .  , R n }  of n non-overlapping iso-oriented rectangles in 

the plane. A rectangle R i  is said to be above rectangle R j  if there are points in R i  and 

R j  sharing the same x-coordinate, with the points in R i  having larger ^-coordinates. 

A rectangle R i  is directly above R j  if R i  is above R j  and no rectangle R k  is such that 

R i  is above R k  and R k  is above R j .  The dominance graph of the set R  is a directed 

graph D whose vertices correspond to the rectangles in R  with two vertices u and 

v in D linked by a directed edge (u, v) whenever the rectangle corresponding to v 

is directly above the rectangle corresponding to u (see Figure 3.5). The dominance 

graph problem (DG, for short), involves computing the dominance graph of a given 

set of non-overlapping rectangles in the plane.

The purpose of this section is to describe a template algorithm for the DG 

problem on an ACM(n,p, M). Consider an arbitrary instance of size n of the DG 

problem stored in the first - j  of the p  processors in the ACM(n,p, M ), with each
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^   s z

Figure 3.5: A set of rectangles and its dominance graph

processor storing at most M  rectangles. Assume that the rectangles are specified 

by their bottom-left and top-right corners. For every i (1 <  i <  n), the top edge U 

and the bottom edge, 6,- of rectangle Ri can be trivially computed.

T em p la te  A lg o rith m  3.4:

S tep  1. The rectangles are sorted by the x-coordinate of their bottom left corners. 

For convenience, continue to refer to the resulting sequence as R  — {Ri, R 2 , . . . ,  Rn}- 

For each rectangle Ri (1 <  i < n), i is said to be the identity of Ri. This step can 

be accomplished in Tsort(p->P,M) time.

S tep  2. Next, solve the instance of the EV problem consisting of the set of top 

and bottom edges of rectangles, with the viewpoint u; a t (0, —00). For each b{, 

compute the segments visible in the negative y-direction. Similarly, for each f; 

compute the segments visible in the positive y-direction. This can be accomplished 

in 0 ( T e v ( t i , p , M ) )  time.

S tep  3. W ith each endpoint associate a 4-tuple (L ,U ,x ,T B ), whose semantics are 

as follows: for each endpoint of a top segment, L  is assigned the identity of its 

own rectangle and U is assigned the identity of the rectangle visible in the positive
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y-direction (—1 if undefined). Similarly, for each endpoint of a bottom segment, U 

is assigned the identity of its own rectangle and L  is assigned the identity of the 

rectangle visible in the negative y-direction (—1 if undefined). In both cases, T B  is 

a  bit indicating whether the endpoint belongs to a  top or bottom segment, and x is 

the x-coordinate of the endpoint. Sort the set of tuples first by L and then by x. 

This is accomplished in O{Ts0rt{n,P,M)) time.

S te p  4. Now, consider the tuples (L i ,U i ,x 1,T B i)  and {L2 ,U2 ,X2 , T B 2) adjacent 

to  each other in the sorted sequence. If Li =  L2 and Ui =  U2 then record an 

edge in D , from the rectangle corresponding to L\ to the rectangle corresponding 

to  U\. Each edge is stored as (Li,Ui). After sorting the resulting ordered pairs, 

the dominance graph can be constructed trivially. This step is also accomplished in 

O { T s o r t{n ,p ,  M ) )  time.

In order to prove the correctness of this algorithm, it must be shown that 

the algorithm reports all directly above relations and no others. Consider first the 

situation where R i  is directly above R j .  A number of cases occur. For illustration, 

let us consider the case where both bottom endpoints of R i  report R j  as visible. The 

proofs of all the other cases axe similar. Since both bottom endpoints report R j  as 

visible, both will set U =  i and L  = j .  Due to the assumption that Rj is directly 

above R j ,  no other tuples can appear between these in the sorted sequence. Thus, 

the algorithm will report an edge in the dominance graph corresponding to these 

rectangles.

Next, consider the case where R j  is not directly above R j .  Let us distinguish 

between the following two cases.

C ase 1. R i  is not above R j .  In this case R j  does not have any tuple containing the 

identity of R j ,  so the edge between R j  and R j  cannot be reported.
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C ase 2 . R i  is above R j  and there exists a rectangle R k  such that R i  is above R k  

and R k  is above R j .  In this case the tuples containing information about R i  and R j  

cannot occur consecutively. Again, the edge between R i  and R j  cannot be reported. 

This completes the proof of correctness. Thus, the following result is obtained. 

T h eo rem  3.7. The DG problem for a set of n  iso-oriented, non-overlapping rectan

gles in the plane, stored M  rectangles per processor in the first j j  processors of an 

ACM (n,p,M ), can be solved in TDG(n ,p ,M )= 0 (T Ev(n,p,M))-{-0(TsoTt(n,p,M)) 

time. □
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CHAPTER 4 

OBJECT VISIBILITY ON ENHANCED  

MESHES

The objective of this chapter is to present a detailed discussion on how the tem

plate algorithms designed for the class of object visibility problems on the abstract 

computational model axe ported to the MMB and the RMESH.

In particular, Section 4.1 discusses the various tools designed for the MMB, 

Section 4.2 discusses the porting of template algorithms discussed in Chapter 3 

to give time-optimal algorithms on the MMB, Section 4.3 discusses the tools for 

the RMESH and, finally, Section 4.4 discusses the 0(1) time algorithms for object 

visibility problems on the RMESH, obtained by applying the template algorithms.

An MMB or RMESH of size n x n can be mapped to the abstract com

putational model ACM(n ,p ,M )  as follows: Each processor of the MMB has 0(1) 

memory registers. The n2 processors of the MMB correspond to the n2 processors of 

the ACM(n, n2, 1). A processor of the mesh, referred to as P ( i , j ) ,  where i is the row 

number and j  is the column number to which the processor belongs, corresponds to 

the processor P(,_1)n+j_1 in the ACM(n, n2, 1). The input for the various algorithms 

is assumed to be stored in the first row of the mesh, corresponding to the first n /M  

(here, M  =  1) processors of the ACM (n,n2, 1).
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4.1 TOOLS FOR THE MMB

Template algorithms for the object visibility problems, when ported to the MMB, 

yield time-optimal algorithms. Thus, in order to prove the time-optimality of each 

of these algorithms for this model of computation, the corresponding lower bound 

argument is also discussed. To port the various template algorithms to the MMB, 

there is a need to first discuss how the various operations assumed by the ACM 

are implemented on the MMB. These tools can then be applied to the template 

algorithm to obtain the required solutions.

Let us discuss how the various tools that are assumed by the ACM(n,p, M)  

are implemented on the MMB of size n x n.

• Broadcasting : Processor P(z\ j )  can broadcast the item it holds to every other 

processor in the MMB in 0(1) time using the row and column buses. Thus, the 

broadcast operation can be performed on the MMB in 0(1) time per data item.

• Merging : Recently, Olariu et al. [72] have proposed an 0(1) time algorithm to 

merge two sorted sequences of total length n stored in one row of a  MMB of size 

n x n.

Here are the details of the algorithm for merging two sorted sequences 

Si = <  cti, a2, . . . ,  ar > and S2 = <  &i, b2, . . . , b s > , with r +  s =  n, stored in the first 

row of a MMB of size n  x n, with P (l,z ) holding a,- (1 <  i < r) and P ( l , r  +  i) 

holding bi (1 <  i <  s). To begin, using vertical buses, the first row is replicated in 

all rows of the MMB. Next, in every row i (1 <  i < r), processor P ( i , i ) broadcasts 

Oj horizontally on the corresponding row bus. It is easy to see that for every i, a 

unique processor P ( i ,r  + j ) (1 <  j  < s), will find that bj-i <  a,- <  bj (b0 is taken to 

be -oo ). Clearly, this unique processor can now use the horizontal bus to broadcast 

j  back to P{i,i). In turn, P(i,i)  has enough information to compute the position
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of a,- in S. In exactly the same way, the position of every bj in S  can be computed 

in 0(1) time. Finally, a simple data movement sends every element to its final des

tination in the first row of the MMB.

P ro p o sitio n  4.1. Two sorted sequences Si = <  a i ,a 2, . . . , a r >  and 52 = <  

&i,62, . . . , 6s > , with r  +  s =  n, stored in the first row of a MMB of size n x n, 

with P ( l , i )  holding a,- (1 <  i < r ) and P ( l , r  -1- i) holding 6; (1 <  i < s), can be 

merged into a sorted sequence S  in 0(1)  time. □

•  Sorting : Proposition 4.1 is the main stepping stone for a time-optimal sorting 

algorithm developed in [72]. This algorithm implements the well-known strategy 

of sorting by merging. Here is a brief sketch of the data movement operations per

formed in the sorting algorithm of [72]. First, the input sequence is divided into a left 

subsequence containing the first [ j l  items and a right subsequence containing the 

remaining |_f J items. Further, imagine dividing the original MMB into four equal 

submeshes of size f  x f  • Note that for computational purposes, the north-west and 

south-east submeshes can be treated as independent MMB’s.

In preparation for sorting, the right subsequence is broadcast to the first 

row of the south-eastern submesh. The algorithm then proceeds to recursively sort 

the data in each submesh. The resulting sorted subsequences are merged using the 

process described in Proposition 4.1. It is easy to see that the overall running time 

of this simple algorithm is O(logn).

Proposition 4.2. An n-element sequence of items from a totally ordered universe 

stored one item per processor in the first row of a MMB of size n x n  can be sorted 

in 0(log n) time. Furthermore, this is time-optimal. □

• Compaction: The details of a data movement that allows to compact a sequence 

by eliminating some of its elements is as follows. Supposing that the processors in
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the first row of the MMB store a sequence <  a i, a2, . . . ,  an >  of items with some of 

the items marked. Assume further tha t every marked item knows its rank among 

the marked items. The aim is to obtain an ordered subsequence consisting of the 

marked elements stored, in order, in the leftmost positions of the first row of the 

MMB. This task can be performed as follows. Suppose that a,- is the fc-th marked 

element in the sequence; processor P ( l , i )  will broadcast a,- vertically to processor 

P(k, i ) which, in turn, will broadcast a,- horizontally to P(k, k). Finally, P(k, k) will 

broadcast a,- vertically to P ( l,fc), as desired. Consequently, the following result is 

obtained.

L em m a 4.3. Consider a sequence <  a\, a2, . . . ,  a„ > of items stored in the 

first row of a  MMB of size n x n, one item per processor, with some of the items 

marked. If every marked item knows its rank among the marked items, then an 

ordered subsequence consisting of the marked elements stored in order in the leftmost 

positions of the first row of the MMB can be obtained in 0(1) time. □

4.2 OBJECT VISIBILITY ALGORITHMS ON 

THE MMB

This section involves a  discussion on how the template algorithms for the class of 

object visibility problems discussed in Chapter 3 are instantiated in the context of 

the MMB using the tools developed in the Section 4.1.

4.2.1 EN D PO IN T AND SEGM ENT VISIBILITY

The purpose of this subsection is to demonstrate that the template algorithm 3.1 to 

solve SV and EV can be ported to the MMB to yield time-optimal solutions. Let 

us first discuss time lower bounds for the SV and the EV problems on the MMB. In
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fact, the time lower bound also holds for the CREW-PRAM.

Let us briefly recall the definitions of the EV and SV problems. Given a 

set S  of well ordered line segments, the EV problem asks to determine, for every 

endpoint e of a segment in S, the closest segments (if any) intersected by the rays 

eu and euj, in the directions towards and away from the view point u  respectively. 

The SV problem asks to compute the contour of S  from u> i.e, the portions of the 

segments that are visible to  an observer placed at u.

The following discussion presents an ft(log n) lower bound for EV problem 

on the CREW-PRAM by reducing OR to EV. The well-known OR problem, given a 

sequence of n  bits 61, 62, . . . ,  bn, asks for computing their logical OR. The following 

fundamental result of Cook et al. [29] that will be used in all the time lower bound 

arguments in this chapter and also in Chapter 7.

P ro p o sitio n  4.4. The time lower bound for computing the OR of n  bits on the 

CREW-PRAM is fi(logn) no m atter how many processors and memory cells are 

used. □

In addition, the lower bound arguments rely on the following result of Lin et al. 

[52].

P ro p o sitio n  4.5. Any computation that takes 0(t(n))  computational steps on 

an n-processor MMB can be performed in 0 (t(n )) computational steps on an n- 

processor CREW-PRAM with O(n) extra memory. 0

It is important to note that Proposition 4.5 guarantees that if 7A/(n) is the 

execution time of an algorithm for solving a given problem on an ra-processor MMB, 

then there exists a CREW-PRAM algorithm to solve the same problem in Tp(n) =  

time using n processors and 0 (n ) extra memory. In other words, too fa s t  an 

algorithm on the MMB implies too fa s t  an algorithm for the CREW-PRAM. This
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observation is exploited in [52] to transfer known time lower bounds for the PRAM 

to the MMB.

Let 61, 62, • • bn be an arbitrary input to the OR problem. Now consider any 

algorithm that correctly solves the EV problem with u> at (—00,0) and with input 20, 

zi, 22, . . . ,  2n+j, where 2,- is the vertical segment with endpoints bottom(zi) = (i, 0) 

and top(zi) =  (z',3) in case 6,- =  1, and the segment with endpoints bottom(zi) = 

(z,0) and top(zi) =  (i, 1) if 6,- =  0. To complete the construction, we let zq and 

2n+1 be the segments with endpoints bottom(z0) =  (0, 0) and top(z0) = (0, 2), and 

bottom(zn+i) =  (n +  1,0) and top(zn+1) =  (n +  1,3), respectively. The construction 

guarantees that the resulting set of segments is well ordered. Clearly, the answer to 

the OR problem is 0 if, and only if, the ray top(zo)u encounters the segment zn+1. 

The conclusion follows by Proposition 4.4.

Lemma 4.6. The task of solving the EV problem for a set of n well ordered line 

segments in the plane has a time lower bound of fl(logn) on the CREW-PRAM, no 

m atter how many processors and memory cells are used. □

Lemma 4.6 and Proposition 4.5 combined, imply the following result.

Corollary 4.7. The task of solving the EV problem for a set of n  well ordered line 

segments in the plane has a  time lower bound of fi(logn) on the MMB of size n x n .  

□

It is now shown that the same lower bound applies to the SV problem. As 

before, this is achieved by reducing OR to SV. Let 61, 62, . . . ,  bn be an arbitrary 

input to the OR problem. Now consider any algorithm that correctly solves the SV 

problem with input 2 1, 2 2 , . . . ,  zn+1, where 2,- is the vertical segment with endpoints 

(i, 0) and (i, 1) in case =  1, and the (degenerate) segment with endpoints (i, 0) and 

(i, 0) if b{ =  0. To complete the construction, let zn+1 be the segment with endpoints
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(n +  1,0) and (n +  1,1) and place the viewpoint u; at (0,1). The construction 

guarantees that the resulting set of segments is well ordered. Clearly, the answer to 

the OR problem is 0 if, and only if, the entire segment zn+1 is visible from u. The 

conclusion follows by Proposition 4.4. Thus, the following result is obtained. 

L em m a 4.8. The task of solving the SV problem for a  set of n well ordered line 

segments in the plane has a  time lower bound of fl(logn) on the CREW-PRAM, no 

m atter how many processors and memory cells are used. □

Lemma 4.8 and Proposition 4.5 combined, imply the following result.

C oro llary  4 .9. The task of solving the segment visibility problem for a  set of n 

well ordered line segments in the plane has a time lower bound of ft(log n) on the 

MMB of size n x  n. □

The next goal is to show that the time lower bounds of Corollaries 4.7 and 

4.9 are tight, by devising an algorithm that solves an arbitrary instance of size n of 

the EV and SV problems in O(logn) time on a  MMB of size n x  n. Consider an 

arbitrary set S  =  {si, S2, . . . ,  sn} of well ordered line segments, with every segment 

being specified by its endpoints. The set S  is assumed to be stored, one segment 

per processor, in the first row of a MMB of size n x n.

The terminology and data structures used in this algorithm are identical to 

that used by the template algorithm 3.1. Let us briefly discuss how the two stages of 

the template algorithm proceed, each involving processing the nodes of an abstract 

tree T .

S tage  1. Consider a  generic node v in T  with left and right children u and w, 

respectively. Let E(v)  be the sequence of endpoints in segments L(v) (set of leaf 

descendents of u). First, E(v)  is obtained by merging E(u)  and E(w). By Proposi

tion 4.1, this task is carried out in 0(1) time. Note that in the process of merging
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E(u)  and E(w)  into E(v), every endpoint et- updates its predecessor and successor 

information in 0 (1 ) time. Updating t-blocked(ej) and a-blocked(ei) for endpoints 

e,- € E(u)  or e,- £ E(w)  is thus accomplished in 0(1) time. Since the processing 

of each level of T  takes at most 0(1) time, the over all running time of Stage 1 is 

O(logn).

S tage  2. As mentioned in the template algorithm, the main goal of this stage is to 

use the information obtained in Stage 1 to compute the actual values of t(e;) and 

a(et ) for every endpoint e,-.

Begin by sorting the endpoints of segments in S  separately, first by a- 

blocked(e,) and then by t-blocked(e,). By Proposition 4.2 this operation can be 

performed in O(logn) time. As a result, the two sorted sequences are obtained: in 

the first one, all the endpoints that have the value a-blocked(e,)=u occur consecu

tively, and will be referred to as BA(v). In the second one, all the endpoints that 

have the value t-blocked(e,-)=u occur consecutively, and will be denoted by BT(u). 

Both BT(w) and BA(u) feature endpoints sorted in increasing polar angle: this can 

be easily achieved by using two keys for sorting and the complexity will not be 

affected.

Equations 3.1 and 3.2 can be applied to obtain RC(u) and LC(w). Merge 

RC(u) and RC(tu) into a  sequence E'[v), and again this can be accomplished in 

0(1) time. Next, delete the endpoints e* from E'(v) tha t have a-blocked(e,)=u, and 

the items to be deleted are determined by merging E'(v)  with the sequence BA(u) 

that is readily available by virtue of the sorting step described above. Again, by 

Proposition 4.1, the merging operation runs in 0(1) time. Every endpoint et- whose 

a-blocked(e,) value is 0 after node v has been processed, computes its rank in RC(u). 

Now, Lemma 4.3 guarantees that a compacted version of RC(v) can be obtained in
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0(1) time. The computation of LC(u) is perfectly similar.

To determine the values of t(e,) and a(e,), merge RC(u) with BT(v) and 

LC(tn) with BA(u) and the values of t(e,) and a(e,) for every endpoint in BT(v) and 

BA(u), respectively, can be determined in 0(1) time. Thus the following result is 

obtained.

Theorem 4.10. An arbitrary n-segment instance of the EV problem can be solved 

in O(logn) time on a MMB of size n  x n. Furthermore, this is time-optimal. □

As mentioned in Chapter 3, the contours can be trivially computed from the 

solution to the EV problem, thus the following result is obtained.

Theorem 4.11. An arbitrary n-segment instance of the SV problem can be solved 

in O(logn) time on a MMB of size n x  n. Furthermore, this is time-optimal. □

4.2.2 DISK VISIBILITY

The purpose of this subsection is to show that the tem plate algorithm 3.2 leads 

to a time-optimal solution to the DV problem when ported to the MMB. Recall 

the definition of the DV problem discussed in the Chapter 3: Given a set D = 

{di,d2, . . . ,d „ }  of n non-overlapping opaque disks and a viewpoint u  in the plane, 

the DV problem involves determining the portions of each disk that are visible to 

an observer positioned at o j.

First, a  f2(log n) lower bound is presented for DV problem on the CREW- 

PRAM model by reducing OR to DV. Let b\, &2> be an arbitrary input to the 

OR problem. Now, consider any algorithm that correctly solves the DV problem 

with w at ( - o o ,0) and with input d j,d 2, . . .  ,dn+i, where d; (1 <  i <  n) is the disk 

of unit radius, centered at (?, — 1) if 6; =  0, and centered at (i, 1) if 6; =  1. To 

complete the construction, add the disk dn+1 of unit radius centered at (n +  1, 1). 

This construction guarantees that the solution to OR is 0 if and only if dn+1 is visible
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from o j .  The conclusion follows by Proposition 4.4.

L em m a 4.12. The task of solving the disk visibility problem for a set of n disks in 

the plane has a time lower bound of fi(log n) on the CREW-PRAM, no m atter how 

many processors and memory cells are used. □

Lemma 4.12 and Proposition 4.5 combined, imply the following result.

C o ro lla ry  4.13. The task of solving the disk visibility problem for a set of n disks 

in the plane has a time lower bound of D(logn) on the MMB of size n x n. □

Now, let us confirm that the running time of the DV algorithm for input 

size of n, obtained by applying template algorithm 3.2 to an MMB of size n x n 

is time-optimal i.e, had a running time of O(logn). Assume that an arbitrary set 

D  =  {di,d2 . . . ,  dn} of disks is stored, one disk per processor, in the first row of the 

MMB. The other assumptions about the position of the view point and the disks as 

well as the terminology is as described in the template algorithm 3.2.

In 0(1) time, the viewpoint oj is broadcast in the first row of the MMB and 

each processor holding a  disk can determine the tangents to the disk from u;, as well 

as the length of these tangents. As described in the template algorithm, with every 

disk d{ associate the line segment s,- obtained by joining the corresponding tangency 

points. Sort the Sj’s by increasing distance of their endpoints to o j . By Proposition 

4.2, this can be done in O(logn) time. Apply the SV algorithm developed in the 

Subsection 4.2.1 to the sequence of sorted segments and this can be accomplished 

in O(logn) time. Once the visible portions of the segments are determined, the 

portions of the disks visible from oj can be trivially computed in 0(1) time. Thus, 

the following result is obtained.

T h eo rem  4.14. The DV problem for a set of n disks can be solved in O(logn) time 

on a MMB of size n x n. Furthermore, this is time-optimal. □
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4.2.3 RECTANGLE VISIBILITY
The purpose of this subsection is to show that the template algorithm 3.3 for the 

RV problem, when ported to the MMB, results in a time-optimal algorithm. First, 

let us establish an fl(log n) lower bound for the RV problem on the CREW-PRAM 

model by reducing the OR problem to RV. Let bi, 62, • • •, bn be an arbitrary input 

to the OR problem. Now consider any algorithm that correctly solves the instance 

of the RV problem with u  at (—00,0) and with input R i , i?2, • • •, Rn+i, where i?, 

(1 <  i < n ) is the rectangle with top-left comer at (i, 2) and bottom-right corner 

at (i +  0.5,0) in case 6,- =  1, and with top-left comer at (i, 1) and bottom right 

comer at (i +  0.5,0) otherwise. To complete the construction, add the rectangle 

Rn+i with with top-left and bottom-right comers at (n +  1, 2) and (n +  1.5,0). This 

construction guarantees that the solution to OR is 0 if and only if Rn+i is visible 

from a?. The conclusion follows by Proposition 4.4. The following result is thus 

obtained.

Lemma 4.15. The task of solving the RV problem for a  set of n iso-oriented 

rectangles in the plane has a time lower bound of fi(log n ) on the CREW-PRAM, 

no m atter how many processors and memory cells are used. □

Lemma 4.15 and Proposition 4.5 combined, imply the following result.

Corollary 4.16. The task of solving the RV problem for a set of n iso-oriented 

rectangles in the plane has a time lower bound of fi(logn) on the MMB of size 

n x n. □

Now, let us discuss the porting of template algorithm 3.3 to  the MMB and 

confirm that the resulting algorithm is time-optimal, i.e, it has a running time of 

O(logrc). Consider a set R  = { R i ,R 2 , . . . ,R n }  of iso-oriented, non-overlapping, 

rectangles stored one per processor in the first row of a MMB of size n x n. Sort the
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top and bottom edges by increasing y-coordinate, and apply the EV algorithm for 

the resulting set of ordered segments. This can be done in O(logn) time. Repeat 

the same for the vertical segments of every rectangle.

As described in the template algorithm, every generic comer et- of rectangle 

r t- has four solutions: a l(e ,), tl(e ,), a2(e,), and t2(e,). A comer et- is marked if 

tl(e ,)= t2(ej)= 0 . Now, every marked comer e,- combines the information stored in 

al(e,) and a2(e,) by selecting the segment closer to e,- along the ray e.-u;. If in the 

process e,- discovers that the closer of al(e,) and a2(e,) is an edge tha t belongs to its 

own rectangle, then et- becomes unmarked. Sort the remaining marked comers by 

increasing polar angle, and the contour of the set of rectangles can now be computed 

as specified in the template algorithm. The following result is thus obtained. 

Theorem 4.17. An arbitrary instance of size n of the RV problem can be solved 

in O(logn) time on a  MMB. Furthermore, this is time-optimal. □

4.2.4 DO M INANCE GRAPH

This subsection discusses the DG problem in the context of MMB’s where the tem

plate algorithm 3.4, can be ported to obtain a  time-optimal solution to the problem.

First, the lower bound of fl(log n) is established for the DG problem on both 

the CREW-PRAM and the MMB. As usual, this is done by reducing the OR prob

lem to DG. Let 6j,  62, . . . ,  bn be an arbitrary input to the OR problem. Based on this 

sequence, construct an instance 1Z = {R q, R i , . . . ,R n }  of the DG problem as follows:

•  the bottom-left and the top-right corners of Ro are (0 ,-1 )  and (n, —0.75);

• if b{ =  0, then the bottom-left and the top-right comers of Ri are (n +  i — 0.75,0) 

and (n +  i — 0.25,1);

•  if bi — 1, then the bottom-left and the top-right corners of R, are (i — 0.75,0) and 

( i - 0.25,1).
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Clearly this construction takes 0(1) time. It is easy to  verify tha t the solution to 

the OR problem is 0 if, and only if, the out-degree of the vertex corresponding to 

Ro is 0.

The conclusion follows by Proposition 4.4. Thus, the following result is obtained. 

L em m a 4.18. The DG problem for a set of n non-overlapping iso-oriented rect

angles in the plane has a time lower bound of D(log ri) on the CREW-PRAM, no 

m atter how many processors and memory cells are used. □

Lemma 4.18 and Proposition 4.5 combined, imply the following result.

C o ro lla ry  4.19. The DG problem for a set of n non-overlapping iso-oriented rect

angles in the plane has a time lower bound of f2(log n ) on the MMB of size n x n. 

□

Consider an arbitrary instance of size n of the DG problem stored in the 

first row of a MMB of size n x n. Sort the rectangles sorted by the x-coordinate 

of their bottom left comers in O(logn) time. Let the sorted sequence be R, — 

{ i? i ,  R.2 , . .  •, Rn}. Solve the instance of the EV problem consisting of the set of 

top and bottom edges of rectangles, with the viewpoint uj at (0, —oo). By virtue 

of Theorem 4.10, this step can be performed in O(logra) time. As in the template 

algorithm, with each endpoint associate a 4-tuple (L ,U ,x ,T B ). For each endpoint 

of a top segment, sort the set of tuples first by L and then by x. This step takes 

O(logn) time. Now, consider the tuples (L i ,U i ,x i ,T B i)  and (L i,U 2 , x i ,T B i)  in 

adjacent processors. If L\ =  L i  and \J\ =  Ui then record an edge in D, from the 

rectangle corresponding to L\ to the rectangle corresponding to U\. Each edge is 

stored as (L i,U \ ). After sorting the resulting ordered pairs, the dominance graph 

can be constructed trivially. This leads to the following result.
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Theorem 4.20. Given a set 1Z of n rectangles stored in the first row of the MMB 

of size n x  n, the DG problem can be solved in 0(log n ) time. Furthermore, this is 

time-optimal. □

4.3 TOOLS FOR THE RMESH

This section discusses the tools required to solve the object visibility problems in 

the context of the RMESH. The various template algorithms discussed in Chapter 3 

can be applied to obtain 0 (1) time solutions to the object visibility problems using 

the collect of tools discussed in this section. However, the EV/SV problem is solved 

independent of the template algorithm and the power of dynamically reconfigurable 

bus system can be exploited to obtain a  much simpler, 0 (1) tim e solution.

The purpose of this section is to discuss how the various operations assumed 

by the ACM are implemented on a RMESH. The operations or tools are then applied 

to the various template algorithms discussed in Chapter 3 to obtain 0(1) time 

solutions to the various object visibility problems.

• Broadcasting : Processor P ( i , j ) can broadcast the item it holds to every other 

processor in the mesh in 0(1) time by configuring the bus appropriately. Thus, the 

broadcast operation can be performed on the RMESH in 0(1) time per item.

• Merging : Recently, Olariu et al. [70] have proposed the following result. 

Proposition 4.21. Let Si =  < a i , a 2, . . . , a r > and S2 = < 6i , 62, . . . , 65 >, with 

r -f s = n, be sorted sequences stored in the first row of a RMESH of size n  x n, 

with P (l , i )  holding a,- (1 <  i < r) and P ( l , r  +  i) holding 6,- (1 <  i <  s). The two 

sequences can be merged into a sorted sequence in 0 (1) time. □

•  Sorting : Recently, Lin et al. [51], Jang and Prasanna [46], and Nigam and Sahni 

[68] have shown that an n-element sequence of items chosen from a totally ordered
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universe can be sorted in 0(1) time on a RMESH of size n x n. Furthermore, this 

result achieves the VLSI lower bound for the problem.

P ro p o sitio n  4.22. An n-element sequence from a totally ordered universe can be 

sorted in 0(1) time on a RMESH of size n x n. □

4.4 OBJECT VISIBILITY ALGORITHMS ON  

THE RMESH

This section provides 0(1) time algorithms for the various object visibility problems 

on the RMESH by applying the template algorithms from Chapter 3 can be applied 

for the DV, RV and DG problems. However, the solution to the SV/EV problem is 

much simpler because of the powerful bus system available.

4.4.1 ENDPO INT AND SEGMENT VISIBILITY

This subsection presents a single algorithm that implements EV and SV problems in 

0(1) time on the RMESH. The powerful bus system of this parallel machine, makes 

it unnecessary to use the tree-fashioned computation described in the template al

gorithm. The details of the algorithm for the RMESH is as follows:

Consider a set of n segments stored, one segment per processor, in the first 

row of a RMESH, M., of size n x n such that P ( l , i )  stores s,-. The idea of the 

algorithm is to dedicate row i of M  to segment s,-. For this purpose, after having 

established vertical buses in all columns of the mesh, mandate the processors in 

the first row to broadcast the segment they hold on the bus in their own column, 

thus replicating S  in all rows of M .  Next, in every row of the mesh the processors 

connect their ports E and W. Let e be a generic endpoint of s,-. To determine /(e), 

processor P (i,i)  broadcasts e westbound on the horizontal bus in row i. Every
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processor P ( i ,i)  (j <  i) checks whether the ray e~ intersects the Sj. If so, P ( i,j)  

disconnects the horizontal bus and broadcasts the identity of sj eastbound from its 

port E. Since the segments are well ordered, the information (if any) received by 

P (i,i)  from its port W is precisely /(e). In case no information is received, /(e) is 

set to —oo. Thus,, the following result is obtained.

T h eo rem  4.23. Given a set S  of n well ordered segments in the plane, stored in the 

first row of a RMESH of size n  x n, the corresponding instance of the EV problem 

can be solved in 0 (1) time. □

Once the solution to EV problem is obtained, the solution to  the SV problem 

can be obtained in 0(1) time. Thus, the following result is obtained.

T h e o re m  4.24. Given a set S  of n well ordered segments in the plane, stored in the 

first row of a RMESH of size n x n, the corresponding instance of the SV problem 

can be solved in 0 (1) time. □

4.4.2 DISK VISIBILITY

In this subsection, the template algorithm for DV problem presented in Section 3.3 

of Chapter 3 is instantiated in the context of the RMESH to obtain an 0(1) time so

lution. Consider a set of n  non-overlapping disks in the plane, D  =  {da, d2, . . . ,  d„}, 

stored one disk per processor in the first row of the RMESH of size n x n .  As in the 

template algorithm 3.2, each processor in the first row of the mesh, determines the 

tangents to the disk it stores, from the viewpoint w. The length of these tangents, 

i.e. the distance between u  and the tangency points, is also determined. This would 

require 0(1) computation time. As before, with every disk </,• associate the line seg

ment Si obtained by joining the corresponding tangency points. Next, sort the s;’s 

by increasing distance of their endpoints to u. This is done in 0 (1) time, by virtue 

of Proposition 4.22. Let S=s\, S2 , . . . ,  sn be the set of these segments in sorted order
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and the SV algorithm can be applied to S. Once the visible portions of the segments 

are determined, the portions of the disks visible from ui can be trivially computed. 

This step would require 0(1) time. Thus the following result is obtained.

T h eo rem  4.25. Given a set D  of n non-intersecting disks in the plane, stored in the 

first row of a  RMESH of size n x  n, the corresponding instance of the DV problem 

can be solved in 0 (1) time. □

4.4.3 RECTANGLE VISIBILITY

In this subsection, the template algorithm 3.3 for RV problem is applied to obtain a 

0(1) solution to the problem on the RMESH. Consider a  set % =  { R \ ,R 2 . . . , /? „ }  

of n non-overlapping, opaque rectangles in the plane with edges parallel to the axes, 

stored one rectangle per processor in the first row of a  RMESH M  of size n x n .  Sort 

the top and bottom edges of the rectangles in 1Z by increasing y-coordinate, and 

apply the EV algorithm to the resulting sequence of well ordered segments. Repeat 

the same for the top and bottom edges, after sorting them in increasing order of 

their i-coordinates. Combine the solutions obtained above as described in template 

algorithm 3.3. This can be accomplished in 0(1) by virtue of Proposition 4.22 and 

Theorem 4.23. Thus, the following result is obtained.

T h eo rem  4.26. Given a set 1Z = {i?i, R 2, . . . ,  R n}, of n iso-oriented, non-overlapping 

rectangles stored one per processor on a RMESH of size n x n , the corresponding 

instance of the RV problem can be solved in 0(1) time. □

4.4.4 DOM INANCE GRAPH

In this subsection, let us discuss the 0(1) time solution to the DG problem on the 

RMESH obtained by porting the template algorithm 3.4.

Consider an arbitrary instance of size n  of the DG problem stored one rect

angle per processor in the first row of the RMESH of size n x n .  The rectangles are
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sorted by the z-coordinate of their bottom left comers. For convenience, continue 

to refer to the resulting sequence as 7 l =  {Ri,  i?2, - • -, Rn}- Next, solve the instance 

of the EV problem consisting of the set of top and bottom edges of rectangles, with 

the viewpoint u  at (0, —oo). This can be accomplished in 0(1) time, by virtue of 

Theorem 4.23. With each endpoint associate a 4-tuple (L ,U ,x ,T B ) as described 

in the tem plate algorithm. Sort the set of tuples first by L and then by z. This is 

accomplished in 0(1) time, as stated in Proposition 4.22. Now, consider the tuples 

(Li, U i ,x i ,T B \)  and (Z2, I/2,z 2, T i?2) adjacent to each other in the sorted sequence. 

If Li = L 2 and U\ =  t/2 then record an edge in D, from the rectangle corresponding 

to L\ to the rectangle corresponding to U\. Each edge is stored as (Li,Ui). After 

sorting the resulting ordered pairs, the dominance graph can be constructed triv

ially. This step is also accomplished in 0(1) time, by virtue of Proposition 4.22. 

Thus, the following result is obtained.

T h e o re m  4.27. The DG problem for a set of n iso-oriented, non-overlapping rect

angles in the plane can be solved in 0(1) time on a RMESH of size n x  n. □
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CHAPTER 5 

OBJECT VISIBILITY ON COARSE-GRAIN  

MULTICOMPUTERS

The objective of this chapter is to present a detailed discussion on how the tem

plate algorithms, designed for the class of object visibility problems on the abstract 

computational model, are ported to coarse-grain multicomputers. In particular, 

Section 5.1 discusses the various tools developed for coarse-grain multicomputers, 

and Section 5.2 discusses the porting of the template algorithms for object visibility 

problems for this model.

Recall that a coarse-grain multicomputer, referred to as CGM(n,p), consists 

of p processors, each having O(^) local memory. The p processors, enumerated as 

Po, P i , . . . ,  Pp_i, are assumed to be connected through an arbitrary interconnection 

network and communicate using various communication primitives as described in 

Chapter 2.

In this model, an algorithm is said to be computationally optimal whenever 

the computational time of the algorithm is 0 (* ^ ) ) ,  where f2(/(n )) is the sequential 

lower bound for the problem. However, since the communication across various 

processors is an expensive operation, the objective in designing solutions to various 

problems in this model is to minimize the number of communication rounds, while
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keeping the amount of computation as low as possible. The running time of the 

algorithm is the sum of the total time spent on computation by of the p processors 

and the total time spent on interprocess communication.

The CGM(n.p) can be be viewed as an ACM(n,p, ^), where the p  pro

cessors of the CGM correspond to the p processors of the ACM, each of them 

having 0 (M )= 0 (^ )  local memory. In the various algorithms every processor, P, 

(0 <  i < p — 1), of the CGM(ra,p) is assumed to store ^ of the input items. The 

CGM(n,p) can be viewed as independent CGMs by dividing the p processors into 

disjoint process groups as mentioned in Chapter 2.

5.1 TOOLS

In purpose of this section is to devise a variety of tools that are useful in porting 

the template algorithms to the CGM(n,p). The various operations assumed by the 

ACM in Chapter 3 are implemented on the CGM as follows:

•  Broadcasting : The broadcast operation assumed by the ACM can be implemented 

using the broadcast primitive available, in TBroadcast(k,p) time, where k (1 <  k  <

is the number of data items to be broadcast.

•  Merging : The merge operation is performed on the CGM(n,p) as described in 

Subsection 5.1.2.

•  Sorting : The sort operation is performed on the CGM(ra,p) as described in Sub

section 5.1.3.

• Compaction : The compaction operation is performed as specified in Subsection 

5.1.4.

Before discussing the implementation details of these basic tools, a dynamic load 

balancing scheme is discussed in Subsection 5.1.1. This scheme plays a very crucial
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role in the design of basic tools such as merging and sorting.

5.1.1 DYNAM IC LOAD BALANCING

Several problems on the CGM(n,p) can be classified as problems that require dy

namic balancing of the load on the various processors depending on the particular 

instance of the input. The situation in which this scheme is needed is described as 

below.

Given the following input:

•  A sequence S  =  <  S i,s2, . . .  ,s n >  of n items stored ^ per processor in a 

CGM(n,p), where any processor Pi stores the subsequence of items Si = < 

S(,-„a)+i,. . . ,  s,-,a > . Every item s,- € 5  is associated with a  solution , depending 

on the problem to which the dynamic load balancing scheme is being applied. 

Thus, it is required to determine the solution to every sj €  S.

•  A sequence D  =  <  d i,d 2, . . .  ,d„ >  of n elements stored ^ per processor in 

a CGM(n,p), where each processor Pi stores a subsequence of items Di = < 

daMn)+ i,. . . ,d ims. > . Each Di is referred to as a pocket. The solution to each
V P '  P

Sj 6  S  is determined by exactly one pocket Di < i <

• A sequence B  =  <  &i, 62, . . . ,  bn > of n  elements stored ^ per processor in a 

CGM(n,p), where each processor P,- stores the subsequence of items Bi =  < 

6(,-,a)+i , . . . ,  &f«a > . Every element bj € B,  is the subscript of the pocket D^  

which determines the solution to the item sj € S.

Thus, every processor Pi is given B,-, the sequence corresponding to the pocket to 

which each Sj € Si belongs, and has to determine the solution to every sj. For every 

item Sj 6  Si with bj = i, the solution can be determined sequentially within the 

processor. However, if bj is not equal to i, there is a need to send every such Sj to
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the processor storing the pocket Db} -

Let Ni be the number of items Sj £  S , such that bj = i. In general, the value 

° f Ni (0 <  i < p — 1) may vary from 0 to 0 (n) depending on the particular instance 

of the input. Since, a  processor has at most O(^) memory, atmost O(^) items 

with bj = i can be sent to the processor storing at one time. This motivates 

the need to schedule the movement of the every sj £ 5 , in order to  determine its 

solution. In this section, the dynamic load balancing scheme provides a solution 

to this scheduling problem. The various steps involved in obtaining the solution of 

every Sj, using the dynamic load balancing scheme, is discussed below:

S tep  1. The purpose of this step is to determine IV,- for every pocket D{. Every 

processor Pi (0 < I < p — 1) determines the number Cik of items Sj £ Si such that 

bj = k. This takes O(^) computation time. Next, every Pi obtains information about 

Co/, Cu, . . . ,  C(p-i)t from processors Po, P i, • • •, Pp-i respectively. This step takes 

TAiitoaii{p-, p) time where each processor Pm sends the values Cmo, Cmi, • • •, CTO(p_i) 

to processors Po, Pi, ■ • •, Pp- i, respectively. Upon receiving Co/, C i/,. . . ,  C(p_i)/ from 

every processor, P/ determines their sum in 0(p)  time, to obtain the value IV/. The 

p  items N o ,N i , . . . ,N p- i  are replicated in each of p processors using an all-gather 

operation. This step takes a communication time of TAugather{PiP)-

Let c * ^ (where c is an integer constant greater than or equal to 2) be a 

value that is known to every P/. Now, a pocket Dk is said to be sparse if Nk is less 

than or equal to c * otherwise Dk is said to be dense. In O(^) time, every Pt- 

(0 <  i <  p — 1) determines for every bj £ P t, whether Db} is a dense pocket or not. 

Step 2. The aim of this step is to obtain the solution of every item Sj  £ S  where 

pocket Df)j is sparse.
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Let every P,- send sj  € S i ,  to processor P^ , storing the pocket Dbj, where 

pocket Dbj is sparse. This can be accomplished by performing an all-to-all commu

nication operation. Note tha t, any processor P i  would receive at most O(^) items. 

This step would take TAiitoaii(n,P) time for the communication operation. The so

lution to every item Sj tha t is sent to the processor storing the pocket containing 

its solution, can now be determined sequentially in each of processors P:- storing a 

sparse pocket. Let the tim e taken for this computation be 0 ( /( ^ ) ) .  The solutions 

can be sent back by performing a  reverse data movement to  the one performed ear

lier in T Au toa ii(n ,p )  time.

Step 3. Finally, let us determine the solution to every Sj € S ,  where pocket is 

dense. In order to ensure tha t atmost O(^) such s / s  axe moved to any processor, 

there is a need to make copies of every dense pocket Dk. This is accomplished as 

follows.

Let rid be the number of dense pockets. Determine the number of copies that 

each dense pocket Dk should have, and is given by Afk =
P

Observation 5.1. The total number of copies of all the dense pockets Dk s given 

by Afo+Afi+ . . .+Afnd- 1 is no more than | .  □

Let the rid dense pockets be enumerated as Dmi, Dm2, . . . ,  Dmnd in increasing or

der of their subscripts. Similarly, let the p  — rid sparse pockets be enumerated as 

Dq,, Dq2, . . . ,  Dqp_nd in increasing order of their subscripts. Since, the sparse pock

ets are already processed, the processors storing them are marked  as available to 

hold copies of the dense pockets. Let the marked processors be enumerated as 

Pq^Pqi-, ■ ■ •, Pqp-nd • Let every processor Pi, such that Di is a dense pocket, retain 

a copy of pocket D i.  Now, the rest of the copies of each of the dense pockets are 

scheduled among the marked processors Pqi,Pq2, . . . ,  P9p_„d. The scheduling of the
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copies is done as follows. The copies of Dmi are assigned to the first J\fm, — 1 marked 

processors. The copies of D m2 are assigned the next J\fm2 — 1 processors, and so on.

Now, each of the processors that should be storing the copy of the a  dense 

pocket Dk, including P*, join a process group. Note that, there are exactly rid 

process groups. Now, in a broadcast operation in each of the process groups, every 

processor Pi can obtain the copy of the dense pocket it is to store. Note that this 

operation can be performed using an all-to-all communication operation which takes 

TAiitoaiiiPiP) time.

Since there may be several copies of a dense pocket Dk, each processor Pi 

needs to determine to which copy it has to send its items Sj with bj = k. This can 

be accomplished as follows: for each dense pocket Dk, the processor Pk is aware of 

Cok, Cifc,. . . ,  C(p_i)fc, and performs a prefix sum on this sequence giving the sequence 

Qok, Qiki • - -, Q(p-i)k- Every Qik is sent to processor Pt. This could also be performed 

in one all-to-all communication operation, in TAutoaii(p2,P) time. Note that, at this 

stage, every processor Pi has information to determine to which processors each of 

the unsolved items Sj € Si is to be sent.

Now, move the unsolved items Sj 6  S i from every processor P i to the pro

cessor containing the copy of dense pocket Dk determined in the previous step. The 

solution to each one of them  is then determined in 0 ( /(^ ))  time and sent back to 

the corresponding processor. Thus, the required dynamic load balancing operation 

is accomplished and the solutions for every Sj € S  is determined.

Lemma 5.2. An instance of size n of a problem applying the dynamic load balanc

ing scheme can be solved in 0 (^ )+ 0 (/(^ ))  computational time, where function /  

depends on the particular problem, and a communication time of 0{TAiitoaii{n,p)).

a
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5.1.2 MERGING

In this subsection, the solution to the merge problem on a CGM(n,p) is presented. 

This solution uses the dynamic load balancing scheme discussed in Subsection 5.1.1. 

The computation time of the algorithm is O (^), and since the sequential lower bound 

of the merge problem is fl(n), this algorithm is computationally time-optimal.

Let Si = < <zi,a2, . . . , a a  >  and S2  = < &i,&2, ,&=• > , be two sorted 

sequences of j  items each. Let Si be stored in processors Po, Pi , . . .  ,P |_ i of the 

CGM(n,p), ^ per processor. Similarly, let S 2  be stored in Pz, Pe+i, Pp- 1, ^ per 

processor. Any P, (0 <  i <  |  — 1) stores items Sn = <  a,-,a+i,. . .  ,a (:+i)«i >  be

longing to Si. Similarly, any Pj (§ <  i < p — 1) stores items 5 ,-2 =  <  6(,-_|),n+1, . . . ,  

6(i_ |+i)«a >  belonging to S2. The two sequences Si and S2 are to be merged into 

a sorted sequence S  = <  Ci,c2, . . . ,c „  > , so that any processor P, stores items 

<  C i,|+1,...,C ({+1) , |  >  in the sorted sequence. Define the rank  of an item e in 

any sorted sequence Q =  <  qi, q2, . . . ,  qT > as the number of items in the sequence 

Q that are less than the item e, and is denoted as rank(e , Q). In order to merge 

the sequences Si and S2, determine rank(a{, S) for every a,• € S  and rank{bj, S) 

for every bj 6  S2. First, determine the rank(a{, S2) for every a,- 6  Si. The sum of 

rank(ai,S2) and rank(ai, Si) given by z, gives the value of rank{a^S). Similarly, 

rank(bj,Si) and rank(bj, S2) is to be determined for every bj € S2, to obtain the 

value of rank(bj, S). This can be accomplished as described in the following steps. 

Step 1. Let every processor Pm (0 < m < |  — 1) set the value of the rank(ai,Si) 

to i, for every at- € Smi. Similarly, let every processor Pm ( |  <  m < (p -  1)) set the 

value of the rank(bj, S2) to j ,  for every bj € Sm2. This can be accomplished in O(^) 

time.

Step 2. Every processor Pm determines the largest item it holds, and that is re
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ferred to as the sample item lm. Since the sequence of items stored by any Pm are 

already sorted, the value of lm can be obtained in 0(1) time. Now, perform an 

all-gather operation so that every processor has a  copy of the sequence of sample 

items L =  < l0,h ,  - - -, lp- i  > . This can be accomplished in TAiigather{p,p)-

In every Pm (0 <  m  <  |  — 1), perform the following computation in parallel. 

Determine the pocket for every a, £ Smi, where pocket for any a{ is determined as 

follows. Given the sequence of sample items L = < Z0, Zl5. . . ,  Zp_x > , a,- finds its 

rank in Z-2 =  <  Z e ,  . . . ,  l(p-i)  > (P2 is determined from L). The value r a n k ( a i ,  L2 ) 

corresponds to the pocket of o,:. Similarly, in every Pm ( |  <  m <  (p — 1)), perform 

the following computation in parallel. Determine the pocket for every bj  £ Sm2, 

where pocket for any bj is determined as follows. Given the sequence of sample 

items L  =  <  Zo,Zi,. . . , Zp_i > ,  bj  finds its rank in L\ — <  Zo, . . . , Z e _ !  >  {L\ is 

determined from L). The value r a n k ( b j , L\)  gives the pocket of bj.

Observation 5.3. The value of ran&(a,-, Sk2 ), where k is the pocket of a,-, gives the 

rank of a, in the sorted list S 2  as rank{a^ S 2 )=rank(ai, Sk2 )+{k — | )  * f  • Similarly, 

the value of rank(bj,Ski), where k is the pocket of bj, gives the rank of bj in the 

sorted list S\ as rank(bj, Si)=rank(bj, Ski)+(k * ^). □

Now, each of the items a,- £ Si with pocket k, has to calculate rank(ai, Sk2 ), in order 

to determine rank(a{, S ). Also, each item bj £ S 2  with pocket k, has to calculate 

rank(bj, Ski)- In the worst case, it is possible that all the a,-’s have the same pocket 

and all the 6/ s  have the same pocket. Thus, there is a need to apply the dynamic 

load balancing scheme.

Step 3. The load balancing scheme is applied to determine the rank(a{, Sk2 ) for 

every a, £  Si  and rank(bj, Ski) for every bj £ S 2 . This can be performed as described 

in Subsection 5.1.1 in O(^) computational time and 0 ( T Aut0a u ( n , p ) )  communication
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time. Now, determine the rank of every a,- £ Si, in the sorted sequence S  as 

rank(a{, Si) +  ran&(a,', S2)- Equivalent computation is performed for every item

bj £ S2.

S tep  4. Once every item a,- € Si and bj £ S2 determines its rank in S, denoted as 

r a n k ( a S )  and rank(bj, S ), respectively, the destination processor for each item a,- is 

determined as [ran-i°"s Ĵ and for bj as [ ranfcl6j ’5' j , respectively. This is accomplished
P P

in O(^) time. In one all-to-all communication operation, the items can be moved to 

their final positions giving the sorted sequence S. This step requires TAUtoaii{n,p) 

communication time. Thus the following result is obtained.

Lemma 5.4. Consider two sorted sequences, Si = < a,i,a2, . . . , a z  >, S2 =  < 

61, 62, . . . ,  > , stored ^ per processor, with Si stored in processors Po, Pi, • - •, P f - i

and S2 in processors Pe, Pe+1 , . . . ,  Pp_i, of a CGM(n,p). The two sequences can be 

merged in O(^) computational time, and 0(TAiito*u(n,p)) communication time. □

5.1.3 SORTING

Lemma 5.4 is the main stepping stone for the sorting algorithm developed in this 

section. This algorithm implements the well-known strategy of sorting by merging. 

The computational time of the algorithm is 0 ( "1-°sn-) and since the sequential lower 

bound for sorting is ft(n logn), this algorithm is computationally time-optimal.

Let S  = < ai, a2, .. ■, an > be a sequence of n items from a totally ordered 

universe, stored O(^) per processor on a CGM(n,p), where any processor P,- stores 

the items a(;„s)+1, . . . ,  . The sorting problem requires the sequence S  to be sorted

in a specified order and the resulting sequence of items <  bi,b2, . . . , b n > , are stored 

2 per processor so that any processor P, stores the items, <  . . . ,  6,-.n >  The
V  '  p / ~  p

details of the algorithm are as follows:

First, the input sequence is divided into a left subsequence containing the first |
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items and a right subsequence containing the remaining j  items. Further, imagine 

dividing the original CGM(n,p) into two independent machines, C G M (|, | ) .  This 

can be accomplished by dividing the p processors into two process groups having |  

processors each.

The algorithm proceeds to recursively sort the data in each of the two CGM’s. 

The resulting sorted subsequences are merged using the algorithm described in Sub

section 5.1.2. The recursion terminates when each of the CGM’s is a CGM(^,1), and 

the data items can be sorted using the sequential algorithm running in 0 (nl°Kra) time. 

It is easy to see that the overall running time of this simple algorithm is 0 ( n1̂ - )  

computation time and 0 (log pTAiitoaii{n-, p)) communication time.

L em m a 5.5. Given a sequence S  =  <  ai,<Z2, . . . , a n > of n items from a totally 

ordered universe, stored O(^) per processor on a CGM(n,p), sorting of the sequence 

can be accomplished in 0 ( nl°s" ) computation time and 0  (log pTAiitoaii{n,p)) com

munication time. □

5.1.4 COMPACTION

The compaction operation involves a sequence of items S  = <  oi, a.2 , . .  •, an > stored 

^ items per processor, in the p processors of an CGM(n, p), with r  (1 <  r < n), items 

marked. The marked items are enumerated as B  = < 6j, b2, . . . ,  bT > and every a,- 

(0 <  i <  n) knows its rank in the sequence B. The result of the compaction oper

ation is to obtain the ordered sequence B , in order, in the first 0 ( ("•§•]) processors
P

storing S,  so that any processor Pi (0 <  i < [§1) stores items bi„s.+ll. . . ,  b(i+1)ms..
p  P K 1 P

This data movement operation can be accomplished by determining the destina

tion processors for each of the marked items as [Z2̂ i \ in O (-) computational time,
p p

followed by an all-to-all operation to move the marked items to their destination 

processors. This can be accomplished in T4;/toa/;(n,p) time.
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Thus the following result is obtained.

L em m a 5.6. Consider a sequence S  = <  <zi,a25• • • >  of items stored ^ per

processor in the p processors of a CGM(n,p), with r  of the items marked. The 

marked items can be compacted to the first [•£] processors of the CGM(n,p) in
P

0 ( | )  computation time and 0(TAiitoa ii{n ,p))  communication time. □

5.2 OBJECT VISIBILITY ALGORITHMS

This section presents a brief discussion on how the template algorithms for the var

ious object visibility problems discussed in Chapter 3 are ported to the CGM(n,p).

5.2.1 ENDPO INT AND SEGMENT VISIBILITY

The purpose of this subsection is to show that the template algorithm 3.1 to solve 

SV and EV can be ported to the CGM(n,p) using the various tools developed in 

Section 5.1. The computational time of the resulting algorithm is 0 ( —| s~). Since 

the sequential lower bounds to these problems is fl(n logn), this algorithm is com

putationally time-optimal.

Consider an arbitrary set S  of n vertical line segments with every segment 

being specified by its top and bottom endpoints. The set S  is assumed to be stored, 

|  segments per processor, in a CGM(n,p), where any processor Pi stores segments 

St =  - • •, s(,-+i) , |} .

The various assumptions and the terminology is identical to what is described 

in the template algorithm. Let us discuss the porting of the two stages of the 

template algorithm on the CGM(n,p).

S tage 1 . Consider a generic node v in the abstract tree T  with left and right children 

u and w, respectively. E(v) is obtained by merging E(u) and E(w). If the level of v 

is less than or equal to log the merging of E(u)  and E(w), for every node at that
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level of the tree is carried out using the sequential algorithm running in 0 (|£(u)] +  

| £(u?)|) tinae. As noted in the template algorithms, for the first O(log j )  levels the 

merging can be accomplished in O (M og^) time. For the nodes at level greater 

than log the merging of E(u) and E(w ) is accomplished by applying the merge 

algorithm discussed in the Subsection 5.1.2. The task of determining t-blocked(e,) 

and a-blocked(e,) are performed exactly as mentioned in the template algorithm and 

requires O(^) computational time. Stage 1 takes 0 ( —SS") computational time and 

0(\ogpTAiitoaii(n,p)) communication time.

S tage  2 . The values of RC(u) and LC(u) are computed as specified in equations

3.1 and 3.2. Merge RC(u) and RC(u?) into a list E'(v), and from E'(v) delete those 

endpoints e,- that have a-blocked(et)=u and thus determine the endpoints in RC(v) 

and rank them. Obtain a compacted version of RC(u) applying the compaction 

operation in 0 (^ )+  0(TAiitoau{n,p)) time. The computation of LC(u) is perfectly 

similar. Again, the determination of the values of t(e,) and a(e,) for all endpoints 

in BA(i?) and BT(u), can be accomplished using the merge operation, exactly as 

described in the template algorithm. Stage 2 takes 0 ( nl°sn) computational time and 

0(logpTAiitoaii(n,p)) communication time. Thus the following result is obtained. 

T heo rem  5.7. An arbitrary n-segment instance of the EV problem can be solved 

in 0 ( ?1°sn) computational time and 0(\ogpTAihoau{n-,p)) communication time, on 

a CGM(n,p). □

As mentioned in the template algorithm, the contours can be trivially computed 

from the solution to the EV problem, thus the following result is obtained. 

T h eo rem  5.8. An arbitrary n-segment instance of the SV problem can be solved 

in 0 (—psn) computational time and O(logpTAmoaii(n,p)) communication time, on 

a CGM(n,p). □
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5.2.2 DISK VISIBILITY
Assume that an arbitrary set D = {di,d2, . . .  ,dn} of disks is stored, ^ disks per 

processor, in a  CGM(ra,p), so that any processor Pi (0 <  i < p — 1) stores the disks 

Di =  {d;»a+1, . . .  The other assumptions about the position of the view

point and the disks is as described in the template algorithm 3.2.

Each processor determines the tangents to the disks it stores from tu, as well 

as the length of these tangents, i.e. the distance between u  and the tangency points, 

in 0 (~ ) computational time. As before, with every disk d{ associate the line segment 

Si obtained by joining the corresponding tangency points, sort the segments and 

obtain the solution to SV problem. This can be done in 0 ( nl°gn) computational time 

and 0(logpTAiitoaii{n -,p)) communication time, by virtue of Lemma 5.5 and Theorem 

5.8. Once the visible portions of the segments are determined, the portions of the 

disks visible from u  can be trivially computed in O(^) time. Thus, the following 

result is obtained.

Theorem 5.9. The DV problem for a set of n disks can be solved in Q(nl°s") 

computational time and O(logpTAiitoaii(n,p)) communication time, on a  CGM(n,p). 

□

5.2.3 RECTANGLE VISIBILITY

The purpose of this subsection is to show how the tem plate algorithm 3.3 for the 

RV algorithm, is ported to the CGM(n,p). Consider a set 11 = {R i ,R 2,. . .  ,i?n} of 

iso-oriented, non-overlapping, rectangles stored ^ per processor, in a  CGM(n,p), so 

that any processor Pi stores the rectangles Ri*^+1, • • -, i?(,+i).a.

Solve the instance of the EV problem obtained by considering the top and 

bottom edges of every rectangle in TZ. Repeat the same for the vertical segments of 

every rectangle. This can again be performed in 0 ( - 1°gn) computational time and
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0(logpTAiitoaii{n,p)) communication time by virtue of Theorem 5.7.

As described in the template algorithm, every generic comer e,- of rectangle r,- 

has four solutions: al(e,), tl(e ,), a2(et), and t2(et). The solution to the RV problem 

can be obtained from this information as described in the template algorithm. The 

following result is thus obtained.

T h eo rem  5.10. An arbitrary instance of size n  of the RV problem can be solved 

in 0 (nl°s? ) computational time and O(logpTAiitoaii{n ip )) communication time, on 

a  CGM(n,p). □

5.2.4 DOM INANCE GRAPH

In this subsection, let us discuss how the template algorithm 3.4 can be applied 

to the CGM(n,p) to obtain computationally optimal algorithm for the dominance 

graph problem.

Consider an arbitrary instance of size n of the DG problem stored ^ per pro

cessor on a CGM(n,p). Sort the rectangles by the x-coordinate of their bottom left 

comers. Solve the instance of the EV problem consisting of the set of top and bot

tom edges of rectangles, with the viewpoint u  at (0, —oo) in 0 ( ”1°s~) computational 

time and 0(logpTAUtoaii(n,p)) communication time. As in the template algorithm

3.4, with each endpoint associate a 4-tuple (L ,U ,x ,T B ). Sort the set of tuples first 

by L  and then by x as discussed in Subsection 5.1.3. This can be accomplished 

in 0 (nl°K") computational time and 0 (logpTAjiioaii(ra,p)) communication time as 

stated in Lemma 5.5. Consider the tuples (L \ ,U i ,x i ,T B i)  and (L 2 ,U2 ,X2 , T B 2 ) 

tha t are adjacent in the sorted sequence. If Li = L 2 and U\ =  U2  then record an 

edge in D, from the rectangle corresponding to L\ to the one corresponding to U\. 

Each edge is stored as (Li,Ui). After sorting the resulting ordered pairs, the domi

nance graph can be constructed trivially. This leads to the following result.
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T h eo rem  5.11. An arbitrary instance of size n of the DG problem can be solved 

in 0 (- -"sn ) computational time and 0( logpTA i i t oa i i ( n ,p) )  communication time, on 

a CGM(n,p). □
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CHAPTER 6 

TRIANGULATION ON THE ABSTRACT  

MODEL

One of the natural problems tha t arises in a  number of seemingly unrelated areas 

in manufacturing, robotics, CAD, VLSI design, and pattern recognition involves 

partitioning a planar region of interest into simple subregions, typically triangles. 

The motivation for doing so is that the restriction of the original problem to a 

triangular subregion is often more tractable and, furthermore, once the problem is 

solved for each of the triangles in the partition, the overall solution is obtained by a 

conquer process.

Such a situation occurs, for example, in pattern recognition and computa

tional morphology where one desires to infer properties of a region by averaging a 

certain objective function over the triangles in the partition [88]. The same problem 

appears in unstructured multigrid strategies [23] that are being used to speed up the 

convergence of computationally intensive PDE solution schemes. Here, the domain 

is discretized and decomposed into triangular subregions in order to meet stabil

ity requirements. Yet another example is provided by motion planning in robotics 

where, in an unknown terrain, a robot builds a navigational plan by combining a 

number of simpler courses each through a triangular region [49]. As is often the case,
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the terrain contains natural obstacles that must be excluded from the triangulation.

More generally, one is interested in the following problem: given a planar 

region along with a  sequence of forbidden subregions, partition the given region 

into triangular subregions, none of which intersects the forbidden subregions. The 

instance of this generic problem where the region of interest is implicitly specified by 

the convex hull of a set of points with no forbidden subregions is commonly referred 

to as the triangulation problem. Instances of the generic problem featuring forbidden 

subregions of some sort are typically referred to as constrained triangulations. Being 

of practical relevance and of theoretical interest triangulation problems have been 

extensively studied in the literature. For an excellent discussion the reader is referred 

to [88] where many of the above applications are summarized.

This chapter, discusses architecture independent methodologies to solve var

ious triangulation problems. Template algorithms are designed for these problems 

for an abstract computational model, which can be ported to the diverse models of 

computation discussed in Chapter 2.

As described in Chapter 3, an ACM(n,p, M ) consists of p processors having 

0 (M) memory each, so that n< M  * p, where n is the size of the instance of the 

problem at hand. The p  processors are assumed to be identical and are enumerated 

as Pq, Pi, . . . ,  Pp_! and each of the processors Pi (0 <  i < p — 1) is assumed to know 

its identity i. All the processors communicate via an interconnection network. In 

addition to the operations assumed to be available on the ACM(n,p, M )  in Chapter 

3, it is assumed that the following are available:

• All Nearest Larger Values : The all nearest larger values problem (ANLV, for 

short) is defined as follows. Given a sequence of n real numbers < <zi, 02, ..  .,an > , 

stored at most M  per processor in the first processors of an ACM(n ,p ,M ),  for
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each a,- (1 <  i <  n), find the nearest element to its left and the nearest element to its 

right (if any) tha t is larger than a,-. The time to solve the ANLV on an ACM(n, p, M)  

is given by TANLv(n,p,M ).

•  Convex Hull: The convex hull of a set of planar points is the smallest convex set 

containing the given set. Given a set of n points in the plane, stored at most M  per 

processor in the first ^  processors of an ACM(n,p, M ),  the time to compute the 

convex hull is given by Tconvexhxdl^-,?-, M).

In the various algorithms, the ACM(n,p, M ), can be viewed as I independent 

ACM’s, each solving subproblems of sizes Ni, JV2, . . . ,  A/), respectively (where Ni +  

N 2 + . . .  + Ni < =  n). A subproblem i of size Ni is solved on an ACM(Ni,p ,M )  (p 

is at most Ê L).
T l  '

Before presenting the triangulation algorithms, let us discuss the terminology 

used in the various template algorithms for the triangulation problems.

Specifying an n-vertex polygon P  in the plane amounts to enumerating its 

vertices in clockwise order as Vi,V2 , . . . , v n (n >  3). Here utu,+i (1 <  i < n — 1) and 

vnv\ define the edges of P. This representation is also known as the vertex represen

tation of P. Note that the vertex representation of a polygon can be easily converted 

into an edge representation: namely, P  is represented by a sequence ei, e2, • . . ,  en of 

edges, with e,- (1 <  i <  n — 1) having u,- and u:+i as its endpoints, and en having vn 

and Vi as its endpoints.

A polygon P  is termed simple if no two of its non-consecutive edges intersect. 

Recall that well known Jordan Curve Theorem guarantees that a simple polygon 

partitions the plane into two disjoint regions, the interior (bounded) and the exterior 

(unbounded) that are separated by the polygon. A simple polygon is convex if its 

interior is a convex set. In particular, the convex hull of a set of points is a convex
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polygon. A polygon P  is said to be monotone in some direction 8  if any normal to 

8  intersects P  in at most two points as illustrated in Figure 6.1.

Figure 6.1: A monotone polygon in the direction 8

Let Vi and Vj be the first and last vertices of P  in the direction 8 . These 

two vertices partition P  into two polygonal chains monotone with respect to 8 . A 

monotone polygon is termed special if one of these chains reduced to a single edge, 

termed the base edge. Refer to Figure 6.2 for an illustration. As it turns out, special 

monotone polygons have interesting properties that will be exploited in a number 

of contexts.

In the following sections, let us discuss the various triangulation algorithms 

on the ACM(n,p, M ), assumed to be equipped with the powerful tools to solve 

ANLV and convex hull problems, in addition to the tools discussed in Chapter 3.

In Section 6.1, the triangulation of special monotone polygons is discussed, 

which in turn is a powerful tool to solve several triangulation problems. Section

6.2 discusses the problem of triangulating a set of points in the plane using the 

triangulation of monotone polygons as a basic building block. Section 6.3 discusses
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Figure 6.2: A special monotone polygon

the triangulation of a convex region in the presence of a convex forbidden region. 

Sections 6.4 and 6.5 discuss two other cases of constrained triangulations where 

the forbidden regions are specified as a set of rectangles and ordered segments, 

respectively.

6.1 SPECIAL MONOTONE POLYGONS

In this section, let us discuss an algorithm for triangulating a special monotone 

polygon. This algorithm turns out to be very handy tool in providing solutions to 

the triangulation of a set of points in the plane and to the constrained triangulations.
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Consider a  special monotone polygon M. =  Vi, V2 , . . . ,  vn in the plane with its 

vertices specified in clockwise order and with v\vn denoting the base edge. Assume 

that the interior of the polygon lies in the positive half-plane determined by the line 

v\vn. The vertices of the polygon are assumed to be stored at most M  vertices per 

processor among the first j j  processors of an ACM(n,p, M ).  The polygonal chain 

ui, V2 , . . . ,  vn is termed the monotone chain. Further subdivide the monotone chain 

into (sub)chains monotone in the y-direction. Such chains axe termed ascending and 

descending. Now, let us discuss the template algorithm.

T em p la te  A lg o rith m  6.1:

The details of the various steps involved in triangulating the special monotone poly

gon M  are as follows:

S tep  1 . By checking its neighbors, every vertex Vi of M. determines whether it 

belongs to an ascending or descending chain. Vertices achieving local minima in the 

y-direction are treated as part of both ascending and descending chains. Assum

ing that every vertex stores the information about its neighbors, this step can be 

accomplished in O(M) time.

S tep  2 . With each vertex V{ = (x,-, yt) of M. associate an element s,- =  y,- and 

solve the resulting instance of the ANLV problem. This can be accomplished in 

TANLv{n,p,M) time. Let l(vi) = s j , where /(u,) is the solution to ANLV for s,- to 

its left. Similarly, let r(uj) =  s*, where r(ut) is the solution to the right.

For a vertex u,- on an ascending (resp. descending) chain of M  the vertex 

Vj is said to be a match if sj is a solution obtained in Step 2 and vj belongs to a 

descending (resp. ascending) chain.

S tep  3. Every vertex u,- that has identified (at least) a match Vj adds the diagonal 

ViVj to the triangulation and records the resulting triangle. This takes 0 (M) time.
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A segment in the triangulation

Vertex vt- 
on an as
cending 
chain i

Vertex Vj, a 
match to v,-

Figure 6.3: Illustrating Step 3 of the triangulation of a  special monotone polygon 

S tep  4. The following vertices mark themselves:

• V\ and vn;

• vertices tha t have identified no match;

• vertices achieving local minima in the y-direction tha t have found only one 

match.

It is important to note tha t in case the base edge v\vn is horizontal, only v\ and vn 

are marked. Step 4 is accomplished in 0 (M) time.

S tep  5. Let Vi = u,-,, u,-2, . . . ,  u,r =  v n be the sequence of marked vertices enumerated 

by increasing x-coordinate and let M '  be the monotone polygon determined by these 

marked vertices. Rotate M.' so that vivn becomes parallel to the x-axis and repeat 

Steps 2 to 4. This step takes another 0 ( M ) + 0 ( T A N L , v ( n , p ,  M ) )  time.

Various steps of the algorithm are illustrated in Figures 6.3, 6.4 and 6.5. The 

diagonals to be added are determined by finding a  match for each of the vertices
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Vertex on ascending chain

Vertex on descending chain

Vertex on both ascending 
and descending chains

V ;= V / ,

Segments added by vertices on ascending chains 
Segments added by vertices on descending chains

Figure 6.4: Illustrating the special monotone polygon after Step 4

as shown in Figure 6.3. Figure 6.4 shows M. after the diagonals are added in Step

3. The vertices marked in Step 4 are utl, . . . ,  u,-4. Notice that at the end of Step

4, the only part of the original polygon that is not triangulated is bounded  by the 

marked vertices. Figure 6.5 shows the entire polygon triangulated. It is easy to see 

that after having rotated the edge ViVn, the solution /(u,-2) =  sn, confirming that the 

diagonal v^vn (i.e. V3 Vn) will be added to the triangulation. The correctness and 

the tim e complexity of the algorithm are established by the following result. 

T h e o re m  6.1. The problem of triangulating an n-vertex special monotone polygon, 

stored M  vertices per processor among the first processors of a ACM(n,p, M), 

can be solved in TMonotone{n,p, M ) = 0 ( M ) + 0 ( T AN L v ( n , p ,  M ) )  time.

P ro o f. In order to show that the triangulation is done correctly, it is enough to prove 

that the diagonals added in Step 3 do not intersect and tha t when the algorithm 

terminates there are no polygons with more than three sides left.
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Vi4

vn

Figure 6.5: The triangulated special monotone polygon

Let belong to an ascending chain and let Vk be a match found in Step 2. 

By definition, Vk belongs to a descending chain and Vk has a lower y-coordinate than 

V{. The diagonal is added in Step 3. If some other diagonal vpvg, added in Step 

3, intersects u,Ufc then, exactly one of vp and vq lies on the monotone chain from Vi 

to Vk. Assume, without loss of generality, that vp does. But now, either r(vt) =  sp 

in case the y-coordinate of vp is lower than that of u,-, or l(vp) = s,/ and r(vp) = 

Sfci, otherwise, with u,/ and lying between u,- and u*. Both scenarios lead to a 

contradiction.

Let Vi =  u.-j, u,-2, . . . ,  ViT = vn be the sequence of marked vertices obtained 

in Step 4, enumerated by increasing x-coordinate. Let A  be the portion of the 

monotone chain between two adjacent marked vertices and u,J+1.

It can be claimed that the interior of A  is triangulated. The proof involves 

a simple counting argument. Let m be the total number of vertices between V{} and 

v ,J+1. Let p be the number of local maxima in the y-direction in A. It follows that

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



92

the number of local minima is p — 1. Every vertex internal to A  that is not a local 

maximum or a local minimum adds exactly one diagonal in Step 3. Further, vertices 

that are local maxima add no edges, while vertices that are local minima add two 

edges. Thus, the total number of edges added to A  in Step 3 i s m  — 2 — 2p +  l +  

2(p — 1) =  m — 3. As shown before, these internal diagonals are non-intersecting, 

and thus A  is triangulated, as claimed.

Finally, let M.' be the polygon determined by the marked vertices. To com

plete the proof, it is necessary to  show that when the algorithm terminates M.' is 

triangulated. It is clear tha t M.' is monotone in the x-direction and that M.' is 

special. Observe that, M.' has much stronger properties.

O bservation  6 .2 . A i ’ is monotone in both x and y direction.

(First, assume that Vi has a  lower y-coordinate than vn. Now, if M.' fails to be 

monotone in the y-direction, then there must exist two vertices Vip= (xJp, yJp) and 

Vig= (x{q,yiv) in A i '  such that x,p < x,-? and y,p >  ytiJ. However, this leads to a 

contradiction: both horizontal rays to the right and to the left originating at u!p 

must find a solution in Step 2 and so u,p cannot possibly be marked. The case where 

vn has a lower y-coordinate than v\ is similar.)

O bservation  6.3. A i '  is monotone with respect to the direction of the edge v\vn. 

(Follows immediately from the definition of A i '  and Observation 6.2.)

Now, consider what happens when A i'  is rotated as to make the edge vivn 

parallel to the x-axis. By Observations 6.2 and 6.3, A i'  is a special polygon mono

tone in the new x-direction. Therefore, after applying Steps 2-4 above, the only 

marked vertices of M !  are v\ and vn and so, by the above argument, the triangula

tion of the original polygon M. is complete. This establishes the correctness of the 

algorithm. □
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6.2 SET OF POINTS

The purpose of this section is to present a template algorithm to triangulate a set 

of points in the plane. The algorithm to triangulate special monotone polygons, 

discussed in Section 6.1, plays a very significant role in providing the solution to 

this problem.

Figure 6.6: Edges of the convex hull of S  included in the triangulation

Consider a set S  of n  points in the plane stored in the first ^  processors of 

an ACM(n,p, M ), at most M  per processor.

T em pla te  A lg o rith m  6 .2 :

S tep  1 . Compute the convex hull of S', in Tc0nvexhuii(n,P, M )  time. Note that all 

the edges of the convex hull will be part of the desired triangulation (see Figure 6.6). 

S tep  2 . Next, in T s 0r t ( n , p , M )  time, sort the points in S  in increasing order of their 

x-coordinates and add a diagonal between adjacent points in the sorted sequence.
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Figure 6.7: Diagonals added in Step 2 of the algorithm

S tep  3. Referring to Figure 6.7, observe that the diagonals added in Step 2 divide 

the entire region within the hull into special monotone polygons having the convex 

hull edges as base edges. Consider the lower hull with I edges, and let JVj, A^, . . . ,N i  

be the number of vertices in the monotone polygons with each of the I lower hull 

edges as the base edges. Consider all the monotone polygons having at most M  

vertices, such that all the vertices are stored in one processor. All such monotone 

polygons can be triangulated in 0  (M) time, in each of the processors sequentially. 

The remaining monotone polygons are triangulated independently, in parallel, using 

the algorithm for triangulating a special monotone polygon described in Section 6.1, 

where a polygon i with N{ vertices is solved on an ACM(N i,p ',M ) (p is at most 

2~L)- The same can be repeated for the special monotone polygons with the base 

edge on the upper hull. Thus, the convex hull of S  is triangulated as illustrated
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in Figure 6.8. The above steps can be performed in at most 0(TMmotone(n ,p ,M ))  

time.

S

Figure 6.8: S  is triangulated after Step 3 

Consequently, the following result is obtained.

T h e o re m  6.4. An arbitrary set S  of n points in the plane, stored M  points per 

processor in the first processors of an ACM (n,p,M ), can be triangulated in 

O i T c o n v e x h u l l i ^ p ,  M))+0(TsoTt(n,P, M ) ) + 0 ( T m  o n o to n e (n,p, M ))+ 0 (M )  time. □

6.3 CONVEX REGIONS W ITH ONE CONVEX  

HOLE

In this section, let us discuss the template algorithm for the triangulation of a 

convex region with a convex hole. Let C =  ci ,c2, . . . , c n be a convex region of the 

plane and H  = hi, h2, • • •»hm be a convex hole within C. In many applications in
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computer graphics [76], computer-aided manufacturing and CAD [37], it is necessary 

to triangulate the region C \ H .  The task at hand can be perceived as a constrained 

triangulation of C. For an illustration refer to Figure 6.9.

Figure 6.9: Triangulating a convex region with a convex hole

Note that, the algorithm for triangulating a convex region with a convex hole will be 

a key ingredient in the constrained triangulation algorithms discussed in the Section

6.4.

Let C  be stored 2M  vertices per processor among the first ^7  processors 

of the ACM(n,p, M )  and H  be stored 2M  vertices per processor in the next —j  

processors of the ACM. The triangulation algorithm proceeds as follows.

T em plate  A lg o rith m  6.3:

S tep  1 . Determine an arbitrary point w interior to H  and in TBroadcast(l,P, M)  

time broadcast its value to the first processors of the ACM(n ,p ,M ).  Convert
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the vertices of C  and H  to polar coordinates having u  as pole and the positive 

x-direction as polar axis. This can be accomplished in 0 (M) time.

Since u? is interior to C  and if , convexity guarantees that the vertices of both 

C and H  occur in sorted order about

S tep 2 . The two sorted sequences corresponding to vertices of C and if , are merged 

in 0{TMeTge{n,p, M )) time. Let B  = bi, 62, • • •, h+m be the resulting sequence and 

is sorted by polar angle.

Figure 6.10: Illustrating Case 1

In the process of triangulating C \  H  let us distinguish the following two cases. 

Case 1 . Consider the subsequences of B  having the following form. For some i (1 <  

i < m) hi = bj and hi+1 =  bk with j  +1  <  k. Each of these subsequences corresponds 

to a polygon which can be triangulated as described below. Referring to Figure 6.10, 

note that in this case, the line segment bj+ibk-i lies in the wedge determined by
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hi, h{+i and u.  Furthermore, the polygon bj+2, . . . ,  is convex. It is clear 

that this polygon can be triangulated in by simply adding all the possible diagonals 

originating at bj+i.

C ase 2. Again, consider the subsequences of B  having the following form: for some 

i (1 <  * <  n) a  = bj and c,-+i =  6* with j  + 1 < k. Let us show the triangulation of 

the polygon with vertices c,- =  bj, bk, bk-i, bk-2 , - • -, 6j+i- Let us make the following 

simple observation that follows immediately by the convexity of H.

O bserva tion  6.5. Let t (j  +  1 <  t < k  — 1) be such that c,- is visible from vertex 

bt. Then c,- is visible for every vertex hs with j  -f 1 <  s <  t- □

O bserva tion  6 .6 . Every vertex bt (j  +  1 <  t < k — 1) on H  is visible from either 

d  or c,'+i . □

Referring to Figure 6.11, let bT be the vertex among bj+i, bj+2, . . . ,  bk-i with the 

smallest Euclidian distance to the line segment c,c,+i. Clearly, br is visible from 

both c,- and c,+i . Now the conclusion follows from Observation 6.5.

Observations 6.5 and 6.6 justify the following approach to triangulating the 

polygon Ci =  bj, bk, bk-i, bk-2 , • • •, fy+i* First, determine the vertex bT by de

termining the vertex achieving the minimum euclidean distance to the line segment 

c,-Cf+i. Add to the triangulation all the edges Cihs with j  +  1 <  s < r and all the 

edges Ci+\hu with r < u  < k  — 1.

S tep  3. In this step, subsequences in B  corresponding to Case 1 and Case 2 de

scribed above, are identified and each of the corresponding polygons is triangulated. 

The details are as follows: assume that the sequence bi, b?,, . . . ,  bn+m is stored 

2M  per processor in the first processors of an ACM(n ,p ,M ).  Let us solve the 

polygons determined by subsequences belonging to Case 1. First, determine all pairs 

hi, hi+1 that bound the subsequences of the form in Case 1. Note that there are at
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(O

Figure 6.11: Illustrating Case 2

most m  such pairs and all the vertices of C that lie between each pair hi, h,+1 are 

said to belong to Hi. Every Hi having less than M  vertices, with all the vertices 

stored locally in a processor Pj of the ACM, can be solved sequentially in 0 (M)  time 

on every such Pj. Every Hi that is not stored in any one processor, can be processed 

in parallel on independent ACMs as follows. Broadcast bj+ 1  and add diagonals from 

every vertex in Hi to 6J+1, as described in Case 1. Next, all pairs Cj, Cj+1 as in Case 

2 above are detected and all vertices of H  lying between them are said to belong to 

a subsequence Cj. Every Cj can be processed in parallel on an independent ACM 

as follows. Determine the vertex in Cj, belonging to H, achieving the m i n i m u m  

euclidean distance from CjCj+i, and add the diagonals as described in Case 2 . The 

running time of this step is bounded by 0 ( M ) + 0 ( T B r o a d c a s t ( l , P ,  M)) time.
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Theorem 6.7. Let C  be an n-vertex convex region, stored at most 2M  vertices 

per processor among the first processors of an ACM(n,p, M ), and let H  be an 

m-vertex convex hole ( m  6 0(n )) within C,  also stored 2M  vertices per processor 

in the next processors of the ACM(n,p, M) .  The planar region C \ H  can be 

triangulated in T q p? ~ C (fyf'j -|-0 (T'sroadcast (1 ? P, Af)) time. Q

6.4 CONVEX REGIONS W ITH RECTANGU

LAR HOLES

This section discusses a particular case of constrained triangulation problems involv

ing rectangular forbidden regions within a convex region to be triangulated. The 

template algorithm for this problem for the ACM(n,p, M ) is developed and uses as 

building blocks the algorithms for the triangulation of special monotone polygons 

and the triangulation of convex region with convex holes.

Let C  =  Ci, C2, . . . ,  Cn be a convex region containing n  rectangular holes spec

ified by a set 72. =  {f?i, R 2 , . . . ,  R n }  of iso-oriented, non-overlapping rectangles. The 

task at hand is to triangulate C \ 1 Z .  The required triangulation can be obtained in 

two phases after determining the convex hull of the set 72 of rectangles. Let C ’ be 

the convex hull of 72. In the first phase of the algorithm C \ C '  is triangulated and 

in the second phase C '  is triangulated. The details of the tem plate algorithm are as 

follows:

Template Algorithm 6.4:

Step 1 . The task of computing the convex hull of 72 is a particular instance of 

the convex hull problem and can be solved in T c 0n v e x h u i i ( n , P , M )  time. Now, the 

triangulation of the region C  \  C '  can be done in T Con v e x h o i e ( n ,p ,  M )  time.
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Thus, the focus is now on the second phase where the problem reduces to triangulat

ing C'. Let tr(R{), tl(Ri), br(Ri), and bl(Ri) stand for top-right, top-left, bottom- 

right, and bottom-left comers of Ri, respectively. Refer to the left vertical edge of f?, 

as le ft(R i)  and the right vertical edge as right(Ri). For convenience, each rectangle 

Ri is given the identity i. To the given set 1Z of rectangles, add two rectangles Rq 

and Rn+1 with 6/(Ro) =  (^mtn Lj/mm 1 =  ("̂ min ^iVinax *f" 1 4" c)

and bl^Rnj.i) — x max 4- £,ymin 1 =  (s-mar 4~ 1 iVmax 4" 1 "I" c), where

and ymaxi Vmin are the maximum and minimum values among the coor

dinates of the endpoints of the rectangles in x  and y directions and e >  0 is a small 

constant (see Figure 6.12).

Cl

Rq and  R^+i a re  th e  d u m m y  rec tang les appended  to  R.

Figure 6.12: Illustrating the convex region C with rectangular holes

S tep  2 . Solve the rectangle visibility for the set R q , R i , . . . ,  Rn+i ■ This can be done 

in T r v ( t i , p , M ) time (see Figure 6.13).

S tep  3. Associate with each corner point of rectangle Ri an information packet
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Figure 6.13: Determining the rectangle visibility for R

containing its coordinates and two numbers u and v. For endpoints of le ft(R i) , u is 

set to its identity i and v is set to  the identity of the rectangle visible in the negative 

x-direction. Similarly, for endpoints of right(Ri), v is set to the identity of Ri and 

u is set to the identity of the rectangle visible in the positive x-direction. Sort the 

information packets, first on the u value and then on the y-coordinate. Cleaxly, this 

step requires 0 ( r s 0rt(” ,P, M ))  time.

Notice that after the sort, for every le ft(R i)  the identities of R j ,  with r(e) =  

le ft(R i)  where e is an endpoint of Rj, will occur in consecutive positions. A diagonal 

connecting two corner points belonging to Rp and R q is added to the triangulation 

if p and q occur in adjacent positions corresponding to some left(Rk)  (see Figure 

6.14). Note that this determination takes 0(1) time.

For any le ft(R i), the sequence of diagonals, including the rectangle edges 

between them, is called the closest contour of le ft(R i)  and denoted by CL(Ri).

The above process is repeated for right(Ri), ( 0 <  z < n +  1) and for any
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•  *

abcdfg -  the closest contour of right ( Rq) 
bijc, dkef- special trapezoids

Figure 6.14: Illustrating the computation of closest contours

right(Ri), the closest contour C R ( R i )  is computed similarly. Consider the parti

tioning of C '  after the addition of the diagonals. The various pieces of partitions 

belong to one of the following types:

•  the rectangles (Ri s);

•  the special monotone polygons formed by the left and right edges of various 

rectangles with their closest contours;

• the remaining regions referred to as special trapezoids.

S tep  4. All the special trapezoids can be identified as follows. Consider two rectan

gles Rp and R q such that r(br(Rp)) =  r(fr(i?9)) and l(bl(Rp)) = l(tl(Rq)). The 

region joining br(Rp) with tr (R q) and bl(Rp) with t l(R q) is a special trapezoid 

and can be triangulated by adding a  diagonal (see Figure 6.15). Also, the spe

cial monotone polygons can be identified and triangulated in independent ACM’s in 

TMon oto ne( n ,P ,M)  time. Thus, C '  is triangulated.
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Figure 6.15: Illustrating the partitioning of C' after Step 3 

Thus the following result is obtained.

T h eo rem  6 .8 . Triangulation of the convex hull of a given set of n  iso-oriented rect

angular holes can be done in T r v ( « ,P ,  M ) + T M onotone( n ,  p , M ) + T Sort(n -,p ,  M )+ 0 (M )  

time on an ACM(rc, p , M).

P roof. The running time of the algorithm is obvious from the time taken by each 

of the steps. To prove the correctness it suffices to show that every point interior to 

the convex region determined by R  is within a triangle.

Consider a point q within the convex hull. Let Ri and Rr be the two rect

angles hit by q~ and q+, respectively. Note that, Ri and R r always exist because of 

the rectangles Rq and jRn+i appended by us.

Observe that, if C R(R i) is <j> then q € CL(Rr). Similarly, if CL(Rr) is <j> 

then q 6  CR(Ri). If C R (R i) =  (j) then bl(R,.) < br(Ri) < tr(Ri) <  tl(Rr). To see 

that this is true, assume 6/(i2r) >  br(Ri). Since, CR(Ri) is empty, br(Rr) cannot 

be blocked by Ri. This implies that there exists some rectangle Rx blocking the 

horizontal ray towards negative x-direction from br(Rr). Obviously, the top edge of
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Rx lies below q and tl(Rx) cannot be blocked by left(Ri). By repeating the above 

argument there should exist a rectangle below q that has le ft(R i)  as its solution, 

contradicting the assumption that CR(Ri)  is empty. Other cases can be argued 

similarly. Thus, the horizontal strip (see Figure 6.17) determined by the horizontal 

rays from tr(Ri) and br(Ri) blocked by right{Rr) contains no other rectangle and q 

is in CL(Rr). Similarly if CL(Rr) is <£, q lies in CR{Ri).

Figure 6.16: Illustrating the triangulation after Step 4

The only other case left is when both CR(Ri) and CL(Rr) exist. In this 

case, consider the rectangles R a and R b above and below q respectively, having the 

closest y-coordinates. At least one of R a and Rb is guaranteed to exist because of 

the assumption that both the contours CL(Rr) and CR(Ri) exist. Note that, the 

bottom edge of R a should be above q and the top edge of Rb below q. As shown in 

the Figure 6.17, let e be the diagonal of the triangulation joining bl(Ra) with tl(Rb) 

and e' be the one joining br(Ra) with tr (R b). Since, e G C R (R {) and e' G C L (R r), q 

belongs to either of the contours or the special trapezoid bounded by R a, R b with e 

and e'. Since each of these regions is triangulated, it is guaranteed that every point
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Figure 6.17: Illustrating the proof of Theorem 6.8

within the convex region belongs to some resulting triangle. □

Once C \ C '  is triangulated, the problem at hand is solved as illustrated in Figure 

6.16. Thus, the following result is obtained.

T h eo rem  6.9. Triangulation of a convex region, of size n, with n  iso-oriented 

rectangular holes can be done in 0 ( T R V { n , p ,  M ) ) +  0 ( T Monotone{ n , p ,  M ) ) + 0 { M ) +  

0(Tco nv exh ui i ( n ,p ,  M ) ) + 0 ( T c o n v e x h o i e ( n , P ,  M ) )  time on an ACM(n,p, M ) .  □
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6.5 CONVEX REGION W ITH ORDERED SEG

MENTS

In this section let us discuss another variation of the constrained triangulation prob

lem where a convex region containing an ordered set of line segments is to be trian

gulated, including the various segments in the triangulation.

The problem is stated as follows: given a set of n well ordered segments 

S  =  { s i,S2 1 . . . , s„} contained in a convex region C  with n vertices, it is required to 

determine the triangulation of C including the given segments.

Assume that the set S  is stored M  segments per processor in the first ^  

processors of an ACM(n,p, M ), where a  processor P,- (0 <  i <  — 1) stores the

seqments s , - .m + i»  - • • ? -S (» + i)a /-  Add two segments S o  and s n + 1  to S  as illustrated in 

Figure 6.18. Also, C  is stored M  vertices per processor in the first processors of 

an ACM (n,p,M ).

s q  ^

Figure 6.18: Illustrating the solutions to EV in Step 2 of triangulation of segments

The approach to this problem is similar to the triangulation in presence of 

rectangular forbidden regions.
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Figure 6.19: Illustrating the convex hull H  after Step 4 

T em p la te  A lg o rith m  6.5:

S te p  1. Determine the convex hull i f  of S' in 0 ( T convexhun { n 1p 1 M))  time.

S tep  2 . Triangulate C \  i f  in 0 ( T c o n v e x h o i e ( n , P i  M ) )  time by applying template 

algorithm 6.4.

S tep  3. In order to triangulate H ,  solve EV problem for S  in Tev{ti,p, M )  time. 

The solution to the EV problem for the segments in Figure 6.17 is illustrated in Fig

ure 6.18. The definition of closest left contour C L(si), and the closest right contour 

CR(si) for each of the segments is identical to tha t for the rectangles in Section 6.4.

For every segment s,- compute CL(s{), and CR(s,). Observe that in this case there 

will be no special trapezoids. The convex hull of the segments is divided into several 

special monotone polygons.

S te p  4. Triangulate all the special monotone polygons in parallel, as described in 

Section 6.4. This is accomplished in 0 (T M on oto n e(n ,p ,  M ) )  time.

T h eo rem  6 .10 . The problem of triangulating a convex region, of size n ,  containing 

a set of n  ordered segments S  =  si, S2, . . . ,  s n stored M  per processor among the first 

j j  processors of an ACM(n,p, M )  is solved in O { T Convexhuii{n,p,  M ))+ 0 (IW (n ,p , M ) ) +  

0 ( T M o n o t o n e ( n , P , M ) )  time. □
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CHAPTER 7 

TRIANGULATION ON ENHANCED MESHES

In this chapter, let us discuss how the template algorithms for the triangulation 

problems discussed for the abstract computational model, ACM(n,p, M), in Chapter 

6, are ported to enhanced meshes. Not surprisingly, porting the template algorithms 

to the RMESH results in 0(1) time solutions to the various triangulation problems, 

thus proving for another time that the power of reconfigurability of the bus system 

can be exploited to design very fast algorithms.

The organization of the chapter is as follows. Section 7.1 discusses the tools 

needed to port the template algorithms from Chapter 6 to the MMB. Next, Sec

tion 7.2 discusses the triangulation algorithms on the MMB. Section 7.3 discusses 

the various tools for the RMESH and finally Section 7.4 presents the 0(1) time 

triangulation algorithms for the RMESH.

7.1 TOOLS FOR THE MMB

In this section, let us discuss the implementation of the various tools that are needed 

to port the template algorithms to the MMB.

•  AN LV :  Given an arbitrary sequence of real numbers <  c^, a2, . . . ,  a„ > , stored 

one per processor in the first row of an mesh with multiple broadcasting of size
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n x n ,  associate with every a,- a  vertical line segment s,- with endpoints (z, —oo) and 

(z, a,). Assume that the viewpoint ta lies at (—oo,0). It is easy to confirm that 

the resulting set S  of vertical line segments is well ordered, and the EV algorithm 

discussed in Section 4 can be applied to solve the visibility relations between the 

segments. Clearly, for every endpoint (z, a,-) the solution corresponds to the nearest 

line segment that is blocking a horizontal ray emanating from (z, a,) to the left and 

to the right. This translates immediately into a solution to the ANLV, as desired. 

Consequently, the following result is obtained.

L em m a 7.1. An arbitrary instance of size n of the all nearest larger values problem 

stored in the first row of the MMB of size n x n can be solved in O(logzz) time. □ 

•  Convex hull: Quite recently, Olariu et al. [72] have proposed a time-optimal 

algorithm to compute the convex hull of a set of points in the plane, on the MMB. 

More precisely, they proved the following result.

P ro p o sitio n  7.2. The convex hull of an n-element set of points in the plane, stored 

one item per processor in one row or one column of the MMB of size n x  n can be 

computed in O(logn) time. Furthermore, this is time-optimal. □

7.2 TRIANGULATION ON THE MMB

In this section, let us discuss the various triangulations in the context of the MMB, 

which are instantiations of the template algorithms discussed in Chapter 6.
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7.2.1 TRIANGULATING A  SPECIAL M ONOTONE POLY
GON

In this subsection, let us discuss how the template algorithm 6.1 to triangulate a 

special monotone polygon is ported to the MMB.

Let A i  — vi,V2 , . . . , v n be an n-vertex special monotone polygon with its 

vertices specified in clockwise order and with ViVn denoting the base edge. The 

vertices of the polygon are assumed to be stored in the first row of a mesh with mul

tiple broadcasting of size n x  n, one vertex per processor. The details of the various 

steps involved in triangulating the special monotone polygon A i  are identical to the 

template algorithm and can be ported to an MMB as follows. Every vertex v, of 

A i  determines whether it belongs to an ascending or descending chain. This can be 

performed in 0(1) time. As in the template algorithm, each vertex v, =  (x,-, y,) of A i  

is associated with an element st- =  y,- and solve the resulting instance of the ANLV 

problem. Every vertex u; that has identified (at least) a match vj adds the diagonal 

V{Vj to the triangulation. This can be accomplished in O(logn) time by virtue of 

Lemma 7.1. Mark the vertices as specified in Step 4 of the template algorithm 6.1. 

Let Vi = u,-j, u,-2, . . . ,  Vir = vn be the sequence of marked vertices enumerated by 

increasing x-coordinate and let A i '  be the monotone polygon determined by these 

marked vertices. Rotate A i'  so that v\vn becomes parallel to the x-axis and repeat 

the above process. This can again be accomplished in O(logn) time. Thus the 

following result is obtained.

T h eo rem  7.3. The problem of triangulating an n-vertex special monotone polygon 

can be solved in O(log n) time on the MMB of size n x n. □
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7.2.2 TRIANGULATING A  SET OF POINTS

This subsection discusses the solution to the problem of triangulating a given set 

S  of n points in the plane obtained by porting the template algorithm 6.2 to the 

MMB. Furthermore, this algorithm is found to be time-optimal on the MMB.

Let us begin by showing tha t for both the CREW-PRAM and the mesh with 

multiple broadcasting, the task of triangulating a set of n  points in the plane has a 

time lower bound of fl(logn).

The stated time lower bound can be derived by reducing the OR problem 

to triangulation. Let 61, 62, • - - , 6n be an arbitrary input to OR. Construct a set 

{ P o i P i i -  ■ ■■>P n + i } of points in the plane by setting for every i (1 <  i <  n), p:- =  (z, 0) 

if 6,- =  0, and by setting pi =  (z, 1) if 6,- =  1. To complete the construction, add the 

points p0 =  (0,1) and pn+i =  (n +  1, 1). Now, the solution to the OR problem is 

0 if, and only if, the segment popn+i belongs to the triangulation. The conclusion 

follows by Proposition 4.4.

Lemma 7.4. The problem of triangulating a set of n  points in the plane has a time 

lower bound of fl(logn) on the CREW-PRAM, no m atter how many processors and 

memory cells are used. □

Now Lemma 7.4 and Proposition 4.5 combined, imply the following result. 

Corollary 7.5. The problem of triangulating a  set of n  points in the plane has a 

time lower bound of fi(logn) on a  mesh with multiple broadcasting of size n  x n. □  

Now, let us confirm that the application of template algorithm 6.2 results in a time- 

optimal algorithm to the triangulation problem on the MMB. Begin by computing 

the convex hull of 5, and by Proposition 7.2 this task can be performed in O(log n)  

time. Next, sort all the points in S  by their x  coordinates. By virtue of Proposition 

4.6, this task can be performed in O(logn) time. Further, join every point with
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its immediate neighbor in the sequence sorted by x. All the convex hull edges and 

the edges drawn between two adjacent points are included in the triangulation. As 

noted in the template algorithm, the chain determined by joining adjacent points in 

the sorted sequence divides the entire region within the hull into special monotone 

polygons. Each of these polygons with a base edge on the lower hull can be trian

gulated independently in parallel using the algorithm described in Subsection 7.2.1. 

The same can be repeated for the polygons with a base edge belonging to the upper 

hull. Now, Theorem 7.3 guarantees that each of the above steps can be performed 

in O(logn) time and thus the triangulation can be computed in O(logn) time. The 

time-optimality of the algorithm is guaranteed by Corollary 7.5. Thus, the following 

result is obtained.

Theorem 7.6. The problem of triangulating a set S  of n points in the plane can 

be done in O(log n) time on a mesh with multiple broadcasting. Furthermore, this 

is time-optimal. □

7.2.3 TRIANGULATING A CONVEX HULL W ITH A CON

VEX HOLE

In this subsection, let us discuss how the triangulation of convex region with a con

vex hole is implemented on the MMB, which is in fact an adaptation of the template 

algorithm 6.3 to the MMB.

Let C be stored at most two vertices per processor in the first |  processors, 

in the first row of the MMB and H  be stored at most two vertices per processor 

in the next y  processors in the first row of the MMB of size n x  n. Begin by 

chosing an arbitrary point interior to H  and convert the vertices of C  and H  to 

polar coordinates having w as pole and the positive x-direction as polar axis. Since 

uj is interior to C and H , convexity guarantees that the vertices of both C and
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H  occur in sorted order about u j . Next, these two sorted sequence are merged in 

0(1) time as described in Proposition 4.1, and let 61, 62, . . . ,  6n+m be the resulting 

sequence sorted by polar angle.

Identify the Case 1 sequences and Case 2 sequences as in the template al

gorithm. All the polygons corresponding to the Case 1 sequences can be solved in 

parallel by replicating the first row in all the rows of the mesh and solving a subse

quence per row. Case 2 items can be solved similarly. This can be accomplished in 

0(1) time. Thus the following result is obtained.

Theorem 7.7. Let C  be an n-vertex convex region and let H  be an m-vertex con

vex hole (m G 0 (n )) within C. Assuming that C and H  are stored in one row or 

column of a mesh with multiple broadcasting of size n x n ,  the planar region C \ H  

can be triangulated in 0 (1) time. □

7.2.4 TRIANGULATING A CONVEX REGION W ITH  

RECTANGULAR HOLES

This subsection discusses the implentation of the template algorithm 6.4 to the 

MMB, to solve the problem of triangulating a convex region with rectangular for

bidden regions.

Let C  =  ci,C2, . . .  ,c„ be a convex region containing n  rectangular holes 

specified by a  set 1Z= {R\,R.2 , . . . ,  Rn} of rectangles with their sides parallel to the 

axes. The task at hand is to triangulate C \ R .  Let C' be the convex hull of the 

set R  of rectangles. Triangulate C \ C ' , using the algorithm discussed in Subsection

7.2.3. Now to triangulate C  , as in the template algorithm, add two rectangles R q 

and Rn+h to the given set R  of rectangles. Solve the rectangle visibility for the 

set Ro, R \ i . . . ,  Rn+i- This can be done in O(logn) time as stated in Theorem 4.17. 

Associate with each corner point of rectangle Ri an information packet containing its
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coordinates and two numbers u and v, as specified in the template algorithm. Sort 

the information packets, first on the u value and then on the y-coordinate. Clearly, 

this step requires O(logn) time. Determine the closest contours, and identify the 

special trapezoids and special monotone polygons. The special trapezoids can be 

trivially triangulated in 0(1) time. Also, the special monotone polygons can be 

identified and triangulated in independent submeshes of the original mesh in O(log n) 

time as stated in Theorem 7.3.

T h eo rem  7.8. Triangulation of the convex region, of size n, containing a given 

set of n iso-oriented rectangular holes can be done in O(log n ) time on a mesh with 

multiple broadcasting of size n x n. □

7.2.5 TRIANGULATING A CONVEX REGION W ITH  

ORDERED SEGMENTS

In this subsection let us discuss triangulation problem where a  convex region con

taining an ordered set of line segments is to be triangulated, including the various 

segments in the triangulation.

Consider a  set of n well ordered segments S  =  {si, s2, • • - 5 sn} in the plane 

enclosed in a convex region C. C is stored one vertex per processor in the first 

row of the MMB and S  is stored one segment per processor in the first row of the 

MMB. As described in the template algorithm, determine the convex hull H  of the 

endpoints of S. Triangulate C \  H  in 0(1) time, as described in Subsection 7.2.3. 

H  can be triangulated as described in template algorithm 6.5 after applying the EV 

algorithm to S  and determining the closest contours. By virtue of Theorem 4.10 and 

Theorem 7.3, H  can be triangulated in O(logrc) time. Thus, the following result is 

obtained.
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T h eo rem  7.9. The problem of triangulating a convex region, of size n, containing 

a set of n ordered segments 5  =  $i,S2, . . . , s „  stored one per processor in the first

row of the MMB, can be done in O(logn) time. □

7.3 TOOLS FOR THE RMESH

The purpose of this section is to discuss a  number of data movement techniques for 

the RMESH that will be instrumental in the instantiation of the template algorithms 

to the RMESH.

In addition to the various tools discussed in Chapter 4, the following tools 

are needed for the various triangulation algorithms.

• A N L V :  Given the solution to the SV problem, ANLV problem can be solved in

0(1) time. Thus the following result is stated.

L em m a 7.10. The ANLV problem of an n element set can be determined in 0(1) 

time on a RMESH of size n x n. □

• Convex hull: Quite recently, Olariu et al. [71], Wang and Chen [90], and Nigam 

and Sahni [69] have proposed a 0(1) tim e algorithm to compute the convex hull of 

a set of points in the plane. More precisely, they all proved the following result. 

P ro p o sitio n  7.11. The convex hull of an n-element set of points in the plane, 

stored one item per processor in one row or one column of a RMESH of size n x n 

can be computed in 0 (1) time. □

7.4 TRIANGULATION ON THE RMESH

In this section, the template algorithms for the various triangulation problems are 

ported to the RMESH, giving 0(1) time solutions.
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7.4.1 TRIANGULATING A  SPECIAL M ONOTONE POLY

GON

In this subsection, template algorithm 6.1 to triangulate special monotone poly

gons is implemented on the RMESH. Consider a  special monotone polygon, M. =  

Vi, v2, . . . ,  vn, specified in clockwise order and with v\vn denoting the base edge. The 

vertices of the polygon are assumed to be stored in the first row of a  RMESH M. 

of size n x n, one vertex per processor. The details of the various steps involved 

in triangulating the special monotone polygon M. are spelled out as follows: By 

checking its neighbors, every vertex u,- of M. determines whether it belongs to an 

ascending or descending chain, in 0(1) time. Each vertex u:- =  (z,-,y,) of M. is 

associated with a element yt- and solve the resulting instance of ANLV problem. By 

virtue of Lemma 7.10, this can be accomplished in 0(1) time. As in the template 

algorithm, every vertex ut- that has identified (at least) a match Vj adds the diago

nal V{Vj to the triangulation and records the resulting triangle in 0(1) time. Mark 

the vertices as in Step 4 of the template algorithm. Let v\ =  u«:, u,-2, . . . ,  u,r =  vn 

be the sequence of marked vertices enumerated by increasing z-coordinate and let 

M '  be the monotone polygon determined by these marked vertices. Rotate M.' so 

that vivn becomes parallel to the z-axis and triangulate it by repeating the above 

process. The following result is thus obtained.

T h eo rem  7.12. The problem of triangulating an n-vertex special monotone poly

gon stored in the first row of a RMESH size n x n can be solved in 0(1) time. □

7.4.2 TRIANGULATING A  SET OF POINTS

The purpose of this subsection is to demonstrate a 0(1) time triangulation algo

rithm for points in the plane. Template algorithm 6.2 is instantiated in the context 

of the RMESH to achieve this.
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Specifically, consider a set S  of n points in the plane stored in the first row 

of a RMESH of size n x n, one point per processor. Computing the convex hull 

of the 5. This computation takes 0(1) time as stated in Proposition 7.11. Note 

that all the edges of the convex hull will be part of the desired triangulation. Next, 

sort the points in S  in increasing order of their x-coordinates and add a diagonal 

between adjacent points in the sorted sequence, which divide the region within the 

convex hull into several monotone polygons as stated in the template algorithm. 

This is accomplished in 0(1) time, as stated in Proposition 4.22. Each of these 

polygons with the base edge on the lower hull can be triangulated independently, in 

parallel, using the algorithm for triangulating a special monotone polygon described 

in Subsection 7.4.1. The same can be repeated for the polygons with an edge on the 

upper hull. Theorem 7.12 guarantees that the above step can be performed in 0(1) 

time. Consequently, the following result is obtained.

T h eo rem  7.13. An arbitrary set S  of n points in the plane, stored on point per 

processor in the first row of a RMESH of size n x n, can be triangulated in 0(1) 

time. □

7.4.3 TRIANGULATING A CONVEX REGION W ITH  

ONE CONVEX HOLE

This subsection discusses how the problem of triangulation a convex region with a 

convex hole is implemented on the RMESH, based on the template algorithm 6.3.

Let C  =  ci, c2, . . . ,  Cn be a  convex region of the plane and H  =  h\, h2, . . . ,  hm 

be a  convex hole within C. Let both C  and H  be stored one vertex per processor 

in the first row of a RMESH M. of size n x n. As in the template algorithm, 

choose an arbitrary point interior to H  and convert the vertices of C  and H  to polar 

coordinates having u  as pole and the positive x-direction as polar axis, and merge
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the vertices of C and H. This can be done in 0(1) time as specified in Proposition 

4.21, and let &x, b2, . . . ,  bn+m be the resulting sequence sorted by polar angle.

Consider the sequence i>x, b2, ..  -, bn+m is stored in order by the processors 

in the first row of the mesh, at most two vertices per processor. Identification and 

triangulation of the polygons corresponding to Case 1 and Case 2 subsequences de

tailed in the template algorithm is identical to the way it is implemented on the 

MMB and is accomplished in 0(1) time. Thus the following result is obtained. 

T h eo rem  7.14. Let C  be an n-vertex convex region and let H  be an m-vertex 

convex hole (m €  0 (n )) within C. Assuming that C and H  are stored in one row 

or column of a RMESH of size n x n, the planar region C \ H  can be triangulated 

in 0 (1) time. □

7.4.4 TRIANGULATING A CONVEX REGION WITH  

RECTANGULAR HOLES

In this subsection, the template algorithm 6.4 to triangulate a  convex region in the 

presence of rectangular holes is ported to a  0(1) time algorithm on the RMESH.

Let C  =  c i ,C 2 , . . . , c n be a  convex region containing n rectangular holes 

specified by a set %= {Rx, R 2, . . . ,  R„} of rectangles with their sides parallel to the 

axes. Convex hull C' of 71 can be determined in 0(1) time by Proposition 7.11. 

Triangulate C \ C '  using the algorithm discussed in Subsection 7.4.3 and this takes 

0(1) time by virtue of Theorem 7.14. As in the template algorithm, to the given 

set of rectangles add two rectangles Rq and Rn+1. Solve the rectangle visibility for 

the set Ro,Rx, . . . ,  Rn+i- This can be done in 0(1) time as stated in Theorem 4.26. 

Associate with each corner point of rectangle Ri an information packet containing 

its coordinates and two numbers u and v, as in the template algorithm. Sort the 

information packets, first on the u value and then on the y-coordinate. Clearly, this
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step requires 0(1) time. The closest left and right contours can be identified in 

0(1) time. Now in another 0(1) time the special trapezoids can be identified and 

triangulated by adding appropriate diagonals. Also, the special monotone polygons 

can be identified and triangulated in independent submeshes of the original mesh in 

0(1) time as stated in Theorem 7.12. Thus, the following result is obtained. 

T heorem  7.15. Triangulation of a convex region, of size n, containing a given set 

of n iso-oriented rectangular holes can be done in 0(1) time on a RMESH of size 

n x n. □

7.4.5 TRIANGULATING A CONVEX REGION W ITH  

ORDERED SEGM ENTS
Consider a set of n well ordered segments 5  =  s i,S 2, .. . , s n contained in a convex 

region C of n vertices. The segments in S  are stored one per processor in the first 

row of the mesh. Similarly, the vertices of C are stores one vertex per processor in 

the first row of the mesh. The approach to this problem is similar to the triangu

lation in the presence of rectangular holes and the details are omitted. Thus, the 

following result is obtained.

T heo rem  7.16. The problem of triangulating a convex region, of size n, containing 

a set of n ordered segments S  =  S\,S2 , • - • ,s n stored one per processor can be done 

in 0(1) time on a RMESH of size n x n. □
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CHAPTER 8 

TRIANGULATION ON COARSE-GRAIN  

MULTICOMPUTERS

In this chapter, let us develop some very powerful tools for the coarse-grain multi

computers, in addition to  the ones developed in Chapter 5, and use them to port 

the various template algorithms for the triangulation problems to coarse-grain multi- 

computers. The computation time of the resulting algorithms is found to be optimal.

The organization of the chapter is as follows. Section 8.1 discusses the tools 

developed for the CGM in order to apply the template algorithms for the trian

gulation problems, to this model of computation. This is followed by Section 8.2, 

where the application of the template algorithms to provide computationally optimal 

algorithms on the CGM is discussed.

8.1 TOOLS

In addition to the tools developed in Chapter 5, the following tools are essential to 

port the template algorithms designed for the ACM(re, p ,M ) to the CGM(rc,p).

•  ANLV: The ANLV problem is solved on the CGM(n,p) as discussed in Subsection 

8 . 1. 1.
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• Convex H u l l : The convex hull of a set of points in the plane is computed on the 

CGM(n,p) as described in Subsection 8.1.3.

Also, Subsection 8.1.2 discusses the problem of merging two convex hulls 

which is an essential ingredient of the convex hull algorithm discussed in Subsection

8.1.3.

8.1.1 ALL NEAREST LARGER VALUES

The purpose of this section is to exhibit an efficient solution for the ANLV problem 

on a CGM(n,p). It can be solved by viewing the ANLV as special instance of EV 

problem in 0 ( —̂ gn)+ 0 (logpTAiitoaii(n ->p)) time. However, the ANLV problem can 

be solved in 0 (^ )+  0(TAiitoaii(n,P)) time using the dynamic load balancing scheme 

discussed in Chapter 5. Since the sequential lower bound for this problem is f2(n), 

this algorithm is computationally time-optimal.

Consider a  sequence of n real numbers <  a i, 02, . . . ,  a„ > , ^ per processor in 

a CGM(n,p), such that any processor P, stores the items A,- =  a,-,s+1, . . .  ,a (I+1),n. 

Let us discuss only the computation of the nearest larger value to the left of every 

a,-, the computation of the ones to the right can be done symmetrically.

Given the input sequence of real numbers < a i , . . .  ,an > , a sequence of verti

cal segments is obtained by associating the element aj with a segment Sj with its top 

endpoint specified by the coordinated (j, aj) and the bottom endpoint represented by 

(j, — 00). Now, every Pi stores the subsequence Si =<  s,«a+i , . . . ,S ( j+i).a  > . Note 

that the sequence of segments < s \ , . . . , s n > are sorted by their ^-coordinates. 

S tep  1 . Let every processor Pj solve a local instance of ANLV problem for the 

items in A; = <  o.-.a+i,. . . ,  a(t+1),a > , where every item determines the nearest 

larger value to its left and right. This is equivalent to determining the nearest line 

segment that is blocking a horizontal ray emanating from each of the top endpoints
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of sj £ Si, in positive and negative x  directions. This can be accomplished using the 

sequential algorithm to compute the ANLV in O(^) time [78]. Consider the subset 

of segments in 5,-, whose top endpoints did not find their solution, in negative x  

direction,within the set S,-. This subset of Si is said to be the left contour and is 

referred to as LC(S,). Similarly, the subset of S i ,  whose top endpoints that did not 

find their solutions in the right direction are said to belong to  the right contour and 

are referred to as RC(S,).

After determining the left and the right contours of Si, every Pi needs to 

determine if any of the segments in RC(5/t), k < i, block the horizontal ray emanat

ing from the top endpoint of each Sj £ LC(5,). This can be accomplished using a 

successive refinement technique, where as a first step, every Pi determines for every 

Sj £ LC(Si), the pocket to which its solution belongs to. Note that, the pocket of 

sj £ LC(S',) is k  if the RC(S*) contains the solution to Sj. Once this information 

is available, the dynamic load balancing scheme detailed in the Chapter 5 could be 

applied to obtain the actual solutions to every S j .  The details are as follows.

S tep  2 . Every processor Pi determines the tallest segment it holds, and that 

is considered the sample item f,-. Once LC(5t ) and RC(5,) are determined, U 

can be obtained in 0(1) time. Now, perform an all-gather operation so that ev

ery processor has a copy of the sequence of sample items from every processor, 

T  =< T0,f i , . . . , tp _ i  > . This can be accomplished in TAugaiher(p,p) time.

In every Pi  perform the following computation in parallel. Determine the 

right contour of the sample T , given by RC(T). Now, for every Sj £ LC(5,), deter

mine if any of the segments t k £ RC(T) block the horizontal ray emanating from its 

top endpoint. This can be accomplished in O(^) time. For each endpoint in LC(Sj), 

determine the pocket to be k, if it is blocked by the segment tk £ RC(jT).
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O bserva tion  8.1. The actual segment that would block Sj € LC(5,) is contained 

in RC(Sfc), where k is its pocket of Sj. □

S tep  3. The dynamic load balancing scheme discussed in Subsection 5.1.1 can be 

applied to determine the final solutions for every sj 6  LC(5,). This can be accom

plished in 0 (£ ) computational time, and 0(TAUtoaii{n,p)) communication time, by 

virtue of Lemma 5.2. Thus, the following result is obtained.

T h eo rem  8 .2 . The All Nearest Larger Values problem for a sequence of n items, 

stored ^ per processor on a CGM(n,p), can be solved in 0 ( | )  computational time, 

and 0(TAUtoaii(n,p)) communication time. □

8.1.2 HULL MERGE
This subsection discusses the problem of merging two upper hulls of size j  vertices, 

stored in |  processors each, on a CGM(n,p). This is accomplished by computing 

the supporting line of the two upper hulls and updating the ranks of the vertices on 

the resulting hull. The running time of the algorithm is O(^) computational time 

and 0 ( TBroadcast(p ? p)) time. Since the sequential lower bound for this problem is 

f l(n), this algorithm is computationally time-optimal.

Let us discuss a few terms that are used in the following discussion. Consider 

the upper hull U =  uj, u2, . . . ,  Uk of a set S  of points in the plane. A sample of U 

is a subset of vertices in U enumerated in the same order as in U. Consider an 

arbitrary sample A  =  (ui =  a o ,o j,. . .  ,a a =  Uk) of U. The sample A  partitions U 

into s pockets Ai, A 2 l. . . ,  As, such tha t A,- involves the vertices in U lying between 

a,_i and a

Now, let us discuss the problem of computing the supporting line of two 

separable upper hulls U = iq, u2, . . .  ,« s  and V  = v i,v2, .. - , v r , having -  vertices 

each. The |  vertices of U are stored in the processors ^ per

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



processor, in the CGM(n,p). Again, V  vertices is stored in processors Pe, . . . ,  Pp_i 

of the CGM(n,p), ^ per processor. Consider the sample A  of U consisting of every 

~th vertex in U (including the last vertex) and is enumerated as ao =  u i,a i =  

u j+ i , . . . , a |_ i  =  U (|_ i)a+ i,a | =  u e .  Similarly, let B  be the sample of V  given 

by bo = vi,bi =  us+ i, . . . ,  6| _ x =  =  v e . The two samples determine

pockets Ai, A2, . . . ,  A e  and Bi, B 2 , . . . ,  B e  in U and V , respectively. Let the 

supporting line of A  and B  be achieved by a, and bj, and let the supporting line 

of U and V  be achieved by up and vq. The following technical result has been 

established in [5].

P ro p o sitio n  8 .3 . At least one of the following statements is true:

(a) up € Ai;

(b) Up € Ai+i;

(c) vq 6  Bj;

(d) Vq  € Bj+1. □

Proposition 8.3 suggests the following procedure to determine the supporting line 

of the two hulls. In an all-gather operation, the samples A  and B  are replicated 

in every processor Pi (0 <  i < p — 1) of the CGM(n,p). This is accomplished in 

PAiiga.th.eT {pi p) time. In O(logp) time, let every P,- compute the supporting line for A 

and B , using the sequential algorithm [78], and let a,- and bj achieve the supporting 

line of A  and B .  The next task is to check which of the four conditions in Proposition 

8.3 holds. For example, condition (b) is equivalent to saying that up lies to the right 

of a,- and left of a,+1. To check (b), the supporting lines s and s' from a,- and at+i to 

V  are computed, as follows. Every processor P,- ( |  <  i < p — 1), determines if any of 

the vertices Vk of V  it holds is such that vjta; is the supporting line s to V. Exactly 

one processor determines s, and broadcasts the value of Vk and similarly s' is also
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computed. This takes 0 (^ )+ 0 (T B roodcasi(l,p)) time. Next, the processor storing 

a,+i checks if the right neighbor of a,- in U lies above s'. Similarly, the processor 

storing a,- checks if the right neighbor of a,- in U lies above s. It is easy to see that 

Up belongs to Ai+i if, and only if, both these conditions hold. The other conditions 

are checked similarly.

Assume without loss of generality that condition (b) holds. The next target 

is to compute the supporting line of A,'+i and B ,  which is accomplished by the 

processor holding pocket A,+i in Q(log j )  time, using the sequential algorithm. It 

is important to note that convexity guarantees tha t if the supporting line of A,+\ 

and B  is not a supporting line to U and V, then the pocket B t that contains vq can 

be determined. Therefore, the supporting line of U and V  can be determined by 

identifying the pocket B t and determining the supporting line of A:+j and Bt, which 

is nothing but the supporting line of U and V. Note that, this step would require 

O(log | )  computational tim e and also 0 (TBroadcast^,?)) communication tim e to 

move B t to processor storing A,+1.

Once the supporting line of U and V  is determined, in Tsroadcasti^iP) time 

all the processors can be informed of the supporting line, and in O(^) computational 

time, the ranks of the various vertices on the upper hull can be updated. Thus, the 

following result is obtained.

L em m a 8 .4 . Given two separable upperhulls U and V  of |  vertices each, stored 

^ vertices per processor in the p processors of a CGM(n,p), the two hulls can be 

merged in O(^) computational time and 0 (TBToadcast(^,p)) time. □

8.1.3 CONVEX HULL

This subsection discusses the convex hull algorithm and as stated earlier uses the 

algorithm to merge convex hulls, described in Subsection 8.1.2. The running time
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of the algorithm is 0 ( nl°gn) computational tim e and 0(\og pTAiitoaii{n, p)) commu

nication time. Since the sequential lower bound for this problem is fl(nlogn), this 

algorithm is computationally time-optimal.

Consider a set S’ =  {si, S2 , - . . ,  sn} of n points in the plane, stored ^ per pro

cessor, in an CGM(n,p). To avoid tedious details, assume without loss of generality, 

that the points in S  are in general position, with no three points collinear and no 

two having the same x  and y coordinates. The algorithm proceeds by determining 

the upper and lower hulls of S  separately and then merges them. The details of 

the computation of the upper hull is as follows. Note that, the lower hull can be 

computed similarly.

S tep  1 . Sort the points in S  in increasing order of their x  coordinates, and this can 

be done in 0 ( —°s” ) computational time, and O(logpTAiitoaii{n,p) ) communication 

time, as stated in Lemma 5.5. Next, in each processor P,-, the convex hull of the ^ 

points it holds is determined in O(M og^) time, using the sequential algorithm to 

compute the convex hull of a set of points [78].

S tep  2. This step involves log p iterations. In the first iteration, the CGM(n,p) can 

be viewed as |  independent CGM’s, given by C G M (^ ,2 ) and the upper hulls held 

in the two processors of each CGM can be merged using the algorithm discussed in 

previous subsection. In general, in any iteration t, the CGM(n,p) can be viewed as 

consisting of £  independent CGM’s, given by C G M (^-,2 ‘) and in each such CGM, 

the pair of hulls obtained in iteration t  — 1 are merged. At the end of logp steps, 

the convex hull of S  is obtained. The running tim e of each of the steps is bounded 

by 0(*) computational time and 0(TAutoaii(n,p)) communication time. Thus, the 

following result is obtained.
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L em m a 8.5 . The convex hull of a set S  of n  points in the plane, stored ^ per 

processor, on a CGM(n,p), can be determined in 0 ( nI°K-n) computational tim e and 

0 (logpTAutoaii(n,p)) communication time. □

8.2 TRIANGULATION ALGORITHMS

W ith the various tools in hand, the porting of the template algorithms for the tri- 

angulation problems to the CGM(n,p) is accomplished as described in the following 

subsections.

8.2.1 TRIANGULATING A  SPECIAL MONOTONE POLY
GON

Let M. =  u i,u2, . . . , u n be an n-vertex special monotone polygon with its vertices 

specified in clockwise order and with v\vn denoting the base edge, stored ^ vertices 

per processor in a CGM(n,p).

As in the template algorithm 6.1, each vertex ut- =  of M  is associated

with an element yi and solve the resulting instance of the ANLV problem. Every 

vertex u; tha t has identified (at least) a match Vj adds the diagonal ViVj to the 

triangulation. Mark the vertices as specified in Step 4 of the template algorithm. 

Let Uj =  u,-,, v,-2, . . . ,  ViT = vn be the sequence of marked vertices enumerated by 

increasing a;-coordinate and let M '  be the monotone polygon determined by these 

marked vertices. Rotate M.' so that vivn becomes parallel to the x-axis and repeat 

the above process. Thus the following result is obtained.

T h eo rem  8.6. The problem of triangulating an n-vertex special monotone poly

gon can be solved in 0 (£ ) computational time and 0 (T Aatoali(n,p)) communication 

time, on a CGM(n,p). □
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8.2.2 TRIANGULATING A SET OF POINTS
This subsection discusses the problem of triangulating a given set 5 of n  points in 

the plane, on a CGM(n,p), obtained by applying template algorithm 6.2. The run

ning time of the algorithm is 0 ( —?s~) computational time and 0 ( logpTAiitoaii(n,p)) 

communication time. Since the sequential lower bound for this problem is Q(n log n), 

this algorithm is computationally time-optimal.

Begin by computing the convex hull of 5 , and by Lemma 8.5, this task can be 

performed in 0 ( —1°K" ) computational time and 0 (lo g pTAiitoaiiin, p)) communication 

time. Next, sort all the points in S  by their x  coordinates. By virtue of Lemma 5.5, 

this task can be performed in 0 ( nl°s ~) computational time and OilogpTAiitoaii(n, p)) 

communication time. Further, join every point with its immediate neighbor in the 

sequence sorted by x. All the convex hull edges and the edges drawn between two 

adjacent points are included in the triangulation. The chain determined by joining 

adjacent points in the sorted sequence divides the entire region within the hull into 

special monotone polygons. Each of these polygons with a base edge on the lower 

hull can be triangulated independently in parallel using the algorithm described 

above. The same can be repeated for the polygons with a base edge belonging to 

the upper hull. Now, Theorem 8.6 guarantees tha t each of the above steps can be 

performed in O(^) computational time and 0(TAiitoaii{n,P)) communication time. 

Thus, the following result is obtained.

T h eo rem  8.7. The problem of triangulating a set S  of n points in the plane can 

be solved in 0 ( —| s” ) computational time and 0 ( log pTAiitoaii(n,p)) communication 

time, on a  CGM(n,p). □
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8.2.3 TRIANGULATING A  CONVEX HULL W ITH A CON
VEX HOLE

In this subsection let us discuss the algorithm to triangulate a  convex hull with a 

convex hole, which is based on template algorithm 6.3.

Let C  be stored ^  vertices per processor among the first |  processors of the 

CGM(n,p) and H  be stored — vertices per processor in the next processors of
p p

the CGM(n,p). The triangulation algorithm proceeds as in the template algorithm 

6.3, where an arbitrary point ui interior to H  is chosen and the vertices of C and 

H  are converted to polar coordinates having ui as pole and the positive x-direction 

as polar axis. This can be accomplished in O(^) time. Next, the two sequences of 

vertices of C and H  are merged in 0(TMerge(n,P)) time. Let B  =  &i, b2, . . . ,  bn+m 

be the resulting sequence sorted by polar angle. Case 1 and Case 2 subsequences 

are identified and solved in parallel as specified in the template algorithm. Thus the 

following result is obtained.

Theorem 8.8. Given a  convex hull C  be stored 2s. vertices per processor among 

the first |  processors of the CGM(n,p) and convex hole H  stored y  vertices per 

processor in the next %; processors of the CGM(n,p), the planar region C \ H  can
P

be triangulated in 0 ( | )  computational time and 0(TAiitoaii(n,p)) communication 

time. □

8.2.4 TRIANGULATING A CONVEX REGION W ITH  

RECTANGULAR HOLES

This subsection discusses the algorithm to triangulate a convex region with rectan

gular holes on a CGM(n,p), based on template algorithm 6.4.

Let C = c i,c2, . . .  ,Cn be a  convex region containing n rectangular holes 

specified by a set TZ= {R i, • • •, Rn} of rectangles with their sides parallel to the
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axes. The task at hand is to triangulate C\1Z. Let C' be the convex hull of the set ‘R. 

of rectangles. Triangulate C \ C '  using the algorithm discussed in Subsection 8.2.3. 

This is accomplished in 0 ( | )  computation tim e and 0(TAiitoaii{n, p)) communication 

time,as stated in Theorem 8.8.

As in the template algorithm, add two rectangles Rq and Rn+\ to the given 

set of rectangles and solve the RV problem. Associate with each comer point of rect

angle Ri an information packet containing its coordinates and two numbers u and 

v , as specified in the template algorithm. Sort the information packets, first on the 

u value and then on the y-coordinate. Determine the closest contours, and identify 

the special trapezoids and special monotone polygons which are then triangulated 

in parallel. By virtue of Lemma 5.5, Theorem 5.10 and Theorem 8.6, the following 

result is obtained.

T h eo rem  8.9. Triangulation of a  convex region, of size re, containing a  given set of 

n iso-oriented rectangular holes can be solved in 0 ( nl°K" ) computational time and 

0 (logpTAutoaii(n,p)) communication time, on a  CGM(re,p). □

8.2.4 TRIANGULATING A CONVEX REGION W ITH  

ORDERED SEGM ENTS
This subsection briefly presents the result of porting template algorithm 6.5 to tri

angulate a convex region containing a set of ordered segments to a CGM(re,p). 

Consider a set of n well ordered segments S  =  Si,S2, . . . ,  sn in the plane, stored ^ 

per processor in the CGM(re,p). The vertices of C  are also stored ^ per processor 

in the CGM(re,p). The approach to this problem is similar to the triangulation in 

the presence of rectangular holes and the details are omitted. Thus, the following 

result is obtained.
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Theorem 8.10. The problem of triangulating a convex region, of size n , containing 

a given set of n ordered segments S  =  s i ,s 2, . . . , s n stored ^ per processor on 

a CGM(n,p) is solved in 0 ( tdgg") computational time and 0 (lo g p T A ii to a i i (n ,p ))  

communication time. □
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CHAPTER 9 

IMPLEMENTATION NOTES AND  

CONCLUSIONS

9.1 EXPERIMENTAL RESULTS

To demonstrate the practical relevance of the several algorithms presented in this 

thesis, two fundamental algorithms discussed in this work were implemented. The 

problems chosen to be implemented are two of the basic algorithms used by the var

ious visibility-related problems as very useful tools, namely the endpoint visibility 

algorithm (EV), and the algorithm for triangulating a special monotone polygon. 

These algorithms were implemented using MPI and timed on IBM-SP2. Note that, 

the code can be ported to several commercially available parallel computers, includ

ing shared memory computers, by just recompiling the code.

Before going into the implementation details, let us briefly discuss the IBM- 

SP2 architecture. It consists of RISC System/6000 processors connected via the SP2 

communication subsystem. This subsystem is based upon a low latency, high band

width switching network called the High-Performance Switch. The primary goal of 

the SP2 communication subsystem is to be scalable, modular, and easily integrated. 

The communication network consists of bidirectional multistage interconnection net
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works [87]. Clearly, the SP2 can be classified as a  Coarse-Grain Multicomputer 

(CGM), the coarse-grain computational model discussed in this thesis.

9.1.1 ENDPO INT VISIBILITY

Given a set of n ordered segments in the plane, template algorithm 3.1 can be applied 

to solve the EV problem. The implementation of the algorithm was straightforward 

and the program was timed on IBM-SP2 using 16 processors. A sequential algorithm 

for solving the EV problem was also implemented and run on a single processor of 

the SP2 and the speed up was determined.

The code was tested for several input sets assuming that the viewpoint is 

at (oo,0). The input sets were assumed to be vertical segments and were sorted by 

their x -values to ensure that they are well ordered (see Chapter 3). The code was 

timed for segment sets where the y-values of the endpoints were generated using a 

random number generator. The size of the input sets varied from 215 to 220 segments. 

Since the timing of the program is dependent on certain geometric patterns in the 

set of input segments, several special cases were also timed.

Figure 9.1 shows the running times of the parallel EV algorithm on 16 pro

cessors of the SP2. The curve labeled Case 1 corresponds to input sets where the 

endpoints are generated using a random number generator. The randomness in the 

coordinates of the endpoints diminishes the possibility of having dense pockets dur

ing the last logp merge steps corresponding to the top logp levels of the tree T . 

The curve labeled Case 3 corresponds to the input sets where the endpoints are 

in a geometric pattern guaranteeing that all the endpoints belong to dense pockets 

during each of the logp merge operations, forcing the algorithm to use dynamic 

load-balancing at every step. This results in an increase in the running time by a 

small quantity over Case 1 because of the extra overhead in processing dense pock-
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ets. The curve labeled Case 2 corresponds to the input sets where the endpoints are 

in a  geometric pattern such that during each of the logp merge steps about half the 

endpoints belong to sparse pockets and rest of them belong to dense pockets. As 

expected, for Case 2 the running time is slightly less than Case 3 and slightly more 

than Case 1. Figure 9.2 compares the average running times of the sequential and 

parallel algorithms for randomly generated input sets. The speedup of the parallel 

algorithm over the sequential algorithm was found be about 6.2 for 8 processors 

and about 10.74 for 16 processors. It has also been observed tha t a single processor 

cannot handle input sizes of the order of 220 as it runs out of memory for that large 

a input size.

9.1.2 TRIANGULATION OF A SPECIAL M ONOTONE  

POLYGON

The problem of triangulating a  special monotone polygon, where the base edge is 

assumed to be parallel to the x-axis, has been implemented based on the template 

algorithm 6.1. As in the case of the EV algorithm, the performance of the parallel 

algorithm, running on 16 processors of IBM-SP2, was compared against a O(n) 

time sequential implementation for the triangulation problem running on a single 

processor of the SP2. The program was timed for special monotone polygons whose 

vertices generated using a random number generator. The number of vertices in 

the input polygons varied from 216 to 221. Again, since the timing of the algorithm 

is dependent on the geometrical patterns within the set of input vertices, several 

special cases were timed.

In Figure 9.3, the curve labeled Case 1 corresponds to the randomly gen

erated vertex sets, and the low run time can be explained because of the fact the 

randomness increases the likelihood of a vertex finding its match (refer to template
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algorithm 6.1) within the same processor and this corresponds to the situation where 

there are no vertices that belong to dense pockets and there are 0 (N) (where N « n ) 

vertices belonging to sparse pockets. The curve labeled Case 2 corresponds to the 

arrangement of the vertices of the special monotone polygon, where the resulting 

instance of ANLV in Step 2 of the template algorithm is such that 0 (n ) vertices 

belong to sparse pockets. As expected the running tim e for Case 2 is slightly higher 

than that of Case 1 because of the fact that 0{n) vertices move across the 16 pro

cessors to determine their solutions. The curve labeled Case 4 corresponds to the 

case where 0 (n ) vertices belong to dense pockets, thus increasing the running time 

because of the extra overhead involved in processing dense pockets. The curve la

beled Case 3 corresponds to the case where 0 ( | )  vertices belong to sparse pockets 

and 0 ( | )  vertices belong to dense pockets. The comparison of the average running 

times of the parallel algorithm and the sequential algorithm is given in Figure 9.4 

and the speed up is found to  be about 14.2.

9.2 CONCLUSIONS

As stated in the introduction, the design of optimal parallel algorithms poses two 

major challenges to  an algorithm designer. For a given problem, the first challenge is 

to design optimal algorithm for the particular model of computation under consider

ation. The second and the more difficult challenge to meet is to develop a template 

solution that can be ported to diverse computational platforms to give an optimal 

solution on that platform.

In this thesis, the class of visibility-related problems was studied with the 

intent of investigating the process of developing architecture independent techniques 

that serve as template algorithms across various parallel computational models. As
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stated in the introduction, these problems find applications in seemingly unrelated 

and diverse fields such as computer graphics, scene analysis, robotics and VLSI de

sign. Considering the fact that the existing solutions to various members of this class 

of problems do not exploit the common threads that run between them, this the

sis provided an unified approach to these problems by identifying the commonality 

between them.

The problems investigated in this work can be broadly classified into object 

visibility and closely related triangulation problems. This thesis has studied these 

problems in great detail and to a  significant extent met the challenges of develop

ing optimal solutions to the problems at hand on various computational models, 

which in fact are the instantiations of template algorithms designed for an abstract 

computational model.

First, a detailed discussion on the class of object visibility problems includ

ing segment/endpoint visibility, disk visibility, rectangle visibility, dominance graph 

problems, was presented. Template algorithms for each of these problems were 

discussed on the abstract computational model and it was observed that the solu

tions to the problems are inter-dependent and revealed a number of aspects that 

are common to visibility relations among general objects in the plane. The seg

ment/endpoint visibility problem for a set of ordered segments has been discovered 

as a powerful tool which makes the solutions to the rest of the problems very sim

ple. In addition to various object visibility problems discussed here, others like 

determining the visibility pairs among a given set of segments, ANLV, and several 

constrained triangulations use this solution to obtain optimal solutions.

Next, various tools required to port the template algorithms for various 

object visibility problems to the fine-grain enhanced mesh connected computers,
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namely the meshes with multiple broadcasting and reconfigurable meshes were de

signed. The template algorithms when ported to the meshes with multiple broad

casting resulted in time-optimal solutions to the object visibility problems as shown 

by the various lower-bound arguments presented. Not surprisingly, the same algo

rithms when applied to  the reconfigurable meshes resulted in 0(1) time solutions 

to the various problems. Following this, a detailed discussion on the various tools 

developed on the coarse-grain multicomputers and their application to the template 

algorithms for the object visibility problems to provide computationally optimal 

algorithms was presented.

The class of triangulation problems, which is closely related to object vis

ibility, is the other class of interesting problems that received focus in this thesis. 

Again, the segment/endpoint visibility problem for ordered segments is a very im

portant important tool for the various template algorithms developed. The concept 

of special monotone polygons and their triangulation emerged as another funda

mental result which can be used in the template algorithms to  various constrained 

triangulation problems.

Next, the development of required tools to apply the template algorithms 

to  enchanced mesh connected computers was discussed, followed by the discussion 

on porting the template algorithms to these platforms. Once again this resulted 

in optimal algorithms on meshes with multiple broadcasting and 0(1) time algo

rithms on reconfigurable meshes. Next, a detailed discussion on the additions to 

the rich collection of tools developed for the coarse-grain multicomputers was pre

sented. The tools developed were than applied to the template algorithms to give 

computationally optimal solutions to various triangulations on the CGM.

As already mentioned a byproduct of the exercise of porting the template
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algorithms to these diverse computational models is a rich collection of tools that 

can be reused in other contexts. The powerful tools that were developed for the 

enhanced meshes include the compaction algorithm, the EV algorithm, and the 

triangulation of special monotone polygons. For the coarse-grain multicomputers, 

a very vast collection of tools has been designed. These include the algorithms to 

merge two sorted sequences, to sort a  collection of items from a totally ordered 

universe, to determine the all nearest larger values for a given sequence of items, to 

solve the segment visibility problem for a set of well ordered segments, to merge two 

convex hulls and to determine the convex hull for a  given set of points in the plane.

To demonstrate the practical relevance of the various algorithms discussed in 

this work, the two most fundamental algorithms for segment visibility and triangu

lation of special monotone polygons were implemented using MPI, and their running 

times analyzed on an IBM-SP2. It has been observed that the parallel algorithms 

provide significant speedup over their sequential counterparts. The code developed 

can be readily ported to various commercially available parallel machines including 

shared memory machines.

This work opens avenue to several open problems. It would be of interest to 

see what other visibility related problems can be solved using the various concepts 

and template algorithms designed in this thesis. In particular, the segment visibility 

problem, involving a collection of ordered segments, has been discovered as the 

stepping stone for almost all the other algorithms discussed in this work. It seems 

to have a lot of potential that could be exploited in the context of several other 

geometric problems.
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