11 research outputs found

    Deep-Sea Model-Aided Navigation Accuracy for Autonomous Underwater Vehicles Using Online Calibrated Dynamic Models

    Get PDF
    In this work, the accuracy of inertial-based navigation systems for autonomous underwater vehicles (AUVs) in typical mapping and exploration missions up to 5000m depth is examined. The benefit of using an additional AUV motion model in the navigation is surveyed. Underwater navigation requires acoustic positioning sensors. In this work, so-called Ultra-Short-Baseline (USBL) devices were used allowing the AUV to localize itself relative to an opposite device attached to a (surface) vehicle. Despite their easy use, the devices\u27 absolute positioning accuracy decreases proportional to range. This makes underwater navigation a sophisticated estimation task requiring integration of multiple sensors for inertial, orientation, velocity and position measurements. First, error models for the necessary sensors are derived. The emphasis is on the USBL devices due to their key role in navigation - besides a velocity sensor based on the Doppler effect. The USBL model is based on theoretical considerations and conclusions from experimental data. The error models and the navigation algorithms are evaluated on real-world data collected during field experiments in shallow sea. The results of this evaluation are used to parametrize an AUV motion model. Usually, such a model is used only for model-based motion control and planning. In this work, however, besides serving as a simulation reference model, it is used as a tool to improve navigation accuracy by providing virtual measurements to the navigation algorithm (model-aided navigation). The benefit of model-aided navigation is evaluated through Monte Carlo simulation in a deep-sea exploration mission. The final and main contributions of this work are twofold. First, the basic expected navigation accuracy for a typical deep-sea mission with USBL and an ensemble of high-quality navigation sensors is evaluated. Secondly, the same setting is examined using model-aided navigation. The model-aiding is activated after the AUV gets close to sea-bottom. This reflects the case where the motion model is identified online which is only feasible if the velocity sensor is close to the ground (e.g. 100m or closer). The results indicate that, ideally, deep-sea navigation via USBL can be achieved with an accuracy in range of 3-15m w.r.t. the expected root-mean-square error. This also depends on the reference vehicle\u27s position at the surface. In case the actual estimation certainty is already below a certain threshold (ca. <4m), the simulations reveal that the model-aided scheme can improve the navigation accuracy w.r.t. position by 3-12%

    Underwater Vehicles

    Get PDF
    For the latest twenty to thirty years, a significant number of AUVs has been created for the solving of wide spectrum of scientific and applied tasks of ocean development and research. For the short time period the AUVs have shown the efficiency at performance of complex search and inspection works and opened a number of new important applications. Initially the information about AUVs had mainly review-advertising character but now more attention is paid to practical achievements, problems and systems technologies. AUVs are losing their prototype status and have become a fully operational, reliable and effective tool and modern multi-purpose AUVs represent the new class of underwater robotic objects with inherent tasks and practical applications, particular features of technology, systems structure and functional properties

    Optimized Filter Design for Non-Differential GPS/IMU Integrated Navigation

    Get PDF
    The endeavours in improving the performance of a conventional non-differential GPS/MEMS IMU tightly-coupled navigation system through filter design, involving nonlinear filtering methods, inertial sensors' stochastic error modelling and the carrier phase implementation, are described and introduced in this thesis. The main work is summarised as follows. Firstly, the performance evaluation of a recently developed nonlinear filtering method, the Cubature Kalman filter (CKF), is analysed based on the Taylor expansion. The theoretical analysis indicates that the nonlinear filtering method CKF shows its benefits only when implemented in a nonlinear system. Accordingly, a nonlinear attitude expression with direction cosine matrix (DCM) is introduced to tightly-coupled navigation system in order to describe the misalignment between the true and the estimated navigation frames. The simulation and experiment results show that the CKF performs better than the extended Kalman filter (EKF) in the unobservable, large misalignment and GPS outage cases when attitude errors accumulate quickly, rendering the psi-angle expression invalid and subsequently showing certain nonlinearity. Secondly, the use of shaping filter theory to model the inertial sensors' stochastic errors in a navigation Kalman filter is also introduced. The coefficients of the inertial sensors' noises are determined from the Allan variance plot. The shaping filter transfer function is deduced from the power spectral density (PSD) of the noises for both stationary and non-stationary processes. All the coloured noises are modelled together in the navigation Kalman filter according to equivalence theory. The coasting performance shows that the shaping filter based modelling method has a similar and even smaller maximum position drift than the conventional 1st-order Markovian process modelling method during GPS outages, thus indicating its effectiveness. Thirdly, according to the methods of dealing with carrier phase ambiguities, tightly-coupled navigation systems with time differenced carrier phase (TDCP) and total carrier phase (TCP) as Kalman filter measurements are deduced. The simulation and experiment results show that the TDCP can improve the velocity estimation accuracy and smooth trajectories, but position accuracy can only achieve the single point positioning (SPP) level if the TDCP is augmented with the pseudo-range, while the TCP based method's position accuracy can reach the sub-meter level. In order to further improve the position accuracy of the TDCP based method, a particle filter (PF) with modified TDCP observation is implemented in the TDCP/IMU tightly-coupled navigation system. The modified TDCP is defined as the carrier phase difference between the reference and observation epochs. The absolute position accuracy is determined by the reference position accuracy. If the reference position is taken from DGPS, the absolute position accuracy can reach the sub-meter level. For TCP/IMU tightly-coupled navigation systems, because the implementation of TCP in the navigation Kalman filter introduces additional states to the state vector, a hybrid CKF+EKF filtering method with the CKF estimating nonlinear states and the EKF estimating linear states, is proposed to maintain the CKF's benefits while reducing the computational load. The navigation results indicate the effectiveness of the method. After applying the improvements, the performance of a non-differential GPS/MEMS IMU tightly-coupled navigation system can be greatly improved

    A SINS/DVL Integrated Positioning System through Filtering Gain Compensation Adaptive Filtering

    No full text
    Because of the complex task environment, long working distance, and random drift of the gyro, the positioning error gradually diverges with time in the design of a strapdown inertial navigation system (SINS)/Doppler velocity log (DVL) integrated positioning system. The use of velocity information in the DVL system cannot completely suppress the divergence of the SINS navigation error, which will result in low positioning accuracy and instability. To address this problem, this paper proposes a SINS/DVL integrated positioning system based on a filtering gain compensation adaptive filtering technology that considers the source of error in SINS and the mechanism that influences the positioning results. In the integrated positioning system, an organic combination of a filtering gain compensation adaptive filter and a filtering gain compensation strong tracking filter is explored to fuse position information to obtain higher accuracy and a more stable positioning result. Firstly, the system selects the indirect filtering method and uses the integrated positioning error to model the navigation parameters of the system. Then, a filtering gain compensation adaptive filtering method is developed by using the filtering gain compensation algorithm based on the error statistics of the positioning parameters. The positioning parameters of the system are filtered and information on errors in the navigation parameters is obtained. Finally, integrated with the positioning parameter error information, the positioning parameters of the system are solved, and high-precision positioning results are obtained to accurately position autonomous underwater vehicles (AUVs). The simulation results show that the SINS/DVL integrated positioning method, based on the filtering gain compensation adaptive filtering technology, can effectively enhance the positioning accuracy

    Sonar attentive underwater navigation in structured environment

    Get PDF
    One of the fundamental requirements of a persistently Autonomous Underwater Vehicle (AUV) is a robust navigation system. The success of most complex robotic tasks depends on the accuracy of a vehicle’s navigation system. In a basic form, an AUV estimates its position using an on-board navigation sensors through Dead-Reckoning (DR). However DR navigation systems tends to drift in the long run due to accumulated measurement errors. One way of mitigating this problem require the use of Simultaneous Localization and Mapping (SLAM) by concurrently mapping external environment features. The performance of a SLAM navigation system depends on the availability of enough good features in the environment. On the contrary, a typical underwater structured environment (harbour, pier or oilïŹeld) has a limited amount of sonar features in a limited locations, hence exploitation of good features is a key for effective underwater SLAM. This thesis develops a novel attentive sonar line feature based SLAM framework that improves the performance of a SLAM navigation by steering a multibeam sonar sensor,which is mounted on a pan and tilt unit, towards feature-rich regions of the environment. A sonar salience map is generated at each vehicle pose to identify highly informative and stable regions of the environment. Results from a simulated test and real AUV experiment show an attentive SLAM performs better than a passive counterpart by repeatedly visiting good sonar landmarks

    Guidance and control of an autonomous underwater vehicle

    Get PDF
    Merged with duplicate record 10026.1/856 on 07.03.2017 by CS (TIS)A cooperative project between the Universities of Plymouth and Cranfield was aimed at designing and developing an autonomous underwater vehicle named Hammerhead. The work presented herein is to formulate an advance guidance and control system and to implement it in the Hammerhead. This involves the description of Hammerhead hardware from a control system perspective. In addition to the control system, an intelligent navigation scheme and a state of the art vision system is also developed. However, the development of these submodules is out of the scope of this thesis. To model an underwater vehicle, the traditional way is to acquire painstaking mathematical models based on laws of physics and then simplify and linearise the models to some operating point. One of the principal novelties of this research is the use of system identification techniques on actual vehicle data obtained from full scale in water experiments. Two new guidance mechanisms have also been formulated for cruising type vehicles. The first is a modification of the proportional navigation guidance for missiles whilst the other is a hybrid law which is a combination of several guidance strategies employed during different phases of the Right. In addition to the modelling process and guidance systems, a number of robust control methodologies have been conceived for Hammerhead. A discrete time linear quadratic Gaussian with loop transfer recovery based autopilot is formulated and integrated with the conventional and more advance guidance laws proposed. A model predictive controller (MPC) has also been devised which is constructed using artificial intelligence techniques such as genetic algorithms (GA) and fuzzy logic. A GA is employed as an online optimization routine whilst fuzzy logic has been exploited as an objective function in an MPC framework. The GA-MPC autopilot has been implemented in Hammerhead in real time and results demonstrate excellent robustness despite the presence of disturbances and ever present modelling uncertainty. To the author's knowledge, this is the first successful application of a GA in real time optimization for controller tuning in the marine sector and thus the thesis makes an extremely novel and useful contribution to control system design in general. The controllers are also integrated with the proposed guidance laws and is also considered to be an invaluable contribution to knowledge. Moreover, the autopilots are used in conjunction with a vision based altitude information sensor and simulation results demonstrate the efficacy of the controllers to cope with uncertain altitude demands.J&S MARINE LTD., QINETIQ, SUBSEA 7 AND SOUTH WEST WATER PL

    Internet of Underwater Things and Big Marine Data Analytics -- A Comprehensive Survey

    Full text link
    The Internet of Underwater Things (IoUT) is an emerging communication ecosystem developed for connecting underwater objects in maritime and underwater environments. The IoUT technology is intricately linked with intelligent boats and ships, smart shores and oceans, automatic marine transportations, positioning and navigation, underwater exploration, disaster prediction and prevention, as well as with intelligent monitoring and security. The IoUT has an influence at various scales ranging from a small scientific observatory, to a midsized harbor, and to covering global oceanic trade. The network architecture of IoUT is intrinsically heterogeneous and should be sufficiently resilient to operate in harsh environments. This creates major challenges in terms of underwater communications, whilst relying on limited energy resources. Additionally, the volume, velocity, and variety of data produced by sensors, hydrophones, and cameras in IoUT is enormous, giving rise to the concept of Big Marine Data (BMD), which has its own processing challenges. Hence, conventional data processing techniques will falter, and bespoke Machine Learning (ML) solutions have to be employed for automatically learning the specific BMD behavior and features facilitating knowledge extraction and decision support. The motivation of this paper is to comprehensively survey the IoUT, BMD, and their synthesis. It also aims for exploring the nexus of BMD with ML. We set out from underwater data collection and then discuss the family of IoUT data communication techniques with an emphasis on the state-of-the-art research challenges. We then review the suite of ML solutions suitable for BMD handling and analytics. We treat the subject deductively from an educational perspective, critically appraising the material surveyed.Comment: 54 pages, 11 figures, 19 tables, IEEE Communications Surveys & Tutorials, peer-reviewed academic journa

    Unmanned Vehicle Systems & Operations on Air, Sea, Land

    Get PDF
    Unmanned Vehicle Systems & Operations On Air, Sea, Land is our fourth textbook in a series covering the world of Unmanned Aircraft Systems (UAS) and Counter Unmanned Aircraft Systems (CUAS). (Nichols R. K., 2018) (Nichols R. K., et al., 2019) (Nichols R. , et al., 2020)The authors have expanded their purview beyond UAS / CUAS systems. Our title shows our concern for growth and unique cyber security unmanned vehicle technology and operations for unmanned vehicles in all theaters: Air, Sea and Land – especially maritime cybersecurity and China proliferation issues. Topics include: Information Advances, Remote ID, and Extreme Persistence ISR; Unmanned Aerial Vehicles & How They Can Augment Mesonet Weather Tower Data Collection; Tour de Drones for the Discerning Palate; Underwater Autonomous Navigation & other UUV Advances; Autonomous Maritime Asymmetric Systems; UUV Integrated Autonomous Missions & Drone Management; Principles of Naval Architecture Applied to UUV’s; Unmanned Logistics Operating Safely and Efficiently Across Multiple Domains; Chinese Advances in Stealth UAV Penetration Path Planning in Combat Environment; UAS, the Fourth Amendment and Privacy; UV & Disinformation / Misinformation Channels; Chinese UAS Proliferation along New Silk Road Sea / Land Routes; Automaton, AI, Law, Ethics, Crossing the Machine – Human Barrier and Maritime Cybersecurity.Unmanned Vehicle Systems are an integral part of the US national critical infrastructure The authors have endeavored to bring a breadth and quality of information to the reader that is unparalleled in the unclassified sphere. Unmanned Vehicle (UV) Systems & Operations On Air, Sea, Land discusses state-of-the-art technology / issues facing U.S. UV system researchers / designers / manufacturers / testers. We trust our newest look at Unmanned Vehicles in Air, Sea, and Land will enrich our students and readers understanding of the purview of this wonderful technology we call UV.https://newprairiepress.org/ebooks/1035/thumbnail.jp

    An Investigation into Trust and Reputation Frameworks for Autonomous Underwater Vehicles

    Get PDF
    As Autonomous Underwater Vehicles (AUVs) become more technically capable and economically feasible, they are being increasingly used in a great many areas of defence, commercial and environmental applications. These applications are tending towards using independent, autonomous, ad-hoc, collaborative behaviour of teams or fleets of these AUV platforms. This convergence of research experiences in the Underwater Acoustic Network (UAN) and Mobile Ad-hoc Network (MANET) fields, along with the increasing Level of Automation (LOA) of such platforms, creates unique challenges to secure the operation and communication of these networks. The question of security and reliability of operation in networked systems has usually been resolved by having a centralised coordinating agent to manage shared secrets and monitor for misbehaviour. However, in the sparse, noisy and constrained communications environment of UANs, the communications overheads and single-point-of-failure risk of this model is challenged (particularly when faced with capable attackers). As such, more lightweight, distributed, experience based systems of “Trust” have been proposed to dynamically model and evaluate the “trustworthiness” of nodes within a MANET across the network to prevent or isolate the impact of malicious, selfish, or faulty misbehaviour. Previously, these models have monitored actions purely within the communications domain. Moreover, the vast majority rely on only one type of observation (metric) to evaluate trust; successful packet forwarding. In these cases, motivated actors may use this limited scope of observation to either perform unfairly without repercussions in other domains/metrics, or to make another, fair, node appear to be operating unfairly. This thesis is primarily concerned with the use of terrestrial-MANET trust frameworks to the UAN space. Considering the massive theoretical and practical difference in the communications environment, these frameworks must be reassessed for suitability to the marine realm. We find that current single-metric Trust Management Frameworks (TMFs) do not perform well in a best-case scaling of the marine network, due to sparse and noisy observation metrics, and while basic multi-metric communications-only frameworks perform better than their single-metric forms, this performance is still not at a reliable level. We propose, demonstrate (through simulation) and integrate the use of physical observational metrics for trust assessment, in tandem with metrics from the communications realm, improving the safety, security, reliability and integrity of autonomous UANs. Three main novelties are demonstrated in this work: Trust evaluation using metrics from the physical domain (movement/distribution/etc.), demonstration of the failings of Communications-based Trust evaluation in sparse, noisy, delayful and non-linear UAN environments, and the deployment of trust assessment across multiple domains, e.g. the physical and communications domains. The latter contribution includes the generation and optimisation of cross-domain metric composition or“synthetic domains” as a performance improvement method
    corecore