Achieving High Speed CFD simulations: Optimization,
Parallelization, and FPGA Acceleration for the
unstructured DLR TAU Code

E. Andres*, M. Widhalm®, A. Caloto*
National Institute of Aeroespace Technology, Madrid, 28850, Spain

German Aerospace Center, Braunschweig, Niedersachsen, 38108, Germany

Today, large scale parallel simulations are fundamental tools to handle complex prob-

lems. The number of processors in current computation platforms has been recently in-
creased and therefore it is necessary to optimize the application performance and to enhance
the scalability of massively-parallel systems. In addition, new heterogeneous architectures,
combining conventional processors with specific hardware, like FPGAs, to accelerate the
most time consuming functions are considered as a strong alternative to boost the perfor-
mance.
In this paper, the performance of the DLR TAU code is analyzed and optimized. The
improvement of the code efficiency is addressed through three key activities: Optimiza-
tion, parallelization and hardware acceleration. At first, a profiling analysis of the most
time-consuming processes of the Reynolds Averaged Navier Stokes flow solver on a three-
dimensional unstructured mesh is performed. Then, a study of the code scalability with
new partitioning algorithms are tested to show the most suitable partitioning algorithms
for the selected applications. Finally, a feasibility study on the application of FPGAs and
GPUs for the hardware acceleration of CFD simulations is presented.

I. Introduction

CIENTIFIC Computing with its core ingredients, modeling, simulation and optimization, is regarded by

many as the third pillar of science, complementary to experiment and theory. In aeronautics engineering,
the consistent use of mathematical and computation methods to simulate complex processes has become
indispensable to save energy, reduce costs and pollution, and to increase safety. However, the high complexity
of some of these processes frequently implies very long computation times. In particular, the analysis of a
complete aircraft configuration including all relevant payload elements and flight components, even using a
Reynolds-Averaged Navier-Stokes (RANS) modeling, at present still requires a huge computational effort,
even using the modern high parallel computational platforms. Thus, reducing the time for aerodynamic
analysis is one of the most important challenges of current research in CFD.

An efficient implementation for codes based on unstructured meshes is still a challenging task. In compar-
ison to structured solvers,*2? with their lower memory usage and block-structured data, their computational
rates and scalability were many years out of reach for any unstructured solvers. Through the use of effective
edge-based structures the memory requirements were reduced and by using grid data-reordering techniques
for a banded matrix the efficiency was increased remarkably. Especially edge-based structures enabled a ho-
mogeneous data-structure independent on the grid volume elements. Additionally, a cache optimization for
PCs successfully increased the throughput. With all these improvements, unstructured solvers have matured
to be applied for industrial applications.?6

*Research Scientist, Fluid Dynamics Branch, Ctra. de Ajalvir km.4, 28850 Madrid, ATAA Member.
TResearch Scientist, Institut of Aerodynamics and Flow Technology, Lilienthalplatz 7, 38108 Braunschweig, ATAA Member.

1 of 20

American Institute of Aeronautics and Astronautics

Apart from these advantages, improvements in the computational speed can also be addressed on many
levels. We are proposing three different strategies which are considered from the basic code optimization to
parallelisation up to a new hardware architecture.

Code optimization is one of the first objectives in performance improvement, and it is often less considered
with respect to other important goals such as stability, maintainability, and portability. This simple level of
optimization is beneficial and should always be applied including an efficient implementation, reduction of
operations, precomputation of expensive variables and non-redundant interfaces. Code optimization is based
on execution profiling while performing a time measurement of bottlenecks in the code. Applying optimization
strategies over the most time consuming algorithms of the code can provide important reductions of the
execution time” % .

In recent years, much of the attention has been focused on methods for parallel computers to reduce the
computation time by taking advantage of concurrent processing of data in different regions of the domain,
and to increase the resolution of the model by taking advantage of the larger memory available in parallel
computers. To effectively utilize a high parallel computer, it is important that the data has to be distributed
over the processors in a balanced manner, so that each processor will complete its work load at approximately
the same time to prevent idling of processors.

This distribution must be in the manner that the number of assigned elements to each processor is the
same, and the number of adjacent elements assigned to different processors is minimized. The goal of the
first condition is to balance the computations among the processors. The goal of the second condition is to
minimize the communication resulting from the placement of adjacent elements to different processors.
Efficient partitioning algorithms for highly unstructured graphs are crucial for gaining fast solutions in a
wide range of applications areas on high parallel computers, and particularly, in large-scale CFD simula-
tions.? 4910
In addition, adaptive scientific computations require that periodic repartitioning, known as load balancing,
occur dynamically to maintain load balance. A classic example is the simulation based on adaptive mesh
refinement, in which the computational mesh changes between time steps. The difference is often small, but
over time, the cumulative change in the mesh becomes significant. An application may therefore periodically
re-balance, that is, move data among processors to improve the load balance. This process is known as
dynamic load balancing or repartitioning and should be considered in modern applications.

Additionally, a new alternative to boost the performance is to consider new heterogeneous architectures
for high performance computing'! '3 combining conventional processors with specific hardware to accelerate
the most time consuming functions.

Hardware acceleration gives best results, in terms of overall acceleration and value for money when applied
to problems in which:

e Condition A. A great amount of the computational effort is concentrated in a small portion of the
whole code, and the computations have to be performed several times for a huge set of data.

e Condition B. The communication and I/O times are small with respect to the total computational
cost4 .

Aerodynamics simulations seem to gather all the desirable characteristics to be executed on a platform with
a heterogeneous architecture'® (specific software - specific hardware accelerator - generic hardware platform):

e The numerical solution of the flow equations is based on a flux interchange between the discrete volumes
that represent the physical domain. The numerical flux computation for each discrete volume requires
several hundred floating-point operations, and each operation is repeated several million times in a real
aeronautical simulation (Condition A).

e On the other hand, the numerical solution of the flow has data locality. This means that the computa-
tion to be performed at a certain location of the domain depends only on data that is located in a small
neighborhood around it. Communication between the processors is required because the solutions on
the subdomains depend on each other, but only on the subdomain boundaries. This is the reason why
communication costs are small with respect to the overall cost (Condition B).

2 of 20

American Institute of Aeronautics and Astronautics

II. Brief Introduction to the TAU Code.

The fluid flow over the object of interest is simulated with the TAU Code.'®'® The unsteady TAU-
Code solves the compressible, three-dimensional Reynolds-Averaged Navier-Stokes equations using a finite
volume formulation. The TAU-Code is based on a hybrid unstructured-grid approach, which makes use of the
advantages of semi-structured prismatic grids in the viscous shear layers near walls, and the flexibility in grid
generation offered by tetrahedral grids in the surrounding flow volume. The grids used for flow simulations
in this paper were created with the hybrid grid generation software Centaur, developed by Centaur Soft!” .
A dual-grid approach with an edge based data structure is used in order to make the flow solver independent
from the cell types used in the initial grid. The TAU-Code consists of several different modules, including:

e The Grid Partitioner, which splits the primary grid into n number of subgrids for n processors.

e The Preprocessor module, which uses the information from the initial grid to create a dual-grid and
secondly coarser grids for multi-grid.

e The Solver module, which performs the flow calculations on the dual-grid.

e The Adaptation module, which refines and derefines the computational grid with different indicator
functions.

e The Deformation module, which propagates the deformation of surface grid points to the surrounding
volume grid.

e The Postprocessing module, which is used to convert result-files to formats usable by popular visual-
ization tools.

Together all modules are available with Python'® interfaces for computing complex application, e.g. unsteady
cases, complete force polar curves or fluid-structure couplings in an automatic framework. Furthermore, it
eases the usage on highly massive parallel computers to execute applications.

III. Optimization: Analysis and remodelling of most time consuming
algorithms in TAU

In this section, a performance analysis of the most time consuming functions in the flow solver will be
outlined. The computations are performed with a Spalart Allmaras one-equation turbulence model*® with
Edwards?® modification (SAE) and the central spatial discretization scheme with scalar dissipation. The
computational grid around a Onera M62' Navier Stokes grid has 450.634 points and 1.509.834 elements and
contains a prismatic layer around the surface and tetrahedrons in the farfield. The conditions are a free-
stream Mach number of 0.8395 and fixed angle of attack at 3.06 degree. For completeness, both available
time integration schemes, an explicit Runge-Kutta and a semi-implicit LUSGS method, were profiled to
obtain the most time consuming algorithms.

This preliminary step, before considering any partitioning algorithm, is relevant to determine the flow
solvers bottlenecks. It is important to be aware of computational routines which might drawback any effort
in applying sophisticated grid partitioning and maybe load balancing whenever it hang-up in a numeric
routine. A flow solver is composed of very different algorithms either for e.g. residual computation, boundary
conditions and time integration. But additionally the management of parameter settings, memory allocation
and freeing and creating solution output can become crucial if not considered well. A flow solver profiling
determines which algorithms are lacking in their efficiency. Due to the iterative process the most often
used algorithms are dependent on the residual computation and time integration. The code computes the
complete residual R in split flux functions. Mainly there are routines for the convective and viscous part of
the solution system. Furthermore, in case of turbulent flows the turbulent equations with the diffusion flux
are added. Due to the properties of this system of equations the computation can be separated in different
flux routines. It is desired that each separated flux computation should take the same amount of time per
iteration because each subroutine has to evaluate 5 equations for the flow variables which are density, the
velocity vector and the pressure. But nevertheless the complexity of each equation can vary tremendous. The
turbulence variables are dependent on n number of additional transport equations. Additionally, routines

3 of 20

American Institute of Aeronautics and Astronautics

have to be taken into account for computing the eigenvalues of the system of equations, residual smoothing
steps and helper functions for conversions between primitive and conservative variables.

The results obtained for the profiling execution of the sequential flow solver using an explicit Runge-Kutta
method are displayed in Table 1 and for the semi-implicit LUSGS method in Table 2. The abbreviations

Table 1. Profiling results with an Runge-Kutta method Table 2. Profiling results with an LUSGS method for

for the Onera MBS6. the Onera MS6.
Function” % of total time Function” % of total time
viscous_fluxes_tsl 39.2% viscous_fluxes_tsl 21.6%
diffusion_fluxes_tsl 10.0% additional state_variables 10.4%
compute_gradients 6.8% compute_local_eingenvalues 7.9%
scaling_factor_dissipation 6.0% compute_gradients 7.4%
central_inviscid flux 5.4% scaling_factor_dissipation 6.6%
compute_local_eingenvalues 4.7% diffusion_fluxes_tsl 5.6%
smooth_laplace 3.8% implicit_time_integration 4.8%
compute_sae_sources 3.5% convert_cons_to_prims 4.7%
additional state_variables 2.7% central_inviscid flux 2.9%
central_turbulent_flux 2.0% linear_solver_lusgs 2.9%
scalar_dissipation 2.0% sa_orig_implicit_sources 2.5%
convert_consvar_to_primvar 1.6% scalar_dissipation 2.2%
compute_laplacian_consvar 1.5% smooth_laplace 2.0%
determine_local _timestepsize 1.5% compute_sae_sources 2.0%

used in the Tables 1, 2, 3 and 4 are tsl for thin shear layer approximation, sa and sae for either the Spalart-
Allmaras and Spalart-Allmaras with Edwards modification. The most time consuming routine for both time
integration schemes is the evaluation of the viscous fluxes for the main equations. Especially for the Runge-
Kutta it can become 40% of time per iteration. The second one is either the evaluation of the diffusion fluxes
for the Runge-Kutta and the computation of the state variables of each face for the LUSGS scheme. Every
other routine is at or below 10 % time per execution and is considered as appropriate during an iteration.

Computing the viscous fluxes with a thin shear layer approximation involves simple but many gradient
evaluations for the velocities and temperature. The viscous terms of the main equations involve many CPU
operations due to their complexity compared to the convective flux computation. The improvement of this
routine was performed in two ways. First, we pre-computed locally constant variables which appeared in
the functions very often like differences for velocities or eddy viscosity. This approach becomes important
whenever divisions or square root operations are involved. In this particular test-case we saved around one
fourth of the time consumption used for the viscous flux computation.

The second step is to pre-compute globally constant variables which are independent of the flow variables
such as point distance evaluations from the grid metrics. At this part we are computing once the variables
at the initialization step of the flow solver and keeping the data stored during the simulation. Especially
the functions which are related to the thin layer approximations benefit from this approach. On the other
hand more memory is consumed and it becomes evident if computational time or memory is preferred. The
memory increment was about 3% of the total memory used from the code without optimization.

After optimizing the code we obtained Table 3 and 4 for either the Runge-Kutta and LUSGS time
integration schemes.

The modifications result in an improvement for the viscous flux and diffusion flux computation over more
than half the time consumption as without. The first five main functions are now consuming almost the
same amount of time per execution, especially for the LUSGS. The first optimization procedure proposed
was introduced in many other routines and it can be seen that the order has changed considerable for the
functions.

Improving functions like gradient computation, indicated as compute_gradient or state variable compu-
tation additional_state_variables is much more difficult. These functions are already implemented optimized
due to their wide range of application areas. Usually, this should count for each function introduced in any
code but developers experience and consciousness have to be aware to follow optimization guidelines strictly.

4 of 20

American Institute of Aeronautics and Astronautics

Table 3. Profiling results after optimization with an Table 4. Profiling results after optimization with an

Runge-Kutta method for the Onera M6. LUSGS method for the Onera M6.
Function” % of total time Function” % of total time
viscous_fluxes_tsl 18.1% additional_state_variables 12.8%
compute_gradients 10.6% compute_local_eingenvalues 9.7%
scaling_factor_dissipation 9.3% scaling_factor_dissipation 9.3%
central_inviscid_flux 8.3% compute_gradients 9.2%
compute_local_eingenvalues 7.2% viscous_fluxes_tsl 8.0%
smooth_laplace 5.8% implicit_time_integration 5.7%
compute_sae_sources 5.5% convert_cons_to_prims 5.6%
additional _state_variables 4.1% central_inviscid_flux 3.6%
central_turbulent_flux 3.3% linear_solver_lusgs 3.6%
diffusion_fluxes_tsl 3.1% sa_orig_implicit_sources 3.2%
scalar_dissipation 3.1% scalar_dissipation 2.7%
convert_consvar_to_primvar 2.4% smooth_laplace 2.5%
compute_laplacian_consvar 2.4% compute_sae_sources 2.4%
determine_local_timestepsize 1.6% diffusion_fluxes_tsl 1.4%

Table 5 and Table 6 show the wall clock time (WCT) on an i386 32 bit and a x86 64 bit Linux based
machine for a Onera M6 wing simulation for either the original and the optimized code using both Runge-
Kutta and LUSGS schemes.

Table 5. WCT for the Onera M6 Testcase to steady state for 32 and 64 bit Linux machine (Runge-Kutta

method).
Target architecture | Code version r Cp Cuyy | Exec. time | Comp. gain
32 bits orig 0.26933 | 0.015774 | 8.1587 7178 -
opti 0.26933 | 0.015774 | 8.1587 5178 27.9 %
64 bits orig 0.26932 | 0.015778 | 8.1585 4169 -
opti 0.26932 | 0.015778 | 8.1585 3701 112 %

Table 6. WCT for the Onera M6 Testcase to steady state for 32 and 64 bit Linux machine (LUSGS method).

Target architecture | Code version r Cp Cuyy | Exec. time | Comp. gain
32 bits orig 0.26927 | 0.015787 | 8.1569 5657 -
opti 0.26927 | 0.015787 | 8.1569 5487 3.0 %
64 bits orig 0.26925 | 0.015791 | 8.1562 4222 -
opti 0.26925 | 0.015791 | 8.1562 4043 4.2 %

The comparison was made with the same C-compiler version gcc 4.2.3 using the second optimization
level. One thousand iterations were performed for each simulation to ensure either well converged force
coefficients like drag and lift and otherwise give substantial time to measure the optimizations during the
iterative process apart from additional time used for setup and IO.

Using the explicit Runge-Kutta time integration scheme on a 32 bits system, the WCT is decreased by
27.9 % mainly due to the improvement of the viscous and diffusion flux routines.

In order to extend this section about code optimization, further consideration can be applied to the
precision requirement for CFD computations which is affected directly by the number of bits representing
each operand in the code. Related to this issue, we have made some analysis about how the selection of
a floating point format (single 32 bits or double 64 bits) affects the integral coefficients of lift (Cp) and
drag (Cp). Figure 1 shows the convergence history and the global force coefficients for the DLR F622 23
configuration. The DLR-F6, see Figure 2, is a simplified wing-fuselage geometry which has been used in the

5 of 20

American Institute of Aeronautics and Astronautics

past for validation of CFD codes at the second?* and third?® AIAA sponsored Drag Prediction Workshops.
The computational grid around the F6 Navier-Stokes grid has 5.8 mill. points and 16.1 mill. elements.
The flow conditions are a free-stream Mach number of 0.749 and a fixed angle of attack at 1 degree with
a Reynolds number of 3 * 106, Figure 1 does not show any significant differences in the solution, only

single precision
double precision

single precision single precision
double precision 06 double precision

K}
S
3
o
o 3
[= £ o003
3 S 3
2 056
§
= 0.029
054
0.028
052
5 | L L L L - 0,027 I L)
0 500 1000 1500 2000 500 1000 1500 2000 1000 1500 2000
Iterations Iterations Iterations
(a) Residual (b) CL (¢) Cp
562 062101 0.03285
single precision 0621 single precision single precision
double precision double precision douple precision
_ 0.62009 |- 0.032845
5564 - £
2 [$)
3 062098 |- - g
« G <1 drag count
£ [}
2
§ 062097 |« _
a .. <1 It count 0.03284
-5.66 - S~
062096 - ~ <
0.62005 |- T
L 1 1 L) L L 1 L 0.032835 | L L L L
1980 1985 1990 1995 2000 2005 1980 1985 1990 1995 2000 2005 1985 1990 1995 2000 2005
Iterations Iterations Iterations
(d) Residual (e) CL (f) Cp

Figure 1. DLR F6 viscous flow precision study. Complete convergence view on top and closer view on bottom for the
density residual and global force coefficients.

the fifth decimal digit (in drag and lift coefficients) is affected by the numerical error due to the operand
representation. This comparison has shown that single or double precision computation has to be further
considered which is mainly driven by the accuracy requested from CFD engineers, usually less than one drag
or lift count and will have mainly an important impact for any hardware-software platform like FPGAs.

IV. Parallelization: Solver scalability using different partitioning algorithms

The second point of activity for improving the application performance is an efficient parallelization.
For parallel computing on large unstructured grids domain decomposition is a powerful concept: Given
a number P of processors, the whole computational grid is decomposed into P subgrids. Each of the P
processors computes on one of the subgrids. Usually communication between the processors is required
because the solutions on the subgrids depend on each other. The solver operates in different ways on two in
principle different kinds of data types:

e Operations that compute point variables directly from one or more point variables. For these operations
no data of other points is required to compute on one point.

e Operations that need data of neighbouring points to compute the result for one point. For these
operations connectivity information is required. The main kind of connectivity data used in the solver
are the edges. Other connectivity data is given by the boundary faces where a near point is connected
to a boundary point. More connectivity data is defined by the grid to grid connections of the different
grid levels from the multigrid algorithm. As much as possible of these operations should be performed
on one subdomain of the grid without communication.

6 of 20

American Institute of Aeronautics and Astronautics

In this section, we first introduce the current partitioning status of the TAU-Code, then we explore
advanced partitioning algorithms and finally we apply them on complex industrial applications.

IV.A. Current partitioning status of the DLR TAU Code

Parallelization in the DLR TAU Code is based on domain decomposition and the message passing concept
using MPI. For parallel computations the grids are partitioned in the requested number of domains at the
beginning of the flow simulation. Up to now, a simple bisecting algorithm (referred here as Geometric) is
employed. The load balancing is performed on point weights which are adjusted for the needs of the solver,
which is the most time consuming part of the simulation system.

This partitioner computes the edge cuts according to coordinates. If two partitions have to be computed
it is compared if the partitioning at x = const (x is the position on half the way between x-max and x-min)
requires less cuts of edges than parallelization cut at y = const or z = const. The best of the three cuts is
used. If three domains have to be computed the partitioning is performed by dividing first in 2 subdomains
weighted with 1/3 and 2/3. The second subdomain is then divided again in 2 partitions with equal weights.
All other numbers of subdomains are computed using the same algorithm recursively; e.g. 7 subdomains are
obtained by dividing first in 2 domains weighted with 3/7 and 4/7. The first is then partitioned in 3; the
second is two times divided in 2 partitions!® . The load balancing is performed on point weights based on
the amount of edges which finish on each point. These weights try to represent the computation cost of each
point in the flow solver. However, the communication cost is not represented in the algorithm, and it is not
possible to establish several point weights to deal with different aspects.

For testing purposes, we used the DLR F6 configuration. The mesh decomposition into different domains
achieved with the geometric partitioning algorithm is shown in Figure 2 and 3.

Using this domain decomposition, the parallel scalability and speedup of the TAU flow solver for the F6

VA

P
5

5
i

7%
&

L ‘4:4
<) Pavaz

]

N
XKk
AR
"")%VAVA

R
Ay
A

\/
&
£

Figure 2. Volume view of the partitioned F6 grid into 8 Figure 3. Surface view of the partitioned F6 grid into 8
domains. domains.

configuration, either for an Euler grid with about 1 mill. points (tetrahedrons only) and a Navier Stokes grid
with about 6 mill. points (prismatic boundary layer and tetrahedrons) can be observed in Figure 4. The
speedup values are computed using as the starting point the execution time for 8 processors. In our cases we
consider a saturated speedup whenever the value of it from one computation (using n processors) to another
computation (using 2n processors) is less than 1.5 which means that at least half of the new computational
resources will be used making effective operations instead of waiting for communication. The speedup of the
Euler test-case saturates when using more than 64 processors which implies that the acceptable minimum of
points per domain should be more than around 16.000 points. The Navier-Stokes test-case becomes inefficient
using more than 256 processors, so the number of points per processor should be higher than approximately
23.500 points.

7 of 20

American Institute of Aeronautics and Astronautics

—&—— Navier-Stokes 120
—-—7—-- Euler

Linear

—&—— Navier-Stokes
—-=5--— Euler

Q
(=]
U B

o5
(=]

Time/lteration [s]
=
A
relative speedup
(o)}
o

I \ o
X 20
L~ 3
R e e o SO 0?%/; .0 e v AP
18 56 1024 200 400 600 800 1000 1200

64 2
log(# proc) # proc

(93]
T

B
(=]
LI

<
rad

(a) Parallel scability. (b) Parallel speedup.

Figure 4. Parallel performance of the TAU code over the number of processors.

IV.B. Exploring different partitioning algorithms for the DLR TAU Code

To extend the parallelization study, additional partitioning algorithms are included into the TAU Code
using the package ZOLTAN.? 26 We present a brief overview of the algorithms which will be used in our
investigation.

IV.B.1. Recursive Coordinate Bisection (RCB)

RCB was first proposed as a static load-balancing algorithm by Berger and Bokhari?” , but is attractive
as a dynamic load-balancing algorithm because it implicitly produces incremental partitions. In RCB, the
computational domain is first divided into two regions by a cutting plane orthogonal to one of the coordinate
axes so that half the work load is in each of the sub-regions. The splitting direction is determined by
computing in which coordinate direction the set of objects is most elongated, based upon the geometric
locations of the objects. The sub-regions are then further divided by recursive application of the same
splitting algorithm until the number of sub-regions equals the number of processors. Although this algorithm
was first devised to cut into a number of sets which is a power of two, the set sizes in a particular cut needn’t
be equal. By adjusting the partition sizes appropriately, any number of equally-sized sets can be created.
If the parallel machine has processors with different speeds, sets with nonuniform sizes can also be easily
generated.

IV.B.2. Recursive Inertial Bisection (RIB)

RIB was proposed as a load-balancing algorithm by Williams?® and later studied by Taylor and Nour-Omid,?°
but its origin is unclear. RIB is similar to RCB. It divides the domain based on the location of the objects
being partitioned by use of cutting planes. In RIB, the computational domain is first divided into two regions
by a cutting plane orthogonal to the longest direction of the domain so that half the work load is in each
of the sub-regions. The sub-regions are then further divided by recursive application of the same splitting
algorithm until the number of sub-regions equals the number of processors.

IV.B.3. Hilbert Space-Filling Curve (HSFC)

The Inverse Hilbert Space-Filling Curve functions map a point in one, two or three dimensions into the
interval [0,1]. The Hilbert functions that map [0, 1] to normal spatial coordinates are also provided in
the ZOLTAN library. (The one-dimensional inverse Hilbert curve is defined here as the identity function,
f(z) = z for all x.) The HSFC partitioning algorithm seeks to divide [0,1] into P intervals each containing the

8 of 20

American Institute of Aeronautics and Astronautics

same weight of objects associated to these intervals by their inverse Hilbert coordinates. N bins are created
(where N > P) to partition [0,1]. The weights in each bin are summed across all processors. A greedy
algorithm sums the bins (from left to right) placing a cut when the desired weight for current partition
interval is achieved. This process is repeated as needed to improve partitioning tolerance by a technique
that maintains the same total number of bins but refines the bins previously containing a cut.

IV.B.4. Graph partitioning

Graph partitioning is a difficult, long-standing computational problem. It has applications to VLSI (Very
Large Scale Integration) design, sparse matrix-vector multiplication, and parallelizing scientific algorithms.
The general k-way partitioning problem is described by a graph G(V, E, Wy, Wg) where Wy and Wg are
vertex and edge weights respectively. The output of partitioning G consists of subsets of vertices, V1, Va, ...Vj
where V;(V; = ®. The goal is to balance the sum of vertex weights for each V;, and minimize the sum
of edge weights whose incident vertices belong to different partitions. Graph partitioning can be used to
successfully compute high quality partitions by first modeling the mesh by a graph, and then partitioning it
into equal parts.

Figure 5 shows the volumetric and surface mesh decomposition into four domains achieved with the
Geometric, RCB, RIB, HSFC and the Graph partitioning algorithms. From the top row in Figure 5 looking
at the symmetry plane the extensions of the partitioned grid into the volume can be seen.

(a) Geometric (b) RCB (c) RIB (d) HSFC

(f) Geometric (g) RCB (h) RIB (i) HSFC (j) Graph

Figure 5. Volume view (top) and surface view (bottom) of the partitioned Onera M6 grid into 4 domains.

IV.C. Runtime Performance Analysis for different partitioning algorithms.

A comparison between the different partitioning algorithms is performed using complex aircraft configura-
tions to gather experience for industrial applications. We have chosen a high-lift wing-body configuration
which was investigated in the European project HiRett3%3! | see Figure 6 , and a high-lift wing-body-pylon-
nacelle configuration with fully operable engines, an ALVAST?? 33 configuration, see Figure 7. Both grids
contain a structured prismatic boundary layer region for a viscous flow simulation. The computational grid
around the HiRett configuration, Figure 6 has about 13.6 mill. points with approximately 35.2 mill volume
elements. The grid around the ALVAST configuration, Figure 7 contains about 13.2 mill. points with ap-
proximately 45.3 mill volume elements. Both configurations, HiRett and ALVAST, have deployed slats and
flaps and are validation test cases for take-off conditions at low speed.

The main amount of the execution time in a CFD computation is spent in the flow solver. In the TAU-
Code a pre-processing step is necessary before running any flow simulation. The pre-processor generates the
median dual mesh and metric information, like face normals from the primary grid. The data is then stored
in an edge based structure which is used for evaluating the fluxes independently of the different primary
volumes used. However, the pre-processing time needs only one to double of the time of one flow solver

9 of 20

American Institute of Aeronautics and Astronautics

Figure 6. HiRett wing-body configuration with high-lift Figure 7. ALVAST High-Lift configuration with fully op-
devices and ailerons. erable turbines.

iteration, so it is usually a negligible amount in comparison to the flow solver execution time in which we
are focusing on.

As the pre-processing step is necessary, we also studied how the domain decomposition affects the exe-
cution time. Based on the tests we performed, it can be stated that there is an improvement when using
Graph instead of Geometric partitioning algorithms especially with a high number of processors.

Figure 8. Volume view of the partitioned ALVAST Figure 9. Volume view of the partitioned ALVAST
grid into 8 domains using a Geometric partitioner. grid into 8 domains using a Graph partitioner.

Figure 10. Surface view of the partitioned ALVAST Figure 11. Surface view of the partitioned ALVAST
grid into 8 domains using Geometric partitioner. grid into 8 domains using a Graph partitioner.

Figure 8 and 9 show the differences between the volumetric mesh decomposition for the ALVAST con-
figuration using both Geometric and Graph partitioning. The surface mesh decomposition can be seen in
Figure 10 and 11. The critical part in the ALVAST grid is the decomposition of the inflow and outflow of
the engines. To keep the physical behavior of fan turbines effective, a mass flow coupling is needed which
introduces an increased communication. Focusing on this subject, it can be observed for low domains that
the Geometric partitioner divides the inflow and outflow area into different domains while the Graph one
keeps the inflow in one domain and the outflow entirely in one domain.

Regarding to the flow solver, the computations were performed with a Spalart Allmaras one-equation

10 of 20

American Institute of Aeronautics and Astronautics

turbulence model with Edwards modification (SAE) and the central spatial discretization scheme with scalar
dissipation and a 4w multigrid cycle. The flow conditions of the considered configurations are displayed in
Table 7 .

Table 7. Flow conditions for ALVAST and HiRett configurations.

Mach number

Reynolds number

Angle of Attack ||

HiRett

0.2

25 % 108

19.0

ALVAST

0.182

1.66 % 10°

4.3

While both configurations are created for take-off conditions the purpose of each was very different as may be
seen from the flow conditions. The HiRett model simulates an airplane shortly before reaching the maximum
angle of attack in authentic flow conditions and the ALVAST model was used in a wind tunnel experiment
with a substantial reduced Reynolds number.

Since the solver appears to react different to the many possible time and spatial integration schemes and
unfortunately testing all these possibilities would overcome a certain expense, therefore we will concentrate
on an explicit Runge-Kutta and a semi-implicit LUSGS scheme. The first association for the explicit time
integration is a common scalability over a wide range of processors using the same CFL (Courant-Friedrich-
Levy) number. In comparison, the semi-implicit time integration performs for the flow field implicit but
treats the boundary conditions explicitly. In relation to a sequential computation where the percentage of
boundary points to flow field points usually ranges between 5 to 10 percent, this relation will vary enormous
for a high number of processes. While some grid domains may have only flow field points and can be
integrated entirely implicitly others may contain many boundary points and stability problems can appear.

The approach for speedup was done in the same manner as in section IV.A where the minimum size of
eight grid partitions were restricted by the amount of memory for the used Linux cluster and was taken as
the first point for the linear speedup. The results in Figure 12 show that improvements in the scalability
(left) and the solver speedup using a Runge-Kutta (middle) and a LUSGS (right) time integration scheme
can be obtained through Graph partitioning algorithms.

150

150
——6—— Geometric Linear Linear
sk RCB —o— Geometric —&— Geometric
a RIB RCB 3 —-©—- Graph
—-o—- Graph &0 RIB — T
30 [——p—~ HSFC : ——o—- Graph
——p—= HSFC
= 2100 2100
L 3 5
g H H
£ g 4 o
§ o -2 ° -
3 H] - H -
2 =1
E 5 Pl k] _
[2 50 S 2 50l et
i a 7
-~ o ___»
i _/__,ﬂ.,"—”—g P
™ -
AE lg= o
P I R == 0 PRI IR I IR B R | of PRI EUEET N R BRIt P |
16 54 256 1024 200 400 600 800 1000 1200 200 200 600 800 1000 1200
log(# proc) # proc # proc
(a) Runge-Kutta (b) Runge-Kutta (c) LUSGS

Figure 12. Parallel efficiency (left) and speedup (middle/right) of the TAU Solver using different partitioning algorithms
for the HiRett test-case.

Table 8. Solver execution time per iteration using different partitioning algorithms for HiRett with
Runge-Kutta and LUSGS.

Partitioner | Time integration | 8 | 16 [32 | 64 [128 | 256 | 512 | 1024 |
Geometric RK 31.42 [16.03 | 8.49 | 4.68 | 257 | 1.74 [1.39 | 0.93
LUSGS 30.15 [15.09 | 8.22 [4.58 [254 | 1.6 [1.22 | 0.81
RCB RK 33.45 [17.82 | 94 | 54 [3.12] 1.98 [1.65 | 0.83
RIB RK 32.11 | 17.64 | 8.46 | 4.74 [2.64 [1.73 [1.18 | 0.72
HSFC RK 34.01 | 1713 | 9.8 [487 | 269 | 1.74 | 1.2 | 0.85
Graph RK 32.91 | 16.37 | 8.76 | 4.56 | 245 | 1.51 [0.95 | 0.44
LUSGS 31.89 | 15.95 | 8.4 | 4.41 [2.39 [1.39 [0.87 [0.39

11 of 20

American Institute of Aeronautics and Astronautics

Analyzing Table 8, we can see for the first time a surprising trend. Below 128 processors the time per
iteration for the Geometric partitioner is smaller in comparison to the Graph partitioner while it becomes,
as expected, vice versa from 128 up to 1024 processors. One explanation may be because of dividing the
domains by elements for the Geometric one and by edges for the Graph one. Imagine a homogeneous grid
with hexahedrons and the smallest partition would include one central hexahedron and four neighboring
elements on each side which will contain 24 points in the domain. The smallest partition for the Graph will
result in only 11 edges which introduces more communication whenever there is a small number of partitions.
For a high number of domains firstly this relation becomes more equal due to contributions of boundaries
in each domain for the Geometric one (for boundaries it will result in about 20 points) and secondly to the
smaller hull, compare Figure 8 and Figure 9 of each domain for the Graph partitioner which decreases the
communication load.

The performance results for the ALVAST case, Figure 13, show again improvements in the scalability
(left) and the solver speedup (middle) using a Graph instead of Geometric partitioner for Runge-Kutta
(middle) and LUSGS (left).

40 150 150
—o—— Geometric Linear Linear
RCB ——o—— Geometric —&— Geometric
& RIB RCB —-©—- Graph
— -o— - Graph & RIB
30 A — -o—- Graph
\
= \ 5100 - 2100
H \ ® s
E ol \ 2 g
- » o
E \]] - 2
@ = E-] -
E N 5 B 5
& N 2 50 - 2 50 =
P -
10+ -
2 s
. = - g g -
0 I I F——g 0 I | I I i | DM I I I]
16 32 56 512 1024 0 200 400 600 800 1000 1200 200 200 600 800 1000 1200
proc # pros

64 128 2
log(# proc)
(a) Runge-Kutta (b) Runge-Kutta (c) LUSGS

Figure 13. Parallel efficiency (left) and speedup (middle/right) of the TAU Solver using different partitioning algorithms
for the ALVAST test-case.

Table 9. Solver execution time per iteration using different partitioning algorithms for ALVAST with
Runge-Kutta and LUSGS.

Partitioner | Time integration || 8 | 16 | 32 | 64 | 128 | 256 | 512 | 1024 |
Geometric RK 32 16.56 | 8.57 | 4.56 | 2.68 | 1.63 | 1.22 | 0.98
LUSGS 31.59 | 16.16 | 8.45 | 458 | 2.59 | 1.62 | 1.11 | 0.63
RCB RK 3273 | 179 [10.05 | 56 [3.17 [1.94 | 1.53 | 1.14
RIB RK 32.08 | 16.61 | 8.74 | 471 | 2.7 | 1.66 | 1.04 | 0.54
Graph RK 33.07 | 17.83 | 8.92 | 491 | 2.81 | 1.65 | 0.95 | 0.57
LUSGS 32.67 | 17.51 | 8.77 | 477 [278 [1.51 [0.92 | 0.44

In comparison to the HiRett case Figure 12 the speedup of the ALVAST case, Figure 13 shows a visible
lack of the speedup due to the additional communication for the engine mass coupling. Concerning the time
used in parallelization mode there are two main parts which rely firstly on setting up the communication
between two processors and the time used for transferring an amount of data. These two times may vary
enormous between less to many partitions. Partitions with a very low number of points per partition spend
a high amount of time for setting up the complex socket communication. Engine mass coupling introduces
in the simple way only one integral value or in a more complex way a partial mass flow over the inflow and
outflow faces. This very small amount of data which have to be sent over domains is predominately driven
by setting up the additional communication for a high number of processors.

The maximum allowable CFL number for the explicit three stages Runge-Kutta scheme with a 4w
multigrid cycle remained unchanged throughout all simulations for both cases. Unlike the semi-explicit
LUSGS scheme for the ALVAST computations for 512 and 1024 partitions. The CFL number had to be
decreased by half of the CFL number as used for 8 domains to maintain a converging simulation.

12 of 20

American Institute of Aeronautics and Astronautics

From the execution times obtained in Table 8 and Table 9 we can see that even slight improvements
per iteration could provide a significant enhancement in case of complete simulations over a huge number of
processors.

Finally, the convergence history obtained for the HiRett case, using 8 and 64 processors is seen in
Figure 14. Independently of the number of processors the density residual and integral force coefficients

10° 9491 10° 491
private 8 prog (solid lings) R phg 8 proc (sold lines) 1
private 64 pro¢ (dashed lines) {] phg 64 proc (dashed ines)]

o 108 108

10 -3 3]

1o 105

107 1.1 @ 1.1 @

E 113 3 11,9
o =104 o =104
o O] o O]
T 1 lia 1
] qes] oz
10+ 45 45
140 140
[o5] PN BN BT B o, A 1. {150 “TEN RN B D vud (155
500 1000 1500 2000 2500 3000 500 1000 1500 2000 2500 000
lterations lterations

Figure 14. Solution comparison using Geometric and Graph for 8 (left) and 64 processors (right)

should converge to the same values theoretically when using the same flow parameters for the simulation.
The lift and drag coefficients are the same which is reassuring but the density residual exhibits a slightly
non matching behavior between different processors. Flow phenomena, like separation or shocks are very
sensitive with respect to slight but unforeseen algorithmic changes on partitioned boundaries.

The advanced partitioning algorithms pay off for their efficiency whenever the computational work, which
is related to the number of points per domain, is higher than the communication load. As expected, the
Graph partitioner shows even for a high number of processors a speedup closer to the linear speedup while
the Geometric one saturates very soon at around 200 for HiRett and around 250 processors for ALVAST.

All of the new partitioning algorithms used with TAU have some important features that can be adapted
for complex applications. RCB, RIB and Graph permit dynamic load balancing and Graph permits also
multiconstraint partitioning to partition a graph in the presence of multiple balancing constraints. The idea
is that each vertex has a vector of weights of size m associated with it, and the objective of the partitioning
algorithm is to minimize the edgecut subject to the constraints that each one of the m weights is equally
distributed among the domains.

This feature is important when the architecture of the computation platform is heterogeneous, as occurs in
hardware acceleration and will be subject of further investigations.

V. Acceleration: A Feasibility Study on the Application of FPGAs and GPUs
for the Hardware Acceleration of CFD Simulations

The aeronautic industry requirements in the near future will not be accomplished by the usual evolution
of current processors and architectures. Indeed, it is estimated that to obtain “engineering-accuracy” pre-
dictions of surface pressures, heat transfer rates, and overall forces on asymmetric and unsteady turbulence
configurations, the grid size will have to be increased to a minimum of 50-80 million nodes. This means
that the simulation of a complete aircraft configuration will require several days to obtain solutions in a
high performance cluster with hundreds of processors, so an exponential increment of the computational
requirements is estimated.

Therefore, the improvements expected at optimization and parallelization levels are not enough, and it will
be necessary to introduce new concepts in typical simulation platforms in order to satisfy these demands

13 of 20

American Institute of Aeronautics and Astronautics

and to face more complex challenges.

As hardware acceleration is a very innovative task, in this chapter, some on going activities and feasibility
studies in several projects will be introduced.

Two alternatives to speedup the performance of the cluster of PCs are quickly emerging due to recent
technological advances.

The first one is based on Graphics Processing Units (GPU)?* 3¢ as computing resources that complement
the processors in the PCs. These general-purpose devices have evolved to constitute powerful pipelined
vector processors capable of delivering very high throughputs in optimal conditions at a relatively low cost.
The effective improvements that can be obtained from this technology in CFD simulations remain to be
demonstrated and will be partially analyzed in this section.

The second alternative is based on reconfigurable hardware, in particular, Field Programmable Gate
Arrays (FPGA) as computing resources in accelerator boards connected to the PCs of the cluster. This
technology uses a completely different approach to the problem. Instead of general-purpose resources, FP-
GAs provide application-specific data paths that are optimized to compute the critical parts of the CFD
algorithms. The optimization includes the possibility of both, space and time parallelism so the implemented
circuits are capable of delivering throughputs well above those provided by general-purpose processors. The
overall idea with FPGAs is to introduce a new level of parallelism in the system architecture. While the PCs
in the cluster implement coarse-grained parallelism resulting from partitioning the dataset, the specialized
hardware in the accelerators implements fine-grain parallelism at the operation level, accelerating the set of
operations assigned to each local processor (parallelism in the hardware functional units that provide several
results at the same time)!3 .

One main idea is that all the computational nodes in the cluster are FPGA-powered, so load balance
has to be taken into account. This means that the subdomain decomposition process has to assign to the
FPGA-powered computational nodes an adequate workload in order to support efficient synchronization in
the overall system. Due to the heterogeneous nature of the architectures existing in a cluster platform,
including differences in performance between the general-purpose CPUs, special considerations about global
synchronization have to be explored. The partitioning algorithm has to allow a multiconstraint partitioning
with at least 2 weights per mesh node, one related to each level of paralellism. The new graph partitioning
algorithm that has been linked to be used in TAU, permits also multiconstraint partitioning to partition a
graph in the presence of multiple balancing constraints. Each vertex can have a vector of weights of size
m associated with it, and the objective of the partitioning algorithm is to minimize the edgecut subject to
the constraints that each one of the m weights is equally distributed among the domains. It is assumed
that at least two weights should be considered (for the fine and coarse level of parallelism) in the case of
homogeneity between the type of processors and HW accelerators.

Of course, porting a critical part of an algorithm to an FPGA implies a complete design cycle, but once
completed, the design is ready to be loaded at any time in any FPGA. Since FPGAs are reconfigurable,
different designs can be loaded at different times depending on the application needs, making FPGAs very
interesting devices to act as coprocessors in computation intensive applications.

FPGAs also have some limitations. In particular, there is a limit on the amount of computations that
can be performed in an FPGA at maximum throughput, depending on the available resources in the FPGA.
When this limit is exceeded, resources must be shared among computations and performance reduces. Also,
the communications interface between the PC memory and the FPGA is a major concern as the available
bandwidth can limit the effective global performance. From these considerations, it can be observed that
FPGAs are best adapted to applications where most computational effort concentrates on a small portion
of the code which is repeatedly executed for a large dataset. In addition, the input/output (I/O) communi-
cations load has to be small when compared to the computational load, to avoid saturating the PC-FPGA
interface. CFD codes seem to fullfill these requirements and, therefore, appear as good candidates to benefit
from FPGA-based accelerators.

In this section, a preliminary performance analysis is carried out for different scenarios, based on detailed
error analyses and FPGA syntheses. CPU-, GPU-, and FPGA-based system performances are drawn and
compared to establish the feasibility of FPGA-based acceleration.

V.A. The architecture: A cluster of PCs with accelerator boards

This subsection is a short review of the state of the art of the specific technologies involved in the architecture.
First, the families of high-performance FPGAs available in the market are presented. Second, the interface

14 of 20

American Institute of Aeronautics and Astronautics

between the PC and the FPGA is shown, with special focus on the PCI Express (PClI-e) interface which
appears as one of the most promising alternatives. Finally, the main characteristics of today’s GPUs are
briefly introduced.

V.A.1. Field Programmable Gate Arrays (FPGAs)

Field Programmable Gate Arrays (FPGAs) are reconfigurable devices that, over the years, have gained the
reputation of being the most used devices for complex system prototyping. With the addition of high-speed
I/O and highly-efficient embedded processing and memory blocks, FPGAs are also gaining acceptance as
relatively low-cost devices in production systems where high-performance, and not only flexibility, is required.
Among the FPGA manufacturers, Xilinx Incorporated and Altera Corporation comprise the fabrication of
more than 90% of such devices. These two big companies offer different types of FPGAs, but in both
cases they distinguish between high-performance and low-cost families of FPGAs. Table 10 summarizes the
characteristics of the most advanced families of FPGAs from these companies. The columns show the total
amounts of user I/O pins, configurable logic cells, and dedicated-memory bits.

Table 10. Summary of characteristics of the most recent families of FPGAs.

Manufacturer Family I/O pins | Logic cells (z10%) | Memory (Mb)
XILINX Virtex-5 LX | 400-1200 30.7-331.7 Up to 10.3
XILINX Virtex-5 LXT | 172-960 19.9-331.7 Up to 11.6
XILINX Virtex-5 SXT | 360-640 34.8-94.2 Up to 8.8
ALTERA Stratix ITI-L. | 288-1104 47.5-338 Up to 16.3
ALTERA Stratix I1I-E 288-960 47.5-254.4 Up to 14.7

V.A.2. High-speed interfaces

Complex systems are always demanding higher communication bandwidths. In order to cope with these
demands, modern standards have successively increased the transmission frequency and/or the number of
wires of the interfaces to provide greater capacities. Table 11 shows some of the fastest and most relevant
interfaces proposed in these years, and their effective capacity.

Table 11. Transmission capacity of current high-speed inter-

faces.
Interface Capacity (Gbps)
PCI Express (8 lane) 16.000
AGP 8x 17.066
PCI-X DDR 17.066
RapidIO (16 lane) 20.000
HyperTransport (1 GHz, 16-pair) 32.000
PCI Express (16 lane) 32.000
AGP 8x 64-bit 34.133
PCI Express (32 lane) 64.000
PCI Express 2.0 (32 lane) 128.000
HyperTransport (2.8 GHz, 32-pair) 179.200

PCl-e is one of the most suitable interfaces in the architecture for CFD simulation. The main reasons for
this are its flexibility of configuration and its capacity, together with the availability of FPGA development
boards with PCI-e support from both major manufacturers, Xilinx and Altera. However, some FPGA-
based coprocessor solutions using HyperTransport have recently appeared in the market. DRC Computer
offers its family of RPUs (Reconfigurable Processor Units), based on Virtex-4 devices, that connects to
AMD Opteron systems through an 16-pair HyperTransport interface at 400 MHz (maximum 12.8 Gbps).
Other solution is provided by XtremeData Inc. and its family of in-socket accelerators based on Altera’s

15 of 20

American Institute of Aeronautics and Astronautics

Stratix-II FPGAs. These coprocessors plug directly into specific AMD sockets and connect through a 16-
pair HyperTransport bus at 800MHz (maximum 25.6 Gbps). Other alternative is provided by SGI, that
offers its RASC (Reconfigurable Application Specific Computing) technology, based on Virtex-4 FPGAs
and its proprietary NUMAlink 4 interface, which is specially targeted for shared memory multiprocessing,
supporting 51.2 Gbps.

V.A.3. Graphics Processor Units (GPU)

Traditionally, GPUs have been used as rendering units and their range of application has been limited to
graphics processing. Mainly, GPUs have provided approximations to physical models (water caustics, light
reflection, shadows, etc.) to give a more realistic feel to video games. In modern graphics cards, GPUs
have evolved to become a cost effective computation workhorse. Multiple independent pipelines and vector
arithmetic make GPUs a powerful parallel processing platform. Recent additions of full programmability and
IEEE-standard floating point arithmetic finally open the field to general purpose intensive computations in
the so-called GPGPUs. However, GPUs are not suited for all kinds of general purpose applications due to its
lack of support for double-precision data types (64-bit GPU devices providing one third of the performance of
current 32-bit GPUs have been announced). Another possible drawback is that the rapid evolution of these
devices which lacks architectural continuity (algorithms which are optimized for some GPU architecture may
perform poorly in a different GPU architecture).

Although other big manufacturers have announced GPGPU products, nVidia is the major manufacturer
today in the market. Table 12 summarizes the characteristics of some of the most relevant nVidia GPUs. It
can be observed that multiple clocks are used in the units.

Table 12. Main characteristics of GPU devices from nVidia

GPU Clock Core | Clock Shader | Memory Size
(MHz) (Mhz) (MB)
GeForce 8400 GS 450 900 256
GeForce 8300 GT 600 1,500 512
GeForce 8800 GTX 575 1,350 768
GeForce 8800 Ultra 612 1,500 768
Tesla C870 575 1,350 1,500
Tesla D870 2 * 575 2 * 1,350 3,000
Tesla S870 4 * 575 4 * 1,350 6,000

V.B. Preliminary performance analysis

The main goal of this study, apart from establishing the technological feasibility of FPGA or GPU -based
hardware accelerators for CFD computing, is to determine the speedups that can be achieved. In this sense,
several issues need to be addressed. First, an error analysis is carried out to determine the data representation
formats to be used in the FPGAs. Then, a performance study is conducted for different FPGA and GPU
configurations in order to determine the effective performances that can be achieved for Euler’s algorithm
in systems with limited bandwidth in the coprocessor interface are analyzed3” .

The reference for performance evaluation are the execution times of the software implementation of
Euler’s algorithms running in a PC. They are measured in a PC with an AMD Athlon dual core processor
4800+ at 2.51 GHz and 1 GB of RAM. Computation times are measured as true CPU times (i.e. using C
functions of the system library) in order to avoid the bias produced by other system processes in stopwatch
measurements. GPU performace values to be used as reference are also drawn, either measured using an
nVidia GeForce 8400 GS, or estimated for other GPUs from these measurements. In the case of FPGAs, a
Virtex V LX110T has been selected.

V.B.1. Error analysis

FPGA performance depends on the latencies of the internal functional units, which, in turn, depend on the
word-lengths assigned to their operands in the quantization design phase. For this reason, it is necessary to

16 of 20

American Institute of Aeronautics and Astronautics

determine the error introduced by different uniform word-lengths, and to compare it to the overall precision
requirement. Error analysis is performed through simulations of the algorithm specification modified for
hardware implementation. Errors are measured in terms of the standard deviation o, (i.e. the square root
of the variance) of the differences between the values obtained using constrained data types and reference
values. In particular, measured errors are provided as log;,(o.) so they directly relate to the fractional
decimal digit affected by the error.

A first set of simulations is run in order to determine the errors introduced by word-length constraints
only in Roe’s computation. The objective is to determine the range of precisions that can be expected from
specific data types in fixed-point and floating-point formats. A trace-based simulation approach is followed,
where input reference traces of the conservative variables in each iteration are used to obtain output traces
of the computed fluxes. A grid with 10? cells is simulated during 102 iterations for a total of 10° Roe’s
computations. Tables 13 and 14 present the results obtained for the three output components, f1, {2, and
f3 (inviscid fluxes). In 14 , word-lengths are described in terms of the bits of the mantissa and the exponent
of the floating-point format (i.e. the type 18/6 uses 24 total bits).

Table 13. Approximate errors expressed as log, 0(c.) for different fixed-point data types.

Output variable Word-length (bits)
8 16 24 32 40 48 56 64
f1 -2.62 -493 -736 -9.86 -12.26 -14.67 -17.07 -19.47
f2 -232 -4.71 -7.09 -9.53 -11.93 -14.33 -16.76 -19.16
3 -1.93 -426 -6.64 -9.17 -11.56 -13.97 -16.35 -18.76

Table 14. Approximate errors expressed as log, 0(c.) for different floating-point data types

Output variable Mantissa/exponent lengths (bits)
18/6 20/4 24/8 28/4 32/8 40/8 46/10 53/11
f1 -5.45 -6.04 -7.22 -840 -9.61 -12.02 -13.82 -15.97
2 -5.14 -5.74 -6.90 -8.09 -9.29 -11.70 -13.51 -15.64
3 -4.75 -535 -6.49 -7.67 -888 -11.29 -13.09 -15.23

In particular, 8 and 16-bit fixed-point types produce errors that show in the third (or second in f3)
and fifth digits of the computed fluxes, respectively, so they are discarded. Also, word-lengths above 40
bits provide too much precision (errors show below the 12th digit) which is considered unnecessary, so they
are also discarded from further study. Results for the floating-point format show that, not only type 18/6
and types with total word-length above 48 bits are also discarded for the reasons above, but, mainly, that
this format generates larger errors than the fixed-point format for the same total bits. In fact, it produces
errors comparable to those produced by the fixed-point types with the word-length of the floating- point
mantissa. In other words, floating-point errors reduce if more bits are assigned to the mantissa thus reducing
the exponent bits.

As a conclusion, simulations indicate that a minimum fixed-point word-length of around 24 bits should
be used for the hardware implementation. Similarly, a minimum of around 20/4 mantissa/exponent bits
should be used in floating-point types.

V.B.2. FPGA synthesis results

Table 15 summarizes the reported synthesis values of the fixed-point and floating-point designs.

17 of 20

American Institute of Aeronautics and Astronautics

Table 15. Design estimates for maximum throughput.

Data format | Word-length | Bit slices | DSP cores | Max Frequency
Fixed 24 17,108 21 290.2
Fixed 32 38,740 22 265.4
Fixed 40 49,676 44 219.7

Floating 24/8 69,772 0 263.8
Floating 24/8 56,960 42 249.3
Floating 24/8 62,860 64 244.1

The advantages of using shorter word-lengths are clearly shown. Not only higher processing speeds are
obtained (the 24-bit fixed-point design can perform 290 10° flux computations per second), but reduced I/0
rates are required for such maximum speeds. Floating-point designs almost perform as fast for equivalent
word-lengths (24/8-bit vs 32-bit).

Fixed point format provides improved performance and reduced area but however, floating point format
is not discarded because it provides feasible design (using available Xilinx IP cores) and can be required in
case of large dynamic range (in Navier Stokes).

V.B.3. Effective performance analysis

Performance has been analyzed using the previous FPGA values together with reference values measured
for CPU and GPU devices. The performance analysis for the module is shown in Table 16.

Table 16. Speedups obtained for Euler’s algorithm.

Processor Format Bits Cores I/O (Gbps) Speedup
x8 x16 x32 Max
Athlon X2 4800+ Floating-point 53/11 - 0.6 1 1 1 1
GeForce 8300 GT Floating-point 24/8 - 11.1 34 34 34 34
GeForce 8300 Ultra Floating-point 24/8 - 12.9 40 40 40 40
Tesla S870 Floating-point 24/8 - 48.5 50 99 150 150
Virtex-5 LX30T Fixed-point 24 1 20.9 66 86 86 86
Virtex-5 LX110T Floating-point 24/8 1 25.3 50 79 79 79
Virtex-5 LX110T Fixed-point 40 1 26.4 40 65 65 65
Virtex-5 LX110T Fixed-point 32 1 25.5 50 79 79 79
Virtex-5 LX110T Fixed-point 24 3 62.7 66 132 259 259
Virtex-5 LX330T Floating-point ~ 24/8 3 75.9 50 99 199 236
Virtex-5 LX330T Fixed-point 40 4 105.6 40 79 159 262
Virtex-5 LX330T Fixed-point 32) 127.5 50 99 198 395
Virtex-5 LX330T Fixed-point 24 6 188.1 66 132 265 778

The acceleration with specific hardware is feasible today and generates even better expectations for the
future. Expected interface developments in the near future could multiply the current FPGA figures by a
factor of four. Ultimately, the processing limitations of the accelerators for Euler rate are much higher, with
maximum GPGPU speedups of 150, and maximum FPGA speedups above 770.

VI. Conclusions

The improvement of the code efficiency has been addressed through optimization by applying different
tuning strategies to reduce the execution time of the unstructured DLR TAU solver. Significant compu-
tational gains (around 11% for RK and 4% for LUSGS for a 64 bits machine) have been achieved and it
makes clear the necessity of code profiling and optimization involving multidisciplinary knowledge to reduce

18 of 20

American Institute of Aeronautics and Astronautics

the execution time and memory consumption. Regarding with value precision, a study of single 32 bits and
double 64 bits precision has shown an important improvement (specially in memory consumption) using a
reduced precision if there are not significant differences in the solution.

Additionally, the analysis of different algorithms for parallelization to make a more efficient grid par-
titioning has been performed together with a feasibility study and analysis of the effective performance of
the hardware acceleration. Several partitioning algorithms have been included in the TAU code, and high
parallel simulations using up to 1024 processors have been performed to test the efficiency and scalability of
the selected new algorithms for industrial configurations. The conclusion here is that the graph partitioner
algorithm maintains the speedup much closer to the linear one for a high number of processors in all the
tests performed.

Moreover, the current status of the development of a mixed hw-sw computation platform for simulation
has been presented focusing in precision and speedup estimations which shows a promising technology when
the precision format required is limited. Word lengths must be determined by error analysis and precision
requirements and they will affect the final speedup achieved. Future efforts in hardware acceleration will be
performed to achieve a complete implementation with optimal balance between area and performance and
a mixed hardware-software cluster architecture to test the effective acceleration into a simulation platform.

Acknowledgments

The research described in this paper made by INTA and DLR researchers has been supported under the
INTA activity Termofluidodinamica (INTA’s code: 1GB4400903), by the Spanish Ministry of Education and
Science (MEC) under the DOMINO Project(CIT-370200-2007-22) and under the high performance activity
for the TAU code at C2A2S%E at the Institute of Aerodynamics and Flow Technology in Braunschweig. In
particular, this work has been possible due to the close cooperation between the two organizations.

References

1Jameson, A., “Computational aerodynamics for aircraft design.” Science Magazine, Vol. 245, 1989, pp. 361 — 371.

2Kroll, N., Gerhold, T., Melber, S., Heinrich, R., Schwarz, T., and Schoning, B., “Parallel Large Scale Computations
for Aerodynamic Aircraft Design with the German CFD System MEGAFLOW,” Parallel Computational Fluid Dynamics -
Practice and Theory, 2002.

SMavriplis, D., “Unstructured Mesh Discretizations and Solvers for Computational Aerodynamics.” 18" Computational
Fluid Dynamics Conference, AIAA, Miami, FL, 25-28 June 2007.

4Mavriplis, D., “Parallel Performance Investigation of an Unstructured Mesh Navier-Stokes Solver.” International Journal
of High Performance Computing, Vol. 2(16), 2002, pp. 395-406.

5Schwamborn, D., Gerhold, T., and Heinrich, R., “The DLR Tau-code: recent applications in research and industry.”
Proceeding of ECCOMAS CFD 2006, Egmond aan Zee, Netherlands, 5.-8. September 2006.

6Alrutz, T., “Investigation of the parallel performance of the unstructured DLR-TAU-Code on distributed computing
systems.” Proceedings of Parallel CFD 2005, edited by Elsevier, Elsevier, Washington, DC (USA), May 2005, pp. 509 — 516.

"Wylie, B. J. N., Geimer, M., Nicolai, M., and Probst, M., “Performance analysis and tuning of the XNS CFD solver on
BlueGene/L.” Recent Advances in Parallel Virtual Machine and Message Passing Interface, Vol. LNCS 4757 of Proceedings of
the 14th European PVM/MPI User’s Group Meeting, Paris, France, Springer, 2007, pp. 107-116.

8Gropp, W. D., Kaushik, D. K., David, Y., Keyes, E., and Smith, B. F., “Performance modeling and tuning of an
unstructured mesh CFD application.” In Proceedings of SC2000. IEEE Computer Society, 2000, pp. 0 — 7803.

9“ZOLTAN Parallel Partitioning, Load Balancing and Data-Management Services,” http://www.cs.sandia.gov/Zoltan.

10Sillen, M., “Evaluation of Parallel Performance of an Unstructured CFD-Code on PC-Clusters.” 17th AIAA Computa-
tional Fluid Dynamics Conference, AIAA, Toronto, Ontario, Canada, 2005.

HPputtegowda, K. and Worek, W., “A Run-time Reconfigurable System for Gene-sequence Searching.” Proceedings of the
International VLSI Design Conference, 2003.

12Mahmoud, B., Bedoui, M. H., Essababah, R., and Essabbah, H., “Nuclear medical image treatment system based on
FPGA in real time.” International Journal of Signal Processing, 2004.

13 Andres, E., Carreras, C., Caffarena, G., Nieto, O., and Palacios, F., “A Methodology for CFD Acceleration Through
Reconfigurable Hardware.” 46th AIAA Aerospace Sciences Meeting and Exhibit, edited by AIAA, ATAA, Reno, Nevada, Jan.
7-10 2008.

M4Strenski, D., “Computational Bottlenecks and Hardware Decisions for FPGAs.” FPGA and Structured ASIC Journal,
2006.

15
1994-.

16Gerhold, T., Galle, M., Friedrichs, O., and Evans, J., “Calculation of Complex Three-Dimensional Configurations em-
ploying the DLR TAU-Code.” Aiaa-97-0167, ATAA, 1997.

17 «CentaurSoft,” http://www.centaursoft.com.

various, “Technical Documentation of the DLR TAU-Code.” Tech. rep., Institut of Aerodynamics and Flow Technology,

19 of 20

American Institute of Aeronautics and Astronautics

18 «python Open Source,” http//:www.python.org.

9Spalart, P. R. and Allmaras, S. R., “A one-equation turbulence model for aerodynamic flows.” Aiaa paper 92-0439, ATAA,
1992.

20Edwards, J. R., “Comparison of eddy viscosity-transport turbulence models for three dimensional, shock-separated flow-
fields.” AITAA Journal, Vol. 34, No. 4, 1996, pp. 756 — 763.

21Schmitt, V. and Charpin, F., “Pressure Distributions on the ONERA M6 Wing at Transsonic Mach Numbers.” Experi-
mental Database for Computer Program Assessment. AGARD-AR-138, pp. B1-1-B1-44, AGARD, May 1979.

22Brodersen, O., Monsen, E., Ronzheimer, A., Rudnik, R., and Rossow, C. C., “Computation of aerodynamic coefficients
for the DLR-F6 configuration using MEGAFLOW,” New Results in Numerical and Exzperimental Fluid Mechanics II, Vol. 72,
06 1999, pp. 85 — 92.

23Brodersen, O. and Stiirmer, A., “Drag Prediction of Engine - Airframe Interference Effects using Unstructured Navier-
Stokes Calculations.” Aiaa-2001-2414, ATAA, 2001.

24Laflin, K. R., Klausmeyer, S. M., Zickuhr, T., Vassberg, J. C., Wahls, R. A., Morrison, J. H., Brodersen, O., Rakowitz,
M. E., Tinoco, E. N., and Godard, J.-L., “Data Summary from Second ATAA Computational Fluid Dynamics Drag Prediction
Workshop.” Journal of Aircraft, Vol. 42, No. 5, 2005, pp. 1165-1178.

25Vassberg, J. C., Tinoco, E. N., Mani, M., Brodersen, O. P., Eisfeld, B., Wahls, R. A., Morrison, J. H., Zickuhr, T., Laflin,
K. R., and Mavriplis, D. J., “Summary of the Third ATAA CFD Drag Prediction Workshop.” Aiaa paper 2007-0260, ATAA,
Reno, Nevada, January 2007.

26Boman, E., Devine, K., Heaphy, R., Hendrickson, B., Leung, V., Ann, L., Vaughan, C., Catalyurek, U., Bozda, D., and
Teresco, J., “Zoltan Library User Guide,” Agard, Sandia National Laboratories, Inc., 2007.

27Berger, M. J. and Bokhari, S. H., “A partitioning strategy for nonuniform problems on multiprocessors.” IEEE Trans-
actions on Computers, Vol. C-36(5), May 1987, pp. 570-580.

28Shephard, M. S., Flahertya, J. E., de Cougny, H. L., Ozturan, C., Bottasso, C. L., and Beall, M. W., “Parallel automated
adaptive procedures for unstructured meshes.” AGARD R-807, pages 6.1-6.49, In Parallel Comput. in CFD, Neuilly-Sur-Seine,
1994.

29Taylor, V. E. and Nour-Omid, B., “A Study of the Factorization Fill-in for a Parallel Implementation of the Finite
Element Method.” International Journal for Numerical Methods in Engineering, Vol. 37, 1995, pp. 3809-3823.

30Krumbein, A., “personal communication,” .

31Rakowitz, M., Heinrich, S., Krumbein, A., Eisfeld, B., and Sutcliffe, M., “Computation of Aerodynamic Coefficients
for Transport Aircraft with MEGAFLOW,” Notes on Numerical Fluid Mechanics and Multidisciplinary Design, edited by
Springer, Vol. 89, Springer Verlag, 2005, pp. 135—150.

32Schenk, M., “Modification of the ALVAST geometry for CFD calculations,” DLR IB 129-95/25, 1995.

33Kiock, R., “The ALVAST Model of DLR,” DLR Institusbericht 129-96/22, DLR, 1996.

34Brandvik, T. and Pullan, G., “Acceleration of a 3D Euler Solver Using Commodity Graphics Hardware.” 46th AIAA
Aerospace Sciences Meeting and Exhibit, Reno, Nevada, Jan. 7-10 2008.

35Martin, M., Andres, E., and Carreras, C., “Solving the Euler Equations for Unstructured Grids on Graphical Processor
Units.” 9th International Workshop on State-of-the-Art in Scientific and Parallel Computing, Trondheim, Norway, May 13-16
2008.

36Bolz, I., Farmer, E. G., and Schroeder, P., “Sparse matrix solvers on the GPU: conjugate gradients and multigrid.” IEEE
Transactions on Graphics (TOG), 2003.

37Carreras, C., Lopez, J., Sierra, R., Rubio, A., Caffarena, G., Pejovic, V., Nieto, O., Andres, E., Baeza, A., and Palacios,
F., “A Feasibility Study on the Application of FPGAs for the Hardware Acceleration of CFD Simulations,” Tech. rep., DOVRES
Technical Report, 2008.

20 of 20

American Institute of Aeronautics and Astronautics

	Introduction
	Brief Introduction to the TAU Code.
	Optimization: Analysis and remodelling of most time consuming algorithms in TAU
	Parallelization: Solver scalability using different partitioning algorithms
	Current partitioning status of the DLR TAU Code
	Exploring different partitioning algorithms for the DLR TAU Code
	Recursive Coordinate Bisection (RCB)
	Recursive Inertial Bisection (RIB)
	Hilbert Space-Filling Curve (HSFC)
	Graph partitioning

	Runtime Performance Analysis for different partitioning algorithms.

	Acceleration: A Feasibility Study on the Application of FPGAs and GPUs for the Hardware Acceleration of CFD Simulations
	The architecture: A cluster of PCs with accelerator boards
	Field Programmable Gate Arrays (FPGAs)
	High-speed interfaces
	Graphics Processor Units (GPU)

	Preliminary performance analysis
	Error analysis
	FPGA synthesis results
	Effective performance analysis

	Conclusions

