295 research outputs found

    ULTRA-FAST AND MEMORY-EFFICIENT LOOKUPS FOR CLOUD, NETWORKED SYSTEMS, AND MASSIVE DATA MANAGEMENT

    Get PDF
    Systems that process big data (e.g., high-traffic networks and large-scale storage) prefer data structures and algorithms with small memory and fast processing speed. Efficient and fast algorithms play an essential role in system design, despite the improvement of hardware. This dissertation is organized around a novel algorithm called Othello Hashing. Othello Hashing supports ultra-fast and memory-efficient key-value lookup, and it fits the requirements of the core algorithms of many large-scale systems and big data applications. Using Othello hashing, combined with domain expertise in cloud, computer networks, big data, and bioinformatics, I developed the following applications that resolve several major challenges in the area. Concise: Forwarding Information Base. A Forwarding Information Base is a data structure used by the data plane of a forwarding device to determine the proper forwarding actions for packets. The polymorphic property of Othello Hashing the separation of its query and control functionalities, which is a perfect match to the programmable networks such as Software Defined Networks. Using Othello Hashing, we built a fast and scalable FIB named \textit{Concise}. Extensive evaluation results on three different platforms show that Concise outperforms other FIB designs. SDLB: Cloud Load Balancer. In a cloud network, the layer-4 load balancer servers is a device that acts as a reverse proxy and distributes network or application traffic across a number of servers. We built a software load balancer with Othello Hashing techniques named SDLB. SDLB is able to accomplish two functionalities of the SDLB using one Othello query: to find the designated server for packets of ongoing sessions and to distribute new or session-free packets. MetaOthello: Taxonomic Classification of Metagenomic Sequences. Metagenomic read classification is a critical step in the identification and quantification of microbial species sampled by high-throughput sequencing. Due to the growing popularity of metagenomic data in both basic science and clinical applications, as well as the increasing volume of data being generated, efficient and accurate algorithms are in high demand. We built a system to support efficient classification of taxonomic sequences using its k-mer signatures. SeqOthello: RNA-seq Sequence Search Engine. Advances in the study of functional genomics produced a vast supply of RNA-seq datasets. However, how to quickly query and extract information from sequencing resources remains a challenging problem and has been the bottleneck for the broader dissemination of sequencing efforts. The challenge resides in both the sheer volume of the data and its nature of unstructured representation. Using the Othello Hashing techniques, we built the SeqOthello sequence search engine. SeqOthello is a reference-free, alignment-free, and parameter-free sequence search system that supports arbitrary sequence query against large collections of RNA-seq experiments, which enables large-scale integrative studies using sequence-level data

    XML-based approaches for the integration of heterogeneous bio-molecular data

    Get PDF
    Background: The today's public database infrastructure spans a very large collection of heterogeneous biological data, opening new opportunities for molecular biology, bio-medical and bioinformatics research, but raising also new problems for their integration and computational processing. Results: In this paper we survey the most interesting and novel approaches for the representation, integration and management of different kinds of biological data by exploiting XML and the related recommendations and approaches. Moreover, we present new and interesting cutting edge approaches for the appropriate management of heterogeneous biological data represented through XML. Conclusion: XML has succeeded in the integration of heterogeneous biomolecular information, and has established itself as the syntactic glue for biological data sources. Nevertheless, a large variety of XML-based data formats have been proposed, thus resulting in a difficult effective integration of bioinformatics data schemes. The adoption of a few semantic-rich standard formats is urgent to achieve a seamless integration of the current biological resources. </p

    Why High-Performance Modelling and Simulation for Big Data Applications Matters

    Get PDF
    Modelling and Simulation (M&S) offer adequate abstractions to manage the complexity of analysing big data in scientific and engineering domains. Unfortunately, big data problems are often not easily amenable to efficient and effective use of High Performance Computing (HPC) facilities and technologies. Furthermore, M&S communities typically lack the detailed expertise required to exploit the full potential of HPC solutions while HPC specialists may not be fully aware of specific modelling and simulation requirements and applications. The COST Action IC1406 High-Performance Modelling and Simulation for Big Data Applications has created a strategic framework to foster interaction between M&S experts from various application domains on the one hand and HPC experts on the other hand to develop effective solutions for big data applications. One of the tangible outcomes of the COST Action is a collection of case studies from various computing domains. Each case study brought together both HPC and M&S experts, giving witness of the effective cross-pollination facilitated by the COST Action. In this introductory article we argue why joining forces between M&S and HPC communities is both timely in the big data era and crucial for success in many application domains. Moreover, we provide an overview on the state of the art in the various research areas concerned

    Parallel programming paradigms and frameworks in big data era

    Get PDF
    With Cloud Computing emerging as a promising new approach for ad-hoc parallel data processing, major companies have started to integrate frameworks for parallel data processing in their product portfolio, making it easy for customers to access these services and to deploy their programs. We have entered the Era of Big Data. The explosion and profusion of available data in a wide range of application domains rise up new challenges and opportunities in a plethora of disciplines-ranging from science and engineering to biology and business. One major challenge is how to take advantage of the unprecedented scale of data-typically of heterogeneous nature-in order to acquire further insights and knowledge for improving the quality of the offered services. To exploit this new resource, we need to scale up and scale out both our infrastructures and standard techniques. Our society is already data-rich, but the question remains whether or not we have the conceptual tools to handle it. In this paper we discuss and analyze opportunities and challenges for efficient parallel data processing. Big Data is the next frontier for innovation, competition, and productivity, and many solutions continue to appear, partly supported by the considerable enthusiasm around the MapReduce paradigm for large-scale data analysis. We review various parallel and distributed programming paradigms, analyzing how they fit into the Big Data era, and present modern emerging paradigms and frameworks. To better support practitioners interesting in this domain, we end with an analysis of on-going research challenges towards the truly fourth generation data-intensive science.Peer ReviewedPostprint (author's final draft

    NOVEL COMPUTATIONAL METHODS FOR SEQUENCING DATA ANALYSIS: MAPPING, QUERY, AND CLASSIFICATION

    Get PDF
    Over the past decade, the evolution of next-generation sequencing technology has considerably advanced the genomics research. As a consequence, fast and accurate computational methods are needed for analyzing the large data in different applications. The research presented in this dissertation focuses on three areas: RNA-seq read mapping, large-scale data query, and metagenomics sequence classification. A critical step of RNA-seq data analysis is to map the RNA-seq reads onto a reference genome. This dissertation presents a novel splice alignment tool, MapSplice3. It achieves high read alignment and base mapping yields and is able to detect splice junctions, gene fusions, and circular RNAs comprehensively at the same time. Based on MapSplice3, we further extend a novel lightweight approach called iMapSplice that enables personalized mRNA transcriptional profiling. As huge amount of RNA-seq has been shared through public datasets, it provides invaluable resources for researchers to test hypotheses by reusing existing datasets. To meet the needs of efficiently querying large-scale sequencing data, a novel method, called SeqOthello, has been developed. It is able to efficiently query sequence k-mers against large-scale datasets and finally determines the existence of the given sequence. Metagenomics studies often generate tens of millions of reads to capture the presence of microbial organisms. Thus efficient and accurate algorithms are in high demand. In this dissertation, we introduce MetaOthello, a probabilistic hashing classifier for metagenomic sequences. It supports efficient query of a taxon using its k-mer signatures

    The Role of Distributed Computing in Big Data Science: Case Studies in Forensics and Bioinformatics

    Get PDF
    2014 - 2015The era of Big Data is leading the generation of large amounts of data, which require storage and analysis capabilities that can be only ad- dressed by distributed computing systems. To facilitate large-scale distributed computing, many programming paradigms and frame- works have been proposed, such as MapReduce and Apache Hadoop, which transparently address some issues of distributed systems and hide most of their technical details. Hadoop is currently the most popular and mature framework sup- porting the MapReduce paradigm, and it is widely used to store and process Big Data using a cluster of computers. The solutions such as Hadoop are attractive, since they simplify the transformation of an application from non-parallel to the distributed one by means of general utilities and without many skills. However, without any algorithm engineering activity, some target applications are not alto- gether fast and e cient, and they can su er from several problems and drawbacks when are executed on a distributed system. In fact, a distributed implementation is a necessary but not su cient condition to obtain remarkable performance with respect to a non-parallel coun- terpart. Therefore, it is required to assess how distributed solutions are run on a Hadoop cluster, and/or how their performance can be improved to reduce resources consumption and completion times. In this dissertation, we will show how Hadoop-based implementations can be enhanced by using carefully algorithm engineering activity, tuning, pro ling and code improvements. It is also analyzed how to achieve these goals by working on some critical points, such as: data local computation, input split size, number and granularity of tasks, cluster con guration, input/output representation, etc. i In particular, to address these issues, we choose some case studies coming from two research areas where the amount of data is rapidly increasing, namely, Digital Image Forensics and Bioinformatics. We mainly describe full- edged implementations to show how to design, engineer, improve and evaluate Hadoop-based solutions for Source Camera Identi cation problem, i.e., recognizing the camera used for taking a given digital image, adopting the algorithm by Fridrich et al., and for two of the main problems in Bioinformatics, i.e., alignment- free sequence comparison and extraction of k-mer cumulative or local statistics. The results achieved by our improved implementations show that they are substantially faster than the non-parallel counterparts, and re- markably faster than the corresponding Hadoop-based naive imple- mentations. In some cases, for example, our solution for k-mer statis- tics is approximately 30Ă— faster than our Hadoop-based naive im- plementation, and about 40Ă— faster than an analogous tool build on Hadoop. In addition, our applications are also scalable, i.e., execution times are (approximately) halved by doubling the computing units. Indeed, algorithm engineering activities based on the implementation of smart improvements and supported by careful pro ling and tun- ing may lead to a much better experimental performance avoiding potential problems. We also highlight how the proposed solutions, tips, tricks and insights can be used in other research areas and problems. Although Hadoop simpli es some tasks of the distributed environ- ments, we must thoroughly know it to achieve remarkable perfor- mance. It is not enough to be an expert of the application domain to build Hadop-based implementations, indeed, in order to achieve good performance, an expert of distributed systems, algorithm engi- neering, tuning, pro ling, etc. is also required. Therefore, the best performance depend heavily on the cooperation degree between the domain expert and the distributed algorithm engineer. [edited by Author]XIV n.s
    • …
    corecore