
International Journal of Parallel Programming manuscript No.
(will be inserted by the editor)

Parallel Programming Paradigms and Frameworks
in Big Data Era

Ciprian Dobre · Fatos Xhafa

Received: date / Accepted: date

Abstract With Cloud Computing emerging as a promising new approach for
ad-hoc parallel data processing, major companies have started to integrate
frameworks for parallel data processing in their product portfolio, making it
easy for customers to access these services and to deploy their programs. We
have entered the Era of Big Data. The explosion and profusion of available
data in a wide range of application domains rise up new challenges and op-
portunities in a plethora of disciplines - ranging from science and engineering
to biology and business. One major challenge is how to take advantage of the
unprecedented scale of data - typically of heterogeneous nature - in order to
acquire further insights and knowledge for improving the quality of the of-
fered services. To exploit this new resource, we need to scale up and scale
out both our infrastructures and standard techniques. Our society is already
data-rich, but the question remains whether or not we have the conceptual
tools to handle it. In this paper we discuss and analyze opportunities and
challenges for efficient parallel data processing. Big Data is the next frontier
for innovation, competition, and productivity, and many solutions continue to
appear, partly supported by the considerable enthusiasm around the MapRe-
duce (MR) paradigm for large-scale data analysis. We review various parallel
and distributed programing paradigms, analyzing how they fit into the Big
Data era, and present modern emerging paradigms and frameworks. To better
support practitioners interesting in this domain, we end with an analysis of on-

This work was supported by project “ERRIC -Empowering Romanian Research on Intelli-
gent Information Technologies/FP7-REGPOT-2010-1”, ID: 264207.

C. Dobre, Corresponding author
University Politehnica of Bucharest
Spl. Independentei 313, Bucharest, Romania
E-mail: ciprian.dobre@cs.pub.ro

F. Xhafa
Universitat Politecnica de Catalunya
Girona Salgado 1-3, 08034 Barcelona, Spain E-mail: fatos@lsi.upc.edu

This is a post-peer-review, pre-copyedit version of an article published in
International journal of parallel programming.
The final authenticated version is available online at: http://
dx.doi.org/10.1007/s10766-013-0272-7

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/185529975?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Ciprian Dobre, Fatos Xhafa

going research challenges towards the truly fourth generation data-intensive
science.

Keywords Parallel programming · Big Data · MapReduce · programming
models · challenges

1 Introduction

Today the Internet represents a big space where great amounts of information
are added every day. IBM claims 90% of the world’s data has been accumu-
lated only since 2010 [27]. Large datasets of information is indisputable being
amassed as a result of our social, mobile, and digital world. Since 2012, the use
of the term in the U.S. has increased 1,211% on the Internet [13]. We are not
far from the time when terms like PetaByte, ExaByte, and ZettaByte1 will be
quite common [4]. Such amount of information might already be there, but we
just don’t know it2. Part of the sum is also the annual global IP traffic (0.8
ZettaByte) and annual Internet Video (0.3 ZettaByte) as we entered 2013 [5].

There are various mechanisms that generate big data: data from scientific
measurements and experiments (astronomy, physics, genetics, etc.), peer-to-
peer communication (text messaging, chat lines, digital phone calls), broad-
casting (News, blogs), social networking (Facebook, Twitter), authorship (dig-
ital books, magazines, Web pages, images, videos), administrative data (en-
terprise or government documents, legal and financial records), business data
(e-commerce, stock markets, business intelligence, marketing, advertising).
Healthcare data are being processed at incredible speed, putting in data from
a number of sources to turn into rapid insights. Insurance, retail and Web com-
panies are also tapping into big, fast data based on transactions. Life sciences
companies and research entities alike are turning to new big data technolo-
gies to enhance their results from their high performance systems by allowing
more complex data ingestion and processing. E-commerce websites and social
networks, also cope with enormous volumes of data. Such services generate
clickstream data from millions of users every day, which is a potential gold
mine for understanding access patterns and increasing ad revenue.

But, in the Big Data era, storing huge amounts data is not the biggest
challenge anymore. Companies already store huge amounts of information. As
an example, Facebook is able to store activity data in its back-end ranging
all the way back to 2005, when the company was just two years old [36]. The
company only deletes data when it is required to do so for security, privacy,

1 To understand the complexity in working with such amounts of data, think of what
would happen if someone accidentally pushes the Print button and 1 ZettaByte of data
would be printed on paper. Actually, this amount of printed information would weigh about
1016 pounds or 5 x 1010 tonnes. One ZettaByte of equivalent books would fill up 10 billion
Trucks or 500,000 aircraft carriers, and if equally distributed they would mean 10,000 books
for each person living on the planet today. To make just the paper to print on would require
3 times the number of trees in the world today.[4]

2 Various experts predict that the World Wide Web might already contain 1 ZettaByte
of information

Parallel Programming for Big Data 3

or regulatory reasons. Appart from storing, today researchers struggle with
designing solutions to understand this Big amount of Data. Efficient parallel
and concurrent algorithms and implementation techniques are needed to meet
the scalability and performance requirements entailed by scientific data anal-
yses. Challenges such as scalability and resiliance to failure are already being
addressed at the infrastructure layer. But new Big Data problems relate to
users handling too many files, and/or working with very large files. Applica-
tions need fast movement and operations on that data, not to mention support
to cope with an incredible diversity of data. Big data issues also emerge from
extensive data sharing, allowing multiple users to explore or analyze the same
data set. All these demand a new movement and a new set of complementary
technologies. Big Data is the new way to process and analyze existing data
and new data sources. Up until recently Google, Amazon and Microsoft were
the main actors capable to handle big data, but today new actors enter the
Big Data stage. At the forefront, Google uses one of the largest dataset to
discover interesting aspects to improve their services. MapReduce, their novel
computing model, provoked the scientists to rethink how large-scale data oper-
ations should be handled. Today Google introduces novel big data tools, such
as BigQuery, that appeal to many more users. Yahoo’s Hadoop, Microsoft’s
Driad, are other examples of powerful computing tools that led to the new
paradigm shift called “Big Data”. Hadoop, for example, spreads data across a
sea of commodity servers, before using the collective power of those machines
to transform the data into something useful. It is highly attractive because
commodity servers are cheap, and as your data expands, you just add more of
them. But it is certainly not the only available solution out there.

In this paper we discuss and analyze opportunities and challenges for ef-
ficient parallel data processing. We review various parallel and distributed
programing paradigms, analyzing how they fit into the Big Data era, and
present modern emerging paradigms and frameworks.

The rest of this paper is organized as follows. Section 2 presents a short
history of Big Data paradigms. This is followed in Section 3 by an analysis of
current programing models and technologies tailored specifically for the Big
Data era. In Section 4 we present a series of challenges that were identified in
the previous analysis. Section 5 concludes the paper.

2 A history of Big Data paradigms

Several steps preluded the Big Data era. Back in the 90’s, the data volumes
generated (mainly) by companies was sufficiently low that the database man-
agement system itself would figure out the best access path to the data via
an optimizer. With the rise in the opportunities coming from the transaction-
oriented market, within a few years the database world became quite a compet-
itive place: Ingres, Informix, Sybase and Oracle battled along IBM in the en-
terprise transaction process market. A gradual awareness that such databases
were all optimized for transaction processing performance allowed a further

4 Ciprian Dobre, Fatos Xhafa

range of innovation, and the first specialist analytical databases appeared (i.e.,
we mention here pioneer products such as Red Brick, Essbase). This storm of
innovation was soon coming to a pace, as by the dawn of the millennium the
database market had seen dramatic consolidation: Oracle, IBM and Microsoft
dominated the landscape, having either bought out or crushed most of the
competition. Object databases came and go, and the database administrator
beginning his career at that time could look forward to a stable world of a few
databases, all based on SQL. Few appreciated at the time the rapid growth
in both the volume and types of data that companies collect was about to
challenge the database incumbents and spawn another round of innovation.

Whilst Moore’s Law was holding for processing speed, it was most de-
cidedly not working for disk access speed (even if the density of information
a hard disk can record has grown about 50 million times over the past 30
years). Solid-state drives helped, but they were (and still are) quite expen-
sive. Database volumes were increasing faster than ever, due primarily to the
explosion of social media data and machine-generated data, such as informa-
tion from sensors, point-of-sale systems, mobile phone network, Web server
logs and the like. The data explosion soon was indisputable recognized to be
the main driver of contemporary innovation: a fourth paradigm of scientific
knowledge generation was born!

We arguably recognize today three main approaches to generating new
knowledge: experimental and theoretical researches are classified as the first
two, while more recently computer simulations of natural phenomena (and of
engineering artefacts) have contributed a third. In fact, Bell, Hey and Szalay
[3] have proposed a fourth - data-intensive science. Like any other major shift
in scientific thinking, data-intensive science both represents and is driven by
a change in the scientific landscape. It is not just a re-statement of the signif-
icance of data-driven rather than hypothesis-dependent science. In this case,
it is the ability of modern instrumentation to generate data at rates 100-1000-
fold that of the devices they are replacing. In 1997 the largest commercial
database in the world was 7 TB in size, and that figure had only grown to
about 30 TB by 2003 [16]. Yet, it more than tripled to 100 TB by 2005, and
by 2008 the first petabyte-sized database appeared. In other words, the largest
databases increased tenfold in size between 2005 and 2008. The strains of an-
alyzing such volumes of data started to stretch and exceed the capacity of the
mainstream databases.

The database industry has responded differently. Massively parallel pro-
cessing (MPP) databases allow database loads to be split amongst many pro-
cessors. The columnar data structure pioneered by Sybase turned out to be
well suited to analytical processing workloads, and a range of new analytical
databases soon followed, often combining columnar and MPP approaches. The
big database vendors responded with either their own versions, or by simply
purchasing upstart rivals. For example, Oracle brought its Exadata offering,
IBM purchased Netezza and Microsoft bought DATAllegro.

Things took a different turn when dynamic computations over ever larger
amounts of data became a necessity. SQL became inapt for the challenge.

Parallel Programming for Big Data 5

Big Data workflows were needed more and more, involving transformations
of large amounts of information, often unstructured, into data science driven
insights, or highly available data stores used by applications. Google, having
to deal with exponentially growing Web traffic, coped with this by devising its
own approach called MapReduce, designed to work with distributed process-
ing in massively distributed file systems. That work inspired an open source
technology called Hadoop, along with an associated file system called HDFS.
Databases followed the same trend, endeavoring to allow more predictable
scalability and eliminating the constraints of the until-then fixed database
schema. NoSQL database soon appeared, and Big Data challenged more tra-
ditional mechanisms, which leaded in the last years to new distributed pro-
cessing paradigms: Pig, Sawzall, Dryad, and many others. The Big Data era
was born!

The problem with Big Data workflows is that one has to define several
tasks required to accomplish the needed transformations. In particular, state
is considered the biggest enemy of dynamic computations. Although it cannot
be eliminated, it can be avoided by defining data driven workflows in terms
of functions, predicates, and tuples (as opposed to defining a workflow in
terms of sequential steps). For example, let’s say we want to take a list of
conversations, extract human entities (names) from them, and output a list
of human entities who appear to be linked to one another (i.e. two users are
linked if they have had a recent conversation). If we broke this into a linear
flow of tasks, it might take more than a day to process all this information
if we have, say, a petabyte of raw text sitting on a computation cluster of
several standard machines. We can define these transformations imperatively,
using a low-level framework like Hadoop’s MapReduce. Alternatively, we can
define it using flows (i.e. using a framework such as Cascading/Cascalog, which
is based on a declarative programming paradigm). This is why Functional
Programming (FP) is actually considered today to be the most prominent
Programming Paradigm, as it allows actually more flexibility in defining Big
Data distributed processing workflows. FP is adequate for data problems, since
it emphasizes the abstractions that are most appropriate for data analysis.
In fact, SQL can be considered a functional programming language, since it
is derived from Set Theory, although it has lots of limitations as a language.
Object-oriented Programming, on the other hand, does not necessarily support
well mathematical abstractions needed for data analysis: the main reason why
Java in Big Data applications is considered by many to be counterproductive.
There are hybrid programming languages, such as Scala, F#, and OCaml,
which combine both FP with OOP paradigms.

There are two other emerging trends in programming that will probably
impact the data world of tomorrow [42]. Logic Programming (LP), like FP, is
actually not that new, but is seeing a resurgence of interest, especially in the
Clojure community. Rules engines, like Drools, are an LP category that has
been in use for a long time. In LP, one writes programs using the concepts
of Logic, such as first order logic. Simply stated, one specifies conditions or
constraints (e.g., rules) that must be satisfied, known “facts” about the system

6 Ciprian Dobre, Fatos Xhafa

being modeling, and the runtime automatically finds the values of the system’s
variables that satisfy the conditions. In other words, the runtime searches the
space of all possible answers for those that satisfy the conditions and facts.
If a problem fits the LP model, one can work quickly and efficiently, in just
the same way that SQL queries are a very concise and expressive way to ask
questions of data and to perform analytics.

This is quite interesting for Big Data analysis as well. For example, a clas-
sic use of LP has been fault diagnosis: given observed events or symptoms
and knowledge of the system, researchers are trying to automatically detect
what are the possible underlying faults that caused the observations [14]. The
problem is that most LP systems assume absolute knowledge: facts are yes/no,
while constraints are absolute and comprehensive. However, many real-world
scenarios are not so clear cut. Even so, today we witness several examples
where LP is already successful used for Big Data analysis. Recommendation
engines are widely used in social networks and e-commerce. For example, Net-
flix is able to observe when a user rents action movies more often than romantic
comedies and make intelligent recommendation accordingly.

Probabilistic modeling is another trend that has proven fruitful for scenarios
where knowledge and constraints are imprecise and contain gaps. For Netflix,
using only LP the analyzing system is not able to classify correctly, let’s say,
romantic comedies with car chases. For self-navigating robots, who work by
using an internal model of the world (e.g., a map of the terrain and sensors
used to detect where they are), a Big Data problem is that they have to
analyze large amounts of data that is produced by sources prone to error and
uncertainty. Real sensors are not 100% accurate. The map could have errors
and obstacles could be in the way (like people crossing the street) but not
represented on the map. So, the world has to be modeled probabilistically,
and the robot calculates the most likely location, given its measurements and
how they correlate to the map. Google’s self-driving car is an example of
a beautiful application of exactly this principle for coping with large error-
prone collections of navigation data [24]. Other Smart City applications in
this category will soon follow [29].

Thus, today we already witness an explosion of applications of power-
ful probabilistic modeling techniques and tools, such as Bayesian networks,
Markov networks, and their variants, generically called Probabilistic Graphical
Models (because they model probabilities about systems using graphs) to Big
Data problems. Implementations are available in many languages. However,
deeper technical expertise is required to understand and use these techniques
effectively. We’re now on the verge of moving to the next level, probabilistic
programming languages and systems that make it easier to build probabilistic
models, where the modeling concepts are promoted to first-class primitives in
new languages, with underlying runtimes that do the hard work of inferring
answers, similar to the way that logic programming languages work already.
The ultimate goal is to enable end users with limited programming skills, like
domain experts, to build effective probabilistic models, without requiring the
assistance of Ph.D.-level machine learning experts, much the way that SQL

Parallel Programming for Big Data 7

is widely used today. DARPA, the research arm of the U.S. Department of
Defense, considers this trend important enough that they are starting an ini-
tiative to promote it, called Probabilistic Programming for Advanced Machine
Learning [2]. This is a next logical step in the democratization of data, making
the sophisticated analysis of large data sets accessible to a wider audience. The
world is advancing towards an era where SQL knowledge will be universally
accessible even to very nontechnical people who will have to learn just enough
basic SQL to get the answers they need for themselves. But, until then, let’s
see what programming models revolve around the Big Data hype today.

3 Programming models for Big Data era

Today’s sheer volume of data that Internet services work with has led to in-
terest in parallel processing on commodity hardware. There is a sense among
some Big Data leaders that the infrastructure challenge has largely been met.
But as the volumes of data swell into exabyte territory for more and more
organizations, the biggest challenge is going to be devising ways to mine the
data and make sense of it all, or at least in part - to turn data into knowledge,
and knowledge into wisdom. The leading example is Google, which uses its
MapReduce framework to process over 20 petabytes of data per day [8]. While
a majority of Fortune 1000 companies are en-route to understanding Hadoop
and adopting it in their technology stack, several start-ups have started al-
ready asking the important and inevitable question: “What’s Next?”. Hadoop
for the first time has allowed us to analyze massive amounts of data without
necessarily indulging in expensive proprietary hardware or software. However,
adoption of Hadoop alone isn’t necessarily helping businesses make smarter
decisions or discover completely new facts. The power of scalable infrastruc-
ture needs to be supplemented with nifty data mining and machine learning
tools, better visualization of results, and easier ways to track and analyze the
findings over a period of time. Besides, there is the entire realm of real-time
analytics, which is beyond the batch oriented nature of Hadoop. Pig, Sawzall,
Microsoft’s Dryad, and others functional languages are in development. They
can be classified by terms like high throughput computing (HTC) or many-task
computing (MTC), depending on the amount of data and the number of tasks
involved in the computation [35]. Although these systems differ in design, the
programming models they provide share similar objectives, namely hiding the
hassle of parallel programming, fault tolerance and execution optimizations
from the developer. Developers can typically continue to write sequential pro-
grams. The processing framework then takes care of distributing the program
among the available nodes and executes each instance of the program on the
appropriate fragment of data.

Conceptually, many of the Big Data analysis can be thought of as Single
Program Multiple Data (SPMD) [7] algorithms or a collection thereof. These
SPMDs can be implemented using different parallelization techniques such as
threads, MPI, MapReduce, and mash-up or workflow technologies, yielding

8 Ciprian Dobre, Fatos Xhafa

different performance and usability characteristics. Most techniques try to ex-
plore an “almost embarrassingly parallel” style of parallelism (e.g., analysis
of independent events in particle physics, or independent documents for in-
formation retrieval). In this case, the parallel independent sets of data lead
to independent “maps” (processing), which are followed by a reduction (e.g.,
to give histograms in particle physics, or aggregated queries in web searches).
The excellent quality of service (QoS) and ease of programming provided by
the MapReduce programming model has gained itself a lot of traction for this
type of problem. However, the architectural and performance limitations of
the current MapReduce architectures make their use questionable for many
applications (e.g., machine learning algorithms need iterative closely coupled
computations). More general workflow or dataflow paradigm (which is seen in
Dryad and MapReduce extensions) is always valuable, and we explore such
solutions in the following paragraphs.

3.1 Runtime Environments for Big Data

High level languages (i.e., for parallel programming) have been a holy grail
for computer science research, but lately researchers made a lot of progress
in the area of runtime environments. There is much similarity between par-
allel and distributed run times, with both supporting messaging with differ-
ent properties (several such choices are presented in Figure 1, for different
hardware and software models). The hardware support of parallelism/con-
currency varies from shared memory multicore, closely coupled clusters, and
higher-latency (possibly lower bandwidth) distributed systems. The coordi-
nation (communication/synchronization) of the different execution units vary
from threads (with shared memory on cores), MPI (between cores or nodes of
a cluster), workflow or mash-ups linking services together, and the new genera-
tion of data intensive programming systems typified by Hadoop (implementing
MapReduce) or Dryad.

Short running threads can be spawned up in the context of persistent data
in memory and have modest overhead [12]. Short running processes (i.e., imple-
mented as stateless services) are seen in Dryad and Hadoop. Also, various run-
time platforms implement different patterns of operation. In Iteration-based
platforms, the results of one stage are iterated many times. This is typical
of most MPI style algorithms. In Pipelining-based platforms, the results of
one stage (e.g., Map or Reduce operations) are forwarded to another. This is
functional parallelism typical of workflow applications.

An important ambiguity in parallel/distributed programming models/run-
times comes from the fact that today both the parallel MPI style parallelism
and the distributed Hadoop/Dryad/Web Service/Workflow models are imple-
mented by messaging. This is motivated by the fact that messaging avoids er-
rors seen in shared memory thread synchronization. MPI is a perfect example
of runtimes crossing different application characteristics. MPI gives excellent
performance and ease of programming for MapReduce, as it has elegant sup-

Parallel Programming for Big Data 9

(a) MPI is long
running processes
with Rendezvoud
for message ex-
change/synchro-
nization.

(b) Yahoo’s Hadoop
uses short running
processes communi-
cating via disk and
tracking processes.

(c) Microsoft’s
Dryad uses short
running processes
communicating
via pipes, disk or
shared memory
between cores.

(d) Web Services
send irregular
point-to-point mes-
sages between short
or long running
services.

Fig. 1: Combinations of processes/threads and intercommunication mecha-
nisms [12].

port for general reductions. However, it does not have the fault tolerance and
flexibility of Hadoop or Dryad. Further MPI is designed for local computing;
if the data is stored in a compute node’s memory, that node’s CPU is respon-
sible for computing it. Hadoop and Dryad combine this idea with the notion
of taking the computing to the data. A (non-comprehensive) presentation of
technologies in use today for Big Data processing is presented in Figure 2.

Fig. 2: Example of an ecosystem of Big Data analysis tools and frameworks.

10 Ciprian Dobre, Fatos Xhafa

3.2 MapReduce and Hadoop

MapReduce (MR) emerged as an important programming model for large-scale
data-parallel applications [8]. The MapReduce model popularized by Google
is attractive for ad-hoc parallel processing of arbitrary data, and is today seen
as an important programming model for large-scale data-parallel applications
such as web indexing, data mining and scientific simulations, as it provides
a simple model through which users can express relatively sophisticated dis-
tributed programs.

MapReduce breaks a computation into small tasks that run in parallel
on multiple machines, and scales easily to very large clusters of inexpensive
commodity computers. A MR program consists only of two functions, called
Map and Reduce, written by a user to process key/value data pairs. The
input data set is stored in a collection of partitions in a distributed file system
deployed on each node in the cluster. The program is then injected into a
distributed processing framework and executed in a manner to be described.

The Map function reads a set of “records” from an input file, does some
filtering and/or transformations, and then outputs a set of intermediate records
in the form of new key/value pairs. As the Map function produces these output
records, a “split” function partitions the records into R disjoint buckets by
applying a function to the key of each output record. This split function is
typically a hash function, though any deterministic function will suffice. Each
map bucket is written to the processing node’s local disk. The Map function
terminates having produced R output files, one for each bucket. In general,
there are multiple instances of the Map function running on different nodes
of a compute cluster. The term instance is used to refer to a unique running
invocation of either the Map or Reduce function. Each Map instance is assigned
a distinct portion of the input file by the MR scheduler to process. If there
are M such distinct portions of the input file, then there are R files on disk
storage for each of the M Map tasks, for a total of M × R files Fi,j , where
1 ≤ i ≤ M , 1 ≤ j ≤ R. The key observation is that all Map instances use
the same hash function; thus, all output records with the same hash value are
stored in the same output file.

The second phase of a MR program executes R instances of the Reduce
program (where R is typically the number of nodes). The input for each Reduce
instance Rj consists of the files Fi,j , 1 ≤ j ≤ M . These files are transferred
over the network from the Map nodes’ local disks. Again, all output records
from the Map phase with the same hash value are consumed by the same
Reduce instance, regardless of which Map instance produced the data. Each
Reduce instance processes or combines the records assigned to it in some way,
and then writes records to an output file (in the distributed file system), which
forms part of the computation’s final output.

The input data set exists as a collection of one or more partitions in the
distributed file system. It is the job of the MR scheduler to decide how many
Map instances to run and how to allocate them to available nodes. Likewise,
the scheduler must also decide on the number and location of nodes running

Parallel Programming for Big Data 11

Reduce instances. The MR central controller is responsible for coordinating
the system activities on each node. A MR program finishes execution once the
final result is written as new files in the distributed file system.

A key benefit of Map Reduce is that it automatically handles failures, hid-
ing the complexity of fault-tolerance from the programmer. If a node crashes,
MapReduce automatically reruns its tasks on a different machine. Similarly,
if a node is available but is performing poorly, a condition called a straggler,
MapReduce runs a speculative copy of its task (also called a “backup task”)
on another machine to finish the computation faster. Without this mechanism
(known as “speculative execution” - not to be confused still with speculative
execution at the OS or hardware level for branch prediction), a job would
be as slow as the misbehaving task. In fact, Google has noted that in their
implementation speculative execution can improve job response times by 44%
[8].

Google’s MapReduce implementation is coupled with a distributed file sys-
tem named Google File System (GFS) [15], from where it reads the data for
MapReduce computations, and in the end stores the results. According to J.
Dean et al., in their MapReduce implementation [8], the intermediate data are
first written to the local files and then accessed by the reduce tasks. The same
architecture is adopted by the Apache’s MapReduce implementation, called
Hadoop.

The popular open-source implementation of MapReduce, Hadoop [47], is
developed primarily by Yahoo, where it runs jobs that produce hundreds of ter-
abytes of data. Today Hadoop is used at Facebook, Amazon, etc. Researchers
are using Hadoop for short tasks where low response time is critical: seismic
simulations, natural language processing, mining web data, and many others.
Hadoop includes several specific components.

First, Hadoop provides its own file system, HDFS. In HDFS, data is spread
across the cluster (keeping multiple copies of it in case of hardware failures).
The code is deployed in Hadoop to the machine that contains the data upon
which it intends to operate on. HDFS organizes data by keys and values; each
piece of data has a unique key and a value associated with that key. Relation-
ships between keys can be defined only within the MapReduce application,
not by HDFS.

On top of Hadoop, the developer defined a MapReduce application, as a
functional programming paradigm that analysis a single record in HDFS, and
then assembles the results into a consumable solution. The Mapper is respon-
sible for the data processing step, while the Reducer receives the output from
the Mappers and sorts the data that applies to the same key. A special process,
called Partitioner, is responsible for dividing a particular analysis problem into
workable chunks of data for use by the various Mappers. The HashPartioner
is one example of a partitioner that is capable to divide work up by “rows”
of data in the HDFS. A developer can also create a Combiner for perform-
ing a local reduce that combines data before sending it back to Hadoop. The
combiner performs the reduce step, which groups values together with their

12 Ciprian Dobre, Fatos Xhafa

keys, but on a single node before returning the key/value pairs to Hadoop for
proper reduction.

Additionally, Hadoop applications are deployed to an infrastructure that
supports a high level of scalability and resilience. The infrastructure includes
several specific components. The HDFS cluster is managed by a NameNode,
that controls slave DataNode (i.e., nodes in charge of keeping the actual data)
daemons. The NameNode manages locations of data, how the data is broken
into blocks, what nodes those blocks are deployed to (and, generally, moni-
tors the overall health of HDFS). Each cluster has one NameNode (and, un-
fortunately, in most current deployments the NameNode is a single-point of
failure in a Hadoop cluster). An additional Secondary NameNode can also be
used monitor the state of the HDFS cluster and take “snapshots” of the data
contained in the NameNode. If the NameNode fails, then the Secondary Na-
meNode can takes its place. This does require human intervention, however,
so there is no automatic failover from the NameNode to the Secondary Na-
meNode. Still, having the Secondary NameNode helps ensure that data loss is
minimal.

Each slave node in the Hadoop cluster hosts a DataNode. The DataNode
manages the data: it reads data blocks from the HDFS, manages the data on
each physical node, and reports back to the NameNode with data management
status. Also, a JobTracker daemon acts as liaison between the MapReduce ap-
plication and Hadoop. There is one JobTracker configured per Hadoop cluster
and, when one submits the code to be executed on the Hadoop cluster, it is the
JobTracker’s responsibility to build an execution plan. This execution plan in-
cludes determining the nodes that contain data to operate on, arranging nodes
to correspond with data, monitoring running tasks, and relaunching tasks if
they fail. Finally, similar to how data storage follows the master/slave archi-
tecture, all code execution follows the master/slave architecture. Each slave
node has a TaskTracker daemon that is responsible for executing the tasks
sent to it by the JobTracker and communicating the status of the job (and a
heartbeat) with the JobTracker.

Hadoop’s performance is closely tied to its task scheduler. In the original
implementation the scheduler assumes that cluster nodes are homogeneous and
tasks make progress linearly. Based on such assumptions, the scheduler is able
to speculatively re-execute tasks that appear to be stragglers. Various studies
show stragglers to appear for various reasons, including faulty hardware or
misconfiguration.

As shown in [47], in practice the homogeneity assumptions do not always
hold (e.g., in a virtualized data center such as Amazon’s Elastic Compute
Cloud, such assumptions lead to severe performance degradation). This is
why authors proposed alternative scheduling algorithms for Hadoop, such as
the Longest Approximate Time to End, which can show great performance
advantages (especially in heterogeneous clusters).

At a higher level, there are several challenges related to application devel-
opment on top of Hadoop. Users just analyzing data in a standalone system,
with Hadoop clusters running in isolation, usually find it challenging to keep

Parallel Programming for Big Data 13

the clusters up and running. For others, challenges also relate to single points
of failure, and massive amounts of system that must work together, which
makes system provisioning and management difficult. Other issues relate to
the latency of execution in an application, or the inability to execute work-
loads outside the Hadoop paradigm.

Hadoop stores the intermediate results of the computations in local disks,
where the computation tasks are executed, and it informs the appropriate
workers to retrieve (pull) them for further processing. The same approach is
adopted by the Disco, an open source MapReduce runtime developed using a
functional programming language named Erlang [11]. Although this strategy of
writing intermediate result to the file system makes the above runtimes robust,
it introduces an additional step and a considerable communication overhead,
which can be a limiting factor for some MapReduce computations. However,
Hadoop, Disco and other similar runtimes focus mainly on computations that
utilize a single map/reduce computational unit. Iterative MapReduce compu-
tations are not well supported.

Even common operations like database Join are tricky to implement in the
MapReduce model. Moreover, it is necessary to embed MapReduce computa-
tions in a scripting language in order to execute programs that require more
than one reduction or sorting stage. Each MapReduce instantiation is self-
contained and no automatic optimizations take place across their boundaries.
In addition, the lack of any type-system support or integration between the
MapReduce stages requires programmers to explicitly keep track of objects
passed between these stages, and may complicate long-term maintenance and
re-use of software components.

MapIterativeReduce, is an alternative framework which extends the MapRe-
duce programming model to better support reduce-intensive applications, while
substantially improving its efficiency by eliminating the implicit barrier be-
tween the Map and the Reduce phase [39].Typically, MapReduce applica-
tions lack explicit support for reduction in distributed processing runtimes.
To achieve this, programmers must implement an additional aggregator that
collects the output data from all reduce jobs and combines them into a single
result. For workloads with a large number of reducers and large data volumes,
this approach can prove inefficient. MapIterativeReduce, is a framework for
reduce-intensive computations running on Azure clouds. It leverages the VM
local disks to exploit data locality and opt for a simpler and more efficient
communication scheme for the coordination between entities.

Map-Reduce-Merge is a model that adds to Map-Reduce a Merge phase
that can efficiently merge data already partitioned and sorted (or hashed) by
map and reduce modules [44]. As indicated in [33], though sufficiently generic
to perform many real world tasks, MapReduce is best at handling homoge-
neous datasets. However, joining multiple heterogeneous datasets does not
quite fit into the MapReduce model (although it still can be done with extra
MapReduce steps). For a search engine, data processing problems involve, for
example, tasks which can best be modeled as joins. For example, a search
engine usually stores crawled URLs with their contents in a crawler database,

14 Ciprian Dobre, Fatos Xhafa

inverted indexes in an index database, click or execution logs in a variety of log
databases, and URL linkages along with miscellaneous URL properties in a we-
bgraph database. Such databases are gigantic and distributed over a large clus-
ter of nodes. Moreover, their creation takes data from multiple sources: index
database needs both crawler and webgraph databases, a webgraph database
needs both a crawler and a previous version of the webgraph database. The
Map-Reduce-Merge programming model retains the MapReduce’s many great
features, while adding relational algebra to the list of database principles it
upholds. It also contains several configurable components that enable many
data-processing patterns. Most notably, it allows implementing many rela-
tional operators, particularly joins.

3.3 Pig and Hive

During the 1970s, the database research community engaged in a contentious
debate whether a program to access data in a DBMS should be written either
by 1) stating what one wants, rather than presenting an algorithm for how to
get it (the Relational model), or 2) presenting an algorithm for data access (the
Codasyl case). In the end, the former view prevailed and the last 30 years is a
testament to the value of relational database systems. Programs in high-level
languages, such as SQL, are easier to write, easier to modify, and easier for
a new person to understand. Codasyl was criticized for being similarly to an
assembly language for DBMS access. MapReduce-like programming is today
seen somewhat analogous to Codasyl programming: the developer has to write
algorithms in a low-level language in order to perform record-level manipula-
tion. However, evidence from the MapReduce community suggests that there
is widespread sharing of MapReduce code fragments to do common tasks, such
as joining data sets. To alleviate the burden of having to re-implement repet-
itive tasks, the MapReduce community is migrating high-level languages on
top of the current interface to move such functionality into the run time. Pig
[28] and Hive [38] are two notable projects in this direction.

Such domain-specific languages, developed on top of the MapReduce model
to hide some of the complexity from the programmer, today offer a limited
hybridization of declarative and imperative programs and generalize SQL’s
stored-procedure model. Some whole-query optimizations are automatically
applied by these systems across MapReduce computation boundaries. How-
ever, these approaches adopt simple custom type systems and prove limited
support for iterative computations.

An alternative tool on top of Hadoop is being developed by Facebook.
Hive lets analysts crunch data atop Hadoop using something very similar to
the structured query language (SQL) that has been widely used since the
80s. It is based on concepts such as tables, columns and partitions, providing
a high-level query tool for accessing data from their existing Hadoop ware-
houses [38]. The result is a data warehouse layer built on top of Hadoop that
allows for querying and managing structured data using a familiar SQL-like

Parallel Programming for Big Data 15

query language, HiveQL, and optional custom MapReduce scripts that may
be plugged into queries. Hive converts HiveQL transformations to a series
of MapReduce jobs and HDFS operations and applies several optimizations
during the compilation process.

The Hive data model is organized into tables, partitions and buckets. The
tables are similar to RDBMS tables and each corresponds to an HDFS di-
rectory. Each table can be divided into partitions that correspond to sub-
directories within an HDFS table directory and each partition can be further
divided into buckets which are stored as files within the HDFS directories.

It is important to note that Hive was designed for scalability, extensibility,
and batch job handling, not for low latency performance or real-time queries.
Hive query response times for even the smallest jobs can be of the order of
several minutes and for larger jobs, may be on the order of several hours. Also,
today Hive is the Facebook’s primary tool for analyzing the performance of
online ads, among other things.

Pig is a high-level data-flow language (Pig Latin) and execution framework
whose compiler produces sequences of Map/Reduce programs for execution
within Hadoop [28]. Pig is designed for batch processing of data. It offers
SQL-style high-level data manipulation constructs, which can be assembled
in an explicit dataflow and interleaved with custom Map- and Reduce-style
functions or executables. Pig programs are compiled into sequences of Map-
Reduce jobs, and executed in the Hadoop Map-Reduce environment.

The Pig data model contains scalar types which contain a single atomic
value (integer, long, etc.), and three complex types which can contain other
types: Tuple is a data record consisting of a sequence of ’fields’, which can
be any data type; Bag is a set of tuples, similar to a ’table’; Map is a map
of a string key to a value, which can be any data type. Pig provides a set of
operators for data processing. For example: LOAD and STORE can be used
for reading and writing data from HDFS. Processing every tuple of a data set
can use the FOREACH operator. Many operators are similar as SQL, such as
JOIN, GROUP BY, UNION for standard data operations. As with many SQL
implementations, Pig supports User-Defined Functions (UDF) which allows
performing tasks written in low level language (Java or Python) to extend
Pig.

Pig’s infrastructure layer consists of a compiler that turns (relatively short)
Pig Latin programs into sequences of MapReduce programs. Pig is a Java
client-side application, and users install locally - nothing is altered on the
Hadoop cluster itself. Grunt is the Pig interactive shell. With the support of
this infrastructure, among the important advantages of Pig we mention the
optimized data reading performance, the semi-structured data, and modular
design. However, several limitations should not be ignored, such as the large
amount of boiler-plate Java code (although proportionally less than Hadoop),
the effort for learning how to use Pig and the lack of debugging techniques.

Still, such initiatives led to Hadoop being used today more and more ex-
tensively, from Twitter to eBay to LinkedIn. Facebook is only pushing the
platform to new extremes. According to Jay Parikh [25], head of infrastruc-

16 Ciprian Dobre, Fatos Xhafa

ture at Facebook, today the company alone runs the world’s largest Hadoop
cluster - just one of several Hadoop clusters operated by Facebook spans more
than 4,000 machines, and it houses over 100 petabytes of data, aka hundreds
of millions of gigabytes.

3.4 Spark and Twister

MapReduce was highly successful in implementing large-scale data-intensive
applications on commodity clusters. However, the model is built around an
acyclic data flow model. This was soon followed by other models (or extensions
to the MapReduce model), developed for example for classes of applications
needing to reuse a working set of data across multiple parallel. This includes
many iterative machine learning algorithms, as well as interactive data anal-
ysis tools. With such extensions, the MapReduce programming model can
be applied also to fields such as data clustering, machine learning, and com-
puter vision where many iterative algorithms are common. In these algorithms,
MapReduce is used to handle the parallelism while the repetitive application
of it completes the iterations.

Spark is a framework that supports such applications while retaining the
scalability and fault tolerance of MapReduce [46]. Spark provides two main
abstractions for parallel programming: resilient distributed datasets and par-
allel operations on these datasets (invoked by passing a function to apply on
a dataset).

Resilient distributed datasets (RDDs) are read-only collections of objects
partitioned across a set of machines that can be rebuilt if a partition is lost.
Users can explicitly cache an RDD in memory across machines and reuse
it in multiple MapReduce-like parallel operations zaharia2012resilient. RDDs
achieve fault tolerance through a notion of lineage: if a partition of an RDD
is lost, the RDD has enough information about how it was derived from other
RDDs to be able to rebuild just that partition.

To use Spark, developers write a driver program that implements the high-
level control flow of their application and is responsible for launching oper-
ations in parallel. Programmers then invoke operations like map, filter and
reduce by passing closures (functions) to Spark. These closures can further
refer to variables in the scope where they are created. Normally, when Spark
runs a closure on a worker node, these variables are copied to the worker. How-
ever, Spark also lets programmers create restricted types of shared variables.
Spark supports several parallel operations. A reduce operation can be used to
combine dataset elements using an associative function to produce a result at
the driver program. The collect operation sends all elements of the dataset to
the driver program. For example, an easy way to update an array in parallel
is to parallelize, map and collect the array. The foreach operation passes each
element through a user provided function. This is only done for the side effects
of the function (which might be to copy data to another system or to update

Parallel Programming for Big Data 17

a shared variable). In addition, Spark supports two restricted types of shared
variables that can be used in functions running on the cluster.

Spark is implemented in Scala, a statically typed high-level programming
language for the Java VM, and exposes a functional programming interface
similar to DryadLINQ. Spark can also be used interactively, and allows the
user to define RDDs, functions, variables and classes and use them in parallel
operations on a cluster. According to experiments presented by authors of [46],
by making use extensively of memory storage (using the RDD abstractions)
of cluster nodes, most of the operations Spark can outperform Hadoop by a
factor of ten in iterative machine learning jobs, and can be used to interactively
query a large dataset with sub-second response time.

Twister is another MapReduce extension, designed to support iterative
MapReduce computations efficiently [10]. Twister uses a publish/subscribe
messaging infrastructure for communication and data transfers, and supports
long running map/reduce tasks, which can be used in “configure once and use
many times” approach. In addition, it provides programming extensions to
MapReduce with “broadcast” and “scatter” type data transfers. It also allows
long-lived map tasks to keep static data in memory between jobs in a manner
of “configure once, and run many times”.

Such improvements allow Twister to support iterative MapReduce com-
putations highly efficiently compared to other MapReduce runtimes [10]. To
achieve this, Twister handles the intermediate data in the distributed memory
of the worker nodes. The results of the map tasks are directly pushed via the
broker network to the appropriate reduce tasks where they get buffered until
the execution of the reduce computation. Therefore, Twister assumes that the
intermediate data produced after the map stage of the computation will fit
in to the distributed memory. To support scenarios with large intermediate
results, one can extend the Twister runtime to store the reduce inputs in local
disks instead of buffering in memory. But Hadoop is not the only Big Data
option. Hadoop is, in fact, a tool with a lot of potential for solving many Big
Data problems, but it might not be the best tool for every Big Data situation,
as we will see next.

3.5 Dryad and DryadLINQ

Dryad is a general-purpose distributed execution engine for coarse-grain data-
parallel applications [21]. While MapReduce was designed to be accessible to
the widest possible class of developers (aiming for simplicity at the expense
of generality and performance), the Dryad system allows the developer fine
control over the communication graph as well as the subroutines that live at
its vertices. A Dryad application developer can specify an arbitrary directed
acyclic graph to describe the application’s communication patterns, and ex-
press the data transport mechanisms (files, TCP pipes, and shared-memory
FIFOs) between the computation vertices.

18 Ciprian Dobre, Fatos Xhafa

A Dryad application combines computational “vertices” with communi-
cation “channels” to form a dataflow graph. In other words, a Dryad job is
similar to a directed acyclic graph where each vertex is a program and edges
represent data channels. At run time, vertices are processes communicating
with each other through the channels, and each channel is used to transport
a finite sequence of data records.

Dryad runs the application by executing the vertices of this graph on a
set of available computers, communicating as appropriate through files, TCP
pipes, and shared-memory FIFOs. The vertices provided by the application
developer are quite simple and are usually written as sequential programs
with no thread creation or locking. Concurrency arises from Dryad scheduling
vertices to run simultaneously on multiple computers, or on multiple CPU
cores within a computer. The application can discover the size and placement
of data at run time, and modify the graph as the computation progresses to
make efficient use of the available resources.

Dryad is designed to scale from powerful multi-core single computers,
through small clusters of computers, to data centers with thousands of comput-
ers. The Dryad execution engine handles all the difficult problems of creating
a large distributed, concurrent application: scheduling the use of computers
and their CPUs, recovering from communication or computer failures, and
transporting data between vertices.

The execution of a Dryad job is orchestrated by a centralized job man-
ager. The job manager is responsible for instantiating a job’s dataflow graph,
scheduling processes on cluster computers, providing fault-tolerance by re-
executing failed or slow processes, monitoring the job and collecting statistics,
and transforming the job graph dynamically according to user-supplied poli-
cies. It contains the application-specific code to construct the job’s communi-
cation graph along with library code to schedule the work across the available
resources. All data is sent directly between vertices and thus the job manager
is only responsible for control decisions and is not a bottleneck for any data
transfers.

A cluster is typically controlled by a task scheduler, separate from Dryad,
which manages a batch queue of jobs and executes a few at a time subject to
cluster policy. Microsoft [21] uses in its implementation a distributed storage
system that shares with the Google File System the property that large files
can be broken into small pieces that are replicated and distributed across the
local disks of the cluster computers. But Dryad also supports the use of NTFS
for accessing files directly on local computers, which can be convenient for
small clusters with low management overhead.

Nephele is another alternative data processing framework that allows as-
signing the particular tasks of a processing job to different types of virtual
machines and takes care of their instantiation and termination during the job
execution [43]. Unlike Dryad, who runs jobs described as DAGs and offers
the possibility to connect the involved tasks through either file, network or
in-memory channels, Nephele exploits the dynamic resource provisioning of-
fered by today’s compute clouds. Dryad assumes an execution environment

Parallel Programming for Big Data 19

which consists of a fixed set of homogeneous worker nodes. Dryad scheduler is
designed to distribute tasks across the available compute nodes in a way that
optimizes the throughput of the overall cluster. It does not include the notion
of processing cost for particular jobs. Unlike this, Nephele allows each task
to be executed on its own instance type, so the characteristics of a requested
virtual machine can be adapted to the demands of each processing phase.

DryadLINQ is a system and a set of language extensions that enable a
programming model for large scale distributed computing [45]. It generalizes
execution environments such as SQL, MapReduce, and Dryad in two ways: by
adopting an expressive data model of strongly typed .NET objects; and by
supporting general-purpose imperative and declarative operations on datasets
within a traditional high-level programming language. A DryadLINQ appli-
cation is a sequential program (hence, the programmer is given the “illusion”
of writing for a single computer), composed of LINQ (Language Integrated
Query) expressions performing imperative or declarative operations and trans-
formations on datasets, and can be written and debugged using standard .NET
development tools. Objects in DryadLINQ datasets can be of any .NET type,
making it easy to compute with data such as image patches, vectors, and ma-
trices. DryadLINQ programs can use traditional structuring constructs such as
functions, modules, and libraries, and express iteration using standard loops.
Crucially, the distributed execution layer employs a fully functional, declar-
ative description of the data-parallel component of the computation, which
enables sophisticated rewritings and optimizations like those traditionally em-
ployed by parallel databases. The DryadLINQ system automatically and trans-
parently translates the data-parallel portions of the program into a distributed
execution plan which is passed to the Dryad execution platform, which further
ensures efficient, reliable execution of this plan.

3.6 Piccolo

As presented, MapReduce and Dryad provide a data-flow programming model
suited for bulk-processing of on-disk data. However, they are not necessarily
a natural fit for in-memory computation: they do not expose any globally
shared state, and applications have no online access to intermediate state and
often have to emulate shared memory access by joining multiple data streams.
Piccolo is a data-centric programming model for writing parallel in-memory
applications across many machines [34].

Applications written in Picollo consist of control functions, which are ex-
ecuted on a single machine, and kernel functions, which are executed con-
currently on many machines. Thus, programmers organize their computation
around a series of application kernel functions, where each kernel is launched
as multiple instances concurrently executing on many compute nodes. Con-
trol functions create shared tables, launch multiple instances of a kernel func-
tion, and perform global synchronization. Kernel functions are sequential code
which read from and write to tables to share state among concurrently execut-

20 Ciprian Dobre, Fatos Xhafa

ing kernel instances. Thus, kernel instances share distributed, mutable state
using a set of in-memory tables whose entries reside in the memory of different
compute nodes. Kernel instances share state exclusively via the key-value table
interface with get and put primitives. The underlying Piccolo run-time sends
messages to read and modify table entries stored in the memory of remote
nodes.

By exposing shared global state, the programming model of Piccolo offers
several attractive features. First, it allows for natural and efficient implemen-
tations for applications that require sharing of intermediate state (such as k-
means computation, n-body simulation, PageRank calculation etc.). Second,
Piccolo enables online applications that require immediate access to modified
shared state. For example, a distributed crawler can learn of newly discovered
pages quickly as a result of state updates done by ongoing web crawls.

Piccolo borrows ideas from existing data-centric systems to enable efficient
application implementations. Piccolo enforces atomic operations on individual
key-value pairs and uses user-defined accumulation functions to automatically
combine concurrent updates on the same key (this is somewhat similar to
the reduce operation in MapReduce). The combination of these two tech-
niques eliminates the need for fine-grained application-level synchronization
for most applications. Piccolo allows applications to exploit locality of access
to shared state. Users control how table entries are partitioned across ma-
chines by defining a partitioning function. Based on users’ locality policies,
the underlying run-time can schedule a kernel instance where its needed table
partitions are stored, thereby reducing expensive remote table access. Piccolo
run-time system actually consists of one master (used for coordination) and
several worker processes (in charge of storing in-memory table partitions and
executing kernels). The run-time uses a simple work stealing heuristic to dy-
namically balance the load of kernel execution among workers. Piccolo provides
a global checkpoint/restore mechanism to recover from machine failures. For
this, the run-time uses the Chandy-Lamport snapshot algorithm to periodi-
cally generate a consistent snapshot of the execution state without pausing
active computations. Upon machine failure, Piccolo recovers by restarting the
computation from its latest snapshot state.

Experiments have shown that Piccolo is fast and provides excellent scaling
for many applications. The performance of PageRank and k-means on Piccolo
is 11x and 4x faster than that of Hadoop [34]. Or, as another example, com-
puting a PageRank iteration for a 1 billion-page web graph takes 70 seconds
on 100 EC2 instances.

3.7 Programming languages

Although MapReduce and similar programming models prove quite effective,
developers need adequate on-top supporting languages to develop their ap-
plications. Attaching existing languages such as Python to MapReduce is in-
sufficient for several reasons. Notation customized to a particular problem

Parallel Programming for Big Data 21

domain make programs clearer, more compact, and more expressive. Support
for protocol buffers and other domain-specific types simplifies programming
at a lower level. And, advantages of a custom language include the ability to
add domain-specific features, custom debugging and profiling interfaces, and
so on.

Sawzall is a procedural domain-specific programming language used by
Google to process large numbers of individual log records [33]. Sawzall was
first described in 2003, but the runtime was open-sourced in August 2010.

The motivation behind the launch of Sawzall relates to how Google’s server
logs are stored as large collections of records (protocol buffers), partitioned
over many disks within GFS. In order to perform calculations involving the
logs, MapReduce programs can be written in C++ or Java, which engineers
soon discovered to be too time-consuming pike2005interpreting. To make it
easier to write quick scripts, Rob Pike et al. developed the Sawzall language.
A Sawzall script runs within the Map phase of a MapReduce and “emits”
values to tables. Then the Reduce phase (which the script writer does not
have to be concerned about) aggregates the tables from multiple runs into a
single set of tables.

The most important motivation for Sawzall’s creation relates to paral-
lelism. Capturing the aggregators in the language (and its environment) means
that the programmer never has to provide one, unlike when using traditional
MapReduce programs. This also leads to more elegant programs, as well as a
comfortable way to think about data processing problems in large distributed
data sets. Separating out the aggregators and providing no other inter-record
analysis maximizes the opportunity to distribute processing across records.
It also provides a model for distributed processing, which in turn encourages
users to think about the problem in a different light. In a traditional language
such as Awk or Python, users would be tempted to write the aggregators in
that language, which would be difficult to parallelize. Even if one provided a
clean interface and library for aggregators in these languages, seasoned users
would want to roll their own sometimes, which could introduce dramatic per-
formance problems.

The model that Sawzall provides has proven valuable. Although some prob-
lems, such as database joins, are poor fits to the model, most of the processing
done on Google on large data sets fits well and the benefit in notation, conve-
nience. Also, one unexpected benefit of the system arose from the constraints
the programming model places on the user. Since the data flow from the input
records to the Sawzall program is so well structured, it was easy to adapt it
to provide fine-grained access control to individual fields within records. The
system can automatically and securely wrap the user’s program with a layer,
itself implemented in Sawzall, that elides any sensitive fields. For instance,
production engineers can be granted access to performance and monitoring
information without exposing any traffic data.

A different approach to the processing of large data stores is to analyze
them with a data stream model. Such systems process the data as it flows
in, and their operators are dependent on the order of the input records. For

22 Ciprian Dobre, Fatos Xhafa

example, Aurora [1] is a stream processing system that supports a (potentially
large) set of standing queries on streams of data. Analogous to Sawzall’s pre-
definition of its aggregators, Aurora provides a small, fixed set of operators,
although two of them are escapes to user-defined functions. These operators
can be composed to create more interesting queries. Unlike Sawzall, some Au-
rora operators work on a contiguous sequence, or window, of input values.
Aurora only keeps a limited amount of data on hand, and is not designed for
querying large archival stores. There is a facility to add new queries to the
system, but they only operate on the recent past. Aurora’s efficiency comes
from a carefully designed run-time system and a query optimizer, rather than
Sawzall’s brute force parallel style.

Another stream processing system, Hancock [6], goes further and provides
extensive support for storing per-query intermediate state. This is quite a
contrast to Sawzall, which deliberately reverts to its initialization state after
each input record. Like Aurora, Hancock concentrates on efficient operation
of a single thread instead of massive parallelism.

It may seem paradoxical to use an interpreted language in a high-throughput
environment, but reality shows that the CPU time is rarely the limiting fac-
tor; the expressibility of the language means that most programs are small
and spend most of their time in I/O and native run-time code [33]. More-
over, the flexibility of an interpreted implementation has been helpful, both in
ease of experimentation at the linguistic level and in allowing us to explore-
ways to distribute the calculation across many machines. Overall, for example,
Sawzall programs tend to be around 10 to 20 times shorter than the equivalent
MapReduce programs in C++ and significantly easier to write [33].

3.8 Sharing the data and online processing

With all the BigData tools and instruments available, we are still far from un-
derstanding all the complexities behind processing large amounts of data. For
example, the data analysis was previously regarded with respect to mainly one
and only objective - scientists working on human genome use their data for this
objective delisi2008meetings. While such examples represent silo approaches
to Big Data applications, they can also undermine potential opportunities. For
example, scientists working on human genome data may improve their analysis
if they could take all publications on Medline and analyze it in conjunction
with the human genome data. However, this requires natural language pro-
cessing (semantic) technology combined with bioinformatics algorithms, an
unusual coupling at best. The question is how to best support this “sharing”
of big data?

Recent projects such as BigQuery have the potential to encourage scientists
to put their data into the Cloud, where potentially others might have access as
well [20]. BigQuery is a tool developed by Google to allow ordinary users run
ad hoc queries using an SQL-like syntax. Google had used previously the tool
(under the name Dremel) internally for years before releasing a form of it in

Parallel Programming for Big Data 23

their generally available service - BigQuery - capable to get results in seconds
from terabytes of data [40]. The tool is hosted on Google’s infrastructure. It’s
main advantage is simplicity: compared to Hadoop, which requires set up and
administration, companies can take their data, put it in Google’s cloud, and
use it directly into their applications.

BigQuery is a ready-to-use tool, fast to set up and capable to bring results
fast, even from very big datasets. The user simply takes his data, put it in
Google’s Cloud, and use the application. Unlike other tools, BigQuery is ca-
pable to return results in seconds from terabytes of data. Google has used the
tool (in a version called Dremel) internally for years before releasing it to the
public in 2012. Today many companies use BigQuery. When the data becomes
too big, tools such as Hadoop might not be sufficient for small companies,
because they require set up and administration. Small companies do not have
time to set up hardware, they just need to run queries on data and integrate
it into their application, and this is where BigQuery fits very well [19].

Yahoo!’s S4 (Simple Scalable Streaming System) [26] is a general-purpose,
distributed, scalable, partially fault-tolerant, pluggable platform that allows
programmers to easily develop applications for processing continuous unbounded
streams of data. Its architecture provides semantics of encapsulation and loca-
tion transparency, thus allowing applications to be massively concurrent while
exposing a simple programming interface to application developers. Its design
is primarily driven by large scale applications for data mining and machine
learning in a production environment.

Another example is Microsoft’s Windows Azure [22] - its cloud operating
system. It is based on services such as Live Services (Live Mesh), SQL Ser-
vices, SharePoint Services, .NET Services and/or Dynamics CRM Services,
run from Data Centers spread over the entire globe and linked together by in-
dividual servers. Each such individual server spreads its memory and network
load with others. Azure offers several components. Compute is the component
that runs applications in the cloud. These applications largely see a Windows
Server environment. The Storage element stores binary and structured data
in the cloud. The Fabric Controller deploys, manages, and monitors applica-
tions. The fabric controller also handles updates to system software throughout
the platform. All these components are united by the Content Delivery Net-
work (CDN), which speeds up global access to binary data in Windows Azure
storage by maintaining cached copies of that data around the world. Finally,
Connect allows creating IP-level connections between on-premises computers
and Windows Azure applications. Just to present an example, applications
normally created on Windows can be parallelized by allowing a number of
Workers run simultaneously within Microsoft’s Data Center, and take up the
parallel work.

ConPaaS is an integrated Cloud platform, developed in the framework of
the EU FP7 Contrail project, for Big Data [32]. It allows developers easily
write scalable Cloud applications without worrying about the complexity of
the Cloud. The platform provides a runtime environment that facilitates de-
ployment of end-user applications in the Cloud. In ConPaaS, applications are

24 Ciprian Dobre, Fatos Xhafa

organized as a collection of services. Using these services a bioinformatics ap-
plication could, for example, be composed of a MapReduce service backend
to process genomic data, as well as a Web hosting and SQL database ser-
vice to provide a Web-based graphical interface to the users. Each service can
be scaled on demand to adjust the quantity of computing resources to the
capacity needs of the application.

ConPaaS contains two services specifically dedicated to Big Data: MapRe-
duce and TaskFarming. MapReduce provides users with the well-known par-
allel programming paradigm. TaskFarming allows the automatic execution of
a large collection of independent tasks such as those issued by Monte-Carlo
simulations. The ability of these services to dynamically vary the number of
Cloud resources they use makes it well-suited to very large computations: one
only needs to scale services up before a big computation, and scale them down
afterwards.

An important element in all Big Data applications is the requirement for
a scalable file system where input and output data can be efficiently stored
and retrieved. ConPaaS comes together with the XtreemFS distributed file
system for clouds. Like ConPaaS services, XtreemFS is designed to be highly
available and fully scalable. Unlike most other file systems for the Cloud,
XtreemFS provides a POSIX API. This means that an XtreemFS volume can
be mounted locally, giving transparent access to files in the Cloud.

Similarly, Facebook is today building Prism [25] a platform currently rolling
out across the Facebook infrastructure. The typical Hadoop cluster is governed
by a single “namespace” and a list of computing resources available for each
job. In opposition, Prism carves out multiple namespaces, creating many “log-
ical clusters” that operate atop the same physical cluster. Such names spaces
can then be divided across various Facebook teams, and all of them would still
have access to a common dataset that can span multiple data centers. Nexus
is a low-level substrate that provides isolation and efficient resource sharing
across frameworks running on the same cluster, while giving each framework
freedom to implement its own programming model and fully control the ex-
ecution of its jobs [18]. As new programming models and new frameworks
emerge, they will need to share computing resources and data sets. For exam-
ple, a company using Hadoop should not have to build a second cluster and
copy data into it to run a Dryad job. Sharing resources between frameworks is
difficult today because frameworks perform both job execution management
and resource management. For example, Hadoop acts like a “cluster OS” that
allocates resources among users in addition to running jobs. To enable diverse
frameworks to coexist, Nexus decouples job execution management from re-
source management by providing a simple resource management layer over
which frameworks like Hadoop and Dryad can run.

Nexus provides a “slot” abstraction, in which frameworks may run “tasks”
that do arbitrary work. Along with a mechanism called “slot offers”, the fine
granularity of slots lets Nexus achieve more efficient resource sharing across
frameworks than would be possible with traditional coarse-grained cluster
scheduling systems. Nexus is analogous to a “cluster hypervisor”: it provides

Parallel Programming for Big Data 25

isolation and multiplexing while giving each framework a high level of control
over its own execution.

Mesos is a thin resource sharing layer that enables fine-grained sharing
across diverse cluster computing frameworks, by giving frameworks such as
Hadoop or Dryad a common interface for accessing cluster resources [17]. To
support a scalable and efficient sharing system for a wide array of processing
frameworks, Mesos delegates control over scheduling to the framework them-
selves. This is accomplished through an abstraction called a resource offer,
which encapsulates a bundle of resources that a framework can allocate on
a cluster node to run tasks. Mesos decides how many resources to offer each
framework, based on an organizational policy such as fair sharing, while frame-
works decide which resources to accept and which tasks to run on them. While
this decentralized scheduling model may not always lead to globally optimal
scheduling, in practice its developers found that it performs surprisingly well
in practice, allowing frameworks to meet goals such as data locality nearly per-
fectly [17]. In addition, resource offers are simple and efficient to implement,
allowing Mesos to be highly scalable and robust to failures.

Solutions such as these already uncover a whole new generation of Big-
Data “super software” tools. Today, in the department of platforms, Apache
Hadoop’s open source software enables the distributed processing of large data
sets across clusters of commodity servers. Other similar cluster computing
frameworks continue to emerge, and today it seems clear that no such frame-
work will probably be optimal for all applications. Therefore, organizations
will probably run multiple frameworks in the same cluster, using the best one
for each application. Multiplexing a cluster between frameworks can, indeed,
improve utilization and allow applications to share access to large datasets that
may be otherwise too costly to replicate across clusters. In this sense, IBM’s
Platform Symphony is an example of cloud management solution suitable for
a variety of distributed computing and big data analytics applications. Ora-
cle, HP, SAP, and Software AG are very much in the game for this $10 billion
industry. While these giants are offering variety of solutions for distributed
computing platforms, there is still a huge void at the level of Analytics Super
Software.

So, what would a Super Software be doing at the top of the pyramid?
This component would be managing multiple applications under its umbrella,
almost like an auto-pilot for airplanes, Super Software’s main function would
be to discover new knowledge which would otherwise be impossible to acquire
via manual means. To that end, discovery would require functions such as:
finding associations across information in any format; visualization of associa-
tions; search; categorization, compacting, summarization; characterization of
new data (where it fits); alerting; and, finally, cleaning (deleting unnecessary
clogging information).

In genetics, such a Super Software would be able to identify genetic patterns
of a disease from human genome data, supported by clinical results reported
in Medline, and further analyzed to unveil mutation possibilities using FBI’s
DNA bank of millions of DNA information. One can extend the scope and

26 Ciprian Dobre, Fatos Xhafa

meaning of top level objectives which is only limited by our imagination. With
Big Data, we have finally reached a cross-road where computers are going to
“have” to think on behalf of humans to discover new knowledge [37]. There
is no turning back anymore, we have reached the limit of mental capacity to
cope, let alone absorb information to process into knowledge.

4 Challenges

Sciences and industry are currently undergoing a profound transformation:
large-scale, diverse data sets and streams (derived from sensors, the web, trans-
actions, or complex simulations) present a huge opportunity for data-driven
decision making.

Besides the sheer volume of data, “Big Data” will come in a variety of data
formats (e.g., sensor data, text, audio, video), origin, quality, and so forth. The
data are created at an ever-increasing rate, making the subject of velocity (i.e.,
the time window in which the data will need to be processed) crucial in order
to arrive at actionable information in a timely manner. Moreover, as the data
come from different sources of different quality and trustworthiness, another
crucial aspect of data analytics is to assess the veracity of an analysis result,
i.e., its correctness and credibility. Furthermore, the visualization and inter-
active analysis of huge, changing data sets still presents numerous challenges
for data analysts.

Recent advanced in computer technology and processing paradigms have
created new tools and technologies at the forefront of “Big Data”. On top of
such tools, the “four V’s” (Volume, Velocity, Variety, and Veracity) put pres-
sure on developers to become comfortable with new programming paradigms.
And the domain is continuously attracting significant attention in society, in-
dustry, and science. Novel statistical and mathematical algorithms, prediction
techniques, and modeling methods, new approaches for data collection and in-
tegration, data analysis and compression, enhanced technologies for processing
and sharing data and information, as well as novel languages for the declar-
ative specification and automatic optimization and parallelization of complex
data analysis programs are needed to simultaneously cope with the volume,
velocity, variety, and veracity aspects of data analytics. This capability will
enable a paradigm shift in scientific and commercial applications. Advances in
information processing, integration, signal processing, machine learning, data
mining, compression, and visualization will open up new ways of extracting
useful, reliable, and verified information in a timely fashion from huge and
diverse data sets.

The “NoSQL” approach brings with it a range of issues. Integrating big
data of various media types and providing low latency and high velocity ana-
lytics with trustworthy information is a major challenge not met by existing
data management systems. Big data analytics systems must be able to ingest
data from various media types, in particular audio and video streams, at in-
creasing speeds, while at the same time already enabling the analysis of the

Parallel Programming for Big Data 27

data in a continuous fashion. Scalable, easy-to-use database or data analy-
sis systems and new algorithms and analysis paradigms must be developed
that address such different aspects and requirements simultaneously. Some ex-
amples are scalable online analysis, computational linguistics, statistics, and
machine learning algorithms. The specification and automatic optimization
of data analysis programs that inclu3de iterations and complex user-defined
functions in a scalable way for a variety of hardware platforms such as SIMD,
clusters, or many-core CPUs, as well as complex hardware architectures, such
as NUMA still presents many research challenges. Other examples of chal-
lenges are new declarative languages and methods for the scalable processing
and optimization of complex data analysis programs, such as active learning
techniques or interactive entity linking techniques as part of computational
linguistics, which must consider latency as a hard constraint, while ensuring
a certain degree of trustworthiness in the case of contradicting, missing, or
incomplete information, even in resource-constrained environments.

The recent data explosion is going to make life difficult in many industries,
and those companies that can adapt well and gain the ability to analyze such
data will have a considerable advantage over those that lag. New skill sets
are going to be needed, and these skills will be scarce. Programming for big
data applications is an altogether trickier affair, and IT departments that are
staffed with people who understand SQL are ill-equipped to tackle the world of
MapReduce programming, parallel programming and key-value databases that
is starting to represent the state of the art in tackling very large data sets. The
old generation of programmers and software products that relied pretty-much
on a common standard for database access will need to adapt to a world where
understanding internal database structure will allow considerable productivity
gains.

Companies need to explore the newer approaches to handling large data vol-
umes and begin to understand the limitations and challenges that come with
technologies like Hadoop and NoSQL databases, if they are to avoid being
swept away by the big data tidal wave. Certainly, there is currently consider-
able enthusiasm around the MapReduce paradigm for large scale data analysis
[30]. But the basic control flow of this framework has existed in parallel SQL
database management systems (DBMS) for over 20 years. Parallel database
systems (which all share a common architectural design) have been commer-
cially available for nearly two decades, with many still existing in the mar-
ketplace, including Teradata, Aster Data, Netezza, DATAllegro (and therefore
soon Microsoft SQL Server via Project Madison), Dataupia, Vertica, ParAc-
cel, Neoview, Greenplum, DB2 (via the Database Partitioning Feature), and
Oracle (via Exadata), to name a few. They are robust, high performance com-
puting platforms. Similar to MapReduce, they all provide a high-level pro-
gramming environment and parallelize readily. Though it may seem that MR
and parallel databases target different audiences, it is in fact possible to write
almost any parallel processing task as either a set of database queries (possibly
using user defined functions and aggregates to filter and combine data) or a
set of MapReduce jobs. Thus, evidence is needed to understand the differences

28 Ciprian Dobre, Fatos Xhafa

between the MapReduce approach to performing large-scale data analysis and
the approach taken by parallel database systems. The two classes of systems
make different choices in several key areas. For example, all DBMSs require
that data conform to a well-defined schema, whereas MR permits data to be in
any arbitrary format. Other differences include how each system provides in-
dexing and compression optimizations, programming models, the way in which
data is distributed, and query execution strategies.

Authors of [31] present interesting results for benchmarks executed on a
100-node cluster with Hadoop versus parallel SQL DBMSs, such as Vertica:
SQL DBMSs can run significantly faster and the required less code to imple-
ment each task, but take longer to tune and load the data. Such differences can
be explained in various ways: Despite the increased complexity of the query,
the performance of Hadoop is limited by the speed with which its tables can
be read off disk. A MR program occasionally has to perform complete table
scans, while parallel database systems are able to take advantage of clustered
indexes to reduce the amount of data that needed to be read. Also, the parallel
DBMSs are able to take advantage of partitioned tables - such systems are able
to do a join locally on each node, without any network overhead of reparti-
tioning before the join. In our opinion there is a lot to learn from both kinds
of systems. Most importantly is that higher level interfaces, such as Pig [28]
and Hive [38], are continuously being placed on top of the MR foundation, and
a number of tools similar more expressive than MR, such as Dryad [21], are
needed. This will make complex tasks easier to code in MR-style systems and
remove one of the big advantages of SQL engines, namely that they take much
less code on the tasks in our benchmark. For parallel databases, we believe
that both commercial and open-source systems will dramatically improve the
parallelization of user-defined functions. Hence, the APIs of the two classes
of systems are clearly moving toward each other. Early evidence of this is
seen in the solutions for integrating SQL with MR offered by Greenplum and
Asterdata [41].

Another challenge is generated by the improvement of data quality for big
data, as researchers and practitioners aim to evaluate the “fitness for use” of
data sets. Most of the proposed methods and techniques are based on two
main assumptions: data are structured, and the purposes for which data are
used are known. Clearly, these two assumptions are not valid in the Big Data
environment in which data are integrated from heterogeneous sources and may
not be generated by well-defined processes - as in general they are used to sat-
isfy unanticipated and different requirements. In such scenario, new assessment
techniques have to be proposed and additional data quality dimensions have to
be defined. In particular, some efforts should be directed toward the evaluation
of the value of the data relative both to intrinsic dimensions, such as accuracy,
completeness, currency, and to dimensions related to data provenance, such as
the credibility and reputation of the data sources.

A last challenge relates to the applicability of programming model such as
the ones presented here to a large set of computational problems. The general-
ity of such models was lately discussed by a number of authors [23][9]. Authors

Parallel Programming for Big Data 29

of [9], for example, argue that in many HPC applications, I/O is concurrently
performed by all processes, which leads to I/O bursts. This causes resource
contention and substantial variability of I/O performance, which significantly
impacts the overall application performance and, most importantly, its pre-
dictability over time. For example, a typical behavior in large-scale simula-
tions consists of alternating computation phases and write phases. As a rule of
thumb, it is commonly accepted that a simulation spends at most 5% of its run
time in I/O phases. Often due to explicit barriers or communication phases, all
processes perform I/O at the same time, causing network and file system con-
tention. To address this issue, developers usually elaborate algorithms at the
MPI-IO level to maintain a high throughput (but optimizations usually rely
on all-to-all communications that impact their scalability). Damaris, which
is the framework proposed by the authors, solve specifically such problems
in case of large-scale simulations. The performance improvements compared
to “all-generic” programming approaches for such applications (authors com-
pared with a standard MPI implementation) leads us to think that obtained
relatively good performance for applications in the future will also involve
coping with specific requirements for particular classes of application. In other
words, parallel and distributed programming models developed a lot, but they
prove real value only when the developer truly understands how to specify
applications correctly in terms of parallel constructs and using the right tool
for the right job. Such solutions clearly show that abstractions and languages
that are currently proposed to manage big data are heavily influenced by the
underlying ICT platforms; but they are unsuitable for supporting “computa-
tional interdisciplinarity”, as it is required if one wants to use the best of, e.g.,
analytical, inductive, and simulation techniques, all at work on the same data.
Many platforms are dedicated to vertical application domains. Due to such
limitations, most data computation scientists specialize in using given meth-
ods and become tied to the options and limitations of that method. In other
words, our society is data-rich, but it lacks the conceptual tools to handle it.

5 Conclusions

With Cloud Computing emerging as a promising new approach for ad-hoc
parallel data processing, major companies have started to integrate frame-
works for parallel data processing in their product portfolio, making it easy
for customers to access these services and to deploy their programs. We have
entered the Era of Big Data. There are various mechanisms that generate big
data: data from scientific measurements and experiments (astronomy, physics,
genetics, etc.), peer-to-peer communication (text messaging, chat lines, dig-
ital phone calls), broadcasting (News, blogs), social networking (Facebook,
Twitter), authorship (digital books, magazines, Web pages, images, videos),
administrative data (enterprise or government documents, legal and finan-
cial records), business data (e-commerce, stock markets, business intelligence,
marketing, advertising). Such services generate clickstream data from millions

30 Ciprian Dobre, Fatos Xhafa

of users every day, which is a potential gold mine for understanding access
patterns and increasing ad revenue.

The explosion and profusion of available data in a wide range of appli-
cation domains rise up new challenges and opportunities in a plethora of
disciplines - ranging from science and engineering to biology and business.
One major challenge is how to take advantage of the unprecedented scale of
data - typically of heterogeneous nature - in order to acquire further insights
and knowledge for improving the quality of the offered services. To exploit
this new resource, we need to scale up and scale out both our infrastructures
and standard techniques. In this paper we analyzed opportunities and chal-
lenges for efficient parallel data processing. Big Data is the next frontier for
innovation, competition, and productivity, and many solutions continue to ap-
pear, partly supported by the considerable enthusiasm around the MapReduce
(MR) paradigm for large-scale data analysis. We reviewed various parallel and
distributed programing paradigms, analyzing how they fit into the Big Data
era, present modern emerging paradigms and frameworks. To better support
practitioners interesting in this domain, we presented an analysis of on-going
research challenges towards the truly fourth generation data-intensive science.

References

1. Abadi, D.J., Carney, D., Çetintemel, U., Cherniack, M., Convey, C., Lee, S., Stone-
braker, M., Tatbul, N., Zdonik, S.: Aurora: a new model and architecture for data
stream management. The VLDB JournalThe International Journal on Very Large Data
Bases 12(2), 120–139 (2003)

2. Beckhusen, R.: So it begins: Darpa sets out to make computers that
can teach themselves. http://www.wired.com/dangerroom/2013/03/
darpa-machine-learning-2/all/1 (2013). [Accessed April 18th, 2013]

3. Bell, G., Hey, T., Szalay, A.: Beyond the data deluge. Science 323(5919), 1297–1298
(2009)

4. Berkan, R.: Big data: A blessing and a curse. http://www.searchenginejournal.
com/big-data-blessing/53528/ (2012). [Accessed April 15th, 2013]

5. Cisco: Cisco visual networking index: Global mobile data traffic forecast update, 2011-
2016. http://www.cisco.com/ (2012). [Accessed April 16th, 2013]

6. Cortes, C., Fisher, K., Pregibon, D., Rogers, A.: Hancock: a language for extracting
signatures from data streams. In: Proceedings of the sixth ACM SIGKDD international
conference on Knowledge discovery and data mining, pp. 9–17. ACM (2000)

7. Darema, F.: The spmd model: Past, present and future. In: Recent Advances in Parallel
Virtual Machine and Message Passing Interface, pp. 1–1. Springer (2001)

8. Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters. Com-
munications of the ACM 51(1), 107–113 (2008)

9. Dorier, M., Antoniu, G., Cappello, F., Snir, M., Orf, L.: Damaris: How to efficiently
leverage multicore parallelism to achieve scalable, jitter-free i/o. In: Cluster Computing
(CLUSTER), 2012 IEEE International Conference on, pp. 155–163. IEEE (2012)

10. Ekanayake, J., Li, H., Zhang, B., Gunarathne, T., Bae, S.H., Qiu, J., Fox, G.: Twister:
a runtime for iterative mapreduce. In: Proceedings of the 19th ACM International
Symposium on High Performance Distributed Computing, pp. 810–818. ACM (2010)

11. Ekanayake, J., Pallickara, S., Fox, G.: Mapreduce for data intensive scientific analyses.
In: eScience, 2008. eScience’08. IEEE Fourth International Conference on, pp. 277–284.
IEEE (2008)

12. Fox, G., Bae, S.H., Ekanayake, J., Qiu, X., Yuan, H.: Parallel data mining from multicore
to cloudy grids. In: High Performance Computing Workshop, vol. 18, pp. 311–340 (2009)

http://www.wired.com/dangerroom/2013/03/darpa-machine-learning-2/all/1
http://www.wired.com/dangerroom/2013/03/darpa-machine-learning-2/all/1
http://www.searchenginejournal.com/big-data-blessing/53528/
http://www.searchenginejournal.com/big-data-blessing/53528/
http://www.cisco.com/

Parallel Programming for Big Data 31

13. Frank, C.: Forbes: Improving decision making in the world of big
data. http://www.forbes.com/sites/christopherfrank/2012/03/25/
improving-decision-making-in-the-world-of-big-data/ (2012). [Accessed
April 15th, 2013]

14. Gainaru, A., Cappello, F., Kramer, W.: Taming of the shrew: Modeling the normal
and faulty behaviour of large-scale hpc systems. In: Parallel & Distributed Processing
Symposium (IPDPS), 2012 IEEE 26th International, pp. 1168–1179. IEEE (2012)

15. Ghemawat, S., Gobioff, H., Leung, S.T.: The google file system. In: ACM SIGOPS
Operating Systems Review, vol. 37, pp. 29–43. ACM (2003)

16. Hayler, A.: ’big data’ applications bring new database choices,
challenges. http://www.computerweekly.com/feature/
Big-data-applications-bring-new-database-choices-challenges (2012).
[Accessed April 15th, 2013]

17. Hindman, B., Konwinski, A., Zaharia, M., Ghodsi, A., Joseph, A.D., Katz, R., Shenker,
S., Stoica, I.: Mesos: A platform for fine-grained resource sharing in the data center.
In: Proceedings of the 8th USENIX conference on Networked systems design and im-
plementation, pp. 22–22. USENIX Association (2011)

18. Hindman, B., Konwinski, A., Zaharia, M., Stoica, I.: A common substrate for cluster
computing. In: Workshop on Hot Topics in Cloud Computing (HotCloud), vol. 2009
(2009)

19. IBM Omnibond, X.: Big data implementation: Hadoop and beyond. http://www.
datanami.com/whitepapers/ (2013). [Accessed June 15th, 2013]

20. Inc., G.: Bigquery, official website. https://developers.google.com/bigquery/
(2013). [Accessed June 15th, 2013]

21. Isard, M., Budiu, M., Yu, Y., Birrell, A., Fetterly, D.: Dryad: distributed data-parallel
programs from sequential building blocks. ACM SIGOPS Operating Systems Review
41(3), 59–72 (2007)

22. Krishnan, S.: Programming Windows Azure. O’Reilly (2010)
23. Lämmel, R.: Googles mapreduce programming modelrevisited. Science of computer

programming 70(1), 1–30 (2008)
24. Markoff, J.: Google cars drive themselves, in traffic. The New York Times 10, A1 (2010)
25. Metz, C.: Meet the data brains behind the rise of facebook. http://www.wired.com/

wiredenterprise/2013/02/facebook-data-team/ (2013). [Accessed July 14th,
2013]

26. Neumeyer, L., Robbins, B., Nair, A., Kesari, A.: S4: Distributed stream computing
platform. In: Data Mining Workshops (ICDMW), 2010 IEEE International Conference
on, pp. 170–177. IEEE (2010)

27. Noseworthy, G.: Infographic: Managing the big flood of big
data in digital marketing. http://analyzingmedia.com/2012/
infographic-big-flood-of-big-data-in-digital-marketing/ (2012).
[Accessed April 14th, 2013]

28. Olston, C., Reed, B., Srivastava, U., Kumar, R., Tomkins, A.: Pig latin: a not-so-foreign
language for data processing. In: Proceedings of the 2008 ACM SIGMOD international
conference on Management of data, pp. 1099–1110. ACM (2008)

29. Paskaleva, K.A.: Enabling the smart city: The progress of city e-governance in europe.
International journal of innovation and regional development 1(4), 405–422 (2009)

30. Patterson, D.A.: The data center is the computer. Communications of the ACM 51(1),
105–105 (2008)

31. Pavlo, A., Paulson, E., Rasin, A., Abadi, D.J., DeWitt, D.J., Madden, S., Stonebraker,
M.: A comparison of approaches to large-scale data analysis. In: Proceedings of the
2009 ACM SIGMOD International Conference on Management of data, pp. 165–178.
ACM (2009)

32. Pierre, G., Stratan, C.: Conpaas: a platform for hosting elastic cloud applications. In-
ternet Computing, IEEE 16(5), 88–92 (2012)

33. Pike, R., Dorward, S., Griesemer, R., Quinlan, S.: Interpreting the data: Parallel analysis
with sawzall. Scientific Programming 13(4), 277–298 (2005)

34. Power, R., Li, J.: Piccolo: Building fast, distributed programs with partitioned tables.
In: OSDI, pp. 293–306 (2010)

http://www.forbes.com/sites/christopherfrank/2012/03/25/improving-decision-making-in-the-world-of-big-data/
http://www.forbes.com/sites/christopherfrank/2012/03/25/improving-decision-making-in-the-world-of-big-data/
http://www.computerweekly.com/feature/Big-data-applications-bring-new-database-choices-challenges
http://www.computerweekly.com/feature/Big-data-applications-bring-new-database-choices-challenges
http://www.datanami.com/whitepapers/
http://www.datanami.com/whitepapers/
https://developers.google.com/bigquery/
http://www.wired.com/wiredenterprise/2013/02/facebook-data-team/
http://www.wired.com/wiredenterprise/2013/02/facebook-data-team/
http://analyzingmedia.com/2012/infographic-big-flood-of-big-data-in-digital-marketing/
http://analyzingmedia.com/2012/infographic-big-flood-of-big-data-in-digital-marketing/

32 Ciprian Dobre, Fatos Xhafa

35. Raicu, I., Foster, I.T., Zhao, Y.: Many-task computing for grids and supercomputers. In:
Many-Task Computing on Grids and Supercomputers, 2008. MTAGS 2008. Workshop
on, pp. 1–11. IEEE (2008)

36. Roush, W.: Facebook doesnt have big data. it has ginormous
data. http://www.xconomy.com/san-francisco/2013/02/14/
how-facebook-uses-ginormous-data-to-grow-its-business/2/ (2013).
[Accessed July 14th, 2013]

37. Schatz, M.C.: Blastreduce: high performance short read mapping with mapre-
duce. University of Maryland, http://cgis. cs. umd. edu/Grad/scholarlypapers/paper-
s/MichaelSchatz. pd f

38. Thusoo, A., Sarma, J.S., Jain, N., Shao, Z., Chakka, P., Zhang, N., Antony, S., Liu, H.,
Murthy, R.: Hive-a petabyte scale data warehouse using hadoop. In: Data Engineering
(ICDE), 2010 IEEE 26th International Conference on, pp. 996–1005. IEEE (2010)

39. Tudoran, R., Costan, A., Antoniu, G.: Mapiterativereduce: a framework for reduction-
intensive data processing on azure clouds. In: Proceedings of third international work-
shop on MapReduce and its Applications Date, pp. 9–16. ACM (2012)

40. Vrbić, R.: Data mining and cloud computing. JITA-Journal of Information Technology
and Applications (Banja Luka)-APEIRON 4(2) (2012)

41. Waas, F.M.: Beyond conventional data warehousingmassively parallel data processing
with greenplum database. In: Business Intelligence for the Real-Time Enterprise, pp.
89–96. Springer (2009)

42. Wampler, D.: Programming trends to watch: Logic and prob-
abilistic programming. http://thinkbiganalytics.com/
programming-trends-to-watch-logic-and-probabilistic-programming/
(2013). [Accessed April 18th, 2013]

43. Warneke, D., Kao, O.: Nephele: efficient parallel data processing in the cloud. In:
Proceedings of the 2nd workshop on many-task computing on grids and supercomputers,
p. 8. ACM (2009)

44. Yang, H.c., Dasdan, A., Hsiao, R.L., Parker, D.S.: Map-reduce-merge: simplified rela-
tional data processing on large clusters. In: Proceedings of the 2007 ACM SIGMOD
international conference on Management of data, pp. 1029–1040. ACM (2007)

45. Yu, Y., Isard, M., Fetterly, D., Budiu, M., Erlingsson, Ú., Gunda, P.K., Currey, J.:
Dryadlinq: A system for general-purpose distributed data-parallel computing using a
high-level language. In: OSDI, vol. 8, pp. 1–14 (2008)

46. Zaharia, M., Chowdhury, M., Franklin, M.J., Shenker, S., Stoica, I.: Spark: cluster com-
puting with working sets. In: Proceedings of the 2nd USENIX conference on Hot topics
in cloud computing, pp. 10–10 (2010)

47. Zaharia, M., Konwinski, A., Joseph, A.D., Katz, R., Stoica, I.: Improving mapreduce
performance in heterogeneous environments. In: Proceedings of the 8th USENIX con-
ference on Operating systems design and implementation, pp. 29–42 (2008)

http://www.xconomy.com/san-francisco/2013/02/14/how-facebook-uses-ginormous-data-to-grow-its-business/2/
http://www.xconomy.com/san-francisco/2013/02/14/how-facebook-uses-ginormous-data-to-grow-its-business/2/
http://thinkbiganalytics.com/programming-trends-to-watch-logic-and-probabilistic-programming/
http://thinkbiganalytics.com/programming-trends-to-watch-logic-and-probabilistic-programming/

