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ABSTRACT OF DISSERTATION

ULTRA-FAST AND MEMORY-EFFICIENT LOOKUPS FOR CLOUD, NETWORKED
SYSTEMS, AND MASSIVE DATA MANAGEMENT

Systems that process big data (e.g., high-traffic networks and large-scale storage) prefer
data structures and algorithms with small memory and fast processing speed. Efficient
and fast algorithms play an essential role in system design, despite the improvement of
hardware. This dissertation is organized around a novel algorithm called Othello Hashing.
Othello Hashing supports ultra-fast and memory-efficient key-value lookup, and it fits the
requirements of the core algorithms of many large-scale systems and big data applications.
Using Othello hashing, combined with domain expertise in cloud, computer networks, big
data, and bioinformatics, I developed the following applications that resolve several major
challenges in the area.

Concise: Forwarding Information Base. A Forwarding Information Base is a data struc-
ture used by the data plane of a forwarding device to determine the proper forwarding ac-
tions for packets. The polymorphic property of Othello Hashing the separation of its query
and control functionalities, which is a perfect match to the programmable networks such
as Software Defined Networks. Using Othello Hashing, we built a fast and scalable FIB
named Concise. Extensive evaluation results on three different platforms show that Concise
outperforms other FIB designs.

SDLB: Cloud Load Balancer. In a cloud network, the layer-4 load balancer servers is
a device that acts as a reverse proxy and distributes network or application traffic across
a number of servers. We built a software load balancer with Othello Hashing techniques
named SDLB. SDLB is able to accomplish two functionalities of the SDLB using one
Othello query: to find the designated server for packets of ongoing sessions and to distribute
new or session-free packets.

MetaOthello: Taxonomic Classification of Metagenomic Sequences. Metagenomic read
classification is a critical step in the identification and quantification of microbial species
sampled by high-throughput sequencing. Due to the growing popularity of metagenomic
data in both basic science and clinical applications, as well as the increasing volume of data
being generated, efficient and accurate algorithms are in high demand. We built a system
to support efficient classification of taxonomic sequences using its k-mer signatures.



SeqOthello: RNA-seq Sequence Search Engine. Advances in the study of functional
genomics produced a vast supply of RNA-seq datasets. However, how to quickly query
and extract information from sequencing resources remains a challenging problem and has
been the bottleneck for the broader dissemination of sequencing efforts. The challenge
resides in both the sheer volume of the data and its nature of unstructured representation.
Using the Othello Hashing techniques, we built the SeqOthello sequence search engine.
SeqOthello is a reference-free, alignment-free, and parameter-free sequence search system
that supports arbitrary sequence query against large collections of RNA-seq experiments,
which enables large-scale integrative studies using sequence-level data.

KEYWORDS: Othello Hashing, Forwarding Information Base, Software Load Bal-
ancer, Taxonomy Classification, Sequence Search
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Chapter 1. Introduction

Systems that process big data (e.g., high-traffic networks and large-scale storage) are facing

emerging challenges in generating, transmitting, storing, and processing large-scale data.

Hence, they prefer data structures and algorithms with small memory and fast processing

speed. Despite the improvement of hardware, the efficiency of algorithms always plays an

essential role in system design.

Specifically, key-value lookup is a fundamental mechanism that presents in almost all

computational systems or applications. A key-value lookup data structure stores the map-

ping between a set of keys to the corresponding values. During each query, a key is speci-

fied and the query result is the corresponding value of this key. Intuitively, a hash table may

serve as a key-value lookup table in many applications. However, in some data-intensive

or lookup intensive applications, the lookup speed of hash table still becomes the perfor-

mance bottleneck. Hence, for real-world systems, the need for an efficient data structure

for key-value query lookup never cease.

This dissertation is organized around an algorithm called Othello Hashing. Othello

Hashing supports ultra-fast and memory-efficient key-value lookup, and it fits the require-

ments of the core algorithms of these large-scale systems and big data applications. Oth-

ello achieves significant speed improvement in lookups of network addresses, data IDs, or

genome sequences, using significantly smaller memory compared to recent solutions. By

bringing efficient algorithms and data structures for key-value lookup for practical prob-

lems in building real-world systems, the works presented in this dissertation tackle chal-

lenging issues of the distributed networking systems, big data, and Bioinformatics.

1



1.1 Background

1.1.1 Background in cloud and networked systems

Significant efforts have been devoted to the investigation and deployment of new network

technologies in order to simplify network management and to accommodate emerging net-

work applications, especially cloud and big data applications. In the past several decades,

the computer networking industry has shown enormous interests in the development and

application of Software Defined Networks (SDN) [2, 3]. SDN technologies make the net-

work more programmable; meanwhile, it brings possibilities for network function virtual-

ization (NFV)[4]. A wide range of programmable network initiatives [5], network man-

agement infrastructure [6, 7] and tools [3] have emerged during the evolution of computer

network systems. Meanwhile, although the performance and capacity of hardware have

been boosting rapidly in the past several decades, there is still an eternal question about

how to effectively perform tasks (e.g., network packet forwarding) with limited hardware

resources.

One example of such issue is the Forwarding Information Base (FIB) explosion prob-

lem, an inevitable issue caused by the prevailing applications of flat-names in networked

systems. Though different proposals of new network technologies focus on a wide range of

issues, one consensus of most new network designs is the separation of network identifiers

and locators [8], which are combined in IP addresses in the current Internet. Instead of

IP, flat-name or namespace-neutral architectures have been proposed to provide persistent

network identifiers. A flat or location-independent namespace has no inherent structure and

hence imposes no restrictions to referenced elements [9].

Forwarding Information Base (FIB) is a data structure, typically a table, that is used

to determine the proper forwarding actions for packets, at the data plane of a forwarding

device (e.g, switch or router). Unlike IP addresses, location-independent names are diffi-

cult to aggregate in the FIB, due to the lack of hierarchy and semantics. The increasing

2



population of network hosts results in huge FIBs and their continuing fast growth.

On the other hand, the increasing line speed requires the capability of fast forwarding.

To support multiple 10Gb Ethernet links, a FIB may need to perform hundreds of millions

of lookups per second. Existing high-end switch fabrics use fast memory, such as TCAM

or SRAM, to support intensive FIB query requests. However, as discussed in many studies

[10–12], fast memory is expensive, power-hungry, and hence very limited on forwarding

devices. Therefore, achieving fast queries with memory-efficient FIBs is crucial for the new

network architectures that rely on location-independent names.

Another issue is how to effectively perform Load Balance in Mobile Edge Computing.

Although mobile hardware continues to improve, it is still relatively resource-constrained

compared to static computing hardware. To provide the resource of computation, storage,

and bandwidth to massive mobile computing devices, using powerful back-end servers

in a remote cloud is a common solution. However, Many modern applications such as

augmented reality (AR) and real-time monitoring/control are latency-sensitive and may

suffer the long round-trip delay to the cloud. Hence, Mobile Edge Computing (MEC)

has been proposed to shift computing and storage capacities from the remote cloud to the

network edge [13, 14].

In MEC, The nodes that provide the resource to mobile devices are called MEC hosts.

A MEC network deals with the data traffic from mobile devices to MEC hosts, serving var-

ious applications and purposes. The MEC load balancer (MEC-LB) is a network function

deployed between the mobile devices and MEC hosts, which assigns a MEC host as the

destination for every packet from a mobile device.

The network traffic (packets) in MEC can be classified into two categories: the stateful

packets, which should be forwarded to some designated hosts according to the packet iden-

tifies; the stateless packets, which should be randomly assigned and forwarded to one of

the candidate MEC hosts according to a probabilistic distribution. The MEC-LB should be

able to handle both stateful packets and stateless packets simultaneously. However, existing

3



solutions of cloud load balancers [15–17] cannot be directly applied to MEC-LB because

they can only handle either stateful or stateless packets. Meanwhile, the limited compu-

tational resource on MEC devices and the programmability requirements also calls for a

memory-efficient, software-based, and portable solution. Hence, software load balancing

in MEC remains a challenging but essential issue in MEC.

Although the application scenarios are different in the two above examples of the FIB

explosion issue and the MEC load balancing issue, the demands of an efficient key-value

lookup method are similar. The detailed approaches of applying the Othello Hashing in the

real-world systems are subject to the specific use case, which is discussed later in Chapter

3 and Chapter 4 in this work.

1.1.2 Background in Bioinformatics

Deoxyribonucleic acid (DNA) molecules store the hereditary information that instructs the

development and functioning of organisms. Such genetic information flows in biological

systems following the Central dogma of molecular biology [18].

In the recent years, next-generation sequencing technologies (NGS) has emerged and

became a prevailing technology that advances the study of molecular biology. These techni-

cal advances further improve the studies of functional genomics over the past decade. NGS

plays an increasingly prominent role in biological studies, for example, RNA-seq technolo-

gies reveals the presence and quantity of RNA, which has become the dominant technology

in transcriptome profiling. The unique capability in deep sequencing RNA transcripts en-

ables the researchers to uncover important gene expression changes on a transcriptome

level with unprecedented details.

While the rapid development of sequencing technology has exponentially scaled the

size of genomics studies, as shown in Figure 1.1, the reduction in sequencing costs has ex-

ceeded Moore’s law. Many computational methods have been developed to assist the anal-

ysis of the data. While the progress in computational technologies such as CPU, memory,
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Figure 1.1: The reduction in sequencing cost is outpacing Moore’s Law. Red line: hy-
pothetical data reflecting Moore’s Law. Data source: National Human Genome Research
Institute (NHGRI) [1]

storage, has been struggling to follow the Moore’s Law, the need of efficient approaches to

process, store, and query the RNA-seq data has become more critical to many bioinformat-

ics research projects.

To date, there is a vast supply of genomics datasets, including datasets that are public or

shared within the community (SRA[19], TCGA[20], ICGC[21], NCBI[22], etc.), as well

as private datasets generated in individual research labs. Thanks to the development of

distributed system and cloud computing infrastructure, researchers are now able to conduct

the analytic workflow of these datasets using cloud infrastructure [23–25]. In order to

analyze large-scale genomic data, researchers have been making efforts to utilize the superb

features of cloud computing, such as elastic and parallel computing, to parallel execute the

sub procedures in the analytic workflow [26, 27]. However, few efforts have been made to

the development of algorithm or system foundations of these procedures.

We observe that there is a great need for effective index lookup algorithm in the area

of large-scale Bioinformatics data storage and query. In a data storage system where each

record contains the data of a corresponding key, an index of the key returns the location of

the corresponding data. An index lookup is equivalent to a key-value query. Index lookup
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is also equivalent to classification query. For a collection of a disjointing set of keys, given

a key that belongs to one of the sets, a classification query of this key identifies the set

that contains this key. We identify two use cases where such algorithm is critical to the

applications.

One example use case lies in the area of Taxonomic Classification of Metagenomic Se-

quences. Metagenomics is the study of genomic content obtained in bulk from an environ-

ment of interest, such as the human body [28], seawater [29], or acidic mine drainage [30].

One of the major computational challenges in the analysis of metagenomic data is the clas-

sification of each sequencing read into the most-specific biological taxon to which sequence

conservation supports its assignment. The atomic operation for such classification opera-

tion of sequencing read is a classification query of each small segment of the sequencing

reads over the collection of taxons.

Another use case is the Sequence Search Query on Large Collection of Experiments.

Advances in the study of functional genomics produced a vast supply of RNA-seq datasets

in the past decade [19, 20]. However, quickly querying and extracting information from

the sequencing resources remains a challenging problem and the bottleneck for the broader

dissemination of sequencing efforts. Most sequencing databases only support metadata

searches[19, 21, 22, 31], which fails to extract base-by-base k-mer (k-mer is the atomic unit

for sequence data) coverage profiles of a query sequence across large sequencing datasets.

Such fine-grained information is essential to identify mutations, distinguish transcript iso-

forms and predict a sequences expression level. In order to achieve detailed global char-

acterization of genomic features at the k-mer level, the database must be able to report the

present/absence information of individual k-mer. While such information is stored as com-

pressed data entries in a large data store, an efficient indexing algorithm is crucial in the

process of retrieving such information.

While the key-value lookup algorithm serves as the central component of both the above

applications, we also have taken various practical issues into the consideration for the actual
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design of the Bioinformatics applications. These details are presented in Chapter 5 and

Chapter 6.

1.2 Dissertation Statement

This dissertation aims to investigate the algorithmic properties of Othello Hashing, to eval-

uate its performance, and to explore its applications in large-scale enterprise networks,

cloud systems, and Bioinformatics.

1.3 Dissertation Contribution

This dissertation is organized around a novel algorithm called Othello Hashing. The main

functionality of Othello Hashing is to provide a classification key-value query. For a set of

keys S = {s1,s2, · · · ,sn} (names, identifies, etc. ), and a corresponding list of fixed-length

non-negative integer values T = (t1, t2, · · · , tn), an Othello data structure OOO(S,T ) maintains

the mapping τ from the keys to the values.

The Othello data structure supports the query operation. Given a key si that is present

in the set S, si ∈ S, the query result on Othello τ(s) returns the corresponding value ti, i.e.,

τ(si) = ti. For any key s′ that is not specified in the set S, namely alien key, s′ /∈ S, the query

result τ(s′) returns a deterministic value that follows a particular probability distribution.

As a comparison, for a hash table maintains a key-value mapping, a query of an alien key

yields a result reporting such key does not exist in the table.

In many of the applications for networked systems and big data, the computational

resource of the construction and update operation is usually abundant, while the query

procedure usually faces limited computational resources and strict real-time performance

requirements. For example, in a programmable network, the resource-abundant control

plane is responsible for handling network dynamics, while the data plane switches forward

the packets. The limited resource and strict performance requirement for the data plane

demands a query mechanism that is optimized for memory efficiency and query speed.
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Othello Hashing is tailored to fit these applications, the query

The journey of exploring the applications of Othello Hashing starts from the high-

traffic computer networking for cloud application, which later expanded to the big data and

bioinformatics area. Using Othello hashing, combined with domain knowledge in cloud,

computer networks, big data, and bioinformatics, I developed the following systems and

applications that resolve several major challenges in the area.

Concise: Forwarding Information Base [32]. A Forwarding Information Base is a

data structure, typically a table, used to determine the proper forwarding actions for packets

at the data plane of a forwarding device (e.g., switch or router). The increasing size of FIBs,

due to the ever-growing number of connected network devices or entities, causes many

problems including large memory cost (hence more expensive switches/routers), slow ta-

ble lookups, and coarse-grained flow management. Meanwhile, the increasing line speed

also requires a fast and small FIBs. The polymorphic property enables the separation of

Othello’s query and control functionalities, which is a perfect match to the programmable

networks such as Software Defined Networks. I built a fast and scalable FIB named Con-

cise. Extensive evaluation results on three different platforms show that Concise outper-

forms other FIB designs. Compared to existing FIB designs for name switching, Concise

supports much faster name lookup using significantly smaller memory (2x∼ 4x faster with

only 10% ∼ 30% memory size compared to state-of-art solutions).

SDLB: Cloud Load Balancer [33]. In a cloud, the load balancer is a device that

acts as a reverse proxy and distributes network or application traffic across a number of

servers. Load balancers are widely used in cloud computing and mobile edge computing

to increase the capacity and reliability of applications. A layer-4 load balancer serves the

following two functions. 1) A lookup to find the designated server if a packet belongs to

an ongoing session. 2) If the packet is new or session-free, the load balancer selects one

of the available servers according to the capacity of the servers. I built a software load

balancer with Othello Hashing techniques named SDLB, which enables the load balancer
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to perform the two functions simultaneously using one query on the table. Evaluation

results show that the system is faster by 4x to 10x and uses much less (< 50%) memory,

than the current widely-used load balancer designs.

MetaOthello: Taxonomic Classification of Metagenomic Sequences [34]. Metage-

nomic read classification is a critical step in the identification and quantification of mi-

crobial species sampled by high-throughput sequencing. Although many algorithms have

been developed to date, they suffer significant memory and computational costs. Due to

the growing popularity of metagenomic data in both basic science and clinical applications,

as well as the increasing volume of data being generated, efficient and accurate algorithms

are in high demand. We built a system to support an efficient classification of taxonomic

sequences using its k-mer signatures. MetaOthello is an order-of-magnitude faster than

the current state-of-the art algorithms Kraken and Clark and requires only one-third of the

RAM.

SeqOthello: RNA-seq Sequence Search Engine [35]. Advances in the study of func-

tional genomics produced a vast supply of RNA-seq datasets. However, how to quickly

query and extract information from sequencing resources remains a challenging problem

and has been the bottleneck for the broader dissemination of sequencing efforts. The chal-

lenge resides in both the sheer volume of the data and its nature of unstructured repre-

sentation. We carefully designed the algorithms so that it enables sequence search on a

vastly compressed data domain. Using the Othello Hashing techniques, we built the first

sequence search index constructed on the scale of TCGA data. SeqOthello requires only

five minutes to conduct a global survey of 11,658 fusion events against 10,113 TCGA Pan-

Cancer RNA-seq datasets on a standard computer with 19.1 GB memory space. The query

recovers 92.7% of tier-1 fusions curated by TCGA Fusion Gene Database and further re-

veals 270 novel fusion occurrences, all of which present as tumor-specific. The entire

index is only 76 GB, achieving a 700:1 compression ratio relative to the original sequenc-

ing data and making it extremely portable. By providing a reference-free, alignment-free,
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and parameter-free sequence search system, SeqOthello will enable large-scale integrative

studies using sequence-level data, an undertaking not previously practicable for many in-

dividual labs.

The rest of this dissertation is organized as follows. Chapter 2 presents the Othello

Hashing algorithm. The following Chapters presents the four different applications of Oth-

ello Hashing: Chapter 3 presents the Concise Forwarding Information Base, Chapter 4

presents the SDLB software load balancer, Chapter 5 presents the MetaOthello taxonomy

classification system, Chapter 6 presents the SeqOthello sequence search engine. Finally,

7 summarizes the work and discuss the potential future works of Othello Hashing.
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Chapter 2. Othello Hashing Algorithm

In this chapter, we describe the Othello Hashing algorithm.

We first describe the background and related work of minimal perfect hashing in Sec-

tion 2.1. We give the definitions of Othello Hashing and the notations in Section 2.2. The

operations that Othello supports are discussed in Section 2.3. The implementation consid-

erations are presented in Section 2.4. The properties for alien query on Othello is discussed

in 2.5. We provide an extensive evaluation of Othello in 2.6. Finally, we summarize the

properties in 2.7.

2.1 Background and Related Work

The data structure used in this work, Othello Hashing, is built upon the studies on minimal

perfect hashing. [36–39, 39–43]

A perfect hash function h of a set S maps the set to hash values without conflict. i.e., for

any s1,s2 ∈ S, s1 6= s2, h(s1) 6= h(s2). A minimal hash function maps a set of n = |S| keys

into n consecutive integral numbers {0,1, · · · ,n−1}. The minimal perfect function of set S

generates a complete order of the elements in S, hence minimal perfect hashing techniques

are usually used for building effective index of large data sets.

In particular, MWHC [37] is able to generate order-preserving minimal perfect hash

functions using a random hypergraph. MWHC is also presented as Bloomier Filter in

[44, 45]. This approach is independently rediscovered in [42, 43]. A r-uniform hypergraph

H is a pair H = (V,E) where V is the set of nodes and E is the set of hyper-edges. Each

hyper-edge e∈ E is a set of r elements in V . These works choose different r values to make
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Figure 2.1: Example of the board game Othello. Image source [47], use under CC-BY-SA
3.0.

trade off between the memory overhead and the computational overhead. For example, in

order to achieve minimal memory size r = 3 was used in [43].

The differences between Othello and these studies include: (1) Othello uses a bipartite

graph instead of a general random hypergraph. This design allows much simpler concur-

rency control mechanism. (2) The original researches on MWHC and Bloomier Filter are

designed for static scenarios. The dynamic update mechanism was not presented, which

could be more complicated in practice. (3) Othello is optimized for real applications. It is

designed under the polymorphic data structure model and performs different functionali-

ties by the control structure and query structure. Othello aims to support fast flat key-value

classification query, while MWHC is for finding minimum perfect hash functions [37] and

Bloomier Filter is designed for approximate evaluation queries [44].

The Name Othello We name the data structure by Othello because the underlying algo-

rithm shares some interesting properties with the board game Reversi. The game is mar-

keted under the trademark Othello. Researchers on combinatorial game theory has been

interested in the Othello Game and found intriguing properties of the game[46].

The board game Othello is a strategy board game in which two players take turns plac-

ing tokens on the board. A photo of an Othello board is shown in Figure 2.1. The tokens in
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Figure 2.2: Example of 1-Othello of n = 5 keys with ma = mb = 8. Left: Bipartite graph G
and bitmaps A and B. Right: the hash values and τ(s) values for five keys s0,s1,s2,s3,s4,s5.

the game are small disks which are white on one side and black on the other side. During

the game, the disks are placed on the board, which may be later turned over by the players.

This is much similar to the arrays A and B in the Othello Hashing data structure when l = 1,

in which the values 0 and 1 are placed in the arrays which can be later ‘flipped’ by update

operations.

2.2 Definitions: l-Othello

For a set of keys (names, identifies, etc.) S = {s1,s2, · · · ,sn}, and a corresponding list of

l-bit non negative integer values T = (t1, t2, · · · , tn), where 0≤ ti < 2l , we use the notation

OOO(S,T ) to describe the following data structure: Othello OOO(S,T ) maintains a mapping

τ : S→{0,1, · · · ,2l−1} that satisfies for any i ∈ {1,2, · · · ,n},τ(si) = ti.

An l-Othello OOO(S,T ) is a seven-tuple 〈ma,mb,ha,hb,A,B,G〉, defined as follows.

• Integers ma and mb, describing the size of Othello.

• A pair of uniform random hash functions 〈ha,hb〉, mapping keys to integer val-

ues {0,1, · · · ,ma−1} and {0,1, · · · ,mb−1}, respectively.

• Arrays A and B of l-bit integers. The lengths are ma and mb respectively.

• A bipartite graph G. During Othello construction and update, G is used to

determine the values in A and B.

Figure 2.2 shows an l-Othello example where l = 1. We require that ma = Θ(n), mb =
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Θ(n), and mamb > n2. We provide two options to determine the values ma and mb. 1)

ma is the smallest power of 2 such that ma ≥ 1.33n and mb = ma. 2) ma is the smallest

power of 2 such that ma ≥ 1.33n and mb is the smallest power of 2 such that mb ≥ n. A

user may choose either option. The difference is that for Option 1 we establish a rigorous

proof of constant update time and for Option 2 we establish the proof with a constraint on

n. However Option 2 provides slightly better empirical results.

l-Othello supports a query operation as follows. For a key s, it computes τ(s) ∈

{0,1, · · · ,2l − 1}. If s ∈ S (i.e., s = si for some i), τ(si) = ti. If s /∈ S, τ(s) returns a

value in {0,1, · · · ,2l−1} that is determined by the content of A and B. The values of A and

B are determined during Othello construction, so that τ(s) can be computed by:

τ(s) = A[ha(s)]⊕B[hb(s)]

Here, ⊕ is the exclusive or (XOR) operation.

As shown in Figure 2.2, when l = 1, the values τ(s), A[ha(si)], and B[hb(si)] are all

1-bit values. The arrays in A and B of 1-Othello satisfy:

• If ti = 0, A[ha(si)]=B[hb(si)];

• If ti = 1, A[ha(si)] 6=B[hb(si)].

2.3 Othello Operations

Othello is maintained via the following operations.

• construct(S,T ): Construct an l-Othello. (Section 2.3.1)

• add(s, t): add a new key s into the set S and specify the corresponding query result

be t. (Section 2.3.2)

• alter(s, t): For a key s ∈ S, change the corresponding value in Othello, so that the

query result τ(s) returns t after this operation. (Section 2.3.3)
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• delete(s): For a key s ∈ S, remove s from set S and no longer maintain the corre-

sponding t value. (Section 2.3.4)

2.3.1 Construction

The construct operation for l-Othello takes a list of keys S and the list of corresponding

values T as input. The output is an l-Othello OOO(S,T ) = 〈ma,mb,ha,hb,A,B,G〉.

Here, G is a bipartite graph used to determine the hash function pair and the values of

A and B. G = (U,V,E). |U |= ma, |V |= mb. A vertex ui ∈U or v j ∈V corresponds to bit

A[i] or B[ j]. Each edge in E represents a key. There is an edge (ui,v j) ∈ E if and only if

there is a key s ∈ S such that ha(s) = i and hb(s) = j.

We use the case l = 1 for example. For each vertex that is associated with at least one

edge, the corresponding bit is set to 0 or 1. A vertex associated with bit 0 is colored in white

and a vertex associated with bit 1 is colored in black. For vertices that have no associated

edges, the value of the corresponding bits can be set to 0 or 1 arbitrarily, because they do

not affect any τ(s) value for s ∈ S. In order to assign correct values of A and B, Othello

requires G to be acyclic.

The construction algorithm consists of two phases.

• Phase I: Selecting the hash function pair.

In this phase, Othello finds a hash function pair 〈ha,hb〉. We assume there are many

candidate hash functions and will discuss the implementation in Sec. 2.4.2. In each

round, two hash functions are chosen randomly and G is accordingly generated. We

use Depth-First-Search (DFS) on G to test whether it includes a cycle, which takes

O(n) time. The order in which the edges are visited during the DFS, i.e, the DFS

order of the edges, is recorded to prepare for the second phase. Note that if two or

more keys generate edges with the same two endpoints, we will consider as if there

is a cycle. If G is cyclic, the algorithm will select another pair of hash functions until

an acyclic G is found.
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• Phase II: Computing the bitmaps.

In this phase, we assign values for the two bitmaps A and B. First, the values in A

and B are marked as undefined. Then, we execute the followings for each e = (ui,v j)

in the DFS order of the edges: Let s be the key that generates e. If none of A[i] and

B[ j] has been assigned, let A[i]← 0 and B[ j]← τ(s). If there is only one of A[i] and

B[ j] has been assigned, we can always assign an appropriate value to the other one,

such that A[i]⊕B[ j] = τ(s). As G is acyclic, following the DFS order, we will never

see an edge such that both A[i] and B[ j] have values.

We show the pseudocode of l-Othello construction in Algorithm 1.

Input: Keys S = {s1,s2, · · · ,sn}, values T = (t1, t2, · · · , tn)
Output: An Othello structure OOO(S,T ) = 〈m,ha,hb,A,B,G〉
begin

1 select m value according to n = |S|.
/* Phase I: decide hash function pair */

2 repeat
3 Randomly select hash function ha, hb.

until GeneratedGraphIsAcyclic(S,ha,hb).
/* Phase II: Compute bitmaps */

4 Compute G = (U,V,E) using ha, hb and S.
5 Execute Depth-First-Search on G.
6 (e1,e2, · · · ,en)← the DFS order of E.
7 Mark all A[i],B[ j](0≤ i, j < m) as unassigned.
8 for w = 1,2, · · · ,n do
9 s← the corresponding key for ew

10 v← the corresponding t value for s
11 i← ha(s); j← hb(s).
12 if both A[i] and B[ j] are unassigned then
13 A[i]← 0; B[ j]← v.
14 else if A[i] is unassigned then
15 A[i]← B[ j]⊕ v.
16 else /* B[ j] isunassigned */

17 B[ j]← A[i]⊕ v.
end

end
end

Algorithm 1: Othello construct procedure
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Note that the edges of G are only determined by S and the hash function pair 〈ha,hb〉.

If we find G to be cyclic for a given S and a pair 〈ha,hb〉, we shall use another pair 〈ha,hb〉

to make G acyclic. We show that for a randomly selected pair of hash functions 〈ha,hb〉,

the probability of G to be acyclic is very high:

Theorem 1. Given set of keys S, n= |S|. Suppose ha,hb are randomly selected from a family

of fully random hash functions. ha : S→ {0,1, · · · ,ma− 1}, hb : S→ {0,1, · · · ,mb− 1}.

Then the generated bipartite graph G is acyclic with probability
√

1− c2 when n→∞, where

c = n√
mamb

, c < 1.

When G is acyclic, we say that 〈ha,hb〉 is a valid hash function pair for S. We prove

Theorem 1 using the technique described in [48].

Proof. Let G = (U,V,E) be a bipartite random graph with |U | = ma, |V | = mb, |E| = n,

where each edge is independently taken at random with probability n
mamb

. Let C2` be the

set of cycles of length 2` (`≥ 1) in the complete bipartite graph Kma,mb . A cycle in C2` is a

sequence of 2` distinct vertices chosen from U and V . Hence,

|C2`|=
1
2`

(ma)`(mb)`,

where (m)` = m(m−1) · · ·(m− `+1). Meanwhile, As each edge in G is selected indepen-

dently, each cycle in C2` occurs in G with probability ( n
mamb

)2`.

As proved in [48], the number of cycles of length 2` in G converges to a Poisson distri-

bution with parameter λ2`. For n→ ∞,

λ2` = p2`|C2`|

= (
n

mamb
)2` 1

2`
(ma)`(mb)`→

1
2`

n2`

(mamb)`

Let c = n√
mamb

we have λ2`→ 1
2`c2` as n→ ∞.

The number of cycles of any even length in G, represented as a random variable X ,
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Figure 2.3: Example of adding keys into Othello. Dashed edges: added keys. Highlighted
cells: modified values in a and b. Left: e adds isolated nodes to existing connected compo-
nents, Right: e joins two existing non-trivial connected components.

converges to a Poisson distribution with parameter λe, where

λe =
∞

∑
`=1

λ2` =−
1
2

ln(1− c2).

Therefore, the probability that G contains no cycle is

Pr(X = 0) = e−λe =
√

1− c2.

When c≤ 0.75 (i.e, n≤ 0.75m),
√

1− c2≥ 0.66. Hence the expected number of rounds

to find an acyclic G in Phase I is 1√
1−c2 ≤ 1.51 when c < 0.75. The time complexity is O(n)

in each round. The second phase takes O(n) time to visit n edges and assign values of A

and B. Hence, the total expected time of construct is O(n).

2.3.2 Key addition

To add a key s with value t using add(s, t), the graph G and two arrays A and B should be

changed in order to maintain the correct result τ(s).

The algorithm first computes the edge e = (u,v) to be added to G for s, u = uha(x),

v = vhb(x). Note that G can be decomposed into connected components. e must fall in one

of the following cases:
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• Case I: u and v belong to the same connected component cc. Adding e to G will

introduce a cycle. In this case, we have to re-select a hash function pair 〈ha,hb〉

until a valid hash function pair is found for the new key set S∪{k}. The construct

algorithm is used to perform this process.

• Case II: u and v are in two different connected components. As shown in Figure 2.3,

the edge e either (1) adds an isolated node to a connected component in G; (2) joins

two connected components in G. Combining the two connected components and the

new edge, we have a single connected component that is still acyclic. As discussed

in Sec. 2.3.1, it is simple to find a valid coloring plan for an acyclic connected

component. Hence, the values of A and B can also be set properly. In fact, at least

one of the two connected components can keep the existing value assignments.

Complexity Analysis

We now compute the time complexity of add using three theorems. In particular, we will

show that the time complexity of the add operation is O(1). The important parameter that

governs the complexity of an insertion is the susceptibility of the graph G, which is defined

as the expected size of the connected component that contains a randomly chosen node,

and is denoted by χ(G).

We give a closed-form estimation for χ(G) = 1
1−p where p = n(ma+mb)

2mamb
, and prove that

χ(G) has a constant upperbound E[χ(G)] ≤ 4. As stated before, there are two options in

choosing values ma and mb. In Option 1, ma = mb and in Option 2, ma = mb or ma = 2mb.

We are able to compute the closed-form formulae for χ(G) when ma = mb. For the case

ma = 2mb, we give a looser upper bound. The numerical estimation shows that the upper

bound E[χ(G)]≤ 4 is true for both of the two situations where ma = mb and ma = 2mb.

For the sake of analysis we let GA(ma,mb,n) be a random acyclic graph generated using

the same process as G (ma,mb,n) except that an edge is not added if it introduces a cycle in

the graph. It could also be generated by repeatedly generating graphs G (ma,mb,n) until we
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get an acyclic graph. It is evident that this random graph model corresponds to the graphs

constructed and maintained by Othello.

For the case ma = mb we show Theorem 2. For the case ma = 2mb we show Theorem

3. Theorem 4 concludes that the time complexity of add is O(1).

Theorem 2. Suppose we have a random graph GA(ma,mb,n) where ma = mb and we ran-

domly select a node w in GA. Let cc(w) be the connected component containing w. Then

the expected value of |cc(w)| is ma
ma−n as n→ ∞.

Proof. Let χ(G) = E[|cc(w)|] where w is randomly selected from G and |cc(w)| denotes

the number of nodes in cc(w). In [49, Lemma 1], it was proved that for a random sparse

graph G (ma,ma,n) with n edges, we have χ(G) = 2ma
2ma−2n when n→ ∞ given that n <

0.999ma. We will show that the same bound holds for a graph GA(ma,ma,n). It is well

known that the largest connected component in a random graph with n edges and m nodes

with n≤ 0.99 ·m/2 has size O(logn) with probability 1− 1
n10 [49].

We now generate a graph GA(ma,ma,n) by generating the edges one by one. If an edge

(v,w) makes the graph cyclic, then we do not add it, but instead put it into a set S. Let E be

the set of n edges in the generated acyclic graph G1. Then graph G2 with the set of edges

E ∪S will clearly be a graph G (ma,ma,n′) with n′ = n+O(log2 n) ≤ 0.999m/2. Now we

have that χ(G1)≤ χ(G2) and χ(G2) =
2ma

2ma−2n′ →
2ma

2ma−2n when n→ ∞.

Theorem 3. For a random graph GA(ma,mb,n) where ma = 2mb, n ≤ 0.65mb, and ran-

domly select a node w in G . Let cc(w) be the connected component containing w. Then

the expected value of |cc(w)| is O(1).

Proof. Again let χ(G) = E[|cc(w)|] where w is randomly selected from G. We generate a

graph GA(ma,mb,n) with n≤ 0.65mb as follows. Let Va with |Va|= ma be the set of nodes

on the left side, and Vb with |Vb| = mb be the set of nodes on the right side. We generate

edges one by one from random graph GA(ma +mb,n), and reject an edge (v,w) if either

(v ∈ Va ∧w ∈ Va) or (v ∈ Vb ∧w ∈ Vb). The probability of accepting an edge is thus 4
9 .
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We stop the generation when we have finished generating the n edges, and we denote the

resulting graph by G1. We let G2 be the graph obtained by adding all the rejected edges

back to G1. It is clear that χ(G1)≤ χ(G2). Moreover, G2 is a random graph GA(ma+mb,n′)

with n′ = 9
4n±O(

√
n) with probability 1− 1

n10 . According to Theorem 3.3(i) in [50], for a

graph G3 = G (ma +mb,n′):

χ(G3) ≤
ma +mb

ma +mb−2n′
=

3mb

3mb−2 · 9
4n

≤
3 n

0.65

3 n
0.65 −2 · 9

4n
= O(1).

We can use the same argument as in the proof of Theorem 2 to show that the susceptibility

for a graph GA(ma +mb,n′) is the same as for a graph G (ma +mb,n′) which concludes the

proof.

Theorem 4. Assuming ha,hb are randomly selected from a family of fully random hash

functions, an insertion into an Othello with n existing keys will take constant amortized

expected time when ma = mb, or when ma = 2mb and n≤ 0.65mb.

Proof. In the algorithm described in Section. 2.3.2, during an insertion, we have to add

an edge that connects a randomly selected node u ∈U to another randomly selected node

v ∈ V . We will first bound the amortized expected cost of insertions that fall in Case I

and then the induced cost of insertions that fall in Case II. Let |cc(w)| be the size of the

connected component that contains node w. Let |ccb(w)| be the number of nodes in cc∪V .

|ccb(w)|< |cc(w)|.

The probability that node v falls in the same connected component as node w is |ccb(w)|
mb

≤
|cc(w)|

mb
which is the probability of reconstruction. Since the reconstruction takes expected

O(n) time, the amortized expected time cost for reconstruction is |ccb(w)|
ma
·O(n)=O(|cc(w)|)=

O(1).

For Case II, the cost is clearly O(|cc(w)|+ |cc(v)|) = O(1), since we have to traverse

the connected component that results from merging the two connected components that
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Figure 2.4: χ(G) of acyclic graphs vs parameter p. Red curve: 1
1−p

contain w and v.

Note we have a rigorous proof for Option 1 but Option 2 provides slightly better empir-

ical results. It is reasonable to conjecture that Theorem 4 also holds for ma = 2mb without

the constraint n≤ 0.65mb.

Numerical estimation of χ(G):

We conjecture that 1
1−p , where p = n(ma+mb)

2mamb
is a good estimation for χ(G) = E[|cc(w)|],

and present numerical simulation to support our conjecture. We generate acyclic bipartite

graphs with random ma, mb, and n values (within the range 10K ∼ 1M). Then we compute

their χ(G) value. For a particular p = n(ma+mb)
2mamb

value, we randomly sample at least 500

graphs with different ma,mb, and n. In Figure 2.4, we plot the 1-th and 99-th percentile of

χ(G).

As shown in Figure 2.4, when p is not so close to 1, the sampled χ(G) values are very

close to 1
1−p . When p grows larger, the sampled χ(G) values tend to grow slower than 1

1−p .

Hence we conclude that 1
1−p is a good upper bound for χ(G). In Othello, 4

3n ≤ ma <
8
3n,
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n ≤ mb < 2n. ma and mb must be powers of 2. For this choice of parameters we can see

that p = n(ma+mb)
2mamb

≤ 0.75 and so χ(G)≤ 4 which is a small constant.

This estimated value χ(G) = 1
1−p is in coherence with the evaluation results on Othello

updates shown in Section 2.6.3.

Remarks on susceptibility of random bipartite graphs Consider a bipartite graph G =

(U,V,E) with k connected components cc1,cc2, · · · ,cck. When we randomly select a node

in G, the probability that the chosen node is in cci is |cci|
|U |+|V | . Hence, the expected size of

the component containing a randomly selected node w is

E[|cc|] =
k

∑
i=1

|cci|
|U |+ |V |

· |cci|=
1

|U |+ |V |

k

∑
i=1
|cci|2

This value is also called the susceptibility of graph G, denoted as χ(G).

We use the results in [51] to estimate the χ(G) = E[|cc|] value for bipartite graph G =

(U,V,E). The following description is a directly application of the results presented in

[52]. The meaning of the notation is listed as follows.

• Inhomogeneous random graph model GV (n,κ): it generates a random graph with

expected n vertices, where the vertices are generated in V , the edges are generated

following probability values defined by kernel κ . This is first presented in [51], page

4.

• Type space (S ,µ): S is a set of types of vertices in a random graph, and µ is the

probability measure. For bipartite graph S has two elements, S = {1,2}. In the in-

homogeneous random graph model, a vertex is of type s with probability µ(s)/µ(S).

This is first presented in [51], page 4.

• Vertex space V = (S ,µ,(x)n): A formal model that describes the vertices in the

random bipartite graph. Here, (x)n is a list of n elements in S. This concept is

presented in [52], page 7.
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• Kernel κ is a function κ : S ×S → [0,1]. κ(s1,s2) describes the probability of there

being an edge connecting two vertices of type s1 and s2. This term is presented in

[52], page 7.

Consider a random graph generated with the general inhomogeneous model GV (ma +

mb,κ) as described in [52], where V = (S ,µ,(x)ma+mb). The measure space (S ,µ) is

defined as

S = {1,2}; µ(1) =
ma

ma +mb
,µ(2) =

mb

ma +mb
.

κ : S ×S → [0,∞) is defined as

κ(1,1) = κ(2,2) = 0

κ(1,2) = κ(2,1) =
n(ma +mb)

2mamb
= p.

.

It is easy to verify GV (ma+mb,κ) generates a random bipartite graph G′= (U ′,V ′,E ′),

where E[|U ′|] = ma, E[|V ′|] = ma and E[|E ′|] = n.

Tκ is the integral operator in L2(S ,µ),

Tκ =

0 p

p 0


According to Theorem 3.3(i) in [51],

χ(G) = 〈(I−Tκ)
−1 ·1,1〉µ =

1
1− p

Othello size growth.

After adding a key into Othello, n = |S| grows and may violate ma ≥ 1.33n and mb ≥

n. χ(G) also grows. Hence, Othello may choose to reconstruct the graph G in order
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to guarantee very low amortized time overhead of future operations. However, Othello

works correctly as long as G is acyclic, even when ma < 1.33n or mb < n. Hence, Othello

does not deal with the requirement on ma and mb explicitly for additions. Although the

χ(G) value may grow as more keys are added to Othello, it is always smaller than 10 in

our experiments. The expected time to add a key to Othello is still O(1) in practice.

When adding a new key falling in Case I, the values of ma and mb will be updated by

construct, which guarantees ma ≥ 1.33n and mb ≥ n.

2.3.3 Change the corresponding value of a key

Operation alter(s, t) is used to change the content of the arrays so that τ(s) returns t after

the operation. Note that this only applies for s ∈ S.

Let δ = A[ha(s)]⊕B[hb(s)]⊕ t, its easy to verify that A[ha(s)]⊕ (B[hb(s)]⊕ δ ) = t,

because

A[ha(s)]⊕ (B[hb(s)]⊕δ ) = A[ha(s)]⊕B[hb(s)]⊕A[ha(s)]⊕B[hb(s)]⊕ t = t

Hence, in order to adjust the τ(s) value, a possible approach is to modify B[hb(s)] so that

B[hb(s)]← (B[hb(s)]⊕δ ). After the change τ(s) = t.

The rest question is to adjust the values in A and B so that τ(s) for other s ∈ S does not

change. Note that s ∈ S, and e = (uha(s),vhb(s)) ∈ E. The edge e belongs to some connected

component e ∈ cc. cc can also be viewed as two sub connected components ccx and ccy

joined by edge e. Without loss of generality assume vhb(s) ∈ ccy. Then, an approach to

adjust the A and B values is to modify the corresponding positions in A and B associated to

nodes in ccy. i.e.,

A[i]← A[i]⊕δ for all ui ∈ ccy

B[ j]← B[ j]⊕δ for all v j ∈ ccy
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It is easy to verify that all edges (ui,v j)∈ ccy has the elements on its both ends modified,

so that A[i]⊕B[ j] remains the same after the operation.

For l = 1, this approach is equivalent to “flip” the colors of all vertices at one side of e,

i.e., to change 0 to 1, and to change 1 to 0. The amortized time cost is O(1).

2.3.4 Key deletion

delete(s) can be done by simply removing the edge (uha(s),vhb(s)) from G. The bitmaps A

and B are not modified because the values of τ(s) after deleting s do not matter anymore.

The time complexity is O(1).

2.4 Implementation Considerations

2.4.1 Query structure and control structure

Each Othello is a seven-tuple 〈ma,mb,ha,hb,A,B,G〉. Note that for a query on Othello,

only the first six elements are necessary for computing the τ value. The information stored

in G is not needed for the query operation. Hence, we let the switches only maintain the

six-tuple 〈ma,mb,ha,hb,A,B〉 in their local memory, namely the Query structure. Storing

this six-tuple takes (ma +mb)l +O(1) bits of memory space. The time cost for each query

of Othello is equal to the sum of the cost of computing two hash values, two memory

accesses for the two bitmaps, and one XOR arithmetic operation.

In comparison, in order to have full access and control of the Othello Hashing data

structure, one would choose to maintain seven-tuple, namely the Control Structure. For

example, in a managed network system, The controller is responsible for maintaining the

FIB of the switches in the network, and hence it maintains the control structure. The

switches execute the queries on the query structures.
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2.4.2 Selection of Hash functions

The hash function pair is critical for system efficiency. Ideally, ha and hb should be chosen

from a family of fully random and uniform hash functions. Similar to the implementation

of CuckooSwitch [53], we apply a function H(k,seed) to generate the hashes in our im-

plementation. Here, H is a particular hashing method and seed is a 32-bit integer. We let

ha(k) = H(k,seeda) and hb(k) = H(k,seedb). Thus, 〈ha,hb〉 is uniquely determined by a

pair of integers 〈seeda,seedb〉.

The proper hashing method H() is platform-dependent. Othello Hashing on Intel x86 -

64 platforms uses the CRC32c function Using a few arithmetic instructions, the CRC32c

value can be effectively mapped to {0,1, · · · ,2t − 1} for integer t ≤ 32. For robust and

faster hash results, which is then effectively mapped to a t-bit integer value where ma = 2t

or mb = 2t . Evaluation shows that CRC32c demonstrates desirable performance in practice.

2.5 Othello Properties for Alien Key Queries

2.5.1 Preliminaries

An alien key is defined as a key that is not included during the construction of an l-Othello.

Here we show the properties of alien queries on l-Othello. We also show how we may

leverage the randomness of alien assignment to predict an alien key within the l-Othello

itself.

We first discuss the query result for an alien key s on Othello OOO(S,T ) for l = 1, and then

we extend it to l > 1. When l = 1, the query result τ(s′) is an 1-bit value. Each element

in A or B is a 1-bit value. For a query of an alien key s′ /∈ S, l-Othello still returns a value

τ(s′) ∈ {0,1}. For alien keys, τ(s′) = A[ha(s′)]⊕B[hb(s′)]. Let a0 and a1 be the fraction of

0s and 1s in the bitmaps A respectively, i.e.,

a0 =
|{t|A[t] = 0}|

ma
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a1 =
|{t|A[t] = 1}|

ma

. Similarly, b0 and b1 are the fractions in B. Suppose ha and hb are uniformly distributed

random hash functions, and s′ is an arbitrary key in the universal set, then τ(s′) returns 1

with probability p1 = a0b1 +a1b0. Similarly, τ(s′) returns 0 with probability p0 = a0b0 +

a1b1.

For l-Othello OOO(S,T ), a similar property also holds. Let OOO pt be the probability that the

query of an alien key returns exactly t. (We use the left superscript to distinguish that this

probability is computed for Othello OOO.) τ(s′) = t indicates A[ha(s′)]⊕B[hb(s′)] = t. Note

that ha and hb are uniform random hash functions and are not correlated. Hence,

OOO pt = Pr[τ(s′) = t] =
2l−1

∑
x=0

axbx⊕t

Here ax is the fraction of elements has value x in a and bx⊕t is the fraction of elements has

value x⊕ t in B. i.e.,

ax =
|{t|A[t] = x}|

ma

bx =
|{t|B[t] = x}|

mb

Given a particular l-Othello, we can always compute pt values for all t = 0,1, · · · ,2l−1

using time O(22l + n). These pt values are affected by the occurrence frequency of each

l-bit integer, namely ax and bx for all 0≤ x < 2l . In most cases, the value OOO p0 are relatively

larger than other OOO pt (t 6= 0). (Section 2.5.2).

In some cases, these values are not uniformly distributed, which may result in imbalance

among OOO pt . Under such circumstances, we can always tune these values by flipping the

bitmaps of a connected component in the bipartite graph without changing τ(s) for s ∈ S.
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2.5.2 Detecting alien queries with probability

We shows that for a Othello constructed using the algorithm described in Section 2.3.1, the

query result τ(s′) for an alien key s′ returns 0 with a relatively larger probability. Note that

the query result on an l-Othello is an l-bit integer in the range {0,1,2, · · · ,2l − 1}, One

possible approach to enable Othello to detect alien queries is to mark the range of valid

query results. Say, for a classifier that classifies keys into w categories, we use the value

1,2, · · · ,w as the valid query results. Some of the alien queries would be detected when

τ(s′) returns 0 or some other value τ(s′)> w.

Theorem 5. For an Othello OOO(S,T ) constructed with n = |S| keys. OOO p0 > 0.223 as n→∞.

Proof. We give an estimated lower bound on OOO p0, which is the probability that τ(s′) returns

0. Array A of the Othello contains ma elements. Each key s ∈ S is mapped to an index of

array A computed by ha(s), where ha is a uniform random hash function. Assuming the

number of keys, n, is large, the possibility of an index in A not being hit by any of the ha(s)

values is

lim
n→∞

a0 =

(
1− 1

ma

)n

= e−
n

ma

An analogous statement holds for array B. Note that ma = 2dn] and mb = 2d
4
3 n]. We

have

1 < n
(

1
ma

+
1

mb

)
≤ 1.5

OOO p0 =
2l−1

∑
x=0

axbx > a0b0→ e−
n

ma e−
n

mb = e−n( 1
ma +

1
mb

)
> e−1.5 = 0.223
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2.5.3 Othello as a deterministic randomizer

An important property of Othello is that when s /∈ S, τ(s) returns an arbitrary value. The

property was considered a weakness of a key-value table. However, it is a perfect feature

that can be used for a load balancer. We show that it is possible to create a Othello such

that the result is uniformly random.

Rebalance operation

: One useful property of the l-Othello is that although it is a memory-efficient data structure,

there is a certain level of redundancy in the encoding of the query results. Consider a

subset of keys C = {k1,k2, · · · ,kt} ⊂ S, where their corresponding edges form a connected

component in G. For all i and j values where i = ha(k), j = hb(k) for some k ∈ C, and

an arbitrary l-bit integer x, execute this operation: Let A[i]← A[i]⊕ x and B[ j]← B[ j]⊕ x.

After such operation, the τ(k) value is not changed for any k ∈ C. This is to say that we

are able to modify the values in A and B, while not changing the τ(k) values for any k ∈ S.

In addition, some A[i] and B[ j] elements are not associated with any k ∈ S (we call them

isolated elements), and we are able to modify them without changing τ(k) values for k ∈ S.

Hence, we are able to adjust the distribution of τ(k′) for arbitrary queries. Direct ap-

plication of this approach includes, tuning the distribution of the Othello query results in

SDLB (Chapter 4.3) and for identifying alien queries in SeqOthello (Chapter 6.4.2). We

are able to rebalance the pt ratios by assigning all isolated elements in A and B as some

random values, and execute the above operation for all connected components in G with

arbitrary random x values. We call this a rebalance operation on the Othello. The actual

distribution of pr values depends on the actual pseudo random number generator that used

in such operation. We can use different random number generators to get different τ(k′)

distributions. For example, when uniform random l-bit integers are used in such operation,

it generates a distribution as if τ(k′) is a uniform random l-bit integer. This is shown in

Figure 2.5, where we compute τ(k′) values for 100M random keys on a 12-Othello that
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Figure 2.5: Histogram of τ(k) occurrence frequency for 100M random queries and 212

possible values. Curve: normal distribution with parameters µ = 25K and σ = 830.

is “rebalanced” using random 12-bit integers. The curve shows a normal distribution with

parameters µ = 25K and σ = 830. The very small standard deviation σ suggests τ(k′) can

be treated as a random number, although the σ value is larger than the theoretical value.

We believe such difference results from the fact that the hash functions we implemented

on a practical machine, namely ha and hb, are not “uniform random”, since such hash

functions can not be easily implemented on a practical machine. As a comparison, if we

use a constant l-bit value in such “rebalance” operation, we can expect that Pr[τ(k′) = 0] to

be much higher as proved in Theorem 5.

2.6 Implementation and Evaluation

In this section we show the performance for the Othello Hashing data strucutre.

2.6.1 Evaluation environment and settings

We implement the Othello query and control structures, running on different cores of a

desktop computer. The memory-mode experiments are used to compare the performance

of the algorithms and data structures. They demonstrate the maximum lookup speed that

Othello Hashing is able to achieve on a computing device by eliminating the I/O overhead.
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Platform

In the following section, unless specified otherwise, we evaluate the performance with

4 parallel query threads. The number of action is set to 256 (l = 8). We conduct all

experiments on a commodity desktop computer equipped with one Core i7-4770 CPU (4

physical cores @ 3.4 GHz, 8 MB L3 Cache shared by 8 logical cores) and 16 GB memory

(Dual channel DDR3 1600MHz).

LFSR key generator

In the experiments, a series of queries with different keys were generated and performend

on the data structure. One straightforward approach is to feed the data structure with a

publicly available traffic trace, or to generate a series of queries with some random number

generators and store the query series in the physical memory of the machine. However, the

time for transmitting the data from the physical memory to the cache is too large compared

to the time used to conduct a query on the data structure. Similarly, it is not feasible to

query the data structure with keys directly generated by a random number generator since

the overhead for generating psedo random numbers is too high. Hence, to conduct more

accurate measurement, we use a linear feedback shift register (LFSR) to generate the keys.

One LFSR generates about 200M keys per second on our platform.

In fact, LFSR gives no favo because the keys are generated in a round-robin scenario,

which provides the minimum cache hit ratio. LFSR traffic is actually the worst sequence of

queries for Othello Hashing. On the contrary, in denial-of-service attack traffic, the queries

concentrate on one or few keys, and they always hit the cache. Hence, the query throughput

of Othello in DoS attack traffic may be higher than the value measured with LFSR traffic.

We believe the result measured in LFSR traffic reflects the true performance of Othello.
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Methodology

We compare Othello Hashing with three approaches for classifcation key-value query:

(1) Cuckoo hashing [54] (used in CuckooSwitch [53] and ScaleBricks [55]), (2) BUF-

FALO [10], (3) Orthogonal Bloom filters, and (4) Bloomier Filter. CuckooSwitch [54]

is optimized for a specific platform with 16 cores and 40 MBs of cache. ScaleBricks [55]

is designed for a high performance server cluster. We were not able to repeat their ex-

periments on commodity desktop computers. Instead, we compare Othello Hashing with

(2,4)-Cuckoo tables, which is the high performance hash table used in ScaleBricks, by

reusing the code from the public repository of CuckooSwitch. BUFFALO does not always

return correct forwarding actions. The false positive rate is set to at most 0.01%. We also

implement a technique called Orthogonal Bloom filters (OBFs) for comparison. It uses a

Bloom filter to replace an Othello for classification of two sets X and Y : all keys in X hit

the Bloom filter. The false positive rate is also set to at most 0.01%. For Bloomier filter, we

use version that use three hash functions to determine the neighborhood of keys, and we set

the ratio of hash buckets to elements to 1.23. This set of parameter is used for maximum

optimization for memory space specified in [44].

2.6.2 Performance metrics

We use the following performance metrics to measure the performance of different data

structures.

• Query Structure performance metrics characterize the performance of the query

structure.

• Query throughput: the number of queries that a data structure is able to process per

second.

• Query throughput under update: the query throughput measured when the data

structure is being updated. It reflects the effectiveness of the concurrency control
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Figure 2.6: Query throughput versus number of keys.

mechanism.

Control Structure performance metrics characterize the performance of the control struc-

ture.

• Construction time: the time to construct a data structure.

• Update throughput: the number of updates that can be processed by the control

structure per second. Here, an update may consist in adding a key, deleting a key, or

changing the corresponding value of a key.

2.6.3 Query structure performance

Query throughput versus number of keys.

Figure 2.6 shows the query throughput of Othello, Cuckoo, BUFFALO, and OBFs. The

keys are 48-bit fixed-length integer numbers, which is equivalent to MAC addresses in a

typical Ethernet.
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When n is smaller than 2 million, the throughput of Othello is very high ( > 400M

queries per second (Mqps)). This is because the memory required by Othello is smaller

than the cache size (8M for our machine). When n≥ 2M, the throughput decreases but

remains around 100 Mqps. This indicates that if other resources (e.g., I/O and buffer) are

not the bottleneck, Othello reaches 100Mqps. The query performance decreases as the

size of the query structure exceeds the CPU cache size. We observe similar results when

running the evaluation on other machines with different CPUs. Bloomier filter shows lower

throughput than Othello. Note that the memory space for bloomer filter is smaller than

Othello and hence it may show even higher throughput when it is able to fit in the cache.

Cuckoo is only about only 20% to 50% of Othello. The results of Cuckoo are consistent

with those presented by the original CuckooSwitch paper1. Note that the measured time

overhead includes that of query generation.2

1The paper [53] showed a throughput 4.2x as high as our Cuckoo results on a high-end machine with two
Xeon E5-2680 CPUs (16 cores and 40MB L3 cache). It is approximately 4x as powerful as the one used in
our experiments.

2In the evaluation of 1M keys, each query of Othello takes about 4.5 ns while generating a query takes 4.1
ns.
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Query throughput versus key lengths and number of CPU cores.

Figure 2.7 shows the query throughput using different key lengths. Each hashing approach

contains 256K keys. As the length grows, the throughput of all types of Othello and Cuckoo

decreases. Note that the memory size of Othello is independent of the key length. Hence,

the throughput decrease of Othello is due to the increase of hashing time. One interesting

observation is that when the length is a multiple of 64 bits, the query throughput of Othello

is slightly increased. This is mainly because the experiments are conducted on a 64-bit

CPU. The query throughput grows approximately linearly to the number of used threads,

as long as the number of threads does not exceed the number of physical CPU cores of the

platform.

Query throughput during updates.

Figure 2.8 shows the throughput of Othello during updates, including key additions, dele-

tions, and action changes. There is only very small decrease of query throughput even when

the update frequency is as high as hundreds of thousands of keys updated per second. We
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Figure 2.9: Query throughput versus number of forwarding actions

mark the one-σ (68%) confidence interval of the throughput when there is no concurrent

query in Figure 2.8. Evaluation result shows that the throughput of Othello still remains in

its normal range during updates. For Othello with 4M keys the throughput downgrade is

negligible.

Query throughput versus number of possible output values.

Figure 2.9 shows the query throughout of using Othello for one thread for different num-

ber of forwarding actions. Using l-bit value, Othello is able to represent query result in

{0,1, · · · ,2l−1}. The throughput is better when the number of forwarding actions equals

to 2, 4, 16 or 256. This is because the memory of Othello query structure is better aligned

when l ∈ {1,2,4,8}.
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2.6.4 Control structure performance

Construction time.

Figure 2.10 shows the average time to construct the query and control structures for one

Othello with various number of keys. The construction time of Othello grows approxi-

mately linearly to the number of addresses. Although the time of Othello is larger than that

of Cuckoo and BUFFALO, it is still very small. For 4M keys, it takes only 1 second to

construct the Othello.

Update speed.

The update speed indicates the ability to react to network dynamics. All types of network

dynamics, including host and link changes, are reflected as key additions, deletions, and

action changes in the FIBs. Figure 2.11 shows the update speed of Othello in number of

updates processed per second. We vary the number of keys before update and measure the

time used to insert a number of new keys. Each run of the experiment is shown as a point
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in the figure. Note that in a minor fraction of cases the update may cause a reconstruction

of Othello, the time overhead of which is comparable to the construction time shown in

Figure 2.10. The amortized speed for Othello update is shown in the curve in Figure 2.11.

In most cases, it reaches at least 1M updates per second, which is sufficient for very large

networks.

Remark on Othello reconstruction.

In some rare cases, adding a new key may require reconstruction of the Othello when it

introduces a new cycle in to the bipartite graph. This may take non-negligible time (0.2

seconds when there are 1M keys). Theoretical results show this happens with probability

less than 1.5
n . This value is even smaller in practice (about 1.3 parts per million when there

are 1M keys). Note that, Othello reconstruction may happen only when there is a new

key added to the network. Modifying a forwarding action of a existing key (or removing

a key) never results in Othello reconstruction. The line in Figure 2.11 shows the average

update speed (including the time overhead for reconstruction). Othello reconstruction only
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imposes minor impact on the update speed.

2.7 Summary of Othello Properties

Othello is a hashing algorithm that designed to support ultra-fast and memory-efficient key-

value lookups. The Othello data structure follows the polymorphic data structure model.

The Othello data structure can be decomposed into a query structure and a control structure.

For n keys and values of l-bit integers, the query structure uses ≤ 4ln bits. Every query

takes a small constant time including computing two hash values and two memory accesses.

The control structure uses O(n) bits. The expect time complexity is O(n) for construction

and O(1) for key addition, deletion, and alterations.

Using Othello hashing, combined with domain expertise in multiple areas, we built

applications in multiple areas, which is presented in the reset of this work.
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Chapter 3. The Concise Forwarding Information Base

In this chapter, we present the Concise Forwarding Information Base. Section 3.1 intro-

duces the background and the challenging issues of Forwarding Information Base. Sec-

tion 3.2 presents related work. We present the the system design of Concise in Section 3.3.

We then present the system implementation and experimental results in Section 3.4. Sec-

tion 3.5 discusses a few related issues. Finally, we conclude this work in Section 3.6.

3.1 Background

One consensus of most recent new network design is the separation of network identifiers

and locators [8]. Instead of IP, flat-name or namespace-neutral architectures have been

proposed to provide persistent network identifers. A flat or location-independent names-

pace has no inherent structure and hence imposes no restrictions to referenced elements [9].

The Salter’s taxonomy of network elements [8] is one of the early proposals that suggest

the separation of network identifiers and locators. We summarize an (incomplete) list of

reasons for using flat or location-independent names in proposed network architectures:

• To simplify network management, pure layer-two Ethernet is suggested to interconnect

large-scale enterprise and data center networks[56–58], where MAC addresses are iden-

tifiers.

• Software Defined Networking (SDN) uses matching of multiple fields in packet header

space to perform fine-grained per-flow control. Flow IDs can also be considered names,

though they are not fully flat.
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• Flat network identifiers have been suggested by various works to support host mobility

and multi-homing, including HIP [59], Layered Naming Architecture [9], and Mobility-

First [60].

• AIP [61] applies flexible addressing to ensure trustworthy communication.

• The core network of Long-Term Evolution (LTE) needs to forward downstream traffic

according to the Tunnel End Point Identifier (TEID) of the flows [55].

The most critical problem caused by location-independent names is Forwarding Infor-

mation Base (FIB) explosion. An FIB is a data structure, typically a table, that is used

to determine the proper forwarding actions for packets, at the data plane of a forwarding

device (e.g, switch or router). Forwarding actions include sending a packet to a particu-

lar outgoing interface and dropping the packet. Determining proper forwarding actions of

the names in a FIB is called name switching. Unlike IP addresses, location-independent

names are difficult to aggregate due to the lack of hierarchy and semantics. The increasing

population of network hosts results in huge FIBs and their continuing fast growth.

On the other hand, the increasing line speed requires the capability of fast forwarding.

To support multiple 10Gb Ethernet links, a FIB may need to perform hundreds of millions

of lookups per second. Existing high-end switch fabrics use fast memory, such as TCAM

or SRAM, to support intensive FIB query requests. However, as discussed in many studies

[10–12], fast memory is expensive, power-hungry, and hence very limited on forwarding

devices. Therefore, achieving fast queries with memory-efficient FIBs is crucial for the

new network architectures that rely on location-independent names. If FIBs are small and

increase very little with network size, network operators can use relatively inexpensive

switches to build large networks and do not need frequent switch upgrades when the net-

work grows. Hence, the cost of network construction and maintenance can be significantly

reduced. For software switches, small FIBs are also important to fit into fast memory such

as cache.
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In this chapter, we present a new FIB design called Concise. Built with Othello, Concise

has the following properties.

1. Compared to existing FIB designs for name switching, Concise supports much faster

name lookup using significantly smaller memory, shown by both theoretical analysis

and empirical studies.

2. Concise can be efficiently updated to reflect network dynamics. A single CPU core is

able to perform millions of network updates per second. Concise makes the control

plane highly scalable.

3. Concise guarantees to return the correct forwarding actions for valid names. It is not

probabilistic like those using Bloom filters [10, 62].

Othello Hashing and Concise FIB support fast query and update (addition/deletion of

names). In the resource-limited switches (data plane), Concise only includes the query

component and is optimized for memory efficiency and query speed. The construction and

update components are moved to the resource-rich control plane. Concise is constructed

and updated in the control plane and transmitted to the data plane via a standard API such

as OpenFlow. It is the first work to implement minimal perfect hashing schemes to network

applications with update functionalities. Concise is designed for flat-name lookups. It does

not support layer-3 longest prefix matching of IP addresses.

Concise is a portable solution, and it can be used in either software or hardware

switches. We have implemented Concise in three different computing environments: mem-

ory mode, CLICK Modular Router [63], and Intel Data Plane Developement Kit [64]. The

experiments conducted on an ordinary commodity desktop computer show that Concise

uses only few MBs of memory to support hundreds of millions lookups per second, when

there are millions of names.
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3.2 Related Work

Location-independent network names. Separating network location from identity has

been proposed and kept repeating for over two decades. Numerous network architectures

appear in the literature that suggest this concept. As discussed in Section 3.1, a number

of new network architectures adopt location-independent names. A location-independent

name can be a MAC address, a tuple consisting of several packet header fields [65], a file

name [66, 67], a TEID [55], etc. To route packets for flat names, ROFL [68] and Disco [69]

propose to use compact routing to achieve scalability and low routing stretch. ROME [70]

is a routing protocol for layer-two networks that uses greedy routing whose routing table

size is independent of network size. Concise is a forwarding structure and does not deal

with routing.

FIB scalability. We name some techniques used for FIBs and compare them in Table 3.1.

Hashing is a typical approach to reduce the memory cost of FIBs for name-based

switching. CuckooSwitch [53] uses carefully revised Cuckoo hash tables [54] to reach de-

sirable performance on specific high-end hardware platforms. ScaleBricks [55] also makes

use of a memory-efficient data structure SetSep to partition a FIB to different nodes in a

cluster, it does not store the names as well. We provide a comprehensive comparison of

Cuckoo hashing, and Concise in Section 3.5.2. The use of Bloom filters has been proposed

in some designs such as BUFFALO [10, 62]. However, they may forward packets incor-

rectly due to the false positives in Bloom filters, causing forwarding loops and bandwidth

waste. For IP lookups, SAIL [72] and Poptire [73] demonstrate desirable throughput for

IPv4 FIB queries. These solutions are usually based on hierarchical tree structures, and

their performance are challenged by FIBs with large number of flat names. The Tuple

Space Search algorithm (TSS) [71] is widely used for name matching with multiple files,

such as in OpenVswitch and PISCES [74]. It is not designed for flat-name switching. Other

solutions use hardware to accelerate name switching. For example, Wang et al. [75] uses
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Table 3.1: Comparison among FIBs. n: # of names. L: length of names. w: # of possible actions.

In practice, Concise achieves 7% to 40% memory and >2x speed compared to Cuckoo, though they share the same order of big
O time complexity.

FIB
Construc-

tion
Time

Query Structure
Size (bits)

Query Time Note

Concise O(n) ≤ 4n logw O(1) Exact 2 memory reads per query.
(2,4)-Cuckoo [53] O(n) ∼ 1.1n(L+logw) O(1) Up to 8 memory reads per query.

SetSep [55] O(n logw) (2+1.5logw)n O(logw)
No method for updates. Not designed as

FIB in [55].

BUFFALO [10] O(nt) αwn O(tw) Probabilistic results. Error ratio affected by t
and α .

TSS [71]
O(n(t+
logw))

O(n(t+logw)) O(t)
Designed for names with t fields.

t = O(L).
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GPU to accelerate name lookup in Named Data Networks. A recent work utilize Bloom

filters for set queries, which cannot be applied to our situation [76].

3.3 System Design of Concise

3.3.1 Design Overview

Consider a network of n hosts identified by unique names. The hosts are connected by

SDN-enabled switches. A logically central controller is responsible of deciding the routing

paths of packets. Each switch includes a FIB. The controller communicates with each

switch to install and update the FIB.

Each packet header includes the name of the destination host, denoted as k. Upon re-

ceiving a packet, the switch decides the forwarding action of the packet, such as forward

to a port or drop. We assume the controller knows the set S of all names in the network. In

addition, Concise only accepts queries of valid names, i.e., k ∈ S. We assume that firewalls

or similar network functions are installed at ingress switches to filter packets whose desti-

nation names do not exist. More discussion about eliminating invalid names is presented

in Section 3.5.1.

Concise makes use of a data structure named Othello. Othello exists in both the switches

(data plane) and the controller (control plane). It has two different structures in the data

plane and control plane:

• Othello query structure implemented in a switch is the FIB. It only performs name

queries. The memory efficiency and query speed is optimized and the update com-

ponent is removed.

• Othello control structure implemented in the controller maintains the FIB as well

as other information used for FIB construction and updates, such as the routing in-

formation base (RIB).
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Figure 3.1: Network Overview of Concise

Upon network dynamics, the control structure computes the updated FIBs of the affected

switches. The modification is then sent from the controller to each switch.

Separating the query and control structures is a perfect match to the programmable

networks such as SDN. We call this new data structure design as a Polymorphic Data

Structure (PDS). PDS is the key reason that we can apply minimal perfect hashing tech-

niques in programable networks. PDS differs from the current SDN model. SDN separates

the RIB and FIB to the control and data plane respectively. We further move part of the

FIB to the control plane to minimize the data plane resource cost.

3.3.2 FIB Update and Concurrency Control

We assume that there is one logically centralized controller in the network. Upon network

dynamics, the controller computes the Othellos for a number of switches and update the

query structures in the switches by FIB update messages using a standard SDN API. If

m,ha,hb do not change during the update, an update message only contains a list of ele-

ments to be modified in A and B. Otherwise, it contains the full query structure of l-Othello

〈m,ha,hb,A,B〉.

After receiving a FIB update message, a Concise switch modifies its Othello query

structure. Instead of locks, Concise uses simple bit vectors to prevent read-write conflicts

in the query structure. Experimental results show that the concurrency control mechanism

has a negligible impact on the network performance.
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While each Othello query is computed using two elements in A and B, there is a chance

of a read-write conflict during the update. In Concise, the query always returns correct

result. Such concurrency issue is addressed as follows.

Concurrency requirements. Let A,B be the two vectors of the query structure before

an update and A′,B′ be the ones after the update. For a name k that exists in the FIB before

and after the update, suppose i= ha(k) and j = hb(k). Both A[i]⊕B[ j] and A′[i]⊕B′[ j]

are considered as correct actions, although they may be different. Note that, when A[i] =

A′[i], the values A′[i]⊕B[ j] and A[i]⊕B′[ j] are both correct query results, no matter how

read/write events are ordered. Inconsistency only happens when both A[i] and B[ j] are

changed during the update.

Concurrency control design.

Concise observes whether the vector A is being modified. For a query for name k, if

an update that affects A[i] is being executed, Concise does not execute the query until the

update finishes. Concise maintains two bit vectors D1 and D2 for concurrency control. All

bits in D1 and D2 are set to 0 during the initialization. Each index i (0≤ i < m) corresponds

to an index p(i) in D1 and D2. The lengths of D1 and D2 are set to 512 bits and p(i) = i

mod 512.

Update procedure. A pseudocode of the update procedure is described in Algorithm

2. Before an update of the Othello that will change some elements of A, Concise flips the

corresponding bits in D1, i.e., change 0s to 1s and 1s to 0s. After the update, it flips the

bits with same indexes in D2. For any index i, when Concise observes D1[p(i)] 6=D2[p(i)],

there must be no ongoing update that affects A[i]. Note that even if a bit index corresponds

to multiple elements that are changed in an update, the bit is only flipped once.

Query procedure. A pseudocode of the query procedure is described in Algorithm

3 The query procedure for name k includes the following three steps. (1) Fetch the bit

δ 2 =D2[p(i)]. (2) Fetch the value of A[i] and B[ j]. (3) Fetch δ1 =D1[p(i)]. If δ2 = δ1,

compute A[i]⊕B[ j] and return it as the query result. Otherwise, δ2 6= δ1 and we know that
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Data: New value at some indexes in A and B: A[i1],A[i2], · · · , B[ j1],B[ j2], · · · .
Result: Updated Concise query structure

1 Affected← /0;
2 foreach i ∈ {i1, i2, · · ·} do
3 Affected← Affected ∪{i mod 512}

end
4 foreach i ∈ Affected do
5 D1[i]← 1⊕D1[i]

end
6 // reorder barrier
7 Update A[i1],A[i2], · · · , B[ j1],B[ j2], · · · . ;
8 // reorder barrier
9 foreach i ∈ Affected do

10 D2[i]← 1⊕D2[i]
end

Algorithm 2: Update procedure for Concise

the Othello is currently being updated and the update affects A[i]. The query for k will

stop and is put in a later place of the query event queue. Concise uses reordering barrier

instructions to ensure the execution order in both update and query procedures.

Here, the order of flipping D1[p(i)] and D2[p(i)] during an update and the order of

getting their values during a query are different. Any updates that affect A[i] and start

during a query must result in δ2 6= δ1.

The above procedures of update and query should be executed in the given explicit or-

der. This can be specified by compiler reorder barriers on strong memory model platforms

such as x86 64, or fence instructions on weak memory model platforms such as ARM.

3.4 Implementation and Evaluation

We implement Concise on three platforms and conduct extensive experiments to evaluate

its performance.

3.4.1 Implementation Platforms

• Click Modular Router[63] is an architecture for building configurable routers. We

implement an Concise prototype on Click. It is able to serve as a real switch that
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Data: Concise query structure and name k
Result: Query result τ(k)

1 i← ha(k);
2 j← hb(k);
3 p← i mod 512;
4 while true do
5 δ 2← D2[p];
6 // reorder barrier
7 α ← A[i];
8 β ← B[ j];
9 // reorder barrier

10 δ 1← D1[p];
11 if δ2 = δ1 then
12 return α⊕β

end
end

Algorithm 3: Query procedure on Concise

forwards data packets.

• Intel Data Plane Development Kit (DPDK) [64] is widely used in fast data plane

designs[55, 77]. We use a virtualized environment to squeeze both the traffic gener-

ator and the forwarding engine on a same physical machine. This prototype is able

to serve as a real switch that forwards data packets.

3.4.2 Data plane memory efficiency and MCQ

Table 3.2 shows the size of memory of different types of FIBs. We compute the mem-

ory cost used by Othello, Cuckoo hash table, BUFFALO, and OBFs, for five types of

names with different sizes: MAC addresses, IPv4, IPv6, OpenFlow matching fields, and

file names. Here, IP addresses are only used as examples of a name type. These FIBs are

not designed for IP prefix matching. The number of actions for OpenFlow could be very

large. We let the number of actions be 256 and 32,768 and compute the FIB size respec-

tively. For the Cuckoo hash table, we use the (2,4) setting. For BUFFALO, we assume

the names are evenly distributed among the actions, which gives an advantage to it. We

use the setting kmax = 8. These settings are all as described or recommended in the original
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FIB Example Concise Cuckoo BUFFALO OBFs
Name Type # Names # Actions Mem MCQ Mem MCQ Mem MCQ Mem MCQ

MAC (48 bits) 7×105 16 1M 2 5.62M 2 2.64M 8 7.36M 15
MAC (48 bits) 5×106 256 16M 2 40.15M 2 27.70M 8 112.06M 16
MAC (48 bits) 3×107 256 96M 2 321.23M 2 166.23M 8 672.34M 16
IPv4 (32 bits) 1×106 16 1.5M 2 4.27M 2 3.77M 8 10.52M 15
IPv6 (128 bits) 2×106 256 4M 2 34.13M 6 11.08M 8 44.82M 16

OpenFlow (356b) 3×105 256 1M 2 14.46M 6 1.67M 8 6.72M 16
OpenFlow (356b) 1.4×106 65536 8M 2 67.46M 6 18.21M 1024 66.60M 17
File name (varied) 359194 16 512K 2 19.32M 10 1.35M 8 5.47M 15

Table 3.2: Memory and query cost comparison of four FIBs and SetSep. MCQ: maximum # of cachelines transmitted per query.
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n=3×105 n=1.4×106

28 actions 216 actions
Name addition 75.2 107.2
Action change 65.6 88.8

Table 3.3: Entropy of one update message in bits

papers [10, 53, 55].

The memory space used by Concise is significantly smaller than that of Cuckoo, BUF-

FALO, and OBFs. It is only determined by the number of names n and the number of

actions, and is independent of the name lengths. Table 3.2 also shows the maximum num-

ber of cachelines transmitted per query (MCQ) of these FIBs. A smaller MCQ indicates

fewer data transferred from the memory to the CPU, which results in better query through-

put. Concise always requires exactly two memory accesses per query. The other FIBs may

have larger MCQ depending on the name length and number of actions.

Network-wide shared bipartite graph. For some networks that require every switch

to store all destination names such as Ethernet, the name set S is identical for all switches

in the network. Hence, all switches in the network may share the same G and 〈ha,hb〉.

Constructing and updating the FIBs in all switches only require computing G once. e.g.,

the phase I of the construct procedure (Section 2.3.1) is only executed once for FIBs of

all switches in the network. This indicates that the construction time overhead for FIBs of

multiple switches can be further reduced. Note that for a single switch, the time used for

phase I is about half of the total of construct.

Communication overhead. We compute the entropy of the information included

in update messages in Table 3.3. The update message length grows logarithmically with

respect to either the number of names n or the number of actions. The communication

overhead of Concise is smaller than that of most OpenFlow operations.

Processing delay.

A data plane device maintains a queue of packets when packet arrival rate exceeds the

query throughput of the FIB. The processing delay reflects the ability of the data plane to
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process burst traffic. We use an event-based simulator to simulate the processing delay of

both Othello and Cuckoo hashing under real traffic trace. The traffic trace is replayed in

100x speed to simulate large traffic

We conduct event-based simulations of packet processing on the data plane to study

the process delay. We simulate a single-thread processor with two-level cache mechanism.

The packets are processed in a first-come, first-served fashion. Each packet consists of

the header and payload. The packets are put in a queue upon reception and wait to be

processed by the prosessor. We measure the processing delay for real traffic data from the

CAIDA Anonymized Internet Traces of December 2013 [78]. The average packet rate is

about 210K packets per second. In Figure 3.2, Concise has smaller processing delay than

Cuckoo before the 90th percentile, but they have similar tails. To study the processing

delay under larger traffic volumes, we replay the trace 100x as fast as the original. Shown

as the thin curves, the processing delay of Concise is clearly smaller than that of Cuckoo

before the 60th percentile. After that, the two curves are similar, except that Cuckoo has a

longer tail. Overall, the processing delay of Concise is very small (< 1µs) even under high
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data volumes.

Cost of detecting invalid names We also measure the cost of two approaches to detect

invalid names. Figure 3.3 shows that using a 8-bit checksum (marked as Concise+Chk in

the figure) has a minor impact on the query performance. We provide more analysis on the

approaches in Section 3.5.1.

3.4.3 Prototype Implementation and Evaluation

Implementation on Click

We implement a Concise prototype on Click Modular Router [63]. It receives packets

from one inbound port and forwards each packet to one of its 4 outbound ports. Upon

receiving a packet, it queries the Othello using the address field of the packet, i.e., the

name, and decides the outbound port of the packet. In addition, we implement the (2,4)-

Cuckoo hash table, OBFs, as well as the binary search mechanism on Click. Figure 3.4

shows the forwarding throughput. The Click modules in each evaluation includes one traffic

generator generating packets with valid 64-bit names, one switch that executes queries on

54



F
o
rw

a
rd

in
g

th
ro

u
g
h
p
u
t
HM

q
p
s
L

Concise

Cuckoo

OBFs

Binary

2K 8K 32K 128K 512K 2M 8M 32M

1

2

3

4

5

6

7

8

9

10

ð of names
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the FIB, and packet counters connected to the egress ports of the switch. The experiments

are conducted on one CPU core.

Results show that Concise always has the highest throughput. When n < 2M, Concise

is smaller than the cache size and the query throughput is about 2x as fast as Cuckoo and 4x

as fast as OBFs. When n≥ 2M, the throughput of Concise is still the highest. Meanwhile,

Concise uses much less memory, about 10% to 20% of that of Cuckoo, OBFs, and Binary.

Implementation with DPDK

We also build a Concise prototype on the hardware Environment Abstraction Layer (EAL)

provided by DPDK. It maintains a Othello query structure. The query structure is initialized

during boot up and can be updated upon network dynamics. The prototype reads packets

from the inbound ports, executes queries on the query structure, and then forwards each

packet to the corresponding outbound port.

We implement both the traffic generator and FIB application on the same commodity

computer using virtualization techniques. As shown in Figure 3.5, we create a guest virtual

55



'µ���W�s]��µ�o�D��Z]v�

,}��W�WZÇ�]��o�D��Z]v�

d��((]��

'�v����}�

W�����

�}µv���

�W�����>

&RQFLVH

s
]�
�]
}

���

s
]�
�]
}

���

s
]�
�]
}

���

s
]�
�]
}

���

Figure 3.5: Concise prototype on DPDK

machine (VM) on the host machine using KVM and Qemu to install Concise. The VM is

equipped with four virtio-based virtual network interface cards. Linux TAP kernel virtual

devices are attached to the virtio devices on the host side. The programs running on the host

machine communicate with the guest VM via the Linux TAPs. On the host machine, we

use a traffic generator program to send raw Ethernet packets to Concise running on the VM.

The host machine receives the forwarded packets from Concise and counts the number of

packets using default counters provided by the Linux system.

We measure the throughput of Concise with different numbers of names. The barchart

in Figure 3.6 shows that Concise is able to generate, forward, and receive more than 1M

packets per second, for both 64-Byte and 1500-Byte packets. The forward throughput is

at least 12 Gbps for 1500-Byte Ethernet packets. The throughput of Cuckoo is only 60%

to 80% of the throughput of Concise. The forwarding throughput does not significantly

change when the number of names grows
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Figure 3.6: Performance of the Concise prototype on DPDK

3.5 Discussion

3.5.1 Properties of Concise for alien names

An alien name is a name that is not in S during Concise construction, such name is unex-

pected for name switching queries. The Othello query of alien names returns a value that is

determined by the corresponding value in the memory space of the Othello query structure.

Concise is not able to distinguish alien names. This is because in Concise the member-

ship information about the set of expected names is only maintained by the Othello control

structure. The query structure only maintains the classification information of the names.

In fact, a major part of the memory space for hash table based approaches (e.g, Cuckoo) is

used to store copies or digests of the names in order to maintain the membership informa-

tion. Meanwhile, Bloom filter [44] is widely used to maintain membership information.

The detailed discussion of the behavior of Othello alien queries is presented in [33]. In

the worst case, a packet with unexpected name is forwarded to one of the neighbors of the
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switch. Compared to the forwarding table miss of Ethernet, which let the packets flood to

all interfaces, Concise causes no flooding.

In many large-scale flat-name networks the network addresses are all known and there

are no unexpected names. However, operators may still choose one or some of the follow-

ing mechanisms to enable the switches to detect the alien names.

• At an ingress switch, every incoming packet should be checked by a filter or firewall

to validate that its destination does exist in the network. This filter can be imple-

mented as a network function running on the border of the network, and can be

integrated with the firewall.

• Maintain a Bloom filter at each of the switches. Packets with valid names pass this

filter and are then processed by Concise FIB.

• In addition to the l-bit query results, also maintain the checksums for each name in

the Concise FIBs. Adding checksums will increase the memory size of Concise. For

r-bit checksums, the overall memory cost of a query structure is 2(l + r)m+O(1).

Note that as long as l+r does not exceed the word length of the computing platform,

the time overhead of all operations remains unchanged.

Assuming there are in total 1M names. Fig 3.3 compares the memory and computa-

tional overheads of the above approaches. The false positive rate can be controlled to be

as low as 10−5 with < 2MB memory overhead using the filter of Cuckoo with checksums.

The performance when using Bloom filters may vary depending on the parameters. We also

recommend to utilize the time-to-live (TTL) value of to prevent the packet being forwarded

in the network forever.

The unique property of returning an arbitrary value for an alien name may also be useful

for Concise as a network load balancer: for a server-visiting flow that is new to the network,

Concise can forward it to one of the servers with adjustable weights.
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3.5.2 Othello versus Cuckoo and SetSep

Concise is essentially a classifier for names, and each class represents a forwarding action.

Concise does not store the names. Cuckoo stores all names and actions in a key-value store.

SetSep has some properties similar to Concise. Both of them do not store names and

return meaningless results for unknown names. In ScaleBricks [55], SetSep is only used

as a separator to distribute the FIB to different computers, rather than the FIB. Meanwhile,

the update scheme for SetSep is not explicitly explained [55], and there is no discussion

about handling dynamic FIB size growth.

In addition to the memory size results in Table 1, we show some comparison results of

SetSep in what follows. The construction speed of SetSep is slower than that of Concise

and Cuckoo by more than an order of magnitude: 10 seconds for one single FIB of 1M

names in our experiments. We also measure the update speed of SetSep without adding

new names, which turns to be less than 10K/s (< 1 % of Concise). The query speed of

SetSep is higher than that of Cuckoo. SetSep needs to compute 1+ l hash values and read

2+ 2l values for each query. We implement a static SetSep with 1.4M names and l = 8,

using 2.19MB memory. Its query throughput is 211 Mqps using 4 threads. In comparison,

Concise with the same settings uses 4M memory and reaches 470 Mqps.

In addition, we summarize the reasons of the performance gain of Concise as follows.

(1) Othello does not maintain a copy of the names in the query structure. The memory

size of the query structure is much smaller than the other solutions. Concise demonstrates

higher cache-hit rate, which leads to better performance on cache-based systems. (2) The

query procedure does not contain any branches (e.g, if statements). This helps the CPU to

predict and execute the instructions in the query procedure. (3) The efficient concurrency

control mechanism further improves the query speed of Concise.
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3.5.3 Example Use Case

Concise provides desired FIB properties for many current and future architecture designs

that adopt flat names as mentioned in Section 3.1. We present a use case where it can be

applied in a large enterprise network.

A large enterprise or data center network may include up to millions of end hosts and

more VMs [79]. In these networks, internal flows contribute to the most bandwidth, which

can be forwarded by Concise using destination names on Layer 2. The destination of a

packet in this network can only be either a host or a gateway. We require hosts in the

network voluntarily check the validity of the packets before sending them out. This can be

easily achieved using software firewalls such as iptables.

As of the gateway, we require it to execute two network functions: (1) For packets going

out from the network, perform Layer 3 routing using the external IP of the destination. This

is a basic function a router. (2) For packets going into the network, filter out all packets

with invalid destinations. This can be implemented by a firewall. The packets will be

forwarded using the Layer 2 names of the destinations. In addition, we require all packets

in the network to carry a time-to-live (TTL) value to prevent packets from being forwarded

forever in case packets with invalid names pass the firewalls.

3.6 Summary

Concise is a portable FIB design for network name lookups, which is developed based on

a new algorithm Othello Hashing. Concise minimizes the memory cost of FIBs and moves

the construction and update functionalities to the SDN controller. Evaluation shows that

Concise uses the smallest memory to achieve the fastest query speed among existing FIB

solutions for name lookups. We expect that Othello Hashing, as a fundamental network al-

gorithm, will be used in a large number of network systems and applications where existing

tools such as Bloom Filters and Cuckoo Hashing may not be suitable.
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Chapter 4. SDLB: Software Load Balancer

SDLB is a scalable and dynamic software load balancer for fog and Mobile Edge Comput-

ing (MEC). In this chapter, we first introduce the background of software load balancing in

cloud systems in Section 4.1. We present the system design of SDLB in Section 4.3. We

show the evaluation results in Section 4.4. We discuss possible future work in Section 4.5.

and present related work in Section 4.2. Finally, we conclude this work in Section 4.6.

4.1 Background

Although mobile hardware continues to improve, it is still relatively resource-constrained

compared to static computing hardware. To provide resource of computation, storage, and

bandwidth to massive mobile computing devices such as those of the Internet of Things

(IoT), strong back-end servers in a remote cloud is a common solution. However, many

modern applications such as augmented reality (AR) and real time monitoring/control are

latency-sensitive and may suffer the long round-trip delay to the cloud. Hence, Mobile

Edge Computing (MEC) has been proposed to shift computing and storage capacities from

the remote cloud to the network edge [13, 14]. The nodes that provide resource to mobile

devices are called MEC hosts. Fog Computing is a computing paradigm with a similar ob-

jective of MEC [80–82], where the nodes providing resource are called Fog nodes. MEC

and Fog may differ in specific characteristics. For example, most MEC hosts are deployed

by the mobile service provider while Fog nodes may be network devices or terminals be-

longing to different users. MEC and Fog are close in their network models and most char-

acteristics [83]. In this work, we study with a generalized network model which can be
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applied to both MEC and Fog Computing.

We consider a MEC network consisting of mobile devices and a number of MEC hosts

as shown in Figure 4.1. The MEC hosts provide various types of resource to mobile

devices, such as CPU, memory, and disk, for difference application requirements including

computation, storage, and optimization. The MEC hosts communicates with a remote cloud

for further processing or storage if necessary. For example, an IoT sensing device collects

the environment data and transmits the data to one of the MEC hosts [14]. The MEC hosts

aggregates the data, conducts initial analysis, and transmits aggregated data to the remote

cloud. For example, a video analytics application running on MEC hosts may detect special

events from the date reported by video cameras, such as a lost child or an intruder, and then

reports these events to a control center [13]. As another example, for an AR application

running on a smartphone or tablet, the MEC host is able to provide local object tracking

and local AR content caching with short latency for the mobile device [13].

MEC provides resource virtualization to mobile devices. In fact, a mobile device has no

information about which MEC host is actually providing its requested resource. An MEC

network deals with the data traffic from mobile devices to MEC hosts, serving various ap-

plications and purposes. In the network layer, we classify the packets from mobile devices
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to MEC hosts into two groups. 1) Stateful packets. A packet is stateful means one of the

MEC hosts stores its state, i.e., some existing information related to the packet. The packet

has to be forwarded to that particular MEC host. The state can be in the device level, appli-

cation level, or flow level. For example, device-level state can be some data reported by the

same device of this packet. Application-level state can be some data generated by the same

application of this packet. Flow-level state can be the previous packets of a same flow of

this packet. 2) Stateless packets. A stateless packet can be forwarded to any MEC host,

which can be a query/write to a distributed database, a request of computation offloading,

or the first packet of a flow.

The MEC load balancer (MEC-LB) is a network function deployed between the mobile

devices and MEC hosts, which assigns a MEC host as the destination for every packet

from a mobile device. A MEC-LB must serve the following two properties. P1: For

every stateful packet, the MEC-LB performs a lookup to get the designated MEC

host based on the packet ID. P2: For every stateless packet, the MEC-LB selects one

of the available MEC hosts according to capacity of the hosts. Different MEC hosts are

assigned with different probabilities based on their capacities.

Due to the new characteristics of MEC, existing solutions of cloud load balancers [15–

17] cannot be directly applied to MEC-LB. We summarize the desired requirements of a

MEC-LB with comparison to a cloud load balancer as follows.

1. Scalable. A MEC-LB should be fast and scalable to process massive amount of pack-

ets from a large number of mobile devices. A cloud load balancer has a similar requirement

[15, 17].

2. Software based. Compared to the hardware load balancers in a cloud [15, 16] which

is a fixed amount of extra financial cost, a MEC-LB implemented in software is more

flexible and cost-efficient for MEC. It can be deployed as a virtual network function running

on a MEC host or a component of a router/switch.

3. Memory-efficient. With small memory cost, a MEC-LB is easier to fit with fast (and
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hence expensive) memory such as cache. Unlike a resource-rich cloud, which can use a

server cluster for its software load balancer [17], a MEC network has limited resource to

host a MEC-LB.

4. Adaptive to MEC changes. MEC hosts are heterogeneous [80]: each carrying dif-

ferent amount of physical resource available to mobile devices. Since many MEC hosts

are built on existing devices or terminals deployed for other purposes [82, 84], they may

join/leave the network depending on their own needs. A MEC host may run out of its

capacity for its own applications and hence becomes unavailable to mobile devices. In

contract, servers in a cloud are mostly homogeneous and more stable in the network.

5. Portable. The MEC-LD should be a portable solution which does not rely on any

special hardware platform. It is because a MEC-LD may be deployed at any network

device or terminal. The packet ID can be arbitrary, such as 5-tuple [85], MAC address, or

any network names in new Internet proposals [60, 67].

In this chapter we present a new design of a Scalable and Dynamic Load Balancer

for MEC, called SDLB, that satisfies the above requirements. SDLB is built on Othello.

SDLB uses very small memory and has an important feature which is a perfect fit of a

MEC load balancer: to process a packet with an ID, if the ID-host relationship is specified

in SDLB, it quickly returns the host ID to which the packet should be forwarded; if no

ID-host relationship is specified, it quickly returns a random host ID, and the probability

distribution of host IDs can be specified and adjustable according to the host capacity.

Evaluation results show that SDLB is faster and uses less memory, than a widely-

used load balancer design (hash table + consistent hashing) which is the core algorithm

in Google’s cloud load balancer Maglev [17]. SDLB is also adaptive to network dynamics.
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4.2 Related Works

MEC and Fog.

The idea of shifting storage and computing from clouds to the edge of the network has been

proposed by many similar concepts such as mobile edge computing (MEC) [13, 14], fog

computing [80–82], edge computing [86] and mobile cloud computing (MCC) [87]. Fog

and edge computing have interchangeable definitions, both of which allow heterogeneous

devices on the path to the remote cloud to offer storage and computing resources. MEC on

the other hand relies on servers owned by mobile providers (e.g., Cloudlet [88]) behind Ra-

dio Access Network (RAN). MCC focuses more on the federation of the cloud, proximate

mobile computing entities and a plethora of mobile devices.

Software Load Balancer.

HAProxy [89] and Linux Virtual Server (LVS) [90] are the mostly used open-source soft-

ware load balancers. Since HAProxy operates on Layer 7, it is able to perform complicated

tasks on traffic flows such as SSL authentication and traffic regulation. The proposed SDLB

and LVS focus on Layer 4. Due to its simplicity, LVS is cheap and extremely fast. Meglev

[17] has been used as Google’s network load balancer since 2008, which is able to achieve

line-rate throughput. Compared to Meglev, LVS is not as optimized in term of performance

because it is designed for portability. Maglev relies on a server cluster hence cannot be ap-

plied to MEC/Fog. In contrast, SDLB is general-purpose and portable. Duet [91] is a hybrid

software and hardware load balancer with all the benefits of software load balancers as well

as enjoys low latency and high throughput. Duet relies on the recently provided APIs for

fine-grained control over ECMP and tunneling functionality on commercial switches. It

cannot be run at general-purpose platforms.
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4.3 System Design

4.3.1 System overview

The key idea of using SDN for SDLB is as follows. Since the data plane of a load balancer

is resource limited, we let the data plane of SDLB only include the packet processing com-

ponent and is optimized for memory efficiency and processing speed. The construction and

update components of SDLB are moved to an LB controller, which uses more memory to

keep the data plane consistent to network changes. The data plane of SDLB (called SDLB-

DP) is able to fit to fast memory such as cache to achieve better processing speed. Since

network changes are much less frequent than the incoming packet rate, the LB controller

can be implemented with relatively slow memory such as RAM. Upon network dynamics,

the controller computes the updated SDLB-DP and sends the modification to SDLB-DP

similar to existing SDN APIs [3].

We consider the SDLB-DP as a key-value query structure as well as a deterministic

randomizer. Every packet carries an ID and is processed by the SDLB-DP. 1) For a stateful

packet, SDLB-DP takes the packet ID as the key and returns a MEC host ID as the value.

The MEC host specified by the value should be the host that includes the state of this

packet. Here the SDLB-DP servers as a key-value query structure. 2) For a stateless packet,

SDLB-DP returns a random MEC host ID depending on the packet ID and the probability

distribution of this random selection should be adjustable. Here it serves as a deterministic

randomizer. In the following. we introduce the data structure that can achieve these two

functions simultaneously.

4.3.2 Data structure and algorithms

SDLB-DP is in a two-level structure as shown in Figure 4.2. The first level provides a

many-to-one mapping from a packet ID k to an l-bit value τ(k), using a l-Othello.
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Figure 4.2: SDLB structure

First level: l-Othello

The first level of SDLB structure is an l-Othello OOO(S,T ), where S is the set of all stateful

packets. S = {k1,k2, · · · ,kn}. T is the list of corresponding τ(k) results for all k ∈ S.

T = (t1, t2, · · · , tn). The value t = τ(k) for any k ∈ S is used as the index on the second level

structure.

Second level: MEC host table (HT )

SDLB also maintains an array in the data plane as the MEC host table (HT ). HT contains

2l elements. l = 16 is sufficiently big for SDLB. After computing the value τ(k) from

the Othello, SDLB-DP returns the value stored in HT [τ(k)] as the MEC host ID. Since

0≤ τ(k)< 216, the table HT is very small and is able to fit into fast memory.

When SDLB-DP gets a packet with key k, it returns a particular value HT [τ(k)]. This

value is deterministic and hence SDLB guarantees to forward all packets with a particular

packet ID to the same host.
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4.3.3 SDLB update

We may deal with multiple types of network dynamics including: 1) Flow addition and

leave of the network. 2) MEC host capacity change. MEC hosts are heterogeneous and

may be resource-limited. Hence the capacity of a MEC host to serve mobile packets may

change frequently. 3) MEC host join and leave. MEC hosts may be built on existing devices

or terminals deployed for other purposes [82, 84]. Hence their churn rate is much higher

than that of cloud servers. 4) State migration. When a MEC host runs out of capacity or

intends to leave the network, the state stored on it need to be migrated to other hosts.

In case 1), if there is arrival of new flows, SDLB-DP does not need to be updated to

include the new flow information to guide the processing of the future packets of these

flows. It is because the result τ(k) is deterministic for a same packet ID. However, when

a MEC host creates state for a flow/application/device, it will notify the SDLB controller.

The controller will maintain the packet ID to MEC host relationship according to the state.

We start to introduce update mechanisms by introducing the “merge” operation on the

SDLB-DP. We assume 2l is far greater than the number of MEC hosts. Consider any

two packets k1 and k2 with τ(k1) 6= τ(k2) but they are assigned to the same host, i.e.,

HT [τ(k1)] = HT [τ(k2)]. We can execute an update on the Othello so that τ ′(k2)← τ(k1).

This operation “releases” the element HT [τ(k2)]. After such operation, changing the value

of HT [τ(k2)] will not affect any stateful packets. Hence, HT [τ(k2)] can be used as a buffer

for future SDLB-DP updates.

Case 2) can be treated by modifying the HT table. To arrange more packets to a host,

SDLB assigns more elements in HT to the corresponding host ID. This can be achieved

by changing the values of the “released” elements in HT and it does not affect any stateful

packets.

For case 3), in addition to assign the capacities, when a host leave, it may requests to

migrate packets with key k to another host, which results in case 4). To modify the host

assignment of a particular packet with key k, SDLB modifies the Othello value so that τ ′(k)
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points to a “released” element in the HT and assigns HT [τ ′(k)] to the new host ID.

Note that after some modifications on the Othello, the probability values Pr may change.

SDLB executes the procedures described in Section 2.5.3 to rebalance the probability of

possible τ(k′) values for the stateless packets.

4.4 Evaluation

In this section, we evaluate the performance of the SDLB. We compare SDLB with a

widely-adopted approach for network load balancer. That approach first perform a lookup

in a hash table that maintains the ID to host mapping for stateful packets. If the lookup fails

then the load balancer knows the packet is stateless and uses consistent hashing to assign a

host for it. We measure the memory size, update speed, and data plane throughput of SDLB

and the compared approach (referred as HashTable in the following). In our implementa-

tion, we use HashMap that uses a self-balancing binary search tree. In our experiments we

assume the packet IDs are 64-bit values while the MEC Host IDs are 16-bit integers.

4.4.1 Memory efficiency

We compute the memory space used by SDLB-DP and the HashTable approach in Table

4.1. We show three typical types of packet IDs: (1) HashValue, in which the load balancer

computes a hash value as the digest of the metadata (e.g, URL). (2) 5-tuple, it refers to the

src/dst IP addresses and port numbers, and protocol number of a IP packet. (3) OpenFlow

matching fields, which is a 356-bit value. SDLB-DP uses much smaller memory space

than HashTable does. Note that the Othello data structure does not maintain a copy of the

keys in its memory, while the HashTable must maintain a copy of the keys to identify hash

conflicts. Hence, the memory space of SDLB-DP grows approximately in proportion to

the number of stateful packet IDs. As a comparison, the space size of the HashTable grows

with both the number of stateful IDs and the length of the keys.
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Table 4.1: Memory size comparison

ID type # stateful entries SDLB HashTable
HashValue (64b) 96K 640K 1.41M
5-tuple (104b) 256K 1.63M 5.25M

OpenFlow (356b) 1M 6.13M 72M

4.4.2 Update speed of SDLB

We measure the update speed of SDLB and show it in Figure 4.3. In each experiment,

we randomly execute update operations on the SDLB controller. The numbers of stateful

packet addition and deletion are set equal. The blue curve shows the throughput of SDLB

updates. SDLB is able to support about one million update requests per second. We

observe the update throughput varies against the number of stateful packet IDs. SDLB

reaches higher throughput when the number of packets are close to values like 2n or 3×2n

for some integer n. This is in consent with the properties of the Othello data structure

discussed in Section 2.3.

We also measure the efficiency of the “rebalance” operation discussed in Section 2.5.3.

The red curve in Figure 4.3 shows that the time used to rebalance the SDLB grows linearly

to the number of packet IDs. It takes less than one second to rebalance when there are 2M

stateful IDs.

4.4.3 Data plane throughput

We compare the data plane throughput of SDLB and HashTable. In Figure 4.4, we vary

the number of stateful IDs maintained by SDLB and the HashTable and measure the query

throughput of both approaches. Experimental result shows that SDLB-DP has a >10x

higher throughput than the HashTable when the number of stateful IDs is less than 300K.

It still reaches at least 4x better throughput when the number of stateful IDs grows. The

throughput of both approaches decreases as there are more IDs. This is because the ex-

periment is carried on a commodity desktop computer, and the size of both data structures
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Figure 4.3: Update efficiency of SDLB

grows linearly to the number of stateful IDs. With 1000K names, SDLB is able to fit into

the L3 cache of the CPU. HashTable fails to fit into the cache for 500K names. In summary,

SDLB is much faster than HashTable. We also measure the data plane throughput under

different types of traffic. We fix the number of stateful IDs as 600K and vary the fraction

of stateful queries. Fig 4.5 shows that such fraction does not affect the query throughput of

SDLB.

4.5 Discussion

Each MEC host needs to know its working load because of two reasons. 1) Each MEC

host needs to provide provable and controllable resource/performance isolation between the

original applications and mobile devices. 2) The SDLB controller needs the information

to set the weight of the MEC host adaptively according to the available resources. The

vanilla solution by analyzing resource consumption for all MEC traffic through existing

monitoring APIs (e.g., Intel Performance Counter Monitor API [92]) is expensive and not

scalable. Meanwhile, empirical studies [93–95] have shown that the network traffic is
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Figure 4.4: Data plane throughput vs. Number of stateful IDs.

dominated by a small fraction of elephant flows. We argue that tracking elephant flows

on the MEC host is one cheap and efficient method for load estimation. Elephant flow

detection can be achieved very efficiently. For instance, Myopia [93] leverages count-min

sketch [96] to measure flow sizes for its provable tradeoff between space and accuracy of

flow size estimation. If the size of a flow exceeds a threshold, an elephant flow is identified.

Moreover, since the set of elephant flows substantially overlap stateful flows, the elephant

flow information can be further exploited for coarse-grained tasks such as state migration

in the presence of overloading.

4.6 Conclusion

We present the design of a fast and dynamic software load balancer for MEC and Fog,

called SDLB. SDLB is built on a new data structure named Othello whose core algorithm

is minimal perfect hashing. Experimental results show that SDLB is faster by 4x to 10x

and uses less than 50% memory compared to existing solutions. In addition SDLB provides
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fast updates. We believe Othello has the potential to become a fast and memory-efficient

solution for software-based networking in future applications.
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Chapter 5. MetaOthello: Taxonomic Classification of Metagenomic Sequences

In this chapter, we present MetaOtello, a system to to support ultra-fast taxonomic classifi-

cation of metagenomic sequences with k-mer signatures. We first discuss the background

and motivation in Section 5.1. The system design of MetaOthello and the theoretical analy-

sis for its properties are presented in Section 5.2. We show the evaluation results in Section

5.3.

5.1 Background and Motivation

Metagenomics is the study of genomic content obtained in bulk from an environment of

interest, such as the human body [28], seawater [29], or acidic mine drainage [30]. Metage-

nomics studies often generate tens of millions of sequencing reads in order to capture the

presence of microbial organisms and quantify their relative abundances, rendering the clas-

sification and analysis of these data a logistical challenge.

One of the major computational challenges in the analysis of metagenomic data is the

classification of each sequencing read into the most-specific biological taxon to which se-

quence conservation supports its assignment. Specifically, a read is classified as belonging

to a taxon if it has high sequence similarity with the reference genomes collected for that

taxon, a process made possible by the large deposits of reference sequences collected in

recent years for a variety of microbial species. In 2014 alone, more than 10,000 sequence

records were newly added to the NCBI RefSeq database thanks to the accessibility of high-

throughput sequencing technology.

Existing classification methods can be divided into two broad categories: alignment-
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based and alignment-free. The former approach, implemented most popularly as BLAST [97],

assigns each read to the taxon that affords the best alignment with its reference genomes.

Several methods, including MEGAN [98], PhymmBL [99], and NBC [100], apply addi-

tional machine-learning techniques to BLAST results to increase classification accuracy.

These methods are often slower than BLAST alone, rendering them computationally pro-

hibitive for large-scale analysis of many millions of short reads. However, the recent devel-

opment of Centrifuge [101] has significantly improved the scalability of alignment-based

algorithm using FM-index. Besides using genomic sequences as reference, the recently

published tool Kaiju [102] performs alignments towards protein sequences, achieving

faster classification speed than existing tools.

The other line of work, pioneered by LMAT [103] and Kraken [104], classifies a read

using exact k-mer matches between the read and reference sequences belonging to the target

taxon, thereby avoiding inefficient base-by-base alignment while maintaining a sensitivity

and specificity comparable to the alignment-based approach. This approach is generally

faster than alignment-based methods and allows for greater flexibility in reference mate-

rial because it requires only the collection of k-mers extracted from reference sequences

belonging to each taxon. Thus k-mers extracted from DNA or RNA sequencing data can

be included as reference material without being assembled, increasing the sensitivity of

the algorithm in capturing natural variants that are often missed using reference genomes

alone.

The above alignment-free approaches rely on the use of indexing structures for k-mer

matching. For example, Kraken indexes its lexicographically sorted k-mer database using a

minimizer offset array, while Clark uses a hash table to store the mapping between a k-mer

and its classification information. Both Kraken and Clark require computers with large

memory to support the construction of their indexing structure (at least 170 GB RAM) and

k-mer querying during classification (at least 70 GB RAM). Although there are variations

of both algorithms with smaller memory footprints, they often afford significantly lower
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accuracy and much slower execution speed compared to the full version. For this reason,

the ever-increasing amount of sequencing and reference genome data call for tools with

better scalability in both memory and computation.

In this chapter, we present a new algorithm, dubbed MetaOthello , for taxonomic classi-

fication of sequencing reads. Our algorithm builds upon taxon-specific k-mer signatures to

support direct assignment to any level in the taxonomy. It employs a novel data structure, l-

Othello, to support ultra-fast k-mer classification, achieving at least an order-of-magnitude

improvement in speed over the state-of-the-art methods, Kraken and Clark, and three times

faster than Kaiju. In the meantime, MetaOthello also substantially reduces the memory

footprint, typically requiring only one third of the aforementioned methods. This modest

memory requirement allows our algorithm to run on typical lab servers with 32 GB RAM,

rendering it more accessible to biological researchers than those with memory requirements

achievable only by supercomputers. Additionally, our algorithm is capable of conducting

hierarchical top-down taxonomic classification and delivers performance competitive to, if

not better than, other algorithms in both sensitivity and specificity as validated by bench-

marking on a variety of datasets.

5.2 System Design of MetaOthello

5.2.1 k-mer Taxon Signatures

A k-mer is a length k subsequence of genomic sequences; for any sequence of length L,

there exist a maximum of L− k + 1 possible k-mers. Metagenomic reference material

consists of one or more complete reference genomes belonging to an organism. Increas-

ingly sophisticated sequencing techniques have permitted discovery of distinct reference

genomes for a single species of organism, thereby capturing genomic variations that are

often important to the functionality of the microbial species. The number of genomes

(whether draft or complete) available as metagenomic reference material increases with

each new discovery. If we consider each dataset as a collection of k-mers, a given taxon
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can be described by the set of k-mers present in the reference sequences belonging to its

taxonomic subtree. The problem of classifying a metagenomic read thus simplifies to the

identification of the taxon that best matches the set of k-mers associated with the target

read. When k is sufficiently large (e.g., k > 20), the majority of k-mers are unique to the

species carrying them. These species-specific k-mers may serve as signatures, directly im-

plicating the appropriate taxonomic classification. However, a significant proportion of

k-mers is present in multiple species, making them unique only to higher-ranking taxa. In

this paper, we formalize the taxonomic specificity of a k-mer as the signature of a taxon:

A k-mer is considered to be a signature of a taxon if (1) the k-mer does not appear in

any genomic references belonging to ancestors or siblings of the target taxon, but only to

sequences belonging to the taxon’s subtree, and (2) the k-mer is not a signature of any

lower-ranked taxon in the subtree. Equivalently, the taxon evincing a k-mer signature is the

lowest common ancestor (LCA) of all species in the taxonomy whose reference genomes

contain that k-mer.

In this way, as illustrated in Figure 5.1 and Figure 5.2, the set of all k-mers present

in the genomic references of a taxonomy can be divided into disjoint collections, each of

which contains the set of signature k-mers belonging to a single node in the taxonomy tree.

Formally, let S be the set of all k-mers present in genomic references annotated by the

taxonomy and let T = {1,2, · · · , |T |} be the taxa (nodes) present in the taxonomy. Then S

can be divided into |T | disjoint sets, S = {S0,S1, · · · ,St , · · · ,S(|T |−1)}, where for any node

t ∈ T , St corresponds to the set of k-mer signatures belonging to taxon t. Thus, there exists

a mapping, g : S→ T , such that g(s) = t if the k-mer, s ∈ S, is a signature of the taxon,

t ∈ T .

5.2.2 Taxonomic Classification of Sequencing Reads

As illustrated in Figure 5.2, given any sequencing read, our algorithm iterates over each

k-mer from the beginning of the read and, for each k-mer, retrieves the taxon to which it is
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Figure 5.1: An example of MetaOthello taxonomy with reference sequences in the leaf
nodes. The 3-mers that are signatures to each node are highlighted in read color.

specific using l-Othello. Taxonomic classification of the read is determined by assembling

the taxa for all k-mers in the read. The classification is straightforward when all k-mers

indicate the same taxon, but this is not often the case. Disparate taxa are considered to be

consistent if they belong to the same path in the taxonomy, meaning that one assignment is

the higher rank of the other. When these taxa belong to different branches, they represent

conflicting information. The issue is further complicated by the possibility of false taxo-

nomic information returned from querying alien k-mers, where the k-mer in the read does

not appear in any of the reference sequences.

To tackle this challenge, we have designed a window-based classification approach. A

window is defined as a sequence of consecutive k-mers that are assigned to the same taxon

of a given level. The window-based approach guards against false-positive assignments

due to alien k-mers. Assuming that the taxon ID returned by an alien k-mer is random, the
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Figure 5.2: Step-by-step illustration of read classification on the taxonomy presented in
Figure 5.1.

chance of having two consecutive alien k-mers return the same taxon ID is

2l−1

∑
t=0

(p(t))2 ∼ 2−l.

This value is very small, regardless of k. Additionally, each window corresponds to a

maximum read subsequence that matches the reference sequences. Thus, the longer the

window, the longer the subsequence match, and the less likely the match is random. In

comparison, other algorithms such as Kraken and Clark count the total number of k-mer

matches, regardless of their spatial distribution across the read.

If multiple taxon windows are available, MetaOthello scores each of them using the

summed squares of window sizes as in the following formula; the taxon with the maximum

score will be selected:

Score(t) = ∑(wt
i)

2
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where wt
i denotes the number of k-mers in the ith window classified to taxon t.

A k-mer signature belonging to a taxon is also specific to its higher-ranking taxa, so at

higher taxonomic ranks, there exist more k-mers to distinguish a taxon from its siblings.

Thus, longer k-mer windows and more accurate classifications are expected at higher tax-

onomic ranks. Under this assumption, a “top-down” strategy is adopted during read clas-

sification. Given a read sequence, MetaOthello starts the classification at the top rank

and continues the classification down the ranks until there does not exist a sufficiently

large k-mer window supporting the level. Based on the k-mer distribution in each taxon,

MetaOthello establishes a threshold on minimum window-size when the classification on

that taxon requires. Theorem 6 shows that the minimum window size threshold can be pre-

computed for each taxon prior to read classification. The minimum window size required

for a taxon is determined by the probability of an alien k-mer query on l-Othello returning

a taxon rooted in t and the acceptable false-positive rate. The larger the size of the taxon

subtree, the higher the probability that a random alien k-mer may match to t and thus the

longer the window required for reliable classification. Additionally, a larger window size

will be required in order to lower the false-positive rate.

Theorem 6. Given a user-defined false-positive rate λ and the total read number M, the

minimum window-size threshold required for a taxon t can be computed as logp(t)
λ

(1−λ )M ,

where pt denotes the probability that an alien k-mer query on l-Othello returns a value in

the taxon subtree with root t.

Proof. We analyze the confidence of a K-mer window as follows. For a window of k-

mers, let w be the length of the window. Suppose the query result for these K-mers are

τ(s1),τ(s2), · · · ,τ(sw). For a particular level of the taxonomy tree, suppose that these k-

mer belongs to taxon t, then τ(s1),τ(s2), · · · ,τ(sw) ∈ St , where St is the set of the IDs of

the nodes in the taxonomy subtree with the root t.

For consecutive w k-mers, let Gt be the event that this window of length w is from the

taxon with ID t, without any sequence error. Let Qt be the event that the query results of
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these k-mers belongs to St , namely τ(s1),τ(s2), · · · ,τ(sw) ∈ St .

For a particular window of k-mers, let w be the length of the window, (i.e., there are

k+w−1 bases in this window.

Let Gt be the event that this window is actually from taxon t. We assume there is no

sequencing error, hence, when Gt the query results for these w k-mers satisfy :

τ(s1),τ(s2), · · · ,τ(sw) ∈ St

. We use notation Qt to describe the event that τ(s1),τ(s2), · · · ,τ(sw) ∈ St .

Now the problem is that if we observe event Qt , we may indicate two reasons exclu-

sively. (1) Qt happens as a result of Gt . (2) Note that for alien k-mers τ may return any

integer, Qt happens as a result of the query result of w alien k-mers. We use the probability

P(Gt |Qt) to describe how confident we are, about that this window is from taxon t.

As described, when Gt happens, Qt also happens. Hence P(Qt |Gt) = 1.

We estimate the value of P(Gt |Qt) as follow.

P(Gt |Qt) =
P(Qt |Gt)P(Gt)

P(Qt |Gt)P(Gt)+P(Qt |Gt)P(Gt)
=

P(Gt)

P(Gt)+P(Qt |Gt)P(Gt)
(5.1)

Let qt be the abundance of the window from taxon t. i.e., for a particular sample,

randomly select one window of length w among all windows in all reads from this sample,

the probability that this window is actually from taxon t. Hence P(Gt) = qt .

The value P(Qt |Gt) is estimated as follow.

Gt means that this window is not from taxon t. Gt indicates either one of the following

sub-events: (1) Cother: In this particular level of taxonomy tree, the window is from one

other taxon t ′, which means the query results τ(s1),τ(s2), · · · ,τ(sw) ∈ St ′ for a t ′ 6= t. Note

that St ′ ∩ St = /0, this indicates P(Qt |Cother) = 0. (2) Calien: This window is an alien of the
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taxonomy tree. Let ct = P(Calien|Gt), then 0 < ct < 1.

P(Qt |Gt) = P(Qt |Cother)P(Cother|Gt)+P(Qt |Calien)P(Calien|Gt) = P(Qt |Calien)ct (5.2)

As discussed in Section 2.2.3,

P(Qt |Calien) = q(t)w (5.3)

Combine Equation (5.1) (5.2) (5.3), we have

P(Gt |Qt) =
qt

qt + p(t)wct
(5.4)

Note that, qt > 0 and 0 < p(t)� 1. Hence P(Gt |Qt)→ 1 as t → ∞. This is to say when

w increases, P(Gt |Qt) also grows, and we can be more confident that when a query result

shows that a window belongs to some taxon t, it reflects the fact that this window is actually

from this taxon t. In other words, a longer window is more likely to come from this taxon

than a shorter one.

Note that
qt

qt +(p(t))wct
>

qt

qt +(p(t))w

.

We use a threshold value λ , when P(Gt |Qt)> 1−λ , we accept, which is equivalent to:

w > logp(t)
λqt

(1−λ )
∼ logp(t)λqt

Here, the value of qt can not be directly measured. However, for any actually detected

taxon, we are sure that qt ≥ 1
M , where M is the total number of reads in the dataset. Hence
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we use the following threshold to decide the length of accepted windows.

w > logp(t)
λ

(1−λ )M
∼ logp(t)

λ

M

Note that we can always use the l-Othello to compute the value of p(t). Thus, given λ

(λ = 0.001 by default), for each taxon, we can pre-compute the minimum size threshold

for K-mer window. Only the K-mer windows which are not shorter than its associated

minimum window size will be accepted for final assignment determination.

5.3 Comparison with the State-of-the-art Tools

We now assess the performance of MetaOthello in comparison to three of state-of-the-

art tools: Kraken (version 0.10.5 beta), Clark (version 1.2.3), and Kaiju (version 1.4.4).

Besides the newly published tool Kaiju, Kraken and Clark were chosen based on the rec-

ommendation of a recent benchmarking paper [105], which evaluated 14 tools using six

datasets and subsequently declared Kraken and Clark the best performers over Genometa [106],

GOTTCHA [107], LMAT [103], MEGAN [98][108], MG-RAST [109], the One Codex

webserver, taxator-tk [110], MetaPhlAn [111], MetaPhyler [112], mOTU [113], and QI-

IME [114]. The comparison was benchmarked against three publicly available datasets:

HiSeq, MiSeq, and SimBA5. The same datasets have been used multiple times to evaluate

a number of metagenomic classification tools, including Kraken in previous studies [104].

All tools were executed using the same reference database (NCBI RefSeq as of October

1st, 2016), and all other parameters follow the default settings.

Runtime and Memory

Speed benchmarks were performed using the servers from Lipscomb High-Performance

Computing at the University of Kentucky. The servers are equipped with Dell R820, Quad
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Figure 5.3: Billion bases processed per minute by each tool with three k-mer length settings
using 8 threads.

Intel E5-4640 8-core (Sandy Bridge) @ 2.4 GHz and 512 GB/node of 1600 Mhz RAM.

Each algorithm was executed using eight threads and k-mer lengths as specified previ-

ously; all other parameters follow the default settings. The speed for each tool is presented

in Figure 5.3. In general, MetaOthello achieved the highest processing speed, clocking

roughly 1 billion bases per minute. This figure represents an order-of-magnitude improve-

ment over Kraken and Clark, the two most-rapid state-of-the-art tools within the category

of alignment-free classifiers. Impressively, the high speed does not entail a compromise in

the memory requirement. MetaOthello only consumes about one-third (peak memory 27

GB) the RAM required by Kraken and Clark (peak memory 73 GB).

The construction of the MetaOthello index from the NCBI RefSeq bacterial genome

sequence database requires roughly 6 hours with peak memory usage up to 40 GB using

16 threads. In contrast, Kraken and Clark used 164 GB and 120 GB respectively for index
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construction but both finished under 4 hours with 16 threads.

In summary, MetaOthello achieves a significant speedup with much smaller memory

footprint in comparison with Kraken and Clark while delivering competitive or even su-

perior performance in classification accuracy. While Kaiju is relatively scalable, it suffers

from low sensitivity in classification.
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Chapter 6. SeqOthello: Sequence Query Over Large Collections of RNA-seq Exper-

iments

In this chapter, we present SeqOthello, an ultra-fast and memory-efficient indexing struc-

ture to support arbitrary sequence query against large collections of RNA-seq experiments.

We first discuss the background of sequence query in Section 6.1. We present the sys-

tem design of SeqOthello in Section 6.2. The algorithm for SeqOThello construction is

presented in 6.3. We discuss the properties of SeqOthello during alien k-mer queries in

6.4. The evaluation results and clinical-significant finding of SeqOthello are presetned in

Section 6.5.

6.1 Background

Advances in the study of functional genomics over the past decade have produced a vast

resource of RNA-seq datasets. As of December 2017, over 12 Petabytes of RNA-seq data

were deposited in the Sequence Read Archive (SRA)[19]. Sequencing consortiums such

as The Cancer Genome Atlas (TCGA)[20] and the International Cancer Genomics Consor-

tium (ICGC)[21] have sequenced tens of thousands of tumor transcriptomes from diverse

cancer populations. Although these datasets have collectively redefined the landscape of

cancer transcriptomes, additional clinically relevant features remain to be discovered. How-

ever, data reanalysis to identify these features requires extensive computational resources

and bioinformatics support, making it exclusive to a few labs. The development of Se-

qOthello will enable labs with limited resources to learn from sequencing-level data by

supporting fast and memory-efficient query over large-scale RNA-seq datasets.
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To date, sequence search options are limited. Most sequencing databases support meta-

data searches[19, 21, 22, 31], which permit selection of experiments by tissue type, organ-

ism, experimental condition or sequencing protocol. From this refined list, experiments can

be downloaded and analyzed individually [115]. Alternately, SRA-BLAST [116] can re-

trieve short reads aligned to a query sequence, but only for a limited number of nucleotides

per query. Finally, the Bioinformatics community has lately established databases storing

ready-to-analyze results in areas such as gene expression [22, 117, 118] and exon-exon

junctions [119]. However, these databases are subject to frequent updates as Bioinformat-

ics algorithms improve and reference genomes are refined, nor can they support the query

of novel sequences that are absent from existing annotation or undetectable by current

bioinformatics tools.

Recently, Sequence Bloom Tree (SBT) [120] and its descendants[121, 122] were devel-

oped to query RNA-seq experiments for expressed transcripts, pioneering the field of large-

scale sequence search in RNA-seq. SBT is designed as an experiment filter that returns the

subset of experiments containing at least θ percent of k-mers from the query sequence.

Built upon bloom filters[123], SBT-based algorithms are generally memory efficient for

small queries. Unfortunately, tuning the input parameter θ is time-consuming and produces

inconsistent results for a single query, thereby hampering interpretability. Furthermore, ex-

tracting sequence-level information from the filtered experiments requires downloading

and reanalyzing of raw sequencing datasets, and thus does not sidestep traditional RNA-

seq processing. There is also growing interest in methods for indexing large collections

of genomic sequencing reads from different individuals. Bloom filter trie (BFT) [124] was

developed to store and compress a set of colored k-mers from a Pan-Genome of hundreds of

samples. Additionally, the Burrows–Wheeler transform (BWT) and FM-index have been

employed to build indexes on raw sequencing reads with applications in compressing 2705

whole genome sequencing samples from the 1000 Genomes Project [125, 126]. Though

retaining full-text information, these data structures are often associated with high memory
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a) 2,652 RNA-seq Experiments from SRA             b) 10,113 TCGA Pan-Cancer RNA-seq Experiments. 

Supplementary Figure 1. The histograms of 𝒌-mer occurrence frequencies in two human RNA-Seq 
datasets. A 𝒌-mer’s occurrence frequency is the number of samples containing the 𝒌-mer. The 
difference in the high frequency 𝒌-mers between the two datasets suggests less homogeneity in RNA-
seq experiments downloaded from SRA than these generated by TCGA.  a) The 𝑘-mer occurrence 
histogram across 2652 RNA-seq experiments of human blood, breast and brain tissues from the SRA. b) 
The 𝑘-mer occurrence histogram across 10,113 TCGA Pan-Cancer RNA-seq experiments. 

  

Figure 6.1: The histograms of k-mer occurrence frequencies in two human RNA-Seq
datasets. a) The k-mer occurrence histogram across 2652 RNA-seq experiments of hu-
man blood, breast and brain tissues from the SRA. b) The k-mer occurrence histogram
across 10,113 TCGA Pan-Cancer RNA-seq experiments.

cost and slow query speed as the entire index must be loaded to memory prior to query.

6.2 System Design of SeqOthello

6.2.1 SeqOthello hierarchical structure

A sequencing experiment can be represented by a collection of k-mers, or length k sub-

sequences of the original reads. k-mers are fundamental components of de Bruijn graphs

and thus are essential for de novo assembly of the transcriptome18–20 in individual experi-

ments. A database of sequencing experiments can therefore be represented as a collection

of occurrence maps of individual k-mers. The occurrence map of a k-mer is defined as its

presence or absence across all experiments indexed in the database. The challenge is to

efficiently store and query this information in scenarios with billions of k-mers across tens

of thousands of experiments. We leverage novel algorithms in data compression and k-mer

indexing to surmount this obstacle.

The prevalence of each k-mer varies dramatically, with plots of k-mer frequency of-

ten exhibiting a U- or L-shaped distribution. As shown in Figure 6.1, A k-mer’s occur-

rence frequency is the number of samples containing the k-mer. The difference in the high

frequency k-mers between the two datasets suggests less homogeneity in RNA-seq ex-
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periments downloaded from SRA than these generated by TCGA. k-mers located at the ex-

tremes of the spectrum tend to originate from experiment-specific transcripts, or to descend

from common transcripts that manifest in nearly all experiments. By contrast, k-mers near

the center of the distribution may be tissue- or organism-specific. The prevalence of a k-mer

directly determines the information content [127, 128], or the number of bits required to

store its occurrence map. To this end, SeqOthello employs an information-content-aware

data-compression scheme: an ensemble of compression techniques tailored to store the

occurrence maps of k-mers from each region of the occurrence distribution without ham-

pering query efficiency (Figure 6.2). SeqOthello relies on a novel, hierarchical indexing

structure to facilitate fast retrieval of k-mer occurrence maps (Figure 6.2). The mappings

between levels are supported by the Othello Hashing method. But an Othello constructed

on billions of k-mers still demands too much memory to be practical for use with standard

computers. The hierarchical structure employed by SeqOthello overcomes this challenge

using a divide-and-conquer approach. Specifically, k-mer occurrence maps are split into

buckets according to their encoded lengths, with the assignment of each k-mer to its bucket

determined by the root Othello. Within each bucket, the mapping between a k-mer and

the location of its occurrence map is again stored in an Othello. SeqOthello significantly

increases the volume of indexed k-mers within limited memory space and is inherently

parallelizable.

SeqOthello supports scalable k-mer searching in large-scale sequencing experiments.

As shown in Figure 6.2, The bottom level of SeqOthello stores the occurrence maps of

individual k-mers, encoded in three different formats and divided into disjoint buckets.

The mapping between a k-mer and its occurrence map is achieved by a hierarchy of Oth-

ello structures in which the root Othello maps a k-mer to its bucket and the Othello in

each bucket maps a k-mer to its occurrence map. b. An example illustrating SeqOthello’s

sequence-query process and output. A sequence query is decomposed into its constituent

k-mers. The query result can be either a k-mer hit map, recording each k-mer’s pres-
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maps (Figure 1 a). The mappings between levels are supported by the Othello23,24 data structure (Methods), 

a minimal perfect hashing classifier that provides key-to-value searching in constant time. An Othello is 

collision-free and is significantly more compact than a traditional hash table as it does not store keys. But 

an Othello constructed on billions of 𝑘-mers still demands too much memory to be practical for use with 
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Querying of a SeqOthello first requires decomposing the query sequence into its constituent 𝑘-mers. The 

root Othello node identifies the occurrence bucket for each 𝑘-mer, following which each bucket Othello 

node retrieves the desired occurrence map. Per 𝑘-mer, this process requires exactly two Othello queries 

and is thus executed in constant time. The full set of occurrence maps is then synthesized to generate a 

𝑘-mer hit map of the query for each experiment, where a hit means a k-mer is present in an experiment. 

Each 𝑘-mer hit map can be summarized into the number of hits, or a hit ratio, the fraction of  hits out of 

the total 𝑘-mers in the query (Figure 1. b). 
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and is thus executed in constant time. The full set of occurrence maps is then synthesized to generate a 
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Figure 6.3: SeqOthello Query Procedure. +/− indicate query hit or miss.

ence/absence along the query sequence, or k-mer hit ratios (i.e., the fraction of query k-mers

present in each experiment)

Querying of a SeqOthello first requires decomposing the query sequence into its con-

stituent k-mers. The root Othello node identifies the occurrence bucket for each k-mer, fol-
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lowing which each bucket Othello node retrieves the desired occurrence map. Per k-mer,

this process requires exactly two Othello queries and is thus executed in constant time. The

full set of occurrence maps is then synthesized to generate a k-mer hit map of the query for

each experiment, where a hit means a k-mer is present in an experiment. Each k-mer hit

map can be summarized into the number of hits, or a hit ratio, the fraction of hits out of the

total k-mers in the query (Figure 6.3).

6.2.2 Encoding of k-mer occurrence map

We define the occurrence map of a k-mer as a binary vector recording the k-mer’s presence

or absence in each experiment. Given m experiments, the occurrence map can be stored

using m bits, where 1 represents presence and 0 represents absence in a certain experi-

ment. To minimize the storage requirement of these vectors, we have developed a hybrid

encoding method that leverages one of three different encoding strategies depending on the

occurrence frequency of a k-mer. Each k-mer is stored using the method that yields the

shortest code. These encoding methods are detailed below:

• Value-list encoding. This method is used to compress occurrence maps associated

with rare k-mers. For an m-bit occurrence map with exactly t 1s (representing pres-

ence in t out of m samples), we enumerate the t indices of these positions as a list.

Each index is represented by t integers, each dlog2 me bits long. This list can also be

viewed as a tdlog2 me-bit integer. Value-list encoding is used when t dlog2 me ≤ 64.

• Delta-list encoding. This approach is employed for occurrence maps with a rela-

tively larger number of 1s (t dlog2 me > 64). The m elements in the occurrence map

can be considered as a succession of alternating subsequences of 0s and 1s. Thus the

map can be represented by a list of 2w+1 integers, 〈x1,y1,x2,y2, · · · , xw,yw,xw+1〉,

representing the number of digits in each subsequence, where x1 ≥ 0,xw+1 ≥ 0;

y1,y2, · · · ,yw ≥ 1 ,x2,x3, · · · , xw ≥ 1; and x1+y1+x2+y2+ · · ·+ xw+yw+xw+1 =
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Table 6.1: Hexadecimal encoding for integer values in delta-list encoding

Integer value z Encoded binary repre-
sentation

Hexadecimal
value

Encoded
length in bits

0≤ z < 8 (1xxx)2 0x8 | z 4
8≤ z < 64 (01xxxxxx)2 0x40 | z 8

64≤ z < 512 (001xxxxxxxxx)2 0x200| z 12
512≤ z < 4096 (0001xxxxxxxxxxxx)2 0x1000| z 16

4096≤ z (0000xxxxxxxxxx . . .)2 0x0000 | z 32

m. The occurrence map can be reconstituted by enumerating x1 0s, followed by y1

1s, x2 0s, y2 1s, etc. For example, consider an occurrence map of m = 20 elements,

1110011...10, with 1s at indices 1,2,3,6,8,9,. . . ,19. The corresponding delta-list rep-

resentation is 〈x1 = 0,y1 = 3,x2 = 2,y2 = 14,x3 = 1〉.

The 2w+1 integers from this first step are further encoded as positive integers. Mul-

tiple procedures exist for the second encoding step, the choice of which depends on

the relative importance of minimizing encoding/decoding overhead versus maximiz-

ing the compression rate. To balance the time and memory complexity of encoding,

as well as the storage overhead, we choose to encode the delta list as a hexadecimal

stream. Each integer is converted to a hexadecimal value using the method described

in Table 1. We then concatenate the hexadecimal values into a single hexadecimal

datum. For the delta list shown in the example, 〈0,3,2,14,1〉, the corresponding hex-

adecimal format is 0x8, 0xB, 0xA, 0x4E, 0x9. After concatenation, the final result is

0x8BA4E9.

• Bitmap encoding. Each occurrence bitmap is an m-bit value, with each bit coding

the presence or absence information for one of the m samples. As this method re-

quires more memory than other options, it is used only when other options do not

work.
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6.3 SeqOthello Construction Procedure

6.3.1 The Construction Algorithm

Construction of a SeqOthello data structure requires as input a list of k-mer files, each

containing the set of k-mers extracted from reads associated with a distinct RNA-seq ex-

periment. Currently the k-mer file is generated by applying Jellyfish to fastq files.

• Step 1: Assembling the occurrence map of each k-mer in the collection of ex-

periments to be indexed. The goal of step 1 is to determine each k-mer’s pres-

ence/absence information across all experiments. This task requires the integration

of k-mers from all k-mer files, but simultaneous file access is time-consuming and not

allowed by many operating systems. Instead, we employ a strategy similar to merge

sort. We first obtain k-mer occurrence maps for small groups of experiments, where

each group contains approximately 50 samples. These intermediate occurrence maps

are encoded as delta lists, which significantly reduces file sizes. The groups are then

merged to obtain the k-mer occurrences across all experiments. After SeqOthello is

constructed, the group files generated at this step are no longer needed. However, as

these files are orders of magnitude smaller than the original k-mer files, they can be

stored to support update of the SeqOthello structure.

• Step 2: Assignment of k-mer occurrence maps to buckets. We next divide the

entire set of k-mers into disjoint buckets based on their occurrence maps using the

following principles: (1) Occurrence maps within the same bucket should be gen-

erated by the same encoding approach; (2) the lengths of encoded occurrence maps

within the same bucket should have limited variation; and (3) the total size of the en-

coded occurrence maps within each bucket should not exceed a specified threshold

(by default, 128 MB).

Given a maximum bucket size, we define the range of encoding lengths for each
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bucket prior to allocating k-mers. Note that the distribution of k-mer encoding lengths

is unknown prior to construction. To avoid multiple iterations over all k-mers during

bucket assignment, we designed a sampling-based approach to estimate the range

of encoding lengths. The goal is to set an open upper bound nt+1 and closed lower

bound nt so that k-mers with encoding lengths in the range [nt ,nt+1) are assigned to

each bucket t. We select 10 million k-mers, which is approximately 0.1% of the k-

mers present over all experiments, and let Li be the estimated number of k-mers with

encoding length equal to i. Starting from t = 1 and n1 = 1, we greedily select the

maximum index nt+1 so that ntLnt +(1+nt)L1+nt + · · ·+(nt+1−1)Lnt+1−1 ≤ 128M.

Once the number of buckets and their ranges of encoding lengths are determined, the

construction algorithm will iterate over each k-mer, assigning it to the appropriate

bucket in accordance with the encoding length of its occurrence map. The encoded

occurrence maps are further compressed by gzip when the final structure is stored as

a file.

• Step 3: Establish k-mer mapping using Othello. During step 2, SeqOthello main-

tains the list of k-mers and their corresponding encoded occurrence maps in each

bucket. Once the k-mer assignment is completed in the bucket, an Othello will be

established to record the mapping between k-mers and the locations of their occur-

rence maps. Once the buckets are finalized, a root Othello is constructed to record

the mapping between the entire set of k-mers and their bucket IDs.

SeqOthello also maintains an .xml file to store metadata associated with the data

structure, which includes basic information about the experiments and information

necessary for the query algorithm to interpret the data file.

6.3.2 Optimization for k-mers that appear in only one experiment

The prevalence of individual k-mers varies dramatically, with plots often exhibiting a U-

or L-shaped distribution (Figure 6.1). Note that the number of k-mers present in only one
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experiment is relatively large compared to k-mers with higher frequencies. We apply the

following approach to improve the efficiency and accuracy of SeqOthello.

Instead of storing all k-mers with single occurrence in a level-2 bucket, we encode

them directly in the root Othello. Let E be the set of experiments indexed by SeqOthello,

identified by integers {1,2, · · · , |E|} . Let B be the set of buckets identified by integers

{|E|+ 1, |E|+ 2, · · · , |E|+ |B|}. The root Othello records the mapping between k-mer set

S and E ∪B. For any k-mer s, if the query result on the first level τ (s) ∈ {1,2, · · · , |E|},

SeqOthello will report that s is present in the experiment with index τ (s); if τ (s) = |E|+

b for some integer b ∈ {1,2, · · · , |B|}, then τ (s) ∈ B and the query process will continue

into the bucket with index b on the bottom layer of SeqOthello.

6.3.3 Insertion of new experiments into SeqOthello

If the group files generated at Step 1 have been retained, the insertion of new experiments to

SeqOthello is quite fast, especially for batch update. The process involves merging newly

inserted experiments with the existing group files, and then repeating Steps 2 and 3 of the

above construction algorithm. The entire update requires only a few hours to complete.

6.4 False-positive k-mer Query on SeqOthello

SeqOthello maintains a mapping from a large set of k-mers to their occurrence maps. How-

ever, due to the nature of Othello being a minimal perfect hashing classifier, querying of

an alien k-mer (i.e., k-mer that does not exist in any of the samples) with SeqOthello may

afford a false report of its presence in one or more RNA-seq experiments. Here, we analyze

the likelihood of such a false report.

6.4.1 Notations

In reference to SeqOthello, we use the notation RootOOO(S,V ) to denote the root-level Othello.

RootOOO(S,V ) records the mapping between a k-mer in S and its assignment either to a single
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Table 6.2: A summary of notations used in Section 6.4.1

RootOOO(S,V ) Othello at the root of SeqOthello
bOOO(Sb,Vb) Othello of the bucket b

E Set of RNA-seq experiments
B Set of buckets

Wt t th occurrence map in a bucket b
SeqOthelloPAlien Probability of an alien k-mer being recognized as Alien by

SeqOthello
SeqOthelloP(e) Probability of an alien query returning experiment e

root px Probability that query of an alien k-mer on the root Othello
τ(s′) returns x

b px Probability that query of an alien k-mer on the Othello in
bucket b returns bτ(s′) value x

experiment or to a second-level bucket in V = E ∪B.

For any bucket b ∈ B, we use the notation bOOO(Sb,Vb) to denote the associated Othello,

where bOOO(Sb,Vb) stores the mapping between a k-mer in Sb and its occurrence map index

in Vb. Thus Sb is the set of k-mers that are assigned to bucket b and Vb = {1,2, · · · ,vb} is

the list of indices for encoded occurrence maps in bucket b.

We list the primary notation used in the following analysis in Table 2.

6.4.2 Probability of alien k-mer recognition and false positive presence

Let s′ be an alien k-mer, and τ (s′) be the result returned when querying s
′

on the root

Othello. Then τ (s′) falls into one of the following three categories:

A. τ(s′) /∈ V , where V = E ∪B. This k-mer will be identified as alien, and SeqOthello

will report its absence from the database. The probability of this result is rootPAlien,

which can be calculated according to Theorem 1.

B. τ (s′) ∈ E. Such a k-mer will be reported falsely as existing in the experiment iden-

tified by τ (s′). For any experiment e ∈ E, the probability of returning e as the result

of querying an alien k-mer has a probability root pe, which can be calculated based on

Lemma 1.
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C. τ (s′) ∈ B. In this case, the query process would continue into the bucket b identified

by τ (s′). This circumstance occurs with probability root p|E|+b. Inside the bucket b,

the query bτ (s′) will result in one of two scenarios:

1. bτ (s′) /∈Vb. In this case, s′ is identified as alien in bucket b with probability

bPAlien, which is PAlien for the Othello bOOO(Sb,Vb).

2. bτ (s′) ∈Vb. Here s
′

is mapped falsely to a location storing the occurrence map

of a different k-mer. A calculation follows for the probability of this outcome.

Assume there are vb encoded occurrence maps stored in bucket b, namely W1,W2, · · · ,Wvb .

We use the notation Wt,e ∈ {0,1} to denote the presence/absence information for experi-

ment e stored in the t-th occurrence map. Here, Wt,e = 1 indicates that the k-mer associated

with occurrence map Wt is marked as ‘present’ in experiment e; Wt,e = 0 indicates it is

marked as ‘not present’ in experiment e.

Note that a query on bucket b returns the occurrence map with index bτ(s
′
), namely

Wbτ(s′). For any experiment e, 1 ≤ e ≤ |E|, if Wbτ(s′),e = 1, then the query result would

indicate falsely that s′ presents in experiment e. We use the notation bP(e) to denote the

probability of the query on bucket b yielding Wbτ(s′),e = 1. bP(e) is equal the probability of

bτ (s′) returning any index x such that the x-th occurrence map Wx satisfies Wx,e = 1:

bP(e) = Pr
[
Wbτ(s′),e = 1

]
= ∑

x∈Vb

Pr
[

b
τ(s′) = x ∧Wx,e = 1

]
Noting that Wx,e ∈ {0,1},

bP(e) = ∑
x∈Vb

b pxWx,e

Computing b px for all x ∈ Vb using Lemma 1 requires O
(
(2lb)

2|Vb|
)

computation,

which becomes infeasible when lb is large. Hence, we use an alternative approach to esti-

mate the b px values when l ≥ 12. Lemma 2 indicates that the value of b p0 is significantly
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larger than b pxvalues for x 6= 0. We also observe that the values for b px are similar for any

x 6= 0 and x < 2lb in the same bucket b. We therefore use the average value of b px over

x 6= 0, denoted by b px 6=0, to replace individual b px values:

b px 6=0 =
1

2lb−1
(1−b p0)

Hence,

bP(e) = ∑
x∈Vb

b pxWx,e→ ∑
x∈Vb

b px 6=0Wx,e =
b px 6=0 ∑

x∈Vb

Wx,e =

(
1−b p0

)
2lb−1 ∑

x∈Vb

Wx,e

Here, ∑x∈Vb
Wx,eis the number of encoded occurrence maps in bucket b in which the

associated k-mer is marked to be present in experiment e.

For an alien k-mer s′, the query on SeqOthello may return a false presence in exper-

iment e if τ (s′) falls in category B, a circumstance which occurs with probability root pe.

Otherwise, if τ (s′) satisfies circumstance C.2, the query yields an occurrence map in which

experiment e is marked as positive with probability bP(e). Hence, the probability of an alien

k-mer query on the two-level SeqOthello yielding a false-positive presence in experiment e

is:

SeqOthelloP(e) =root pe +
|B|

∑
b=1

root p|E|+b ·b P(e)

On the other hand, an alien k-mer has a very good likelihood of being recognized as

alien if τ (s′) satisfies circumstance A, or falls in circumstance C and is subsequently identi-

fied under C.1. Taken together, the overall probability of SeqOthello identifying the k-mer

as alien is:

SeqOthelloPAlien =
root PAlien +

|B|

∑
b=1

root p|E|+b ·b PAlien
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Table 6.3: Estimated probability values computed on SeqOthello constructed for Human
and TCGA datasets

SRA TCGA

|E| : number of experiments 2,652 10,113
|B| : number of buckets 105 127
SeqOthelloPAlien 0.532440 0.551722
SeqOthelloP(e), average over all experiments 0.000840 0.000606
standard deviation of SeqOthelloP(e), across all experiments 0.000684 0.000173

We present a numerical estimation of various probabilities based on the distribution of

k-mer occurrences as well as the SeqOthello structures constructed for the two datasets

used in this paper. The results are given in Table 6.3.

6.4.3 Error rate of a SeqOthello sequence query

SeqOthello executes sequence query by making individual k-mer queries extracted from the

sequence. The probability of returning false-positive k-mer hits is low and can be computed

as SeqOthelloP(e). Let X(e) be the number of false positives for experiment e returned over

w alien k-mer queries. Then, X(e) follows the binomial distribution Binomial
(
w,SeqOthello P(e)

)
.

Note that the query result for transcript query is reported as the fraction of present k-mers

for each sample, and X(e) false positive k-mers will result in an error rate of X(e)
w . Note

that the X(e)
w is usually 0. The probability of X(e)

w being large enough to affect the query re-

sult is very low, only occurring when multiple k-mer queries return the same false-positive

experiments. For example, for w = 50 and P(e) = 0.0084, the probability of X (e) > 2 is

1.15×10−5. Thus, SeqOthello returns the query result with error rate δ = X(e)
w > 2

50 = 4%

with probability 1.15×10−5, which is much lower than the probability of a single error.
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Table 6.4: Performance comparison on construction.

Tool SeqOthello SBT SBT-AS SSBT

k-mer preparation (days) 3.4 4.1 4.3 4.8
Index building (hours) 1.9 39.5 10.2 46.6
Peak memory (GB) 14.1 23.4 39.1 5.6
Intermediate disk space (TB) 0.9 1.4 3.7 1.9
Final index size (GB) 20.8 185.5 168.5 30.8

6.5 Evaluation

6.5.1 On Query performance

We compare SeqOthello to each of three state-of-the-art methods for querying large-scale

RNA-seq datasets: SBT [120], SSBT [121], and SBT-AS [122]. The evaluation was bench-

marked on 2,652 RNA-seq experiments of human blood, breast, and brain tissues from the

SRA. The results are shown in Table 6.4. The k-mer preparation step converts each indi-

vidual sequencing experiment to the binary format using 16 threads. We use Jellyfish [129]

to convert raw sequence data into k-mer files. In order to alleviate noise from sequenc-

ing errors, k-mers having a frequency lower than a specific threshold were removed from

the experiment (Table 6.5). The thresholding criteria are only applied to the 2,652 hu-

man RNA-seq experiments from SRA. Only k-mers with frequency count no less than the

threshold are retained for subsequent indexing.

The index step follows the k-mer prep step. Unless mentioned otherwise, the compar-

isons were tested using a single thread. SeqOthello reduces the index construction time

by 81% comparing to SBT-AS and the final index size by 32% comparing to the smallest

SSBT index. As shwon in Table 6.6, taking these files as input, SeqOthello requires 1.93

hours and a maximum of 14.1 GB memory to construct the index, 10 times faster than SBT

and SSBT. At 20.8 GB, the SeqOthello index achieves a 700:1 compression ratio relative

to the original database.

The time cost of SeqOthello is shown in Figure 6.4. The memory cost of SeqOthello
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Table 6.5: k-mer count threshold used to obtain k-mers from Jellyfish as a function of the
fasta.gz file size of each experiment

fasta.gz size Threashold

< 300 MB 1
Between 300 MB and 500 MB 3
Between 500 MB and 1GB 10
Between 1GB and 3GB 20
> 3GB 50

Table 6.6: Query response time of SeqOthello, SBT, SSBT, and SBT-AS

Memory (GB) Time (min)

SeqOthello (1 thread) 15.2 35.7
SeqOthello (4 thread) 19.4 13.4
SBT 22.4 4160.6
SBT-AS 61.0 575.5
SSBT 2.8 6964.6

is shown in Figure 6.5. SeqOthello queries 198,093 transcripts from Gencode Release

25 [130] for k-mer hits in all 2,652 experiments in 35.7 minutes using 15.2 GB memory.

With four threads, the running time drops to 13.4 minutes. SBT-based queries only return

the set of experiments whose k-mer hit ratio is greater than a user-defined threshold, de-

noted by θ . Even with a very high k-mer hit ratio (θ = 0.9), SBT-AS and SBT require 575

and 4,160 minutes to complete, respectively with higher memory cost than SeqOthello.

While SSBT is extremely memory frugal, it is at the expense of much slower speed, two

orders of magnitude slower than SeqOthello.

The detailed comparison is shown in Table 6.7. The significance of experiments ex-

tracted by SBT using a single threshold θ is difficult to assess. To avoid generating mis-

leading conclusions, multiple queries with different θ may be attempted to determine an

approximate distribution, affording an overall query time several times larger than we re-

port. Querying a small batch of 1,000 transcripts with settings of θ = 0.7, θ = 0.8, and

θ = 0.9 required 40 minutes to execute with SBT-AS, 190 minutes with SBT, and 241 min-

utes with SSBT. In contrast, SeqOthello requires only 4.6 minutes to query the same set of
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Figure 2. Performance comparison for querying with SeqOthello and each of three SBT-based algorithms: SBT, SSBT, and SBT-AS. 
Performance is benchmarked on 2652 human RNA-seq experiments. The query consists of 198,093 human transcripts in Gencode  
Release 25. a. Query response time. b. Peak memory.  

SeqOthello outperforms State-of-The-Art algorithms  
We compare SeqOthello to each of three state-of-the-art methods for querying large-scale RNA-seq 

datasets: SBT, SSBT, and SBT-AS. The evaluation was benchmarked on 2652 RNA-seq experiments of 

human blood, breast, and brain tissues from the SRA (Supp Table 1). We use Jellyfish25 to convert raw 

sequence data into 𝑘-mer files. Taking these files as input, SeqOthello requires 1.93 hours and a maximum 

of 14.1 GB memory to construct the index (Methods), 10 times faster than SBT and SSBT. At 20.8 GB, the 

SeqOthello index is 30% smaller than the most-compact SBT-based index, SSBT, and achieves a 700:1 

compression ratio relative to the original database (Supp Table 2).  

SeqOthello queries 198,093 transcripts from Gencode Release 2526 for 𝑘-mer hits in all 2652 experiments 

in 35.7 minutes using 15.2 GB memory. With four threads, the running time drops to 13.4 minutes. SBT-

based queries only return the set of experiments whose 𝑘-mer hit ratio is greater than a user-defined 

threshold, denoted by 𝜃. Even with a very high 𝑘-mer hit ratio (𝜃 = 0.9), SBT-AS and  SBT require 575 and 

4,160 minutes to complete, respectively with  higher memory cost than SeqOthello (Figure 2). While SSBT 

is extremely memory frugal, it is at the expense of much slower speed, two orders of magnitude slower 

than SeqOthello (Figure 2). 

The significance of experiments extracted by SBT using a single threshold 𝜃 is difficult to assess. To avoid 

generating misleading conclusions, multiple queries with different 𝜃 may be attempted to determine an 

approximate distribution, affording an overall query time several times larger than we report. Querying a 

small batch of 1000 transcripts with settings of 𝜃 = 0.7, 𝜃 = 0.8, and 𝜃 = 0.9 required 40 minutes to 

execute with SBT-AS, 190 minutes with SBT, and 241 minutes with SSBT (Supp Table 4). In contrast, 

SeqOthello requires only 4.6 minutes to query the same set of transcripts, and generates exact hit ratios 

for each transcript in each indexed experiment.  

SeqOthello also accommodates online features for small-batch queries. Online queries preload the entire 

index into memory prior to querying, and can be executed in approximately 0.09 seconds per transcript 

Figure 6.4: Query response time of SeqOthello, SBT, SBT-AS, and SSBT

transcripts, and generates exact hit ratios for each transcript in each indexed experiment.

SeqOthello also accommodates online features for small-batch queries. Online queries

preload the entire index into memory prior to querying, and can be executed in approxi-

mately 0.09 seconds per transcript. Our method’s advantageous speed permits it to support

on-demand and instant queries from multiple users in a client-server setting. Other methods

do not have online options at present.

6.5.2 On Query Accuracy

SeqOthello always returns the correct occurrence map when querying k-mers from the set

the SeqOthello is built upon. This includes the set of k-mers that are present in at least

one experiment sample. However, for queries involving alien k-mers that are not present

in any of the experiments indexed in the database, SeqOthello may return false positive

occurrences. To assess the accuracy in general k-mer search, we queried 120,044,842 k-
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Performance is benchmarked on 2652 human RNA-seq experiments. The query consists of 198,093 human transcripts in Gencode  
Release 25. a. Query response time. b. Peak memory.  
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We compare SeqOthello to each of three state-of-the-art methods for querying large-scale RNA-seq 

datasets: SBT, SSBT, and SBT-AS. The evaluation was benchmarked on 2652 RNA-seq experiments of 

human blood, breast, and brain tissues from the SRA (Supp Table 1). We use Jellyfish25 to convert raw 

sequence data into 𝑘-mer files. Taking these files as input, SeqOthello requires 1.93 hours and a maximum 

of 14.1 GB memory to construct the index (Methods), 10 times faster than SBT and SSBT. At 20.8 GB, the 

SeqOthello index is 30% smaller than the most-compact SBT-based index, SSBT, and achieves a 700:1 

compression ratio relative to the original database (Supp Table 2).  

SeqOthello queries 198,093 transcripts from Gencode Release 2526 for 𝑘-mer hits in all 2652 experiments 

in 35.7 minutes using 15.2 GB memory. With four threads, the running time drops to 13.4 minutes. SBT-

based queries only return the set of experiments whose 𝑘-mer hit ratio is greater than a user-defined 

threshold, denoted by 𝜃. Even with a very high 𝑘-mer hit ratio (𝜃 = 0.9), SBT-AS and  SBT require 575 and 

4,160 minutes to complete, respectively with  higher memory cost than SeqOthello (Figure 2). While SSBT 

is extremely memory frugal, it is at the expense of much slower speed, two orders of magnitude slower 

than SeqOthello (Figure 2). 

The significance of experiments extracted by SBT using a single threshold 𝜃 is difficult to assess. To avoid 

generating misleading conclusions, multiple queries with different 𝜃 may be attempted to determine an 

approximate distribution, affording an overall query time several times larger than we report. Querying a 

small batch of 1000 transcripts with settings of 𝜃 = 0.7, 𝜃 = 0.8, and 𝜃 = 0.9 required 40 minutes to 

execute with SBT-AS, 190 minutes with SBT, and 241 minutes with SSBT (Supp Table 4). In contrast, 

SeqOthello requires only 4.6 minutes to query the same set of transcripts, and generates exact hit ratios 

for each transcript in each indexed experiment.  

SeqOthello also accommodates online features for small-batch queries. Online queries preload the entire 

index into memory prior to querying, and can be executed in approximately 0.09 seconds per transcript 

Figure 6.5: Peak memory usage of SeqOthello, SBT, SBT-AS, and SSBT

mers present in human transcriptome Gencode Release 25 against the SeqOthello index

constructed for the aforementioned 2,652 experiments. We randomly selected 150 experi-

ments and calculated the false-positive rate of k-mer queries in each experiment. The false

positive rate is defined as the fraction of k-mers absent from the raw k-mer file that Se-

qOthello classifies as present with all queried k-mers. SeqOthello recovers all k-mers that

are truly present in the experiment, with guaranteed 100% recall rate. For k-mers that are

not present in any of the indexed experiments, SeqOthello yields an extremely low rate of

false positives: across 150 randomly chosen experiments, the average false-positive rate

was only 0.015% with standard deviation of 0.071%.

To further evaluate the effect of false positives on transcript queries, we mapped the

raw k -mers of each experiment to transcript sequences, calculating the true k-mer hit ratio

for each transcript. We then compared the k-mer hit ratios generated by SeqOthello to the

ground truth.
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Table 6.7: Performance comparison on small batch query.

max filters Memory (GB) Time (min)

SeqOthello-online - - 27.3 1.5

SeqOthello - - 6.1 4.6

SBT

.7 1 0.5 78.4

.8 1 0.5 64.7

.9 1 0.5 46.9

Total 1 0.5 190.0

.9 10,000 175.1 48.9

SBT-AS

.7 1 0.8 14.5

.8 1 0.8 13.0

.9 1 0.8 12.5

Total 1 0.8 40.0

.9 10,000 131.4 11.6

SSBT

0.7 1 0.2 100.2
0.8 1 0.2 82.7
0.9 1 0.2 58.6

Total 1 0.2 241.5

0.9 10,000 28.1 55.6

As shown in Figure 6.6, the error (δ ) of a transcript query over an experiment is calcu-

lated as the difference between the transcripts k-mer hit ratio returned by SeqOthello and

the k-mer hit ratio obtained by mapping raw k-mers using the same RNA-seq experiments

to the transcript sequences. Each bar shows the percentage of transcripts with δ falls in a

particular range. The error bar shows the standard deviation of such percentage measured

on 150 experiments. . Roughly 89.7% of transcripts afforded k-mer hit ratios equal to

the true value, with an additional 9.3% exhibiting an error rate up to 0.003. These results

demonstrate that SeqOthello achieves near-exact query of k-mers and k-mer hit ratios. Ad-

ditionally, as consecutive k –mers in a sequence are highly redundant, even a single base

mismatch to the query sequence will be evidenced by the absence of multiple (i.e. k) k

-mers, rendering an extremely low likelihood of false positive match due to alien k-mers
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(Supp Table 4). Our method’s advantageous speed permits it to support on-demand and instant queries 

from multiple users in a client-server setting. Other methods do not have online options at present. 

 

 

Figure 3. The distribution of error rate in k-mer hit ratios returned by SeqOthello. A randomly selected set of 150 experiments are 
extracted from SeqOthello’s result by querying all human transcripts on 2652 human experiments. The error (𝛿) of a transcript 
query over an experiment is calculated as the difference between the transcript’s k-mer hit ratio returned by SeqOthello and the 
k-mer hit ratio obtained by mapping raw k-mers using the same RNA-seq experiments to the transcript sequences. Each bar shows 
the percentage of transcripts with 𝛿 falls in a particular range. The error bar shows the standard deviation of such percentage 
measured on 150 experiments. 

SeqOthello achieves near-exact k-mer query 
To assess the accuracy in 𝑘-mer search, we queried 120,044,842 𝑘-mers present in human transcriptome 

Gencode Release 25 against the SeqOthello index constructed for the aforementioned 2,652 experiments. 

We randomly selected 150 experiments and calculated the false-positive rate of 𝑘-mer queries in each 

experiment. The false positive rate is defined as the fraction of 𝑘-mers absent from the raw 𝑘-mer file 

that SeqOthello classifies as present with all queried 𝑘-mers. The Venn diagram (Supp Figure 2) shows an 

example of overlap among three sets of 𝑘-mers. SeqOthello recovers all 𝑘-mers that are truly present in 

the experiment, with guaranteed 100% recall rate. For 𝑘-mers that are not present in any of the indexed 

experiments, SeqOthello yields an extremely low rate of false positives: across 150 randomly chosen 

experiments, the average false-positive rate was only 0.015% with standard deviation of 0.071%.  

To further evaluate the effect of false positives on transcript queries, we mapped the raw 𝑘 -mers of each 

experiment to transcript sequences, calculating the true 𝑘-mer hit ratio for each transcript. We then 

compared the 𝑘-mer hit ratios generated by SeqOthello to the ground truth. Roughly 89.7% of transcripts 

afforded 𝑘-mer hit ratios equal to the true value, with an additional 9.3% exhibiting an error rate up to 

0.003 (Figure 3). These results demonstrate that SeqOthello achieves near-exact query of 𝑘-mers and 𝑘-

mer hit ratios. Additionally, as consecutive 𝑘 –mers in a sequence are highly redundant, even a single base 

mismatch to the query sequence will be evidenced by the absence of multiple (i.e. 𝑘) 𝑘 -mers, rendering 

an extremely low likelihood of false positive match due to alien 𝑘 -mers (Methods). Although 𝑘 -mer 

Figure 6.6: The distribution of error rate in k-mer hit ratios returned by SeqOthello

in sequence query (Methods). Although k-mer information is implicitly stored in bloom

filters employed in SBT-based algorithms, efficient implementation of k-mer retrieval by

these algorithms is not yet available.

6.5.3 Anlaytical result on query over TCGA Pan-Cancer RNA-Seq Experiments

The Cancer Genome Atlas (TCGA)[20] contains transcriptome profiles of 10,113 tumor

samples obtained from 9,215 cancer patients. The database allows researchers to detect

and characterize novel transcriptomic alterations across 29 different cancer types in the

GDC Legacy Archive. We have constructed a SeqOthello index, storing the occurrences

of 1.47 billion 21-mers across all tumor samples. The preparation of k-mers averages 4

minutes per sample while the construction of SeqOthello on all samples took less than 9

hours. The index occupies only 76.6 GB of space, thus is portable for querying at different

locations.
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We use the SeqOthello index to conduct a survey of all gene-fusion events curated by

TCGA Fusion Gene Database as of December 2017[131]. The database documented of

11,658 unique tier-1 fusion events from TCGA detected by PRADA[132]. This represents

10,994 gene fusion pairs as multiple junctions might exist for one fusion pair.

We use the fusion junction sequence for fusion query on SeqOthello. Each fusion junc-

tion sequence consists of 20 bases from donor exon in one gene and 20 bases from acceptor

exon in the other gene. Each 21-mer within this 40-base sequence spans the fusion junc-

tion. The query of a fusion sequence using SeqOthello may return a maximum of 20 k-mer

hits for each RNA-seq Experiments indexed by SeqOthello.

A SeqOthello query of a fusion sequence returns the number of k-mer hits in each

sample. A simple method to determine the fusion occurrence in each sample can be done

in SBT-like approach, where a minimum fraction of k-mer hits, θ , is required to call the

presence. However, this technique yields lackluster sensitivity and specificity. Lowering θ

permits fusion detection with fewer spanning reads, but may increase false-positive calls if

the fusion junction sequence contains repetitive k-mers that are abundant in many samples.

Instead of using a fixed threshold for all fusion calls, we develop a noise-aware approach.

This approach first evaluates the background noise of the query result due to repetitive k-

mers that are abundant in large fraction of samples, which can be detected leveraging the

distribution of k-mer hits across TCGA tumor samples queried through SeqOthello.

Under this method, we detect 92.7% of tier-1 fusion occurrences in TCGA Fusion Gene

Database27 with at least 10 spanning reads reported by PRADA. Additionally, we identify

270 novel occurrences of fusion events across 17 tumor subtypes that are not identified

by PRADA. We selected two fusion pairs with occurrences most inconsistent with current

curation for further validations: FGFR3-TACC3 in GBM samples (5 novel, 3 undetected)

and ESR1-C6orf97 in BRCA samples (2 novel, 5 undetected). We were able to confirm

all 7 novel fusion occurrences by the identification of at least 10 fusion spanning reads

supporting each. For all undetected fusions, insufficient spanning reads were confirmed,
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information is implicitly stored in bloom filters employed in SBT-based algorithms, efficient 

implementation of 𝑘-mer retrieval by these algorithms is not yet available.  

 

Figure 4. Ten fusion gene pairs with the highest novel occurrences identified by SeqOthello. We used SeqOthello to conduct a 
survey of all fusions curated in TCGA gene-fusion database against 10,113 TCGA Pan Cancer RNA-seq samples. Each column in the 
bar plot represents fusion occurrence in a cancer type. The number in parenthesis below each bar indicates the number of 
documented occurrences reported in the current database.  

SeqOthello enables query against TCGA Pan-Cancer RNA-Seq Experiments  
The Cancer Genome Atlas (TCGA)2 contains transcriptome profiles of 10,113 tumor samples obtained from 
9,215 cancer patients. The database allows researchers to detect and characterize novel transcriptomic 
alterations across 29 different cancer types in the GDC Legacy Archive2. We have constructed a SeqOthello 
index, storing the occurrences of 1.47 billion 21-mers across all tumor samples.  The preparation of 𝑘-
mers averages 4 minutes per sample while the construction of SeqOthello on all samples took less than 9 
hours. The index occupies only 76.6 GB of space, thus is portable for querying at different locations.  
 
We apply the SeqOthello index to conduct a survey of all gene-fusion events curated by TCGA Fusion Gene 
Database as of December 201727. The database documented of 11,658 unique tier-1 fusion events from 
TCGA detected by PRADA28.  To query the presence of a fusion event, we construct a fusion junction 
sequence consisting of 20 bases from the donor exon and 20 bases from the acceptor exon, thereby 
guaranteeing that any 21-mer from the sequence will span the fusion junction (Supp Figure 3).  
 
A SeqOthello query returns the number of 𝑘-mer hits on this fusion junction sequence in each sample. 
Determining a true fusion occurrence from 𝑘 -mer hits is nontrivial. A simple approach specifies a 
minimum 𝑘 -mer hit threshold. However, this technique yields lackluster sensitivity and specificity: 
Lowering the threshold permits detection with fewer spanning reads, but may increase false-positive calls 
in the presence of repetitive 𝑘-mers. Instead, we classify fusion events according to the distribution of 𝑘-
mer hits in all tumor samples for each query. We first detect the background noise due to repetitive 𝑘-
mers. Here the maximum number of repetitive 𝑘-mers is then estimated as the 98th percentile in the 
distribution of 𝑘 -mer hits, assuming less than 2% recurrence rate in all TCGA samples. (The highest 
recurrence rate yet documented is 0.953%, exhibited by TMPRSS2-ERG27.) We require a number of 
additional 𝑘-mers beyond this threshold as evidence of expression to conclude fusion in a sample (Supp 
Figure 4). Here 7 is chosen as it yields the optimal balance between sensitivity and specificity (Supp Figure 
5). 
 

Figure 6.7: Ten fusion gene pairs with the highest novel occurrences identified by SeqOthello

107



which are consistent with low read support recorded in the database.

Figure 6.7 shows ten fusion gene pairs with the highest novel occurrences identified by

SeqOthello. We used SeqOthello to conduct a survey of all fusions curated in TCGA gene-

fusion database against 10,113 TCGA Pan Cancer RNA-seq samples. Each column in the

bar plot represents fusion occurrence in a cancer type. The number in parenthesis below

each bar indicates the number of documented occurrences reported in the current database.

Interestingly, all novel occurrences agree with the original fusion cancer-type classifica-

tions, rendering the chance of random occurrence negligible. This result corroborates their

cancer specificity and supports the high precision of SeqOthello’s query results. One exam-

ple of this consistency is TMPRSS2-ERG, a clinical marker for prostate cancer. SeqOthello

extracted 122 pre-identified occurrences of TMPRSS2-ERG and 142 novel occurrences, all

from prostate cancer samples.

6.6 Discussion

SeqOthello is a novel algorithm capable of indexing large-scale RNA-seq experiments that

supports online sequence query. We constructed a SeqOthello index on the TCGA Pan-

Cancer RNA-seq datasets, the latter totaling 54 TB in compressed fastq format. The Se-

qOthello index uses only 76.6 GB disk space, achieving a compression ratio of 700:1.

Querying the index to assess the prevalence of 11,658 documented fusion events requires

only five minutes on a standard desktop computer with 32 GB memory. This performance

is orders of magnitude faster than the most-efficient existing fusion-detection algorithm,

estimated to require 785 days of computation to process all TCGA data (methods).

SeqOthello queries on individual sequences as well as their constituent k-mers for

their presence and absence in each experiment. The utility of SeqOthello’s query result

is demonstrated by the application of gene fusion survey, which accurately determines the

tumor-specificity of individual gene fusion events without requiring downloading and re-

analysis of raw sequencing data.
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The simple query supported by SeqOthello is powerful, with myriad applications yet to

be defined. One can use SeqOthello to assess the prevalence of clinically important features

in different patient populations or to compare across different patient cohorts. Beyond tran-

scripts, one can use SeqOthello to identify expressed regions by querying entire reference

genomes. SeqOthello can be potentially leveraged on any form of next-generation sequenc-

ing data that can be translated to a k-mer occurrence matrix. We leave the definitions and

demonstrations of these applications for future work.

6.7 Conclusion

In conclusion, SeqOthello is parameter-free, reference-free, and annotation-free. Its un-

biased nature supports large-scale integrative and comparative studies, while its ultra-fast

performance and undemanding system requirement render it appropriate for a wide variety

of research investigators. SeqOthello will enable novel discoveries that would be otherwise

unrealizable for individual research labs.
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Chapter 7. Conclusion and Future Work

7.1 Dissertation summary

Research of computing technologies is facing emerging challenges in generating, transmit-

ting, storing, and processing large-scale data. The work presented in this dissertation brings

efficient algorithms and data structures for practical problems, by building real-world sys-

tems that tackle challenging issues of the distributed networking systems, big data, and

bioinformatics.

Othello Hashing is an ultra-fast and memory-efficient key-value lookup method called.

It fits the requirements of the core algorithms of many large-scale systems and big data

applications. In this dissertation, I presented four applications developed using Othello

Hashing with domain expertise in corresponding areas. They are the Concise forwarding

information base, the SDLB software load balancer, the MetaOthello taxonomic classifica-

tion tool, and the SeqOthello RNA-seq query engine. An extensive evaluation shows that

these applications demonstrate significant performance improvement compared to existing

approaches in the corresponding area.

7.2 Future work

Othello Hashing is an efficient algorithm that brings major performance improvement to

the many areas in the cloud computing, networked systems, and bioinformatics area. The

works presented in this dissertation initiates a series of research in multiple areas, in which

there are still challenging problems remains to be solved. Also, there are additional re-

search areas may benefit from the merits of Othello Hashing. Here, we outline some of the
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research directions that we are interested to work on in the future.

Implementation of the Othello Hashing on programmable switching hardware

We acknowledge that prevalence of domain-specific language in network programming,

especially in enabling customized data plane operations on hardware switches. Implemen-

tation of Othello Hashing on the hardware is a challenging but promising topic. How to

utilize the programmability of the data plane remains an open problem for Othello Hashing.

In specific, how to boost the performance of the data plane and how to utilize the platform-

specific instructional optimization will be the first two challenges we need to tackle.

High-performance bioinformatics workflow processing

In the past years, the bioinformatics community has been using the Common Workflow

Language for building pipelines. Integrating the tools presented in this paper with CWL

interfaces would allow more users to have the access to these tools.

High throughput load balancer with consistency support for Layer 4 traffic

Network traffic sent to publicly known virtual IPs will be distributed by an L4LB to back-

end servers. In this dissertation, we discussed the SDLB which is designed for mobile edge

computing. For L4LB, the challenge remains in achieving faster packet processing, small

memory cost, and no false hits. How to utilize the properties of alien key queries of Othello

Hashing is also a challenging but promising issue.

Privacy-preserving storage system

The algorithmic tools in the homomorphic encryption field are usually slow and time-

consuming. Although Othello is not designed for encryption computation, the very na-

ture of Othello Hashing still shows other potentials for helping is that the query structure

consists of two arrays. This may be helpful for constructing privacy-preserving systems.
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